1 /************************************************************************ 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC 3 * Copyright(c) 2002-2010 Exar Corp. 4 * 5 * This software may be used and distributed according to the terms of 6 * the GNU General Public License (GPL), incorporated herein by reference. 7 * Drivers based on or derived from this code fall under the GPL and must 8 * retain the authorship, copyright and license notice. This file is not 9 * a complete program and may only be used when the entire operating 10 * system is licensed under the GPL. 11 * See the file COPYING in this distribution for more information. 12 * 13 * Credits: 14 * Jeff Garzik : For pointing out the improper error condition 15 * check in the s2io_xmit routine and also some 16 * issues in the Tx watch dog function. Also for 17 * patiently answering all those innumerable 18 * questions regaring the 2.6 porting issues. 19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some 20 * macros available only in 2.6 Kernel. 21 * Francois Romieu : For pointing out all code part that were 22 * deprecated and also styling related comments. 23 * Grant Grundler : For helping me get rid of some Architecture 24 * dependent code. 25 * Christopher Hellwig : Some more 2.6 specific issues in the driver. 26 * 27 * The module loadable parameters that are supported by the driver and a brief 28 * explanation of all the variables. 29 * 30 * rx_ring_num : This can be used to program the number of receive rings used 31 * in the driver. 32 * rx_ring_sz: This defines the number of receive blocks each ring can have. 33 * This is also an array of size 8. 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 35 * values are 1, 2. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of 38 * Tx descriptors that can be associated with each corresponding FIFO. 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA), 40 * 2(MSI_X). Default value is '2(MSI_X)' 41 * lro_max_pkts: This parameter defines maximum number of packets can be 42 * aggregated as a single large packet 43 * napi: This parameter used to enable/disable NAPI (polling Rx) 44 * Possible values '1' for enable and '0' for disable. Default is '1' 45 * vlan_tag_strip: This can be used to enable or disable vlan stripping. 46 * Possible values '1' for enable , '0' for disable. 47 * Default is '2' - which means disable in promisc mode 48 * and enable in non-promiscuous mode. 49 * multiq: This parameter used to enable/disable MULTIQUEUE support. 50 * Possible values '1' for enable and '0' for disable. Default is '0' 51 ************************************************************************/ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/module.h> 56 #include <linux/types.h> 57 #include <linux/errno.h> 58 #include <linux/ioport.h> 59 #include <linux/pci.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/kernel.h> 62 #include <linux/netdevice.h> 63 #include <linux/etherdevice.h> 64 #include <linux/mdio.h> 65 #include <linux/skbuff.h> 66 #include <linux/init.h> 67 #include <linux/delay.h> 68 #include <linux/stddef.h> 69 #include <linux/ioctl.h> 70 #include <linux/timex.h> 71 #include <linux/ethtool.h> 72 #include <linux/workqueue.h> 73 #include <linux/if_vlan.h> 74 #include <linux/ip.h> 75 #include <linux/tcp.h> 76 #include <linux/uaccess.h> 77 #include <linux/io.h> 78 #include <linux/io-64-nonatomic-lo-hi.h> 79 #include <linux/slab.h> 80 #include <linux/prefetch.h> 81 #include <net/tcp.h> 82 #include <net/checksum.h> 83 84 #include <asm/div64.h> 85 #include <asm/irq.h> 86 87 /* local include */ 88 #include "s2io.h" 89 #include "s2io-regs.h" 90 91 #define DRV_VERSION "2.0.26.28" 92 93 /* S2io Driver name & version. */ 94 static const char s2io_driver_name[] = "Neterion"; 95 static const char s2io_driver_version[] = DRV_VERSION; 96 97 static const int rxd_size[2] = {32, 48}; 98 static const int rxd_count[2] = {127, 85}; 99 100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) 101 { 102 int ret; 103 104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && 105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); 106 107 return ret; 108 } 109 110 /* 111 * Cards with following subsystem_id have a link state indication 112 * problem, 600B, 600C, 600D, 640B, 640C and 640D. 113 * macro below identifies these cards given the subsystem_id. 114 */ 115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ 116 (dev_type == XFRAME_I_DEVICE) ? \ 117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \ 118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 119 120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ 121 ADAPTER_STATUS_RMAC_LOCAL_FAULT))) 122 123 static inline int is_s2io_card_up(const struct s2io_nic *sp) 124 { 125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state); 126 } 127 128 /* Ethtool related variables and Macros. */ 129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = { 130 "Register test\t(offline)", 131 "Eeprom test\t(offline)", 132 "Link test\t(online)", 133 "RLDRAM test\t(offline)", 134 "BIST Test\t(offline)" 135 }; 136 137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { 138 {"tmac_frms"}, 139 {"tmac_data_octets"}, 140 {"tmac_drop_frms"}, 141 {"tmac_mcst_frms"}, 142 {"tmac_bcst_frms"}, 143 {"tmac_pause_ctrl_frms"}, 144 {"tmac_ttl_octets"}, 145 {"tmac_ucst_frms"}, 146 {"tmac_nucst_frms"}, 147 {"tmac_any_err_frms"}, 148 {"tmac_ttl_less_fb_octets"}, 149 {"tmac_vld_ip_octets"}, 150 {"tmac_vld_ip"}, 151 {"tmac_drop_ip"}, 152 {"tmac_icmp"}, 153 {"tmac_rst_tcp"}, 154 {"tmac_tcp"}, 155 {"tmac_udp"}, 156 {"rmac_vld_frms"}, 157 {"rmac_data_octets"}, 158 {"rmac_fcs_err_frms"}, 159 {"rmac_drop_frms"}, 160 {"rmac_vld_mcst_frms"}, 161 {"rmac_vld_bcst_frms"}, 162 {"rmac_in_rng_len_err_frms"}, 163 {"rmac_out_rng_len_err_frms"}, 164 {"rmac_long_frms"}, 165 {"rmac_pause_ctrl_frms"}, 166 {"rmac_unsup_ctrl_frms"}, 167 {"rmac_ttl_octets"}, 168 {"rmac_accepted_ucst_frms"}, 169 {"rmac_accepted_nucst_frms"}, 170 {"rmac_discarded_frms"}, 171 {"rmac_drop_events"}, 172 {"rmac_ttl_less_fb_octets"}, 173 {"rmac_ttl_frms"}, 174 {"rmac_usized_frms"}, 175 {"rmac_osized_frms"}, 176 {"rmac_frag_frms"}, 177 {"rmac_jabber_frms"}, 178 {"rmac_ttl_64_frms"}, 179 {"rmac_ttl_65_127_frms"}, 180 {"rmac_ttl_128_255_frms"}, 181 {"rmac_ttl_256_511_frms"}, 182 {"rmac_ttl_512_1023_frms"}, 183 {"rmac_ttl_1024_1518_frms"}, 184 {"rmac_ip"}, 185 {"rmac_ip_octets"}, 186 {"rmac_hdr_err_ip"}, 187 {"rmac_drop_ip"}, 188 {"rmac_icmp"}, 189 {"rmac_tcp"}, 190 {"rmac_udp"}, 191 {"rmac_err_drp_udp"}, 192 {"rmac_xgmii_err_sym"}, 193 {"rmac_frms_q0"}, 194 {"rmac_frms_q1"}, 195 {"rmac_frms_q2"}, 196 {"rmac_frms_q3"}, 197 {"rmac_frms_q4"}, 198 {"rmac_frms_q5"}, 199 {"rmac_frms_q6"}, 200 {"rmac_frms_q7"}, 201 {"rmac_full_q0"}, 202 {"rmac_full_q1"}, 203 {"rmac_full_q2"}, 204 {"rmac_full_q3"}, 205 {"rmac_full_q4"}, 206 {"rmac_full_q5"}, 207 {"rmac_full_q6"}, 208 {"rmac_full_q7"}, 209 {"rmac_pause_cnt"}, 210 {"rmac_xgmii_data_err_cnt"}, 211 {"rmac_xgmii_ctrl_err_cnt"}, 212 {"rmac_accepted_ip"}, 213 {"rmac_err_tcp"}, 214 {"rd_req_cnt"}, 215 {"new_rd_req_cnt"}, 216 {"new_rd_req_rtry_cnt"}, 217 {"rd_rtry_cnt"}, 218 {"wr_rtry_rd_ack_cnt"}, 219 {"wr_req_cnt"}, 220 {"new_wr_req_cnt"}, 221 {"new_wr_req_rtry_cnt"}, 222 {"wr_rtry_cnt"}, 223 {"wr_disc_cnt"}, 224 {"rd_rtry_wr_ack_cnt"}, 225 {"txp_wr_cnt"}, 226 {"txd_rd_cnt"}, 227 {"txd_wr_cnt"}, 228 {"rxd_rd_cnt"}, 229 {"rxd_wr_cnt"}, 230 {"txf_rd_cnt"}, 231 {"rxf_wr_cnt"} 232 }; 233 234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { 235 {"rmac_ttl_1519_4095_frms"}, 236 {"rmac_ttl_4096_8191_frms"}, 237 {"rmac_ttl_8192_max_frms"}, 238 {"rmac_ttl_gt_max_frms"}, 239 {"rmac_osized_alt_frms"}, 240 {"rmac_jabber_alt_frms"}, 241 {"rmac_gt_max_alt_frms"}, 242 {"rmac_vlan_frms"}, 243 {"rmac_len_discard"}, 244 {"rmac_fcs_discard"}, 245 {"rmac_pf_discard"}, 246 {"rmac_da_discard"}, 247 {"rmac_red_discard"}, 248 {"rmac_rts_discard"}, 249 {"rmac_ingm_full_discard"}, 250 {"link_fault_cnt"} 251 }; 252 253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { 254 {"\n DRIVER STATISTICS"}, 255 {"single_bit_ecc_errs"}, 256 {"double_bit_ecc_errs"}, 257 {"parity_err_cnt"}, 258 {"serious_err_cnt"}, 259 {"soft_reset_cnt"}, 260 {"fifo_full_cnt"}, 261 {"ring_0_full_cnt"}, 262 {"ring_1_full_cnt"}, 263 {"ring_2_full_cnt"}, 264 {"ring_3_full_cnt"}, 265 {"ring_4_full_cnt"}, 266 {"ring_5_full_cnt"}, 267 {"ring_6_full_cnt"}, 268 {"ring_7_full_cnt"}, 269 {"alarm_transceiver_temp_high"}, 270 {"alarm_transceiver_temp_low"}, 271 {"alarm_laser_bias_current_high"}, 272 {"alarm_laser_bias_current_low"}, 273 {"alarm_laser_output_power_high"}, 274 {"alarm_laser_output_power_low"}, 275 {"warn_transceiver_temp_high"}, 276 {"warn_transceiver_temp_low"}, 277 {"warn_laser_bias_current_high"}, 278 {"warn_laser_bias_current_low"}, 279 {"warn_laser_output_power_high"}, 280 {"warn_laser_output_power_low"}, 281 {"lro_aggregated_pkts"}, 282 {"lro_flush_both_count"}, 283 {"lro_out_of_sequence_pkts"}, 284 {"lro_flush_due_to_max_pkts"}, 285 {"lro_avg_aggr_pkts"}, 286 {"mem_alloc_fail_cnt"}, 287 {"pci_map_fail_cnt"}, 288 {"watchdog_timer_cnt"}, 289 {"mem_allocated"}, 290 {"mem_freed"}, 291 {"link_up_cnt"}, 292 {"link_down_cnt"}, 293 {"link_up_time"}, 294 {"link_down_time"}, 295 {"tx_tcode_buf_abort_cnt"}, 296 {"tx_tcode_desc_abort_cnt"}, 297 {"tx_tcode_parity_err_cnt"}, 298 {"tx_tcode_link_loss_cnt"}, 299 {"tx_tcode_list_proc_err_cnt"}, 300 {"rx_tcode_parity_err_cnt"}, 301 {"rx_tcode_abort_cnt"}, 302 {"rx_tcode_parity_abort_cnt"}, 303 {"rx_tcode_rda_fail_cnt"}, 304 {"rx_tcode_unkn_prot_cnt"}, 305 {"rx_tcode_fcs_err_cnt"}, 306 {"rx_tcode_buf_size_err_cnt"}, 307 {"rx_tcode_rxd_corrupt_cnt"}, 308 {"rx_tcode_unkn_err_cnt"}, 309 {"tda_err_cnt"}, 310 {"pfc_err_cnt"}, 311 {"pcc_err_cnt"}, 312 {"tti_err_cnt"}, 313 {"tpa_err_cnt"}, 314 {"sm_err_cnt"}, 315 {"lso_err_cnt"}, 316 {"mac_tmac_err_cnt"}, 317 {"mac_rmac_err_cnt"}, 318 {"xgxs_txgxs_err_cnt"}, 319 {"xgxs_rxgxs_err_cnt"}, 320 {"rc_err_cnt"}, 321 {"prc_pcix_err_cnt"}, 322 {"rpa_err_cnt"}, 323 {"rda_err_cnt"}, 324 {"rti_err_cnt"}, 325 {"mc_err_cnt"} 326 }; 327 328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) 329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) 330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) 331 332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) 333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) 334 335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) 336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) 337 338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) 339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) 340 341 /* copy mac addr to def_mac_addr array */ 342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) 343 { 344 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); 345 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); 346 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); 347 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); 348 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); 349 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); 350 } 351 352 /* 353 * Constants to be programmed into the Xena's registers, to configure 354 * the XAUI. 355 */ 356 357 #define END_SIGN 0x0 358 static const u64 herc_act_dtx_cfg[] = { 359 /* Set address */ 360 0x8000051536750000ULL, 0x80000515367500E0ULL, 361 /* Write data */ 362 0x8000051536750004ULL, 0x80000515367500E4ULL, 363 /* Set address */ 364 0x80010515003F0000ULL, 0x80010515003F00E0ULL, 365 /* Write data */ 366 0x80010515003F0004ULL, 0x80010515003F00E4ULL, 367 /* Set address */ 368 0x801205150D440000ULL, 0x801205150D4400E0ULL, 369 /* Write data */ 370 0x801205150D440004ULL, 0x801205150D4400E4ULL, 371 /* Set address */ 372 0x80020515F2100000ULL, 0x80020515F21000E0ULL, 373 /* Write data */ 374 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 375 /* Done */ 376 END_SIGN 377 }; 378 379 static const u64 xena_dtx_cfg[] = { 380 /* Set address */ 381 0x8000051500000000ULL, 0x80000515000000E0ULL, 382 /* Write data */ 383 0x80000515D9350004ULL, 0x80000515D93500E4ULL, 384 /* Set address */ 385 0x8001051500000000ULL, 0x80010515000000E0ULL, 386 /* Write data */ 387 0x80010515001E0004ULL, 0x80010515001E00E4ULL, 388 /* Set address */ 389 0x8002051500000000ULL, 0x80020515000000E0ULL, 390 /* Write data */ 391 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 392 END_SIGN 393 }; 394 395 /* 396 * Constants for Fixing the MacAddress problem seen mostly on 397 * Alpha machines. 398 */ 399 static const u64 fix_mac[] = { 400 0x0060000000000000ULL, 0x0060600000000000ULL, 401 0x0040600000000000ULL, 0x0000600000000000ULL, 402 0x0020600000000000ULL, 0x0060600000000000ULL, 403 0x0020600000000000ULL, 0x0060600000000000ULL, 404 0x0020600000000000ULL, 0x0060600000000000ULL, 405 0x0020600000000000ULL, 0x0060600000000000ULL, 406 0x0020600000000000ULL, 0x0060600000000000ULL, 407 0x0020600000000000ULL, 0x0060600000000000ULL, 408 0x0020600000000000ULL, 0x0060600000000000ULL, 409 0x0020600000000000ULL, 0x0060600000000000ULL, 410 0x0020600000000000ULL, 0x0060600000000000ULL, 411 0x0020600000000000ULL, 0x0060600000000000ULL, 412 0x0020600000000000ULL, 0x0000600000000000ULL, 413 0x0040600000000000ULL, 0x0060600000000000ULL, 414 END_SIGN 415 }; 416 417 MODULE_DESCRIPTION("Neterion 10GbE driver"); 418 MODULE_LICENSE("GPL"); 419 MODULE_VERSION(DRV_VERSION); 420 421 422 /* Module Loadable parameters. */ 423 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); 424 S2IO_PARM_INT(rx_ring_num, 1); 425 S2IO_PARM_INT(multiq, 0); 426 S2IO_PARM_INT(rx_ring_mode, 1); 427 S2IO_PARM_INT(use_continuous_tx_intrs, 1); 428 S2IO_PARM_INT(rmac_pause_time, 0x100); 429 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); 430 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); 431 S2IO_PARM_INT(shared_splits, 0); 432 S2IO_PARM_INT(tmac_util_period, 5); 433 S2IO_PARM_INT(rmac_util_period, 5); 434 S2IO_PARM_INT(l3l4hdr_size, 128); 435 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ 436 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); 437 /* Frequency of Rx desc syncs expressed as power of 2 */ 438 S2IO_PARM_INT(rxsync_frequency, 3); 439 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ 440 S2IO_PARM_INT(intr_type, 2); 441 /* Large receive offload feature */ 442 443 /* Max pkts to be aggregated by LRO at one time. If not specified, 444 * aggregation happens until we hit max IP pkt size(64K) 445 */ 446 S2IO_PARM_INT(lro_max_pkts, 0xFFFF); 447 S2IO_PARM_INT(indicate_max_pkts, 0); 448 449 S2IO_PARM_INT(napi, 1); 450 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); 451 452 static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 453 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; 454 static unsigned int rx_ring_sz[MAX_RX_RINGS] = 455 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; 456 static unsigned int rts_frm_len[MAX_RX_RINGS] = 457 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 458 459 module_param_array(tx_fifo_len, uint, NULL, 0); 460 module_param_array(rx_ring_sz, uint, NULL, 0); 461 module_param_array(rts_frm_len, uint, NULL, 0); 462 463 /* 464 * S2IO device table. 465 * This table lists all the devices that this driver supports. 466 */ 467 static const struct pci_device_id s2io_tbl[] = { 468 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, 469 PCI_ANY_ID, PCI_ANY_ID}, 470 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, 471 PCI_ANY_ID, PCI_ANY_ID}, 472 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, 473 PCI_ANY_ID, PCI_ANY_ID}, 474 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, 475 PCI_ANY_ID, PCI_ANY_ID}, 476 {0,} 477 }; 478 479 MODULE_DEVICE_TABLE(pci, s2io_tbl); 480 481 static const struct pci_error_handlers s2io_err_handler = { 482 .error_detected = s2io_io_error_detected, 483 .slot_reset = s2io_io_slot_reset, 484 .resume = s2io_io_resume, 485 }; 486 487 static struct pci_driver s2io_driver = { 488 .name = "S2IO", 489 .id_table = s2io_tbl, 490 .probe = s2io_init_nic, 491 .remove = s2io_rem_nic, 492 .err_handler = &s2io_err_handler, 493 }; 494 495 /* A simplifier macro used both by init and free shared_mem Fns(). */ 496 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each) 497 498 /* netqueue manipulation helper functions */ 499 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) 500 { 501 if (!sp->config.multiq) { 502 int i; 503 504 for (i = 0; i < sp->config.tx_fifo_num; i++) 505 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; 506 } 507 netif_tx_stop_all_queues(sp->dev); 508 } 509 510 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) 511 { 512 if (!sp->config.multiq) 513 sp->mac_control.fifos[fifo_no].queue_state = 514 FIFO_QUEUE_STOP; 515 516 netif_tx_stop_all_queues(sp->dev); 517 } 518 519 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) 520 { 521 if (!sp->config.multiq) { 522 int i; 523 524 for (i = 0; i < sp->config.tx_fifo_num; i++) 525 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 526 } 527 netif_tx_start_all_queues(sp->dev); 528 } 529 530 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) 531 { 532 if (!sp->config.multiq) { 533 int i; 534 535 for (i = 0; i < sp->config.tx_fifo_num; i++) 536 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 537 } 538 netif_tx_wake_all_queues(sp->dev); 539 } 540 541 static inline void s2io_wake_tx_queue( 542 struct fifo_info *fifo, int cnt, u8 multiq) 543 { 544 545 if (multiq) { 546 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) 547 netif_wake_subqueue(fifo->dev, fifo->fifo_no); 548 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { 549 if (netif_queue_stopped(fifo->dev)) { 550 fifo->queue_state = FIFO_QUEUE_START; 551 netif_wake_queue(fifo->dev); 552 } 553 } 554 } 555 556 /** 557 * init_shared_mem - Allocation and Initialization of Memory 558 * @nic: Device private variable. 