1 /************************************************************************ 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC 3 * Copyright(c) 2002-2010 Exar Corp. 4 * 5 * This software may be used and distributed according to the terms of 6 * the GNU General Public License (GPL), incorporated herein by reference. 7 * Drivers based on or derived from this code fall under the GPL and must 8 * retain the authorship, copyright and license notice. This file is not 9 * a complete program and may only be used when the entire operating 10 * system is licensed under the GPL. 11 * See the file COPYING in this distribution for more information. 12 * 13 * Credits: 14 * Jeff Garzik : For pointing out the improper error condition 15 * check in the s2io_xmit routine and also some 16 * issues in the Tx watch dog function. Also for 17 * patiently answering all those innumerable 18 * questions regaring the 2.6 porting issues. 19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some 20 * macros available only in 2.6 Kernel. 21 * Francois Romieu : For pointing out all code part that were 22 * deprecated and also styling related comments. 23 * Grant Grundler : For helping me get rid of some Architecture 24 * dependent code. 25 * Christopher Hellwig : Some more 2.6 specific issues in the driver. 26 * 27 * The module loadable parameters that are supported by the driver and a brief 28 * explanation of all the variables. 29 * 30 * rx_ring_num : This can be used to program the number of receive rings used 31 * in the driver. 32 * rx_ring_sz: This defines the number of receive blocks each ring can have. 33 * This is also an array of size 8. 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 35 * values are 1, 2. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of 38 * Tx descriptors that can be associated with each corresponding FIFO. 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA), 40 * 2(MSI_X). Default value is '2(MSI_X)' 41 * lro_max_pkts: This parameter defines maximum number of packets can be 42 * aggregated as a single large packet 43 * napi: This parameter used to enable/disable NAPI (polling Rx) 44 * Possible values '1' for enable and '0' for disable. Default is '1' 45 * vlan_tag_strip: This can be used to enable or disable vlan stripping. 46 * Possible values '1' for enable , '0' for disable. 47 * Default is '2' - which means disable in promisc mode 48 * and enable in non-promiscuous mode. 49 * multiq: This parameter used to enable/disable MULTIQUEUE support. 50 * Possible values '1' for enable and '0' for disable. Default is '0' 51 ************************************************************************/ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/module.h> 56 #include <linux/types.h> 57 #include <linux/errno.h> 58 #include <linux/ioport.h> 59 #include <linux/pci.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/kernel.h> 62 #include <linux/netdevice.h> 63 #include <linux/etherdevice.h> 64 #include <linux/mdio.h> 65 #include <linux/skbuff.h> 66 #include <linux/init.h> 67 #include <linux/delay.h> 68 #include <linux/stddef.h> 69 #include <linux/ioctl.h> 70 #include <linux/timex.h> 71 #include <linux/ethtool.h> 72 #include <linux/workqueue.h> 73 #include <linux/if_vlan.h> 74 #include <linux/ip.h> 75 #include <linux/tcp.h> 76 #include <linux/uaccess.h> 77 #include <linux/io.h> 78 #include <linux/io-64-nonatomic-lo-hi.h> 79 #include <linux/slab.h> 80 #include <linux/prefetch.h> 81 #include <net/tcp.h> 82 #include <net/checksum.h> 83 84 #include <asm/div64.h> 85 #include <asm/irq.h> 86 87 /* local include */ 88 #include "s2io.h" 89 #include "s2io-regs.h" 90 91 #define DRV_VERSION "2.0.26.28" 92 93 /* S2io Driver name & version. */ 94 static const char s2io_driver_name[] = "Neterion"; 95 static const char s2io_driver_version[] = DRV_VERSION; 96 97 static const int rxd_size[2] = {32, 48}; 98 static const int rxd_count[2] = {127, 85}; 99 100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) 101 { 102 int ret; 103 104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && 105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); 106 107 return ret; 108 } 109 110 /* 111 * Cards with following subsystem_id have a link state indication 112 * problem, 600B, 600C, 600D, 640B, 640C and 640D. 113 * macro below identifies these cards given the subsystem_id. 114 */ 115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ 116 (dev_type == XFRAME_I_DEVICE) ? \ 117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \ 118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 119 120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ 121 ADAPTER_STATUS_RMAC_LOCAL_FAULT))) 122 123 static inline int is_s2io_card_up(const struct s2io_nic *sp) 124 { 125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state); 126 } 127 128 /* Ethtool related variables and Macros. */ 129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = { 130 "Register test\t(offline)", 131 "Eeprom test\t(offline)", 132 "Link test\t(online)", 133 "RLDRAM test\t(offline)", 134 "BIST Test\t(offline)" 135 }; 136 137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { 138 {"tmac_frms"}, 139 {"tmac_data_octets"}, 140 {"tmac_drop_frms"}, 141 {"tmac_mcst_frms"}, 142 {"tmac_bcst_frms"}, 143 {"tmac_pause_ctrl_frms"}, 144 {"tmac_ttl_octets"}, 145 {"tmac_ucst_frms"}, 146 {"tmac_nucst_frms"}, 147 {"tmac_any_err_frms"}, 148 {"tmac_ttl_less_fb_octets"}, 149 {"tmac_vld_ip_octets"}, 150 {"tmac_vld_ip"}, 151 {"tmac_drop_ip"}, 152 {"tmac_icmp"}, 153 {"tmac_rst_tcp"}, 154 {"tmac_tcp"}, 155 {"tmac_udp"}, 156 {"rmac_vld_frms"}, 157 {"rmac_data_octets"}, 158 {"rmac_fcs_err_frms"}, 159 {"rmac_drop_frms"}, 160 {"rmac_vld_mcst_frms"}, 161 {"rmac_vld_bcst_frms"}, 162 {"rmac_in_rng_len_err_frms"}, 163 {"rmac_out_rng_len_err_frms"}, 164 {"rmac_long_frms"}, 165 {"rmac_pause_ctrl_frms"}, 166 {"rmac_unsup_ctrl_frms"}, 167 {"rmac_ttl_octets"}, 168 {"rmac_accepted_ucst_frms"}, 169 {"rmac_accepted_nucst_frms"}, 170 {"rmac_discarded_frms"}, 171 {"rmac_drop_events"}, 172 {"rmac_ttl_less_fb_octets"}, 173 {"rmac_ttl_frms"}, 174 {"rmac_usized_frms"}, 175 {"rmac_osized_frms"}, 176 {"rmac_frag_frms"}, 177 {"rmac_jabber_frms"}, 178 {"rmac_ttl_64_frms"}, 179 {"rmac_ttl_65_127_frms"}, 180 {"rmac_ttl_128_255_frms"}, 181 {"rmac_ttl_256_511_frms"}, 182 {"rmac_ttl_512_1023_frms"}, 183 {"rmac_ttl_1024_1518_frms"}, 184 {"rmac_ip"}, 185 {"rmac_ip_octets"}, 186 {"rmac_hdr_err_ip"}, 187 {"rmac_drop_ip"}, 188 {"rmac_icmp"}, 189 {"rmac_tcp"}, 190 {"rmac_udp"}, 191 {"rmac_err_drp_udp"}, 192 {"rmac_xgmii_err_sym"}, 193 {"rmac_frms_q0"}, 194 {"rmac_frms_q1"}, 195 {"rmac_frms_q2"}, 196 {"rmac_frms_q3"}, 197 {"rmac_frms_q4"}, 198 {"rmac_frms_q5"}, 199 {"rmac_frms_q6"}, 200 {"rmac_frms_q7"}, 201 {"rmac_full_q0"}, 202 {"rmac_full_q1"}, 203 {"rmac_full_q2"}, 204 {"rmac_full_q3"}, 205 {"rmac_full_q4"}, 206 {"rmac_full_q5"}, 207 {"rmac_full_q6"}, 208 {"rmac_full_q7"}, 209 {"rmac_pause_cnt"}, 210 {"rmac_xgmii_data_err_cnt"}, 211 {"rmac_xgmii_ctrl_err_cnt"}, 212 {"rmac_accepted_ip"}, 213 {"rmac_err_tcp"}, 214 {"rd_req_cnt"}, 215 {"new_rd_req_cnt"}, 216 {"new_rd_req_rtry_cnt"}, 217 {"rd_rtry_cnt"}, 218 {"wr_rtry_rd_ack_cnt"}, 219 {"wr_req_cnt"}, 220 {"new_wr_req_cnt"}, 221 {"new_wr_req_rtry_cnt"}, 222 {"wr_rtry_cnt"}, 223 {"wr_disc_cnt"}, 224 {"rd_rtry_wr_ack_cnt"}, 225 {"txp_wr_cnt"}, 226 {"txd_rd_cnt"}, 227 {"txd_wr_cnt"}, 228 {"rxd_rd_cnt"}, 229 {"rxd_wr_cnt"}, 230 {"txf_rd_cnt"}, 231 {"rxf_wr_cnt"} 232 }; 233 234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { 235 {"rmac_ttl_1519_4095_frms"}, 236 {"rmac_ttl_4096_8191_frms"}, 237 {"rmac_ttl_8192_max_frms"}, 238 {"rmac_ttl_gt_max_frms"}, 239 {"rmac_osized_alt_frms"}, 240 {"rmac_jabber_alt_frms"}, 241 {"rmac_gt_max_alt_frms"}, 242 {"rmac_vlan_frms"}, 243 {"rmac_len_discard"}, 244 {"rmac_fcs_discard"}, 245 {"rmac_pf_discard"}, 246 {"rmac_da_discard"}, 247 {"rmac_red_discard"}, 248 {"rmac_rts_discard"}, 249 {"rmac_ingm_full_discard"}, 250 {"link_fault_cnt"} 251 }; 252 253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { 254 {"\n DRIVER STATISTICS"}, 255 {"single_bit_ecc_errs"}, 256 {"double_bit_ecc_errs"}, 257 {"parity_err_cnt"}, 258 {"serious_err_cnt"}, 259 {"soft_reset_cnt"}, 260 {"fifo_full_cnt"}, 261 {"ring_0_full_cnt"}, 262 {"ring_1_full_cnt"}, 263 {"ring_2_full_cnt"}, 264 {"ring_3_full_cnt"}, 265 {"ring_4_full_cnt"}, 266 {"ring_5_full_cnt"}, 267 {"ring_6_full_cnt"}, 268 {"ring_7_full_cnt"}, 269 {"alarm_transceiver_temp_high"}, 270 {"alarm_transceiver_temp_low"}, 271 {"alarm_laser_bias_current_high"}, 272 {"alarm_laser_bias_current_low"}, 273 {"alarm_laser_output_power_high"}, 274 {"alarm_laser_output_power_low"}, 275 {"warn_transceiver_temp_high"}, 276 {"warn_transceiver_temp_low"}, 277 {"warn_laser_bias_current_high"}, 278 {"warn_laser_bias_current_low"}, 279 {"warn_laser_output_power_high"}, 280 {"warn_laser_output_power_low"}, 281 {"lro_aggregated_pkts"}, 282 {"lro_flush_both_count"}, 283 {"lro_out_of_sequence_pkts"}, 284 {"lro_flush_due_to_max_pkts"}, 285 {"lro_avg_aggr_pkts"}, 286 {"mem_alloc_fail_cnt"}, 287 {"pci_map_fail_cnt"}, 288 {"watchdog_timer_cnt"}, 289 {"mem_allocated"}, 290 {"mem_freed"}, 291 {"link_up_cnt"}, 292 {"link_down_cnt"}, 293 {"link_up_time"}, 294 {"link_down_time"}, 295 {"tx_tcode_buf_abort_cnt"}, 296 {"tx_tcode_desc_abort_cnt"}, 297 {"tx_tcode_parity_err_cnt"}, 298 {"tx_tcode_link_loss_cnt"}, 299 {"tx_tcode_list_proc_err_cnt"}, 300 {"rx_tcode_parity_err_cnt"}, 301 {"rx_tcode_abort_cnt"}, 302 {"rx_tcode_parity_abort_cnt"}, 303 {"rx_tcode_rda_fail_cnt"}, 304 {"rx_tcode_unkn_prot_cnt"}, 305 {"rx_tcode_fcs_err_cnt"}, 306 {"rx_tcode_buf_size_err_cnt"}, 307 {"rx_tcode_rxd_corrupt_cnt"}, 308 {"rx_tcode_unkn_err_cnt"}, 309 {"tda_err_cnt"}, 310 {"pfc_err_cnt"}, 311 {"pcc_err_cnt"}, 312 {"tti_err_cnt"}, 313 {"tpa_err_cnt"}, 314 {"sm_err_cnt"}, 315 {"lso_err_cnt"}, 316 {"mac_tmac_err_cnt"}, 317 {"mac_rmac_err_cnt"}, 318 {"xgxs_txgxs_err_cnt"}, 319 {"xgxs_rxgxs_err_cnt"}, 320 {"rc_err_cnt"}, 321 {"prc_pcix_err_cnt"}, 322 {"rpa_err_cnt"}, 323 {"rda_err_cnt"}, 324 {"rti_err_cnt"}, 325 {"mc_err_cnt"} 326 }; 327 328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) 329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) 330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) 331 332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) 333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) 334 335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) 336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) 337 338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) 339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) 340 341 /* copy mac addr to def_mac_addr array */ 342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) 343 { 344 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); 345 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); 346 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); 347 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); 348 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); 349 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); 350 } 351 352 /* 353 * Constants to be programmed into the Xena's registers, to configure 354 * the XAUI. 355 */ 356 357 #define END_SIGN 0x0 358 static const u64 herc_act_dtx_cfg[] = { 359 /* Set address */ 360 0x8000051536750000ULL, 0x80000515367500E0ULL, 361 /* Write data */ 362 0x8000051536750004ULL, 0x80000515367500E4ULL, 363 /* Set address */ 364 0x80010515003F0000ULL, 0x80010515003F00E0ULL, 365 /* Write data */ 366 0x80010515003F0004ULL, 0x80010515003F00E4ULL, 367 /* Set address */ 368 0x801205150D440000ULL, 0x801205150D4400E0ULL, 369 /* Write data */ 370 0x801205150D440004ULL, 0x801205150D4400E4ULL, 371 /* Set address */ 372 0x80020515F2100000ULL, 0x80020515F21000E0ULL, 373 /* Write data */ 374 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 375 /* Done */ 376 END_SIGN 377 }; 378 379 static const u64 xena_dtx_cfg[] = { 380 /* Set address */ 381 0x8000051500000000ULL, 0x80000515000000E0ULL, 382 /* Write data */ 383 0x80000515D9350004ULL, 0x80000515D93500E4ULL, 384 /* Set address */ 385 0x8001051500000000ULL, 0x80010515000000E0ULL, 386 /* Write data */ 387 0x80010515001E0004ULL, 0x80010515001E00E4ULL, 388 /* Set address */ 389 0x8002051500000000ULL, 0x80020515000000E0ULL, 390 /* Write data */ 391 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 392 END_SIGN 393 }; 394 395 /* 396 * Constants for Fixing the MacAddress problem seen mostly on 397 * Alpha machines. 398 */ 399 static const u64 fix_mac[] = { 400 0x0060000000000000ULL, 0x0060600000000000ULL, 401 0x0040600000000000ULL, 0x0000600000000000ULL, 402 0x0020600000000000ULL, 0x0060600000000000ULL, 403 0x0020600000000000ULL, 0x0060600000000000ULL, 404 0x0020600000000000ULL, 0x0060600000000000ULL, 405 0x0020600000000000ULL, 0x0060600000000000ULL, 406 0x0020600000000000ULL, 0x0060600000000000ULL, 407 0x0020600000000000ULL, 0x0060600000000000ULL, 408 0x0020600000000000ULL, 0x0060600000000000ULL, 409 0x0020600000000000ULL, 0x0060600000000000ULL, 410 0x0020600000000000ULL, 0x0060600000000000ULL, 411 0x0020600000000000ULL, 0x0060600000000000ULL, 412 0x0020600000000000ULL, 0x0000600000000000ULL, 413 0x0040600000000000ULL, 0x0060600000000000ULL, 414 END_SIGN 415 }; 416 417 MODULE_LICENSE("GPL"); 418 MODULE_VERSION(DRV_VERSION); 419 420 421 /* Module Loadable parameters. */ 422 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); 423 S2IO_PARM_INT(rx_ring_num, 1); 424 S2IO_PARM_INT(multiq, 0); 425 S2IO_PARM_INT(rx_ring_mode, 1); 426 S2IO_PARM_INT(use_continuous_tx_intrs, 1); 427 S2IO_PARM_INT(rmac_pause_time, 0x100); 428 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); 429 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); 430 S2IO_PARM_INT(shared_splits, 0); 431 S2IO_PARM_INT(tmac_util_period, 5); 432 S2IO_PARM_INT(rmac_util_period, 5); 433 S2IO_PARM_INT(l3l4hdr_size, 128); 434 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ 435 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); 436 /* Frequency of Rx desc syncs expressed as power of 2 */ 437 S2IO_PARM_INT(rxsync_frequency, 3); 438 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ 439 S2IO_PARM_INT(intr_type, 2); 440 /* Large receive offload feature */ 441 442 /* Max pkts to be aggregated by LRO at one time. If not specified, 443 * aggregation happens until we hit max IP pkt size(64K) 444 */ 445 S2IO_PARM_INT(lro_max_pkts, 0xFFFF); 446 S2IO_PARM_INT(indicate_max_pkts, 0); 447 448 S2IO_PARM_INT(napi, 1); 449 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); 450 451 static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 452 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; 453 static unsigned int rx_ring_sz[MAX_RX_RINGS] = 454 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; 455 static unsigned int rts_frm_len[MAX_RX_RINGS] = 456 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 457 458 module_param_array(tx_fifo_len, uint, NULL, 0); 459 module_param_array(rx_ring_sz, uint, NULL, 0); 460 module_param_array(rts_frm_len, uint, NULL, 0); 461 462 /* 463 * S2IO device table. 464 * This table lists all the devices that this driver supports. 465 */ 466 static const struct pci_device_id s2io_tbl[] = { 467 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, 468 PCI_ANY_ID, PCI_ANY_ID}, 469 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, 470 PCI_ANY_ID, PCI_ANY_ID}, 471 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, 472 PCI_ANY_ID, PCI_ANY_ID}, 473 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, 474 PCI_ANY_ID, PCI_ANY_ID}, 475 {0,} 476 }; 477 478 MODULE_DEVICE_TABLE(pci, s2io_tbl); 479 480 static const struct pci_error_handlers s2io_err_handler = { 481 .error_detected = s2io_io_error_detected, 482 .slot_reset = s2io_io_slot_reset, 483 .resume = s2io_io_resume, 484 }; 485 486 static struct pci_driver s2io_driver = { 487 .name = "S2IO", 488 .id_table = s2io_tbl, 489 .probe = s2io_init_nic, 490 .remove = s2io_rem_nic, 491 .err_handler = &s2io_err_handler, 492 }; 493 494 /* A simplifier macro used both by init and free shared_mem Fns(). */ 495 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each) 496 497 /* netqueue manipulation helper functions */ 498 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) 499 { 500 if (!sp->config.multiq) { 501 int i; 502 503 for (i = 0; i < sp->config.tx_fifo_num; i++) 504 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; 505 } 506 netif_tx_stop_all_queues(sp->dev); 507 } 508 509 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) 510 { 511 if (!sp->config.multiq) 512 sp->mac_control.fifos[fifo_no].queue_state = 513 FIFO_QUEUE_STOP; 514 515 netif_tx_stop_all_queues(sp->dev); 516 } 517 518 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) 519 { 520 if (!sp->config.multiq) { 521 int i; 522 523 for (i = 0; i < sp->config.tx_fifo_num; i++) 524 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 525 } 526 netif_tx_start_all_queues(sp->dev); 527 } 528 529 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) 530 { 531 if (!sp->config.multiq) { 532 int i; 533 534 for (i = 0; i < sp->config.tx_fifo_num; i++) 535 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 536 } 537 netif_tx_wake_all_queues(sp->dev); 538 } 539 540 static inline void s2io_wake_tx_queue( 541 struct fifo_info *fifo, int cnt, u8 multiq) 542 { 543 544 if (multiq) { 545 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) 546 netif_wake_subqueue(fifo->dev, fifo->fifo_no); 547 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { 548 if (netif_queue_stopped(fifo->dev)) { 549 fifo->queue_state = FIFO_QUEUE_START; 550 netif_wake_queue(fifo->dev); 551 } 552 } 553 } 554 555 /** 556 * init_shared_mem - Allocation and Initialization of Memory 557 * @nic: Device private variable. 558 * Description: The function allocates all the memory areas shared 559 * between the NIC and the driver. This includes Tx descriptors, 560 * Rx descriptors and the statistics block. 561 */ 562 563 static int init_shared_mem(struct s2io_nic *nic) 564 { 565 u32 size; 566 void *tmp_v_addr, *tmp_v_addr_next; 567 dma_addr_t tmp_p_addr, tmp_p_addr_next; 568 struct RxD_block *pre_rxd_blk = NULL; 569 int i, j, blk_cnt; 570 int lst_size, lst_per_page; 571 struct net_device *dev = nic->dev; 572 unsigned long tmp; 573 struct buffAdd *ba; 574 struct config_param *config = &nic->config; 575 struct mac_info *mac_control = &nic->mac_control; 576 unsigned long long mem_allocated = 0; 577 578 /* Allocation and initialization of TXDLs in FIFOs */ 579 size = 0; 580 for (i = 0; i < config->tx_fifo_num; i++) { 581 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 582 583 size += tx_cfg->fifo_len; 584 } 585 if (size > MAX_AVAILABLE_TXDS) { 586 DBG_PRINT(ERR_DBG, 587 "Too many TxDs requested: %d, max supported: %d\n", 588 size, MAX_AVAILABLE_TXDS); 589 return -EINVAL; 590 } 591 592 size = 0; 593 for (i = 0; i < config->tx_fifo_num; i++) { 594 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 595 596 size = tx_cfg->fifo_len; 597 /* 598 * Legal values are from 2 to 8192 599 */ 600 if (size < 2) { 601 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " 602 "Valid lengths are 2 through 8192\n", 603 i, size); 604 return -EINVAL; 605 } 606 } 607 608 lst_size = (sizeof(struct TxD) * config->max_txds); 609 lst_per_page = PAGE_SIZE / lst_size; 610 611 for (i = 0; i < config->tx_fifo_num; i++) { 612 struct fifo_info *fifo = &mac_control->fifos[i]; 613 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 614 int fifo_len = tx_cfg->fifo_len; 615 int list_holder_size = fifo_len * sizeof(struct list_info_hold); 616 617 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); 618 if (!fifo->list_info) { 619 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); 620 return -ENOMEM; 621 } 622 mem_allocated += list_holder_size; 623 } 624 for (i = 0; i < config->tx_fifo_num; i++) { 625 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, 626 lst_per_page); 627 struct fifo_info *fifo = &mac_control->fifos[i]; 628 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 629 630 fifo->tx_curr_put_info.offset = 0; 631 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; 632 fifo->tx_curr_get_info.offset = 0; 633 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; 634 fifo->fifo_no = i; 635 fifo->nic = nic; 636 fifo->max_txds = MAX_SKB_FRAGS + 2; 637 fifo->dev = dev; 638 639 for (j = 0; j < page_num; j++) { 640 int k = 0; 641 dma_addr_t tmp_p; 642 void *tmp_v; 643 tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE, 644 &tmp_p, GFP_KERNEL); 645 if (!tmp_v) { 646 DBG_PRINT(INFO_DBG, 647 "dma_alloc_coherent failed for TxDL\n"); 648 return -ENOMEM; 649 } 650 /* If we got a zero DMA address(can happen on 651 * certain platforms like PPC), reallocate. 652 * Store virtual address of page we don't want, 653 * to be freed later. 654 */ 655 if (!tmp_p) { 656 mac_control->zerodma_virt_addr = tmp_v; 657 DBG_PRINT(INIT_DBG, 658 "%s: Zero DMA address for TxDL. " 659 "Virtual address %p\n", 660 dev->name, tmp_v); 661 tmp_v = dma_alloc_coherent(&nic->pdev->dev, 662 PAGE_SIZE, &tmp_p, 663 GFP_KERNEL); 664 if (!tmp_v) { 665 DBG_PRINT(INFO_DBG, 666 "dma_alloc_coherent failed for TxDL\n"); 667 return -ENOMEM; 668 } 669 mem_allocated += PAGE_SIZE; 670 } 671 while (k < lst_per_page) { 672 int l = (j * lst_per_page) + k; 673 if (l == tx_cfg->fifo_len) 674 break; 675 fifo->list_info[l].list_virt_addr = 676 tmp_v + (k * lst_size); 677 fifo->list_info[l].list_phy_addr = 678 tmp_p + (k * lst_size); 679 k++; 680 } 681 } 682 } 683 684 for (i = 0; i < config->tx_fifo_num; i++) { 685 struct fifo_info *fifo = &mac_control->fifos[i]; 686 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 687 688 size = tx_cfg->fifo_len; 689 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); 690 if (!fifo->ufo_in_band_v) 691 return -ENOMEM; 692 mem_allocated += (size * sizeof(u64)); 693 } 694 695 /* Allocation and initialization of RXDs in Rings */ 696 size = 0; 697 for (i = 0; i < config->rx_ring_num; i++) { 698 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 699 struct ring_info *ring = &mac_control->rings[i]; 700 701 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { 702 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " 703 "multiple of RxDs per Block\n", 704 dev->name, i); 705 return FAILURE; 706 } 707 size += rx_cfg->num_rxd; 708 ring->block_count = rx_cfg->num_rxd / 709 (rxd_count[nic->rxd_mode] + 1); 710 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; 711 } 712 if (nic->rxd_mode == RXD_MODE_1) 713 size = (size * (sizeof(struct RxD1))); 714 else 715 size = (size * (sizeof(struct RxD3))); 716 717 for (i = 0; i < config->rx_ring_num; i++) { 718 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 719 struct ring_info *ring = &mac_control->rings[i]; 720 721 ring->rx_curr_get_info.block_index = 0; 722 ring->rx_curr_get_info.offset = 0; 723 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; 724 ring->rx_curr_put_info.block_index = 0; 725 ring->rx_curr_put_info.offset = 0; 726 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; 727 ring->nic = nic; 728 ring->ring_no = i; 729 730 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); 731 /* Allocating all the Rx blocks */ 732 for (j = 0; j < blk_cnt; j++) { 733 struct rx_block_info *rx_blocks; 734 int l; 735 736 rx_blocks = &ring->rx_blocks[j]; 737 size = SIZE_OF_BLOCK; /* size is always page size */ 738 tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size, 739 &tmp_p_addr, GFP_KERNEL); 740 if (tmp_v_addr == NULL) { 741 /* 742 * In case of failure, free_shared_mem() 743 * is called, which should free any 744 * memory that was alloced till the 745 * failure happened. 746 */ 747 rx_blocks->block_virt_addr = tmp_v_addr; 748 return -ENOMEM; 749 } 750 mem_allocated += size; 751 752 size = sizeof(struct rxd_info) * 753 rxd_count[nic->rxd_mode]; 754 rx_blocks->block_virt_addr = tmp_v_addr; 755 rx_blocks->block_dma_addr = tmp_p_addr; 756 rx_blocks->rxds = kmalloc(size, GFP_KERNEL); 757 if (!rx_blocks->rxds) 758 return -ENOMEM; 759 mem_allocated += size; 760 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { 761 rx_blocks->rxds[l].virt_addr = 762 rx_blocks->block_virt_addr + 763 (rxd_size[nic->rxd_mode] * l); 764 rx_blocks->rxds[l].dma_addr = 765 rx_blocks->block_dma_addr + 766 (rxd_size[nic->rxd_mode] * l); 767 } 768 } 769 /* Interlinking all Rx Blocks */ 770 for (j = 0; j < blk_cnt; j++) { 771 int next = (j + 1) % blk_cnt; 772 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 773 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; 774 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 775 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; 776 777 pre_rxd_blk = tmp_v_addr; 778 pre_rxd_blk->reserved_2_pNext_RxD_block = 779 (unsigned long)tmp_v_addr_next; 780 pre_rxd_blk->pNext_RxD_Blk_physical = 781 (u64)tmp_p_addr_next; 782 } 783 } 784 if (nic->rxd_mode == RXD_MODE_3B) { 785 /* 786 * Allocation of Storages for buffer addresses in 2BUFF mode 787 * and the buffers as well. 788 */ 789 for (i = 0; i < config->rx_ring_num; i++) { 790 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 791 struct ring_info *ring = &mac_control->rings[i]; 792 793 blk_cnt = rx_cfg->num_rxd / 794 (rxd_count[nic->rxd_mode] + 1); 795 size = sizeof(struct buffAdd *) * blk_cnt; 796 ring->ba = kmalloc(size, GFP_KERNEL); 797 if (!ring->ba) 798 return -ENOMEM; 799 mem_allocated += size; 800 for (j = 0; j < blk_cnt; j++) { 801 int k = 0; 802 803 size = sizeof(struct buffAdd) * 804 (rxd_count[nic->rxd_mode] + 1); 805 ring->ba[j] = kmalloc(size, GFP_KERNEL); 806 if (!ring->ba[j]) 807 return -ENOMEM; 808 mem_allocated += size; 809 while (k != rxd_count[nic->rxd_mode]) { 810 ba = &ring->ba[j][k]; 811 size = BUF0_LEN + ALIGN_SIZE; 812 ba->ba_0_org = kmalloc(size, GFP_KERNEL); 813 if (!ba->ba_0_org) 814 return -ENOMEM; 815 mem_allocated += size; 816 tmp = (unsigned long)ba->ba_0_org; 817 tmp += ALIGN_SIZE; 818 tmp &= ~((unsigned long)ALIGN_SIZE); 819 ba->ba_0 = (void *)tmp; 820 821 size = BUF1_LEN + ALIGN_SIZE; 822 ba->ba_1_org = kmalloc(size, GFP_KERNEL); 823 if (!ba->ba_1_org) 824 return -ENOMEM; 825 mem_allocated += size; 826 tmp = (unsigned long)ba->ba_1_org; 827 tmp += ALIGN_SIZE; 828 tmp &= ~((unsigned long)ALIGN_SIZE); 829 ba->ba_1 = (void *)tmp; 830 k++; 831 } 832 } 833 } 834 } 835 836 /* Allocation and initialization of Statistics block */ 837 size = sizeof(struct stat_block); 838 mac_control->stats_mem = 839 dma_alloc_coherent(&nic->pdev->dev, size, 840 &mac_control->stats_mem_phy, GFP_KERNEL); 841 842 if (!mac_control->stats_mem) { 843 /* 844 * In case of failure, free_shared_mem() is called, which 845 * should free any memory that was alloced till the 846 * failure happened. 847 */ 848 return -ENOMEM; 849 } 850 mem_allocated += size; 851 mac_control->stats_mem_sz = size; 852 853 tmp_v_addr = mac_control->stats_mem; 854 mac_control->stats_info = tmp_v_addr; 855 memset(tmp_v_addr, 0, size); 856 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", 857 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); 858 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; 859 return SUCCESS; 860 } 861 862 /** 863 * free_shared_mem - Free the allocated Memory 864 * @nic: Device private variable. 865 * Description: This function is to free all memory locations allocated by 866 * the init_shared_mem() function and return it to the kernel. 867 */ 868 869 static void free_shared_mem(struct s2io_nic *nic) 870 { 871 int i, j, blk_cnt, size; 872 void *tmp_v_addr; 873 dma_addr_t tmp_p_addr; 874 int lst_size, lst_per_page; 875 struct net_device *dev; 876 int page_num = 0; 877 struct config_param *config; 878 struct mac_info *mac_control; 879 struct stat_block *stats; 880 struct swStat *swstats; 881 882 if (!nic) 883 return; 884 885 dev = nic->dev; 886 887 config = &nic->config; 888 mac_control = &nic->mac_control; 889 stats = mac_control->stats_info; 890 swstats = &stats->sw_stat; 891 892 lst_size = sizeof(struct TxD) * config->max_txds; 893 lst_per_page = PAGE_SIZE / lst_size; 894 895 for (i = 0; i < config->tx_fifo_num; i++) { 896 struct fifo_info *fifo = &mac_control->fifos[i]; 897 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 898 899 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); 900 for (j = 0; j < page_num; j++) { 901 int mem_blks = (j * lst_per_page); 902 struct list_info_hold *fli; 903 904 if (!fifo->list_info) 905 return; 906 907 fli = &fifo->list_info[mem_blks]; 908 if (!fli->list_virt_addr) 909 break; 910 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE, 911 fli->list_virt_addr, 912 fli->list_phy_addr); 913 swstats->mem_freed += PAGE_SIZE; 914 } 915 /* If we got a zero DMA address during allocation, 916 * free the page now 917 */ 918 if (mac_control->zerodma_virt_addr) { 919 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE, 920 mac_control->zerodma_virt_addr, 921 (dma_addr_t)0); 922 DBG_PRINT(INIT_DBG, 923 "%s: Freeing TxDL with zero DMA address. " 924 "Virtual address %p\n", 925 dev->name, mac_control->zerodma_virt_addr); 926 swstats->mem_freed += PAGE_SIZE; 927 } 928 kfree(fifo->list_info); 929 swstats->mem_freed += tx_cfg->fifo_len * 930 sizeof(struct list_info_hold); 931 } 932 933 size = SIZE_OF_BLOCK; 934 for (i = 0; i < config->rx_ring_num; i++) { 935 struct ring_info *ring = &mac_control->rings[i]; 936 937 blk_cnt = ring->block_count; 938 for (j = 0; j < blk_cnt; j++) { 939 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 940 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 941 if (tmp_v_addr == NULL) 942 break; 943 dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr, 944 tmp_p_addr); 945 swstats->mem_freed += size; 946 kfree(ring->rx_blocks[j].rxds); 947 swstats->mem_freed += sizeof(struct rxd_info) * 948 rxd_count[nic->rxd_mode]; 949 } 950 } 951 952 if (nic->rxd_mode == RXD_MODE_3B) { 953 /* Freeing buffer storage addresses in 2BUFF mode. */ 954 for (i = 0; i < config->rx_ring_num; i++) { 955 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 956 struct ring_info *ring = &mac_control->rings[i]; 957 958 blk_cnt = rx_cfg->num_rxd / 959 (rxd_count[nic->rxd_mode] + 1); 960 for (j = 0; j < blk_cnt; j++) { 961 int k = 0; 962 if (!ring->ba[j]) 963 continue; 964 while (k != rxd_count[nic->rxd_mode]) { 965 struct buffAdd *ba = &ring->ba[j][k]; 966 kfree(ba->ba_0_org); 967 swstats->mem_freed += 968 BUF0_LEN + ALIGN_SIZE; 969 kfree(ba->ba_1_org); 970 swstats->mem_freed += 971 BUF1_LEN + ALIGN_SIZE; 972 k++; 973 } 974 kfree(ring->ba[j]); 975 swstats->mem_freed += sizeof(struct buffAdd) * 976 (rxd_count[nic->rxd_mode] + 1); 977 } 978 kfree(ring->ba); 979 swstats->mem_freed += sizeof(struct buffAdd *) * 980 blk_cnt; 981 } 982 } 983 984 for (i = 0; i < nic->config.tx_fifo_num; i++) { 985 struct fifo_info *fifo = &mac_control->fifos[i]; 986 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 987 988 if (fifo->ufo_in_band_v) { 989 swstats->mem_freed += tx_cfg->fifo_len * 990 sizeof(u64); 991 kfree(fifo->ufo_in_band_v); 992 } 993 } 994 995 if (mac_control->stats_mem) { 996 swstats->mem_freed += mac_control->stats_mem_sz; 997 dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz, 998 mac_control->stats_mem, 999 mac_control->stats_mem_phy); 1000 } 1001 } 1002 1003 /* 1004 * s2io_verify_pci_mode - 1005 */ 1006 1007 static int s2io_verify_pci_mode(struct s2io_nic *nic) 1008 { 1009 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1010 register u64 val64 = 0; 1011 int mode; 1012 1013 val64 = readq(&bar0->pci_mode); 1014 mode = (u8)GET_PCI_MODE(val64); 1015 1016 if (val64 & PCI_MODE_UNKNOWN_MODE) 1017 return -1; /* Unknown PCI mode */ 1018 return mode; 1019 } 1020 1021 #define NEC_VENID 0x1033 1022 #define NEC_DEVID 0x0125 1023 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) 1024 { 1025 struct pci_dev *tdev = NULL; 1026 for_each_pci_dev(tdev) { 1027 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { 1028 if (tdev->bus == s2io_pdev->bus->parent) { 1029 pci_dev_put(tdev); 1030 return 1; 1031 } 1032 } 1033 } 1034 return 0; 1035 } 1036 1037 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; 1038 /* 1039 * s2io_print_pci_mode - 1040 */ 1041 static int s2io_print_pci_mode(struct s2io_nic *nic) 1042 { 1043 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1044 register u64 val64 = 0; 1045 int mode; 1046 struct config_param *config = &nic->config; 1047 const char *pcimode; 1048 1049 val64 = readq(&bar0->pci_mode); 1050 mode = (u8)GET_PCI_MODE(val64); 1051 1052 if (val64 & PCI_MODE_UNKNOWN_MODE) 1053 return -1; /* Unknown PCI mode */ 1054 1055 config->bus_speed = bus_speed[mode]; 1056 1057 if (s2io_on_nec_bridge(nic->pdev)) { 1058 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", 1059 nic->dev->name); 1060 return mode; 1061 } 1062 1063 switch (mode) { 1064 case PCI_MODE_PCI_33: 1065 pcimode = "33MHz PCI bus"; 1066 break; 1067 case PCI_MODE_PCI_66: 1068 pcimode = "66MHz PCI bus"; 1069 break; 1070 case PCI_MODE_PCIX_M1_66: 1071 pcimode = "66MHz PCIX(M1) bus"; 1072 break; 1073 case PCI_MODE_PCIX_M1_100: 1074 pcimode = "100MHz PCIX(M1) bus"; 1075 break; 1076 case PCI_MODE_PCIX_M1_133: 1077 pcimode = "133MHz PCIX(M1) bus"; 1078 break; 1079 case PCI_MODE_PCIX_M2_66: 1080 pcimode = "133MHz PCIX(M2) bus"; 1081 break; 1082 case PCI_MODE_PCIX_M2_100: 1083 pcimode = "200MHz PCIX(M2) bus"; 1084 break; 1085 case PCI_MODE_PCIX_M2_133: 1086 pcimode = "266MHz PCIX(M2) bus"; 1087 break; 1088 default: 1089 pcimode = "unsupported bus!"; 1090 mode = -1; 1091 } 1092 1093 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", 1094 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); 1095 1096 return mode; 1097 } 1098 1099 /** 1100 * init_tti - Initialization transmit traffic interrupt scheme 1101 * @nic: device private variable 1102 * @link: link status (UP/DOWN) used to enable/disable continuous 1103 * transmit interrupts 1104 * @may_sleep: parameter indicates if sleeping when waiting for 1105 * command complete 1106 * Description: The function configures transmit traffic interrupts 1107 * Return Value: SUCCESS on success and 1108 * '-1' on failure 1109 */ 1110 1111 static int init_tti(struct s2io_nic *nic, int link, bool may_sleep) 1112 { 1113 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1114 register u64 val64 = 0; 1115 int i; 1116 struct config_param *config = &nic->config; 1117 1118 for (i = 0; i < config->tx_fifo_num; i++) { 1119 /* 1120 * TTI Initialization. Default Tx timer gets us about 1121 * 250 interrupts per sec. Continuous interrupts are enabled 1122 * by default. 1123 */ 1124 if (nic->device_type == XFRAME_II_DEVICE) { 1125 int count = (nic->config.bus_speed * 125)/2; 1126 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); 1127 } else 1128 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); 1129 1130 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | 1131 TTI_DATA1_MEM_TX_URNG_B(0x10) | 1132 TTI_DATA1_MEM_TX_URNG_C(0x30) | 1133 TTI_DATA1_MEM_TX_TIMER_AC_EN; 1134 if (i == 0) 1135 if (use_continuous_tx_intrs && (link == LINK_UP)) 1136 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; 1137 writeq(val64, &bar0->tti_data1_mem); 1138 1139 if (nic->config.intr_type == MSI_X) { 1140 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1141 TTI_DATA2_MEM_TX_UFC_B(0x100) | 1142 TTI_DATA2_MEM_TX_UFC_C(0x200) | 1143 TTI_DATA2_MEM_TX_UFC_D(0x300); 1144 } else { 1145 if ((nic->config.tx_steering_type == 1146 TX_DEFAULT_STEERING) && 1147 (config->tx_fifo_num > 1) && 1148 (i >= nic->udp_fifo_idx) && 1149 (i < (nic->udp_fifo_idx + 1150 nic->total_udp_fifos))) 1151 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | 1152 TTI_DATA2_MEM_TX_UFC_B(0x80) | 1153 TTI_DATA2_MEM_TX_UFC_C(0x100) | 1154 TTI_DATA2_MEM_TX_UFC_D(0x120); 1155 else 1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1157 TTI_DATA2_MEM_TX_UFC_B(0x20) | 1158 TTI_DATA2_MEM_TX_UFC_C(0x40) | 1159 TTI_DATA2_MEM_TX_UFC_D(0x80); 1160 } 1161 1162 writeq(val64, &bar0->tti_data2_mem); 1163 1164 val64 = TTI_CMD_MEM_WE | 1165 TTI_CMD_MEM_STROBE_NEW_CMD | 1166 TTI_CMD_MEM_OFFSET(i); 1167 writeq(val64, &bar0->tti_command_mem); 1168 1169 if (wait_for_cmd_complete(&bar0->tti_command_mem, 1170 TTI_CMD_MEM_STROBE_NEW_CMD, 1171 S2IO_BIT_RESET, may_sleep) != SUCCESS) 1172 return FAILURE; 1173 } 1174 1175 return SUCCESS; 1176 } 1177 1178 /** 1179 * init_nic - Initialization of hardware 1180 * @nic: device private variable 1181 * Description: The function sequentially configures every block 1182 * of the H/W from their reset values. 1183 * Return Value: SUCCESS on success and 1184 * '-1' on failure (endian settings incorrect). 1185 */ 1186 1187 static int init_nic(struct s2io_nic *nic) 1188 { 1189 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1190 struct net_device *dev = nic->dev; 1191 register u64 val64 = 0; 1192 void __iomem *add; 1193 u32 time; 1194 int i, j; 1195 int dtx_cnt = 0; 1196 unsigned long long mem_share; 1197 int mem_size; 1198 struct config_param *config = &nic->config; 1199 struct mac_info *mac_control = &nic->mac_control; 1200 1201 /* to set the swapper controle on the card */ 1202 if (s2io_set_swapper(nic)) { 1203 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); 1204 return -EIO; 1205 } 1206 1207 /* 1208 * Herc requires EOI to be removed from reset before XGXS, so.. 1209 */ 1210 if (nic->device_type & XFRAME_II_DEVICE) { 1211 val64 = 0xA500000000ULL; 1212 writeq(val64, &bar0->sw_reset); 1213 msleep(500); 1214 val64 = readq(&bar0->sw_reset); 1215 } 1216 1217 /* Remove XGXS from reset state */ 1218 val64 = 0; 1219 writeq(val64, &bar0->sw_reset); 1220 msleep(500); 1221 val64 = readq(&bar0->sw_reset); 1222 1223 /* Ensure that it's safe to access registers by checking 1224 * RIC_RUNNING bit is reset. Check is valid only for XframeII. 1225 */ 1226 if (nic->device_type == XFRAME_II_DEVICE) { 1227 for (i = 0; i < 50; i++) { 1228 val64 = readq(&bar0->adapter_status); 1229 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) 1230 break; 1231 msleep(10); 1232 } 1233 if (i == 50) 1234 return -ENODEV; 1235 } 1236 1237 /* Enable Receiving broadcasts */ 1238 add = &bar0->mac_cfg; 1239 val64 = readq(&bar0->mac_cfg); 1240 val64 |= MAC_RMAC_BCAST_ENABLE; 1241 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1242 writel((u32)val64, add); 1243 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1244 writel((u32) (val64 >> 32), (add + 4)); 1245 1246 /* Read registers in all blocks */ 1247 val64 = readq(&bar0->mac_int_mask); 1248 val64 = readq(&bar0->mc_int_mask); 1249 val64 = readq(&bar0->xgxs_int_mask); 1250 1251 /* Set MTU */ 1252 val64 = dev->mtu; 1253 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 1254 1255 if (nic->device_type & XFRAME_II_DEVICE) { 1256 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 1257 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 1258 &bar0->dtx_control, UF); 1259 if (dtx_cnt & 0x1) 1260 msleep(1); /* Necessary!! */ 1261 dtx_cnt++; 1262 } 1263 } else { 1264 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 1265 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], 1266 &bar0->dtx_control, UF); 1267 val64 = readq(&bar0->dtx_control); 1268 dtx_cnt++; 1269 } 1270 } 1271 1272 /* Tx DMA Initialization */ 1273 val64 = 0; 1274 writeq(val64, &bar0->tx_fifo_partition_0); 1275 writeq(val64, &bar0->tx_fifo_partition_1); 1276 writeq(val64, &bar0->tx_fifo_partition_2); 1277 writeq(val64, &bar0->tx_fifo_partition_3); 1278 1279 for (i = 0, j = 0; i < config->tx_fifo_num; i++) { 1280 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1281 1282 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | 1283 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); 1284 1285 if (i == (config->tx_fifo_num - 1)) { 1286 if (i % 2 == 0) 1287 i++; 1288 } 1289 1290 switch (i) { 1291 case 1: 1292 writeq(val64, &bar0->tx_fifo_partition_0); 1293 val64 = 0; 1294 j = 0; 1295 break; 1296 case 3: 1297 writeq(val64, &bar0->tx_fifo_partition_1); 1298 val64 = 0; 1299 j = 0; 1300 break; 1301 case 5: 1302 writeq(val64, &bar0->tx_fifo_partition_2); 1303 val64 = 0; 1304 j = 0; 1305 break; 1306 case 7: 1307 writeq(val64, &bar0->tx_fifo_partition_3); 1308 val64 = 0; 1309 j = 0; 1310 break; 1311 default: 1312 j++; 1313 break; 1314 } 1315 } 1316 1317 /* 1318 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1319 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1320 */ 1321 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) 1322 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); 1323 1324 val64 = readq(&bar0->tx_fifo_partition_0); 1325 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", 1326 &bar0->tx_fifo_partition_0, (unsigned long long)val64); 1327 1328 /* 1329 * Initialization of Tx_PA_CONFIG register to ignore packet 1330 * integrity checking. 1331 */ 1332 val64 = readq(&bar0->tx_pa_cfg); 1333 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | 1334 TX_PA_CFG_IGNORE_SNAP_OUI | 1335 TX_PA_CFG_IGNORE_LLC_CTRL | 1336 TX_PA_CFG_IGNORE_L2_ERR; 1337 writeq(val64, &bar0->tx_pa_cfg); 1338 1339 /* Rx DMA initialization. */ 1340 val64 = 0; 1341 for (i = 0; i < config->rx_ring_num; i++) { 1342 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 1343 1344 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); 1345 } 1346 writeq(val64, &bar0->rx_queue_priority); 1347 1348 /* 1349 * Allocating equal share of memory to all the 1350 * configured Rings. 1351 */ 1352 val64 = 0; 1353 if (nic->device_type & XFRAME_II_DEVICE) 1354 mem_size = 32; 1355 else 1356 mem_size = 64; 1357 1358 for (i = 0; i < config->rx_ring_num; i++) { 1359 switch (i) { 1360 case 0: 1361 mem_share = (mem_size / config->rx_ring_num + 1362 mem_size % config->rx_ring_num); 1363 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); 1364 continue; 1365 case 1: 1366 mem_share = (mem_size / config->rx_ring_num); 1367 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); 1368 continue; 1369 case 2: 1370 mem_share = (mem_size / config->rx_ring_num); 1371 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); 1372 continue; 1373 case 3: 1374 mem_share = (mem_size / config->rx_ring_num); 1375 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); 1376 continue; 1377 case 4: 1378 mem_share = (mem_size / config->rx_ring_num); 1379 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); 1380 continue; 1381 case 5: 1382 mem_share = (mem_size / config->rx_ring_num); 1383 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); 1384 continue; 1385 case 6: 1386 mem_share = (mem_size / config->rx_ring_num); 1387 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); 1388 continue; 1389 case 7: 1390 mem_share = (mem_size / config->rx_ring_num); 1391 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); 1392 continue; 1393 } 1394 } 1395 writeq(val64, &bar0->rx_queue_cfg); 1396 1397 /* 1398 * Filling Tx round robin registers 1399 * as per the number of FIFOs for equal scheduling priority 1400 */ 1401 switch (config->tx_fifo_num) { 1402 case 1: 1403 val64 = 0x0; 1404 writeq(val64, &bar0->tx_w_round_robin_0); 1405 writeq(val64, &bar0->tx_w_round_robin_1); 1406 writeq(val64, &bar0->tx_w_round_robin_2); 1407 writeq(val64, &bar0->tx_w_round_robin_3); 1408 writeq(val64, &bar0->tx_w_round_robin_4); 1409 break; 1410 case 2: 1411 val64 = 0x0001000100010001ULL; 1412 writeq(val64, &bar0->tx_w_round_robin_0); 1413 writeq(val64, &bar0->tx_w_round_robin_1); 1414 writeq(val64, &bar0->tx_w_round_robin_2); 1415 writeq(val64, &bar0->tx_w_round_robin_3); 1416 val64 = 0x0001000100000000ULL; 1417 writeq(val64, &bar0->tx_w_round_robin_4); 1418 break; 1419 case 3: 1420 val64 = 0x0001020001020001ULL; 1421 writeq(val64, &bar0->tx_w_round_robin_0); 1422 val64 = 0x0200010200010200ULL; 1423 writeq(val64, &bar0->tx_w_round_robin_1); 1424 val64 = 0x0102000102000102ULL; 1425 writeq(val64, &bar0->tx_w_round_robin_2); 1426 val64 = 0x0001020001020001ULL; 1427 writeq(val64, &bar0->tx_w_round_robin_3); 1428 val64 = 0x0200010200000000ULL; 1429 writeq(val64, &bar0->tx_w_round_robin_4); 1430 break; 1431 case 4: 1432 val64 = 0x0001020300010203ULL; 1433 writeq(val64, &bar0->tx_w_round_robin_0); 1434 writeq(val64, &bar0->tx_w_round_robin_1); 1435 writeq(val64, &bar0->tx_w_round_robin_2); 1436 writeq(val64, &bar0->tx_w_round_robin_3); 1437 val64 = 0x0001020300000000ULL; 1438 writeq(val64, &bar0->tx_w_round_robin_4); 1439 break; 1440 case 5: 1441 val64 = 0x0001020304000102ULL; 1442 writeq(val64, &bar0->tx_w_round_robin_0); 1443 val64 = 0x0304000102030400ULL; 1444 writeq(val64, &bar0->tx_w_round_robin_1); 1445 val64 = 0x0102030400010203ULL; 1446 writeq(val64, &bar0->tx_w_round_robin_2); 1447 val64 = 0x0400010203040001ULL; 1448 writeq(val64, &bar0->tx_w_round_robin_3); 1449 val64 = 0x0203040000000000ULL; 1450 writeq(val64, &bar0->tx_w_round_robin_4); 1451 break; 1452 case 6: 1453 val64 = 0x0001020304050001ULL; 1454 writeq(val64, &bar0->tx_w_round_robin_0); 1455 val64 = 0x0203040500010203ULL; 1456 writeq(val64, &bar0->tx_w_round_robin_1); 1457 val64 = 0x0405000102030405ULL; 1458 writeq(val64, &bar0->tx_w_round_robin_2); 1459 val64 = 0x0001020304050001ULL; 1460 writeq(val64, &bar0->tx_w_round_robin_3); 1461 val64 = 0x0203040500000000ULL; 1462 writeq(val64, &bar0->tx_w_round_robin_4); 1463 break; 1464 case 7: 1465 val64 = 0x0001020304050600ULL; 1466 writeq(val64, &bar0->tx_w_round_robin_0); 1467 val64 = 0x0102030405060001ULL; 1468 writeq(val64, &bar0->tx_w_round_robin_1); 1469 val64 = 0x0203040506000102ULL; 1470 writeq(val64, &bar0->tx_w_round_robin_2); 1471 val64 = 0x0304050600010203ULL; 1472 writeq(val64, &bar0->tx_w_round_robin_3); 1473 val64 = 0x0405060000000000ULL; 1474 writeq(val64, &bar0->tx_w_round_robin_4); 1475 break; 1476 case 8: 1477 val64 = 0x0001020304050607ULL; 1478 writeq(val64, &bar0->tx_w_round_robin_0); 1479 writeq(val64, &bar0->tx_w_round_robin_1); 1480 writeq(val64, &bar0->tx_w_round_robin_2); 1481 writeq(val64, &bar0->tx_w_round_robin_3); 1482 val64 = 0x0001020300000000ULL; 1483 writeq(val64, &bar0->tx_w_round_robin_4); 1484 break; 1485 } 1486 1487 /* Enable all configured Tx FIFO partitions */ 1488 val64 = readq(&bar0->tx_fifo_partition_0); 1489 val64 |= (TX_FIFO_PARTITION_EN); 1490 writeq(val64, &bar0->tx_fifo_partition_0); 1491 1492 /* Filling the Rx round robin registers as per the 1493 * number of Rings and steering based on QoS with 1494 * equal priority. 1495 */ 1496 switch (config->rx_ring_num) { 1497 case 1: 1498 val64 = 0x0; 1499 writeq(val64, &bar0->rx_w_round_robin_0); 1500 writeq(val64, &bar0->rx_w_round_robin_1); 1501 writeq(val64, &bar0->rx_w_round_robin_2); 1502 writeq(val64, &bar0->rx_w_round_robin_3); 1503 writeq(val64, &bar0->rx_w_round_robin_4); 1504 1505 val64 = 0x8080808080808080ULL; 1506 writeq(val64, &bar0->rts_qos_steering); 1507 break; 1508 case 2: 1509 val64 = 0x0001000100010001ULL; 1510 writeq(val64, &bar0->rx_w_round_robin_0); 1511 writeq(val64, &bar0->rx_w_round_robin_1); 1512 writeq(val64, &bar0->rx_w_round_robin_2); 1513 writeq(val64, &bar0->rx_w_round_robin_3); 1514 val64 = 0x0001000100000000ULL; 1515 writeq(val64, &bar0->rx_w_round_robin_4); 1516 1517 val64 = 0x8080808040404040ULL; 1518 writeq(val64, &bar0->rts_qos_steering); 1519 break; 1520 case 3: 1521 val64 = 0x0001020001020001ULL; 1522 writeq(val64, &bar0->rx_w_round_robin_0); 1523 val64 = 0x0200010200010200ULL; 1524 writeq(val64, &bar0->rx_w_round_robin_1); 1525 val64 = 0x0102000102000102ULL; 1526 writeq(val64, &bar0->rx_w_round_robin_2); 1527 val64 = 0x0001020001020001ULL; 1528 writeq(val64, &bar0->rx_w_round_robin_3); 1529 val64 = 0x0200010200000000ULL; 1530 writeq(val64, &bar0->rx_w_round_robin_4); 1531 1532 val64 = 0x8080804040402020ULL; 1533 writeq(val64, &bar0->rts_qos_steering); 1534 break; 1535 case 4: 1536 val64 = 0x0001020300010203ULL; 1537 writeq(val64, &bar0->rx_w_round_robin_0); 1538 writeq(val64, &bar0->rx_w_round_robin_1); 1539 writeq(val64, &bar0->rx_w_round_robin_2); 1540 writeq(val64, &bar0->rx_w_round_robin_3); 1541 val64 = 0x0001020300000000ULL; 1542 writeq(val64, &bar0->rx_w_round_robin_4); 1543 1544 val64 = 0x8080404020201010ULL; 1545 writeq(val64, &bar0->rts_qos_steering); 1546 break; 1547 case 5: 1548 val64 = 0x0001020304000102ULL; 1549 writeq(val64, &bar0->rx_w_round_robin_0); 1550 val64 = 0x0304000102030400ULL; 1551 writeq(val64, &bar0->rx_w_round_robin_1); 1552 val64 = 0x0102030400010203ULL; 1553 writeq(val64, &bar0->rx_w_round_robin_2); 1554 val64 = 0x0400010203040001ULL; 1555 writeq(val64, &bar0->rx_w_round_robin_3); 1556 val64 = 0x0203040000000000ULL; 1557 writeq(val64, &bar0->rx_w_round_robin_4); 1558 1559 val64 = 0x8080404020201008ULL; 1560 writeq(val64, &bar0->rts_qos_steering); 1561 break; 1562 case 6: 1563 val64 = 0x0001020304050001ULL; 1564 writeq(val64, &bar0->rx_w_round_robin_0); 1565 val64 = 0x0203040500010203ULL; 1566 writeq(val64, &bar0->rx_w_round_robin_1); 1567 val64 = 0x0405000102030405ULL; 1568 writeq(val64, &bar0->rx_w_round_robin_2); 1569 val64 = 0x0001020304050001ULL; 1570 writeq(val64, &bar0->rx_w_round_robin_3); 1571 val64 = 0x0203040500000000ULL; 1572 writeq(val64, &bar0->rx_w_round_robin_4); 1573 1574 val64 = 0x8080404020100804ULL; 1575 writeq(val64, &bar0->rts_qos_steering); 1576 break; 1577 case 7: 1578 val64 = 0x0001020304050600ULL; 1579 writeq(val64, &bar0->rx_w_round_robin_0); 1580 val64 = 0x0102030405060001ULL; 1581 writeq(val64, &bar0->rx_w_round_robin_1); 1582 val64 = 0x0203040506000102ULL; 1583 writeq(val64, &bar0->rx_w_round_robin_2); 1584 val64 = 0x0304050600010203ULL; 1585 writeq(val64, &bar0->rx_w_round_robin_3); 1586 val64 = 0x0405060000000000ULL; 1587 writeq(val64, &bar0->rx_w_round_robin_4); 1588 1589 val64 = 0x8080402010080402ULL; 1590 writeq(val64, &bar0->rts_qos_steering); 1591 break; 1592 case 8: 1593 val64 = 0x0001020304050607ULL; 1594 writeq(val64, &bar0->rx_w_round_robin_0); 1595 writeq(val64, &bar0->rx_w_round_robin_1); 1596 writeq(val64, &bar0->rx_w_round_robin_2); 1597 writeq(val64, &bar0->rx_w_round_robin_3); 1598 val64 = 0x0001020300000000ULL; 1599 writeq(val64, &bar0->rx_w_round_robin_4); 1600 1601 val64 = 0x8040201008040201ULL; 1602 writeq(val64, &bar0->rts_qos_steering); 1603 break; 1604 } 1605 1606 /* UDP Fix */ 1607 val64 = 0; 1608 for (i = 0; i < 8; i++) 1609 writeq(val64, &bar0->rts_frm_len_n[i]); 1610 1611 /* Set the default rts frame length for the rings configured */ 1612 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); 1613 for (i = 0 ; i < config->rx_ring_num ; i++) 1614 writeq(val64, &bar0->rts_frm_len_n[i]); 1615 1616 /* Set the frame length for the configured rings 1617 * desired by the user 1618 */ 1619 for (i = 0; i < config->rx_ring_num; i++) { 1620 /* If rts_frm_len[i] == 0 then it is assumed that user not 1621 * specified frame length steering. 1622 * If the user provides the frame length then program 1623 * the rts_frm_len register for those values or else 1624 * leave it as it is. 1625 */ 1626 if (rts_frm_len[i] != 0) { 1627 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), 1628 &bar0->rts_frm_len_n[i]); 1629 } 1630 } 1631 1632 /* Disable differentiated services steering logic */ 1633 for (i = 0; i < 64; i++) { 1634 if (rts_ds_steer(nic, i, 0) == FAILURE) { 1635 DBG_PRINT(ERR_DBG, 1636 "%s: rts_ds_steer failed on codepoint %d\n", 1637 dev->name, i); 1638 return -ENODEV; 1639 } 1640 } 1641 1642 /* Program statistics memory */ 1643 writeq(mac_control->stats_mem_phy, &bar0->stat_addr); 1644 1645 if (nic->device_type == XFRAME_II_DEVICE) { 1646 val64 = STAT_BC(0x320); 1647 writeq(val64, &bar0->stat_byte_cnt); 1648 } 1649 1650 /* 1651 * Initializing the sampling rate for the device to calculate the 1652 * bandwidth utilization. 1653 */ 1654 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | 1655 MAC_RX_LINK_UTIL_VAL(rmac_util_period); 1656 writeq(val64, &bar0->mac_link_util); 1657 1658 /* 1659 * Initializing the Transmit and Receive Traffic Interrupt 1660 * Scheme. 1661 */ 1662 1663 /* Initialize TTI */ 1664 if (SUCCESS != init_tti(nic, nic->last_link_state, true)) 1665 return -ENODEV; 1666 1667 /* RTI Initialization */ 1668 if (nic->device_type == XFRAME_II_DEVICE) { 1669 /* 1670 * Programmed to generate Apprx 500 Intrs per 1671 * second 1672 */ 1673 int count = (nic->config.bus_speed * 125)/4; 1674 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); 1675 } else 1676 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); 1677 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | 1678 RTI_DATA1_MEM_RX_URNG_B(0x10) | 1679 RTI_DATA1_MEM_RX_URNG_C(0x30) | 1680 RTI_DATA1_MEM_RX_TIMER_AC_EN; 1681 1682 writeq(val64, &bar0->rti_data1_mem); 1683 1684 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | 1685 RTI_DATA2_MEM_RX_UFC_B(0x2) ; 1686 if (nic->config.intr_type == MSI_X) 1687 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | 1688 RTI_DATA2_MEM_RX_UFC_D(0x40)); 1689 else 1690 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | 1691 RTI_DATA2_MEM_RX_UFC_D(0x80)); 1692 writeq(val64, &bar0->rti_data2_mem); 1693 1694 for (i = 0; i < config->rx_ring_num; i++) { 1695 val64 = RTI_CMD_MEM_WE | 1696 RTI_CMD_MEM_STROBE_NEW_CMD | 1697 RTI_CMD_MEM_OFFSET(i); 1698 writeq(val64, &bar0->rti_command_mem); 1699 1700 /* 1701 * Once the operation completes, the Strobe bit of the 1702 * command register will be reset. We poll for this 1703 * particular condition. We wait for a maximum of 500ms 1704 * for the operation to complete, if it's not complete 1705 * by then we return error. 1706 */ 1707 time = 0; 1708 while (true) { 1709 val64 = readq(&bar0->rti_command_mem); 1710 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) 1711 break; 1712 1713 if (time > 10) { 1714 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", 1715 dev->name); 1716 return -ENODEV; 1717 } 1718 time++; 1719 msleep(50); 1720 } 1721 } 1722 1723 /* 1724 * Initializing proper values as Pause threshold into all 1725 * the 8 Queues on Rx side. 1726 */ 1727 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); 1728 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); 1729 1730 /* Disable RMAC PAD STRIPPING */ 1731 add = &bar0->mac_cfg; 1732 val64 = readq(&bar0->mac_cfg); 1733 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); 1734 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1735 writel((u32) (val64), add); 1736 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1737 writel((u32) (val64 >> 32), (add + 4)); 1738 val64 = readq(&bar0->mac_cfg); 1739 1740 /* Enable FCS stripping by adapter */ 1741 add = &bar0->mac_cfg; 1742 val64 = readq(&bar0->mac_cfg); 1743 val64 |= MAC_CFG_RMAC_STRIP_FCS; 1744 if (nic->device_type == XFRAME_II_DEVICE) 1745 writeq(val64, &bar0->mac_cfg); 1746 else { 1747 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1748 writel((u32) (val64), add); 1749 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1750 writel((u32) (val64 >> 32), (add + 4)); 1751 } 1752 1753 /* 1754 * Set the time value to be inserted in the pause frame 1755 * generated by xena. 1756 */ 1757 val64 = readq(&bar0->rmac_pause_cfg); 1758 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); 1759 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); 1760 writeq(val64, &bar0->rmac_pause_cfg); 1761 1762 /* 1763 * Set the Threshold Limit for Generating the pause frame 1764 * If the amount of data in any Queue exceeds ratio of 1765 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 1766 * pause frame is generated 1767 */ 1768 val64 = 0; 1769 for (i = 0; i < 4; i++) { 1770 val64 |= (((u64)0xFF00 | 1771 nic->mac_control.mc_pause_threshold_q0q3) 1772 << (i * 2 * 8)); 1773 } 1774 writeq(val64, &bar0->mc_pause_thresh_q0q3); 1775 1776 val64 = 0; 1777 for (i = 0; i < 4; i++) { 1778 val64 |= (((u64)0xFF00 | 1779 nic->mac_control.mc_pause_threshold_q4q7) 1780 << (i * 2 * 8)); 1781 } 1782 writeq(val64, &bar0->mc_pause_thresh_q4q7); 1783 1784 /* 1785 * TxDMA will stop Read request if the number of read split has 1786 * exceeded the limit pointed by shared_splits 1787 */ 1788 val64 = readq(&bar0->pic_control); 1789 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1790 writeq(val64, &bar0->pic_control); 1791 1792 if (nic->config.bus_speed == 266) { 1793 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); 1794 writeq(0x0, &bar0->read_retry_delay); 1795 writeq(0x0, &bar0->write_retry_delay); 1796 } 1797 1798 /* 1799 * Programming the Herc to split every write transaction 1800 * that does not start on an ADB to reduce disconnects. 1801 */ 1802 if (nic->device_type == XFRAME_II_DEVICE) { 1803 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | 1804 MISC_LINK_STABILITY_PRD(3); 1805 writeq(val64, &bar0->misc_control); 1806 val64 = readq(&bar0->pic_control2); 1807 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); 1808 writeq(val64, &bar0->pic_control2); 1809 } 1810 if (strstr(nic->product_name, "CX4")) { 1811 val64 = TMAC_AVG_IPG(0x17); 1812 writeq(val64, &bar0->tmac_avg_ipg); 1813 } 1814 1815 return SUCCESS; 1816 } 1817 #define LINK_UP_DOWN_INTERRUPT 1 1818 #define MAC_RMAC_ERR_TIMER 2 1819 1820 static int s2io_link_fault_indication(struct s2io_nic *nic) 1821 { 1822 if (nic->device_type == XFRAME_II_DEVICE) 1823 return LINK_UP_DOWN_INTERRUPT; 1824 else 1825 return MAC_RMAC_ERR_TIMER; 1826 } 1827 1828 /** 1829 * do_s2io_write_bits - update alarm bits in alarm register 1830 * @value: alarm bits 1831 * @flag: interrupt status 1832 * @addr: address value 1833 * Description: update alarm bits in alarm register 1834 * Return Value: 1835 * NONE. 1836 */ 1837 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) 1838 { 1839 u64 temp64; 1840 1841 temp64 = readq(addr); 1842 1843 if (flag == ENABLE_INTRS) 1844 temp64 &= ~((u64)value); 1845 else 1846 temp64 |= ((u64)value); 1847 writeq(temp64, addr); 1848 } 1849 1850 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) 1851 { 1852 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1853 register u64 gen_int_mask = 0; 1854 u64 interruptible; 1855 1856 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); 1857 if (mask & TX_DMA_INTR) { 1858 gen_int_mask |= TXDMA_INT_M; 1859 1860 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | 1861 TXDMA_PCC_INT | TXDMA_TTI_INT | 1862 TXDMA_LSO_INT | TXDMA_TPA_INT | 1863 TXDMA_SM_INT, flag, &bar0->txdma_int_mask); 1864 1865 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 1866 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 1867 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, 1868 &bar0->pfc_err_mask); 1869 1870 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | 1871 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | 1872 TDA_PCIX_ERR, flag, &bar0->tda_err_mask); 1873 1874 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | 1875 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 1876 PCC_N_SERR | PCC_6_COF_OV_ERR | 1877 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 1878 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | 1879 PCC_TXB_ECC_SG_ERR, 1880 flag, &bar0->pcc_err_mask); 1881 1882 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | 1883 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); 1884 1885 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | 1886 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | 1887 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 1888 flag, &bar0->lso_err_mask); 1889 1890 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, 1891 flag, &bar0->tpa_err_mask); 1892 1893 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); 1894 } 1895 1896 if (mask & TX_MAC_INTR) { 1897 gen_int_mask |= TXMAC_INT_M; 1898 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, 1899 &bar0->mac_int_mask); 1900 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | 1901 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 1902 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, 1903 flag, &bar0->mac_tmac_err_mask); 1904 } 1905 1906 if (mask & TX_XGXS_INTR) { 1907 gen_int_mask |= TXXGXS_INT_M; 1908 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, 1909 &bar0->xgxs_int_mask); 1910 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | 1911 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 1912 flag, &bar0->xgxs_txgxs_err_mask); 1913 } 1914 1915 if (mask & RX_DMA_INTR) { 1916 gen_int_mask |= RXDMA_INT_M; 1917 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | 1918 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, 1919 flag, &bar0->rxdma_int_mask); 1920 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 1921 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | 1922 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 1923 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); 1924 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 1925 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | 1926 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, 1927 &bar0->prc_pcix_err_mask); 1928 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | 1929 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, 1930 &bar0->rpa_err_mask); 1931 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | 1932 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | 1933 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | 1934 RDA_FRM_ECC_SG_ERR | 1935 RDA_MISC_ERR|RDA_PCIX_ERR, 1936 flag, &bar0->rda_err_mask); 1937 do_s2io_write_bits(RTI_SM_ERR_ALARM | 1938 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 1939 flag, &bar0->rti_err_mask); 1940 } 1941 1942 if (mask & RX_MAC_INTR) { 1943 gen_int_mask |= RXMAC_INT_M; 1944 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, 1945 &bar0->mac_int_mask); 1946 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | 1947 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | 1948 RMAC_DOUBLE_ECC_ERR); 1949 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) 1950 interruptible |= RMAC_LINK_STATE_CHANGE_INT; 1951 do_s2io_write_bits(interruptible, 1952 flag, &bar0->mac_rmac_err_mask); 1953 } 1954 1955 if (mask & RX_XGXS_INTR) { 1956 gen_int_mask |= RXXGXS_INT_M; 1957 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, 1958 &bar0->xgxs_int_mask); 1959 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, 1960 &bar0->xgxs_rxgxs_err_mask); 1961 } 1962 1963 if (mask & MC_INTR) { 1964 gen_int_mask |= MC_INT_M; 1965 do_s2io_write_bits(MC_INT_MASK_MC_INT, 1966 flag, &bar0->mc_int_mask); 1967 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | 1968 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, 1969 &bar0->mc_err_mask); 1970 } 1971 nic->general_int_mask = gen_int_mask; 1972 1973 /* Remove this line when alarm interrupts are enabled */ 1974 nic->general_int_mask = 0; 1975 } 1976 1977 /** 1978 * en_dis_able_nic_intrs - Enable or Disable the interrupts 1979 * @nic: device private variable, 1980 * @mask: A mask indicating which Intr block must be modified and, 1981 * @flag: A flag indicating whether to enable or disable the Intrs. 1982 * Description: This function will either disable or enable the interrupts 1983 * depending on the flag argument. The mask argument can be used to 1984 * enable/disable any Intr block. 1985 * Return Value: NONE. 1986 */ 1987 1988 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) 1989 { 1990 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1991 register u64 temp64 = 0, intr_mask = 0; 1992 1993 intr_mask = nic->general_int_mask; 1994 1995 /* Top level interrupt classification */ 1996 /* PIC Interrupts */ 1997 if (mask & TX_PIC_INTR) { 1998 /* Enable PIC Intrs in the general intr mask register */ 1999 intr_mask |= TXPIC_INT_M; 2000 if (flag == ENABLE_INTRS) { 2001 /* 2002 * If Hercules adapter enable GPIO otherwise 2003 * disable all PCIX, Flash, MDIO, IIC and GPIO 2004 * interrupts for now. 2005 * TODO 2006 */ 2007 if (s2io_link_fault_indication(nic) == 2008 LINK_UP_DOWN_INTERRUPT) { 2009 do_s2io_write_bits(PIC_INT_GPIO, flag, 2010 &bar0->pic_int_mask); 2011 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, 2012 &bar0->gpio_int_mask); 2013 } else 2014 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2015 } else if (flag == DISABLE_INTRS) { 2016 /* 2017 * Disable PIC Intrs in the general 2018 * intr mask register 2019 */ 2020 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2021 } 2022 } 2023 2024 /* Tx traffic interrupts */ 2025 if (mask & TX_TRAFFIC_INTR) { 2026 intr_mask |= TXTRAFFIC_INT_M; 2027 if (flag == ENABLE_INTRS) { 2028 /* 2029 * Enable all the Tx side interrupts 2030 * writing 0 Enables all 64 TX interrupt levels 2031 */ 2032 writeq(0x0, &bar0->tx_traffic_mask); 2033 } else if (flag == DISABLE_INTRS) { 2034 /* 2035 * Disable Tx Traffic Intrs in the general intr mask 2036 * register. 2037 */ 2038 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); 2039 } 2040 } 2041 2042 /* Rx traffic interrupts */ 2043 if (mask & RX_TRAFFIC_INTR) { 2044 intr_mask |= RXTRAFFIC_INT_M; 2045 if (flag == ENABLE_INTRS) { 2046 /* writing 0 Enables all 8 RX interrupt levels */ 2047 writeq(0x0, &bar0->rx_traffic_mask); 2048 } else if (flag == DISABLE_INTRS) { 2049 /* 2050 * Disable Rx Traffic Intrs in the general intr mask 2051 * register. 2052 */ 2053 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); 2054 } 2055 } 2056 2057 temp64 = readq(&bar0->general_int_mask); 2058 if (flag == ENABLE_INTRS) 2059 temp64 &= ~((u64)intr_mask); 2060 else 2061 temp64 = DISABLE_ALL_INTRS; 2062 writeq(temp64, &bar0->general_int_mask); 2063 2064 nic->general_int_mask = readq(&bar0->general_int_mask); 2065 } 2066 2067 /** 2068 * verify_pcc_quiescent- Checks for PCC quiescent state 2069 * @sp : private member of the device structure, which is a pointer to the 2070 * s2io_nic structure. 2071 * @flag: boolean controlling function path 2072 * Return: 1 If PCC is quiescence 2073 * 0 If PCC is not quiescence 2074 */ 2075 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) 2076 { 2077 int ret = 0, herc; 2078 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2079 u64 val64 = readq(&bar0->adapter_status); 2080 2081 herc = (sp->device_type == XFRAME_II_DEVICE); 2082 2083 if (flag == false) { 2084 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2085 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) 2086 ret = 1; 2087 } else { 2088 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2089 ret = 1; 2090 } 2091 } else { 2092 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2093 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == 2094 ADAPTER_STATUS_RMAC_PCC_IDLE)) 2095 ret = 1; 2096 } else { 2097 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == 2098 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2099 ret = 1; 2100 } 2101 } 2102 2103 return ret; 2104 } 2105 /** 2106 * verify_xena_quiescence - Checks whether the H/W is ready 2107 * @sp : private member of the device structure, which is a pointer to the 2108 * s2io_nic structure. 2109 * Description: Returns whether the H/W is ready to go or not. Depending 2110 * on whether adapter enable bit was written or not the comparison 2111 * differs and the calling function passes the input argument flag to 2112 * indicate this. 2113 * Return: 1 If xena is quiescence 2114 * 0 If Xena is not quiescence 2115 */ 2116 2117 static int verify_xena_quiescence(struct s2io_nic *sp) 2118 { 2119 int mode; 2120 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2121 u64 val64 = readq(&bar0->adapter_status); 2122 mode = s2io_verify_pci_mode(sp); 2123 2124 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { 2125 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); 2126 return 0; 2127 } 2128 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { 2129 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); 2130 return 0; 2131 } 2132 if (!