559 * Description: The function allocates all the memory areas shared 560 * between the NIC and the driver. This includes Tx descriptors, 561 * Rx descriptors and the statistics block. 562 */ 563 564 static int init_shared_mem(struct s2io_nic *nic) 565 { 566 u32 size; 567 void *tmp_v_addr, *tmp_v_addr_next; 568 dma_addr_t tmp_p_addr, tmp_p_addr_next; 569 struct RxD_block *pre_rxd_blk = NULL; 570 int i, j, blk_cnt; 571 int lst_size, lst_per_page; 572 struct net_device *dev = nic->dev; 573 unsigned long tmp; 574 struct buffAdd *ba; 575 struct config_param *config = &nic->config; 576 struct mac_info *mac_control = &nic->mac_control; 577 unsigned long long mem_allocated = 0; 578 579 /* Allocation and initialization of TXDLs in FIFOs */ 580 size = 0; 581 for (i = 0; i < config->tx_fifo_num; i++) { 582 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 583 584 size += tx_cfg->fifo_len; 585 } 586 if (size > MAX_AVAILABLE_TXDS) { 587 DBG_PRINT(ERR_DBG, 588 "Too many TxDs requested: %d, max supported: %d\n", 589 size, MAX_AVAILABLE_TXDS); 590 return -EINVAL; 591 } 592 593 size = 0; 594 for (i = 0; i < config->tx_fifo_num; i++) { 595 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 596 597 size = tx_cfg->fifo_len; 598 /* 599 * Legal values are from 2 to 8192 600 */ 601 if (size < 2) { 602 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " 603 "Valid lengths are 2 through 8192\n", 604 i, size); 605 return -EINVAL; 606 } 607 } 608 609 lst_size = (sizeof(struct TxD) * config->max_txds); 610 lst_per_page = PAGE_SIZE / lst_size; 611 612 for (i = 0; i < config->tx_fifo_num; i++) { 613 struct fifo_info *fifo = &mac_control->fifos[i]; 614 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 615 int fifo_len = tx_cfg->fifo_len; 616 int list_holder_size = fifo_len * sizeof(struct list_info_hold); 617 618 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); 619 if (!fifo->list_info) { 620 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); 621 return -ENOMEM; 622 } 623 mem_allocated += list_holder_size; 624 } 625 for (i = 0; i < config->tx_fifo_num; i++) { 626 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, 627 lst_per_page); 628 struct fifo_info *fifo = &mac_control->fifos[i]; 629 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 630 631 fifo->tx_curr_put_info.offset = 0; 632 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; 633 fifo->tx_curr_get_info.offset = 0; 634 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; 635 fifo->fifo_no = i; 636 fifo->nic = nic; 637 fifo->max_txds = MAX_SKB_FRAGS + 2; 638 fifo->dev = dev; 639 640 for (j = 0; j < page_num; j++) { 641 int k = 0; 642 dma_addr_t tmp_p; 643 void *tmp_v; 644 tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE, 645 &tmp_p, GFP_KERNEL); 646 if (!tmp_v) { 647 DBG_PRINT(INFO_DBG, 648 "dma_alloc_coherent failed for TxDL\n"); 649 return -ENOMEM; 650 } 651 /* If we got a zero DMA address(can happen on 652 * certain platforms like PPC), reallocate. 653 * Store virtual address of page we don't want, 654 * to be freed later. 655 */ 656 if (!tmp_p) { 657 mac_control->zerodma_virt_addr = tmp_v; 658 DBG_PRINT(INIT_DBG, 659 "%s: Zero DMA address for TxDL. " 660 "Virtual address %p\n", 661 dev->name, tmp_v); 662 tmp_v = dma_alloc_coherent(&nic->pdev->dev, 663 PAGE_SIZE, &tmp_p, 664 GFP_KERNEL); 665 if (!tmp_v) { 666 DBG_PRINT(INFO_DBG, 667 "dma_alloc_coherent failed for TxDL\n"); 668 return -ENOMEM; 669 } 670 mem_allocated += PAGE_SIZE; 671 } 672 while (k < lst_per_page) { 673 int l = (j * lst_per_page) + k; 674 if (l == tx_cfg->fifo_len) 675 break; 676 fifo->list_info[l].list_virt_addr = 677 tmp_v + (k * lst_size); 678 fifo->list_info[l].list_phy_addr = 679 tmp_p + (k * lst_size); 680 k++; 681 } 682 } 683 } 684 685 for (i = 0; i < config->tx_fifo_num; i++) { 686 struct fifo_info *fifo = &mac_control->fifos[i]; 687 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 688 689 size = tx_cfg->fifo_len; 690 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); 691 if (!fifo->ufo_in_band_v) 692 return -ENOMEM; 693 mem_allocated += (size * sizeof(u64)); 694 } 695 696 /* Allocation and initialization of RXDs in Rings */ 697 size = 0; 698 for (i = 0; i < config->rx_ring_num; i++) { 699 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 700 struct ring_info *ring = &mac_control->rings[i]; 701 702 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { 703 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " 704 "multiple of RxDs per Block\n", 705 dev->name, i); 706 return FAILURE; 707 } 708 size += rx_cfg->num_rxd; 709 ring->block_count = rx_cfg->num_rxd / 710 (rxd_count[nic->rxd_mode] + 1); 711 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; 712 } 713 if (nic->rxd_mode == RXD_MODE_1) 714 size = (size * (sizeof(struct RxD1))); 715 else 716 size = (size * (sizeof(struct RxD3))); 717 718 for (i = 0; i < config->rx_ring_num; i++) { 719 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 720 struct ring_info *ring = &mac_control->rings[i]; 721 722 ring->rx_curr_get_info.block_index = 0; 723 ring->rx_curr_get_info.offset = 0; 724 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; 725 ring->rx_curr_put_info.block_index = 0; 726 ring->rx_curr_put_info.offset = 0; 727 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; 728 ring->nic = nic; 729 ring->ring_no = i; 730 731 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); 732 /* Allocating all the Rx blocks */ 733 for (j = 0; j < blk_cnt; j++) { 734 struct rx_block_info *rx_blocks; 735 int l; 736 737 rx_blocks = &ring->rx_blocks[j]; 738 size = SIZE_OF_BLOCK; /* size is always page size */ 739 tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size, 740 &tmp_p_addr, GFP_KERNEL); 741 if (tmp_v_addr == NULL) { 742 /* 743 * In case of failure, free_shared_mem() 744 * is called, which should free any 745 * memory that was alloced till the 746 * failure happened. 747 */ 748 rx_blocks->block_virt_addr = tmp_v_addr; 749 return -ENOMEM; 750 } 751 mem_allocated += size; 752 753 size = sizeof(struct rxd_info) * 754 rxd_count[nic->rxd_mode]; 755 rx_blocks->block_virt_addr = tmp_v_addr; 756 rx_blocks->block_dma_addr = tmp_p_addr; 757 rx_blocks->rxds = kmalloc(size, GFP_KERNEL); 758 if (!rx_blocks->rxds) 759 return -ENOMEM; 760 mem_allocated += size; 761 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { 762 rx_blocks->rxds[l].virt_addr = 763 rx_blocks->block_virt_addr + 764 (rxd_size[nic->rxd_mode] * l); 765 rx_blocks->rxds[l].dma_addr = 766 rx_blocks->block_dma_addr + 767 (rxd_size[nic->rxd_mode] * l); 768 } 769 } 770 /* Interlinking all Rx Blocks */ 771 for (j = 0; j < blk_cnt; j++) { 772 int next = (j + 1) % blk_cnt; 773 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 774 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; 775 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 776 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; 777 778 pre_rxd_blk = tmp_v_addr; 779 pre_rxd_blk->reserved_2_pNext_RxD_block = 780 (unsigned long)tmp_v_addr_next; 781 pre_rxd_blk->pNext_RxD_Blk_physical = 782 (u64)tmp_p_addr_next; 783 } 784 } 785 if (nic->rxd_mode == RXD_MODE_3B) { 786 /* 787 * Allocation of Storages for buffer addresses in 2BUFF mode 788 * and the buffers as well. 789 */ 790 for (i = 0; i < config->rx_ring_num; i++) { 791 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 792 struct ring_info *ring = &mac_control->rings[i]; 793 794 blk_cnt = rx_cfg->num_rxd / 795 (rxd_count[nic->rxd_mode] + 1); 796 size = sizeof(struct buffAdd *) * blk_cnt; 797 ring->ba = kmalloc(size, GFP_KERNEL); 798 if (!ring->ba) 799 return -ENOMEM; 800 mem_allocated += size; 801 for (j = 0; j < blk_cnt; j++) { 802 int k = 0; 803 804 size = sizeof(struct buffAdd) * 805 (rxd_count[nic->rxd_mode] + 1); 806 ring->ba[j] = kmalloc(size, GFP_KERNEL); 807 if (!ring->ba[j]) 808 return -ENOMEM; 809 mem_allocated += size; 810 while (k != rxd_count[nic->rxd_mode]) { 811 ba = &ring->ba[j][k]; 812 size = BUF0_LEN + ALIGN_SIZE; 813 ba->ba_0_org = kmalloc(size, GFP_KERNEL); 814 if (!ba->ba_0_org) 815 return -ENOMEM; 816 mem_allocated += size; 817 tmp = (unsigned long)ba->ba_0_org; 818 tmp += ALIGN_SIZE; 819 tmp &= ~((unsigned long)ALIGN_SIZE); 820 ba->ba_0 = (void *)tmp; 821 822 size = BUF1_LEN + ALIGN_SIZE; 823 ba->ba_1_org = kmalloc(size, GFP_KERNEL); 824 if (!ba->ba_1_org) 825 return -ENOMEM; 826 mem_allocated += size; 827 tmp = (unsigned long)ba->ba_1_org; 828 tmp += ALIGN_SIZE; 829 tmp &= ~((unsigned long)ALIGN_SIZE); 830 ba->ba_1 = (void *)tmp; 831 k++; 832 } 833 } 834 } 835 } 836 837 /* Allocation and initialization of Statistics block */ 838 size = sizeof(struct stat_block); 839 mac_control->stats_mem = 840 dma_alloc_coherent(&nic->pdev->dev, size, 841 &mac_control->stats_mem_phy, GFP_KERNEL); 842 843 if (!mac_control->stats_mem) { 844 /* 845 * In case of failure, free_shared_mem() is called, which 846 * should free any memory that was alloced till the 847 * failure happened. 848 */ 849 return -ENOMEM; 850 } 851 mem_allocated += size; 852 mac_control->stats_mem_sz = size; 853 854 tmp_v_addr = mac_control->stats_mem; 855 mac_control->stats_info = tmp_v_addr; 856 memset(tmp_v_addr, 0, size); 857 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", 858 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); 859 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; 860 return SUCCESS; 861 } 862 863 /** 864 * free_shared_mem - Free the allocated Memory 865 * @nic: Device private variable. 866 * Description: This function is to free all memory locations allocated by 867 * the init_shared_mem() function and return it to the kernel. 868 */ 869 870 static void free_shared_mem(struct s2io_nic *nic) 871 { 872 int i, j, blk_cnt, size; 873 void *tmp_v_addr; 874 dma_addr_t tmp_p_addr; 875 int lst_size, lst_per_page; 876 struct net_device *dev; 877 int page_num = 0; 878 struct config_param *config; 879 struct mac_info *mac_control; 880 struct stat_block *stats; 881 struct swStat *swstats; 882 883 if (!nic) 884 return; 885 886 dev = nic->dev; 887 888 config = &nic->config; 889 mac_control = &nic->mac_control; 890 stats = mac_control->stats_info; 891 swstats = &stats->sw_stat; 892 893 lst_size = sizeof(struct TxD) * config->max_txds; 894 lst_per_page = PAGE_SIZE / lst_size; 895 896 for (i = 0; i < config->tx_fifo_num; i++) { 897 struct fifo_info *fifo = &mac_control->fifos[i]; 898 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 899 900 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); 901 for (j = 0; j < page_num; j++) { 902 int mem_blks = (j * lst_per_page); 903 struct list_info_hold *fli; 904 905 if (!fifo->list_info) 906 return; 907 908 fli = &fifo->list_info[mem_blks]; 909 if (!fli->list_virt_addr) 910 break; 911 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE, 912 fli->list_virt_addr, 913 fli->list_phy_addr); 914 swstats->mem_freed += PAGE_SIZE; 915 } 916 /* If we got a zero DMA address during allocation, 917 * free the page now 918 */ 919 if (mac_control->zerodma_virt_addr) { 920 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE, 921 mac_control->zerodma_virt_addr, 922 (dma_addr_t)0); 923 DBG_PRINT(INIT_DBG, 924 "%s: Freeing TxDL with zero DMA address. " 925 "Virtual address %p\n", 926 dev->name, mac_control->zerodma_virt_addr); 927 swstats->mem_freed += PAGE_SIZE; 928 } 929 kfree(fifo->list_info); 930 swstats->mem_freed += tx_cfg->fifo_len * 931 sizeof(struct list_info_hold); 932 } 933 934 size = SIZE_OF_BLOCK; 935 for (i = 0; i < config->rx_ring_num; i++) { 936 struct ring_info *ring = &mac_control->rings[i]; 937 938 blk_cnt = ring->block_count; 939 for (j = 0; j < blk_cnt; j++) { 940 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 941 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 942 if (tmp_v_addr == NULL) 943 break; 944 dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr, 945 tmp_p_addr); 946 swstats->mem_freed += size; 947 kfree(ring->rx_blocks[j].rxds); 948 swstats->mem_freed += sizeof(struct rxd_info) * 949 rxd_count[nic->rxd_mode]; 950 } 951 } 952 953 if (nic->rxd_mode == RXD_MODE_3B) { 954 /* Freeing buffer storage addresses in 2BUFF mode. */ 955 for (i = 0; i < config->rx_ring_num; i++) { 956 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 957 struct ring_info *ring = &mac_control->rings[i]; 958 959 blk_cnt = rx_cfg->num_rxd / 960 (rxd_count[nic->rxd_mode] + 1); 961 for (j = 0; j < blk_cnt; j++) { 962 int k = 0; 963 if (!ring->ba[j]) 964 continue; 965 while (k != rxd_count[nic->rxd_mode]) { 966 struct buffAdd *ba = &ring->ba[j][k]; 967 kfree(ba->ba_0_org); 968 swstats->mem_freed += 969 BUF0_LEN + ALIGN_SIZE; 970 kfree(ba->ba_1_org); 971 swstats->mem_freed += 972 BUF1_LEN + ALIGN_SIZE; 973 k++; 974 } 975 kfree(ring->ba[j]); 976 swstats->mem_freed += sizeof(struct buffAdd) * 977 (rxd_count[nic->rxd_mode] + 1); 978 } 979 kfree(ring->ba); 980 swstats->mem_freed += sizeof(struct buffAdd *) * 981 blk_cnt; 982 } 983 } 984 985 for (i = 0; i < nic->config.tx_fifo_num; i++) { 986 struct fifo_info *fifo = &mac_control->fifos[i]; 987 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 988 989 if (fifo->ufo_in_band_v) { 990 swstats->mem_freed += tx_cfg->fifo_len * 991 sizeof(u64); 992 kfree(fifo->ufo_in_band_v); 993 } 994 } 995 996 if (mac_control->stats_mem) { 997 swstats->mem_freed += mac_control->stats_mem_sz; 998 dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz, 999 mac_control->stats_mem, 1000 mac_control->stats_mem_phy); 1001 } 1002 } 1003 1004 /* 1005 * s2io_verify_pci_mode - 1006 */ 1007 1008 static int s2io_verify_pci_mode(struct s2io_nic *nic) 1009 { 1010 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1011 register u64 val64 = 0; 1012 int mode; 1013 1014 val64 = readq(&bar0->pci_mode); 1015 mode = (u8)GET_PCI_MODE(val64); 1016 1017 if (val64 & PCI_MODE_UNKNOWN_MODE) 1018 return -1; /* Unknown PCI mode */ 1019 return mode; 1020 } 1021 1022 #define NEC_VENID 0x1033 1023 #define NEC_DEVID 0x0125 1024 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) 1025 { 1026 struct pci_dev *tdev = NULL; 1027 for_each_pci_dev(tdev) { 1028 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { 1029 if (tdev->bus == s2io_pdev->bus->parent) { 1030 pci_dev_put(tdev); 1031 return 1; 1032 } 1033 } 1034 } 1035 return 0; 1036 } 1037 1038 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; 1039 /* 1040 * s2io_print_pci_mode - 1041 */ 1042 static int s2io_print_pci_mode(struct s2io_nic *nic) 1043 { 1044 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1045 register u64 val64 = 0; 1046 int mode; 1047 struct config_param *config = &nic->config; 1048 const char *pcimode; 1049 1050 val64 = readq(&bar0->pci_mode); 1051 mode = (u8)GET_PCI_MODE(val64); 1052 1053 if (val64 & PCI_MODE_UNKNOWN_MODE) 1054 return -1; /* Unknown PCI mode */ 1055 1056 config->bus_speed = bus_speed[mode]; 1057 1058 if (s2io_on_nec_bridge(nic->pdev)) { 1059 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", 1060 nic->dev->name); 1061 return mode; 1062 } 1063 1064 switch (mode) { 1065 case PCI_MODE_PCI_33: 1066 pcimode = "33MHz PCI bus"; 1067 break; 1068 case PCI_MODE_PCI_66: 1069 pcimode = "66MHz PCI bus"; 1070 break; 1071 case PCI_MODE_PCIX_M1_66: 1072 pcimode = "66MHz PCIX(M1) bus"; 1073 break; 1074 case PCI_MODE_PCIX_M1_100: 1075 pcimode = "100MHz PCIX(M1) bus"; 1076 break; 1077 case PCI_MODE_PCIX_M1_133: 1078 pcimode = "133MHz PCIX(M1) bus"; 1079 break; 1080 case PCI_MODE_PCIX_M2_66: 1081 pcimode = "133MHz PCIX(M2) bus"; 1082 break; 1083 case PCI_MODE_PCIX_M2_100: 1084 pcimode = "200MHz PCIX(M2) bus"; 1085 break; 1086 case PCI_MODE_PCIX_M2_133: 1087 pcimode = "266MHz PCIX(M2) bus"; 1088 break; 1089 default: 1090 pcimode = "unsupported bus!"; 1091 mode = -1; 1092 } 1093 1094 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", 1095 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); 1096 1097 return mode; 1098 } 1099 1100 /** 1101 * init_tti - Initialization transmit traffic interrupt scheme 1102 * @nic: device private variable 1103 * @link: link status (UP/DOWN) used to enable/disable continuous 1104 * transmit interrupts 1105 * @may_sleep: parameter indicates if sleeping when waiting for 1106 * command complete 1107 * Description: The function configures transmit traffic interrupts 1108 * Return Value: SUCCESS on success and 1109 * '-1' on failure 1110 */ 1111 1112 static int init_tti(struct s2io_nic *nic, int link, bool may_sleep) 1113 { 1114 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1115 register u64 val64 = 0; 1116 int i; 1117 struct config_param *config = &nic->config; 1118 1119 for (i = 0; i < config->tx_fifo_num; i++) { 1120 /* 1121 * TTI Initialization. Default Tx timer gets us about 1122 * 250 interrupts per sec. Continuous interrupts are enabled 1123 * by default. 1124 */ 1125 if (nic->device_type == XFRAME_II_DEVICE) { 1126 int count = (nic->config.bus_speed * 125)/2; 1127 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); 1128 } else 1129 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); 1130 1131 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | 1132 TTI_DATA1_MEM_TX_URNG_B(0x10) | 1133 TTI_DATA1_MEM_TX_URNG_C(0x30) | 1134 TTI_DATA1_MEM_TX_TIMER_AC_EN; 1135 if (i == 0) 1136 if (use_continuous_tx_intrs && (link == LINK_UP)) 1137 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; 1138 writeq(val64, &bar0->tti_data1_mem); 1139 1140 if (nic->config.intr_type == MSI_X) { 1141 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1142 TTI_DATA2_MEM_TX_UFC_B(0x100) | 1143 TTI_DATA2_MEM_TX_UFC_C(0x200) | 1144 TTI_DATA2_MEM_TX_UFC_D(0x300); 1145 } else { 1146 if ((nic->config.tx_steering_type == 1147 TX_DEFAULT_STEERING) && 1148 (config->tx_fifo_num > 1) && 1149 (i >= nic->udp_fifo_idx) && 1150 (i < (nic->udp_fifo_idx + 1151 nic->total_udp_fifos))) 1152 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | 1153 TTI_DATA2_MEM_TX_UFC_B(0x80) | 1154 TTI_DATA2_MEM_TX_UFC_C(0x100) | 1155 TTI_DATA2_MEM_TX_UFC_D(0x120); 1156 else 1157 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1158 TTI_DATA2_MEM_TX_UFC_B(0x20) | 1159 TTI_DATA2_MEM_TX_UFC_C(0x40) | 1160 TTI_DATA2_MEM_TX_UFC_D(0x80); 1161 } 1162 1163 writeq(val64, &bar0->tti_data2_mem); 1164 1165 val64 = TTI_CMD_MEM_WE | 1166 TTI_CMD_MEM_STROBE_NEW_CMD | 1167 TTI_CMD_MEM_OFFSET(i); 1168 writeq(val64, &bar0->tti_command_mem); 1169 1170 if (wait_for_cmd_complete(&bar0->tti_command_mem, 1171 TTI_CMD_MEM_STROBE_NEW_CMD, 1172 S2IO_BIT_RESET, may_sleep) != SUCCESS) 1173 return FAILURE; 1174 } 1175 1176 return SUCCESS; 1177 } 1178 1179 /** 1180 * init_nic - Initialization of hardware 1181 * @nic: device private variable 1182 * Description: The function sequentially configures every block 1183 * of the H/W from their reset values. 1184 * Return Value: SUCCESS on success and 1185 * '-1' on failure (endian settings incorrect). 1186 */ 1187 1188 static int init_nic(struct s2io_nic *nic) 1189 { 1190 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1191 struct net_device *dev = nic->dev; 1192 register u64 val64 = 0; 1193 void __iomem *add; 1194 u32 time; 1195 int i, j; 1196 int dtx_cnt = 0; 1197 unsigned long long mem_share; 1198 int mem_size; 1199 struct config_param *config = &nic->config; 1200 struct mac_info *mac_control = &nic->mac_control; 1201 1202 /* to set the swapper controle on the card */ 1203 if (s2io_set_swapper(nic)) { 1204 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); 1205 return -EIO; 1206 } 1207 1208 /* 1209 * Herc requires EOI to be removed from reset before XGXS, so.. 1210 */ 1211 if (nic->device_type & XFRAME_II_DEVICE) { 1212 val64 = 0xA500000000ULL; 1213 writeq(val64, &bar0->sw_reset); 1214 msleep(500); 1215 val64 = readq(&bar0->sw_reset); 1216 } 1217 1218 /* Remove XGXS from reset state */ 1219 val64 = 0; 1220 writeq(val64, &bar0->sw_reset); 1221 msleep(500); 1222 val64 = readq(&bar0->sw_reset); 1223 1224 /* Ensure that it's safe to access registers by checking 1225 * RIC_RUNNING bit is reset. Check is valid only for XframeII. 1226 */ 1227 if (nic->device_type == XFRAME_II_DEVICE) { 1228 for (i = 0; i < 50; i++) { 1229 val64 = readq(&bar0->adapter_status); 1230 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) 1231 break; 1232 msleep(10); 1233 } 1234 if (i == 50) 1235 return -ENODEV; 1236 } 1237 1238 /* Enable Receiving broadcasts */ 1239 add = &bar0->mac_cfg; 1240 val64 = readq(&bar0->mac_cfg); 1241 val64 |= MAC_RMAC_BCAST_ENABLE; 1242 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1243 writel((u32)val64, add); 1244 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1245 writel((u32) (val64 >> 32), (add + 4)); 1246 1247 /* Read registers in all blocks */ 1248 val64 = readq(&bar0->mac_int_mask); 1249 val64 = readq(&bar0->mc_int_mask); 1250 val64 = readq(&bar0->xgxs_int_mask); 1251 1252 /* Set MTU */ 1253 val64 = dev->mtu; 1254 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 1255 1256 if (nic->device_type & XFRAME_II_DEVICE) { 1257 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 1258 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 1259 &bar0->dtx_control, UF); 1260 if (dtx_cnt & 0x1) 1261 msleep(1); /* Necessary!! */ 1262 dtx_cnt++; 1263 } 1264 } else { 1265 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 1266 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], 1267 &bar0->dtx_control, UF); 1268 val64 = readq(&bar0->dtx_control); 1269 dtx_cnt++; 1270 } 1271 } 1272 1273 /* Tx DMA Initialization */ 1274 val64 = 0; 1275 writeq(val64, &bar0->tx_fifo_partition_0); 1276 writeq(val64, &bar0->tx_fifo_partition_1); 1277 writeq(val64, &bar0->tx_fifo_partition_2); 1278 writeq(val64, &bar0->tx_fifo_partition_3); 1279 1280 for (i = 0, j = 0; i < config->tx_fifo_num; i++) { 1281 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1282 1283 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | 1284 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); 1285 1286 if (i == (config->tx_fifo_num - 1)) { 1287 if (i % 2 == 0) 1288 i++; 1289 } 1290 1291 switch (i) { 1292 case 1: 1293 writeq(val64, &bar0->tx_fifo_partition_0); 1294 val64 = 0; 1295 j = 0; 1296 break; 1297 case 3: 1298 writeq(val64, &bar0->tx_fifo_partition_1); 1299 val64 = 0; 1300 j = 0; 1301 break; 1302 case 5: 1303 writeq(val64, &bar0->tx_fifo_partition_2); 1304 val64 = 0; 1305 j = 0; 1306 break; 1307 case 7: 1308 writeq(val64, &bar0->tx_fifo_partition_3); 1309 val64 = 0; 1310 j = 0; 1311 break; 1312 default: 1313 j++; 1314 break; 1315 } 1316 } 1317 1318 /* 1319 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1320 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1321 */ 1322 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) 1323 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); 1324 1325 val64 = readq(&bar0->tx_fifo_partition_0); 1326 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", 1327 &bar0->tx_fifo_partition_0, (unsigned long long)val64); 1328 1329 /* 1330 * Initialization of Tx_PA_CONFIG register to ignore packet 1331 * integrity checking. 1332 */ 1333 val64 = readq(&bar0->tx_pa_cfg); 1334 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | 1335 TX_PA_CFG_IGNORE_SNAP_OUI | 1336 TX_PA_CFG_IGNORE_LLC_CTRL | 1337 TX_PA_CFG_IGNORE_L2_ERR; 1338 writeq(val64, &bar0->tx_pa_cfg); 1339 1340 /* Rx DMA initialization. */ 1341 val64 = 0; 1342 for (i = 0; i < config->rx_ring_num; i++) { 1343 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 1344 1345 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); 1346 } 1347 writeq(val64, &bar0->rx_queue_priority); 1348 1349 /* 1350 * Allocating equal share of memory to all the 1351 * configured Rings. 1352 */ 1353 val64 = 0; 1354 if (nic->device_type & XFRAME_II_DEVICE) 1355 mem_size = 32; 1356 else 1357 mem_size = 64; 1358 1359 for (i = 0; i < config->rx_ring_num; i++) { 1360 switch (i) { 1361 case 0: 1362 mem_share = (mem_size / config->rx_ring_num + 1363 mem_size % config->rx_ring_num); 1364 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); 1365 continue; 1366 case 1: 1367 mem_share = (mem_size / config->rx_ring_num); 1368 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); 1369 continue; 1370 case 2: 1371 mem_share = (mem_size / config->rx_ring_num); 1372 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); 1373 continue; 1374 case 3: 1375 mem_share = (mem_size / config->rx_ring_num); 1376 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); 1377 continue; 1378 case 4: 1379 mem_share = (mem_size / config->rx_ring_num); 1380 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); 1381 continue; 1382 case 5: 1383 mem_share = (mem_size / config->rx_ring_num); 1384 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); 1385 continue; 1386 case 6: 1387 mem_share = (mem_size / config->rx_ring_num); 1388 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); 1389 continue; 1390 case 7: 1391 mem_share = (mem_size / config->rx_ring_num); 1392 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); 1393 continue; 1394 } 1395 } 1396 writeq(val64, &bar0->rx_queue_cfg); 1397 1398 /* 1399 * Filling Tx round robin registers 1400 * as per the number of FIFOs for equal scheduling priority 1401 */ 1402 switch (config->tx_fifo_num) { 1403 case 1: 1404 val64 = 0x0; 1405 writeq(val64, &bar0->tx_w_round_robin_0); 1406 writeq(val64, &bar0->tx_w_round_robin_1); 1407 writeq(val64, &bar0->tx_w_round_robin_2); 1408 writeq(val64, &bar0->tx_w_round_robin_3); 1409 writeq(val64, &bar0->tx_w_round_robin_4); 1410 break; 1411 case 2: 1412 val64 = 0x0001000100010001ULL; 1413 writeq(val64, &bar0->tx_w_round_robin_0); 1414 writeq(val64, &bar0->tx_w_round_robin_1); 1415 writeq(val64, &bar0->tx_w_round_robin_2); 1416 writeq(val64, &bar0->tx_w_round_robin_3); 1417 val64 = 0x0001000100000000ULL; 1418 writeq(val64, &bar0->tx_w_round_robin_4); 1419 break; 1420 case 3: 1421 val64 = 0x0001020001020001ULL; 1422 writeq(val64, &bar0->tx_w_round_robin_0); 1423 val64 = 0x0200010200010200ULL; 1424 writeq(val64, &bar0->tx_w_round_robin_1); 1425 val64 = 0x0102000102000102ULL; 1426 writeq(val64, &bar0->tx_w_round_robin_2); 1427 val64 = 0x0001020001020001ULL; 1428 writeq(val64, &bar0->tx_w_round_robin_3); 1429 val64 = 0x0200010200000000ULL; 1430 writeq(val64, &bar0->tx_w_round_robin_4); 1431 break; 1432 case 4: 1433 val64 = 0x0001020300010203ULL; 1434 writeq(val64, &bar0->tx_w_round_robin_0); 1435 writeq(val64, &bar0->tx_w_round_robin_1); 1436 writeq(val64, &bar0->tx_w_round_robin_2); 1437 writeq(val64, &bar0->tx_w_round_robin_3); 1438 val64 = 0x0001020300000000ULL; 1439 writeq(val64, &bar0->tx_w_round_robin_4); 1440 break; 1441 case 5: 1442 val64 = 0x0001020304000102ULL; 1443 writeq(val64, &bar0->tx_w_round_robin_0); 1444 val64 = 0x0304000102030400ULL; 1445 writeq(val64, &bar0->tx_w_round_robin_1); 1446 val64 = 0x0102030400010203ULL; 1447 writeq(val64, &bar0->tx_w_round_robin_2); 1448 val64 = 0x0400010203040001ULL; 1449 writeq(val64, &bar0->tx_w_round_robin_3); 1450 val64 = 0x0203040000000000ULL; 1451 writeq(val64, &bar0->tx_w_round_robin_4); 1452 break; 1453 case 6: 1454 val64 = 0x0001020304050001ULL; 1455 writeq(val64, &bar0->tx_w_round_robin_0); 1456 val64 = 0x0203040500010203ULL; 1457 writeq(val64, &bar0->tx_w_round_robin_1); 1458 val64 = 0x0405000102030405ULL; 1459 writeq(val64, &bar0->tx_w_round_robin_2); 1460 val64 = 0x0001020304050001ULL; 1461 writeq(val64, &bar0->tx_w_round_robin_3); 1462 val64 = 0x0203040500000000ULL; 1463 writeq(val64, &bar0->tx_w_round_robin_4); 1464 break; 1465 case 7: 1466 val64 = 0x0001020304050600ULL; 1467 writeq(val64, &bar0->tx_w_round_robin_0); 1468 val64 = 0x0102030405060001ULL; 1469 writeq(val64, &bar0->tx_w_round_robin_1); 1470 val64 = 0x0203040506000102ULL; 1471 writeq(val64, &bar0->tx_w_round_robin_2); 1472 val64 = 0x0304050600010203ULL; 1473 writeq(val64, &bar0->tx_w_round_robin_3); 1474 val64 = 0x0405060000000000ULL; 1475 writeq(val64, &bar0->tx_w_round_robin_4); 1476 break; 1477 case 8: 1478 val64 = 0x0001020304050607ULL; 1479 writeq(val64, &bar0->tx_w_round_robin_0); 1480 writeq(val64, &bar0->tx_w_round_robin_1); 1481 writeq(val64, &bar0->tx_w_round_robin_2); 1482 writeq(val64, &bar0->tx_w_round_robin_3); 1483 val64 = 0x0001020300000000ULL; 1484 writeq(val64, &bar0->tx_w_round_robin_4); 1485 break; 1486 } 1487 1488 /* Enable all configured Tx FIFO partitions */ 1489 val64 = readq(&bar0->tx_fifo_partition_0); 1490 val64 |= (TX_FIFO_PARTITION_EN); 1491 writeq(val64, &bar0->tx_fifo_partition_0); 1492 1493 /* Filling the Rx round robin registers as per the 1494 * number of Rings and steering based on QoS with 1495 * equal priority. 1496 */ 1497 switch (config->rx_ring_num) { 1498 case 1: 1499 val64 = 0x0; 1500 writeq(val64, &bar0->rx_w_round_robin_0); 1501 writeq(val64, &bar0->rx_w_round_robin_1); 1502 writeq(val64, &bar0->rx_w_round_robin_2); 1503 writeq(val64, &bar0->rx_w_round_robin_3); 1504 writeq(val64, &bar0->rx_w_round_robin_4); 1505 1506 val64 = 0x8080808080808080ULL; 1507 writeq(val64, &bar0->rts_qos_steering); 1508 break; 1509 case 2: 1510 val64 = 0x0001000100010001ULL; 1511 writeq(val64, &bar0->rx_w_round_robin_0); 1512 writeq(val64, &bar0->rx_w_round_robin_1); 1513 writeq(val64, &bar0->rx_w_round_robin_2); 1514 writeq(val64, &bar0->rx_w_round_robin_3); 1515 val64 = 0x0001000100000000ULL; 1516 writeq(val64, &bar0->rx_w_round_robin_4); 1517 1518 val64 = 0x8080808040404040ULL; 1519 writeq(val64, &bar0->rts_qos_steering); 1520 break; 1521 case 3: 1522 val64 = 0x0001020001020001ULL; 1523 writeq(val64, &bar0->rx_w_round_robin_0); 1524 val64 = 0x0200010200010200ULL; 1525 writeq(val64, &bar0->rx_w_round_robin_1); 1526 val64 = 0x0102000102000102ULL; 1527 writeq(val64, &bar0->rx_w_round_robin_2); 1528 val64 = 0x0001020001020001ULL; 1529 writeq(val64, &bar0->rx_w_round_robin_3); 1530 val64 = 0x0200010200000000ULL; 1531 writeq(val64, &bar0->rx_w_round_robin_4); 1532 1533 val64 = 0x8080804040402020ULL; 1534 writeq(val64, &bar0->rts_qos_steering); 1535 break; 1536 case 4: 1537 val64 = 0x0001020300010203ULL; 1538 writeq(val64, &bar0->rx_w_round_robin_0); 1539 writeq(val64, &bar0->rx_w_round_robin_1); 1540 writeq(val64, &bar0->rx_w_round_robin_2); 1541 writeq(val64, &bar0->rx_w_round_robin_3); 1542 val64 = 0x0001020300000000ULL; 1543 writeq(val64, &bar0->rx_w_round_robin_4); 1544 1545 val64 = 0x8080404020201010ULL; 1546 writeq(val64, &bar0->rts_qos_steering); 1547 break; 1548 case 5: 1549 val64 = 0x0001020304000102ULL; 1550 writeq(val64, &bar0->rx_w_round_robin_0); 1551 val64 = 0x0304000102030400ULL; 1552 writeq(val64, &bar0->rx_w_round_robin_1); 1553 val64 = 0x0102030400010203ULL; 1554 writeq(val64, &bar0->rx_w_round_robin_2); 1555 val64 = 0x0400010203040001ULL; 1556 writeq(val64, &bar0->rx_w_round_robin_3); 1557 val64 = 0x0203040000000000ULL; 1558 writeq(val64, &bar0->rx_w_round_robin_4); 1559 1560 val64 = 0x8080404020201008ULL; 1561 writeq(val64, &bar0->rts_qos_steering); 1562 break; 1563 case 6: 1564 val64 = 0x0001020304050001ULL; 1565 writeq(val64, &bar0->rx_w_round_robin_0); 1566 val64 = 0x0203040500010203ULL; 1567 writeq(val64, &bar0->rx_w_round_robin_1); 1568 val64 = 0x0405000102030405ULL; 1569 writeq(val64, &bar0->rx_w_round_robin_2); 1570 val64 = 0x0001020304050001ULL; 1571 writeq(val64, &bar0->rx_w_round_robin_3); 1572 val64 = 0x0203040500000000ULL; 1573 writeq(val64, &bar0->rx_w_round_robin_4); 1574 1575 val64 = 0x8080404020100804ULL; 1576 writeq(val64, &bar0->rts_qos_steering); 1577 break; 1578 case 7: 1579 val64 = 0x0001020304050600ULL; 1580 writeq(val64, &bar0->rx_w_round_robin_0); 1581 val64 = 0x0102030405060001ULL; 1582 writeq(val64, &bar0->rx_w_round_robin_1); 1583 val64 = 0x0203040506000102ULL; 1584 writeq(val64, &bar0->rx_w_round_robin_2); 1585 val64 = 0x0304050600010203ULL; 1586 writeq(val64, &bar0->rx_w_round_robin_3); 1587 val64 = 0x0405060000000000ULL; 1588 writeq(val64, &bar0->rx_w_round_robin_4); 1589 1590 val64 = 0x8080402010080402ULL; 1591 writeq(val64, &bar0->rts_qos_steering); 1592 break; 1593 case 8: 1594 val64 = 0x0001020304050607ULL; 1595 writeq(val64, &bar0->rx_w_round_robin_0); 1596 writeq(val64, &bar0->rx_w_round_robin_1); 1597 writeq(val64, &bar0->rx_w_round_robin_2); 1598 writeq(val64, &bar0->rx_w_round_robin_3); 1599 val64 = 0x0001020300000000ULL; 1600 writeq(val64, &bar0->rx_w_round_robin_4); 1601 1602 val64 = 0x8040201008040201ULL; 1603 writeq(val64, &bar0->rts_qos_steering); 1604 break; 1605 } 1606 1607 /* UDP Fix */ 1608 val64 = 0; 1609 for (i = 0; i < 8; i++) 1610 writeq(val64, &bar0->rts_frm_len_n[i]); 1611 1612 /* Set the default rts frame length for the rings configured */ 1613 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); 1614 for (i = 0 ; i < config->rx_ring_num ; i++) 1615 writeq(val64, &bar0->rts_frm_len_n[i]); 1616 1617 /* Set the frame length for the configured rings 1618 * desired by the user 1619 */ 1620 for (i = 0; i < config->rx_ring_num; i++) { 1621 /* If rts_frm_len[i] == 0 then it is assumed that user not 1622 * specified frame length steering. 1623 * If the user provides the frame length then program 1624 * the rts_frm_len register for those values or else 1625 * leave it as it is. 1626 */ 1627 if (rts_frm_len[i] != 0) { 1628 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), 1629 &bar0->rts_frm_len_n[i]); 1630 } 1631 } 1632 1633 /* Disable differentiated services steering logic */ 1634 for (i = 0; i < 64; i++) { 1635 if (rts_ds_steer(nic, i, 0) == FAILURE) { 1636 DBG_PRINT(ERR_DBG, 1637 "%s: rts_ds_steer failed on codepoint %d\n", 1638 dev->name, i); 1639 return -ENODEV; 1640 } 1641 } 1642 1643 /* Program statistics memory */ 1644 writeq(mac_control->stats_mem_phy, &bar0->stat_addr); 1645 1646 if (nic->device_type == XFRAME_II_DEVICE) { 1647 val64 = STAT_BC(0x320); 1648 writeq(val64, &bar0->stat_byte_cnt); 1649 } 1650 1651 /* 1652 * Initializing the sampling rate for the device to calculate the 1653 * bandwidth utilization. 1654 */ 1655 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | 1656 MAC_RX_LINK_UTIL_VAL(rmac_util_period); 1657 writeq(val64, &bar0->mac_link_util); 1658 1659 /* 1660 * Initializing the Transmit and Receive Traffic Interrupt 1661 * Scheme. 