(val64 & ADAPTER_STATUS_PFC_READY)) { 2133 DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); 2134 return 0; 2135 } 2136 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { 2137 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); 2138 return 0; 2139 } 2140 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { 2141 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); 2142 return 0; 2143 } 2144 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { 2145 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); 2146 return 0; 2147 } 2148 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { 2149 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); 2150 return 0; 2151 } 2152 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { 2153 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); 2154 return 0; 2155 } 2156 2157 /* 2158 * In PCI 33 mode, the P_PLL is not used, and therefore, 2159 * the P_PLL_LOCK bit in the adapter_status register will 2160 * not be asserted. 2161 */ 2162 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && 2163 sp->device_type == XFRAME_II_DEVICE && 2164 mode != PCI_MODE_PCI_33) { 2165 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); 2166 return 0; 2167 } 2168 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == 2169 ADAPTER_STATUS_RC_PRC_QUIESCENT)) { 2170 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); 2171 return 0; 2172 } 2173 return 1; 2174 } 2175 2176 /** 2177 * fix_mac_address - Fix for Mac addr problem on Alpha platforms 2178 * @sp: Pointer to device specifc structure 2179 * Description : 2180 * New procedure to clear mac address reading problems on Alpha platforms 2181 * 2182 */ 2183 2184 static void fix_mac_address(struct s2io_nic *sp) 2185 { 2186 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2187 int i = 0; 2188 2189 while (fix_mac[i] != END_SIGN) { 2190 writeq(fix_mac[i++], &bar0->gpio_control); 2191 udelay(10); 2192 (void) readq(&bar0->gpio_control); 2193 } 2194 } 2195 2196 /** 2197 * start_nic - Turns the device on 2198 * @nic : device private variable. 2199 * Description: 2200 * This function actually turns the device on. Before this function is 2201 * called,all Registers are configured from their reset states 2202 * and shared memory is allocated but the NIC is still quiescent. On 2203 * calling this function, the device interrupts are cleared and the NIC is 2204 * literally switched on by writing into the adapter control register. 2205 * Return Value: 2206 * SUCCESS on success and -1 on failure. 2207 */ 2208 2209 static int start_nic(struct s2io_nic *nic) 2210 { 2211 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2212 struct net_device *dev = nic->dev; 2213 register u64 val64 = 0; 2214 u16 subid, i; 2215 struct config_param *config = &nic->config; 2216 struct mac_info *mac_control = &nic->mac_control; 2217 2218 /* PRC Initialization and configuration */ 2219 for (i = 0; i < config->rx_ring_num; i++) { 2220 struct ring_info *ring = &mac_control->rings[i]; 2221 2222 writeq((u64)ring->rx_blocks[0].block_dma_addr, 2223 &bar0->prc_rxd0_n[i]); 2224 2225 val64 = readq(&bar0->prc_ctrl_n[i]); 2226 if (nic->rxd_mode == RXD_MODE_1) 2227 val64 |= PRC_CTRL_RC_ENABLED; 2228 else 2229 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 2230 if (nic->device_type == XFRAME_II_DEVICE) 2231 val64 |= PRC_CTRL_GROUP_READS; 2232 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); 2233 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); 2234 writeq(val64, &bar0->prc_ctrl_n[i]); 2235 } 2236 2237 if (nic->rxd_mode == RXD_MODE_3B) { 2238 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ 2239 val64 = readq(&bar0->rx_pa_cfg); 2240 val64 |= RX_PA_CFG_IGNORE_L2_ERR; 2241 writeq(val64, &bar0->rx_pa_cfg); 2242 } 2243 2244 if (vlan_tag_strip == 0) { 2245 val64 = readq(&bar0->rx_pa_cfg); 2246 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 2247 writeq(val64, &bar0->rx_pa_cfg); 2248 nic->vlan_strip_flag = 0; 2249 } 2250 2251 /* 2252 * Enabling MC-RLDRAM. After enabling the device, we timeout 2253 * for around 100ms, which is approximately the time required 2254 * for the device to be ready for operation. 2255 */ 2256 val64 = readq(&bar0->mc_rldram_mrs); 2257 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; 2258 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 2259 val64 = readq(&bar0->mc_rldram_mrs); 2260 2261 msleep(100); /* Delay by around 100 ms. */ 2262 2263 /* Enabling ECC Protection. */ 2264 val64 = readq(&bar0->adapter_control); 2265 val64 &= ~ADAPTER_ECC_EN; 2266 writeq(val64, &bar0->adapter_control); 2267 2268 /* 2269 * Verify if the device is ready to be enabled, if so enable 2270 * it. 2271 */ 2272 val64 = readq(&bar0->adapter_status); 2273 if (!verify_xena_quiescence(nic)) { 2274 DBG_PRINT(ERR_DBG, "%s: device is not ready, " 2275 "Adapter status reads: 0x%llx\n", 2276 dev->name, (unsigned long long)val64); 2277 return FAILURE; 2278 } 2279 2280 /* 2281 * With some switches, link might be already up at this point. 2282 * Because of this weird behavior, when we enable laser, 2283 * we may not get link. We need to handle this. We cannot 2284 * figure out which switch is misbehaving. So we are forced to 2285 * make a global change. 2286 */ 2287 2288 /* Enabling Laser. */ 2289 val64 = readq(&bar0->adapter_control); 2290 val64 |= ADAPTER_EOI_TX_ON; 2291 writeq(val64, &bar0->adapter_control); 2292 2293 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 2294 /* 2295 * Dont see link state interrupts initially on some switches, 2296 * so directly scheduling the link state task here. 2297 */ 2298 schedule_work(&nic->set_link_task); 2299 } 2300 /* SXE-002: Initialize link and activity LED */ 2301 subid = nic->pdev->subsystem_device; 2302 if (((subid & 0xFF) >= 0x07) && 2303 (nic->device_type == XFRAME_I_DEVICE)) { 2304 val64 = readq(&bar0->gpio_control); 2305 val64 |= 0x0000800000000000ULL; 2306 writeq(val64, &bar0->gpio_control); 2307 val64 = 0x0411040400000000ULL; 2308 writeq(val64, (void __iomem *)bar0 + 0x2700); 2309 } 2310 2311 return SUCCESS; 2312 } 2313 /** 2314 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb 2315 * @fifo_data: fifo data pointer 2316 * @txdlp: descriptor 2317 * @get_off: unused 2318 */ 2319 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, 2320 struct TxD *txdlp, int get_off) 2321 { 2322 struct s2io_nic *nic = fifo_data->nic; 2323 struct sk_buff *skb; 2324 struct TxD *txds; 2325 u16 j, frg_cnt; 2326 2327 txds = txdlp; 2328 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { 2329 dma_unmap_single(&nic->pdev->dev, 2330 (dma_addr_t)txds->Buffer_Pointer, 2331 sizeof(u64), DMA_TO_DEVICE); 2332 txds++; 2333 } 2334 2335 skb = (struct sk_buff *)((unsigned long)txds->Host_Control); 2336 if (!skb) { 2337 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2338 return NULL; 2339 } 2340 dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer, 2341 skb_headlen(skb), DMA_TO_DEVICE); 2342 frg_cnt = skb_shinfo(skb)->nr_frags; 2343 if (frg_cnt) { 2344 txds++; 2345 for (j = 0; j < frg_cnt; j++, txds++) { 2346 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 2347 if (!txds->Buffer_Pointer) 2348 break; 2349 dma_unmap_page(&nic->pdev->dev, 2350 (dma_addr_t)txds->Buffer_Pointer, 2351 skb_frag_size(frag), DMA_TO_DEVICE); 2352 } 2353 } 2354 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2355 return skb; 2356 } 2357 2358 /** 2359 * free_tx_buffers - Free all queued Tx buffers 2360 * @nic : device private variable. 2361 * Description: 2362 * Free all queued Tx buffers. 2363 * Return Value: void 2364 */ 2365 2366 static void free_tx_buffers(struct s2io_nic *nic) 2367 { 2368 struct net_device *dev = nic->dev; 2369 struct sk_buff *skb; 2370 struct TxD *txdp; 2371 int i, j; 2372 int cnt = 0; 2373 struct config_param *config = &nic->config; 2374 struct mac_info *mac_control = &nic->mac_control; 2375 struct stat_block *stats = mac_control->stats_info; 2376 struct swStat *swstats = &stats->sw_stat; 2377 2378 for (i = 0; i < config->tx_fifo_num; i++) { 2379 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 2380 struct fifo_info *fifo = &mac_control->fifos[i]; 2381 unsigned long flags; 2382 2383 spin_lock_irqsave(&fifo->tx_lock, flags); 2384 for (j = 0; j < tx_cfg->fifo_len; j++) { 2385 txdp = fifo->list_info[j].list_virt_addr; 2386 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); 2387 if (skb) { 2388 swstats->mem_freed += skb->truesize; 2389 dev_kfree_skb_irq(skb); 2390 cnt++; 2391 } 2392 } 2393 DBG_PRINT(INTR_DBG, 2394 "%s: forcibly freeing %d skbs on FIFO%d\n", 2395 dev->name, cnt, i); 2396 fifo->tx_curr_get_info.offset = 0; 2397 fifo->tx_curr_put_info.offset = 0; 2398 spin_unlock_irqrestore(&fifo->tx_lock, flags); 2399 } 2400 } 2401 2402 /** 2403 * stop_nic - To stop the nic 2404 * @nic : device private variable. 2405 * Description: 2406 * This function does exactly the opposite of what the start_nic() 2407 * function does. This function is called to stop the device. 2408 * Return Value: 2409 * void. 2410 */ 2411 2412 static void stop_nic(struct s2io_nic *nic) 2413 { 2414 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2415 register u64 val64 = 0; 2416 u16 interruptible; 2417 2418 /* Disable all interrupts */ 2419 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); 2420 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 2421 interruptible |= TX_PIC_INTR; 2422 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2423 2424 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ 2425 val64 = readq(&bar0->adapter_control); 2426 val64 &= ~(ADAPTER_CNTL_EN); 2427 writeq(val64, &bar0->adapter_control); 2428 } 2429 2430 /** 2431 * fill_rx_buffers - Allocates the Rx side skbs 2432 * @nic : device private variable. 2433 * @ring: per ring structure 2434 * @from_card_up: If this is true, we will map the buffer to get 2435 * the dma address for buf0 and buf1 to give it to the card. 2436 * Else we will sync the already mapped buffer to give it to the card. 2437 * Description: 2438 * The function allocates Rx side skbs and puts the physical 2439 * address of these buffers into the RxD buffer pointers, so that the NIC 2440 * can DMA the received frame into these locations. 2441 * The NIC supports 3 receive modes, viz 2442 * 1. single buffer, 2443 * 2. three buffer and 2444 * 3. Five buffer modes. 2445 * Each mode defines how many fragments the received frame will be split 2446 * up into by the NIC. The frame is split into L3 header, L4 Header, 2447 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself 2448 * is split into 3 fragments. As of now only single buffer mode is 2449 * supported. 2450 * Return Value: 2451 * SUCCESS on success or an appropriate -ve value on failure. 2452 */ 2453 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, 2454 int from_card_up) 2455 { 2456 struct sk_buff *skb; 2457 struct RxD_t *rxdp; 2458 int off, size, block_no, block_no1; 2459 u32 alloc_tab = 0; 2460 u32 alloc_cnt; 2461 u64 tmp; 2462 struct buffAdd *ba; 2463 struct RxD_t *first_rxdp = NULL; 2464 u64 Buffer0_ptr = 0, Buffer1_ptr = 0; 2465 struct RxD1 *rxdp1; 2466 struct RxD3 *rxdp3; 2467 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; 2468 2469 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; 2470 2471 block_no1 = ring->rx_curr_get_info.block_index; 2472 while (alloc_tab < alloc_cnt) { 2473 block_no = ring->rx_curr_put_info.block_index; 2474 2475 off = ring->rx_curr_put_info.offset; 2476 2477 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; 2478 2479 if ((block_no == block_no1) && 2480 (off == ring->rx_curr_get_info.offset) && 2481 (rxdp->Host_Control)) { 2482 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", 2483 ring->dev->name); 2484 goto end; 2485 } 2486 if (off && (off == ring->rxd_count)) { 2487 ring->rx_curr_put_info.block_index++; 2488 if (ring->rx_curr_put_info.block_index == 2489 ring->block_count) 2490 ring->rx_curr_put_info.block_index = 0; 2491 block_no = ring->rx_curr_put_info.block_index; 2492 off = 0; 2493 ring->rx_curr_put_info.offset = off; 2494 rxdp = ring->rx_blocks[block_no].block_virt_addr; 2495 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", 2496 ring->dev->name, rxdp); 2497 2498 } 2499 2500 if ((rxdp->Control_1 & RXD_OWN_XENA) && 2501 ((ring->rxd_mode == RXD_MODE_3B) && 2502 (rxdp->Control_2 & s2BIT(0)))) { 2503 ring->rx_curr_put_info.offset = off; 2504 goto end; 2505 } 2506 /* calculate size of skb based on ring mode */ 2507 size = ring->mtu + 2508 HEADER_ETHERNET_II_802_3_SIZE + 2509 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 2510 if (ring->rxd_mode == RXD_MODE_1) 2511 size += NET_IP_ALIGN; 2512 else 2513 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; 2514 2515 /* allocate skb */ 2516 skb = netdev_alloc_skb(nic->dev, size); 2517 if (!skb) { 2518 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", 2519 ring->dev->name); 2520 if (first_rxdp) { 2521 dma_wmb(); 2522 first_rxdp->Control_1 |= RXD_OWN_XENA; 2523 } 2524 swstats->mem_alloc_fail_cnt++; 2525 2526 return -ENOMEM ; 2527 } 2528 swstats->mem_allocated += skb->truesize; 2529 2530 if (ring->rxd_mode == RXD_MODE_1) { 2531 /* 1 buffer mode - normal operation mode */ 2532 rxdp1 = (struct RxD1 *)rxdp; 2533 memset(rxdp, 0, sizeof(struct RxD1)); 2534 skb_reserve(skb, NET_IP_ALIGN); 2535 rxdp1->Buffer0_ptr = 2536 dma_map_single(&ring->pdev->dev, skb->data, 2537 size - NET_IP_ALIGN, 2538 DMA_FROM_DEVICE); 2539 if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr)) 2540 goto pci_map_failed; 2541 2542 rxdp->Control_2 = 2543 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 2544 rxdp->Host_Control = (unsigned long)skb; 2545 } else if (ring->rxd_mode == RXD_MODE_3B) { 2546 /* 2547 * 2 buffer mode - 2548 * 2 buffer mode provides 128 2549 * byte aligned receive buffers. 2550 */ 2551 2552 rxdp3 = (struct RxD3 *)rxdp; 2553 /* save buffer pointers to avoid frequent dma mapping */ 2554 Buffer0_ptr = rxdp3->Buffer0_ptr; 2555 Buffer1_ptr = rxdp3->Buffer1_ptr; 2556 memset(rxdp, 0, sizeof(struct RxD3)); 2557 /* restore the buffer pointers for dma sync*/ 2558 rxdp3->Buffer0_ptr = Buffer0_ptr; 2559 rxdp3->Buffer1_ptr = Buffer1_ptr; 2560 2561 ba = &ring->ba[block_no][off]; 2562 skb_reserve(skb, BUF0_LEN); 2563 tmp = (u64)(unsigned long)skb->data; 2564 tmp += ALIGN_SIZE; 2565 tmp &= ~ALIGN_SIZE; 2566 skb->data = (void *) (unsigned long)tmp; 2567 skb_reset_tail_pointer(skb); 2568 2569 if (from_card_up) { 2570 rxdp3->Buffer0_ptr = 2571 dma_map_single(&ring->pdev->dev, 2572 ba->ba_0, BUF0_LEN, 2573 DMA_FROM_DEVICE); 2574 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr)) 2575 goto pci_map_failed; 2576 } else 2577 dma_sync_single_for_device(&ring->pdev->dev, 2578 (dma_addr_t)rxdp3->Buffer0_ptr, 2579 BUF0_LEN, 2580 DMA_FROM_DEVICE); 2581 2582 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 2583 if (ring->rxd_mode == RXD_MODE_3B) { 2584 /* Two buffer mode */ 2585 2586 /* 2587 * Buffer2 will have L3/L4 header plus 2588 * L4 payload 2589 */ 2590 rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev, 2591 skb->data, 2592 ring->mtu + 4, 2593 DMA_FROM_DEVICE); 2594 2595 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr)) 2596 goto pci_map_failed; 2597 2598 if (from_card_up) { 2599 rxdp3->Buffer1_ptr = 2600 dma_map_single(&ring->pdev->dev, 2601 ba->ba_1, 2602 BUF1_LEN, 2603 DMA_FROM_DEVICE); 2604 2605 if (dma_mapping_error(&nic->pdev->dev, 2606 rxdp3->Buffer1_ptr)) { 2607 dma_unmap_single(&ring->pdev->dev, 2608 (dma_addr_t)(unsigned long) 2609 skb->data, 2610 ring->mtu + 4, 2611 DMA_FROM_DEVICE); 2612 goto pci_map_failed; 2613 } 2614 } 2615 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 2616 rxdp->Control_2 |= SET_BUFFER2_SIZE_3 2617 (ring->mtu + 4); 2618 } 2619 rxdp->Control_2 |= s2BIT(0); 2620 rxdp->Host_Control = (unsigned long) (skb); 2621 } 2622 if (alloc_tab & ((1 << rxsync_frequency) - 1)) 2623 rxdp->Control_1 |= RXD_OWN_XENA; 2624 off++; 2625 if (off == (ring->rxd_count + 1)) 2626 off = 0; 2627 ring->rx_curr_put_info.offset = off; 2628 2629 rxdp->Control_2 |= SET_RXD_MARKER; 2630 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { 2631 if (first_rxdp) { 2632 dma_wmb(); 2633 first_rxdp->Control_1 |= RXD_OWN_XENA; 2634 } 2635 first_rxdp = rxdp; 2636 } 2637 ring->rx_bufs_left += 1; 2638 alloc_tab++; 2639 } 2640 2641 end: 2642 /* Transfer ownership of first descriptor to adapter just before 2643 * exiting. Before that, use memory barrier so that ownership 2644 * and other fields are seen by adapter correctly. 2645 */ 2646 if (first_rxdp) { 2647 dma_wmb(); 2648 first_rxdp->Control_1 |= RXD_OWN_XENA; 2649 } 2650 2651 return SUCCESS; 2652 2653 pci_map_failed: 2654 swstats->pci_map_fail_cnt++; 2655 swstats->mem_freed += skb->truesize; 2656 dev_kfree_skb_irq(skb); 2657 return -ENOMEM; 2658 } 2659 2660 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) 2661 { 2662 struct net_device *dev = sp->dev; 2663 int j; 2664 struct sk_buff *skb; 2665 struct RxD_t *rxdp; 2666 struct RxD1 *rxdp1; 2667 struct RxD3 *rxdp3; 2668 struct mac_info *mac_control = &sp->mac_control; 2669 struct stat_block *stats = mac_control->stats_info; 2670 struct swStat *swstats = &stats->sw_stat; 2671 2672 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { 2673 rxdp = mac_control->rings[ring_no]. 2674 rx_blocks[blk].rxds[j].virt_addr; 2675 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2676 if (!skb) 2677 continue; 2678 if (sp->rxd_mode == RXD_MODE_1) { 2679 rxdp1 = (struct RxD1 *)rxdp; 2680 dma_unmap_single(&sp->pdev->dev, 2681 (dma_addr_t)rxdp1->Buffer0_ptr, 2682 dev->mtu + 2683 HEADER_ETHERNET_II_802_3_SIZE + 2684 HEADER_802_2_SIZE + HEADER_SNAP_SIZE, 2685 DMA_FROM_DEVICE); 2686 memset(rxdp, 0, sizeof(struct RxD1)); 2687 } else if (sp->rxd_mode == RXD_MODE_3B) { 2688 rxdp3 = (struct RxD3 *)rxdp; 2689 dma_unmap_single(&sp->pdev->dev, 2690 (dma_addr_t)rxdp3->Buffer0_ptr, 2691 BUF0_LEN, DMA_FROM_DEVICE); 2692 dma_unmap_single(&sp->pdev->dev, 2693 (dma_addr_t)rxdp3->Buffer1_ptr, 2694 BUF1_LEN, DMA_FROM_DEVICE); 2695 dma_unmap_single(&sp->pdev->dev, 2696 (dma_addr_t)rxdp3->Buffer2_ptr, 2697 dev->mtu + 4, DMA_FROM_DEVICE); 2698 memset(rxdp, 0, sizeof(struct RxD3)); 2699 } 2700 swstats->mem_freed += skb->truesize; 2701 dev_kfree_skb(skb); 2702 mac_control->rings[ring_no].rx_bufs_left -= 1; 2703 } 2704 } 2705 2706 /** 2707 * free_rx_buffers - Frees all Rx buffers 2708 * @sp: device private variable. 2709 * Description: 2710 * This function will free all Rx buffers allocated by host. 2711 * Return Value: 2712 * NONE. 2713 */ 2714 2715 static void free_rx_buffers(struct s2io_nic *sp) 2716 { 2717 struct net_device *dev = sp->dev; 2718 int i, blk = 0, buf_cnt = 0; 2719 struct config_param *config = &sp->config; 2720 struct mac_info *mac_control = &sp->mac_control; 2721 2722 for (i = 0; i < config->rx_ring_num; i++) { 2723 struct ring_info *ring = &mac_control->rings[i]; 2724 2725 for (blk = 0; blk < rx_ring_sz[i]; blk++) 2726 free_rxd_blk(sp, i, blk); 2727 2728 ring->rx_curr_put_info.block_index = 0; 2729 ring->rx_curr_get_info.block_index = 0; 2730 ring->rx_curr_put_info.offset = 0; 2731 ring->rx_curr_get_info.offset = 0; 2732 ring->rx_bufs_left = 0; 2733 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", 2734 dev->name, buf_cnt, i); 2735 } 2736 } 2737 2738 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) 2739 { 2740 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2741 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", 2742 ring->dev->name); 2743 } 2744 return 0; 2745 } 2746 2747 /** 2748 * s2io_poll_msix - Rx interrupt handler for NAPI support 2749 * @napi : pointer to the napi structure. 2750 * @budget : The number of packets that were budgeted to be processed 2751 * during one pass through the 'Poll" function. 2752 * Description: 2753 * Comes into picture only if NAPI support has been incorporated. It does 2754 * the same thing that rx_intr_handler does, but not in a interrupt context 2755 * also It will process only a given number of packets. 2756 * Return value: 2757 * 0 on success and 1 if there are No Rx packets to be processed. 2758 */ 2759 2760 static int s2io_poll_msix(struct napi_struct *napi, int budget) 2761 { 2762 struct ring_info *ring = container_of(napi, struct ring_info, napi); 2763 struct net_device *dev = ring->dev; 2764 int pkts_processed = 0; 2765 u8 __iomem *addr = NULL; 2766 u8 val8 = 0; 2767 struct s2io_nic *nic = netdev_priv(dev); 2768 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2769 int budget_org = budget; 2770 2771 if (unlikely(!is_s2io_card_up(nic))) 2772 return 0; 2773 2774 pkts_processed = rx_intr_handler(ring, budget); 2775 s2io_chk_rx_buffers(nic, ring); 2776 2777 if (pkts_processed < budget_org) { 2778 napi_complete_done(napi, pkts_processed); 2779 /*Re Enable MSI-Rx Vector*/ 2780 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 2781 addr += 7 - ring->ring_no; 2782 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; 2783 writeb(val8, addr); 2784 val8 = readb(addr); 2785 } 2786 return pkts_processed; 2787 } 2788 2789 static int s2io_poll_inta(struct napi_struct *napi, int budget) 2790 { 2791 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); 2792 int pkts_processed = 0; 2793 int ring_pkts_processed, i; 2794 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2795 int budget_org = budget; 2796 struct config_param *config = &nic->config; 2797 struct mac_info *mac_control = &nic->mac_control; 2798 2799 if (unlikely(!is_s2io_card_up(nic))) 2800 return 0; 2801 2802 for (i = 0; i < config->rx_ring_num; i++) { 2803 struct ring_info *ring = &mac_control->rings[i]; 2804 ring_pkts_processed = rx_intr_handler(ring, budget); 2805 s2io_chk_rx_buffers(nic, ring); 2806 pkts_processed += ring_pkts_processed; 2807 budget -= ring_pkts_processed; 2808 if (budget <= 0) 2809 break; 2810 } 2811 if (pkts_processed < budget_org) { 2812 napi_complete_done(napi, pkts_processed); 2813 /* Re enable the Rx interrupts for the ring */ 2814 writeq(0, &bar0->rx_traffic_mask); 2815 readl(&bar0->rx_traffic_mask); 2816 } 2817 return pkts_processed; 2818 } 2819 2820 #ifdef CONFIG_NET_POLL_CONTROLLER 2821 /** 2822 * s2io_netpoll - netpoll event handler entry point 2823 * @dev : pointer to the device structure. 2824 * Description: 2825 * This function will be called by upper layer to check for events on the 2826 * interface in situations where interrupts are disabled. It is used for 2827 * specific in-kernel networking tasks, such as remote consoles and kernel 2828 * debugging over the network (example netdump in RedHat). 2829 */ 2830 static void s2io_netpoll(struct net_device *dev) 2831 { 2832 struct s2io_nic *nic = netdev_priv(dev); 2833 const int irq = nic->pdev->irq; 2834 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2835 u64 val64 = 0xFFFFFFFFFFFFFFFFULL; 2836 int i; 2837 struct config_param *config = &nic->config; 2838 struct mac_info *mac_control = &nic->mac_control; 2839 2840 if (pci_channel_offline(nic->pdev)) 2841 return; 2842 2843 disable_irq(irq); 2844 2845 writeq(val64, &bar0->rx_traffic_int); 2846 writeq(val64, &bar0->tx_traffic_int); 2847 2848 /* we need to free up the transmitted skbufs or else netpoll will 2849 * run out of skbs and will fail and eventually netpoll application such 2850 * as netdump will fail. 2851 */ 2852 for (i = 0; i < config->tx_fifo_num; i++) 2853 tx_intr_handler(&mac_control->fifos[i]); 2854 2855 /* check for received packet and indicate up to network */ 2856 for (i = 0; i < config->rx_ring_num; i++) { 2857 struct ring_info *ring = &mac_control->rings[i]; 2858 2859 rx_intr_handler(ring, 0); 2860 } 2861 2862 for (i = 0; i < config->rx_ring_num; i++) { 2863 struct ring_info *ring = &mac_control->rings[i]; 2864 2865 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2866 DBG_PRINT(INFO_DBG, 2867 "%s: Out of memory in Rx Netpoll!!\n", 2868 dev->name); 2869 break; 2870 } 2871 } 2872 enable_irq(irq); 2873 } 2874 #endif 2875 2876 /** 2877 * rx_intr_handler - Rx interrupt handler 2878 * @ring_data: per ring structure. 2879 * @budget: budget for napi processing. 2880 * Description: 2881 * If the interrupt is because of a received frame or if the 2882 * receive ring contains fresh as yet un-processed frames,this function is 2883 * called. It picks out the RxD at which place the last Rx processing had 2884 * stopped and sends the skb to the OSM's Rx handler and then increments 2885 * the offset. 2886 * Return Value: 2887 * No. of napi packets processed. 2888 */ 2889 static int rx_intr_handler(struct ring_info *ring_data, int budget) 2890 { 2891 int get_block, put_block; 2892 struct rx_curr_get_info get_info, put_info; 2893 struct RxD_t *rxdp; 2894 struct sk_buff *skb; 2895 int pkt_cnt = 0, napi_pkts = 0; 2896 int i; 2897 struct RxD1 *rxdp1; 2898 struct RxD3 *rxdp3; 2899 2900 if (budget <= 0) 2901 return napi_pkts; 2902 2903 get_info = ring_data->rx_curr_get_info; 2904 get_block = get_info.block_index; 2905 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); 2906 put_block = put_info.block_index; 2907 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; 2908 2909 while (RXD_IS_UP2DT(rxdp)) { 2910 /* 2911 * If your are next to put index then it's 2912 * FIFO full condition 2913 */ 2914 if ((get_block == put_block) && 2915 (get_info.offset + 1) == put_info.offset) { 2916 DBG_PRINT(INTR_DBG, "%s: Ring Full\n", 2917 ring_data->dev->name); 2918 break; 2919 } 2920 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2921 if (skb == NULL) { 2922 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", 2923 ring_data->dev->name); 2924 return 0; 2925 } 2926 if (ring_data->rxd_mode == RXD_MODE_1) { 2927 rxdp1 = (struct RxD1 *)rxdp; 2928 dma_unmap_single(&ring_data->pdev->dev, 2929 (dma_addr_t)rxdp1->Buffer0_ptr, 2930 ring_data->mtu + 2931 HEADER_ETHERNET_II_802_3_SIZE + 2932 HEADER_802_2_SIZE + 2933 HEADER_SNAP_SIZE, 2934 DMA_FROM_DEVICE); 2935 } else if (ring_data->rxd_mode == RXD_MODE_3B) { 2936 rxdp3 = (struct RxD3 *)rxdp; 2937 dma_sync_single_for_cpu(&ring_data->pdev->dev, 2938 (dma_addr_t)rxdp3->Buffer0_ptr, 2939 BUF0_LEN, DMA_FROM_DEVICE); 2940 dma_unmap_single(&ring_data->pdev->dev, 2941 (dma_addr_t)rxdp3->Buffer2_ptr, 2942 ring_data->mtu + 4, DMA_FROM_DEVICE); 2943 } 2944 prefetch(skb->data); 2945 rx_osm_handler(ring_data, rxdp); 2946 get_info.offset++; 2947 ring_data->rx_curr_get_info.offset = get_info.offset; 2948 rxdp = ring_data->rx_blocks[get_block]. 2949 rxds[get_info.offset].virt_addr; 2950 if (get_info.offset == rxd_count[ring_data->rxd_mode]) { 2951 get_info.offset = 0; 2952 ring_data->rx_curr_get_info.offset = get_info.offset; 2953 get_block++; 2954 if (get_block == ring_data->block_count) 2955 get_block = 0; 2956 ring_data->rx_curr_get_info.block_index = get_block; 2957 rxdp = ring_data->rx_blocks[get_block].block_virt_addr; 2958 } 2959 2960 if (ring_data->nic->config.napi) { 2961 budget--; 2962 napi_pkts++; 2963 if (!budget) 2964 break; 2965 } 2966 pkt_cnt++; 2967 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) 2968 break; 2969 } 2970 if (ring_data->lro) { 2971 /* Clear all LRO sessions before exiting */ 2972 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 2973 struct lro *lro = &ring_data->lro0_n[i]; 2974 if (lro->in_use) { 2975 update_L3L4_header(ring_data->nic, lro); 2976 queue_rx_frame(lro->parent, lro->vlan_tag); 2977 clear_lro_session(lro); 2978 } 2979 } 2980 } 2981 return napi_pkts; 2982 } 2983 2984 /** 2985 * tx_intr_handler - Transmit interrupt handler 2986 * @fifo_data : fifo data pointer 2987 * Description: 2988 * If an interrupt was raised to indicate DMA complete of the 2989 * Tx packet, this function is called. It identifies the last TxD 2990 * whose buffer was freed and frees all skbs whose data have already 2991 * DMA'ed into the NICs internal memory. 2992 * Return Value: 2993 * NONE 2994 */ 2995 2996 static void tx_intr_handler(struct fifo_info *fifo_data) 2997 { 2998 struct s2io_nic *nic = fifo_data->nic; 2999 struct tx_curr_get_info get_info, put_info; 3000 struct sk_buff *skb = NULL; 3001 struct TxD *txdlp; 3002 int pkt_cnt = 0; 3003 unsigned long flags = 0; 3004 u8 err_mask; 3005 struct stat_block *stats = nic->mac_control.stats_info; 3006 struct swStat *swstats = &stats->sw_stat; 3007 3008 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) 3009 return; 3010 3011 get_info = fifo_data->tx_curr_get_info; 3012 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); 3013 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3014 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && 3015 (get_info.offset != put_info.offset) && 3016 (txdlp->Host_Control)) { 3017 /* Check for TxD errors */ 3018 if (txdlp->Control_1 & TXD_T_CODE) { 3019 unsigned long long err; 3020 err = txdlp->Control_1 & TXD_T_CODE; 3021 if (err & 0x1) { 3022 swstats->parity_err_cnt++; 3023 } 3024 3025 /* update t_code statistics */ 3026 err_mask = err >> 48; 3027 switch (err_mask) { 3028 case 2: 3029 swstats->tx_buf_abort_cnt++; 3030 break; 3031 3032 case 3: 3033 swstats->tx_desc_abort_cnt++; 3034 break; 3035 3036 case 7: 3037 swstats->tx_parity_err_cnt++; 3038 break; 3039 3040 case 10: 3041 swstats->tx_link_loss_cnt++; 3042 break; 3043 3044 case 15: 3045 swstats->tx_list_proc_err_cnt++; 3046 break; 3047 } 3048 } 3049 3050 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); 3051 if (skb == NULL) { 3052 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3053 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", 3054 __func__); 3055 return; 3056 } 3057 pkt_cnt++; 3058 3059 /* Updating the statistics block */ 3060 swstats->mem_freed += skb->truesize; 3061 dev_consume_skb_irq(skb); 3062 3063 get_info.offset++; 3064 if (get_info.offset == get_info.fifo_len + 1) 3065 get_info.offset = 0; 3066 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3067 fifo_data->tx_curr_get_info.offset = get_info.offset; 3068 } 3069 3070 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); 3071 3072 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3073 } 3074 3075 /** 3076 * s2io_mdio_write - Function to write in to MDIO registers 3077 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3078 * @addr : address value 3079 * @value : data value 3080 * @dev : pointer to net_device structure 3081 * Description: 3082 * This function is used to write values to the MDIO registers 3083 * NONE 3084 */ 3085 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, 3086 struct net_device *dev) 3087 { 3088 u64 val64; 3089 struct s2io_nic *sp = netdev_priv(dev); 3090 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3091 3092 /* address transaction */ 3093 val64 = MDIO_MMD_INDX_ADDR(addr) | 3094 MDIO_MMD_DEV_ADDR(mmd_type) | 3095 MDIO_MMS_PRT_ADDR(0x0); 3096 writeq(val64, &bar0->mdio_control); 3097 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3098 writeq(val64, &bar0->mdio_control); 3099 udelay(100); 3100 3101 /* Data transaction */ 3102 val64 = MDIO_MMD_INDX_ADDR(addr) | 3103 MDIO_MMD_DEV_ADDR(mmd_type) | 3104 MDIO_MMS_PRT_ADDR(0x0) | 3105 MDIO_MDIO_DATA(value) | 3106 MDIO_OP(MDIO_OP_WRITE_TRANS); 3107 writeq(val64, &bar0->mdio_control); 3108 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3109 writeq(val64, &bar0->mdio_control); 3110 udelay(100); 3111 3112 val64 = MDIO_MMD_INDX_ADDR(addr) | 3113 MDIO_MMD_DEV_ADDR(mmd_type) | 3114 MDIO_MMS_PRT_ADDR(0x0) | 3115 MDIO_OP(MDIO_OP_READ_TRANS); 3116 writeq(val64, &bar0->mdio_control); 3117 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3118 writeq(val64, &bar0->mdio_control); 3119 udelay(100); 3120 } 3121 3122 /** 3123 * s2io_mdio_read - Function to write in to MDIO registers 3124 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3125 * @addr : address value 3126 * @dev : pointer to net_device structure 3127 * Description: 3128 * This function is used to read values to the MDIO registers 3129 * NONE 3130 */ 3131 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) 3132 { 3133 u64 val64 = 0x0; 3134 u64 rval64 = 0x0; 3135 struct s2io_nic *sp = netdev_priv(dev); 3136 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3137 3138 /* address transaction */ 3139 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) 3140 | MDIO_MMD_DEV_ADDR(mmd_type) 3141 | MDIO_MMS_PRT_ADDR(0x0)); 3142 writeq(val64, &bar0->mdio_control); 3143 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3144 writeq(val64, &bar0->mdio_control); 3145 udelay(100); 3146 3147 /* Data transaction */ 3148 val64 = MDIO_MMD_INDX_ADDR(addr) | 3149 MDIO_MMD_DEV_ADDR(mmd_type) | 3150 MDIO_MMS_PRT_ADDR(0x0) | 3151 MDIO_OP(MDIO_OP_READ_TRANS); 3152 writeq(val64, &bar0->mdio_control); 3153 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3154 writeq(val64, &bar0->mdio_control); 3155 udelay(100); 3156 3157 /* Read the value from regs */ 3158 rval64 = readq(&bar0->mdio_control); 3159 rval64 = rval64 & 0xFFFF0000; 3160 rval64 = rval64 >> 16; 3161 return rval64; 3162 } 3163 3164 /** 3165 * s2io_chk_xpak_counter - Function to check the status of the xpak counters 3166 * @counter : counter value to be updated 3167 * @regs_stat : registers status 3168 * @index : index 3169 * @flag : flag to indicate the status 3170 * @type : counter type 3171 * Description: 3172 * This function is to check the status of the xpak counters value 3173 * NONE 3174 */ 3175 3176 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, 3177 u16 flag, u16 type) 3178 { 3179 u64 mask = 0x3; 3180 u64 val64; 3181 int i; 3182 for (i = 0; i < index; i++) 3183 mask = mask << 0x2; 3184 3185 if (flag > 0) { 3186 *counter = *counter + 1; 3187 val64 = *regs_stat & mask; 3188 val64 = val64 >> (index * 0x2); 3189 val64 = val64 + 1; 3190 if (val64 == 3) { 3191 switch (type) { 3192 case 1: 3193 DBG_PRINT(ERR_DBG, 3194 "Take Xframe NIC out of service.\n"); 3195 DBG_PRINT(ERR_DBG, 3196 "Excessive temperatures may result in premature transceiver failure.\n"); 3197 break; 3198 case 2: 3199 DBG_PRINT(ERR_DBG, 3200 "Take Xframe NIC out of service.\n"); 3201 DBG_PRINT(ERR_DBG, 3202 "Excessive bias currents may indicate imminent laser diode failure.\n"); 3203 break; 3204 case 3: 3205 DBG_PRINT(ERR_DBG, 3206 "Take Xframe NIC out of service.\n"); 3207 DBG_PRINT(ERR_DBG, 3208 "Excessive laser output power may saturate far-end receiver.\n"); 3209 break; 3210 default: 3211 DBG_PRINT(ERR_DBG, 3212 "Incorrect XPAK Alarm type\n"); 3213 } 3214 val64 = 0x0; 3215 } 3216 val64 = val64 << (index * 0x2); 3217 *regs_stat = (*regs_stat & (~mask)) | (val64); 3218 3219 } else { 3220 *regs_stat = *regs_stat & (~mask); 3221 } 3222 } 3223 3224 /** 3225 * s2io_updt_xpak_counter - Function to update the xpak counters 3226 * @dev : pointer to net_device struct 3227 * Description: 3228 * This function is to upate the status of the xpak counters value 3229 * NONE 3230 */ 3231 static void s2io_updt_xpak_counter(struct net_device *dev) 3232 { 3233 u16 flag = 0x0; 3234 u16 type = 0x0; 3235 u16 val16 = 0x0; 3236 u64 val64 = 0x0; 3237 u64 addr = 0x0; 3238 3239 struct s2io_nic *sp = netdev_priv(dev); 3240 struct stat_block *stats = sp->mac_control.stats_info; 3241 struct xpakStat *xstats = &stats->xpak_stat; 3242 3243 /* Check the communication with the MDIO slave */ 3244 addr = MDIO_CTRL1; 3245 val64 = 0x0; 3246 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3247 if ((val64 == 0xFFFF) || (val64 == 0x0000)) { 3248 DBG_PRINT(ERR_DBG, 3249 "ERR: MDIO slave access failed - Returned %llx\n", 3250 (unsigned long long)val64); 3251 return; 3252 } 3253 3254 /* Check for the expected value of control reg 1 */ 3255 if (val64 != MDIO_CTRL1_SPEED10G) { 3256 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " 3257 "Returned: %llx- Expected: 0x%x\n", 3258 (unsigned long long)val64, MDIO_CTRL1_SPEED10G); 3259 return; 3260 } 3261 3262 /* Loading the DOM register to MDIO register */ 3263 addr = 0xA100; 3264 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); 3265 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3266 3267 /* Reading the Alarm flags */ 3268 addr = 0xA070; 3269 val64 = 0x0; 3270 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3271 3272 flag = CHECKBIT(val64, 0x7); 3273 type = 1; 3274 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, 3275 &xstats->xpak_regs_stat, 3276 0x0, flag, type); 3277 3278 if (CHECKBIT(val64, 0x6)) 3279 xstats->alarm_transceiver_temp_low++; 3280 3281 flag = CHECKBIT(val64, 0x3); 3282 type = 2; 3283 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, 3284 &xstats->xpak_regs_stat, 3285 0x2, flag, type); 3286 3287 if (CHECKBIT(val64, 0x2)) 3288 xstats->alarm_laser_bias_current_low++; 3289 3290 flag = CHECKBIT(val64, 0x1); 3291 type = 3; 3292 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, 3293 &xstats->xpak_regs_stat, 3294 0x4, flag, type); 3295 3296 if (CHECKBIT(val64, 0x0)) 3297 xstats->alarm_laser_output_power_low++; 3298 3299 /* Reading the Warning flags */ 3300 addr = 0xA074; 3301 val64 = 0x0; 3302 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3303 3304 if (CHECKBIT(val64, 0x7)) 3305 xstats->warn_transceiver_temp_high++; 3306 3307 if (CHECKBIT(val64, 0x6)) 3308 xstats->warn_transceiver_temp_low++; 3309 3310 if (CHECKBIT(val64, 0x3)) 3311 xstats->warn_laser_bias_current_high++; 3312 3313 if (CHECKBIT(val64, 0x2)) 3314 xstats->warn_laser_bias_current_low++; 3315 3316 if (CHECKBIT(val64, 0x1)) 3317 xstats->warn_laser_output_power_high++; 3318 3319 if (CHECKBIT(val64, 0x0)) 3320 xstats->warn_laser_output_power_low++; 3321 } 3322 3323 /** 3324 * wait_for_cmd_complete - waits for a command to complete. 3325 * @addr: address 3326 * @busy_bit: bit to check for busy 3327 * @bit_state: state to check 3328 * @may_sleep: parameter indicates if sleeping when waiting for 3329 * command complete 3330 * Description: Function that waits for a command to Write into RMAC 3331 * ADDR DATA registers to be completed and returns either success or 3332 * error depending on whether the command was complete or not. 3333 * Return value: 3334 * SUCCESS on success and FAILURE on failure. 3335 */ 3336 3337 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, 3338 int bit_state, bool may_sleep) 3339 { 3340 int ret = FAILURE, cnt = 0, delay = 1; 3341 u64 val64; 3342 3343 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) 3344 return FAILURE; 3345 3346 do { 3347 val64 = readq(addr); 3348 if (bit_state == S2IO_BIT_RESET) { 3349 if (!(val64 & busy_bit)) { 3350 ret = SUCCESS; 3351 break; 3352 } 3353 } else { 3354 if (val64 & busy_bit) { 3355 ret = SUCCESS; 3356 break; 3357 } 3358 } 3359 3360 if (!may_sleep) 3361 mdelay(delay); 3362 else 3363 msleep(delay); 3364 3365 if (++cnt >= 10) 3366 delay = 50; 3367 } while (cnt < 20); 3368 return ret; 3369 } 3370 /** 3371 * check_pci_device_id - Checks if the device id is supported 3372 * @id : device id 3373 * Description: Function to check if the pci device id is supported by driver. 3374 * Return value: Actual device id if supported else PCI_ANY_ID 3375 */ 3376 static u16 check_pci_device_id(u16 id) 3377 { 3378 switch (id) { 3379 case PCI_DEVICE_ID_HERC_WIN: 3380 case PCI_DEVICE_ID_HERC_UNI: 3381 return XFRAME_II_DEVICE; 3382 case PCI_DEVICE_ID_S2IO_UNI: 3383 case PCI_DEVICE_ID_S2IO_WIN: 3384 return XFRAME_I_DEVICE; 3385 default: 3386 return PCI_ANY_ID; 3387 } 3388 } 3389 3390 /** 3391 * s2io_reset - Resets the card. 3392 * @sp : private member of the device structure. 3393 * Description: Function to Reset the card. This function then also 3394 * restores the previously saved PCI configuration space registers as 3395 * the card reset also resets the configuration space. 3396 * Return value: 3397 * void. 3398 */ 3399 3400 static void s2io_reset(struct s2io_nic *sp) 3401 { 3402 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3403 u64 val64; 3404 u16 subid, pci_cmd; 3405 int i; 3406 u16 val16; 3407 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; 3408 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; 3409 struct stat_block *stats; 3410 struct swStat *swstats; 3411 3412 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", 3413 __func__, pci_name(sp->pdev)); 3414 3415 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ 3416 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); 3417 3418 val64 = SW_RESET_ALL; 3419 writeq(val64, &bar0->sw_reset); 3420 if (strstr(sp->product_name, "CX4")) 3421 msleep(750); 3422 msleep(250); 3423 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { 3424 3425 /* Restore the PCI state saved during initialization. */ 3426 pci_restore_state(sp->pdev); 3427 pci_save_state(sp->pdev); 3428 pci_read_config_word(sp->pdev, 0x2, &val16); 3429 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) 3430 break; 3431 msleep(200); 3432 } 3433 3434 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) 3435 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); 3436 3437 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); 3438 3439 s2io_init_pci(sp); 3440 3441 /* Set swapper to enable I/O register access */ 3442 s2io_set_swapper(sp); 3443 3444 /* restore mac_addr entries */ 3445 do_s2io_restore_unicast_mc(sp); 3446 3447 /* Restore the MSIX table entries from local variables */ 3448 restore_xmsi_data(sp); 3449 3450 /* Clear certain PCI/PCI-X fields after reset */ 3451 if (sp->device_type == XFRAME_II_DEVICE) { 3452 /* Clear "detected parity error" bit */ 3453 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); 3454 3455 /* Clearing PCIX Ecc status register */ 3456 pci_write_config_dword(sp->pdev, 0x68, 0x7C); 3457 3458 /* Clearing PCI_STATUS error reflected here */ 3459 writeq(s2BIT(62), &bar0->txpic_int_reg); 3460 } 3461 3462 /* Reset device statistics maintained by OS */ 3463 memset(&sp->stats, 0, sizeof(struct net_device_stats)); 3464 3465 stats = sp->mac_control.stats_info; 3466 swstats = &stats->sw_stat; 3467 3468 /* save link up/down time/cnt, reset/memory/watchdog cnt */ 3469 up_cnt = swstats->link_up_cnt; 3470 down_cnt = swstats->link_down_cnt; 3471 up_time = swstats->link_up_time; 3472 down_time = swstats->link_down_time; 3473 reset_cnt = swstats->soft_reset_cnt; 3474 mem_alloc_cnt = swstats->mem_allocated; 3475 mem_free_cnt = swstats->mem_freed; 3476 watchdog_cnt = swstats->watchdog_timer_cnt; 3477 3478 memset(stats, 0, sizeof(struct stat_block)); 3479 3480 /* restore link up/down time/cnt, reset/memory/watchdog cnt */ 3481 swstats->link_up_cnt = up_cnt; 3482 swstats->link_down_cnt = down_cnt; 3483 swstats->link_up_time = up_time; 3484 swstats->link_down_time = down_time; 3485 swstats->soft_reset_cnt = reset_cnt; 3486 swstats->mem_allocated = mem_alloc_cnt; 3487 swstats->mem_freed = mem_free_cnt; 3488 swstats->watchdog_timer_cnt = watchdog_cnt; 3489 3490 /* SXE-002: Configure link and activity LED to turn it off */ 3491 subid = sp->pdev->subsystem_device; 3492 if (((subid & 0xFF) >= 0x07) && 3493 (sp->device_type == XFRAME_I_DEVICE)) { 3494 val64 = readq(&bar0->gpio_control); 3495 val64 |= 0x0000800000000000ULL; 3496 writeq(val64, &bar0->gpio_control); 3497 val64 = 0x0411040400000000ULL; 3498 writeq(val64, (void __iomem *)bar0 + 0x2700); 3499 } 3500 3501 /* 3502 * Clear spurious ECC interrupts that would have occurred on 3503 * XFRAME II cards after reset. 3504 */ 3505 if (sp->device_type == XFRAME_II_DEVICE) { 3506 val64 = readq(&bar0->pcc_err_reg); 3507 writeq(val64, &bar0->pcc_err_reg); 3508 } 3509 3510 sp->device_enabled_once = false; 3511 } 3512 3513 /** 3514 * s2io_set_swapper - to set the swapper controle on the card 3515 * @sp : private member of the device structure, 3516 * pointer to the s2io_nic structure. 3517 * Description: Function to set the swapper control on the card 3518 * correctly depending on the 'endianness' of the system. 3519 * Return value: 3520 * SUCCESS on success and FAILURE on failure. 3521 */ 3522 3523 static int s2io_set_swapper(struct s2io_nic *sp) 3524 { 3525 struct net_device *dev = sp->dev; 3526 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3527 u64 val64, valt, valr; 3528 3529 /* 3530 * Set proper endian settings and verify the same by reading 3531 * the PIF Feed-back register. 3532 */ 3533 3534 val64 = readq(&bar0->pif_rd_swapper_fb); 3535 if (val64 != 0x0123456789ABCDEFULL) { 3536 int i = 0; 3537 static const u64 value[] = { 3538 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 3539 0x8100008181000081ULL, /* FE=1, SE=0 */ 3540 0x4200004242000042ULL, /* FE=0, SE=1 */ 3541 0 /* FE=0, SE=0 */ 3542 }; 3543 3544 while (i < 4) { 3545 writeq(value[i], &bar0->swapper_ctrl); 3546 val64 = readq(&bar0->pif_rd_swapper_fb); 3547 if (val64 == 0x0123456789ABCDEFULL) 3548 break; 3549 i++; 3550 } 3551 if (i == 4) { 3552 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " 3553 "feedback read %llx\n", 3554 dev->name, (unsigned long long)val64); 3555 return FAILURE; 3556 } 3557 valr = value[i]; 3558 } else { 3559 valr = readq(&bar0->swapper_ctrl); 3560 } 3561 3562 valt = 0x0123456789ABCDEFULL; 3563 writeq(valt, &bar0->xmsi_address); 3564 val64 = readq(&bar0->xmsi_address); 3565 3566 if (val64 != valt) { 3567 int i = 0; 3568 static const u64 value[] = { 3569 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 3570 0x0081810000818100ULL, /* FE=1, SE=0 */ 3571 0x0042420000424200ULL, /* FE=0, SE=1 */ 3572 0 /* FE=0, SE=0 */ 3573 }; 3574 3575 while (i < 4) { 3576 writeq((value[i] | valr), &bar0->swapper_ctrl); 3577 writeq(valt, &bar0->xmsi_address); 3578 val64 = readq(&bar0->xmsi_address); 3579 if (val64 == valt) 3580 break; 3581 i++; 3582 } 3583 if (i == 4) { 3584 unsigned long long x = val64; 3585 DBG_PRINT(ERR_DBG, 3586 "Write failed, Xmsi_addr reads:0x%llx\n", x); 3587 return FAILURE; 3588 } 3589 } 3590 val64 = readq(&bar0->swapper_ctrl); 3591 val64 &= 0xFFFF000000000000ULL; 3592 3593 #ifdef __BIG_ENDIAN 3594 /* 3595 * The device by default set to a big endian format, so a 3596 * big endian driver need not set anything. 3597 */ 3598 val64 |= (SWAPPER_CTRL_TXP_FE | 3599 SWAPPER_CTRL_TXP_SE | 3600 SWAPPER_CTRL_TXD_R_FE | 3601 SWAPPER_CTRL_TXD_W_FE | 3602 SWAPPER_CTRL_TXF_R_FE | 3603 SWAPPER_CTRL_RXD_R_FE | 3604 SWAPPER_CTRL_RXD_W_FE | 3605 SWAPPER_CTRL_RXF_W_FE | 3606 SWAPPER_CTRL_XMSI_FE | 3607 SWAPPER_CTRL_STATS_FE | 3608 SWAPPER_CTRL_STATS_SE); 3609 if (sp->config.intr_type == INTA) 3610 val64 |= SWAPPER_CTRL_XMSI_SE; 3611 writeq(val64, &bar0->swapper_ctrl); 3612 #else 3613 /* 3614 * Initially we enable all bits to make it accessible by the 3615 * driver, then we selectively enable only those bits that 3616 * we want to set. 3617 */ 3618 val64 |= (SWAPPER_CTRL_TXP_FE | 3619 SWAPPER_CTRL_TXP_SE | 3620 SWAPPER_CTRL_TXD_R_FE | 3621 SWAPPER_CTRL_TXD_R_SE | 3622 SWAPPER_CTRL_TXD_W_FE | 3623 SWAPPER_CTRL_TXD_W_SE | 3624 SWAPPER_CTRL_TXF_R_FE | 3625 SWAPPER_CTRL_RXD_R_FE | 3626 SWAPPER_CTRL_RXD_R_SE | 3627 SWAPPER_CTRL_RXD_W_FE | 3628 SWAPPER_CTRL_RXD_W_SE | 3629 SWAPPER_CTRL_RXF_W_FE | 3630 SWAPPER_CTRL_XMSI_FE | 3631 SWAPPER_CTRL_STATS_FE | 3632 SWAPPER_CTRL_STATS_SE); 3633 if (sp->config.intr_type == INTA) 3634 val64 |= SWAPPER_CTRL_XMSI_SE; 3635 writeq(val64, &bar0->swapper_ctrl); 3636 #endif 3637 val64 = readq(&bar0->swapper_ctrl); 3638 3639 /* 3640 * Verifying if endian settings are accurate by reading a 3641 * feedback register. 3642 */ 3643 val64 = readq(&bar0->pif_rd_swapper_fb); 3644 if (val64 != 0x0123456789ABCDEFULL) { 3645 /* Endian settings are incorrect, calls for another dekko. */ 3646 DBG_PRINT(ERR_DBG, 3647 "%s: Endian settings are wrong, feedback read %llx\n", 3648 dev->name, (unsigned long long)val64); 3649 return FAILURE; 3650 } 3651 3652 return SUCCESS; 3653 } 3654 3655 static int wait_for_msix_trans(struct s2io_nic *nic, int i) 3656 { 3657 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3658 u64 val64; 3659 int ret = 0, cnt = 0; 3660 3661 do { 3662 val64 = readq(&bar0->xmsi_access); 3663 if (!(val64 & s2BIT(15))) 3664 break; 3665 mdelay(1); 3666 cnt++; 3667 } while (cnt < 5); 3668 if (cnt == 5) { 3669 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); 3670 ret = 1; 3671 } 3672 3673 return ret; 3674 } 3675 3676 static void restore_xmsi_data(struct s2io_nic *nic) 3677 { 3678 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3679 u64 val64; 3680 int i, msix_index; 3681 3682 if (nic->device_type == XFRAME_I_DEVICE) 3683 return; 3684 3685 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3686 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3687 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3688 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3689 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); 3690 writeq(val64, &bar0->xmsi_access); 3691 if (wait_for_msix_trans(nic, msix_index)) 3692 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3693 __func__, msix_index); 3694 } 3695 } 3696 3697 static void store_xmsi_data(struct s2io_nic *nic) 3698 { 3699 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3700 u64 val64, addr, data; 3701 int i, msix_index; 3702 3703 if (nic->device_type == XFRAME_I_DEVICE) 3704 return; 3705 3706 /* Store and display */ 3707 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3708 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3709 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); 3710 writeq(val64, &bar0->xmsi_access); 3711 if (wait_for_msix_trans(nic, msix_index)) { 3712 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3713 __func__, msix_index); 3714 continue; 3715 } 3716 addr = readq(&bar0->xmsi_address); 3717 data = readq(&bar0->xmsi_data); 3718 if (addr && data) { 3719 nic->msix_info[i].addr = addr; 3720 nic->msix_info[i].data = data; 3721 } 3722 } 3723 } 3724 3725 static int s2io_enable_msi_x(struct s2io_nic *nic) 3726 { 3727 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3728 u64 rx_mat; 3729 u16 msi_control; /* Temp variable */ 3730 int ret, i, j, msix_indx = 1; 3731 int size; 3732 struct stat_block *stats = nic->mac_control.stats_info; 3733 struct swStat *swstats = &stats->sw_stat; 3734 3735 size = nic->num_entries * sizeof(struct msix_entry); 3736 nic->entries = kzalloc(size, GFP_KERNEL); 3737 if (!nic->entries) { 3738 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3739 __func__); 3740 swstats->mem_alloc_fail_cnt++; 3741 return -ENOMEM; 3742 } 3743 swstats->mem_allocated += size; 3744 3745 size = nic->num_entries * sizeof(struct s2io_msix_entry); 3746 nic->s2io_entries = kzalloc(size, GFP_KERNEL); 3747 if (!nic->s2io_entries) { 3748 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3749 __func__); 3750 swstats->mem_alloc_fail_cnt++; 3751 kfree(nic->entries); 3752 swstats->mem_freed 3753 += (nic->num_entries * sizeof(struct msix_entry)); 3754 return -ENOMEM; 3755 } 3756 swstats->mem_allocated += size; 3757 3758 nic->entries[0].entry = 0; 3759 nic->s2io_entries[0].entry = 0; 3760 nic->s2io_entries[0].in_use = MSIX_FLG; 3761 nic->s2io_entries[0].type = MSIX_ALARM_TYPE; 3762 nic->s2io_entries[0].arg = &nic->mac_control.fifos; 3763 3764 for (i = 1; i < nic->num_entries; i++) { 3765 nic->entries[i].entry = ((i - 1) * 8) + 1; 3766 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; 3767 nic->s2io_entries[i].arg = NULL; 3768 nic->s2io_entries[i].in_use = 0; 3769 } 3770 3771 rx_mat = readq(&bar0->rx_mat); 3772 for (j = 0; j < nic->config.rx_ring_num; j++) { 3773 rx_mat |= RX_MAT_SET(j, msix_indx); 3774 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; 3775 nic->s2io_entries[j+1].type = MSIX_RING_TYPE; 3776 nic->s2io_entries[j+1].in_use = MSIX_FLG; 3777 msix_indx += 8; 3778 } 3779 writeq(rx_mat, &bar0->rx_mat); 3780 readq(&bar0->rx_mat); 3781 3782 ret = pci_enable_msix_range(nic->pdev, nic->entries, 3783 nic->num_entries, nic->num_entries); 3784 /* We fail init if error or we get less vectors than min required */ 3785 if (ret < 0) { 3786 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); 3787 kfree(nic->entries); 3788 swstats->mem_freed += nic->num_entries * 3789 sizeof(struct msix_entry); 3790 kfree(nic->s2io_entries); 3791 swstats->mem_freed += nic->num_entries * 3792 sizeof(struct s2io_msix_entry); 3793 nic->entries = NULL; 3794 nic->s2io_entries = NULL; 3795 return -ENOMEM; 3796 } 3797 3798 /* 3799 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3800 * in the herc NIC. (Temp change, needs to be removed later) 3801 */ 3802 pci_read_config_word(nic->pdev, 0x42, &msi_control); 3803 msi_control |= 0x1; /* Enable MSI */ 3804 pci_write_config_word(nic->pdev, 0x42, msi_control); 3805 3806 return 0; 3807 } 3808 3809 /* Handle software interrupt used during MSI(X) test */ 3810 static irqreturn_t s2io_test_intr(int irq, void *dev_id) 3811 { 3812 struct s2io_nic *sp = dev_id; 3813 3814 sp->msi_detected = 1; 3815 wake_up(&sp->msi_wait); 3816 3817 return IRQ_HANDLED; 3818 } 3819 3820 /* Test interrupt path by forcing a software IRQ */ 3821 static int s2io_test_msi(struct s2io_nic *sp) 3822 { 3823 struct pci_dev *pdev = sp->pdev; 3824 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3825 int err; 3826 u64 val64, saved64; 3827 3828 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, 3829 sp->name, sp); 3830 if (err) { 3831 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", 3832 sp->dev->name, pci_name(pdev), pdev->irq); 3833 return err; 3834 } 3835 3836 init_waitqueue_head(&sp->msi_wait); 3837 sp->msi_detected = 0; 3838 3839 saved64 = val64 = readq(&bar0->scheduled_int_ctrl); 3840 val64 |= SCHED_INT_CTRL_ONE_SHOT; 3841 val64 |= SCHED_INT_CTRL_TIMER_EN; 3842 val64 |= SCHED_INT_CTRL_INT2MSI(1); 3843 writeq(val64, &bar0->scheduled_int_ctrl); 3844 3845 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); 3846 3847 if (!sp->msi_detected) { 3848 /* MSI(X) test failed, go back to INTx mode */ 3849 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " 3850 "using MSI(X) during test\n", 3851 sp->dev->name, pci_name(pdev)); 3852 3853 err = -EOPNOTSUPP; 3854 } 3855 3856 free_irq(sp->entries[1].vector, sp); 3857 3858 writeq(saved64, &bar0->scheduled_int_ctrl); 3859 3860 return err; 3861 } 3862 3863 static void remove_msix_isr(struct s2io_nic *sp) 3864 { 3865 int i; 3866 u16 msi_control; 3867 3868 for (i = 0; i < sp->num_entries; i++) { 3869 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { 3870 int vector = sp->entries[i].vector; 3871 void *arg = sp->s2io_entries[i].arg; 3872 free_irq(vector, arg); 3873 } 3874 } 3875 3876 kfree(sp->entries); 3877 kfree(sp->s2io_entries); 3878 sp->entries = NULL; 3879 sp->s2io_entries = NULL; 3880 3881 pci_read_config_word(sp->pdev, 0x42, &msi_control); 3882 msi_control &= 0xFFFE; /* Disable MSI */ 3883 pci_write_config_word(sp->pdev, 0x42, msi_control); 3884 3885 pci_disable_msix(sp->pdev); 3886 } 3887 3888 static void remove_inta_isr(struct s2io_nic *sp) 3889 { 3890 free_irq(sp->pdev->irq, sp->dev); 3891 } 3892 3893 /* ********************************************************* * 3894 * Functions defined below concern the OS part of the driver * 3895 * ********************************************************* */ 3896 3897 /** 3898 * s2io_open - open entry point of the driver 3899 * @dev : pointer to the device structure. 3900 * Description: 3901 * This function is the open entry point of the driver. It mainly calls a 3902 * function to allocate Rx buffers and inserts them into the buffer 3903 * descriptors and then enables the Rx part of the NIC. 3904 * Return value: 3905 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3906 * file on failure. 3907 */ 3908 3909 static int s2io_open(struct net_device *dev) 3910 { 3911 struct s2io_nic *sp = netdev_priv(dev); 3912 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 3913 int err = 0; 3914 3915 /* 3916 * Make sure you have link off by default every time 3917 * Nic is initialized 3918 */ 3919 netif_carrier_off(dev); 3920 sp->last_link_state = 0; 3921 3922 /* Initialize H/W and enable interrupts */ 3923 err = s2io_card_up(sp); 3924 if (err) { 3925 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3926 dev->name); 3927 goto hw_init_failed; 3928 } 3929 3930 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { 3931 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); 3932 s2io_card_down(sp); 3933 err = -ENODEV; 3934 goto hw_init_failed; 3935 } 3936 s2io_start_all_tx_queue(sp); 3937 return 0; 3938 3939 hw_init_failed: 3940 if (sp->config.intr_type == MSI_X) { 3941 if (sp->entries) { 3942 kfree(sp->entries); 3943 swstats->mem_freed += sp->num_entries * 3944 sizeof(struct msix_entry); 3945 } 3946 if (sp->s2io_entries) { 3947 kfree(sp->s2io_entries); 3948 swstats->mem_freed += sp->num_entries * 3949 sizeof(struct s2io_msix_entry); 3950 } 3951 } 3952 return err; 3953 } 3954 3955 /** 3956 * s2io_close -close entry point of the driver 3957 * @dev : device pointer. 3958 * Description: 3959 * This is the stop entry point of the driver. It needs to undo exactly 3960 * whatever was done by the open entry point,thus it's usually referred to 3961 * as the close function.Among other things this function mainly stops the 3962 * Rx side of the NIC and frees all the Rx buffers in the Rx rings. 3963 * Return value: 3964 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3965 * file on failure. 3966 */ 3967 3968 static int s2io_close(struct net_device *dev) 3969 { 3970 struct s2io_nic *sp = netdev_priv(dev); 3971 struct config_param *config = &sp->config; 3972 u64 tmp64; 3973 int offset; 3974 3975 /* Return if the device is already closed * 3976 * Can happen when s2io_card_up failed in change_mtu * 3977 */ 3978 if (!is_s2io_card_up(sp)) 3979 return 0; 3980 3981 s2io_stop_all_tx_queue(sp); 3982 /* delete all populated mac entries */ 3983 for (offset = 1; offset < config->max_mc_addr; offset++) { 3984 tmp64 = do_s2io_read_unicast_mc(sp, offset); 3985 if (tmp64 != S2IO_DISABLE_MAC_ENTRY) 3986 do_s2io_delete_unicast_mc(sp, tmp64); 3987 } 3988 3989 s2io_card_down(sp); 3990 3991 return 0; 3992 } 3993 3994 /** 3995 * s2io_xmit - Tx entry point of te driver 3996 * @skb : the socket buffer containing the Tx data. 3997 * @dev : device pointer. 3998 * Description : 3999 * This function is the Tx entry point of the driver. S2IO NIC supports 4000 * certain protocol assist features on Tx side, namely CSO, S/G, LSO. 4001 * NOTE: when device can't queue the pkt,just the trans_start variable will 4002 * not be upadted. 4003 * Return value: 4004 * 0 on success & 1 on failure. 4005 */ 4006 4007 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) 4008 { 4009 struct s2io_nic *sp = netdev_priv(dev); 4010 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; 4011 register u64 val64; 4012 struct TxD *txdp; 4013 struct TxFIFO_element __iomem *tx_fifo; 4014 unsigned long flags = 0; 4015 u16 vlan_tag = 0; 4016 struct fifo_info *fifo = NULL; 4017 int offload_type; 4018 int enable_per_list_interrupt = 0; 4019 struct config_param *config = &sp->config; 4020 struct mac_info *mac_control = &sp->mac_control; 4021 struct stat_block *stats = mac_control->stats_info; 4022 struct swStat *swstats = &stats->sw_stat; 4023 4024 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); 4025 4026 if (unlikely(skb->len <= 0)) { 4027 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); 4028 dev_kfree_skb_any(skb); 4029 return NETDEV_TX_OK; 4030 } 4031 4032 if (!is_s2io_card_up(sp)) { 4033 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", 4034 dev->name); 4035 dev_kfree_skb_any(skb); 4036 return NETDEV_TX_OK; 4037 } 4038 4039 queue = 0; 4040 if (skb_vlan_tag_present(skb)) 4041 vlan_tag = skb_vlan_tag_get(skb); 4042 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { 4043 if (skb->protocol == htons(ETH_P_IP)) { 4044 struct iphdr *ip; 4045 struct tcphdr *th; 4046 ip = ip_hdr(skb); 4047 4048 if (!ip_is_fragment(ip)) { 4049 th = (struct tcphdr *)(((unsigned char *)ip) + 4050 ip->ihl*4); 4051 4052 if (ip->protocol == IPPROTO_TCP) { 4053 queue_len = sp->total_tcp_fifos; 4054 queue = (ntohs(th->source) + 4055 ntohs(th->dest)) & 4056 sp->fifo_selector[queue_len - 1]; 4057 if (queue >= queue_len) 4058 queue = queue_len - 1; 4059 } else if (ip->protocol == IPPROTO_UDP) { 4060 queue_len = sp->total_udp_fifos; 4061 queue = (ntohs(th->source) + 4062 ntohs(th->dest)) & 4063 sp->fifo_selector[queue_len - 1]; 4064 if (queue >= queue_len) 4065 queue = queue_len - 1; 4066 queue += sp->udp_fifo_idx; 4067 if (skb->len > 1024) 4068 enable_per_list_interrupt = 1; 4069 } 4070 } 4071 } 4072 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) 4073 /* get fifo number based on skb->priority value */ 4074 queue = config->fifo_mapping 4075 [skb->priority & (MAX_TX_FIFOS - 1)]; 4076 fifo = &mac_control->fifos[queue]; 4077 4078 spin_lock_irqsave(&fifo->tx_lock, flags); 4079 4080 if (sp->config.multiq) { 4081 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { 4082 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4083 return NETDEV_TX_BUSY; 4084 } 4085 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { 4086 if (netif_queue_stopped(dev)) { 4087 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4088 return NETDEV_TX_BUSY; 4089 } 4090 } 4091 4092 put_off = (u16)fifo->tx_curr_put_info.offset; 4093 get_off = (u16)fifo->tx_curr_get_info.offset; 4094 txdp = fifo->list_info[put_off].list_virt_addr; 4095 4096 queue_len = fifo->tx_curr_put_info.fifo_len + 1; 4097 /* Avoid "put" pointer going beyond "get" pointer */ 4098 if (txdp->Host_Control || 4099 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4100 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 4101 s2io_stop_tx_queue(sp, fifo->fifo_no); 4102 dev_kfree_skb_any(skb); 4103 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4104 return NETDEV_TX_OK; 4105 } 4106 4107 offload_type = s2io_offload_type(skb); 4108 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 4109 txdp->Control_1 |= TXD_TCP_LSO_EN; 4110 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); 4111 } 4112 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4113 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | 4114 TXD_TX_CKO_TCP_EN | 4115 TXD_TX_CKO_UDP_EN); 4116 } 4117 txdp->Control_1 |= TXD_GATHER_CODE_FIRST; 4118 txdp->Control_1 |= TXD_LIST_OWN_XENA; 4119 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); 4120 if (enable_per_list_interrupt) 4121 if (put_off & (queue_len >> 5)) 4122 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; 4123 if (vlan_tag) { 4124 txdp->Control_2 |= TXD_VLAN_ENABLE; 4125 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); 4126 } 4127 4128 frg_len = skb_headlen(skb); 4129 txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data, 4130 frg_len, DMA_TO_DEVICE); 4131 if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer)) 4132 goto pci_map_failed; 4133 4134 txdp->Host_Control = (unsigned long)skb; 4135 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); 4136 4137 frg_cnt = skb_shinfo(skb)->nr_frags; 4138 /* For fragmented SKB. */ 4139 for (i = 0; i < frg_cnt; i++) { 4140 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4141 /* A '0' length fragment will be ignored */ 4142 if (!skb_frag_size(frag)) 4143 continue; 4144 txdp++; 4145 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, 4146 frag, 0, 4147 skb_frag_size(frag), 4148 DMA_TO_DEVICE); 4149 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); 4150 } 4151 txdp->Control_1 |= TXD_GATHER_CODE_LAST; 4152 4153 tx_fifo = mac_control->tx_FIFO_start[queue]; 4154 val64 = fifo->list_info[put_off].list_phy_addr; 4155 writeq(val64, &tx_fifo->TxDL_Pointer); 4156 4157 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | 4158 TX_FIFO_LAST_LIST); 4159 if (offload_type) 4160 val64 |= TX_FIFO_SPECIAL_FUNC; 4161 4162 writeq(val64, &tx_fifo->List_Control); 4163 4164 put_off++; 4165 if (put_off == fifo->tx_curr_put_info.fifo_len + 1) 4166 put_off = 0; 4167 fifo->tx_curr_put_info.offset = put_off; 4168 4169 /* Avoid "put" pointer going beyond "get" pointer */ 4170 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4171 swstats->fifo_full_cnt++; 4172 DBG_PRINT(TX_DBG, 4173 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4174 put_off, get_off); 4175 s2io_stop_tx_queue(sp, fifo->fifo_no); 4176 } 4177 swstats->mem_allocated += skb->truesize; 4178 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4179 4180 if (sp->config.intr_type == MSI_X) 4181 tx_intr_handler(fifo); 4182 4183 return NETDEV_TX_OK; 4184 4185 pci_map_failed: 4186 swstats->pci_map_fail_cnt++; 4187 s2io_stop_tx_queue(sp, fifo->fifo_no); 4188 swstats->mem_freed += skb->truesize; 4189 dev_kfree_skb_any(skb); 4190 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4191 return NETDEV_TX_OK; 4192 } 4193 4194 static void 4195 s2io_alarm_handle(struct timer_list *t) 4196 { 4197 struct s2io_nic *sp = from_timer(sp, t, alarm_timer); 4198 struct net_device *dev = sp->dev; 4199 4200 s2io_handle_errors(dev); 4201 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 4202 } 4203 4204 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) 4205 { 4206 struct ring_info *ring = (struct ring_info *)dev_id; 4207 struct s2io_nic *sp = ring->nic; 4208 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4209 4210 if (unlikely(!is_s2io_card_up(sp))) 4211 return IRQ_HANDLED; 4212 4213 if (sp->config.napi) { 4214 u8 __iomem *addr = NULL; 4215 u8 val8 = 0; 4216 4217 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 4218 addr += (7 - ring->ring_no); 4219 val8 = (ring->ring_no == 0) ? 0x7f : 0xff; 4220 writeb(val8, addr); 4221 val8 = readb(addr); 4222 napi_schedule(&ring->napi); 4223 } else { 4224 rx_intr_handler(ring, 0); 4225 s2io_chk_rx_buffers(sp, ring); 4226 } 4227 4228 return IRQ_HANDLED; 4229 } 4230 4231 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) 4232 { 4233 int i; 4234 struct fifo_info *fifos = (struct fifo_info *)dev_id; 4235 struct s2io_nic *sp = fifos->nic; 4236 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4237 struct config_param *config = &sp->config; 4238 u64 reason; 4239 4240 if (unlikely(!is_s2io_card_up(sp))) 4241 return IRQ_NONE; 4242 4243 reason = readq(&bar0->general_int_status); 4244 if (unlikely(reason == S2IO_MINUS_ONE)) 4245 /* Nothing much can be done. Get out */ 4246 return IRQ_HANDLED; 4247 4248 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { 4249 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4250 4251 if (reason & GEN_INTR_TXPIC) 4252 s2io_txpic_intr_handle(sp); 4253 4254 if (reason & GEN_INTR_TXTRAFFIC) 4255 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4256 4257 for (i = 0; i < config->tx_fifo_num; i++) 4258 tx_intr_handler(&fifos[i]); 4259 4260 writeq(sp->general_int_mask, &bar0->general_int_mask); 4261 readl(&bar0->general_int_status); 4262 return IRQ_HANDLED; 4263 } 4264 /* The interrupt was not raised by us */ 4265 return IRQ_NONE; 4266 } 4267 4268 static void s2io_txpic_intr_handle(struct s2io_nic *sp) 4269 { 4270 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4271 u64 val64; 4272 4273 val64 = readq(&bar0->pic_int_status); 4274 if (val64 & PIC_INT_GPIO) { 4275 val64 = readq(&bar0->gpio_int_reg); 4276 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4277 (val64 & GPIO_INT_REG_LINK_UP)) { 4278 /* 4279 * This is unstable state so clear both up/down 4280 * interrupt and adapter to re-evaluate the link state. 