1662 */ 1663 1664 /* Initialize TTI */ 1665 if (SUCCESS != init_tti(nic, nic->last_link_state, true)) 1666 return -ENODEV; 1667 1668 /* RTI Initialization */ 1669 if (nic->device_type == XFRAME_II_DEVICE) { 1670 /* 1671 * Programmed to generate Apprx 500 Intrs per 1672 * second 1673 */ 1674 int count = (nic->config.bus_speed * 125)/4; 1675 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); 1676 } else 1677 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); 1678 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | 1679 RTI_DATA1_MEM_RX_URNG_B(0x10) | 1680 RTI_DATA1_MEM_RX_URNG_C(0x30) | 1681 RTI_DATA1_MEM_RX_TIMER_AC_EN; 1682 1683 writeq(val64, &bar0->rti_data1_mem); 1684 1685 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | 1686 RTI_DATA2_MEM_RX_UFC_B(0x2) ; 1687 if (nic->config.intr_type == MSI_X) 1688 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | 1689 RTI_DATA2_MEM_RX_UFC_D(0x40)); 1690 else 1691 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | 1692 RTI_DATA2_MEM_RX_UFC_D(0x80)); 1693 writeq(val64, &bar0->rti_data2_mem); 1694 1695 for (i = 0; i < config->rx_ring_num; i++) { 1696 val64 = RTI_CMD_MEM_WE | 1697 RTI_CMD_MEM_STROBE_NEW_CMD | 1698 RTI_CMD_MEM_OFFSET(i); 1699 writeq(val64, &bar0->rti_command_mem); 1700 1701 /* 1702 * Once the operation completes, the Strobe bit of the 1703 * command register will be reset. We poll for this 1704 * particular condition. We wait for a maximum of 500ms 1705 * for the operation to complete, if it's not complete 1706 * by then we return error. 1707 */ 1708 time = 0; 1709 while (true) { 1710 val64 = readq(&bar0->rti_command_mem); 1711 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) 1712 break; 1713 1714 if (time > 10) { 1715 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", 1716 dev->name); 1717 return -ENODEV; 1718 } 1719 time++; 1720 msleep(50); 1721 } 1722 } 1723 1724 /* 1725 * Initializing proper values as Pause threshold into all 1726 * the 8 Queues on Rx side. 1727 */ 1728 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); 1729 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); 1730 1731 /* Disable RMAC PAD STRIPPING */ 1732 add = &bar0->mac_cfg; 1733 val64 = readq(&bar0->mac_cfg); 1734 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); 1735 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1736 writel((u32) (val64), add); 1737 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1738 writel((u32) (val64 >> 32), (add + 4)); 1739 val64 = readq(&bar0->mac_cfg); 1740 1741 /* Enable FCS stripping by adapter */ 1742 add = &bar0->mac_cfg; 1743 val64 = readq(&bar0->mac_cfg); 1744 val64 |= MAC_CFG_RMAC_STRIP_FCS; 1745 if (nic->device_type == XFRAME_II_DEVICE) 1746 writeq(val64, &bar0->mac_cfg); 1747 else { 1748 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1749 writel((u32) (val64), add); 1750 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1751 writel((u32) (val64 >> 32), (add + 4)); 1752 } 1753 1754 /* 1755 * Set the time value to be inserted in the pause frame 1756 * generated by xena. 1757 */ 1758 val64 = readq(&bar0->rmac_pause_cfg); 1759 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); 1760 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); 1761 writeq(val64, &bar0->rmac_pause_cfg); 1762 1763 /* 1764 * Set the Threshold Limit for Generating the pause frame 1765 * If the amount of data in any Queue exceeds ratio of 1766 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 1767 * pause frame is generated 1768 */ 1769 val64 = 0; 1770 for (i = 0; i < 4; i++) { 1771 val64 |= (((u64)0xFF00 | 1772 nic->mac_control.mc_pause_threshold_q0q3) 1773 << (i * 2 * 8)); 1774 } 1775 writeq(val64, &bar0->mc_pause_thresh_q0q3); 1776 1777 val64 = 0; 1778 for (i = 0; i < 4; i++) { 1779 val64 |= (((u64)0xFF00 | 1780 nic->mac_control.mc_pause_threshold_q4q7) 1781 << (i * 2 * 8)); 1782 } 1783 writeq(val64, &bar0->mc_pause_thresh_q4q7); 1784 1785 /* 1786 * TxDMA will stop Read request if the number of read split has 1787 * exceeded the limit pointed by shared_splits 1788 */ 1789 val64 = readq(&bar0->pic_control); 1790 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1791 writeq(val64, &bar0->pic_control); 1792 1793 if (nic->config.bus_speed == 266) { 1794 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); 1795 writeq(0x0, &bar0->read_retry_delay); 1796 writeq(0x0, &bar0->write_retry_delay); 1797 } 1798 1799 /* 1800 * Programming the Herc to split every write transaction 1801 * that does not start on an ADB to reduce disconnects. 1802 */ 1803 if (nic->device_type == XFRAME_II_DEVICE) { 1804 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | 1805 MISC_LINK_STABILITY_PRD(3); 1806 writeq(val64, &bar0->misc_control); 1807 val64 = readq(&bar0->pic_control2); 1808 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); 1809 writeq(val64, &bar0->pic_control2); 1810 } 1811 if (strstr(nic->product_name, "CX4")) { 1812 val64 = TMAC_AVG_IPG(0x17); 1813 writeq(val64, &bar0->tmac_avg_ipg); 1814 } 1815 1816 return SUCCESS; 1817 } 1818 #define LINK_UP_DOWN_INTERRUPT 1 1819 #define MAC_RMAC_ERR_TIMER 2 1820 1821 static int s2io_link_fault_indication(struct s2io_nic *nic) 1822 { 1823 if (nic->device_type == XFRAME_II_DEVICE) 1824 return LINK_UP_DOWN_INTERRUPT; 1825 else 1826 return MAC_RMAC_ERR_TIMER; 1827 } 1828 1829 /** 1830 * do_s2io_write_bits - update alarm bits in alarm register 1831 * @value: alarm bits 1832 * @flag: interrupt status 1833 * @addr: address value 1834 * Description: update alarm bits in alarm register 1835 * Return Value: 1836 * NONE. 1837 */ 1838 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) 1839 { 1840 u64 temp64; 1841 1842 temp64 = readq(addr); 1843 1844 if (flag == ENABLE_INTRS) 1845 temp64 &= ~((u64)value); 1846 else 1847 temp64 |= ((u64)value); 1848 writeq(temp64, addr); 1849 } 1850 1851 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) 1852 { 1853 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1854 register u64 gen_int_mask = 0; 1855 u64 interruptible; 1856 1857 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); 1858 if (mask & TX_DMA_INTR) { 1859 gen_int_mask |= TXDMA_INT_M; 1860 1861 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | 1862 TXDMA_PCC_INT | TXDMA_TTI_INT | 1863 TXDMA_LSO_INT | TXDMA_TPA_INT | 1864 TXDMA_SM_INT, flag, &bar0->txdma_int_mask); 1865 1866 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 1867 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 1868 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, 1869 &bar0->pfc_err_mask); 1870 1871 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | 1872 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | 1873 TDA_PCIX_ERR, flag, &bar0->tda_err_mask); 1874 1875 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | 1876 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 1877 PCC_N_SERR | PCC_6_COF_OV_ERR | 1878 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 1879 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | 1880 PCC_TXB_ECC_SG_ERR, 1881 flag, &bar0->pcc_err_mask); 1882 1883 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | 1884 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); 1885 1886 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | 1887 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | 1888 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 1889 flag, &bar0->lso_err_mask); 1890 1891 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, 1892 flag, &bar0->tpa_err_mask); 1893 1894 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); 1895 } 1896 1897 if (mask & TX_MAC_INTR) { 1898 gen_int_mask |= TXMAC_INT_M; 1899 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, 1900 &bar0->mac_int_mask); 1901 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | 1902 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 1903 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, 1904 flag, &bar0->mac_tmac_err_mask); 1905 } 1906 1907 if (mask & TX_XGXS_INTR) { 1908 gen_int_mask |= TXXGXS_INT_M; 1909 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, 1910 &bar0->xgxs_int_mask); 1911 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | 1912 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 1913 flag, &bar0->xgxs_txgxs_err_mask); 1914 } 1915 1916 if (mask & RX_DMA_INTR) { 1917 gen_int_mask |= RXDMA_INT_M; 1918 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | 1919 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, 1920 flag, &bar0->rxdma_int_mask); 1921 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 1922 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | 1923 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 1924 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); 1925 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 1926 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | 1927 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, 1928 &bar0->prc_pcix_err_mask); 1929 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | 1930 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, 1931 &bar0->rpa_err_mask); 1932 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | 1933 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | 1934 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | 1935 RDA_FRM_ECC_SG_ERR | 1936 RDA_MISC_ERR|RDA_PCIX_ERR, 1937 flag, &bar0->rda_err_mask); 1938 do_s2io_write_bits(RTI_SM_ERR_ALARM | 1939 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 1940 flag, &bar0->rti_err_mask); 1941 } 1942 1943 if (mask & RX_MAC_INTR) { 1944 gen_int_mask |= RXMAC_INT_M; 1945 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, 1946 &bar0->mac_int_mask); 1947 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | 1948 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | 1949 RMAC_DOUBLE_ECC_ERR); 1950 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) 1951 interruptible |= RMAC_LINK_STATE_CHANGE_INT; 1952 do_s2io_write_bits(interruptible, 1953 flag, &bar0->mac_rmac_err_mask); 1954 } 1955 1956 if (mask & RX_XGXS_INTR) { 1957 gen_int_mask |= RXXGXS_INT_M; 1958 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, 1959 &bar0->xgxs_int_mask); 1960 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, 1961 &bar0->xgxs_rxgxs_err_mask); 1962 } 1963 1964 if (mask & MC_INTR) { 1965 gen_int_mask |= MC_INT_M; 1966 do_s2io_write_bits(MC_INT_MASK_MC_INT, 1967 flag, &bar0->mc_int_mask); 1968 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | 1969 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, 1970 &bar0->mc_err_mask); 1971 } 1972 nic->general_int_mask = gen_int_mask; 1973 1974 /* Remove this line when alarm interrupts are enabled */ 1975 nic->general_int_mask = 0; 1976 } 1977 1978 /** 1979 * en_dis_able_nic_intrs - Enable or Disable the interrupts 1980 * @nic: device private variable, 1981 * @mask: A mask indicating which Intr block must be modified and, 1982 * @flag: A flag indicating whether to enable or disable the Intrs. 1983 * Description: This function will either disable or enable the interrupts 1984 * depending on the flag argument. The mask argument can be used to 1985 * enable/disable any Intr block. 1986 * Return Value: NONE. 1987 */ 1988 1989 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) 1990 { 1991 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1992 register u64 temp64 = 0, intr_mask = 0; 1993 1994 intr_mask = nic->general_int_mask; 1995 1996 /* Top level interrupt classification */ 1997 /* PIC Interrupts */ 1998 if (mask & TX_PIC_INTR) { 1999 /* Enable PIC Intrs in the general intr mask register */ 2000 intr_mask |= TXPIC_INT_M; 2001 if (flag == ENABLE_INTRS) { 2002 /* 2003 * If Hercules adapter enable GPIO otherwise 2004 * disable all PCIX, Flash, MDIO, IIC and GPIO 2005 * interrupts for now. 2006 * TODO 2007 */ 2008 if (s2io_link_fault_indication(nic) == 2009 LINK_UP_DOWN_INTERRUPT) { 2010 do_s2io_write_bits(PIC_INT_GPIO, flag, 2011 &bar0->pic_int_mask); 2012 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, 2013 &bar0->gpio_int_mask); 2014 } else 2015 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2016 } else if (flag == DISABLE_INTRS) { 2017 /* 2018 * Disable PIC Intrs in the general 2019 * intr mask register 2020 */ 2021 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2022 } 2023 } 2024 2025 /* Tx traffic interrupts */ 2026 if (mask & TX_TRAFFIC_INTR) { 2027 intr_mask |= TXTRAFFIC_INT_M; 2028 if (flag == ENABLE_INTRS) { 2029 /* 2030 * Enable all the Tx side interrupts 2031 * writing 0 Enables all 64 TX interrupt levels 2032 */ 2033 writeq(0x0, &bar0->tx_traffic_mask); 2034 } else if (flag == DISABLE_INTRS) { 2035 /* 2036 * Disable Tx Traffic Intrs in the general intr mask 2037 * register. 2038 */ 2039 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); 2040 } 2041 } 2042 2043 /* Rx traffic interrupts */ 2044 if (mask & RX_TRAFFIC_INTR) { 2045 intr_mask |= RXTRAFFIC_INT_M; 2046 if (flag == ENABLE_INTRS) { 2047 /* writing 0 Enables all 8 RX interrupt levels */ 2048 writeq(0x0, &bar0->rx_traffic_mask); 2049 } else if (flag == DISABLE_INTRS) { 2050 /* 2051 * Disable Rx Traffic Intrs in the general intr mask 2052 * register. 2053 */ 2054 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); 2055 } 2056 } 2057 2058 temp64 = readq(&bar0->general_int_mask); 2059 if (flag == ENABLE_INTRS) 2060 temp64 &= ~((u64)intr_mask); 2061 else 2062 temp64 = DISABLE_ALL_INTRS; 2063 writeq(temp64, &bar0->general_int_mask); 2064 2065 nic->general_int_mask = readq(&bar0->general_int_mask); 2066 } 2067 2068 /** 2069 * verify_pcc_quiescent- Checks for PCC quiescent state 2070 * @sp : private member of the device structure, which is a pointer to the 2071 * s2io_nic structure. 2072 * @flag: boolean controlling function path 2073 * Return: 1 If PCC is quiescence 2074 * 0 If PCC is not quiescence 2075 */ 2076 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) 2077 { 2078 int ret = 0, herc; 2079 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2080 u64 val64 = readq(&bar0->adapter_status); 2081 2082 herc = (sp->device_type == XFRAME_II_DEVICE); 2083 2084 if (flag == false) { 2085 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2086 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) 2087 ret = 1; 2088 } else { 2089 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2090 ret = 1; 2091 } 2092 } else { 2093 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2094 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == 2095 ADAPTER_STATUS_RMAC_PCC_IDLE)) 2096 ret = 1; 2097 } else { 2098 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == 2099 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2100 ret = 1; 2101 } 2102 } 2103 2104 return ret; 2105 } 2106 /** 2107 * verify_xena_quiescence - Checks whether the H/W is ready 2108 * @sp : private member of the device structure, which is a pointer to the 2109 * s2io_nic structure. 2110 * Description: Returns whether the H/W is ready to go or not. Depending 2111 * on whether adapter enable bit was written or not the comparison 2112 * differs and the calling function passes the input argument flag to 2113 * indicate this. 2114 * Return: 1 If xena is quiescence 2115 * 0 If Xena is not quiescence 2116 */ 2117 2118 static int verify_xena_quiescence(struct s2io_nic *sp) 2119 { 2120 int mode; 2121 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2122 u64 val64 = readq(&bar0->adapter_status); 2123 mode = s2io_verify_pci_mode(sp); 2124 2125 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { 2126 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); 2127 return 0; 2128 } 2129 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { 2130 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); 2131 return 0; 2132 } 2133 if (!(val64 & ADAPTER_STATUS_PFC_READY)) { 2134 DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); 2135 return 0; 2136 } 2137 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { 2138 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); 2139 return 0; 2140 } 2141 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { 2142 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); 2143 return 0; 2144 } 2145 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { 2146 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); 2147 return 0; 2148 } 2149 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { 2150 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); 2151 return 0; 2152 } 2153 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { 2154 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); 2155 return 0; 2156 } 2157 2158 /* 2159 * In PCI 33 mode, the P_PLL is not used, and therefore, 2160 * the P_PLL_LOCK bit in the adapter_status register will 2161 * not be asserted. 2162 */ 2163 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && 2164 sp->device_type == XFRAME_II_DEVICE && 2165 mode != PCI_MODE_PCI_33) { 2166 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); 2167 return 0; 2168 } 2169 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == 2170 ADAPTER_STATUS_RC_PRC_QUIESCENT)) { 2171 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); 2172 return 0; 2173 } 2174 return 1; 2175 } 2176 2177 /** 2178 * fix_mac_address - Fix for Mac addr problem on Alpha platforms 2179 * @sp: Pointer to device specifc structure 2180 * Description : 2181 * New procedure to clear mac address reading problems on Alpha platforms 2182 * 2183 */ 2184 2185 static void fix_mac_address(struct s2io_nic *sp) 2186 { 2187 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2188 int i = 0; 2189 2190 while (fix_mac[i] != END_SIGN) { 2191 writeq(fix_mac[i++], &bar0->gpio_control); 2192 udelay(10); 2193 (void) readq(&bar0->gpio_control); 2194 } 2195 } 2196 2197 /** 2198 * start_nic - Turns the device on 2199 * @nic : device private variable. 2200 * Description: 2201 * This function actually turns the device on. Before this function is 2202 * called,all Registers are configured from their reset states 2203 * and shared memory is allocated but the NIC is still quiescent. On 2204 * calling this function, the device interrupts are cleared and the NIC is 2205 * literally switched on by writing into the adapter control register. 2206 * Return Value: 2207 * SUCCESS on success and -1 on failure. 