4281 */ 4282 val64 |= GPIO_INT_REG_LINK_DOWN; 4283 val64 |= GPIO_INT_REG_LINK_UP; 4284 writeq(val64, &bar0->gpio_int_reg); 4285 val64 = readq(&bar0->gpio_int_mask); 4286 val64 &= ~(GPIO_INT_MASK_LINK_UP | 4287 GPIO_INT_MASK_LINK_DOWN); 4288 writeq(val64, &bar0->gpio_int_mask); 4289 } else if (val64 & GPIO_INT_REG_LINK_UP) { 4290 val64 = readq(&bar0->adapter_status); 4291 /* Enable Adapter */ 4292 val64 = readq(&bar0->adapter_control); 4293 val64 |= ADAPTER_CNTL_EN; 4294 writeq(val64, &bar0->adapter_control); 4295 val64 |= ADAPTER_LED_ON; 4296 writeq(val64, &bar0->adapter_control); 4297 if (!sp->device_enabled_once) 4298 sp->device_enabled_once = 1; 4299 4300 s2io_link(sp, LINK_UP); 4301 /* 4302 * unmask link down interrupt and mask link-up 4303 * intr 4304 */ 4305 val64 = readq(&bar0->gpio_int_mask); 4306 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4307 val64 |= GPIO_INT_MASK_LINK_UP; 4308 writeq(val64, &bar0->gpio_int_mask); 4309 4310 } else if (val64 & GPIO_INT_REG_LINK_DOWN) { 4311 val64 = readq(&bar0->adapter_status); 4312 s2io_link(sp, LINK_DOWN); 4313 /* Link is down so unmaks link up interrupt */ 4314 val64 = readq(&bar0->gpio_int_mask); 4315 val64 &= ~GPIO_INT_MASK_LINK_UP; 4316 val64 |= GPIO_INT_MASK_LINK_DOWN; 4317 writeq(val64, &bar0->gpio_int_mask); 4318 4319 /* turn off LED */ 4320 val64 = readq(&bar0->adapter_control); 4321 val64 = val64 & (~ADAPTER_LED_ON); 4322 writeq(val64, &bar0->adapter_control); 4323 } 4324 } 4325 val64 = readq(&bar0->gpio_int_mask); 4326 } 4327 4328 /** 4329 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter 4330 * @value: alarm bits 4331 * @addr: address value 4332 * @cnt: counter variable 4333 * Description: Check for alarm and increment the counter 4334 * Return Value: 4335 * 1 - if alarm bit set 4336 * 0 - if alarm bit is not set 4337 */ 4338 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, 4339 unsigned long long *cnt) 4340 { 4341 u64 val64; 4342 val64 = readq(addr); 4343 if (val64 & value) { 4344 writeq(val64, addr); 4345 (*cnt)++; 4346 return 1; 4347 } 4348 return 0; 4349 4350 } 4351 4352 /** 4353 * s2io_handle_errors - Xframe error indication handler 4354 * @dev_id: opaque handle to dev 4355 * Description: Handle alarms such as loss of link, single or 4356 * double ECC errors, critical and serious errors. 4357 * Return Value: 4358 * NONE 4359 */ 4360 static void s2io_handle_errors(void *dev_id) 4361 { 4362 struct net_device *dev = (struct net_device *)dev_id; 4363 struct s2io_nic *sp = netdev_priv(dev); 4364 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4365 u64 temp64 = 0, val64 = 0; 4366 int i = 0; 4367 4368 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; 4369 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; 4370 4371 if (!is_s2io_card_up(sp)) 4372 return; 4373 4374 if (pci_channel_offline(sp->pdev)) 4375 return; 4376 4377 memset(&sw_stat->ring_full_cnt, 0, 4378 sizeof(sw_stat->ring_full_cnt)); 4379 4380 /* Handling the XPAK counters update */ 4381 if (stats->xpak_timer_count < 72000) { 4382 /* waiting for an hour */ 4383 stats->xpak_timer_count++; 4384 } else { 4385 s2io_updt_xpak_counter(dev); 4386 /* reset the count to zero */ 4387 stats->xpak_timer_count = 0; 4388 } 4389 4390 /* Handling link status change error Intr */ 4391 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { 4392 val64 = readq(&bar0->mac_rmac_err_reg); 4393 writeq(val64, &bar0->mac_rmac_err_reg); 4394 if (val64 & RMAC_LINK_STATE_CHANGE_INT) 4395 schedule_work(&sp->set_link_task); 4396 } 4397 4398 /* In case of a serious error, the device will be Reset. */ 4399 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, 4400 &sw_stat->serious_err_cnt)) 4401 goto reset; 4402 4403 /* Check for data parity error */ 4404 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, 4405 &sw_stat->parity_err_cnt)) 4406 goto reset; 4407 4408 /* Check for ring full counter */ 4409 if (sp->device_type == XFRAME_II_DEVICE) { 4410 val64 = readq(&bar0->ring_bump_counter1); 4411 for (i = 0; i < 4; i++) { 4412 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4413 temp64 >>= 64 - ((i+1)*16); 4414 sw_stat->ring_full_cnt[i] += temp64; 4415 } 4416 4417 val64 = readq(&bar0->ring_bump_counter2); 4418 for (i = 0; i < 4; i++) { 4419 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4420 temp64 >>= 64 - ((i+1)*16); 4421 sw_stat->ring_full_cnt[i+4] += temp64; 4422 } 4423 } 4424 4425 val64 = readq(&bar0->txdma_int_status); 4426 /*check for pfc_err*/ 4427 if (val64 & TXDMA_PFC_INT) { 4428 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 4429 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 4430 PFC_PCIX_ERR, 4431 &bar0->pfc_err_reg, 4432 &sw_stat->pfc_err_cnt)) 4433 goto reset; 4434 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, 4435 &bar0->pfc_err_reg, 4436 &sw_stat->pfc_err_cnt); 4437 } 4438 4439 /*check for tda_err*/ 4440 if (val64 & TXDMA_TDA_INT) { 4441 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | 4442 TDA_SM0_ERR_ALARM | 4443 TDA_SM1_ERR_ALARM, 4444 &bar0->tda_err_reg, 4445 &sw_stat->tda_err_cnt)) 4446 goto reset; 4447 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, 4448 &bar0->tda_err_reg, 4449 &sw_stat->tda_err_cnt); 4450 } 4451 /*check for pcc_err*/ 4452 if (val64 & TXDMA_PCC_INT) { 4453 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 4454 PCC_N_SERR | PCC_6_COF_OV_ERR | 4455 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 4456 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 4457 PCC_TXB_ECC_DB_ERR, 4458 &bar0->pcc_err_reg, 4459 &sw_stat->pcc_err_cnt)) 4460 goto reset; 4461 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, 4462 &bar0->pcc_err_reg, 4463 &sw_stat->pcc_err_cnt); 4464 } 4465 4466 /*check for tti_err*/ 4467 if (val64 & TXDMA_TTI_INT) { 4468 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, 4469 &bar0->tti_err_reg, 4470 &sw_stat->tti_err_cnt)) 4471 goto reset; 4472 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, 4473 &bar0->tti_err_reg, 4474 &sw_stat->tti_err_cnt); 4475 } 4476 4477 /*check for lso_err*/ 4478 if (val64 & TXDMA_LSO_INT) { 4479 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 4480 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, 4481 &bar0->lso_err_reg, 4482 &sw_stat->lso_err_cnt)) 4483 goto reset; 4484 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 4485 &bar0->lso_err_reg, 4486 &sw_stat->lso_err_cnt); 4487 } 4488 4489 /*check for tpa_err*/ 4490 if (val64 & TXDMA_TPA_INT) { 4491 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, 4492 &bar0->tpa_err_reg, 4493 &sw_stat->tpa_err_cnt)) 4494 goto reset; 4495 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, 4496 &bar0->tpa_err_reg, 4497 &sw_stat->tpa_err_cnt); 4498 } 4499 4500 /*check for sm_err*/ 4501 if (val64 & TXDMA_SM_INT) { 4502 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, 4503 &bar0->sm_err_reg, 4504 &sw_stat->sm_err_cnt)) 4505 goto reset; 4506 } 4507 4508 val64 = readq(&bar0->mac_int_status); 4509 if (val64 & MAC_INT_STATUS_TMAC_INT) { 4510 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, 4511 &bar0->mac_tmac_err_reg, 4512 &sw_stat->mac_tmac_err_cnt)) 4513 goto reset; 4514 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 4515 TMAC_DESC_ECC_SG_ERR | 4516 TMAC_DESC_ECC_DB_ERR, 4517 &bar0->mac_tmac_err_reg, 4518 &sw_stat->mac_tmac_err_cnt); 4519 } 4520 4521 val64 = readq(&bar0->xgxs_int_status); 4522 if (val64 & XGXS_INT_STATUS_TXGXS) { 4523 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, 4524 &bar0->xgxs_txgxs_err_reg, 4525 &sw_stat->xgxs_txgxs_err_cnt)) 4526 goto reset; 4527 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 4528 &bar0->xgxs_txgxs_err_reg, 4529 &sw_stat->xgxs_txgxs_err_cnt); 4530 } 4531 4532 val64 = readq(&bar0->rxdma_int_status); 4533 if (val64 & RXDMA_INT_RC_INT_M) { 4534 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | 4535 RC_FTC_ECC_DB_ERR | 4536 RC_PRCn_SM_ERR_ALARM | 4537 RC_FTC_SM_ERR_ALARM, 4538 &bar0->rc_err_reg, 4539 &sw_stat->rc_err_cnt)) 4540 goto reset; 4541 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | 4542 RC_FTC_ECC_SG_ERR | 4543 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, 4544 &sw_stat->rc_err_cnt); 4545 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | 4546 PRC_PCI_AB_WR_Rn | 4547 PRC_PCI_AB_F_WR_Rn, 4548 &bar0->prc_pcix_err_reg, 4549 &sw_stat->prc_pcix_err_cnt)) 4550 goto reset; 4551 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | 4552 PRC_PCI_DP_WR_Rn | 4553 PRC_PCI_DP_F_WR_Rn, 4554 &bar0->prc_pcix_err_reg, 4555 &sw_stat->prc_pcix_err_cnt); 4556 } 4557 4558 if (val64 & RXDMA_INT_RPA_INT_M) { 4559 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, 4560 &bar0->rpa_err_reg, 4561 &sw_stat->rpa_err_cnt)) 4562 goto reset; 4563 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, 4564 &bar0->rpa_err_reg, 4565 &sw_stat->rpa_err_cnt); 4566 } 4567 4568 if (val64 & RXDMA_INT_RDA_INT_M) { 4569 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 4570 RDA_FRM_ECC_DB_N_AERR | 4571 RDA_SM1_ERR_ALARM | 4572 RDA_SM0_ERR_ALARM | 4573 RDA_RXD_ECC_DB_SERR, 4574 &bar0->rda_err_reg, 4575 &sw_stat->rda_err_cnt)) 4576 goto reset; 4577 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | 4578 RDA_FRM_ECC_SG_ERR | 4579 RDA_MISC_ERR | 4580 RDA_PCIX_ERR, 4581 &bar0->rda_err_reg, 4582 &sw_stat->rda_err_cnt); 4583 } 4584 4585 if (val64 & RXDMA_INT_RTI_INT_M) { 4586 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, 4587 &bar0->rti_err_reg, 4588 &sw_stat->rti_err_cnt)) 4589 goto reset; 4590 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 4591 &bar0->rti_err_reg, 4592 &sw_stat->rti_err_cnt); 4593 } 4594 4595 val64 = readq(&bar0->mac_int_status); 4596 if (val64 & MAC_INT_STATUS_RMAC_INT) { 4597 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, 4598 &bar0->mac_rmac_err_reg, 4599 &sw_stat->mac_rmac_err_cnt)) 4600 goto reset; 4601 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | 4602 RMAC_SINGLE_ECC_ERR | 4603 RMAC_DOUBLE_ECC_ERR, 4604 &bar0->mac_rmac_err_reg, 4605 &sw_stat->mac_rmac_err_cnt); 4606 } 4607 4608 val64 = readq(&bar0->xgxs_int_status); 4609 if (val64 & XGXS_INT_STATUS_RXGXS) { 4610 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, 4611 &bar0->xgxs_rxgxs_err_reg, 4612 &sw_stat->xgxs_rxgxs_err_cnt)) 4613 goto reset; 4614 } 4615 4616 val64 = readq(&bar0->mc_int_status); 4617 if (val64 & MC_INT_STATUS_MC_INT) { 4618 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, 4619 &bar0->mc_err_reg, 4620 &sw_stat->mc_err_cnt)) 4621 goto reset; 4622 4623 /* Handling Ecc errors */ 4624 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { 4625 writeq(val64, &bar0->mc_err_reg); 4626 if (val64 & MC_ERR_REG_ECC_ALL_DBL) { 4627 sw_stat->double_ecc_errs++; 4628 if (sp->device_type != XFRAME_II_DEVICE) { 4629 /* 4630 * Reset XframeI only if critical error 4631 */ 4632 if (val64 & 4633 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | 4634 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) 4635 goto reset; 4636 } 4637 } else 4638 sw_stat->single_ecc_errs++; 4639 } 4640 } 4641 return; 4642 4643 reset: 4644 s2io_stop_all_tx_queue(sp); 4645 schedule_work(&sp->rst_timer_task); 4646 sw_stat->soft_reset_cnt++; 4647 } 4648 4649 /** 4650 * s2io_isr - ISR handler of the device . 4651 * @irq: the irq of the device. 4652 * @dev_id: a void pointer to the dev structure of the NIC. 4653 * Description: This function is the ISR handler of the device. It 4654 * identifies the reason for the interrupt and calls the relevant 4655 * service routines. As a contongency measure, this ISR allocates the 4656 * recv buffers, if their numbers are below the panic value which is 4657 * presently set to 25% of the original number of rcv buffers allocated. 4658 * Return value: 4659 * IRQ_HANDLED: will be returned if IRQ was handled by this routine 4660 * IRQ_NONE: will be returned if interrupt is not from our device 4661 */ 4662 static irqreturn_t s2io_isr(int irq, void *dev_id) 4663 { 4664 struct net_device *dev = (struct net_device *)dev_id; 4665 struct s2io_nic *sp = netdev_priv(dev); 4666 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4667 int i; 4668 u64 reason = 0; 4669 struct mac_info *mac_control; 4670 struct config_param *config; 4671 4672 /* Pretend we handled any irq's from a disconnected card */ 4673 if (pci_channel_offline(sp->pdev)) 4674 return IRQ_NONE; 4675 4676 if (!is_s2io_card_up(sp)) 4677 return IRQ_NONE; 4678 4679 config = &sp->config; 4680 mac_control = &sp->mac_control; 4681 4682 /* 4683 * Identify the cause for interrupt and call the appropriate 4684 * interrupt handler. Causes for the interrupt could be; 4685 * 1. Rx of packet. 4686 * 2. Tx complete. 4687 * 3. Link down. 4688 */ 4689 reason = readq(&bar0->general_int_status); 4690 4691 if (unlikely(reason == S2IO_MINUS_ONE)) 4692 return IRQ_HANDLED; /* Nothing much can be done. Get out */ 4693 4694 if (reason & 4695 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { 4696 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4697 4698 if (config->napi) { 4699 if (reason & GEN_INTR_RXTRAFFIC) { 4700 napi_schedule(&sp->napi); 4701 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); 4702 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4703 readl(&bar0->rx_traffic_int); 4704 } 4705 } else { 4706 /* 4707 * rx_traffic_int reg is an R1 register, writing all 1's 4708 * will ensure that the actual interrupt causing bit 4709 * get's cleared and hence a read can be avoided. 4710 */ 4711 if (reason & GEN_INTR_RXTRAFFIC) 4712 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4713 4714 for (i = 0; i < config->rx_ring_num; i++) { 4715 struct ring_info *ring = &mac_control->rings[i]; 4716 4717 rx_intr_handler(ring, 0); 4718 } 4719 } 4720 4721 /* 4722 * tx_traffic_int reg is an R1 register, writing all 1's 4723 * will ensure that the actual interrupt causing bit get's 4724 * cleared and hence a read can be avoided. 4725 */ 4726 if (reason & GEN_INTR_TXTRAFFIC) 4727 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4728 4729 for (i = 0; i < config->tx_fifo_num; i++) 4730 tx_intr_handler(&mac_control->fifos[i]); 4731 4732 if (reason & GEN_INTR_TXPIC) 4733 s2io_txpic_intr_handle(sp); 4734 4735 /* 4736 * Reallocate the buffers from the interrupt handler itself. 4737 */ 4738 if (!config->napi) { 4739 for (i = 0; i < config->rx_ring_num; i++) { 4740 struct ring_info *ring = &mac_control->rings[i]; 4741 4742 s2io_chk_rx_buffers(sp, ring); 4743 } 4744 } 4745 writeq(sp->general_int_mask, &bar0->general_int_mask); 4746 readl(&bar0->general_int_status); 4747 4748 return IRQ_HANDLED; 4749 4750 } else if (!reason) { 4751 /* The interrupt was not raised by us */ 4752 return IRQ_NONE; 4753 } 4754 4755 return IRQ_HANDLED; 4756 } 4757 4758 /* 4759 * s2io_updt_stats - 4760 */ 4761 static void s2io_updt_stats(struct s2io_nic *sp) 4762 { 4763 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4764 u64 val64; 4765 int cnt = 0; 4766 4767 if (is_s2io_card_up(sp)) { 4768 /* Apprx 30us on a 133 MHz bus */ 4769 val64 = SET_UPDT_CLICKS(10) | 4770 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; 4771 writeq(val64, &bar0->stat_cfg); 4772 do { 4773 udelay(100); 4774 val64 = readq(&bar0->stat_cfg); 4775 if (!(val64 & s2BIT(0))) 4776 break; 4777 cnt++; 4778 if (cnt == 5) 4779 break; /* Updt failed */ 4780 } while (1); 4781 } 4782 } 4783 4784 /** 4785 * s2io_get_stats - Updates the device statistics structure. 4786 * @dev : pointer to the device structure. 4787 * Description: 4788 * This function updates the device statistics structure in the s2io_nic 4789 * structure and returns a pointer to the same. 4790 * Return value: 4791 * pointer to the updated net_device_stats structure. 4792 */ 4793 static struct net_device_stats *s2io_get_stats(struct net_device *dev) 4794 { 4795 struct s2io_nic *sp = netdev_priv(dev); 4796 struct mac_info *mac_control = &sp->mac_control; 4797 struct stat_block *stats = mac_control->stats_info; 4798 u64 delta; 4799 4800 /* Configure Stats for immediate updt */ 4801 s2io_updt_stats(sp); 4802 4803 /* A device reset will cause the on-adapter statistics to be zero'ed. 4804 * This can be done while running by changing the MTU. To prevent the 4805 * system from having the stats zero'ed, the driver keeps a copy of the 4806 * last update to the system (which is also zero'ed on reset). This 4807 * enables the driver to accurately know the delta between the last 4808 * update and the current update. 4809 */ 4810 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 4811 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; 4812 sp->stats.rx_packets += delta; 4813 dev->stats.rx_packets += delta; 4814 4815 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | 4816 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; 4817 sp->stats.tx_packets += delta; 4818 dev->stats.tx_packets += delta; 4819 4820 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 4821 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; 4822 sp->stats.rx_bytes += delta; 4823 dev->stats.rx_bytes += delta; 4824 4825 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 4826 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; 4827 sp->stats.tx_bytes += delta; 4828 dev->stats.tx_bytes += delta; 4829 4830 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; 4831 sp->stats.rx_errors += delta; 4832 dev->stats.rx_errors += delta; 4833 4834 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 4835 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; 4836 sp->stats.tx_errors += delta; 4837 dev->stats.tx_errors += delta; 4838 4839 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; 4840 sp->stats.rx_dropped += delta; 4841 dev->stats.rx_dropped += delta; 4842 4843 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; 4844 sp->stats.tx_dropped += delta; 4845 dev->stats.tx_dropped += delta; 4846 4847 /* The adapter MAC interprets pause frames as multicast packets, but 4848 * does not pass them up. This erroneously increases the multicast 4849 * packet count and needs to be deducted when the multicast frame count 4850 * is queried. 4851 */ 4852 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 4853 le32_to_cpu(stats->rmac_vld_mcst_frms); 4854 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); 4855 delta -= sp->stats.multicast; 4856 sp->stats.multicast += delta; 4857 dev->stats.multicast += delta; 4858 4859 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 4860 le32_to_cpu(stats->rmac_usized_frms)) + 4861 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; 4862 sp->stats.rx_length_errors += delta; 4863 dev->stats.rx_length_errors += delta; 4864 4865 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; 4866 sp->stats.rx_crc_errors += delta; 4867 dev->stats.rx_crc_errors += delta; 4868 4869 return &dev->stats; 4870 } 4871 4872 /** 4873 * s2io_set_multicast - entry point for multicast address enable/disable. 4874 * @dev : pointer to the device structure 4875 * @may_sleep: parameter indicates if sleeping when waiting for command 4876 * complete 4877 * Description: 4878 * This function is a driver entry point which gets called by the kernel 4879 * whenever multicast addresses must be enabled/disabled. This also gets 4880 * called to set/reset promiscuous mode. Depending on the deivce flag, we 4881 * determine, if multicast address must be enabled or if promiscuous mode 4882 * is to be disabled etc. 4883 * Return value: 4884 * void. 4885 */ 4886 static void s2io_set_multicast(struct net_device *dev, bool may_sleep) 4887 { 4888 int i, j, prev_cnt; 4889 struct netdev_hw_addr *ha; 4890 struct s2io_nic *sp = netdev_priv(dev); 4891 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4892 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 4893 0xfeffffffffffULL; 4894 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; 4895 void __iomem *add; 4896 struct config_param *config = &sp->config; 4897 4898 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { 4899 /* Enable all Multicast addresses */ 4900 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), 4901 &bar0->rmac_addr_data0_mem); 4902 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), 4903 &bar0->rmac_addr_data1_mem); 4904 val64 = RMAC_ADDR_CMD_MEM_WE | 4905 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4906 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); 4907 writeq(val64, &bar0->rmac_addr_cmd_mem); 4908 /* Wait till command completes */ 4909 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4910 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4911 S2IO_BIT_RESET, may_sleep); 4912 4913 sp->m_cast_flg = 1; 4914 sp->all_multi_pos = config->max_mc_addr - 1; 4915 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { 4916 /* Disable all Multicast addresses */ 4917 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4918 &bar0->rmac_addr_data0_mem); 4919 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), 4920 &bar0->rmac_addr_data1_mem); 4921 val64 = RMAC_ADDR_CMD_MEM_WE | 4922 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4923 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4924 writeq(val64, &bar0->rmac_addr_cmd_mem); 4925 /* Wait till command completes */ 4926 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4927 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4928 S2IO_BIT_RESET, may_sleep); 4929 4930 sp->m_cast_flg = 0; 4931 sp->all_multi_pos = 0; 4932 } 4933 4934 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { 4935 /* Put the NIC into promiscuous mode */ 4936 add = &bar0->mac_cfg; 4937 val64 = readq(&bar0->mac_cfg); 4938 val64 |= MAC_CFG_RMAC_PROM_ENABLE; 4939 4940 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4941 writel((u32)val64, add); 4942 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4943 writel((u32) (val64 >> 32), (add + 4)); 4944 4945 if (vlan_tag_strip != 1) { 4946 val64 = readq(&bar0->rx_pa_cfg); 4947 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 4948 writeq(val64, &bar0->rx_pa_cfg); 4949 sp->vlan_strip_flag = 0; 4950 } 4951 4952 val64 = readq(&bar0->mac_cfg); 4953 sp->promisc_flg = 1; 4954 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", 4955 dev->name); 4956 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { 4957 /* Remove the NIC from promiscuous mode */ 4958 add = &bar0->mac_cfg; 4959 val64 = readq(&bar0->mac_cfg); 4960 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; 4961 4962 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4963 writel((u32)val64, add); 4964 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4965 writel((u32) (val64 >> 32), (add + 4)); 4966 4967 if (vlan_tag_strip != 0) { 4968 val64 = readq(&bar0->rx_pa_cfg); 4969 val64 |= RX_PA_CFG_STRIP_VLAN_TAG; 4970 writeq(val64, &bar0->rx_pa_cfg); 4971 sp->vlan_strip_flag = 1; 4972 } 4973 4974 val64 = readq(&bar0->mac_cfg); 4975 sp->promisc_flg = 0; 4976 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); 4977 } 4978 4979 /* Update individual M_CAST address list */ 4980 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { 4981 if (netdev_mc_count(dev) > 4982 (config->max_mc_addr - config->max_mac_addr)) { 4983 DBG_PRINT(ERR_DBG, 4984 "%s: No more Rx filters can be added - " 4985 "please enable ALL_MULTI instead\n", 4986 dev->name); 4987 return; 4988 } 4989 4990 prev_cnt = sp->mc_addr_count; 4991 sp->mc_addr_count = netdev_mc_count(dev); 4992 4993 /* Clear out the previous list of Mc in the H/W. */ 4994 for (i = 0; i < prev_cnt; i++) { 4995 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4996 &bar0->rmac_addr_data0_mem); 4997 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 4998 &bar0->rmac_addr_data1_mem); 4999 val64 = RMAC_ADDR_CMD_MEM_WE | 5000 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5001 RMAC_ADDR_CMD_MEM_OFFSET 5002 (config->mc_start_offset + i); 5003 writeq(val64, &bar0->rmac_addr_cmd_mem); 5004 5005 /* Wait for command completes */ 5006 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5007 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5008 S2IO_BIT_RESET, may_sleep)) { 5009 DBG_PRINT(ERR_DBG, 5010 "%s: Adding Multicasts failed\n", 5011 dev->name); 5012 return; 5013 } 5014 } 5015 5016 /* Create the new Rx filter list and update the same in H/W. */ 5017 i = 0; 5018 netdev_for_each_mc_addr(ha, dev) { 5019 mac_addr = 0; 5020 for (j = 0; j < ETH_ALEN; j++) { 5021 mac_addr |= ha->addr[j]; 5022 mac_addr <<= 8; 5023 } 5024 mac_addr >>= 8; 5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), 5026 &bar0->rmac_addr_data0_mem); 5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5028 &bar0->rmac_addr_data1_mem); 5029 val64 = RMAC_ADDR_CMD_MEM_WE | 5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5031 RMAC_ADDR_CMD_MEM_OFFSET 5032 (i + config->mc_start_offset); 5033 writeq(val64, &bar0->rmac_addr_cmd_mem); 5034 5035 /* Wait for command completes */ 5036 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5037 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5038 S2IO_BIT_RESET, may_sleep)) { 5039 DBG_PRINT(ERR_DBG, 5040 "%s: Adding Multicasts failed\n", 5041 dev->name); 5042 return; 5043 } 5044 i++; 5045 } 5046 } 5047 } 5048 5049 /* NDO wrapper for s2io_set_multicast */ 5050 static void s2io_ndo_set_multicast(struct net_device *dev) 5051 { 5052 s2io_set_multicast(dev, false); 5053 } 5054 5055 /* read from CAM unicast & multicast addresses and store it in 5056 * def_mac_addr structure 5057 */ 5058 static void do_s2io_store_unicast_mc(struct s2io_nic *sp) 5059 { 5060 int offset; 5061 u64 mac_addr = 0x0; 5062 struct config_param *config = &sp->config; 5063 5064 /* store unicast & multicast mac addresses */ 5065 for (offset = 0; offset < config->max_mc_addr; offset++) { 5066 mac_addr = do_s2io_read_unicast_mc(sp, offset); 5067 /* if read fails disable the entry */ 5068 if (mac_addr == FAILURE) 5069 mac_addr = S2IO_DISABLE_MAC_ENTRY; 5070 do_s2io_copy_mac_addr(sp, offset, mac_addr); 5071 } 5072 } 5073 5074 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ 5075 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) 5076 { 5077 int offset; 5078 struct config_param *config = &sp->config; 5079 /* restore unicast mac address */ 5080 for (offset = 0; offset < config->max_mac_addr; offset++) 5081 do_s2io_prog_unicast(sp->dev, 5082 sp->def_mac_addr[offset].mac_addr); 5083 5084 /* restore multicast mac address */ 5085 for (offset = config->mc_start_offset; 5086 offset < config->max_mc_addr; offset++) 5087 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); 5088 } 5089 5090 /* add a multicast MAC address to CAM */ 5091 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) 5092 { 5093 int i; 5094 u64 mac_addr; 5095 struct config_param *config = &sp->config; 5096 5097 mac_addr = ether_addr_to_u64(addr); 5098 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) 5099 return SUCCESS; 5100 5101 /* check if the multicast mac already preset in CAM */ 5102 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { 5103 u64 tmp64; 5104 tmp64 = do_s2io_read_unicast_mc(sp, i); 5105 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5106 break; 5107 5108 if (tmp64 == mac_addr) 5109 return SUCCESS; 5110 } 5111 if (i == config->max_mc_addr) { 5112 DBG_PRINT(ERR_DBG, 5113 "CAM full no space left for multicast MAC\n"); 5114 return FAILURE; 5115 } 5116 /* Update the internal structure with this new mac address */ 5117 do_s2io_copy_mac_addr(sp, i, mac_addr); 5118 5119 return do_s2io_add_mac(sp, mac_addr, i); 5120 } 5121 5122 /* add MAC address to CAM */ 5123 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) 5124 { 5125 u64 val64; 5126 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5127 5128 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), 5129 &bar0->rmac_addr_data0_mem); 5130 5131 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5132 RMAC_ADDR_CMD_MEM_OFFSET(off); 5133 writeq(val64, &bar0->rmac_addr_cmd_mem); 5134 5135 /* Wait till command completes */ 5136 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5137 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5138 S2IO_BIT_RESET, true)) { 5139 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); 5140 return FAILURE; 5141 } 5142 return SUCCESS; 5143 } 5144 /* deletes a specified unicast/multicast mac entry from CAM */ 5145 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) 5146 { 5147 int offset; 5148 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; 5149 struct config_param *config = &sp->config; 5150 5151 for (offset = 1; 5152 offset < config->max_mc_addr; offset++) { 5153 tmp64 = do_s2io_read_unicast_mc(sp, offset); 5154 if (tmp64 == addr) { 5155 /* disable the entry by writing 0xffffffffffffULL */ 5156 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) 5157 return FAILURE; 5158 /* store the new mac list from CAM */ 5159 do_s2io_store_unicast_mc(sp); 5160 return SUCCESS; 5161 } 5162 } 5163 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", 5164 (unsigned long long)addr); 5165 return FAILURE; 5166 } 5167 5168 /* read mac entries from CAM */ 5169 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) 5170 { 5171 u64 tmp64, val64; 5172 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5173 5174 /* read mac addr */ 5175 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5176 RMAC_ADDR_CMD_MEM_OFFSET(offset); 5177 writeq(val64, &bar0->rmac_addr_cmd_mem); 5178 5179 /* Wait till command completes */ 5180 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5181 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5182 S2IO_BIT_RESET, true)) { 5183 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); 5184 return FAILURE; 5185 } 5186 tmp64 = readq(&bar0->rmac_addr_data0_mem); 5187 5188 return tmp64 >> 16; 5189 } 5190 5191 /* 5192 * s2io_set_mac_addr - driver entry point 5193 */ 5194 5195 static int s2io_set_mac_addr(struct net_device *dev, void *p) 5196 { 5197 struct sockaddr *addr = p; 5198 5199 if (!is_valid_ether_addr(addr->sa_data)) 5200 return -EADDRNOTAVAIL; 5201 5202 eth_hw_addr_set(dev, addr->sa_data); 5203 5204 /* store the MAC address in CAM */ 5205 return do_s2io_prog_unicast(dev, dev->dev_addr); 5206 } 5207 /** 5208 * do_s2io_prog_unicast - Programs the Xframe mac address 5209 * @dev : pointer to the device structure. 5210 * @addr: a uchar pointer to the new mac address which is to be set. 5211 * Description : This procedure will program the Xframe to receive 5212 * frames with new Mac Address 5213 * Return value: SUCCESS on success and an appropriate (-)ve integer 5214 * as defined in errno.h file on failure. 5215 */ 5216 5217 static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr) 5218 { 5219 struct s2io_nic *sp = netdev_priv(dev); 5220 register u64 mac_addr, perm_addr; 5221 int i; 5222 u64 tmp64; 5223 struct config_param *config = &sp->config; 5224 5225 /* 5226 * Set the new MAC address as the new unicast filter and reflect this 5227 * change on the device address registered with the OS. It will be 5228 * at offset 0. 5229 */ 5230 mac_addr = ether_addr_to_u64(addr); 5231 perm_addr = ether_addr_to_u64(sp->def_mac_addr[0].mac_addr); 5232 5233 /* check if the dev_addr is different than perm_addr */ 5234 if (mac_addr == perm_addr) 5235 return SUCCESS; 5236 5237 /* check if the mac already preset in CAM */ 5238 for (i = 1; i < config->max_mac_addr; i++) { 5239 tmp64 = do_s2io_read_unicast_mc(sp, i); 5240 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5241 break; 5242 5243 if (tmp64 == mac_addr) { 5244 DBG_PRINT(INFO_DBG, 5245 "MAC addr:0x%llx already present in CAM\n", 5246 (unsigned long long)mac_addr); 5247 return SUCCESS; 5248 } 5249 } 5250 if (i == config->max_mac_addr) { 5251 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); 5252 return FAILURE; 5253 } 5254 /* Update the internal structure with this new mac address */ 5255 do_s2io_copy_mac_addr(sp, i, mac_addr); 5256 5257 return do_s2io_add_mac(sp, mac_addr, i); 5258 } 5259 5260 /** 5261 * s2io_ethtool_set_link_ksettings - Sets different link parameters. 5262 * @dev : pointer to netdev 5263 * @cmd: pointer to the structure with parameters given by ethtool to set 5264 * link information. 5265 * Description: 5266 * The function sets different link parameters provided by the user onto 5267 * the NIC. 5268 * Return value: 5269 * 0 on success. 5270 */ 5271 5272 static int 5273 s2io_ethtool_set_link_ksettings(struct net_device *dev, 5274 const struct ethtool_link_ksettings *cmd) 5275 { 5276 struct s2io_nic *sp = netdev_priv(dev); 5277 if ((cmd->base.autoneg == AUTONEG_ENABLE) || 5278 (cmd->base.speed != SPEED_10000) || 5279 (cmd->base.duplex != DUPLEX_FULL)) 5280 return -EINVAL; 5281 else { 5282 s2io_close(sp->dev); 5283 s2io_open(sp->dev); 5284 } 5285 5286 return 0; 5287 } 5288 5289 /** 5290 * s2io_ethtool_get_link_ksettings - Return link specific information. 5291 * @dev: pointer to netdev 5292 * @cmd : pointer to the structure with parameters given by ethtool 5293 * to return link information. 5294 * Description: 5295 * Returns link specific information like speed, duplex etc.. to ethtool. 5296 * Return value : 5297 * return 0 on success. 5298 */ 5299 5300 static int 5301 s2io_ethtool_get_link_ksettings(struct net_device *dev, 5302 struct ethtool_link_ksettings *cmd) 5303 { 5304 struct s2io_nic *sp = netdev_priv(dev); 5305 5306 ethtool_link_ksettings_zero_link_mode(cmd, supported); 5307 ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full); 5308 ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE); 5309 5310 ethtool_link_ksettings_zero_link_mode(cmd, advertising); 5311 ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full); 5312 ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE); 5313 5314 cmd->base.port = PORT_FIBRE; 5315 5316 if (netif_carrier_ok(sp->dev)) { 5317 cmd->base.speed = SPEED_10000; 5318 cmd->base.duplex = DUPLEX_FULL; 5319 } else { 5320 cmd->base.speed = SPEED_UNKNOWN; 5321 cmd->base.duplex = DUPLEX_UNKNOWN; 5322 } 5323 5324 cmd->base.autoneg = AUTONEG_DISABLE; 5325 return 0; 5326 } 5327 5328 /** 5329 * s2io_ethtool_gdrvinfo - Returns driver specific information. 5330 * @dev: pointer to netdev 5331 * @info : pointer to the structure with parameters given by ethtool to 5332 * return driver information. 5333 * Description: 5334 * Returns driver specefic information like name, version etc.. to ethtool. 5335 * Return value: 5336 * void 5337 */ 5338 5339 static void s2io_ethtool_gdrvinfo(struct net_device *dev, 5340 struct ethtool_drvinfo *info) 5341 { 5342 struct s2io_nic *sp = netdev_priv(dev); 5343 5344 strscpy(info->driver, s2io_driver_name, sizeof(info->driver)); 5345 strscpy(info->version, s2io_driver_version, sizeof(info->version)); 5346 strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); 5347 } 5348 5349 /** 5350 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. 5351 * @dev: pointer to netdev 5352 * @regs : pointer to the structure with parameters given by ethtool for 5353 * dumping the registers. 5354 * @space: The input argument into which all the registers are dumped. 5355 * Description: 5356 * Dumps the entire register space of xFrame NIC into the user given 5357 * buffer area. 5358 * Return value : 5359 * void . 5360 */ 5361 5362 static void s2io_ethtool_gregs(struct net_device *dev, 5363 struct ethtool_regs *regs, void *space) 5364 { 5365 int i; 5366 u64 reg; 5367 u8 *reg_space = (u8 *)space; 5368 struct s2io_nic *sp = netdev_priv(dev); 5369 5370 regs->len = XENA_REG_SPACE; 5371 regs->version = sp->pdev->subsystem_device; 5372 5373 for (i = 0; i < regs->len; i += 8) { 5374 reg = readq(sp->bar0 + i); 5375 memcpy((reg_space + i), ®, 8); 5376 } 5377 } 5378 5379 /* 5380 * s2io_set_led - control NIC led 5381 */ 5382 static void s2io_set_led(struct s2io_nic *sp, bool on) 5383 { 5384 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5385 u16 subid = sp->pdev->subsystem_device; 5386 u64 val64; 5387 5388 if ((sp->device_type == XFRAME_II_DEVICE) || 5389 ((subid & 0xFF) >= 0x07)) { 5390 val64 = readq(&bar0->gpio_control); 5391 if (on) 5392 val64 |= GPIO_CTRL_GPIO_0; 5393 else 5394 val64 &= ~GPIO_CTRL_GPIO_0; 5395 5396 writeq(val64, &bar0->gpio_control); 5397 } else { 5398 val64 = readq(&bar0->adapter_control); 5399 if (on) 5400 val64 |= ADAPTER_LED_ON; 5401 else 5402 val64 &= ~ADAPTER_LED_ON; 5403 5404 writeq(val64, &bar0->adapter_control); 5405 } 5406 5407 } 5408 5409 /** 5410 * s2io_ethtool_set_led - To physically identify the nic on the system. 5411 * @dev : network device 5412 * @state: led setting 5413 * 5414 * Description: Used to physically identify the NIC on the system. 5415 * The Link LED will blink for a time specified by the user for 5416 * identification. 5417 * NOTE: The Link has to be Up to be able to blink the LED. Hence 5418 * identification is possible only if it's link is up. 5419 */ 5420 5421 static int s2io_ethtool_set_led(struct net_device *dev, 5422 enum ethtool_phys_id_state state) 5423 { 5424 struct s2io_nic *sp = netdev_priv(dev); 5425 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5426 u16 subid = sp->pdev->subsystem_device; 5427 5428 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { 5429 u64 val64 = readq(&bar0->adapter_control); 5430 if (!(val64 & ADAPTER_CNTL_EN)) { 5431 pr_err("Adapter Link down, cannot blink LED\n"); 5432 return -EAGAIN; 5433 } 5434 } 5435 5436 switch (state) { 5437 case ETHTOOL_ID_ACTIVE: 5438 sp->adapt_ctrl_org = readq(&bar0->gpio_control); 5439 return 1; /* cycle on/off once per second */ 5440 5441 case ETHTOOL_ID_ON: 5442 s2io_set_led(sp, true); 5443 break; 5444 5445 case ETHTOOL_ID_OFF: 5446 s2io_set_led(sp, false); 5447 break; 5448 5449 case ETHTOOL_ID_INACTIVE: 5450 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) 5451 writeq(sp->adapt_ctrl_org, &bar0->gpio_control); 5452 } 5453 5454 return 0; 5455 } 5456 5457 static void 5458 s2io_ethtool_gringparam(struct net_device *dev, 5459 struct ethtool_ringparam *ering, 5460 struct kernel_ethtool_ringparam *kernel_ering, 5461 struct netlink_ext_ack *extack) 5462 { 5463 struct s2io_nic *sp = netdev_priv(dev); 5464 int i, tx_desc_count = 0, rx_desc_count = 0; 5465 5466 if (sp->rxd_mode == RXD_MODE_1) { 5467 ering->rx_max_pending = MAX_RX_DESC_1; 5468 ering->rx_jumbo_max_pending = MAX_RX_DESC_1; 5469 } else { 5470 ering->rx_max_pending = MAX_RX_DESC_2; 5471 ering->rx_jumbo_max_pending = MAX_RX_DESC_2; 5472 } 5473 5474 ering->tx_max_pending = MAX_TX_DESC; 5475 5476 for (i = 0; i < sp->config.rx_ring_num; i++) 5477 rx_desc_count += sp->config.rx_cfg[i].num_rxd; 5478 ering->rx_pending = rx_desc_count; 5479 ering->rx_jumbo_pending = rx_desc_count; 5480 5481 for (i = 0; i < sp->config.tx_fifo_num; i++) 5482 tx_desc_count += sp->config.tx_cfg[i].fifo_len; 5483 ering->tx_pending = tx_desc_count; 5484 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); 5485 } 5486 5487 /** 5488 * s2io_ethtool_getpause_data -Pause frame generation and reception. 5489 * @dev: pointer to netdev 5490 * @ep : pointer to the structure with pause parameters given by ethtool. 5491 * Description: 5492 * Returns the Pause frame generation and reception capability of the NIC. 5493 * Return value: 5494 * void 5495 */ 5496 static void s2io_ethtool_getpause_data(struct net_device *dev, 5497 struct ethtool_pauseparam *ep) 5498 { 5499 u64 val64; 5500 struct s2io_nic *sp = netdev_priv(dev); 5501 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5502 5503 val64 = readq(&bar0->rmac_pause_cfg); 5504 if (val64 & RMAC_PAUSE_GEN_ENABLE) 5505 ep->tx_pause = true; 5506 if (val64 & RMAC_PAUSE_RX_ENABLE) 5507 ep->rx_pause = true; 5508 ep->autoneg = false; 5509 } 5510 5511 /** 5512 * s2io_ethtool_setpause_data - set/reset pause frame generation. 5513 * @dev: pointer to netdev 5514 * @ep : pointer to the structure with pause parameters given by ethtool. 5515 * Description: 5516 * It can be used to set or reset Pause frame generation or reception 5517 * support of the NIC. 5518 * Return value: 5519 * int, returns 0 on Success 5520 */ 5521 5522 static int s2io_ethtool_setpause_data(struct net_device *dev, 5523 struct ethtool_pauseparam *ep) 5524 { 5525 u64 val64; 5526 struct s2io_nic *sp = netdev_priv(dev); 5527 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5528 5529 val64 = readq(&bar0->rmac_pause_cfg); 5530 if (ep->tx_pause) 5531 val64 |= RMAC_PAUSE_GEN_ENABLE; 5532 else 5533 val64 &= ~RMAC_PAUSE_GEN_ENABLE; 5534 if (ep->rx_pause) 5535 val64 |= RMAC_PAUSE_RX_ENABLE; 5536 else 5537 val64 &= ~RMAC_PAUSE_RX_ENABLE; 5538 writeq(val64, &bar0->rmac_pause_cfg); 5539 return 0; 5540 } 5541 5542 #define S2IO_DEV_ID 5 5543 /** 5544 * read_eeprom - reads 4 bytes of data from user given offset. 5545 * @sp : private member of the device structure, which is a pointer to the 5546 * s2io_nic structure. 5547 * @off : offset at which the data must be written 5548 * @data : Its an output parameter where the data read at the given 5549 * offset is stored. 5550 * Description: 5551 * Will read 4 bytes of data from the user given offset and return the 5552 * read data. 5553 * NOTE: Will allow to read only part of the EEPROM visible through the 5554 * I2C bus. 5555 * Return value: 5556 * -1 on failure and 0 on success. 5557 */ 5558 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) 5559 { 5560 int ret = -1; 5561 u32 exit_cnt = 0; 5562 u64 val64; 5563 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5564 5565 if (sp->device_type == XFRAME_I_DEVICE) { 5566 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5567 I2C_CONTROL_ADDR(off) | 5568 I2C_CONTROL_BYTE_CNT(0x3) | 5569 I2C_CONTROL_READ | 5570 I2C_CONTROL_CNTL_START; 5571 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5572 5573 while (exit_cnt < 5) { 5574 val64 = readq(&bar0->i2c_control); 5575 if (I2C_CONTROL_CNTL_END(val64)) { 5576 *data = I2C_CONTROL_GET_DATA(val64); 5577 ret = 0; 5578 break; 5579 } 5580 msleep(50); 5581 exit_cnt++; 5582 } 5583 } 5584 5585 if (sp->device_type == XFRAME_II_DEVICE) { 5586 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5587 SPI_CONTROL_BYTECNT(0x3) | 5588 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); 5589 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5590 val64 |= SPI_CONTROL_REQ; 5591 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5592 while (exit_cnt < 5) { 5593 val64 = readq(&bar0->spi_control); 5594 if (val64 & SPI_CONTROL_NACK) { 5595 ret = 1; 5596 break; 5597 } else if (val64 & SPI_CONTROL_DONE) { 5598 *data = readq(&bar0->spi_data); 5599 *data &= 0xffffff; 5600 ret = 0; 5601 break; 5602 } 5603 msleep(50); 5604 exit_cnt++; 5605 } 5606 } 5607 return ret; 5608 } 5609 5610 /** 5611 * write_eeprom - actually writes the relevant part of the data value. 5612 * @sp : private member of the device structure, which is a pointer to the 5613 * s2io_nic structure. 5614 * @off : offset at which the data must be written 5615 * @data : The data that is to be written 5616 * @cnt : Number of bytes of the data that are actually to be written into 5617 * the Eeprom. (max of 3) 5618 * Description: 5619 * Actually writes the relevant part of the data value into the Eeprom 5620 * through the I2C bus. 5621 * Return value: 5622 * 0 on success, -1 on failure. 5623 */ 5624 5625 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) 5626 { 5627 int exit_cnt = 0, ret = -1; 5628 u64 val64; 5629 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5630 5631 if (sp->device_type == XFRAME_I_DEVICE) { 5632 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5633 I2C_CONTROL_ADDR(off) | 5634 I2C_CONTROL_BYTE_CNT(cnt) | 5635 I2C_CONTROL_SET_DATA((u32)data) | 5636 I2C_CONTROL_CNTL_START; 5637 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5638 5639 while (exit_cnt < 5) { 5640 val64 = readq(&bar0->i2c_control); 5641 if (I2C_CONTROL_CNTL_END(val64)) { 5642 if (!(val64 & I2C_CONTROL_NACK)) 5643 ret = 0; 5644 break; 5645 } 5646 msleep(50); 5647 exit_cnt++; 5648 } 5649 } 5650 5651 if (sp->device_type == XFRAME_II_DEVICE) { 5652 int write_cnt = (cnt == 8) ? 0 : cnt; 5653 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); 5654 5655 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5656 SPI_CONTROL_BYTECNT(write_cnt) | 5657 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); 5658 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5659 val64 |= SPI_CONTROL_REQ; 5660 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5661 while (exit_cnt < 5) { 5662 val64 = readq(&bar0->spi_control); 5663 if (val64 & SPI_CONTROL_NACK) { 5664 ret = 1; 5665 break; 5666 } else if (val64 & SPI_CONTROL_DONE) { 5667 ret = 0; 5668 break; 5669 } 5670 msleep(50); 5671 exit_cnt++; 5672 } 5673 } 5674 return ret; 5675 } 5676 static void s2io_vpd_read(struct s2io_nic *nic) 5677 { 5678 u8 *vpd_data; 5679 u8 data; 5680 int i = 0, cnt, len, fail = 0; 5681 int vpd_addr = 0x80; 5682 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; 5683 5684 if (nic->device_type == XFRAME_II_DEVICE) { 5685 strcpy(nic->product_name, "Xframe II 10GbE network adapter"); 5686 vpd_addr = 0x80; 5687 } else { 5688 strcpy(nic->product_name, "Xframe I 10GbE network adapter"); 5689 vpd_addr = 0x50; 5690 } 5691 strcpy(nic->serial_num, "NOT AVAILABLE"); 5692 5693 vpd_data = kmalloc(256, GFP_KERNEL); 5694 if (!vpd_data) { 5695 swstats->mem_alloc_fail_cnt++; 5696 return; 5697 } 5698 swstats->mem_allocated += 256; 5699 5700 for (i = 0; i < 256; i += 4) { 5701 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); 5702 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); 5703 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); 5704 for (cnt = 0; cnt < 5; cnt++) { 5705 msleep(2); 5706 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); 5707 if (data == 0x80) 5708 break; 5709 } 5710 if (cnt >= 5) { 5711 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); 5712 fail = 1; 5713 break; 5714 } 5715 pci_read_config_dword(nic->pdev, (vpd_addr + 4), 5716 (u32 *)&vpd_data[i]); 5717 } 5718 5719 if (!fail) { 5720 /* read serial number of adapter */ 5721 for (cnt = 0; cnt < 252; cnt++) { 5722 if ((vpd_data[cnt] == 'S') && 5723 (vpd_data[cnt+1] == 'N')) { 5724 len = vpd_data[cnt+2]; 5725 if (len < min(VPD_STRING_LEN, 256-cnt-2)) { 5726 memcpy(nic->serial_num, 5727 &vpd_data[cnt + 3], 5728 len); 5729 memset(nic->serial_num+len, 5730 0, 5731 VPD_STRING_LEN-len); 5732 break; 5733 } 5734 } 5735 } 5736 } 5737 5738 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { 5739 len = vpd_data[1]; 5740 memcpy(nic->product_name, &vpd_data[3], len); 5741 nic->product_name[len] = 0; 5742 } 5743 kfree(vpd_data); 5744 swstats->mem_freed += 256; 5745 } 5746 5747 /** 5748 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5749 * @dev: pointer to netdev 5750 * @eeprom : pointer to the user level structure provided by ethtool, 5751 * containing all relevant information. 5752 * @data_buf : user defined value to be written into Eeprom. 5753 * Description: Reads the values stored in the Eeprom at given offset 5754 * for a given length. Stores these values int the input argument data 5755 * buffer 'data_buf' and returns these to the caller (ethtool.) 5756 * Return value: 5757 * int 0 on success 5758 */ 5759 5760 static int s2io_ethtool_geeprom(struct net_device *dev, 5761 struct ethtool_eeprom *eeprom, u8 * data_buf) 5762 { 5763 u32 i, valid; 5764 u64 data; 5765 struct s2io_nic *sp = netdev_priv(dev); 5766 5767 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); 5768 5769 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) 5770 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; 5771 5772 for (i = 0; i < eeprom->len; i += 4) { 5773 if (read_eeprom(sp, (eeprom->offset + i), &data)) { 5774 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); 5775 return -EFAULT; 5776 } 5777 valid = INV(data); 5778 memcpy((data_buf + i), &valid, 4); 5779 } 5780 return 0; 5781 } 5782 5783 /** 5784 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom 5785 * @dev: pointer to netdev 5786 * @eeprom : pointer to the user level structure provided by ethtool, 5787 * containing all relevant information. 5788 * @data_buf : user defined value to be written into Eeprom. 5789 * Description: 5790 * Tries to write the user provided value in the Eeprom, at the offset 5791 * given by the user. 5792 * Return value: 5793 * 0 on success, -EFAULT on failure. 5794 */ 5795 5796 static int s2io_ethtool_seeprom(struct net_device *dev, 5797 struct ethtool_eeprom *eeprom, 5798 u8 *data_buf) 5799 { 5800 int len = eeprom->len, cnt = 0; 5801 u64 valid = 0, data; 5802 struct s2io_nic *sp = netdev_priv(dev); 5803 5804 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { 5805 DBG_PRINT(ERR_DBG, 5806 "ETHTOOL_WRITE_EEPROM Err: " 5807 "Magic value is wrong, it is 0x%x should be 0x%x\n", 5808 (sp->pdev->vendor | (sp->pdev->device << 16)), 5809 eeprom->magic); 5810 return -EFAULT; 5811 } 5812 5813 while (len) { 5814 data = (u32)data_buf[cnt] & 0x000000FF; 5815 if (data) 5816 valid = (u32)(data << 24); 5817 else 5818 valid = data; 5819 5820 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { 5821 DBG_PRINT(ERR_DBG, 5822 "ETHTOOL_WRITE_EEPROM Err: " 5823 "Cannot write into the specified offset\n"); 5824 return -EFAULT; 5825 } 5826 cnt++; 5827 len--; 5828 } 5829 5830 return 0; 5831 } 5832 5833 /** 5834 * s2io_register_test - reads and writes into all clock domains. 5835 * @sp : private member of the device structure, which is a pointer to the 5836 * s2io_nic structure. 5837 * @data : variable that returns the result of each of the test conducted b 5838 * by the driver. 5839 * Description: 5840 * Read and write into all clock domains. The NIC has 3 clock domains, 5841 * see that registers in all the three regions are accessible. 5842 * Return value: 5843 * 0 on success. 5844 */ 5845 5846 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) 5847 { 5848 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5849 u64 val64 = 0, exp_val; 5850 int fail = 0; 5851 5852 val64 = readq(&bar0->pif_rd_swapper_fb); 5853 if (val64 != 0x123456789abcdefULL) { 5854 fail = 1; 5855 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); 5856 } 5857 5858 val64 = readq(&bar0->rmac_pause_cfg); 5859 if (val64 != 0xc000ffff00000000ULL) { 5860 fail = 1; 5861 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); 5862 } 5863 5864 val64 = readq(&bar0->rx_queue_cfg); 5865 if (sp->device_type == XFRAME_II_DEVICE) 5866 exp_val = 0x0404040404040404ULL; 5867 else 5868 exp_val = 0x0808080808080808ULL; 5869 if (val64 != exp_val) { 5870 fail = 1; 5871 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); 5872 } 5873 5874 val64 = readq(&bar0->xgxs_efifo_cfg); 5875 if (val64 != 0x000000001923141EULL) { 5876 fail = 1; 5877 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); 5878 } 5879 5880 val64 = 0x5A5A5A5A5A5A5A5AULL; 5881 writeq(val64, &bar0->xmsi_data); 5882 val64 = readq(&bar0->xmsi_data); 5883 if (val64 != 0x5A5A5A5A5A5A5A5AULL) { 5884 fail = 1; 5885 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); 5886 } 5887 5888 val64 = 0xA5A5A5A5A5A5A5A5ULL; 5889 writeq(val64, &bar0->xmsi_data); 5890 val64 = readq(&bar0->xmsi_data); 5891 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { 5892 fail = 1; 5893 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); 5894 } 5895 5896 *data = fail; 5897 return fail; 5898 } 5899 5900 /** 5901 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 5902 * @sp : private member of the device structure, which is a pointer to the 5903 * s2io_nic structure. 5904 * @data:variable that returns the result of each of the test conducted by 5905 * the driver. 5906 * Description: 5907 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 5908 * register. 5909 * Return value: 5910 * 0 on success. 5911 */ 5912 5913 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) 5914 { 5915 int fail = 0; 5916 u64 ret_data, org_4F0, org_7F0; 5917 u8 saved_4F0 = 0, saved_7F0 = 0; 5918 struct net_device *dev = sp->dev; 5919 5920 /* Test Write Error at offset 0 */ 5921 /* Note that SPI interface allows write access to all areas 5922 * of EEPROM. Hence doing all negative testing only for Xframe I. 5923 */ 5924 if (sp->device_type == XFRAME_I_DEVICE) 5925 if (!write_eeprom(sp, 0, 0, 3)) 5926 fail = 1; 5927 5928 /* Save current values at offsets 0x4F0 and 0x7F0 */ 5929 if (!read_eeprom(sp, 0x4F0, &org_4F0)) 5930 saved_4F0 = 1; 5931 if (!read_eeprom(sp, 0x7F0, &org_7F0)) 5932 saved_7F0 = 1; 5933 5934 /* Test Write at offset 4f0 */ 5935 if (write_eeprom(sp, 0x4F0, 0x012345, 3)) 5936 fail = 1; 5937 if (read_eeprom(sp, 0x4F0, &ret_data)) 5938 fail = 1; 5939 5940 if (ret_data != 0x012345) { 5941 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " 5942 "Data written %llx Data read %llx\n", 5943 dev->name, (unsigned long long)0x12345, 5944 (unsigned long long)ret_data); 5945 fail = 1; 5946 } 5947 5948 /* Reset the EEPROM data go FFFF */ 5949 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); 5950 5951 /* Test Write Request Error at offset 0x7c */ 5952 if (sp->device_type == XFRAME_I_DEVICE) 5953 if (!write_eeprom(sp, 0x07C, 0, 3)) 5954 fail = 1; 5955 5956 /* Test Write Request at offset 0x7f0 */ 5957 if (write_eeprom(sp, 0x7F0, 0x012345, 3)) 5958 fail = 1; 5959 if (read_eeprom(sp, 0x7F0, &ret_data)) 5960 fail = 1; 5961 5962 if (ret_data != 0x012345) { 5963 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " 5964 "Data written %llx Data read %llx\n", 5965 dev->name, (unsigned long long)0x12345, 5966 (unsigned long long)ret_data); 5967 fail = 1; 5968 } 5969 5970 /* Reset the EEPROM data go FFFF */ 5971 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); 5972 5973 if (sp->device_type == XFRAME_I_DEVICE) { 5974 /* Test Write Error at offset 0x80 */ 5975 if (!write_eeprom(sp, 0x080, 0, 3)) 5976 fail = 1; 5977 5978 /* Test Write Error at offset 0xfc */ 5979 if (!write_eeprom(sp, 0x0FC, 0, 3)) 5980 fail = 1; 5981 5982 /* Test Write Error at offset 0x100 */ 5983 if (!write_eeprom(sp, 0x100, 0, 3)) 5984 fail = 1; 5985 5986 /* Test Write Error at offset 4ec */ 5987 if (!write_eeprom(sp, 0x4EC, 0, 3)) 5988 fail = 1; 5989 } 5990 5991 /* Restore values at offsets 0x4F0 and 0x7F0 */ 5992 if (saved_4F0) 5993 write_eeprom(sp, 0x4F0, org_4F0, 3); 5994 if (saved_7F0) 5995 write_eeprom(sp, 0x7F0, org_7F0, 3); 5996 5997 *data = fail; 5998 return fail; 5999 } 6000 6001 /** 6002 * s2io_bist_test - invokes the MemBist test of the card . 6003 * @sp : private member of the device structure, which is a pointer to the 6004 * s2io_nic structure. 6005 * @data:variable that returns the result of each of the test conducted by 6006 * the driver. 6007 * Description: 6008 * This invokes the MemBist test of the card. We give around 6009 * 2 secs time for the Test to complete. If it's still not complete 6010 * within this peiod, we consider that the test failed. 6011 * Return value: 6012 * 0 on success and -1 on failure. 6013 */ 6014 6015 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) 6016 { 6017 u8 bist = 0; 6018 int cnt = 0, ret = -1; 6019 6020 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6021 bist |= PCI_BIST_START; 6022 pci_write_config_word(sp->pdev, PCI_BIST, bist); 6023 6024 while (cnt < 20) { 6025 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6026 if (!(bist & PCI_BIST_START)) { 6027 *data = (bist & PCI_BIST_CODE_MASK); 6028 ret = 0; 6029 break; 6030 } 6031 msleep(100); 6032 cnt++; 6033 } 6034 6035 return ret; 6036 } 6037 6038 /** 6039 * s2io_link_test - verifies the link state of the nic 6040 * @sp: private member of the device structure, which is a pointer to the 6041 * s2io_nic structure. 6042 * @data: variable that returns the result of each of the test conducted by 6043 * the driver. 6044 * Description: 6045 * The function verifies the link state of the NIC and updates the input 6046 * argument 'data' appropriately. 6047 * Return value: 6048 * 0 on success. 6049 */ 6050 6051 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) 6052 { 6053 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6054 u64 val64; 6055 6056 val64 = readq(&bar0->adapter_status); 6057 if (!(LINK_IS_UP(val64))) 6058 *data = 1; 6059 else 6060 *data = 0; 6061 6062 return *data; 6063 } 6064 6065 /** 6066 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 6067 * @sp: private member of the device structure, which is a pointer to the 6068 * s2io_nic structure. 6069 * @data: variable that returns the result of each of the test 6070 * conducted by the driver. 6071 * Description: 6072 * This is one of the offline test that tests the read and write 6073 * access to the RldRam chip on the NIC. 6074 * Return value: 6075 * 0 on success. 6076 */ 6077 6078 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) 6079 { 6080 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6081 u64 val64; 6082 int cnt, iteration = 0, test_fail = 0; 6083 6084 val64 = readq(&bar0->adapter_control); 6085 val64 &= ~ADAPTER_ECC_EN; 6086 writeq(val64, &bar0->adapter_control); 6087 6088 val64 = readq(&bar0->mc_rldram_test_ctrl); 6089 val64 |= MC_RLDRAM_TEST_MODE; 6090 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6091 6092 val64 = readq(&bar0->mc_rldram_mrs); 6093 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; 6094 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6095 6096 val64 |= MC_RLDRAM_MRS_ENABLE; 6097 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6098 6099 while (iteration < 2) { 6100 val64 = 0x55555555aaaa0000ULL; 6101 if (iteration == 1) 6102 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6103 writeq(val64, &bar0->mc_rldram_test_d0); 6104 6105 val64 = 0xaaaa5a5555550000ULL; 6106 if (iteration == 1) 6107 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6108 writeq(val64, &bar0->mc_rldram_test_d1); 6109 6110 val64 = 0x55aaaaaaaa5a0000ULL; 6111 if (iteration == 1) 6112 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6113 writeq(val64, &bar0->mc_rldram_test_d2); 6114 6115 val64 = (u64) (0x0000003ffffe0100ULL); 6116 writeq(val64, &bar0->mc_rldram_test_add); 6117 6118 val64 = MC_RLDRAM_TEST_MODE | 6119 MC_RLDRAM_TEST_WRITE | 6120 MC_RLDRAM_TEST_GO; 6121 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6122 6123 for (cnt = 0; cnt < 5; cnt++) { 6124 val64 = readq(&bar0->mc_rldram_test_ctrl); 6125 if (val64 & MC_RLDRAM_TEST_DONE) 6126 break; 6127 msleep(200); 6128 } 6129 6130 if (cnt == 5) 6131 break; 6132 6133 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; 6134 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6135 6136 for (cnt = 0; cnt < 5; cnt++) { 6137 val64 = readq(&bar0->mc_rldram_test_ctrl); 6138 if (val64 & MC_RLDRAM_TEST_DONE) 6139 break; 6140 msleep(500); 6141 } 6142 6143 if (cnt == 5) 6144 break; 6145 6146 val64 = readq(&bar0->mc_rldram_test_ctrl); 6147 if (!(val64 & MC_RLDRAM_TEST_PASS)) 6148 test_fail = 1; 6149 6150 iteration++; 6151 } 6152 6153 *data = test_fail; 6154 6155 /* Bring the adapter out of test mode */ 6156 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); 6157 6158 return test_fail; 6159 } 6160 6161 /** 6162 * s2io_ethtool_test - conducts 6 tsets to determine the health of card. 6163 * @dev: pointer to netdev 6164 * @ethtest : pointer to a ethtool command specific structure that will be 6165 * returned to the user. 6166 * @data : variable that returns the result of each of the test 6167 * conducted by the driver. 6168 * Description: 6169 * This function conducts 6 tests ( 4 offline and 2 online) to determine 6170 * the health of the card. 6171 * Return value: 6172 * void 6173 */ 6174 6175 static void s2io_ethtool_test(struct net_device *dev, 6176 struct ethtool_test *ethtest, 6177 uint64_t *data) 6178 { 6179 struct s2io_nic *sp = netdev_priv(dev); 6180 int orig_state = netif_running(sp->dev); 6181 6182 if (ethtest->flags == ETH_TEST_FL_OFFLINE) { 6183 /* Offline Tests. */ 6184 if (orig_state) 6185 s2io_close(sp->dev); 6186 6187 if (s2io_register_test(sp, &data[0])) 6188 ethtest->flags |= ETH_TEST_FL_FAILED; 6189 6190 s2io_reset(sp); 6191 6192 if (s2io_rldram_test(sp, &data[3])) 6193 ethtest->flags |= ETH_TEST_FL_FAILED; 6194 6195 s2io_reset(sp); 6196 6197 if (s2io_eeprom_test(sp, &data[1])) 6198 ethtest->flags |= ETH_TEST_FL_FAILED; 6199 6200 if (s2io_bist_test(sp, &data[4])) 6201 ethtest->flags |= ETH_TEST_FL_FAILED; 6202 6203 if (orig_state) 6204 s2io_open(sp->dev); 6205 6206 data[2] = 0; 6207 } else { 6208 /* Online Tests. */ 6209 if (!orig_state) { 6210 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", 6211 dev->name); 6212 data[0] = -1; 6213 data[1] = -1; 6214 data[2] = -1; 6215 data[3] = -1; 6216 data[4] = -1; 6217 } 6218 6219 if (s2io_link_test(sp, &data[2])) 6220 ethtest->flags |= ETH_TEST_FL_FAILED; 6221 6222 data[0] = 0; 6223 data[1] = 0; 6224 data[3] = 0; 6225 data[4] = 0; 6226 } 6227 } 6228 6229 static void s2io_get_ethtool_stats(struct net_device *dev, 6230 struct ethtool_stats *estats, 6231 u64 *tmp_stats) 6232 { 6233 int i = 0, k; 6234 struct s2io_nic *sp = netdev_priv(dev); 6235 struct stat_block *stats = sp->mac_control.stats_info; 6236 struct swStat *swstats = &stats->sw_stat; 6237 struct xpakStat *xstats = &stats->xpak_stat; 6238 6239 s2io_updt_stats(sp); 6240 tmp_stats[i++] = 6241 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | 6242 le32_to_cpu(stats->tmac_frms); 6243 tmp_stats[i++] = 6244 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 6245 le32_to_cpu(stats->tmac_data_octets); 6246 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); 6247 tmp_stats[i++] = 6248 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | 6249 le32_to_cpu(stats->tmac_mcst_frms); 6250 tmp_stats[i++] = 6251 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | 6252 le32_to_cpu(stats->tmac_bcst_frms); 6253 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); 6254 tmp_stats[i++] = 6255 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | 6256 le32_to_cpu(stats->tmac_ttl_octets); 6257 tmp_stats[i++] = 6258 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | 6259 le32_to_cpu(stats->tmac_ucst_frms); 6260 tmp_stats[i++] = 6261 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | 6262 le32_to_cpu(stats->tmac_nucst_frms); 6263 tmp_stats[i++] = 6264 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 6265 le32_to_cpu(stats->tmac_any_err_frms); 6266 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); 6267 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); 6268 tmp_stats[i++] = 6269 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | 6270 le32_to_cpu(stats->tmac_vld_ip); 6271 tmp_stats[i++] = 6272 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | 6273 le32_to_cpu(stats->tmac_drop_ip); 6274 tmp_stats[i++] = 6275 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | 6276 le32_to_cpu(stats->tmac_icmp); 6277 tmp_stats[i++] = 6278 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | 6279 le32_to_cpu(stats->tmac_rst_tcp); 6280 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); 6281 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | 6282 le32_to_cpu(stats->tmac_udp); 6283 tmp_stats[i++] = 6284 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 6285 le32_to_cpu(stats->rmac_vld_frms); 6286 tmp_stats[i++] = 6287 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 6288 le32_to_cpu(stats->rmac_data_octets); 6289 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); 6290 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); 6291 tmp_stats[i++] = 6292 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 6293 le32_to_cpu(stats->rmac_vld_mcst_frms); 6294 tmp_stats[i++] = 6295 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | 6296 le32_to_cpu(stats->rmac_vld_bcst_frms); 6297 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); 6298 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); 6299 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); 6300 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); 6301 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); 6302 tmp_stats[i++] = 6303 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | 6304 le32_to_cpu(stats->rmac_ttl_octets); 6305 tmp_stats[i++] = 6306 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 6307 | le32_to_cpu(stats->rmac_accepted_ucst_frms); 6308 tmp_stats[i++] = 6309 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) 6310 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); 6311 tmp_stats[i++] = 6312 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | 6313 le32_to_cpu(stats->rmac_discarded_frms); 6314 tmp_stats[i++] = 6315 (u64)le32_to_cpu(stats->rmac_drop_events_oflow) 6316 << 32 | le32_to_cpu(stats->rmac_drop_events); 6317 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); 6318 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); 6319 tmp_stats[i++] = 6320 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 6321 le32_to_cpu(stats->rmac_usized_frms); 6322 tmp_stats[i++] = 6323 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | 6324 le32_to_cpu(stats->rmac_osized_frms); 6325 tmp_stats[i++] = 6326 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | 6327 le32_to_cpu(stats->rmac_frag_frms); 6328 tmp_stats[i++] = 6329 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | 6330 le32_to_cpu(stats->rmac_jabber_frms); 6331 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); 6332 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); 6333 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); 6334 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); 6335 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); 6336 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); 6337 tmp_stats[i++] = 6338 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | 6339 le32_to_cpu(stats->rmac_ip); 6340 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); 6341 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); 6342 tmp_stats[i++] = 6343 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | 6344 le32_to_cpu(stats->rmac_drop_ip); 6345 tmp_stats[i++] = 6346 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | 6347 le32_to_cpu(stats->rmac_icmp); 6348 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); 6349 tmp_stats[i++] = 6350 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | 6351 le32_to_cpu(stats->rmac_udp); 6352 tmp_stats[i++] = 6353 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | 6354 le32_to_cpu(stats->rmac_err_drp_udp); 6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); 6356 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); 6357 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); 6358 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); 6359 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); 6360 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); 6361 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); 6362 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); 6363 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); 6364 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); 6365 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); 6366 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); 6367 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); 6368 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); 6369 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); 6370 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); 6371 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); 6372 tmp_stats[i++] = 6373 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | 6374 le32_to_cpu(stats->rmac_pause_cnt); 6375 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); 6376 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); 6377 tmp_stats[i++] = 6378 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | 6379 le32_to_cpu(stats->rmac_accepted_ip); 6380 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); 6381 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); 6382 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); 6383 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); 6384 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); 6385 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); 6386 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); 6387 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); 6388 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); 6389 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); 6390 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); 6391 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); 6392 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); 6393 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); 6394 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); 6395 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); 6396 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); 6397 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); 6398 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); 6399 6400 /* Enhanced statistics exist only for Hercules */ 6401 if (sp->device_type == XFRAME_II_DEVICE) { 6402 tmp_stats[i++] = 6403 le64_to_cpu(stats->rmac_ttl_1519_4095_frms); 6404 tmp_stats[i++] = 6405 le64_to_cpu(stats->rmac_ttl_4096_8191_frms); 6406 tmp_stats[i++] = 6407 le64_to_cpu(stats->rmac_ttl_8192_max_frms); 6408 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); 6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); 6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); 6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); 6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); 6413 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); 6414 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); 6415 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); 6416 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); 6417 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); 6418 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); 6419 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); 6420 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); 6421 } 6422 6423 tmp_stats[i++] = 0; 6424 tmp_stats[i++] = swstats->single_ecc_errs; 6425 tmp_stats[i++] = swstats->double_ecc_errs; 6426 tmp_stats[i++] = swstats->parity_err_cnt; 6427 tmp_stats[i++] = swstats->serious_err_cnt; 6428 tmp_stats[i++] = swstats->soft_reset_cnt; 6429 tmp_stats[i++] = swstats->fifo_full_cnt; 6430 for (k = 0; k < MAX_RX_RINGS; k++) 6431 tmp_stats[i++] = swstats->ring_full_cnt[k]; 6432 tmp_stats[i++] = xstats->alarm_transceiver_temp_high; 6433 tmp_stats[i++] = xstats->alarm_transceiver_temp_low; 6434 tmp_stats[i++] = xstats->alarm_laser_bias_current_high; 6435 tmp_stats[i++] = xstats->alarm_laser_bias_current_low; 6436 tmp_stats[i++] = xstats->alarm_laser_output_power_high; 6437 tmp_stats[i++] = xstats->alarm_laser_output_power_low; 6438 tmp_stats[i++] = xstats->warn_transceiver_temp_high; 6439 tmp_stats[i++] = xstats->warn_transceiver_temp_low; 6440 tmp_stats[i++] = xstats->warn_laser_bias_current_high; 6441 tmp_stats[i++] = xstats->warn_laser_bias_current_low; 6442 tmp_stats[i++] = xstats->warn_laser_output_power_high; 6443 tmp_stats[i++] = xstats->warn_laser_output_power_low; 6444 tmp_stats[i++] = swstats->clubbed_frms_cnt; 6445 tmp_stats[i++] = swstats->sending_both; 6446 tmp_stats[i++] = swstats->outof_sequence_pkts; 6447 tmp_stats[i++] = swstats->flush_max_pkts; 6448 if (swstats->num_aggregations) { 6449 u64 tmp = swstats->sum_avg_pkts_aggregated; 6450 int count = 0; 6451 /* 6452 * Since 64-bit divide does not work on all platforms, 6453 * do repeated subtraction. 