2208 */ 2209 2210 static int start_nic(struct s2io_nic *nic) 2211 { 2212 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2213 struct net_device *dev = nic->dev; 2214 register u64 val64 = 0; 2215 u16 subid, i; 2216 struct config_param *config = &nic->config; 2217 struct mac_info *mac_control = &nic->mac_control; 2218 2219 /* PRC Initialization and configuration */ 2220 for (i = 0; i < config->rx_ring_num; i++) { 2221 struct ring_info *ring = &mac_control->rings[i]; 2222 2223 writeq((u64)ring->rx_blocks[0].block_dma_addr, 2224 &bar0->prc_rxd0_n[i]); 2225 2226 val64 = readq(&bar0->prc_ctrl_n[i]); 2227 if (nic->rxd_mode == RXD_MODE_1) 2228 val64 |= PRC_CTRL_RC_ENABLED; 2229 else 2230 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 2231 if (nic->device_type == XFRAME_II_DEVICE) 2232 val64 |= PRC_CTRL_GROUP_READS; 2233 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); 2234 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); 2235 writeq(val64, &bar0->prc_ctrl_n[i]); 2236 } 2237 2238 if (nic->rxd_mode == RXD_MODE_3B) { 2239 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ 2240 val64 = readq(&bar0->rx_pa_cfg); 2241 val64 |= RX_PA_CFG_IGNORE_L2_ERR; 2242 writeq(val64, &bar0->rx_pa_cfg); 2243 } 2244 2245 if (vlan_tag_strip == 0) { 2246 val64 = readq(&bar0->rx_pa_cfg); 2247 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 2248 writeq(val64, &bar0->rx_pa_cfg); 2249 nic->vlan_strip_flag = 0; 2250 } 2251 2252 /* 2253 * Enabling MC-RLDRAM. After enabling the device, we timeout 2254 * for around 100ms, which is approximately the time required 2255 * for the device to be ready for operation. 2256 */ 2257 val64 = readq(&bar0->mc_rldram_mrs); 2258 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; 2259 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 2260 val64 = readq(&bar0->mc_rldram_mrs); 2261 2262 msleep(100); /* Delay by around 100 ms. */ 2263 2264 /* Enabling ECC Protection. */ 2265 val64 = readq(&bar0->adapter_control); 2266 val64 &= ~ADAPTER_ECC_EN; 2267 writeq(val64, &bar0->adapter_control); 2268 2269 /* 2270 * Verify if the device is ready to be enabled, if so enable 2271 * it. 2272 */ 2273 val64 = readq(&bar0->adapter_status); 2274 if (!verify_xena_quiescence(nic)) { 2275 DBG_PRINT(ERR_DBG, "%s: device is not ready, " 2276 "Adapter status reads: 0x%llx\n", 2277 dev->name, (unsigned long long)val64); 2278 return FAILURE; 2279 } 2280 2281 /* 2282 * With some switches, link might be already up at this point. 2283 * Because of this weird behavior, when we enable laser, 2284 * we may not get link. We need to handle this. We cannot 2285 * figure out which switch is misbehaving. So we are forced to 2286 * make a global change. 2287 */ 2288 2289 /* Enabling Laser. */ 2290 val64 = readq(&bar0->adapter_control); 2291 val64 |= ADAPTER_EOI_TX_ON; 2292 writeq(val64, &bar0->adapter_control); 2293 2294 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 2295 /* 2296 * Dont see link state interrupts initially on some switches, 2297 * so directly scheduling the link state task here. 2298 */ 2299 schedule_work(&nic->set_link_task); 2300 } 2301 /* SXE-002: Initialize link and activity LED */ 2302 subid = nic->pdev->subsystem_device; 2303 if (((subid & 0xFF) >= 0x07) && 2304 (nic->device_type == XFRAME_I_DEVICE)) { 2305 val64 = readq(&bar0->gpio_control); 2306 val64 |= 0x0000800000000000ULL; 2307 writeq(val64, &bar0->gpio_control); 2308 val64 = 0x0411040400000000ULL; 2309 writeq(val64, (void __iomem *)bar0 + 0x2700); 2310 } 2311 2312 return SUCCESS; 2313 } 2314 /** 2315 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb 2316 * @fifo_data: fifo data pointer 2317 * @txdlp: descriptor 2318 * @get_off: unused 2319 */ 2320 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, 2321 struct TxD *txdlp, int get_off) 2322 { 2323 struct s2io_nic *nic = fifo_data->nic; 2324 struct sk_buff *skb; 2325 struct TxD *txds; 2326 u16 j, frg_cnt; 2327 2328 txds = txdlp; 2329 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { 2330 dma_unmap_single(&nic->pdev->dev, 2331 (dma_addr_t)txds->Buffer_Pointer, 2332 sizeof(u64), DMA_TO_DEVICE); 2333 txds++; 2334 } 2335 2336 skb = (struct sk_buff *)((unsigned long)txds->Host_Control); 2337 if (!skb) { 2338 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2339 return NULL; 2340 } 2341 dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer, 2342 skb_headlen(skb), DMA_TO_DEVICE); 2343 frg_cnt = skb_shinfo(skb)->nr_frags; 2344 if (frg_cnt) { 2345 txds++; 2346 for (j = 0; j < frg_cnt; j++, txds++) { 2347 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 2348 if (!txds->Buffer_Pointer) 2349 break; 2350 dma_unmap_page(&nic->pdev->dev, 2351 (dma_addr_t)txds->Buffer_Pointer, 2352 skb_frag_size(frag), DMA_TO_DEVICE); 2353 } 2354 } 2355 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2356 return skb; 2357 } 2358 2359 /** 2360 * free_tx_buffers - Free all queued Tx buffers 2361 * @nic : device private variable. 2362 * Description: 2363 * Free all queued Tx buffers. 2364 * Return Value: void 2365 */ 2366 2367 static void free_tx_buffers(struct s2io_nic *nic) 2368 { 2369 struct net_device *dev = nic->dev; 2370 struct sk_buff *skb; 2371 struct TxD *txdp; 2372 int i, j; 2373 int cnt = 0; 2374 struct config_param *config = &nic->config; 2375 struct mac_info *mac_control = &nic->mac_control; 2376 struct stat_block *stats = mac_control->stats_info; 2377 struct swStat *swstats = &stats->sw_stat; 2378 2379 for (i = 0; i < config->tx_fifo_num; i++) { 2380 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 2381 struct fifo_info *fifo = &mac_control->fifos[i]; 2382 unsigned long flags; 2383 2384 spin_lock_irqsave(&fifo->tx_lock, flags); 2385 for (j = 0; j < tx_cfg->fifo_len; j++) { 2386 txdp = fifo->list_info[j].list_virt_addr; 2387 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); 2388 if (skb) { 2389 swstats->mem_freed += skb->truesize; 2390 dev_kfree_skb_irq(skb); 2391 cnt++; 2392 } 2393 } 2394 DBG_PRINT(INTR_DBG, 2395 "%s: forcibly freeing %d skbs on FIFO%d\n", 2396 dev->name, cnt, i); 2397 fifo->tx_curr_get_info.offset = 0; 2398 fifo->tx_curr_put_info.offset = 0; 2399 spin_unlock_irqrestore(&fifo->tx_lock, flags); 2400 } 2401 } 2402 2403 /** 2404 * stop_nic - To stop the nic 2405 * @nic : device private variable. 2406 * Description: 2407 * This function does exactly the opposite of what the start_nic() 2408 * function does. This function is called to stop the device. 2409 * Return Value: 2410 * void. 2411 */ 2412 2413 static void stop_nic(struct s2io_nic *nic) 2414 { 2415 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2416 register u64 val64 = 0; 2417 u16 interruptible; 2418 2419 /* Disable all interrupts */ 2420 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); 2421 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 2422 interruptible |= TX_PIC_INTR; 2423 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2424 2425 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ 2426 val64 = readq(&bar0->adapter_control); 2427 val64 &= ~(ADAPTER_CNTL_EN); 2428 writeq(val64, &bar0->adapter_control); 2429 } 2430 2431 /** 2432 * fill_rx_buffers - Allocates the Rx side skbs 2433 * @nic : device private variable. 2434 * @ring: per ring structure 2435 * @from_card_up: If this is true, we will map the buffer to get 2436 * the dma address for buf0 and buf1 to give it to the card. 2437 * Else we will sync the already mapped buffer to give it to the card. 2438 * Description: 2439 * The function allocates Rx side skbs and puts the physical 2440 * address of these buffers into the RxD buffer pointers, so that the NIC 2441 * can DMA the received frame into these locations. 2442 * The NIC supports 3 receive modes, viz 2443 * 1. single buffer, 2444 * 2. three buffer and 2445 * 3. Five buffer modes. 2446 * Each mode defines how many fragments the received frame will be split 2447 * up into by the NIC. The frame is split into L3 header, L4 Header, 2448 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself 2449 * is split into 3 fragments. As of now only single buffer mode is 2450 * supported. 2451 * Return Value: 2452 * SUCCESS on success or an appropriate -ve value on failure. 2453 */ 2454 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, 2455 int from_card_up) 2456 { 2457 struct sk_buff *skb; 2458 struct RxD_t *rxdp; 2459 int off, size, block_no, block_no1; 2460 u32 alloc_tab = 0; 2461 u32 alloc_cnt; 2462 u64 tmp; 2463 struct buffAdd *ba; 2464 struct RxD_t *first_rxdp = NULL; 2465 u64 Buffer0_ptr = 0, Buffer1_ptr = 0; 2466 struct RxD1 *rxdp1; 2467 struct RxD3 *rxdp3; 2468 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; 2469 2470 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; 2471 2472 block_no1 = ring->rx_curr_get_info.block_index; 2473 while (alloc_tab < alloc_cnt) { 2474 block_no = ring->rx_curr_put_info.block_index; 2475 2476 off = ring->rx_curr_put_info.offset; 2477 2478 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; 2479 2480 if ((block_no == block_no1) && 2481 (off == ring->rx_curr_get_info.offset) && 2482 (rxdp->Host_Control)) { 2483 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", 2484 ring->dev->name); 2485 goto end; 2486 } 2487 if (off && (off == ring->rxd_count)) { 2488 ring->rx_curr_put_info.block_index++; 2489 if (ring->rx_curr_put_info.block_index == 2490 ring->block_count) 2491 ring->rx_curr_put_info.block_index = 0; 2492 block_no = ring->rx_curr_put_info.block_index; 2493 off = 0; 2494 ring->rx_curr_put_info.offset = off; 2495 rxdp = ring->rx_blocks[block_no].block_virt_addr; 2496 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", 2497 ring->dev->name, rxdp); 2498 2499 } 2500 2501 if ((rxdp->Control_1 & RXD_OWN_XENA) && 2502 ((ring->rxd_mode == RXD_MODE_3B) && 2503 (rxdp->Control_2 & s2BIT(0)))) { 2504 ring->rx_curr_put_info.offset = off; 2505 goto end; 2506 } 2507 /* calculate size of skb based on ring mode */ 2508 size = ring->mtu + 2509 HEADER_ETHERNET_II_802_3_SIZE + 2510 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 2511 if (ring->rxd_mode == RXD_MODE_1) 2512 size += NET_IP_ALIGN; 2513 else 2514 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; 2515 2516 /* allocate skb */ 2517 skb = netdev_alloc_skb(nic->dev, size); 2518 if (!skb) { 2519 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", 2520 ring->dev->name); 2521 if (first_rxdp) { 2522 dma_wmb(); 2523 first_rxdp->Control_1 |= RXD_OWN_XENA; 2524 } 2525 swstats->mem_alloc_fail_cnt++; 2526 2527 return -ENOMEM ; 2528 } 2529 swstats->mem_allocated += skb->truesize; 2530 2531 if (ring->rxd_mode == RXD_MODE_1) { 2532 /* 1 buffer mode - normal operation mode */ 2533 rxdp1 = (struct RxD1 *)rxdp; 2534 memset(rxdp, 0, sizeof(struct RxD1)); 2535 skb_reserve(skb, NET_IP_ALIGN); 2536 rxdp1->Buffer0_ptr = 2537 dma_map_single(&ring->pdev->dev, skb->data, 2538 size - NET_IP_ALIGN, 2539 DMA_FROM_DEVICE); 2540 if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr)) 2541 goto pci_map_failed; 2542 2543 rxdp->Control_2 = 2544 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 2545 rxdp->Host_Control = (unsigned long)skb; 2546 } else if (ring->rxd_mode == RXD_MODE_3B) { 2547 /* 2548 * 2 buffer mode - 2549 * 2 buffer mode provides 128 2550 * byte aligned receive buffers. 2551 */ 2552 2553 rxdp3 = (struct RxD3 *)rxdp; 2554 /* save buffer pointers to avoid frequent dma mapping */ 2555 Buffer0_ptr = rxdp3->Buffer0_ptr; 2556 Buffer1_ptr = rxdp3->Buffer1_ptr; 2557 memset(rxdp, 0, sizeof(struct RxD3)); 2558 /* restore the buffer pointers for dma sync*/ 2559 rxdp3->Buffer0_ptr = Buffer0_ptr; 2560 rxdp3->Buffer1_ptr = Buffer1_ptr; 2561 2562 ba = &ring->ba[block_no][off]; 2563 skb_reserve(skb, BUF0_LEN); 2564 tmp = (u64)(unsigned long)skb->data; 2565 tmp += ALIGN_SIZE; 2566 tmp &= ~ALIGN_SIZE; 2567 skb->data = (void *) (unsigned long)tmp; 2568 skb_reset_tail_pointer(skb); 2569 2570 if (from_card_up) { 2571 rxdp3->Buffer0_ptr = 2572 dma_map_single(&ring->pdev->dev, 2573 ba->ba_0, BUF0_LEN, 2574 DMA_FROM_DEVICE); 2575 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr)) 2576 goto pci_map_failed; 2577 } else 2578 dma_sync_single_for_device(&ring->pdev->dev, 2579 (dma_addr_t)rxdp3->Buffer0_ptr, 2580 BUF0_LEN, 2581 DMA_FROM_DEVICE); 2582 2583 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 2584 if (ring->rxd_mode == RXD_MODE_3B) { 2585 /* Two buffer mode */ 2586 2587 /* 2588 * Buffer2 will have L3/L4 header plus 2589 * L4 payload 2590 */ 2591 rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev, 2592 skb->data, 2593 ring->mtu + 4, 2594 DMA_FROM_DEVICE); 2595 2596 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr)) 2597 goto pci_map_failed; 2598 2599 if (from_card_up) { 2600 rxdp3->Buffer1_ptr = 2601 dma_map_single(&ring->pdev->dev, 2602 ba->ba_1, 2603 BUF1_LEN, 2604 DMA_FROM_DEVICE); 2605 2606 if (dma_mapping_error(&nic->pdev->dev, 2607 rxdp3->Buffer1_ptr)) { 2608 dma_unmap_single(&ring->pdev->dev, 2609 (dma_addr_t)(unsigned long) 2610 skb->data, 2611 ring->mtu + 4, 2612 DMA_FROM_DEVICE); 2613 goto pci_map_failed; 2614 } 2615 } 2616 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 2617 rxdp->Control_2 |= SET_BUFFER2_SIZE_3 2618 (ring->mtu + 4); 2619 } 2620 rxdp->Control_2 |= s2BIT(0); 2621 rxdp->Host_Control = (unsigned long) (skb); 2622 } 2623 if (alloc_tab & ((1 << rxsync_frequency) - 1)) 2624 rxdp->Control_1 |= RXD_OWN_XENA; 2625 off++; 2626 if (off == (ring->rxd_count + 1)) 2627 off = 0; 2628 ring->rx_curr_put_info.offset = off; 2629 2630 rxdp->Control_2 |= SET_RXD_MARKER; 2631 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { 2632 if (first_rxdp) { 2633 dma_wmb(); 2634 first_rxdp->Control_1 |= RXD_OWN_XENA; 2635 } 2636 first_rxdp = rxdp; 2637 } 2638 ring->rx_bufs_left += 1; 2639 alloc_tab++; 2640 } 2641 2642 end: 2643 /* Transfer ownership of first descriptor to adapter just before 2644 * exiting. Before that, use memory barrier so that ownership 2645 * and other fields are seen by adapter correctly. 2646 */ 2647 if (first_rxdp) { 2648 dma_wmb(); 2649 first_rxdp->Control_1 |= RXD_OWN_XENA; 2650 } 2651 2652 return SUCCESS; 2653 2654 pci_map_failed: 2655 swstats->pci_map_fail_cnt++; 2656 swstats->mem_freed += skb->truesize; 2657 dev_kfree_skb_irq(skb); 2658 return -ENOMEM; 2659 } 2660 2661 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) 2662 { 2663 struct net_device *dev = sp->dev; 2664 int j; 2665 struct sk_buff *skb; 2666 struct RxD_t *rxdp; 2667 struct RxD1 *rxdp1; 2668 struct RxD3 *rxdp3; 2669 struct mac_info *mac_control = &sp->mac_control; 2670 struct stat_block *stats = mac_control->stats_info; 2671 struct swStat *swstats = &stats->sw_stat; 2672 2673 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { 2674 rxdp = mac_control->rings[ring_no]. 2675 rx_blocks[blk].rxds[j].virt_addr; 2676 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2677 if (!skb) 2678 continue; 2679 if (sp->rxd_mode == RXD_MODE_1) { 2680 rxdp1 = (struct RxD1 *)rxdp; 2681 dma_unmap_single(&sp->pdev->dev, 2682 (dma_addr_t)rxdp1->Buffer0_ptr, 2683 dev->mtu + 2684 HEADER_ETHERNET_II_802_3_SIZE + 2685 HEADER_802_2_SIZE + HEADER_SNAP_SIZE, 2686 DMA_FROM_DEVICE); 2687 memset(rxdp, 0, sizeof(struct RxD1)); 2688 } else if (sp->rxd_mode == RXD_MODE_3B) { 2689 rxdp3 = (struct RxD3 *)rxdp; 2690 dma_unmap_single(&sp->pdev->dev, 2691 (dma_addr_t)rxdp3->Buffer0_ptr, 2692 BUF0_LEN, DMA_FROM_DEVICE); 2693 dma_unmap_single(&sp->pdev->dev, 2694 (dma_addr_t)rxdp3->Buffer1_ptr, 2695 BUF1_LEN, DMA_FROM_DEVICE); 2696 dma_unmap_single(&sp->pdev->dev, 2697 (dma_addr_t)rxdp3->Buffer2_ptr, 2698 dev->mtu + 4, DMA_FROM_DEVICE); 2699 memset(rxdp, 0, sizeof(struct RxD3)); 2700 } 2701 swstats->mem_freed += skb->truesize; 2702 dev_kfree_skb(skb); 2703 mac_control->rings[ring_no].rx_bufs_left -= 1; 2704 } 2705 } 2706 2707 /** 2708 * free_rx_buffers - Frees all Rx buffers 2709 * @sp: device private variable. 2710 * Description: 2711 * This function will free all Rx buffers allocated by host. 2712 * Return Value: 2713 * NONE. 2714 */ 2715 2716 static void free_rx_buffers(struct s2io_nic *sp) 2717 { 2718 struct net_device *dev = sp->dev; 2719 int i, blk = 0, buf_cnt = 0; 2720 struct config_param *config = &sp->config; 2721 struct mac_info *mac_control = &sp->mac_control; 2722 2723 for (i = 0; i < config->rx_ring_num; i++) { 2724 struct ring_info *ring = &mac_control->rings[i]; 2725 2726 for (blk = 0; blk < rx_ring_sz[i]; blk++) 2727 free_rxd_blk(sp, i, blk); 2728 2729 ring->rx_curr_put_info.block_index = 0; 2730 ring->rx_curr_get_info.block_index = 0; 2731 ring->rx_curr_put_info.offset = 0; 2732 ring->rx_curr_get_info.offset = 0; 2733 ring->rx_bufs_left = 0; 2734 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", 2735 dev->name, buf_cnt, i); 2736 } 2737 } 2738 2739 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) 2740 { 2741 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2742 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", 2743 ring->dev->name); 2744 } 2745 return 0; 2746 } 2747 2748 /** 2749 * s2io_poll_msix - Rx interrupt handler for NAPI support 2750 * @napi : pointer to the napi structure. 2751 * @budget : The number of packets that were budgeted to be processed 2752 * during one pass through the 'Poll" function. 2753 * Description: 2754 * Comes into picture only if NAPI support has been incorporated. It does 2755 * the same thing that rx_intr_handler does, but not in a interrupt context 2756 * also It will process only a given number of packets. 2757 * Return value: 2758 * 0 on success and 1 if there are No Rx packets to be processed. 2759 */ 2760 2761 static int s2io_poll_msix(struct napi_struct *napi, int budget) 2762 { 2763 struct ring_info *ring = container_of(napi, struct ring_info, napi); 2764 struct net_device *dev = ring->dev; 2765 int pkts_processed = 0; 2766 u8 __iomem *addr = NULL; 2767 u8 val8 = 0; 2768 struct s2io_nic *nic = netdev_priv(dev); 2769 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2770 int budget_org = budget; 2771 2772 if (unlikely(!is_s2io_card_up(nic))) 2773 return 0; 2774 2775 pkts_processed = rx_intr_handler(ring, budget); 2776 s2io_chk_rx_buffers(nic, ring); 2777 2778 if (pkts_processed < budget_org) { 2779 napi_complete_done(napi, pkts_processed); 2780 /*Re Enable MSI-Rx Vector*/ 2781 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 2782 addr += 7 - ring->ring_no; 2783 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; 2784 writeb(val8, addr); 2785 val8 = readb(addr); 2786 } 2787 return pkts_processed; 2788 } 2789 2790 static int s2io_poll_inta(struct napi_struct *napi, int budget) 2791 { 2792 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); 2793 int pkts_processed = 0; 2794 int ring_pkts_processed, i; 2795 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2796 int budget_org = budget; 2797 struct config_param *config = &nic->config; 2798 struct mac_info *mac_control = &nic->mac_control; 2799 2800 if (unlikely(!is_s2io_card_up(nic))) 2801 return 0; 2802 2803 for (i = 0; i < config->rx_ring_num; i++) { 2804 struct ring_info *ring = &mac_control->rings[i]; 2805 ring_pkts_processed = rx_intr_handler(ring, budget); 2806 s2io_chk_rx_buffers(nic, ring); 2807 pkts_processed += ring_pkts_processed; 2808 budget -= ring_pkts_processed; 2809 if (budget <= 0) 2810 break; 2811 } 2812 if (pkts_processed < budget_org) { 2813 napi_complete_done(napi, pkts_processed); 2814 /* Re enable the Rx interrupts for the ring */ 2815 writeq(0, &bar0->rx_traffic_mask); 2816 readl(&bar0->rx_traffic_mask); 2817 } 2818 return pkts_processed; 2819 } 2820 2821 #ifdef CONFIG_NET_POLL_CONTROLLER 2822 /** 2823 * s2io_netpoll - netpoll event handler entry point 2824 * @dev : pointer to the device structure. 2825 * Description: 2826 * This function will be called by upper layer to check for events on the 2827 * interface in situations where interrupts are disabled. It is used for 2828 * specific in-kernel networking tasks, such as remote consoles and kernel 2829 * debugging over the network (example netdump in RedHat). 2830 */ 2831 static void s2io_netpoll(struct net_device *dev) 2832 { 2833 struct s2io_nic *nic = netdev_priv(dev); 2834 const int irq = nic->pdev->irq; 2835 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2836 u64 val64 = 0xFFFFFFFFFFFFFFFFULL; 2837 int i; 2838 struct config_param *config = &nic->config; 2839 struct mac_info *mac_control = &nic->mac_control; 2840 2841 if (pci_channel_offline(nic->pdev)) 2842 return; 2843 2844 disable_irq(irq); 2845 2846 writeq(val64, &bar0->rx_traffic_int); 2847 writeq(val64, &bar0->tx_traffic_int); 2848 2849 /* we need to free up the transmitted skbufs or else netpoll will 2850 * run out of skbs and will fail and eventually netpoll application such 2851 * as netdump will fail. 2852 */ 2853 for (i = 0; i < config->tx_fifo_num; i++) 2854 tx_intr_handler(&mac_control->fifos[i]); 2855 2856 /* check for received packet and indicate up to network */ 2857 for (i = 0; i < config->rx_ring_num; i++) { 2858 struct ring_info *ring = &mac_control->rings[i]; 2859 2860 rx_intr_handler(ring, 0); 2861 } 2862 2863 for (i = 0; i < config->rx_ring_num; i++) { 2864 struct ring_info *ring = &mac_control->rings[i]; 2865 2866 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2867 DBG_PRINT(INFO_DBG, 2868 "%s: Out of memory in Rx Netpoll!!\n", 2869 dev->name); 2870 break; 2871 } 2872 } 2873 enable_irq(irq); 2874 } 2875 #endif 2876 2877 /** 2878 * rx_intr_handler - Rx interrupt handler 2879 * @ring_data: per ring structure. 2880 * @budget: budget for napi processing. 2881 * Description: 2882 * If the interrupt is because of a received frame or if the 2883 * receive ring contains fresh as yet un-processed frames,this function is 2884 * called. It picks out the RxD at which place the last Rx processing had 2885 * stopped and sends the skb to the OSM's Rx handler and then increments 2886 * the offset. 2887 * Return Value: 2888 * No. of napi packets processed. 2889 */ 2890 static int rx_intr_handler(struct ring_info *ring_data, int budget) 2891 { 2892 int get_block, put_block; 2893 struct rx_curr_get_info get_info, put_info; 2894 struct RxD_t *rxdp; 2895 struct sk_buff *skb; 2896 int pkt_cnt = 0, napi_pkts = 0; 2897 int i; 2898 struct RxD1 *rxdp1; 2899 struct RxD3 *rxdp3; 2900 2901 if (budget <= 0) 2902 return napi_pkts; 2903 2904 get_info = ring_data->rx_curr_get_info; 2905 get_block = get_info.block_index; 2906 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); 2907 put_block = put_info.block_index; 2908 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; 2909 2910 while (RXD_IS_UP2DT(rxdp)) { 2911 /* 2912 * If your are next to put index then it's 2913 * FIFO full condition 2914 */ 2915 if ((get_block == put_block) && 2916 (get_info.offset + 1) == put_info.offset) { 2917 DBG_PRINT(INTR_DBG, "%s: Ring Full\n", 2918 ring_data->dev->name); 2919 break; 2920 } 2921 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2922 if (skb == NULL) { 2923 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", 2924 ring_data->dev->name); 2925 return 0; 2926 } 2927 if (ring_data->rxd_mode == RXD_MODE_1) { 2928 rxdp1 = (struct RxD1 *)rxdp; 2929 dma_unmap_single(&ring_data->pdev->dev, 2930 (dma_addr_t)rxdp1->Buffer0_ptr, 2931 ring_data->mtu + 2932 HEADER_ETHERNET_II_802_3_SIZE + 2933 HEADER_802_2_SIZE + 2934 HEADER_SNAP_SIZE, 2935 DMA_FROM_DEVICE); 2936 } else if (ring_data->rxd_mode == RXD_MODE_3B) { 2937 rxdp3 = (struct RxD3 *)rxdp; 2938 dma_sync_single_for_cpu(&ring_data->pdev->dev, 2939 (dma_addr_t)rxdp3->Buffer0_ptr, 2940 BUF0_LEN, DMA_FROM_DEVICE); 2941 dma_unmap_single(&ring_data->pdev->dev, 2942 (dma_addr_t)rxdp3->Buffer2_ptr, 2943 ring_data->mtu + 4, DMA_FROM_DEVICE); 2944 } 2945 prefetch(skb->data); 2946 rx_osm_handler(ring_data, rxdp); 2947 get_info.offset++; 2948 ring_data->rx_curr_get_info.offset = get_info.offset; 2949 rxdp = ring_data->rx_blocks[get_block]. 2950 rxds[get_info.offset].virt_addr; 2951 if (get_info.offset == rxd_count[ring_data->rxd_mode]) { 2952 get_info.offset = 0; 2953 ring_data->rx_curr_get_info.offset = get_info.offset; 2954 get_block++; 2955 if (get_block == ring_data->block_count) 2956 get_block = 0; 2957 ring_data->rx_curr_get_info.block_index = get_block; 2958 rxdp = ring_data->rx_blocks[get_block].block_virt_addr; 2959 } 2960 2961 if (ring_data->nic->config.napi) { 2962 budget--; 2963 napi_pkts++; 2964 if (!budget) 2965 break; 2966 } 2967 pkt_cnt++; 2968 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) 2969 break; 2970 } 2971 if (ring_data->lro) { 2972 /* Clear all LRO sessions before exiting */ 2973 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 2974 struct lro *lro = &ring_data->lro0_n[i]; 2975 if (lro->in_use) { 2976 update_L3L4_header(ring_data->nic, lro); 2977 queue_rx_frame(lro->parent, lro->vlan_tag); 2978 clear_lro_session(lro); 2979 } 2980 } 2981 } 2982 return napi_pkts; 2983 } 2984 2985 /** 2986 * tx_intr_handler - Transmit interrupt handler 2987 * @fifo_data : fifo data pointer 2988 * Description: 2989 * If an interrupt was raised to indicate DMA complete of the 2990 * Tx packet, this function is called. It identifies the last TxD 2991 * whose buffer was freed and frees all skbs whose data have already 2992 * DMA'ed into the NICs internal memory. 2993 * Return Value: 2994 * NONE 2995 */ 2996 2997 static void tx_intr_handler(struct fifo_info *fifo_data) 2998 { 2999 struct s2io_nic *nic = fifo_data->nic; 3000 struct tx_curr_get_info get_info, put_info; 3001 struct sk_buff *skb = NULL; 3002 struct TxD *txdlp; 3003 int pkt_cnt = 0; 3004 unsigned long flags = 0; 3005 u8 err_mask; 3006 struct stat_block *stats = nic->mac_control.stats_info; 3007 struct swStat *swstats = &stats->sw_stat; 3008 3009 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) 3010 return; 3011 3012 get_info = fifo_data->tx_curr_get_info; 3013 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); 3014 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3015 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && 3016 (get_info.offset != put_info.offset) && 3017 (txdlp->Host_Control)) { 3018 /* Check for TxD errors */ 3019 if (txdlp->Control_1 & TXD_T_CODE) { 3020 unsigned long long err; 3021 err = txdlp->Control_1 & TXD_T_CODE; 3022 if (err & 0x1) { 3023 swstats->parity_err_cnt++; 3024 } 3025 3026 /* update t_code statistics */ 3027 err_mask = err >> 48; 3028 switch (err_mask) { 3029 case 2: 3030 swstats->tx_buf_abort_cnt++; 3031 break; 3032 3033 case 3: 3034 swstats->tx_desc_abort_cnt++; 3035 break; 3036 3037 case 7: 3038 swstats->tx_parity_err_cnt++; 3039 break; 3040 3041 case 10: 3042 swstats->tx_link_loss_cnt++; 3043 break; 3044 3045 case 15: 3046 swstats->tx_list_proc_err_cnt++; 3047 break; 3048 } 3049 } 3050 3051 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); 3052 if (skb == NULL) { 3053 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3054 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", 3055 __func__); 3056 return; 3057 } 3058 pkt_cnt++; 3059 3060 /* Updating the statistics block */ 3061 swstats->mem_freed += skb->truesize; 3062 dev_consume_skb_irq(skb); 3063 3064 get_info.offset++; 3065 if (get_info.offset == get_info.fifo_len + 1) 3066 get_info.offset = 0; 3067 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3068 fifo_data->tx_curr_get_info.offset = get_info.offset; 3069 } 3070 3071 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); 3072 3073 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3074 } 3075 3076 /** 3077 * s2io_mdio_write - Function to write in to MDIO registers 3078 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3079 * @addr : address value 3080 * @value : data value 3081 * @dev : pointer to net_device structure 3082 * Description: 3083 * This function is used to write values to the MDIO registers 3084 * NONE 3085 */ 3086 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, 3087 struct net_device *dev) 3088 { 3089 u64 val64; 3090 struct s2io_nic *sp = netdev_priv(dev); 3091 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3092 3093 /* address transaction */ 3094 val64 = MDIO_MMD_INDX_ADDR(addr) | 3095 MDIO_MMD_DEV_ADDR(mmd_type) | 3096 MDIO_MMS_PRT_ADDR(0x0); 3097 writeq(val64, &bar0->mdio_control); 3098 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3099 writeq(val64, &bar0->mdio_control); 3100 udelay(100); 3101 3102 /* Data transaction */ 3103 val64 = MDIO_MMD_INDX_ADDR(addr) | 3104 MDIO_MMD_DEV_ADDR(mmd_type) | 3105 MDIO_MMS_PRT_ADDR(0x0) | 3106 MDIO_MDIO_DATA(value) | 3107 MDIO_OP(MDIO_OP_WRITE_TRANS); 3108 writeq(val64, &bar0->mdio_control); 3109 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3110 writeq(val64, &bar0->mdio_control); 3111 udelay(100); 3112 3113 val64 = MDIO_MMD_INDX_ADDR(addr) | 3114 MDIO_MMD_DEV_ADDR(mmd_type) | 3115 MDIO_MMS_PRT_ADDR(0x0) | 3116 MDIO_OP(MDIO_OP_READ_TRANS); 3117 writeq(val64, &bar0->mdio_control); 3118 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3119 writeq(val64, &bar0->mdio_control); 3120 udelay(100); 3121 } 3122 3123 /** 3124 * s2io_mdio_read - Function to write in to MDIO registers 3125 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3126 * @addr : address value 3127 * @dev : pointer to net_device structure 3128 * Description: 3129 * This function is used to read values to the MDIO registers 3130 * NONE 3131 */ 3132 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) 3133 { 3134 u64 val64 = 0x0; 3135 u64 rval64 = 0x0; 3136 struct s2io_nic *sp = netdev_priv(dev); 3137 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3138 3139 /* address transaction */ 3140 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) 3141 | MDIO_MMD_DEV_ADDR(mmd_type) 3142 | MDIO_MMS_PRT_ADDR(0x0)); 3143 writeq(val64, &bar0->mdio_control); 3144 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3145 writeq(val64, &bar0->mdio_control); 3146 udelay(100); 3147 3148 /* Data transaction */ 3149 val64 = MDIO_MMD_INDX_ADDR(addr) | 3150 MDIO_MMD_DEV_ADDR(mmd_type) | 3151 MDIO_MMS_PRT_ADDR(0x0) | 3152 MDIO_OP(MDIO_OP_READ_TRANS); 3153 writeq(val64, &bar0->mdio_control); 3154 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3155 writeq(val64, &bar0->mdio_control); 3156 udelay(100); 3157 3158 /* Read the value from regs */ 3159 rval64 = readq(&bar0->mdio_control); 3160 rval64 = rval64 & 0xFFFF0000; 3161 rval64 = rval64 >> 16; 3162 return rval64; 3163 } 3164 3165 /** 3166 * s2io_chk_xpak_counter - Function to check the status of the xpak counters 3167 * @counter : counter value to be updated 3168 * @regs_stat : registers status 3169 * @index : index 3170 * @flag : flag to indicate the status 3171 * @type : counter type 3172 * Description: 3173 * This function is to check the status of the xpak counters value 3174 * NONE 3175 */ 3176 3177 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, 3178 u16 flag, u16 type) 3179 { 3180 u64 mask = 0x3; 3181 u64 val64; 3182 int i; 3183 for (i = 0; i < index; i++) 3184 mask = mask << 0x2; 3185 3186 if (flag > 0) { 3187 *counter = *counter + 1; 3188 val64 = *regs_stat & mask; 3189 val64 = val64 >> (index * 0x2); 3190 val64 = val64 + 1; 3191 if (val64 == 3) { 3192 switch (type) { 3193 case 1: 3194 DBG_PRINT(ERR_DBG, 3195 "Take Xframe NIC out of service.\n"); 3196 DBG_PRINT(ERR_DBG, 3197 "Excessive temperatures may result in premature transceiver failure.\n"); 3198 break; 3199 case 2: 3200 DBG_PRINT(ERR_DBG, 3201 "Take Xframe NIC out of service.\n"); 3202 DBG_PRINT(ERR_DBG, 3203 "Excessive bias currents may indicate imminent laser diode failure.\n"); 3204 break; 3205 case 3: 3206 DBG_PRINT(ERR_DBG, 3207 "Take Xframe NIC out of service.\n"); 3208 DBG_PRINT(ERR_DBG, 3209 "Excessive laser output power may saturate far-end receiver.\n"); 3210 break; 3211 default: 3212 DBG_PRINT(ERR_DBG, 3213 "Incorrect XPAK Alarm type\n"); 3214 } 3215 val64 = 0x0; 3216 } 3217 val64 = val64 << (index * 0x2); 3218 *regs_stat = (*regs_stat & (~mask)) | (val64); 3219 3220 } else { 3221 *regs_stat = *regs_stat & (~mask); 3222 } 3223 } 3224 3225 /** 3226 * s2io_updt_xpak_counter - Function to update the xpak counters 3227 * @dev : pointer to net_device struct 3228 * Description: 3229 * This function is to upate the status of the xpak counters value 3230 * NONE 3231 */ 3232 static void s2io_updt_xpak_counter(struct net_device *dev) 3233 { 3234 u16 flag = 0x0; 3235 u16 type = 0x0; 3236 u16 val16 = 0x0; 3237 u64 val64 = 0x0; 3238 u64 addr = 0x0; 3239 3240 struct s2io_nic *sp = netdev_priv(dev); 3241 struct stat_block *stats = sp->mac_control.stats_info; 3242 struct xpakStat *xstats = &stats->xpak_stat; 3243 3244 /* Check the communication with the MDIO slave */ 3245 addr = MDIO_CTRL1; 3246 val64 = 0x0; 3247 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3248 if ((val64 == 0xFFFF) || (val64 == 0x0000)) { 3249 DBG_PRINT(ERR_DBG, 3250 "ERR: MDIO slave access failed - Returned %llx\n", 3251 (unsigned long long)val64); 3252 return; 3253 } 3254 3255 /* Check for the expected value of control reg 1 */ 3256 if (val64 != MDIO_CTRL1_SPEED10G) { 3257 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " 3258 "Returned: %llx- Expected: 0x%x\n", 3259 (unsigned long long)val64, MDIO_CTRL1_SPEED10G); 3260 return; 3261 } 3262 3263 /* Loading the DOM register to MDIO register */ 3264 addr = 0xA100; 3265 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); 3266 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3267 3268 /* Reading the Alarm flags */ 3269 addr = 0xA070; 3270 val64 = 0x0; 3271 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3272 3273 flag = CHECKBIT(val64, 0x7); 3274 type = 1; 3275 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, 3276 &xstats->xpak_regs_stat, 3277 0x0, flag, type); 3278 3279 if (CHECKBIT(val64, 0x6)) 3280 xstats->alarm_transceiver_temp_low++; 3281 3282 flag = CHECKBIT(val64, 0x3); 3283 type = 2; 3284 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, 3285 &xstats->xpak_regs_stat, 3286 0x2, flag, type); 3287 3288 if (CHECKBIT(val64, 0x2)) 3289 xstats->alarm_laser_bias_current_low++; 3290 3291 flag = CHECKBIT(val64, 0x1); 3292 type = 3; 3293 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, 3294 &xstats->xpak_regs_stat, 3295 0x4, flag, type); 3296 3297 if (CHECKBIT(val64, 0x0)) 3298 xstats->alarm_laser_output_power_low++; 3299 3300 /* Reading the Warning flags */ 3301 addr = 0xA074; 3302 val64 = 0x0; 3303 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3304 3305 if (CHECKBIT(val64, 0x7)) 3306 xstats->warn_transceiver_temp_high++; 3307 3308 if (CHECKBIT(val64, 0x6)) 3309 xstats->warn_transceiver_temp_low++; 3310 3311 if (CHECKBIT(val64, 0x3)) 3312 xstats->warn_laser_bias_current_high++; 3313 3314 if (CHECKBIT(val64, 0x2)) 3315 xstats->warn_laser_bias_current_low++; 3316 3317 if (CHECKBIT(val64, 0x1)) 3318 xstats->warn_laser_output_power_high++; 3319 3320 if (CHECKBIT(val64, 0x0)) 3321 xstats->warn_laser_output_power_low++; 3322 } 3323 3324 /** 3325 * wait_for_cmd_complete - waits for a command to complete. 