6454 */ 6455 while (tmp >= swstats->num_aggregations) { 6456 tmp -= swstats->num_aggregations; 6457 count++; 6458 } 6459 tmp_stats[i++] = count; 6460 } else 6461 tmp_stats[i++] = 0; 6462 tmp_stats[i++] = swstats->mem_alloc_fail_cnt; 6463 tmp_stats[i++] = swstats->pci_map_fail_cnt; 6464 tmp_stats[i++] = swstats->watchdog_timer_cnt; 6465 tmp_stats[i++] = swstats->mem_allocated; 6466 tmp_stats[i++] = swstats->mem_freed; 6467 tmp_stats[i++] = swstats->link_up_cnt; 6468 tmp_stats[i++] = swstats->link_down_cnt; 6469 tmp_stats[i++] = swstats->link_up_time; 6470 tmp_stats[i++] = swstats->link_down_time; 6471 6472 tmp_stats[i++] = swstats->tx_buf_abort_cnt; 6473 tmp_stats[i++] = swstats->tx_desc_abort_cnt; 6474 tmp_stats[i++] = swstats->tx_parity_err_cnt; 6475 tmp_stats[i++] = swstats->tx_link_loss_cnt; 6476 tmp_stats[i++] = swstats->tx_list_proc_err_cnt; 6477 6478 tmp_stats[i++] = swstats->rx_parity_err_cnt; 6479 tmp_stats[i++] = swstats->rx_abort_cnt; 6480 tmp_stats[i++] = swstats->rx_parity_abort_cnt; 6481 tmp_stats[i++] = swstats->rx_rda_fail_cnt; 6482 tmp_stats[i++] = swstats->rx_unkn_prot_cnt; 6483 tmp_stats[i++] = swstats->rx_fcs_err_cnt; 6484 tmp_stats[i++] = swstats->rx_buf_size_err_cnt; 6485 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; 6486 tmp_stats[i++] = swstats->rx_unkn_err_cnt; 6487 tmp_stats[i++] = swstats->tda_err_cnt; 6488 tmp_stats[i++] = swstats->pfc_err_cnt; 6489 tmp_stats[i++] = swstats->pcc_err_cnt; 6490 tmp_stats[i++] = swstats->tti_err_cnt; 6491 tmp_stats[i++] = swstats->tpa_err_cnt; 6492 tmp_stats[i++] = swstats->sm_err_cnt; 6493 tmp_stats[i++] = swstats->lso_err_cnt; 6494 tmp_stats[i++] = swstats->mac_tmac_err_cnt; 6495 tmp_stats[i++] = swstats->mac_rmac_err_cnt; 6496 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; 6497 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; 6498 tmp_stats[i++] = swstats->rc_err_cnt; 6499 tmp_stats[i++] = swstats->prc_pcix_err_cnt; 6500 tmp_stats[i++] = swstats->rpa_err_cnt; 6501 tmp_stats[i++] = swstats->rda_err_cnt; 6502 tmp_stats[i++] = swstats->rti_err_cnt; 6503 tmp_stats[i++] = swstats->mc_err_cnt; 6504 } 6505 6506 static int s2io_ethtool_get_regs_len(struct net_device *dev) 6507 { 6508 return XENA_REG_SPACE; 6509 } 6510 6511 6512 static int s2io_get_eeprom_len(struct net_device *dev) 6513 { 6514 return XENA_EEPROM_SPACE; 6515 } 6516 6517 static int s2io_get_sset_count(struct net_device *dev, int sset) 6518 { 6519 struct s2io_nic *sp = netdev_priv(dev); 6520 6521 switch (sset) { 6522 case ETH_SS_TEST: 6523 return S2IO_TEST_LEN; 6524 case ETH_SS_STATS: 6525 switch (sp->device_type) { 6526 case XFRAME_I_DEVICE: 6527 return XFRAME_I_STAT_LEN; 6528 case XFRAME_II_DEVICE: 6529 return XFRAME_II_STAT_LEN; 6530 default: 6531 return 0; 6532 } 6533 default: 6534 return -EOPNOTSUPP; 6535 } 6536 } 6537 6538 static void s2io_ethtool_get_strings(struct net_device *dev, 6539 u32 stringset, u8 *data) 6540 { 6541 int stat_size = 0; 6542 struct s2io_nic *sp = netdev_priv(dev); 6543 6544 switch (stringset) { 6545 case ETH_SS_TEST: 6546 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); 6547 break; 6548 case ETH_SS_STATS: 6549 stat_size = sizeof(ethtool_xena_stats_keys); 6550 memcpy(data, ðtool_xena_stats_keys, stat_size); 6551 if (sp->device_type == XFRAME_II_DEVICE) { 6552 memcpy(data + stat_size, 6553 ðtool_enhanced_stats_keys, 6554 sizeof(ethtool_enhanced_stats_keys)); 6555 stat_size += sizeof(ethtool_enhanced_stats_keys); 6556 } 6557 6558 memcpy(data + stat_size, ðtool_driver_stats_keys, 6559 sizeof(ethtool_driver_stats_keys)); 6560 } 6561 } 6562 6563 static int s2io_set_features(struct net_device *dev, netdev_features_t features) 6564 { 6565 struct s2io_nic *sp = netdev_priv(dev); 6566 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; 6567 6568 if (changed && netif_running(dev)) { 6569 int rc; 6570 6571 s2io_stop_all_tx_queue(sp); 6572 s2io_card_down(sp); 6573 dev->features = features; 6574 rc = s2io_card_up(sp); 6575 if (rc) 6576 s2io_reset(sp); 6577 else 6578 s2io_start_all_tx_queue(sp); 6579 6580 return rc ? rc : 1; 6581 } 6582 6583 return 0; 6584 } 6585 6586 static const struct ethtool_ops netdev_ethtool_ops = { 6587 .get_drvinfo = s2io_ethtool_gdrvinfo, 6588 .get_regs_len = s2io_ethtool_get_regs_len, 6589 .get_regs = s2io_ethtool_gregs, 6590 .get_link = ethtool_op_get_link, 6591 .get_eeprom_len = s2io_get_eeprom_len, 6592 .get_eeprom = s2io_ethtool_geeprom, 6593 .set_eeprom = s2io_ethtool_seeprom, 6594 .get_ringparam = s2io_ethtool_gringparam, 6595 .get_pauseparam = s2io_ethtool_getpause_data, 6596 .set_pauseparam = s2io_ethtool_setpause_data, 6597 .self_test = s2io_ethtool_test, 6598 .get_strings = s2io_ethtool_get_strings, 6599 .set_phys_id = s2io_ethtool_set_led, 6600 .get_ethtool_stats = s2io_get_ethtool_stats, 6601 .get_sset_count = s2io_get_sset_count, 6602 .get_link_ksettings = s2io_ethtool_get_link_ksettings, 6603 .set_link_ksettings = s2io_ethtool_set_link_ksettings, 6604 }; 6605 6606 /** 6607 * s2io_ioctl - Entry point for the Ioctl 6608 * @dev : Device pointer. 6609 * @rq : An IOCTL specefic structure, that can contain a pointer to 6610 * a proprietary structure used to pass information to the driver. 6611 * @cmd : This is used to distinguish between the different commands that 6612 * can be passed to the IOCTL functions. 6613 * Description: 6614 * Currently there are no special functionality supported in IOCTL, hence 6615 * function always return EOPNOTSUPPORTED 6616 */ 6617 6618 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6619 { 6620 return -EOPNOTSUPP; 6621 } 6622 6623 /** 6624 * s2io_change_mtu - entry point to change MTU size for the device. 6625 * @dev : device pointer. 6626 * @new_mtu : the new MTU size for the device. 6627 * Description: A driver entry point to change MTU size for the device. 6628 * Before changing the MTU the device must be stopped. 6629 * Return value: 6630 * 0 on success and an appropriate (-)ve integer as defined in errno.h 6631 * file on failure. 6632 */ 6633 6634 static int s2io_change_mtu(struct net_device *dev, int new_mtu) 6635 { 6636 struct s2io_nic *sp = netdev_priv(dev); 6637 int ret = 0; 6638 6639 dev->mtu = new_mtu; 6640 if (netif_running(dev)) { 6641 s2io_stop_all_tx_queue(sp); 6642 s2io_card_down(sp); 6643 ret = s2io_card_up(sp); 6644 if (ret) { 6645 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6646 __func__); 6647 return ret; 6648 } 6649 s2io_wake_all_tx_queue(sp); 6650 } else { /* Device is down */ 6651 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6652 u64 val64 = new_mtu; 6653 6654 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 6655 } 6656 6657 return ret; 6658 } 6659 6660 /** 6661 * s2io_set_link - Set the LInk status 6662 * @work: work struct containing a pointer to device private structure 6663 * Description: Sets the link status for the adapter 6664 */ 6665 6666 static void s2io_set_link(struct work_struct *work) 6667 { 6668 struct s2io_nic *nic = container_of(work, struct s2io_nic, 6669 set_link_task); 6670 struct net_device *dev = nic->dev; 6671 struct XENA_dev_config __iomem *bar0 = nic->bar0; 6672 register u64 val64; 6673 u16 subid; 6674 6675 rtnl_lock(); 6676 6677 if (!netif_running(dev)) 6678 goto out_unlock; 6679 6680 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { 6681 /* The card is being reset, no point doing anything */ 6682 goto out_unlock; 6683 } 6684 6685 subid = nic->pdev->subsystem_device; 6686 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 6687 /* 6688 * Allow a small delay for the NICs self initiated 6689 * cleanup to complete. 6690 */ 6691 msleep(100); 6692 } 6693 6694 val64 = readq(&bar0->adapter_status); 6695 if (LINK_IS_UP(val64)) { 6696 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { 6697 if (verify_xena_quiescence(nic)) { 6698 val64 = readq(&bar0->adapter_control); 6699 val64 |= ADAPTER_CNTL_EN; 6700 writeq(val64, &bar0->adapter_control); 6701 if (CARDS_WITH_FAULTY_LINK_INDICATORS( 6702 nic->device_type, subid)) { 6703 val64 = readq(&bar0->gpio_control); 6704 val64 |= GPIO_CTRL_GPIO_0; 6705 writeq(val64, &bar0->gpio_control); 6706 val64 = readq(&bar0->gpio_control); 6707 } else { 6708 val64 |= ADAPTER_LED_ON; 6709 writeq(val64, &bar0->adapter_control); 6710 } 6711 nic->device_enabled_once = true; 6712 } else { 6713 DBG_PRINT(ERR_DBG, 6714 "%s: Error: device is not Quiescent\n", 6715 dev->name); 6716 s2io_stop_all_tx_queue(nic); 6717 } 6718 } 6719 val64 = readq(&bar0->adapter_control); 6720 val64 |= ADAPTER_LED_ON; 6721 writeq(val64, &bar0->adapter_control); 6722 s2io_link(nic, LINK_UP); 6723 } else { 6724 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, 6725 subid)) { 6726 val64 = readq(&bar0->gpio_control); 6727 val64 &= ~GPIO_CTRL_GPIO_0; 6728 writeq(val64, &bar0->gpio_control); 6729 val64 = readq(&bar0->gpio_control); 6730 } 6731 /* turn off LED */ 6732 val64 = readq(&bar0->adapter_control); 6733 val64 = val64 & (~ADAPTER_LED_ON); 6734 writeq(val64, &bar0->adapter_control); 6735 s2io_link(nic, LINK_DOWN); 6736 } 6737 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); 6738 6739 out_unlock: 6740 rtnl_unlock(); 6741 } 6742 6743 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, 6744 struct buffAdd *ba, 6745 struct sk_buff **skb, u64 *temp0, u64 *temp1, 6746 u64 *temp2, int size) 6747 { 6748 struct net_device *dev = sp->dev; 6749 struct swStat *stats = &sp->mac_control.stats_info->sw_stat; 6750 6751 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { 6752 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; 6753 /* allocate skb */ 6754 if (*skb) { 6755 DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); 6756 /* 6757 * As Rx frame are not going to be processed, 6758 * using same mapped address for the Rxd 6759 * buffer pointer 6760 */ 6761 rxdp1->Buffer0_ptr = *temp0; 6762 } else { 6763 *skb = netdev_alloc_skb(dev, size); 6764 if (!(*skb)) { 6765 DBG_PRINT(INFO_DBG, 6766 "%s: Out of memory to allocate %s\n", 6767 dev->name, "1 buf mode SKBs"); 6768 stats->mem_alloc_fail_cnt++; 6769 return -ENOMEM ; 6770 } 6771 stats->mem_allocated += (*skb)->truesize; 6772 /* storing the mapped addr in a temp variable 6773 * such it will be used for next rxd whose 6774 * Host Control is NULL 6775 */ 6776 rxdp1->Buffer0_ptr = *temp0 = 6777 dma_map_single(&sp->pdev->dev, (*skb)->data, 6778 size - NET_IP_ALIGN, 6779 DMA_FROM_DEVICE); 6780 if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr)) 6781 goto memalloc_failed; 6782 rxdp->Host_Control = (unsigned long) (*skb); 6783 } 6784 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { 6785 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; 6786 /* Two buffer Mode */ 6787 if (*skb) { 6788 rxdp3->Buffer2_ptr = *temp2; 6789 rxdp3->Buffer0_ptr = *temp0; 6790 rxdp3->Buffer1_ptr = *temp1; 6791 } else { 6792 *skb = netdev_alloc_skb(dev, size); 6793 if (!(*skb)) { 6794 DBG_PRINT(INFO_DBG, 6795 "%s: Out of memory to allocate %s\n", 6796 dev->name, 6797 "2 buf mode SKBs"); 6798 stats->mem_alloc_fail_cnt++; 6799 return -ENOMEM; 6800 } 6801 stats->mem_allocated += (*skb)->truesize; 6802 rxdp3->Buffer2_ptr = *temp2 = 6803 dma_map_single(&sp->pdev->dev, (*skb)->data, 6804 dev->mtu + 4, DMA_FROM_DEVICE); 6805 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr)) 6806 goto memalloc_failed; 6807 rxdp3->Buffer0_ptr = *temp0 = 6808 dma_map_single(&sp->pdev->dev, ba->ba_0, 6809 BUF0_LEN, DMA_FROM_DEVICE); 6810 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) { 6811 dma_unmap_single(&sp->pdev->dev, 6812 (dma_addr_t)rxdp3->Buffer2_ptr, 6813 dev->mtu + 4, 6814 DMA_FROM_DEVICE); 6815 goto memalloc_failed; 6816 } 6817 rxdp->Host_Control = (unsigned long) (*skb); 6818 6819 /* Buffer-1 will be dummy buffer not used */ 6820 rxdp3->Buffer1_ptr = *temp1 = 6821 dma_map_single(&sp->pdev->dev, ba->ba_1, 6822 BUF1_LEN, DMA_FROM_DEVICE); 6823 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) { 6824 dma_unmap_single(&sp->pdev->dev, 6825 (dma_addr_t)rxdp3->Buffer0_ptr, 6826 BUF0_LEN, DMA_FROM_DEVICE); 6827 dma_unmap_single(&sp->pdev->dev, 6828 (dma_addr_t)rxdp3->Buffer2_ptr, 6829 dev->mtu + 4, 6830 DMA_FROM_DEVICE); 6831 goto memalloc_failed; 6832 } 6833 } 6834 } 6835 return 0; 6836 6837 memalloc_failed: 6838 stats->pci_map_fail_cnt++; 6839 stats->mem_freed += (*skb)->truesize; 6840 dev_kfree_skb(*skb); 6841 return -ENOMEM; 6842 } 6843 6844 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, 6845 int size) 6846 { 6847 struct net_device *dev = sp->dev; 6848 if (sp->rxd_mode == RXD_MODE_1) { 6849 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 6850 } else if (sp->rxd_mode == RXD_MODE_3B) { 6851 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 6852 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 6853 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); 6854 } 6855 } 6856 6857 static int rxd_owner_bit_reset(struct s2io_nic *sp) 6858 { 6859 int i, j, k, blk_cnt = 0, size; 6860 struct config_param *config = &sp->config; 6861 struct mac_info *mac_control = &sp->mac_control; 6862 struct net_device *dev = sp->dev; 6863 struct RxD_t *rxdp = NULL; 6864 struct sk_buff *skb = NULL; 6865 struct buffAdd *ba = NULL; 6866 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; 6867 6868 /* Calculate the size based on ring mode */ 6869 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + 6870 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 6871 if (sp->rxd_mode == RXD_MODE_1) 6872 size += NET_IP_ALIGN; 6873 else if (sp->rxd_mode == RXD_MODE_3B) 6874 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; 6875 6876 for (i = 0; i < config->rx_ring_num; i++) { 6877 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 6878 struct ring_info *ring = &mac_control->rings[i]; 6879 6880 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); 6881 6882 for (j = 0; j < blk_cnt; j++) { 6883 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { 6884 rxdp = ring->rx_blocks[j].rxds[k].virt_addr; 6885 if (sp->rxd_mode == RXD_MODE_3B) 6886 ba = &ring->ba[j][k]; 6887 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, 6888 &temp0_64, 6889 &temp1_64, 6890 &temp2_64, 6891 size) == -ENOMEM) { 6892 return 0; 6893 } 6894 6895 set_rxd_buffer_size(sp, rxdp, size); 6896 dma_wmb(); 6897 /* flip the Ownership bit to Hardware */ 6898 rxdp->Control_1 |= RXD_OWN_XENA; 6899 } 6900 } 6901 } 6902 return 0; 6903 6904 } 6905 6906 static int s2io_add_isr(struct s2io_nic *sp) 6907 { 6908 int ret = 0; 6909 struct net_device *dev = sp->dev; 6910 int err = 0; 6911 6912 if (sp->config.intr_type == MSI_X) 6913 ret = s2io_enable_msi_x(sp); 6914 if (ret) { 6915 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); 6916 sp->config.intr_type = INTA; 6917 } 6918 6919 /* 6920 * Store the values of the MSIX table in 6921 * the struct s2io_nic structure 6922 */ 6923 store_xmsi_data(sp); 6924 6925 /* After proper initialization of H/W, register ISR */ 6926 if (sp->config.intr_type == MSI_X) { 6927 int i, msix_rx_cnt = 0; 6928 6929 for (i = 0; i < sp->num_entries; i++) { 6930 if (sp->s2io_entries[i].in_use == MSIX_FLG) { 6931 if (sp->s2io_entries[i].type == 6932 MSIX_RING_TYPE) { 6933 snprintf(sp->desc[i], 6934 sizeof(sp->desc[i]), 6935 "%s:MSI-X-%d-RX", 6936 dev->name, i); 6937 err = request_irq(sp->entries[i].vector, 6938 s2io_msix_ring_handle, 6939 0, 6940 sp->desc[i], 6941 sp->s2io_entries[i].arg); 6942 } else if (sp->s2io_entries[i].type == 6943 MSIX_ALARM_TYPE) { 6944 snprintf(sp->desc[i], 6945 sizeof(sp->desc[i]), 6946 "%s:MSI-X-%d-TX", 6947 dev->name, i); 6948 err = request_irq(sp->entries[i].vector, 6949 s2io_msix_fifo_handle, 6950 0, 6951 sp->desc[i], 6952 sp->s2io_entries[i].arg); 6953 6954 } 6955 /* if either data or addr is zero print it. */ 6956 if (!(sp->msix_info[i].addr && 6957 sp->msix_info[i].data)) { 6958 DBG_PRINT(ERR_DBG, 6959 "%s @Addr:0x%llx Data:0x%llx\n", 6960 sp->desc[i], 6961 (unsigned long long) 6962 sp->msix_info[i].addr, 6963 (unsigned long long) 6964 ntohl(sp->msix_info[i].data)); 6965 } else 6966 msix_rx_cnt++; 6967 if (err) { 6968 remove_msix_isr(sp); 6969 6970 DBG_PRINT(ERR_DBG, 6971 "%s:MSI-X-%d registration " 6972 "failed\n", dev->name, i); 6973 6974 DBG_PRINT(ERR_DBG, 6975 "%s: Defaulting to INTA\n", 6976 dev->name); 6977 sp->config.intr_type = INTA; 6978 break; 6979 } 6980 sp->s2io_entries[i].in_use = 6981 MSIX_REGISTERED_SUCCESS; 6982 } 6983 } 6984 if (!err) { 6985 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); 6986 DBG_PRINT(INFO_DBG, 6987 "MSI-X-TX entries enabled through alarm vector\n"); 6988 } 6989 } 6990 if (sp->config.intr_type == INTA) { 6991 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED, 6992 sp->name, dev); 6993 if (err) { 6994 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", 6995 dev->name); 6996 return -1; 6997 } 6998 } 6999 return 0; 7000 } 7001 7002 static void s2io_rem_isr(struct s2io_nic *sp) 7003 { 7004 if (sp->config.intr_type == MSI_X) 7005 remove_msix_isr(sp); 7006 else 7007 remove_inta_isr(sp); 7008 } 7009 7010 static void do_s2io_card_down(struct s2io_nic *sp, int do_io) 7011 { 7012 int cnt = 0; 7013 struct XENA_dev_config __iomem *bar0 = sp->bar0; 7014 register u64 val64 = 0; 7015 struct config_param *config; 7016 config = &sp->config; 7017 7018 if (!is_s2io_card_up(sp)) 7019 return; 7020 7021 del_timer_sync(&sp->alarm_timer); 7022 /* If s2io_set_link task is executing, wait till it completes. */ 7023 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) 7024 msleep(50); 7025 clear_bit(__S2IO_STATE_CARD_UP, &sp->state); 7026 7027 /* Disable napi */ 7028 if (sp->config.napi) { 7029 int off = 0; 7030 if (config->intr_type == MSI_X) { 7031 for (; off < sp->config.rx_ring_num; off++) 7032 napi_disable(&sp->mac_control.rings[off].napi); 7033 } 7034 else 7035 napi_disable(&sp->napi); 7036 } 7037 7038 /* disable Tx and Rx traffic on the NIC */ 7039 if (do_io) 7040 stop_nic(sp); 7041 7042 s2io_rem_isr(sp); 7043 7044 /* stop the tx queue, indicate link down */ 7045 s2io_link(sp, LINK_DOWN); 7046 7047 /* Check if the device is Quiescent and then Reset the NIC */ 7048 while (do_io) { 7049 /* As per the HW requirement we need to replenish the 7050 * receive buffer to avoid the ring bump. Since there is 7051 * no intention of processing the Rx frame at this pointwe are 7052 * just setting the ownership bit of rxd in Each Rx 7053 * ring to HW and set the appropriate buffer size 7054 * based on the ring mode 7055 */ 7056 rxd_owner_bit_reset(sp); 7057 7058 val64 = readq(&bar0->adapter_status); 7059 if (verify_xena_quiescence(sp)) { 7060 if (verify_pcc_quiescent(sp, sp->device_enabled_once)) 7061 break; 7062 } 7063 7064 msleep(50); 7065 cnt++; 7066 if (cnt == 10) { 7067 DBG_PRINT(ERR_DBG, "Device not Quiescent - " 7068 "adapter status reads 0x%llx\n", 7069 (unsigned long long)val64); 7070 break; 7071 } 7072 } 7073 if (do_io) 7074 s2io_reset(sp); 7075 7076 /* Free all Tx buffers */ 7077 free_tx_buffers(sp); 7078 7079 /* Free all Rx buffers */ 7080 free_rx_buffers(sp); 7081 7082 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); 7083 } 7084 7085 static void s2io_card_down(struct s2io_nic *sp) 7086 { 7087 do_s2io_card_down(sp, 1); 7088 } 7089 7090 static int s2io_card_up(struct s2io_nic *sp) 7091 { 7092 int i, ret = 0; 7093 struct config_param *config; 7094 struct mac_info *mac_control; 7095 struct net_device *dev = sp->dev; 7096 u16 interruptible; 7097 7098 /* Initialize the H/W I/O registers */ 7099 ret = init_nic(sp); 7100 if (ret != 0) { 7101 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 7102 dev->name); 7103 if (ret != -EIO) 7104 s2io_reset(sp); 7105 return ret; 7106 } 7107 7108 /* 7109 * Initializing the Rx buffers. For now we are considering only 1 7110 * Rx ring and initializing buffers into 30 Rx blocks 7111 */ 7112 config = &sp->config; 7113 mac_control = &sp->mac_control; 7114 7115 for (i = 0; i < config->rx_ring_num; i++) { 7116 struct ring_info *ring = &mac_control->rings[i]; 7117 7118 ring->mtu = dev->mtu; 7119 ring->lro = !!(dev->features & NETIF_F_LRO); 7120 ret = fill_rx_buffers(sp, ring, 1); 7121 if (ret) { 7122 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", 7123 dev->name); 7124 ret = -ENOMEM; 7125 goto err_fill_buff; 7126 } 7127 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, 7128 ring->rx_bufs_left); 7129 } 7130 7131 /* Initialise napi */ 7132 if (config->napi) { 7133 if (config->intr_type == MSI_X) { 7134 for (i = 0; i < sp->config.rx_ring_num; i++) 7135 napi_enable(&sp->mac_control.rings[i].napi); 7136 } else { 7137 napi_enable(&sp->napi); 7138 } 7139 } 7140 7141 /* Maintain the state prior to the open */ 7142 if (sp->promisc_flg) 7143 sp->promisc_flg = 0; 7144 if (sp->m_cast_flg) { 7145 sp->m_cast_flg = 0; 7146 sp->all_multi_pos = 0; 7147 } 7148 7149 /* Setting its receive mode */ 7150 s2io_set_multicast(dev, true); 7151 7152 if (dev->features & NETIF_F_LRO) { 7153 /* Initialize max aggregatable pkts per session based on MTU */ 7154 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; 7155 /* Check if we can use (if specified) user provided value */ 7156 if (lro_max_pkts < sp->lro_max_aggr_per_sess) 7157 sp->lro_max_aggr_per_sess = lro_max_pkts; 7158 } 7159 7160 /* Enable Rx Traffic and interrupts on the NIC */ 7161 if (start_nic(sp)) { 7162 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); 7163 ret = -ENODEV; 7164 goto err_out; 7165 } 7166 7167 /* Add interrupt service routine */ 7168 if (s2io_add_isr(sp) != 0) { 7169 if (sp->config.intr_type == MSI_X) 7170 s2io_rem_isr(sp); 7171 ret = -ENODEV; 7172 goto err_out; 7173 } 7174 7175 timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0); 7176 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 7177 7178 set_bit(__S2IO_STATE_CARD_UP, &sp->state); 7179 7180 /* Enable select interrupts */ 7181 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); 7182 if (sp->config.intr_type != INTA) { 7183 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; 7184 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7185 } else { 7186 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 7187 interruptible |= TX_PIC_INTR; 7188 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7189 } 7190 7191 return 0; 7192 7193 err_out: 7194 if (config->napi) { 7195 if (config->intr_type == MSI_X) { 7196 for (i = 0; i < sp->config.rx_ring_num; i++) 7197 napi_disable(&sp->mac_control.rings[i].napi); 7198 } else { 7199 napi_disable(&sp->napi); 7200 } 7201 } 7202 err_fill_buff: 7203 s2io_reset(sp); 7204 free_rx_buffers(sp); 7205 return ret; 7206 } 7207 7208 /** 7209 * s2io_restart_nic - Resets the NIC. 7210 * @work : work struct containing a pointer to the device private structure 7211 * Description: 7212 * This function is scheduled to be run by the s2io_tx_watchdog 7213 * function after 0.5 secs to reset the NIC. The idea is to reduce 7214 * the run time of the watch dog routine which is run holding a 7215 * spin lock. 7216 */ 7217 7218 static void s2io_restart_nic(struct work_struct *work) 7219 { 7220 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); 7221 struct net_device *dev = sp->dev; 7222 7223 rtnl_lock(); 7224 7225 if (!netif_running(dev)) 7226 goto out_unlock; 7227 7228 s2io_card_down(sp); 7229 if (s2io_card_up(sp)) { 7230 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); 7231 } 7232 s2io_wake_all_tx_queue(sp); 7233 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); 7234 out_unlock: 7235 rtnl_unlock(); 7236 } 7237 7238 /** 7239 * s2io_tx_watchdog - Watchdog for transmit side. 7240 * @dev : Pointer to net device structure 7241 * @txqueue: index of the hanging queue 7242 * Description: 7243 * This function is triggered if the Tx Queue is stopped 7244 * for a pre-defined amount of time when the Interface is still up. 7245 * If the Interface is jammed in such a situation, the hardware is 7246 * reset (by s2io_close) and restarted again (by s2io_open) to 7247 * overcome any problem that might have been caused in the hardware. 7248 * Return value: 7249 * void 7250 */ 7251 7252 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue) 7253 { 7254 struct s2io_nic *sp = netdev_priv(dev); 7255 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7256 7257 if (netif_carrier_ok(dev)) { 7258 swstats->watchdog_timer_cnt++; 7259 schedule_work(&sp->rst_timer_task); 7260 swstats->soft_reset_cnt++; 7261 } 7262 } 7263 7264 /** 7265 * rx_osm_handler - To perform some OS related operations on SKB. 7266 * @ring_data : the ring from which this RxD was extracted. 7267 * @rxdp: descriptor 7268 * Description: 7269 * This function is called by the Rx interrupt serivce routine to perform 7270 * some OS related operations on the SKB before passing it to the upper 7271 * layers. It mainly checks if the checksum is OK, if so adds it to the 7272 * SKBs cksum variable, increments the Rx packet count and passes the SKB 7273 * to the upper layer. If the checksum is wrong, it increments the Rx 7274 * packet error count, frees the SKB and returns error. 7275 * Return value: 7276 * SUCCESS on success and -1 on failure. 7277 */ 7278 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) 7279 { 7280 struct s2io_nic *sp = ring_data->nic; 7281 struct net_device *dev = ring_data->dev; 7282 struct sk_buff *skb = (struct sk_buff *) 7283 ((unsigned long)rxdp->Host_Control); 7284 int ring_no = ring_data->ring_no; 7285 u16 l3_csum, l4_csum; 7286 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 7287 struct lro *lro; 7288 u8 err_mask; 7289 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7290 7291 skb->dev = dev; 7292 7293 if (err) { 7294 /* Check for parity error */ 7295 if (err & 0x1) 7296 swstats->parity_err_cnt++; 7297 7298 err_mask = err >> 48; 7299 switch (err_mask) { 7300 case 1: 7301 swstats->rx_parity_err_cnt++; 7302 break; 7303 7304 case 2: 7305 swstats->rx_abort_cnt++; 7306 break; 7307 7308 case 3: 7309 swstats->rx_parity_abort_cnt++; 7310 break; 7311 7312 case 4: 7313 swstats->rx_rda_fail_cnt++; 7314 break; 7315 7316 case 5: 7317 swstats->rx_unkn_prot_cnt++; 7318 break; 7319 7320 case 6: 7321 swstats->rx_fcs_err_cnt++; 7322 break; 7323 7324 case 7: 7325 swstats->rx_buf_size_err_cnt++; 7326 break; 7327 7328 case 8: 7329 swstats->rx_rxd_corrupt_cnt++; 7330 break; 7331 7332 case 15: 7333 swstats->rx_unkn_err_cnt++; 7334 break; 7335 } 7336 /* 7337 * Drop the packet if bad transfer code. Exception being 7338 * 0x5, which could be due to unsupported IPv6 extension header. 7339 * In this case, we let stack handle the packet. 7340 * Note that in this case, since checksum will be incorrect, 7341 * stack will validate the same. 7342 */ 7343 if (err_mask != 0x5) { 7344 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", 7345 dev->name, err_mask); 7346 dev->stats.rx_crc_errors++; 7347 swstats->mem_freed 7348 += skb->truesize; 7349 dev_kfree_skb(skb); 7350 ring_data->rx_bufs_left -= 1; 7351 rxdp->Host_Control = 0; 7352 return 0; 7353 } 7354 } 7355 7356 rxdp->Host_Control = 0; 7357 if (sp->rxd_mode == RXD_MODE_1) { 7358 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); 7359 7360 skb_put(skb, len); 7361 } else if (sp->rxd_mode == RXD_MODE_3B) { 7362 int get_block = ring_data->rx_curr_get_info.block_index; 7363 int get_off = ring_data->rx_curr_get_info.offset; 7364 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); 7365 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); 7366 7367 struct buffAdd *ba = &ring_data->ba[get_block][get_off]; 7368 skb_put_data(skb, ba->ba_0, buf0_len); 7369 skb_put(skb, buf2_len); 7370 } 7371 7372 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && 7373 ((!ring_data->lro) || 7374 (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) && 7375 (dev->features & NETIF_F_RXCSUM)) { 7376 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); 7377 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); 7378 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { 7379 /* 7380 * NIC verifies if the Checksum of the received 7381 * frame is Ok or not and accordingly returns 7382 * a flag in the RxD. 7383 */ 7384 skb->ip_summed = CHECKSUM_UNNECESSARY; 7385 if (ring_data->lro) { 7386 u32 tcp_len = 0; 7387 u8 *tcp; 7388 int ret = 0; 7389 7390 ret = s2io_club_tcp_session(ring_data, 7391 skb->data, &tcp, 7392 &tcp_len, &lro, 7393 rxdp, sp); 7394 switch (ret) { 7395 case 3: /* Begin anew */ 7396 lro->parent = skb; 7397 goto aggregate; 7398 case 1: /* Aggregate */ 7399 lro_append_pkt(sp, lro, skb, tcp_len); 7400 goto aggregate; 7401 case 4: /* Flush session */ 7402 lro_append_pkt(sp, lro, skb, tcp_len); 7403 queue_rx_frame(lro->parent, 7404 lro->vlan_tag); 7405 clear_lro_session(lro); 7406 swstats->flush_max_pkts++; 7407 goto aggregate; 7408 case 2: /* Flush both */ 7409 lro->parent->data_len = lro->frags_len; 7410 swstats->sending_both++; 7411 queue_rx_frame(lro->parent, 7412 lro->vlan_tag); 7413 clear_lro_session(lro); 7414 goto send_up; 7415 case 0: /* sessions exceeded */ 7416 case -1: /* non-TCP or not L2 aggregatable */ 7417 case 5: /* 7418 * First pkt in session not 7419 * L3/L4 aggregatable 7420 */ 7421 break; 7422 default: 7423 DBG_PRINT(ERR_DBG, 7424 "%s: Samadhana!!\n", 7425 __func__); 7426 BUG(); 7427 } 7428 } 7429 } else { 7430 /* 7431 * Packet with erroneous checksum, let the 7432 * upper layers deal with it. 7433 */ 7434 skb_checksum_none_assert(skb); 7435 } 7436 } else 7437 skb_checksum_none_assert(skb); 7438 7439 swstats->mem_freed += skb->truesize; 7440 send_up: 7441 skb_record_rx_queue(skb, ring_no); 7442 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); 7443 aggregate: 7444 sp->mac_control.rings[ring_no].rx_bufs_left -= 1; 7445 return SUCCESS; 7446 } 7447 7448 /** 7449 * s2io_link - stops/starts the Tx queue. 7450 * @sp : private member of the device structure, which is a pointer to the 7451 * s2io_nic structure. 