3326 * @addr: address 3327 * @busy_bit: bit to check for busy 3328 * @bit_state: state to check 3329 * @may_sleep: parameter indicates if sleeping when waiting for 3330 * command complete 3331 * Description: Function that waits for a command to Write into RMAC 3332 * ADDR DATA registers to be completed and returns either success or 3333 * error depending on whether the command was complete or not. 3334 * Return value: 3335 * SUCCESS on success and FAILURE on failure. 3336 */ 3337 3338 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, 3339 int bit_state, bool may_sleep) 3340 { 3341 int ret = FAILURE, cnt = 0, delay = 1; 3342 u64 val64; 3343 3344 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) 3345 return FAILURE; 3346 3347 do { 3348 val64 = readq(addr); 3349 if (bit_state == S2IO_BIT_RESET) { 3350 if (!(val64 & busy_bit)) { 3351 ret = SUCCESS; 3352 break; 3353 } 3354 } else { 3355 if (val64 & busy_bit) { 3356 ret = SUCCESS; 3357 break; 3358 } 3359 } 3360 3361 if (!may_sleep) 3362 mdelay(delay); 3363 else 3364 msleep(delay); 3365 3366 if (++cnt >= 10) 3367 delay = 50; 3368 } while (cnt < 20); 3369 return ret; 3370 } 3371 /** 3372 * check_pci_device_id - Checks if the device id is supported 3373 * @id : device id 3374 * Description: Function to check if the pci device id is supported by driver. 3375 * Return value: Actual device id if supported else PCI_ANY_ID 3376 */ 3377 static u16 check_pci_device_id(u16 id) 3378 { 3379 switch (id) { 3380 case PCI_DEVICE_ID_HERC_WIN: 3381 case PCI_DEVICE_ID_HERC_UNI: 3382 return XFRAME_II_DEVICE; 3383 case PCI_DEVICE_ID_S2IO_UNI: 3384 case PCI_DEVICE_ID_S2IO_WIN: 3385 return XFRAME_I_DEVICE; 3386 default: 3387 return PCI_ANY_ID; 3388 } 3389 } 3390 3391 /** 3392 * s2io_reset - Resets the card. 3393 * @sp : private member of the device structure. 3394 * Description: Function to Reset the card. This function then also 3395 * restores the previously saved PCI configuration space registers as 3396 * the card reset also resets the configuration space. 3397 * Return value: 3398 * void. 3399 */ 3400 3401 static void s2io_reset(struct s2io_nic *sp) 3402 { 3403 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3404 u64 val64; 3405 u16 subid, pci_cmd; 3406 int i; 3407 u16 val16; 3408 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; 3409 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; 3410 struct stat_block *stats; 3411 struct swStat *swstats; 3412 3413 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", 3414 __func__, pci_name(sp->pdev)); 3415 3416 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ 3417 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); 3418 3419 val64 = SW_RESET_ALL; 3420 writeq(val64, &bar0->sw_reset); 3421 if (strstr(sp->product_name, "CX4")) 3422 msleep(750); 3423 msleep(250); 3424 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { 3425 3426 /* Restore the PCI state saved during initialization. */ 3427 pci_restore_state(sp->pdev); 3428 pci_save_state(sp->pdev); 3429 pci_read_config_word(sp->pdev, 0x2, &val16); 3430 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) 3431 break; 3432 msleep(200); 3433 } 3434 3435 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) 3436 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); 3437 3438 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); 3439 3440 s2io_init_pci(sp); 3441 3442 /* Set swapper to enable I/O register access */ 3443 s2io_set_swapper(sp); 3444 3445 /* restore mac_addr entries */ 3446 do_s2io_restore_unicast_mc(sp); 3447 3448 /* Restore the MSIX table entries from local variables */ 3449 restore_xmsi_data(sp); 3450 3451 /* Clear certain PCI/PCI-X fields after reset */ 3452 if (sp->device_type == XFRAME_II_DEVICE) { 3453 /* Clear "detected parity error" bit */ 3454 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); 3455 3456 /* Clearing PCIX Ecc status register */ 3457 pci_write_config_dword(sp->pdev, 0x68, 0x7C); 3458 3459 /* Clearing PCI_STATUS error reflected here */ 3460 writeq(s2BIT(62), &bar0->txpic_int_reg); 3461 } 3462 3463 /* Reset device statistics maintained by OS */ 3464 memset(&sp->stats, 0, sizeof(struct net_device_stats)); 3465 3466 stats = sp->mac_control.stats_info; 3467 swstats = &stats->sw_stat; 3468 3469 /* save link up/down time/cnt, reset/memory/watchdog cnt */ 3470 up_cnt = swstats->link_up_cnt; 3471 down_cnt = swstats->link_down_cnt; 3472 up_time = swstats->link_up_time; 3473 down_time = swstats->link_down_time; 3474 reset_cnt = swstats->soft_reset_cnt; 3475 mem_alloc_cnt = swstats->mem_allocated; 3476 mem_free_cnt = swstats->mem_freed; 3477 watchdog_cnt = swstats->watchdog_timer_cnt; 3478 3479 memset(stats, 0, sizeof(struct stat_block)); 3480 3481 /* restore link up/down time/cnt, reset/memory/watchdog cnt */ 3482 swstats->link_up_cnt = up_cnt; 3483 swstats->link_down_cnt = down_cnt; 3484 swstats->link_up_time = up_time; 3485 swstats->link_down_time = down_time; 3486 swstats->soft_reset_cnt = reset_cnt; 3487 swstats->mem_allocated = mem_alloc_cnt; 3488 swstats->mem_freed = mem_free_cnt; 3489 swstats->watchdog_timer_cnt = watchdog_cnt; 3490 3491 /* SXE-002: Configure link and activity LED to turn it off */ 3492 subid = sp->pdev->subsystem_device; 3493 if (((subid & 0xFF) >= 0x07) && 3494 (sp->device_type == XFRAME_I_DEVICE)) { 3495 val64 = readq(&bar0->gpio_control); 3496 val64 |= 0x0000800000000000ULL; 3497 writeq(val64, &bar0->gpio_control); 3498 val64 = 0x0411040400000000ULL; 3499 writeq(val64, (void __iomem *)bar0 + 0x2700); 3500 } 3501 3502 /* 3503 * Clear spurious ECC interrupts that would have occurred on 3504 * XFRAME II cards after reset. 3505 */ 3506 if (sp->device_type == XFRAME_II_DEVICE) { 3507 val64 = readq(&bar0->pcc_err_reg); 3508 writeq(val64, &bar0->pcc_err_reg); 3509 } 3510 3511 sp->device_enabled_once = false; 3512 } 3513 3514 /** 3515 * s2io_set_swapper - to set the swapper controle on the card 3516 * @sp : private member of the device structure, 3517 * pointer to the s2io_nic structure. 3518 * Description: Function to set the swapper control on the card 3519 * correctly depending on the 'endianness' of the system. 3520 * Return value: 3521 * SUCCESS on success and FAILURE on failure. 3522 */ 3523 3524 static int s2io_set_swapper(struct s2io_nic *sp) 3525 { 3526 struct net_device *dev = sp->dev; 3527 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3528 u64 val64, valt, valr; 3529 3530 /* 3531 * Set proper endian settings and verify the same by reading 3532 * the PIF Feed-back register. 3533 */ 3534 3535 val64 = readq(&bar0->pif_rd_swapper_fb); 3536 if (val64 != 0x0123456789ABCDEFULL) { 3537 int i = 0; 3538 static const u64 value[] = { 3539 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 3540 0x8100008181000081ULL, /* FE=1, SE=0 */ 3541 0x4200004242000042ULL, /* FE=0, SE=1 */ 3542 0 /* FE=0, SE=0 */ 3543 }; 3544 3545 while (i < 4) { 3546 writeq(value[i], &bar0->swapper_ctrl); 3547 val64 = readq(&bar0->pif_rd_swapper_fb); 3548 if (val64 == 0x0123456789ABCDEFULL) 3549 break; 3550 i++; 3551 } 3552 if (i == 4) { 3553 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " 3554 "feedback read %llx\n", 3555 dev->name, (unsigned long long)val64); 3556 return FAILURE; 3557 } 3558 valr = value[i]; 3559 } else { 3560 valr = readq(&bar0->swapper_ctrl); 3561 } 3562 3563 valt = 0x0123456789ABCDEFULL; 3564 writeq(valt, &bar0->xmsi_address); 3565 val64 = readq(&bar0->xmsi_address); 3566 3567 if (val64 != valt) { 3568 int i = 0; 3569 static const u64 value[] = { 3570 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 3571 0x0081810000818100ULL, /* FE=1, SE=0 */ 3572 0x0042420000424200ULL, /* FE=0, SE=1 */ 3573 0 /* FE=0, SE=0 */ 3574 }; 3575 3576 while (i < 4) { 3577 writeq((value[i] | valr), &bar0->swapper_ctrl); 3578 writeq(valt, &bar0->xmsi_address); 3579 val64 = readq(&bar0->xmsi_address); 3580 if (val64 == valt) 3581 break; 3582 i++; 3583 } 3584 if (i == 4) { 3585 unsigned long long x = val64; 3586 DBG_PRINT(ERR_DBG, 3587 "Write failed, Xmsi_addr reads:0x%llx\n", x); 3588 return FAILURE; 3589 } 3590 } 3591 val64 = readq(&bar0->swapper_ctrl); 3592 val64 &= 0xFFFF000000000000ULL; 3593 3594 #ifdef __BIG_ENDIAN 3595 /* 3596 * The device by default set to a big endian format, so a 3597 * big endian driver need not set anything. 3598 */ 3599 val64 |= (SWAPPER_CTRL_TXP_FE | 3600 SWAPPER_CTRL_TXP_SE | 3601 SWAPPER_CTRL_TXD_R_FE | 3602 SWAPPER_CTRL_TXD_W_FE | 3603 SWAPPER_CTRL_TXF_R_FE | 3604 SWAPPER_CTRL_RXD_R_FE | 3605 SWAPPER_CTRL_RXD_W_FE | 3606 SWAPPER_CTRL_RXF_W_FE | 3607 SWAPPER_CTRL_XMSI_FE | 3608 SWAPPER_CTRL_STATS_FE | 3609 SWAPPER_CTRL_STATS_SE); 3610 if (sp->config.intr_type == INTA) 3611 val64 |= SWAPPER_CTRL_XMSI_SE; 3612 writeq(val64, &bar0->swapper_ctrl); 3613 #else 3614 /* 3615 * Initially we enable all bits to make it accessible by the 3616 * driver, then we selectively enable only those bits that 3617 * we want to set. 3618 */ 3619 val64 |= (SWAPPER_CTRL_TXP_FE | 3620 SWAPPER_CTRL_TXP_SE | 3621 SWAPPER_CTRL_TXD_R_FE | 3622 SWAPPER_CTRL_TXD_R_SE | 3623 SWAPPER_CTRL_TXD_W_FE | 3624 SWAPPER_CTRL_TXD_W_SE | 3625 SWAPPER_CTRL_TXF_R_FE | 3626 SWAPPER_CTRL_RXD_R_FE | 3627 SWAPPER_CTRL_RXD_R_SE | 3628 SWAPPER_CTRL_RXD_W_FE | 3629 SWAPPER_CTRL_RXD_W_SE | 3630 SWAPPER_CTRL_RXF_W_FE | 3631 SWAPPER_CTRL_XMSI_FE | 3632 SWAPPER_CTRL_STATS_FE | 3633 SWAPPER_CTRL_STATS_SE); 3634 if (sp->config.intr_type == INTA) 3635 val64 |= SWAPPER_CTRL_XMSI_SE; 3636 writeq(val64, &bar0->swapper_ctrl); 3637 #endif 3638 val64 = readq(&bar0->swapper_ctrl); 3639 3640 /* 3641 * Verifying if endian settings are accurate by reading a 3642 * feedback register. 3643 */ 3644 val64 = readq(&bar0->pif_rd_swapper_fb); 3645 if (val64 != 0x0123456789ABCDEFULL) { 3646 /* Endian settings are incorrect, calls for another dekko. */ 3647 DBG_PRINT(ERR_DBG, 3648 "%s: Endian settings are wrong, feedback read %llx\n", 3649 dev->name, (unsigned long long)val64); 3650 return FAILURE; 3651 } 3652 3653 return SUCCESS; 3654 } 3655 3656 static int wait_for_msix_trans(struct s2io_nic *nic, int i) 3657 { 3658 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3659 u64 val64; 3660 int ret = 0, cnt = 0; 3661 3662 do { 3663 val64 = readq(&bar0->xmsi_access); 3664 if (!(val64 & s2BIT(15))) 3665 break; 3666 mdelay(1); 3667 cnt++; 3668 } while (cnt < 5); 3669 if (cnt == 5) { 3670 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); 3671 ret = 1; 3672 } 3673 3674 return ret; 3675 } 3676 3677 static void restore_xmsi_data(struct s2io_nic *nic) 3678 { 3679 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3680 u64 val64; 3681 int i, msix_index; 3682 3683 if (nic->device_type == XFRAME_I_DEVICE) 3684 return; 3685 3686 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3687 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3688 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3689 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3690 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); 3691 writeq(val64, &bar0->xmsi_access); 3692 if (wait_for_msix_trans(nic, msix_index)) 3693 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3694 __func__, msix_index); 3695 } 3696 } 3697 3698 static void store_xmsi_data(struct s2io_nic *nic) 3699 { 3700 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3701 u64 val64, addr, data; 3702 int i, msix_index; 3703 3704 if (nic->device_type == XFRAME_I_DEVICE) 3705 return; 3706 3707 /* Store and display */ 3708 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3709 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3710 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); 3711 writeq(val64, &bar0->xmsi_access); 3712 if (wait_for_msix_trans(nic, msix_index)) { 3713 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3714 __func__, msix_index); 3715 continue; 3716 } 3717 addr = readq(&bar0->xmsi_address); 3718 data = readq(&bar0->xmsi_data); 3719 if (addr && data) { 3720 nic->msix_info[i].addr = addr; 3721 nic->msix_info[i].data = data; 3722 } 3723 } 3724 } 3725 3726 static int s2io_enable_msi_x(struct s2io_nic *nic) 3727 { 3728 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3729 u64 rx_mat; 3730 u16 msi_control; /* Temp variable */ 3731 int ret, i, j, msix_indx = 1; 3732 int size; 3733 struct stat_block *stats = nic->mac_control.stats_info; 3734 struct swStat *swstats = &stats->sw_stat; 3735 3736 size = nic->num_entries * sizeof(struct msix_entry); 3737 nic->entries = kzalloc(size, GFP_KERNEL); 3738 if (!nic->entries) { 3739 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3740 __func__); 3741 swstats->mem_alloc_fail_cnt++; 3742 return -ENOMEM; 3743 } 3744 swstats->mem_allocated += size; 3745 3746 size = nic->num_entries * sizeof(struct s2io_msix_entry); 3747 nic->s2io_entries = kzalloc(size, GFP_KERNEL); 3748 if (!nic->s2io_entries) { 3749 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3750 __func__); 3751 swstats->mem_alloc_fail_cnt++; 3752 kfree(nic->entries); 3753 swstats->mem_freed 3754 += (nic->num_entries * sizeof(struct msix_entry)); 3755 return -ENOMEM; 3756 } 3757 swstats->mem_allocated += size; 3758 3759 nic->entries[0].entry = 0; 3760 nic->s2io_entries[0].entry = 0; 3761 nic->s2io_entries[0].in_use = MSIX_FLG; 3762 nic->s2io_entries[0].type = MSIX_ALARM_TYPE; 3763 nic->s2io_entries[0].arg = &nic->mac_control.fifos; 3764 3765 for (i = 1; i < nic->num_entries; i++) { 3766 nic->entries[i].entry = ((i - 1) * 8) + 1; 3767 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; 3768 nic->s2io_entries[i].arg = NULL; 3769 nic->s2io_entries[i].in_use = 0; 3770 } 3771 3772 rx_mat = readq(&bar0->rx_mat); 3773 for (j = 0; j < nic->config.rx_ring_num; j++) { 3774 rx_mat |= RX_MAT_SET(j, msix_indx); 3775 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; 3776 nic->s2io_entries[j+1].type = MSIX_RING_TYPE; 3777 nic->s2io_entries[j+1].in_use = MSIX_FLG; 3778 msix_indx += 8; 3779 } 3780 writeq(rx_mat, &bar0->rx_mat); 3781 readq(&bar0->rx_mat); 3782 3783 ret = pci_enable_msix_range(nic->pdev, nic->entries, 3784 nic->num_entries, nic->num_entries); 3785 /* We fail init if error or we get less vectors than min required */ 3786 if (ret < 0) { 3787 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); 3788 kfree(nic->entries); 3789 swstats->mem_freed += nic->num_entries * 3790 sizeof(struct msix_entry); 3791 kfree(nic->s2io_entries); 3792 swstats->mem_freed += nic->num_entries * 3793 sizeof(struct s2io_msix_entry); 3794 nic->entries = NULL; 3795 nic->s2io_entries = NULL; 3796 return -ENOMEM; 3797 } 3798 3799 /* 3800 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3801 * in the herc NIC. (Temp change, needs to be removed later) 3802 */ 3803 pci_read_config_word(nic->pdev, 0x42, &msi_control); 3804 msi_control |= 0x1; /* Enable MSI */ 3805 pci_write_config_word(nic->pdev, 0x42, msi_control); 3806 3807 return 0; 3808 } 3809 3810 /* Handle software interrupt used during MSI(X) test */ 3811 static irqreturn_t s2io_test_intr(int irq, void *dev_id) 3812 { 3813 struct s2io_nic *sp = dev_id; 3814 3815 sp->msi_detected = 1; 3816 wake_up(&sp->msi_wait); 3817 3818 return IRQ_HANDLED; 3819 } 3820 3821 /* Test interrupt path by forcing a software IRQ */ 3822 static int s2io_test_msi(struct s2io_nic *sp) 3823 { 3824 struct pci_dev *pdev = sp->pdev; 3825 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3826 int err; 3827 u64 val64, saved64; 3828 3829 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, 3830 sp->name, sp); 3831 if (err) { 3832 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", 3833 sp->dev->name, pci_name(pdev), pdev->irq); 3834 return err; 3835 } 3836 3837 init_waitqueue_head(&sp->msi_wait); 3838 sp->msi_detected = 0; 3839 3840 saved64 = val64 = readq(&bar0->scheduled_int_ctrl); 3841 val64 |= SCHED_INT_CTRL_ONE_SHOT; 3842 val64 |= SCHED_INT_CTRL_TIMER_EN; 3843 val64 |= SCHED_INT_CTRL_INT2MSI(1); 3844 writeq(val64, &bar0->scheduled_int_ctrl); 3845 3846 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); 3847 3848 if (!sp->msi_detected) { 3849 /* MSI(X) test failed, go back to INTx mode */ 3850 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " 3851 "using MSI(X) during test\n", 3852 sp->dev->name, pci_name(pdev)); 3853 3854 err = -EOPNOTSUPP; 3855 } 3856 3857 free_irq(sp->entries[1].vector, sp); 3858 3859 writeq(saved64, &bar0->scheduled_int_ctrl); 3860 3861 return err; 3862 } 3863 3864 static void remove_msix_isr(struct s2io_nic *sp) 3865 { 3866 int i; 3867 u16 msi_control; 3868 3869 for (i = 0; i < sp->num_entries; i++) { 3870 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { 3871 int vector = sp->entries[i].vector; 3872 void *arg = sp->s2io_entries[i].arg; 3873 free_irq(vector, arg); 3874 } 3875 } 3876 3877 kfree(sp->entries); 3878 kfree(sp->s2io_entries); 3879 sp->entries = NULL; 3880 sp->s2io_entries = NULL; 3881 3882 pci_read_config_word(sp->pdev, 0x42, &msi_control); 3883 msi_control &= 0xFFFE; /* Disable MSI */ 3884 pci_write_config_word(sp->pdev, 0x42, msi_control); 3885 3886 pci_disable_msix(sp->pdev); 3887 } 3888 3889 static void remove_inta_isr(struct s2io_nic *sp) 3890 { 3891 free_irq(sp->pdev->irq, sp->dev); 3892 } 3893 3894 /* ********************************************************* * 3895 * Functions defined below concern the OS part of the driver * 3896 * ********************************************************* */ 3897 3898 /** 3899 * s2io_open - open entry point of the driver 3900 * @dev : pointer to the device structure. 3901 * Description: 3902 * This function is the open entry point of the driver. It mainly calls a 3903 * function to allocate Rx buffers and inserts them into the buffer 3904 * descriptors and then enables the Rx part of the NIC. 3905 * Return value: 3906 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3907 * file on failure. 