7452 * @link : inidicates whether link is UP/DOWN. 7453 * Description: 7454 * This function stops/starts the Tx queue depending on whether the link 7455 * status of the NIC is down or up. This is called by the Alarm 7456 * interrupt handler whenever a link change interrupt comes up. 7457 * Return value: 7458 * void. 7459 */ 7460 7461 static void s2io_link(struct s2io_nic *sp, int link) 7462 { 7463 struct net_device *dev = sp->dev; 7464 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7465 7466 if (link != sp->last_link_state) { 7467 init_tti(sp, link, false); 7468 if (link == LINK_DOWN) { 7469 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); 7470 s2io_stop_all_tx_queue(sp); 7471 netif_carrier_off(dev); 7472 if (swstats->link_up_cnt) 7473 swstats->link_up_time = 7474 jiffies - sp->start_time; 7475 swstats->link_down_cnt++; 7476 } else { 7477 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); 7478 if (swstats->link_down_cnt) 7479 swstats->link_down_time = 7480 jiffies - sp->start_time; 7481 swstats->link_up_cnt++; 7482 netif_carrier_on(dev); 7483 s2io_wake_all_tx_queue(sp); 7484 } 7485 } 7486 sp->last_link_state = link; 7487 sp->start_time = jiffies; 7488 } 7489 7490 /** 7491 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 7492 * @sp : private member of the device structure, which is a pointer to the 7493 * s2io_nic structure. 7494 * Description: 7495 * This function initializes a few of the PCI and PCI-X configuration registers 7496 * with recommended values. 7497 * Return value: 7498 * void 7499 */ 7500 7501 static void s2io_init_pci(struct s2io_nic *sp) 7502 { 7503 u16 pci_cmd = 0, pcix_cmd = 0; 7504 7505 /* Enable Data Parity Error Recovery in PCI-X command register. */ 7506 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7507 &(pcix_cmd)); 7508 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7509 (pcix_cmd | 1)); 7510 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7511 &(pcix_cmd)); 7512 7513 /* Set the PErr Response bit in PCI command register. */ 7514 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7515 pci_write_config_word(sp->pdev, PCI_COMMAND, 7516 (pci_cmd | PCI_COMMAND_PARITY)); 7517 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7518 } 7519 7520 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, 7521 u8 *dev_multiq) 7522 { 7523 int i; 7524 7525 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { 7526 DBG_PRINT(ERR_DBG, "Requested number of tx fifos " 7527 "(%d) not supported\n", tx_fifo_num); 7528 7529 if (tx_fifo_num < 1) 7530 tx_fifo_num = 1; 7531 else 7532 tx_fifo_num = MAX_TX_FIFOS; 7533 7534 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); 7535 } 7536 7537 if (multiq) 7538 *dev_multiq = multiq; 7539 7540 if (tx_steering_type && (1 == tx_fifo_num)) { 7541 if (tx_steering_type != TX_DEFAULT_STEERING) 7542 DBG_PRINT(ERR_DBG, 7543 "Tx steering is not supported with " 7544 "one fifo. Disabling Tx steering.\n"); 7545 tx_steering_type = NO_STEERING; 7546 } 7547 7548 if ((tx_steering_type < NO_STEERING) || 7549 (tx_steering_type > TX_DEFAULT_STEERING)) { 7550 DBG_PRINT(ERR_DBG, 7551 "Requested transmit steering not supported\n"); 7552 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); 7553 tx_steering_type = NO_STEERING; 7554 } 7555 7556 if (rx_ring_num > MAX_RX_RINGS) { 7557 DBG_PRINT(ERR_DBG, 7558 "Requested number of rx rings not supported\n"); 7559 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", 7560 MAX_RX_RINGS); 7561 rx_ring_num = MAX_RX_RINGS; 7562 } 7563 7564 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { 7565 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " 7566 "Defaulting to INTA\n"); 7567 *dev_intr_type = INTA; 7568 } 7569 7570 if ((*dev_intr_type == MSI_X) && 7571 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && 7572 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { 7573 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " 7574 "Defaulting to INTA\n"); 7575 *dev_intr_type = INTA; 7576 } 7577 7578 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { 7579 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); 7580 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); 7581 rx_ring_mode = 1; 7582 } 7583 7584 for (i = 0; i < MAX_RX_RINGS; i++) 7585 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { 7586 DBG_PRINT(ERR_DBG, "Requested rx ring size not " 7587 "supported\nDefaulting to %d\n", 7588 MAX_RX_BLOCKS_PER_RING); 7589 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; 7590 } 7591 7592 return SUCCESS; 7593 } 7594 7595 /** 7596 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively. 7597 * @nic: device private variable 7598 * @ds_codepoint: data 7599 * @ring: ring index 7600 * Description: The function configures the receive steering to 7601 * desired receive ring. 7602 * Return Value: SUCCESS on success and 7603 * '-1' on failure (endian settings incorrect). 7604 */ 7605 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) 7606 { 7607 struct XENA_dev_config __iomem *bar0 = nic->bar0; 7608 register u64 val64 = 0; 7609 7610 if (ds_codepoint > 63) 7611 return FAILURE; 7612 7613 val64 = RTS_DS_MEM_DATA(ring); 7614 writeq(val64, &bar0->rts_ds_mem_data); 7615 7616 val64 = RTS_DS_MEM_CTRL_WE | 7617 RTS_DS_MEM_CTRL_STROBE_NEW_CMD | 7618 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); 7619 7620 writeq(val64, &bar0->rts_ds_mem_ctrl); 7621 7622 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, 7623 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, 7624 S2IO_BIT_RESET, true); 7625 } 7626 7627 static const struct net_device_ops s2io_netdev_ops = { 7628 .ndo_open = s2io_open, 7629 .ndo_stop = s2io_close, 7630 .ndo_get_stats = s2io_get_stats, 7631 .ndo_start_xmit = s2io_xmit, 7632 .ndo_validate_addr = eth_validate_addr, 7633 .ndo_set_rx_mode = s2io_ndo_set_multicast, 7634 .ndo_eth_ioctl = s2io_ioctl, 7635 .ndo_set_mac_address = s2io_set_mac_addr, 7636 .ndo_change_mtu = s2io_change_mtu, 7637 .ndo_set_features = s2io_set_features, 7638 .ndo_tx_timeout = s2io_tx_watchdog, 7639 #ifdef CONFIG_NET_POLL_CONTROLLER 7640 .ndo_poll_controller = s2io_netpoll, 7641 #endif 7642 }; 7643 7644 /** 7645 * s2io_init_nic - Initialization of the adapter . 7646 * @pdev : structure containing the PCI related information of the device. 7647 * @pre: List of PCI devices supported by the driver listed in s2io_tbl. 7648 * Description: 7649 * The function initializes an adapter identified by the pci_dec structure. 7650 * All OS related initialization including memory and device structure and 7651 * initlaization of the device private variable is done. Also the swapper 7652 * control register is initialized to enable read and write into the I/O 7653 * registers of the device. 7654 * Return value: 7655 * returns 0 on success and negative on failure. 7656 */ 7657 7658 static int 7659 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) 7660 { 7661 struct s2io_nic *sp; 7662 struct net_device *dev; 7663 int i, j, ret; 7664 u32 mac_up, mac_down; 7665 u64 val64 = 0, tmp64 = 0; 7666 struct XENA_dev_config __iomem *bar0 = NULL; 7667 u16 subid; 7668 struct config_param *config; 7669 struct mac_info *mac_control; 7670 int mode; 7671 u8 dev_intr_type = intr_type; 7672 u8 dev_multiq = 0; 7673 7674 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); 7675 if (ret) 7676 return ret; 7677 7678 ret = pci_enable_device(pdev); 7679 if (ret) { 7680 DBG_PRINT(ERR_DBG, 7681 "%s: pci_enable_device failed\n", __func__); 7682 return ret; 7683 } 7684 7685 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 7686 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); 7687 } else { 7688 pci_disable_device(pdev); 7689 return -ENOMEM; 7690 } 7691 ret = pci_request_regions(pdev, s2io_driver_name); 7692 if (ret) { 7693 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", 7694 __func__, ret); 7695 pci_disable_device(pdev); 7696 return -ENODEV; 7697 } 7698 if (dev_multiq) 7699 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); 7700 else 7701 dev = alloc_etherdev(sizeof(struct s2io_nic)); 7702 if (dev == NULL) { 7703 pci_disable_device(pdev); 7704 pci_release_regions(pdev); 7705 return -ENODEV; 7706 } 7707 7708 pci_set_master(pdev); 7709 pci_set_drvdata(pdev, dev); 7710 SET_NETDEV_DEV(dev, &pdev->dev); 7711 7712 /* Private member variable initialized to s2io NIC structure */ 7713 sp = netdev_priv(dev); 7714 sp->dev = dev; 7715 sp->pdev = pdev; 7716 sp->device_enabled_once = false; 7717 if (rx_ring_mode == 1) 7718 sp->rxd_mode = RXD_MODE_1; 7719 if (rx_ring_mode == 2) 7720 sp->rxd_mode = RXD_MODE_3B; 7721 7722 sp->config.intr_type = dev_intr_type; 7723 7724 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || 7725 (pdev->device == PCI_DEVICE_ID_HERC_UNI)) 7726 sp->device_type = XFRAME_II_DEVICE; 7727 else 7728 sp->device_type = XFRAME_I_DEVICE; 7729 7730 7731 /* Initialize some PCI/PCI-X fields of the NIC. */ 7732 s2io_init_pci(sp); 7733 7734 /* 7735 * Setting the device configuration parameters. 7736 * Most of these parameters can be specified by the user during 7737 * module insertion as they are module loadable parameters. If 7738 * these parameters are not specified during load time, they 7739 * are initialized with default values. 7740 */ 7741 config = &sp->config; 7742 mac_control = &sp->mac_control; 7743 7744 config->napi = napi; 7745 config->tx_steering_type = tx_steering_type; 7746 7747 /* Tx side parameters. */ 7748 if (config->tx_steering_type == TX_PRIORITY_STEERING) 7749 config->tx_fifo_num = MAX_TX_FIFOS; 7750 else 7751 config->tx_fifo_num = tx_fifo_num; 7752 7753 /* Initialize the fifos used for tx steering */ 7754 if (config->tx_fifo_num < 5) { 7755 if (config->tx_fifo_num == 1) 7756 sp->total_tcp_fifos = 1; 7757 else 7758 sp->total_tcp_fifos = config->tx_fifo_num - 1; 7759 sp->udp_fifo_idx = config->tx_fifo_num - 1; 7760 sp->total_udp_fifos = 1; 7761 sp->other_fifo_idx = sp->total_tcp_fifos - 1; 7762 } else { 7763 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - 7764 FIFO_OTHER_MAX_NUM); 7765 sp->udp_fifo_idx = sp->total_tcp_fifos; 7766 sp->total_udp_fifos = FIFO_UDP_MAX_NUM; 7767 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; 7768 } 7769 7770 config->multiq = dev_multiq; 7771 for (i = 0; i < config->tx_fifo_num; i++) { 7772 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7773 7774 tx_cfg->fifo_len = tx_fifo_len[i]; 7775 tx_cfg->fifo_priority = i; 7776 } 7777 7778 /* mapping the QoS priority to the configured fifos */ 7779 for (i = 0; i < MAX_TX_FIFOS; i++) 7780 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; 7781 7782 /* map the hashing selector table to the configured fifos */ 7783 for (i = 0; i < config->tx_fifo_num; i++) 7784 sp->fifo_selector[i] = fifo_selector[i]; 7785 7786 7787 config->tx_intr_type = TXD_INT_TYPE_UTILZ; 7788 for (i = 0; i < config->tx_fifo_num; i++) { 7789 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7790 7791 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); 7792 if (tx_cfg->fifo_len < 65) { 7793 config->tx_intr_type = TXD_INT_TYPE_PER_LIST; 7794 break; 7795 } 7796 } 7797 /* + 2 because one Txd for skb->data and one Txd for UFO */ 7798 config->max_txds = MAX_SKB_FRAGS + 2; 7799 7800 /* Rx side parameters. */ 7801 config->rx_ring_num = rx_ring_num; 7802 for (i = 0; i < config->rx_ring_num; i++) { 7803 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7804 struct ring_info *ring = &mac_control->rings[i]; 7805 7806 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); 7807 rx_cfg->ring_priority = i; 7808 ring->rx_bufs_left = 0; 7809 ring->rxd_mode = sp->rxd_mode; 7810 ring->rxd_count = rxd_count[sp->rxd_mode]; 7811 ring->pdev = sp->pdev; 7812 ring->dev = sp->dev; 7813 } 7814 7815 for (i = 0; i < rx_ring_num; i++) { 7816 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7817 7818 rx_cfg->ring_org = RING_ORG_BUFF1; 7819 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); 7820 } 7821 7822 /* Setting Mac Control parameters */ 7823 mac_control->rmac_pause_time = rmac_pause_time; 7824 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; 7825 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; 7826 7827 7828 /* initialize the shared memory used by the NIC and the host */ 7829 if (init_shared_mem(sp)) { 7830 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); 7831 ret = -ENOMEM; 7832 goto mem_alloc_failed; 7833 } 7834 7835 sp->bar0 = pci_ioremap_bar(pdev, 0); 7836 if (!sp->bar0) { 7837 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", 7838 dev->name); 7839 ret = -ENOMEM; 7840 goto bar0_remap_failed; 7841 } 7842 7843 sp->bar1 = pci_ioremap_bar(pdev, 2); 7844 if (!sp->bar1) { 7845 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", 7846 dev->name); 7847 ret = -ENOMEM; 7848 goto bar1_remap_failed; 7849 } 7850 7851 /* Initializing the BAR1 address as the start of the FIFO pointer. */ 7852 for (j = 0; j < MAX_TX_FIFOS; j++) { 7853 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); 7854 } 7855 7856 /* Driver entry points */ 7857 dev->netdev_ops = &s2io_netdev_ops; 7858 dev->ethtool_ops = &netdev_ethtool_ops; 7859 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 7860 NETIF_F_TSO | NETIF_F_TSO6 | 7861 NETIF_F_RXCSUM | NETIF_F_LRO; 7862 dev->features |= dev->hw_features | 7863 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 7864 NETIF_F_HIGHDMA; 7865 dev->watchdog_timeo = WATCH_DOG_TIMEOUT; 7866 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); 7867 INIT_WORK(&sp->set_link_task, s2io_set_link); 7868 7869 pci_save_state(sp->pdev); 7870 7871 /* Setting swapper control on the NIC, for proper reset operation */ 7872 if (s2io_set_swapper(sp)) { 7873 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", 7874 dev->name); 7875 ret = -EAGAIN; 7876 goto set_swap_failed; 7877 } 7878 7879 /* Verify if the Herc works on the slot its placed into */ 7880 if (sp->device_type & XFRAME_II_DEVICE) { 7881 mode = s2io_verify_pci_mode(sp); 7882 if (mode < 0) { 7883 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", 7884 __func__); 7885 ret = -EBADSLT; 7886 goto set_swap_failed; 7887 } 7888 } 7889 7890 if (sp->config.intr_type == MSI_X) { 7891 sp->num_entries = config->rx_ring_num + 1; 7892 ret = s2io_enable_msi_x(sp); 7893 7894 if (!ret) { 7895 ret = s2io_test_msi(sp); 7896 /* rollback MSI-X, will re-enable during add_isr() */ 7897 remove_msix_isr(sp); 7898 } 7899 if (ret) { 7900 7901 DBG_PRINT(ERR_DBG, 7902 "MSI-X requested but failed to enable\n"); 7903 sp->config.intr_type = INTA; 7904 } 7905 } 7906 7907 if (config->intr_type == MSI_X) { 7908 for (i = 0; i < config->rx_ring_num ; i++) { 7909 struct ring_info *ring = &mac_control->rings[i]; 7910 7911 netif_napi_add(dev, &ring->napi, s2io_poll_msix); 7912 } 7913 } else { 7914 netif_napi_add(dev, &sp->napi, s2io_poll_inta); 7915 } 7916 7917 /* Not needed for Herc */ 7918 if (sp->device_type & XFRAME_I_DEVICE) { 7919 /* 7920 * Fix for all "FFs" MAC address problems observed on 7921 * Alpha platforms 7922 */ 7923 fix_mac_address(sp); 7924 s2io_reset(sp); 7925 } 7926 7927 /* 7928 * MAC address initialization. 7929 * For now only one mac address will be read and used. 7930 */ 7931 bar0 = sp->bar0; 7932 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 7933 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); 7934 writeq(val64, &bar0->rmac_addr_cmd_mem); 7935 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 7936 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 7937 S2IO_BIT_RESET, true); 7938 tmp64 = readq(&bar0->rmac_addr_data0_mem); 7939 mac_down = (u32)tmp64; 7940 mac_up = (u32) (tmp64 >> 32); 7941 7942 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); 7943 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); 7944 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); 7945 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); 7946 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); 7947 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); 7948 7949 /* Set the factory defined MAC address initially */ 7950 dev->addr_len = ETH_ALEN; 7951 eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr); 7952 7953 /* initialize number of multicast & unicast MAC entries variables */ 7954 if (sp->device_type == XFRAME_I_DEVICE) { 7955 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; 7956 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; 7957 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; 7958 } else if (sp->device_type == XFRAME_II_DEVICE) { 7959 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; 7960 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; 7961 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; 7962 } 7963 7964 /* MTU range: 46 - 9600 */ 7965 dev->min_mtu = MIN_MTU; 7966 dev->max_mtu = S2IO_JUMBO_SIZE; 7967 7968 /* store mac addresses from CAM to s2io_nic structure */ 7969 do_s2io_store_unicast_mc(sp); 7970 7971 /* Configure MSIX vector for number of rings configured plus one */ 7972 if ((sp->device_type == XFRAME_II_DEVICE) && 7973 (config->intr_type == MSI_X)) 7974 sp->num_entries = config->rx_ring_num + 1; 7975 7976 /* Store the values of the MSIX table in the s2io_nic structure */ 7977 store_xmsi_data(sp); 7978 /* reset Nic and bring it to known state */ 7979 s2io_reset(sp); 7980 7981 /* 7982 * Initialize link state flags 7983 * and the card state parameter 7984 */ 7985 sp->state = 0; 7986 7987 /* Initialize spinlocks */ 7988 for (i = 0; i < sp->config.tx_fifo_num; i++) { 7989 struct fifo_info *fifo = &mac_control->fifos[i]; 7990 7991 spin_lock_init(&fifo->tx_lock); 7992 } 7993 7994 /* 7995 * SXE-002: Configure link and activity LED to init state 7996 * on driver load. 7997 */ 7998 subid = sp->pdev->subsystem_device; 7999 if ((subid & 0xFF) >= 0x07) { 8000 val64 = readq(&bar0->gpio_control); 8001 val64 |= 0x0000800000000000ULL; 8002 writeq(val64, &bar0->gpio_control); 8003 val64 = 0x0411040400000000ULL; 8004 writeq(val64, (void __iomem *)bar0 + 0x2700); 8005 val64 = readq(&bar0->gpio_control); 8006 } 8007 8008 sp->rx_csum = 1; /* Rx chksum verify enabled by default */ 8009 8010 if (register_netdev(dev)) { 8011 DBG_PRINT(ERR_DBG, "Device registration failed\n"); 8012 ret = -ENODEV; 8013 goto register_failed; 8014 } 8015 s2io_vpd_read(sp); 8016 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); 8017 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, 8018 sp->product_name, pdev->revision); 8019 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, 8020 s2io_driver_version); 8021 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); 8022 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); 8023 if (sp->device_type & XFRAME_II_DEVICE) { 8024 mode = s2io_print_pci_mode(sp); 8025 if (mode < 0) { 8026 ret = -EBADSLT; 8027 unregister_netdev(dev); 8028 goto set_swap_failed; 8029 } 8030 } 8031 switch (sp->rxd_mode) { 8032 case RXD_MODE_1: 8033 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", 8034 dev->name); 8035 break; 8036 case RXD_MODE_3B: 8037 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", 8038 dev->name); 8039 break; 8040 } 8041 8042 switch (sp->config.napi) { 8043 case 0: 8044 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); 8045 break; 8046 case 1: 8047 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); 8048 break; 8049 } 8050 8051 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, 8052 sp->config.tx_fifo_num); 8053 8054 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, 8055 sp->config.rx_ring_num); 8056 8057 switch (sp->config.intr_type) { 8058 case INTA: 8059 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); 8060 break; 8061 case MSI_X: 8062 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); 8063 break; 8064 } 8065 if (sp->config.multiq) { 8066 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8067 struct fifo_info *fifo = &mac_control->fifos[i]; 8068 8069 fifo->multiq = config->multiq; 8070 } 8071 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", 8072 dev->name); 8073 } else 8074 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", 8075 dev->name); 8076 8077 switch (sp->config.tx_steering_type) { 8078 case NO_STEERING: 8079 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", 8080 dev->name); 8081 break; 8082 case TX_PRIORITY_STEERING: 8083 DBG_PRINT(ERR_DBG, 8084 "%s: Priority steering enabled for transmit\n", 8085 dev->name); 8086 break; 8087 case TX_DEFAULT_STEERING: 8088 DBG_PRINT(ERR_DBG, 8089 "%s: Default steering enabled for transmit\n", 8090 dev->name); 8091 } 8092 8093 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 8094 dev->name); 8095 /* Initialize device name */ 8096 snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name, 8097 sp->product_name); 8098 8099 if (vlan_tag_strip) 8100 sp->vlan_strip_flag = 1; 8101 else 8102 sp->vlan_strip_flag = 0; 8103 8104 /* 8105 * Make Link state as off at this point, when the Link change 8106 * interrupt comes the state will be automatically changed to 8107 * the right state. 8108 */ 8109 netif_carrier_off(dev); 8110 8111 return 0; 8112 8113 register_failed: 8114 set_swap_failed: 8115 iounmap(sp->bar1); 8116 bar1_remap_failed: 8117 iounmap(sp->bar0); 8118 bar0_remap_failed: 8119 mem_alloc_failed: 8120 free_shared_mem(sp); 8121 pci_disable_device(pdev); 8122 pci_release_regions(pdev); 8123 free_netdev(dev); 8124 8125 return ret; 8126 } 8127 8128 /** 8129 * s2io_rem_nic - Free the PCI device 8130 * @pdev: structure containing the PCI related information of the device. 8131 * Description: This function is called by the Pci subsystem to release a 8132 * PCI device and free up all resource held up by the device. This could 8133 * be in response to a Hot plug event or when the driver is to be removed 8134 * from memory. 8135 */ 8136 8137 static void s2io_rem_nic(struct pci_dev *pdev) 8138 { 8139 struct net_device *dev = pci_get_drvdata(pdev); 8140 struct s2io_nic *sp; 8141 8142 if (dev == NULL) { 8143 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); 8144 return; 8145 } 8146 8147 sp = netdev_priv(dev); 8148 8149 cancel_work_sync(&sp->rst_timer_task); 8150 cancel_work_sync(&sp->set_link_task); 8151 8152 unregister_netdev(dev); 8153 8154 free_shared_mem(sp); 8155 iounmap(sp->bar0); 8156 iounmap(sp->bar1); 8157 pci_release_regions(pdev); 8158 free_netdev(dev); 8159 pci_disable_device(pdev); 8160 } 8161 8162 module_pci_driver(s2io_driver); 8163 8164 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 8165 struct tcphdr **tcp, struct RxD_t *rxdp, 8166 struct s2io_nic *sp) 8167 { 8168 int ip_off; 8169 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; 8170 8171 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { 8172 DBG_PRINT(INIT_DBG, 8173 "%s: Non-TCP frames not supported for LRO\n", 8174 __func__); 8175 return -1; 8176 } 8177 8178 /* Checking for DIX type or DIX type with VLAN */ 8179 if ((l2_type == 0) || (l2_type == 4)) { 8180 ip_off = HEADER_ETHERNET_II_802_3_SIZE; 8181 /* 8182 * If vlan stripping is disabled and the frame is VLAN tagged, 8183 * shift the offset by the VLAN header size bytes. 8184 */ 8185 if ((!sp->vlan_strip_flag) && 8186 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) 8187 ip_off += HEADER_VLAN_SIZE; 8188 } else { 8189 /* LLC, SNAP etc are considered non-mergeable */ 8190 return -1; 8191 } 8192 8193 *ip = (struct iphdr *)(buffer + ip_off); 8194 ip_len = (u8)((*ip)->ihl); 8195 ip_len <<= 2; 8196 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); 8197 8198 return 0; 8199 } 8200 8201 static int check_for_socket_match(struct lro *lro, struct iphdr *ip, 8202 struct tcphdr *tcp) 8203 { 8204 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8205 if ((lro->iph->saddr != ip->saddr) || 8206 (lro->iph->daddr != ip->daddr) || 8207 (lro->tcph->source != tcp->source) || 8208 (lro->tcph->dest != tcp->dest)) 8209 return -1; 8210 return 0; 8211 } 8212 8213 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) 8214 { 8215 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); 8216 } 8217 8218 static void initiate_new_session(struct lro *lro, u8 *l2h, 8219 struct iphdr *ip, struct tcphdr *tcp, 8220 u32 tcp_pyld_len, u16 vlan_tag) 8221 { 8222 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8223 lro->l2h = l2h; 8224 lro->iph = ip; 8225 lro->tcph = tcp; 8226 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); 8227 lro->tcp_ack = tcp->ack_seq; 8228 lro->sg_num = 1; 8229 lro->total_len = ntohs(ip->tot_len); 8230 lro->frags_len = 0; 8231 lro->vlan_tag = vlan_tag; 8232 /* 8233 * Check if we saw TCP timestamp. 8234 * Other consistency checks have already been done. 8235 */ 8236 if (tcp->doff == 8) { 8237 __be32 *ptr; 8238 ptr = (__be32 *)(tcp+1); 8239 lro->saw_ts = 1; 8240 lro->cur_tsval = ntohl(*(ptr+1)); 8241 lro->cur_tsecr = *(ptr+2); 8242 } 8243 lro->in_use = 1; 8244 } 8245 8246 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) 8247 { 8248 struct iphdr *ip = lro->iph; 8249 struct tcphdr *tcp = lro->tcph; 8250 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8251 8252 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8253 8254 /* Update L3 header */ 8255 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len)); 8256 ip->tot_len = htons(lro->total_len); 8257 8258 /* Update L4 header */ 8259 tcp->ack_seq = lro->tcp_ack; 8260 tcp->window = lro->window; 8261 8262 /* Update tsecr field if this session has timestamps enabled */ 8263 if (lro->saw_ts) { 8264 __be32 *ptr = (__be32 *)(tcp + 1); 8265 *(ptr+2) = lro->cur_tsecr; 8266 } 8267 8268 /* Update counters required for calculation of 8269 * average no. of packets aggregated. 8270 */ 8271 swstats->sum_avg_pkts_aggregated += lro->sg_num; 8272 swstats->num_aggregations++; 8273 } 8274 8275 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, 8276 struct tcphdr *tcp, u32 l4_pyld) 8277 { 8278 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8279 lro->total_len += l4_pyld; 8280 lro->frags_len += l4_pyld; 8281 lro->tcp_next_seq += l4_pyld; 8282 lro->sg_num++; 8283 8284 /* Update ack seq no. and window ad(from this pkt) in LRO object */ 8285 lro->tcp_ack = tcp->ack_seq; 8286 lro->window = tcp->window; 8287 8288 if (lro->saw_ts) { 8289 __be32 *ptr; 8290 /* Update tsecr and tsval from this packet */ 8291 ptr = (__be32 *)(tcp+1); 8292 lro->cur_tsval = ntohl(*(ptr+1)); 8293 lro->cur_tsecr = *(ptr + 2); 8294 } 8295 } 8296 8297 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, 8298 struct tcphdr *tcp, u32 tcp_pyld_len) 8299 { 8300 u8 *ptr; 8301 8302 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8303 8304 if (!tcp_pyld_len) { 8305 /* Runt frame or a pure ack */ 8306 return -1; 8307 } 8308 8309 if (ip->ihl != 5) /* IP has options */ 8310 return -1; 8311 8312 /* If we see CE codepoint in IP header, packet is not mergeable */ 8313 if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) 8314 return -1; 8315 8316 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ 8317 if (tcp->urg || tcp->psh || tcp->rst || 8318 tcp->syn || tcp->fin || 8319 tcp->ece || tcp->cwr || !tcp->ack) { 8320 /* 8321 * Currently recognize only the ack control word and 8322 * any other control field being set would result in 8323 * flushing the LRO session 8324 */ 8325 return -1; 8326 } 8327 8328 /* 8329 * Allow only one TCP timestamp option. Don't aggregate if 8330 * any other options are detected. 8331 */ 8332 if (tcp->doff != 5 && tcp->doff != 8) 8333 return -1; 8334 8335 if (tcp->doff == 8) { 8336 ptr = (u8 *)(tcp + 1); 8337 while (*ptr == TCPOPT_NOP) 8338 ptr++; 8339 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) 8340 return -1; 8341 8342 /* Ensure timestamp value increases monotonically */ 8343 if (l_lro) 8344 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) 8345 return -1; 8346 8347 /* timestamp echo reply should be non-zero */ 8348 if (*((__be32 *)(ptr+6)) == 0) 8349 return -1; 8350 } 8351 8352 return 0; 8353 } 8354 8355 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, 8356 u8 **tcp, u32 *tcp_len, struct lro **lro, 8357 struct RxD_t *rxdp, struct s2io_nic *sp) 8358 { 8359 struct iphdr *ip; 8360 struct tcphdr *tcph; 8361 int ret = 0, i; 8362 u16 vlan_tag = 0; 8363 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8364 8365 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, 8366 rxdp, sp); 8367 if (ret) 8368 return ret; 8369 8370 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); 8371 8372 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); 8373 tcph = (struct tcphdr *)*tcp; 8374 *tcp_len = get_l4_pyld_length(ip, tcph); 8375 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8376 struct lro *l_lro = &ring_data->lro0_n[i]; 8377 if (l_lro->in_use) { 8378 if (check_for_socket_match(l_lro, ip, tcph)) 8379 continue; 8380 /* Sock pair matched */ 8381 *lro = l_lro; 8382 8383 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { 8384 DBG_PRINT(INFO_DBG, "%s: Out of sequence. " 8385 "expected 0x%x, actual 0x%x\n", 8386 __func__, 8387 (*lro)->tcp_next_seq, 8388 ntohl(tcph->seq)); 8389 8390 swstats->outof_sequence_pkts++; 8391 ret = 2; 8392 break; 8393 } 8394 8395 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, 8396 *tcp_len)) 8397 ret = 1; /* Aggregate */ 8398 else 8399 ret = 2; /* Flush both */ 8400 break; 8401 } 8402 } 8403 8404 if (ret == 0) { 8405 /* Before searching for available LRO objects, 8406 * check if the pkt is L3/L4 aggregatable. If not 8407 * don't create new LRO session. Just send this 8408 * packet up. 8409 */ 8410 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) 8411 return 5; 8412 8413 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8414 struct lro *l_lro = &ring_data->lro0_n[i]; 8415 if (!(l_lro->in_use)) { 8416 *lro = l_lro; 8417 ret = 3; /* Begin anew */ 8418 break; 8419 } 8420 } 8421 } 8422 8423 if (ret == 0) { /* sessions exceeded */ 8424 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", 8425 __func__); 8426 *lro = NULL; 8427 return ret; 8428 } 8429 8430 switch (ret) { 8431 case 3: 8432 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, 8433 vlan_tag); 8434 break; 8435 case 2: 8436 update_L3L4_header(sp, *lro); 8437 break; 8438 case 1: 8439 aggregate_new_rx(*lro, ip, tcph, *tcp_len); 8440 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { 8441 update_L3L4_header(sp, *lro); 8442 ret = 4; /* Flush the LRO */ 8443 } 8444 break; 8445 default: 8446 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); 8447 break; 8448 } 8449 8450 return ret; 8451 } 8452 8453 static void clear_lro_session(struct lro *lro) 8454 { 8455 static u16 lro_struct_size = sizeof(struct lro); 8456 8457 memset(lro, 0, lro_struct_size); 8458 } 8459 8460 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) 8461 { 8462 struct net_device *dev = skb->dev; 8463 struct s2io_nic *sp = netdev_priv(dev); 8464 8465 skb->protocol = eth_type_trans(skb, dev); 8466 if (vlan_tag && sp->vlan_strip_flag) 8467 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 8468 if (sp->config.napi) 8469 netif_receive_skb(skb); 8470 else 8471 netif_rx(skb); 8472 } 8473 8474 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, 8475 struct sk_buff *skb, u32 tcp_len) 8476 { 8477 struct sk_buff *first = lro->parent; 8478 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8479 8480 first->len += tcp_len; 8481 first->data_len = lro->frags_len; 8482 skb_pull(skb, (skb->len - tcp_len)); 8483 if (skb_shinfo(first)->frag_list) 8484 lro->last_frag->next = skb; 8485 else 8486 skb_shinfo(first)->frag_list = skb; 8487 first->truesize += skb->truesize; 8488 lro->last_frag = skb; 8489 swstats->clubbed_frms_cnt++; 8490 } 8491 8492 /** 8493 * s2io_io_error_detected - called when PCI error is detected 8494 * @pdev: Pointer to PCI device 8495 * @state: The current pci connection state 8496 * 8497 * This function is called after a PCI bus error affecting 8498 * this device has been detected. 8499 */ 8500 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, 8501 pci_channel_state_t state) 8502 { 8503 struct net_device *netdev = pci_get_drvdata(pdev); 8504 struct s2io_nic *sp = netdev_priv(netdev); 8505 8506 netif_device_detach(netdev); 8507 8508 if (state == pci_channel_io_perm_failure) 8509 return PCI_ERS_RESULT_DISCONNECT; 8510 8511 if (netif_running(netdev)) { 8512 /* Bring down the card, while avoiding PCI I/O */ 8513 do_s2io_card_down(sp, 0); 8514 } 8515 pci_disable_device(pdev); 8516 8517 return PCI_ERS_RESULT_NEED_RESET; 8518 } 8519 8520 /** 8521 * s2io_io_slot_reset - called after the pci bus has been reset. 8522 * @pdev: Pointer to PCI device 8523 * 8524 * Restart the card from scratch, as if from a cold-boot. 8525 * At this point, the card has exprienced a hard reset, 8526 * followed by fixups by BIOS, and has its config space 8527 * set up identically to what it was at cold boot. 8528 */ 8529 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) 8530 { 8531 struct net_device *netdev = pci_get_drvdata(pdev); 8532 struct s2io_nic *sp = netdev_priv(netdev); 8533 8534 if (pci_enable_device(pdev)) { 8535 pr_err("Cannot re-enable PCI device after reset.\n"); 8536 return PCI_ERS_RESULT_DISCONNECT; 8537 } 8538 8539 pci_set_master(pdev); 8540 s2io_reset(sp); 8541 8542 return PCI_ERS_RESULT_RECOVERED; 8543 } 8544 8545 /** 8546 * s2io_io_resume - called when traffic can start flowing again. 8547 * @pdev: Pointer to PCI device 8548 * 8549 * This callback is called when the error recovery driver tells 8550 * us that its OK to resume normal operation. 8551 */ 8552 static void s2io_io_resume(struct pci_dev *pdev) 8553 { 8554 struct net_device *netdev = pci_get_drvdata(pdev); 8555 struct s2io_nic *sp = netdev_priv(netdev); 8556 8557 if (netif_running(netdev)) { 8558 if (s2io_card_up(sp)) { 8559 pr_err("Can't bring device back up after reset.\n"); 8560 return; 8561 } 8562 8563 if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) { 8564 s2io_card_down(sp); 8565 pr_err("Can't restore mac addr after reset.\n"); 8566 return; 8567 } 8568 } 8569 8570 netif_device_attach(netdev); 8571 netif_tx_wake_all_queues(netdev); 8572 } 8573