3908 */ 3909 3910 static int s2io_open(struct net_device *dev) 3911 { 3912 struct s2io_nic *sp = netdev_priv(dev); 3913 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 3914 int err = 0; 3915 3916 /* 3917 * Make sure you have link off by default every time 3918 * Nic is initialized 3919 */ 3920 netif_carrier_off(dev); 3921 sp->last_link_state = 0; 3922 3923 /* Initialize H/W and enable interrupts */ 3924 err = s2io_card_up(sp); 3925 if (err) { 3926 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3927 dev->name); 3928 goto hw_init_failed; 3929 } 3930 3931 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { 3932 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); 3933 s2io_card_down(sp); 3934 err = -ENODEV; 3935 goto hw_init_failed; 3936 } 3937 s2io_start_all_tx_queue(sp); 3938 return 0; 3939 3940 hw_init_failed: 3941 if (sp->config.intr_type == MSI_X) { 3942 if (sp->entries) { 3943 kfree(sp->entries); 3944 swstats->mem_freed += sp->num_entries * 3945 sizeof(struct msix_entry); 3946 } 3947 if (sp->s2io_entries) { 3948 kfree(sp->s2io_entries); 3949 swstats->mem_freed += sp->num_entries * 3950 sizeof(struct s2io_msix_entry); 3951 } 3952 } 3953 return err; 3954 } 3955 3956 /** 3957 * s2io_close -close entry point of the driver 3958 * @dev : device pointer. 3959 * Description: 3960 * This is the stop entry point of the driver. It needs to undo exactly 3961 * whatever was done by the open entry point,thus it's usually referred to 3962 * as the close function.Among other things this function mainly stops the 3963 * Rx side of the NIC and frees all the Rx buffers in the Rx rings. 3964 * Return value: 3965 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3966 * file on failure. 3967 */ 3968 3969 static int s2io_close(struct net_device *dev) 3970 { 3971 struct s2io_nic *sp = netdev_priv(dev); 3972 struct config_param *config = &sp->config; 3973 u64 tmp64; 3974 int offset; 3975 3976 /* Return if the device is already closed * 3977 * Can happen when s2io_card_up failed in change_mtu * 3978 */ 3979 if (!is_s2io_card_up(sp)) 3980 return 0; 3981 3982 s2io_stop_all_tx_queue(sp); 3983 /* delete all populated mac entries */ 3984 for (offset = 1; offset < config->max_mc_addr; offset++) { 3985 tmp64 = do_s2io_read_unicast_mc(sp, offset); 3986 if (tmp64 != S2IO_DISABLE_MAC_ENTRY) 3987 do_s2io_delete_unicast_mc(sp, tmp64); 3988 } 3989 3990 s2io_card_down(sp); 3991 3992 return 0; 3993 } 3994 3995 /** 3996 * s2io_xmit - Tx entry point of te driver 3997 * @skb : the socket buffer containing the Tx data. 3998 * @dev : device pointer. 3999 * Description : 4000 * This function is the Tx entry point of the driver. S2IO NIC supports 4001 * certain protocol assist features on Tx side, namely CSO, S/G, LSO. 4002 * NOTE: when device can't queue the pkt,just the trans_start variable will 4003 * not be upadted. 4004 * Return value: 4005 * 0 on success & 1 on failure. 4006 */ 4007 4008 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) 4009 { 4010 struct s2io_nic *sp = netdev_priv(dev); 4011 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; 4012 register u64 val64; 4013 struct TxD *txdp; 4014 struct TxFIFO_element __iomem *tx_fifo; 4015 unsigned long flags = 0; 4016 u16 vlan_tag = 0; 4017 struct fifo_info *fifo = NULL; 4018 int offload_type; 4019 int enable_per_list_interrupt = 0; 4020 struct config_param *config = &sp->config; 4021 struct mac_info *mac_control = &sp->mac_control; 4022 struct stat_block *stats = mac_control->stats_info; 4023 struct swStat *swstats = &stats->sw_stat; 4024 4025 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); 4026 4027 if (unlikely(skb->len <= 0)) { 4028 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); 4029 dev_kfree_skb_any(skb); 4030 return NETDEV_TX_OK; 4031 } 4032 4033 if (!is_s2io_card_up(sp)) { 4034 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", 4035 dev->name); 4036 dev_kfree_skb_any(skb); 4037 return NETDEV_TX_OK; 4038 } 4039 4040 queue = 0; 4041 if (skb_vlan_tag_present(skb)) 4042 vlan_tag = skb_vlan_tag_get(skb); 4043 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { 4044 if (skb->protocol == htons(ETH_P_IP)) { 4045 struct iphdr *ip; 4046 struct tcphdr *th; 4047 ip = ip_hdr(skb); 4048 4049 if (!ip_is_fragment(ip)) { 4050 th = (struct tcphdr *)(((unsigned char *)ip) + 4051 ip->ihl*4); 4052 4053 if (ip->protocol == IPPROTO_TCP) { 4054 queue_len = sp->total_tcp_fifos; 4055 queue = (ntohs(th->source) + 4056 ntohs(th->dest)) & 4057 sp->fifo_selector[queue_len - 1]; 4058 if (queue >= queue_len) 4059 queue = queue_len - 1; 4060 } else if (ip->protocol == IPPROTO_UDP) { 4061 queue_len = sp->total_udp_fifos; 4062 queue = (ntohs(th->source) + 4063 ntohs(th->dest)) & 4064 sp->fifo_selector[queue_len - 1]; 4065 if (queue >= queue_len) 4066 queue = queue_len - 1; 4067 queue += sp->udp_fifo_idx; 4068 if (skb->len > 1024) 4069 enable_per_list_interrupt = 1; 4070 } 4071 } 4072 } 4073 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) 4074 /* get fifo number based on skb->priority value */ 4075 queue = config->fifo_mapping 4076 [skb->priority & (MAX_TX_FIFOS - 1)]; 4077 fifo = &mac_control->fifos[queue]; 4078 4079 spin_lock_irqsave(&fifo->tx_lock, flags); 4080 4081 if (sp->config.multiq) { 4082 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { 4083 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4084 return NETDEV_TX_BUSY; 4085 } 4086 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { 4087 if (netif_queue_stopped(dev)) { 4088 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4089 return NETDEV_TX_BUSY; 4090 } 4091 } 4092 4093 put_off = (u16)fifo->tx_curr_put_info.offset; 4094 get_off = (u16)fifo->tx_curr_get_info.offset; 4095 txdp = fifo->list_info[put_off].list_virt_addr; 4096 4097 queue_len = fifo->tx_curr_put_info.fifo_len + 1; 4098 /* Avoid "put" pointer going beyond "get" pointer */ 4099 if (txdp->Host_Control || 4100 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4101 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 4102 s2io_stop_tx_queue(sp, fifo->fifo_no); 4103 dev_kfree_skb_any(skb); 4104 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4105 return NETDEV_TX_OK; 4106 } 4107 4108 offload_type = s2io_offload_type(skb); 4109 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 4110 txdp->Control_1 |= TXD_TCP_LSO_EN; 4111 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); 4112 } 4113 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4114 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | 4115 TXD_TX_CKO_TCP_EN | 4116 TXD_TX_CKO_UDP_EN); 4117 } 4118 txdp->Control_1 |= TXD_GATHER_CODE_FIRST; 4119 txdp->Control_1 |= TXD_LIST_OWN_XENA; 4120 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); 4121 if (enable_per_list_interrupt) 4122 if (put_off & (queue_len >> 5)) 4123 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; 4124 if (vlan_tag) { 4125 txdp->Control_2 |= TXD_VLAN_ENABLE; 4126 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); 4127 } 4128 4129 frg_len = skb_headlen(skb); 4130 txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data, 4131 frg_len, DMA_TO_DEVICE); 4132 if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer)) 4133 goto pci_map_failed; 4134 4135 txdp->Host_Control = (unsigned long)skb; 4136 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); 4137 4138 frg_cnt = skb_shinfo(skb)->nr_frags; 4139 /* For fragmented SKB. */ 4140 for (i = 0; i < frg_cnt; i++) { 4141 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4142 /* A '0' length fragment will be ignored */ 4143 if (!skb_frag_size(frag)) 4144 continue; 4145 txdp++; 4146 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, 4147 frag, 0, 4148 skb_frag_size(frag), 4149 DMA_TO_DEVICE); 4150 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); 4151 } 4152 txdp->Control_1 |= TXD_GATHER_CODE_LAST; 4153 4154 tx_fifo = mac_control->tx_FIFO_start[queue]; 4155 val64 = fifo->list_info[put_off].list_phy_addr; 4156 writeq(val64, &tx_fifo->TxDL_Pointer); 4157 4158 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | 4159 TX_FIFO_LAST_LIST); 4160 if (offload_type) 4161 val64 |= TX_FIFO_SPECIAL_FUNC; 4162 4163 writeq(val64, &tx_fifo->List_Control); 4164 4165 put_off++; 4166 if (put_off == fifo->tx_curr_put_info.fifo_len + 1) 4167 put_off = 0; 4168 fifo->tx_curr_put_info.offset = put_off; 4169 4170 /* Avoid "put" pointer going beyond "get" pointer */ 4171 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4172 swstats->fifo_full_cnt++; 4173 DBG_PRINT(TX_DBG, 4174 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4175 put_off, get_off); 4176 s2io_stop_tx_queue(sp, fifo->fifo_no); 4177 } 4178 swstats->mem_allocated += skb->truesize; 4179 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4180 4181 if (sp->config.intr_type == MSI_X) 4182 tx_intr_handler(fifo); 4183 4184 return NETDEV_TX_OK; 4185 4186 pci_map_failed: 4187 swstats->pci_map_fail_cnt++; 4188 s2io_stop_tx_queue(sp, fifo->fifo_no); 4189 swstats->mem_freed += skb->truesize; 4190 dev_kfree_skb_any(skb); 4191 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4192 return NETDEV_TX_OK; 4193 } 4194 4195 static void 4196 s2io_alarm_handle(struct timer_list *t) 4197 { 4198 struct s2io_nic *sp = from_timer(sp, t, alarm_timer); 4199 struct net_device *dev = sp->dev; 4200 4201 s2io_handle_errors(dev); 4202 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 4203 } 4204 4205 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) 4206 { 4207 struct ring_info *ring = (struct ring_info *)dev_id; 4208 struct s2io_nic *sp = ring->nic; 4209 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4210 4211 if (unlikely(!is_s2io_card_up(sp))) 4212 return IRQ_HANDLED; 4213 4214 if (sp->config.napi) { 4215 u8 __iomem *addr = NULL; 4216 u8 val8 = 0; 4217 4218 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 4219 addr += (7 - ring->ring_no); 4220 val8 = (ring->ring_no == 0) ? 0x7f : 0xff; 4221 writeb(val8, addr); 4222 val8 = readb(addr); 4223 napi_schedule(&ring->napi); 4224 } else { 4225 rx_intr_handler(ring, 0); 4226 s2io_chk_rx_buffers(sp, ring); 4227 } 4228 4229 return IRQ_HANDLED; 4230 } 4231 4232 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) 4233 { 4234 int i; 4235 struct fifo_info *fifos = (struct fifo_info *)dev_id; 4236 struct s2io_nic *sp = fifos->nic; 4237 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4238 struct config_param *config = &sp->config; 4239 u64 reason; 4240 4241 if (unlikely(!is_s2io_card_up(sp))) 4242 return IRQ_NONE; 4243 4244 reason = readq(&bar0->general_int_status); 4245 if (unlikely(reason == S2IO_MINUS_ONE)) 4246 /* Nothing much can be done. Get out */ 4247 return IRQ_HANDLED; 4248 4249 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { 4250 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4251 4252 if (reason & GEN_INTR_TXPIC) 4253 s2io_txpic_intr_handle(sp); 4254 4255 if (reason & GEN_INTR_TXTRAFFIC) 4256 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4257 4258 for (i = 0; i < config->tx_fifo_num; i++) 4259 tx_intr_handler(&fifos[i]); 4260 4261 writeq(sp->general_int_mask, &bar0->general_int_mask); 4262 readl(&bar0->general_int_status); 4263 return IRQ_HANDLED; 4264 } 4265 /* The interrupt was not raised by us */ 4266 return IRQ_NONE; 4267 } 4268 4269 static void s2io_txpic_intr_handle(struct s2io_nic *sp) 4270 { 4271 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4272 u64 val64; 4273 4274 val64 = readq(&bar0->pic_int_status); 4275 if (val64 & PIC_INT_GPIO) { 4276 val64 = readq(&bar0->gpio_int_reg); 4277 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4278 (val64 & GPIO_INT_REG_LINK_UP)) { 4279 /* 4280 * This is unstable state so clear both up/down 4281 * interrupt and adapter to re-evaluate the link state. 4282 */ 4283 val64 |= GPIO_INT_REG_LINK_DOWN; 4284 val64 |= GPIO_INT_REG_LINK_UP; 4285 writeq(val64, &bar0->gpio_int_reg); 4286 val64 = readq(&bar0->gpio_int_mask); 4287 val64 &= ~(GPIO_INT_MASK_LINK_UP | 4288 GPIO_INT_MASK_LINK_DOWN); 4289 writeq(val64, &bar0->gpio_int_mask); 4290 } else if (val64 & GPIO_INT_REG_LINK_UP) { 4291 val64 = readq(&bar0->adapter_status); 4292 /* Enable Adapter */ 4293 val64 = readq(&bar0->adapter_control); 4294 val64 |= ADAPTER_CNTL_EN; 4295 writeq(val64, &bar0->adapter_control); 4296 val64 |= ADAPTER_LED_ON; 4297 writeq(val64, &bar0->adapter_control); 4298 if (!sp->device_enabled_once) 4299 sp->device_enabled_once = 1; 4300 4301 s2io_link(sp, LINK_UP); 4302 /* 4303 * unmask link down interrupt and mask link-up 4304 * intr 4305 */ 4306 val64 = readq(&bar0->gpio_int_mask); 4307 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4308 val64 |= GPIO_INT_MASK_LINK_UP; 4309 writeq(val64, &bar0->gpio_int_mask); 4310 4311 } else if (val64 & GPIO_INT_REG_LINK_DOWN) { 4312 val64 = readq(&bar0->adapter_status); 4313 s2io_link(sp, LINK_DOWN); 4314 /* Link is down so unmaks link up interrupt */ 4315 val64 = readq(&bar0->gpio_int_mask); 4316 val64 &= ~GPIO_INT_MASK_LINK_UP; 4317 val64 |= GPIO_INT_MASK_LINK_DOWN; 4318 writeq(val64, &bar0->gpio_int_mask); 4319 4320 /* turn off LED */ 4321 val64 = readq(&bar0->adapter_control); 4322 val64 = val64 & (~ADAPTER_LED_ON); 4323 writeq(val64, &bar0->adapter_control); 4324 } 4325 } 4326 val64 = readq(&bar0->gpio_int_mask); 4327 } 4328 4329 /** 4330 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter 4331 * @value: alarm bits 4332 * @addr: address value 4333 * @cnt: counter variable 4334 * Description: Check for alarm and increment the counter 4335 * Return Value: 4336 * 1 - if alarm bit set 4337 * 0 - if alarm bit is not set 4338 */ 4339 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, 4340 unsigned long long *cnt) 4341 { 4342 u64 val64; 4343 val64 = readq(addr); 4344 if (val64 & value) { 4345 writeq(val64, addr); 4346 (*cnt)++; 4347 return 1; 4348 } 4349 return 0; 4350 4351 } 4352 4353 /** 4354 * s2io_handle_errors - Xframe error indication handler 4355 * @dev_id: opaque handle to dev 4356 * Description: Handle alarms such as loss of link, single or 4357 * double ECC errors, critical and serious errors. 4358 * Return Value: 4359 * NONE 4360 */ 4361 static void s2io_handle_errors(void *dev_id) 4362 { 4363 struct net_device *dev = (struct net_device *)dev_id; 4364 struct s2io_nic *sp = netdev_priv(dev); 4365 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4366 u64 temp64 = 0, val64 = 0; 4367 int i = 0; 4368 4369 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; 4370 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; 4371 4372 if (!is_s2io_card_up(sp)) 4373 return; 4374 4375 if (pci_channel_offline(sp->pdev)) 4376 return; 4377 4378 memset(&sw_stat->ring_full_cnt, 0, 4379 sizeof(sw_stat->ring_full_cnt)); 4380 4381 /* Handling the XPAK counters update */ 4382 if (stats->xpak_timer_count < 72000) { 4383 /* waiting for an hour */ 4384 stats->xpak_timer_count++; 4385 } else { 4386 s2io_updt_xpak_counter(dev); 4387 /* reset the count to zero */ 4388 stats->xpak_timer_count = 0; 4389 } 4390 4391 /* Handling link status change error Intr */ 4392 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { 4393 val64 = readq(&bar0->mac_rmac_err_reg); 4394 writeq(val64, &bar0->mac_rmac_err_reg); 4395 if (val64 & RMAC_LINK_STATE_CHANGE_INT) 4396 schedule_work(&sp->set_link_task); 4397 } 4398 4399 /* In case of a serious error, the device will be Reset. */ 4400 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, 4401 &sw_stat->serious_err_cnt)) 4402 goto reset; 4403 4404 /* Check for data parity error */ 4405 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, 4406 &sw_stat->parity_err_cnt)) 4407 goto reset; 4408 4409 /* Check for ring full counter */ 4410 if (sp->device_type == XFRAME_II_DEVICE) { 4411 val64 = readq(&bar0->ring_bump_counter1); 4412 for (i = 0; i < 4; i++) { 4413 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4414 temp64 >>= 64 - ((i+1)*16); 4415 sw_stat->ring_full_cnt[i] += temp64; 4416 } 4417 4418 val64 = readq(&bar0->ring_bump_counter2); 4419 for (i = 0; i < 4; i++) { 4420 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4421 temp64 >>= 64 - ((i+1)*16); 4422 sw_stat->ring_full_cnt[i+4] += temp64; 4423 } 4424 } 4425 4426 val64 = readq(&bar0->txdma_int_status); 4427 /*check for pfc_err*/ 4428 if (val64 & TXDMA_PFC_INT) { 4429 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 4430 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 4431 PFC_PCIX_ERR, 4432 &bar0->pfc_err_reg, 4433 &sw_stat->pfc_err_cnt)) 4434 goto reset; 4435 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, 4436 &bar0->pfc_err_reg, 4437 &sw_stat->pfc_err_cnt); 4438 } 4439 4440 /*check for tda_err*/ 4441 if (val64 & TXDMA_TDA_INT) { 4442 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | 4443 TDA_SM0_ERR_ALARM | 4444 TDA_SM1_ERR_ALARM, 4445 &bar0->tda_err_reg, 4446 &sw_stat->tda_err_cnt)) 4447 goto reset; 4448 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, 4449 &bar0->tda_err_reg, 4450 &sw_stat->tda_err_cnt); 4451 } 4452 /*check for pcc_err*/ 4453 if (val64 & TXDMA_PCC_INT) { 4454 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 4455 PCC_N_SERR | PCC_6_COF_OV_ERR | 4456 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 4457 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 4458 PCC_TXB_ECC_DB_ERR, 4459 &bar0->pcc_err_reg, 4460 &sw_stat->pcc_err_cnt)) 4461 goto reset; 4462 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, 4463 &bar0->pcc_err_reg, 4464 &sw_stat->pcc_err_cnt); 4465 } 4466 4467 /*check for tti_err*/ 4468 if (val64 & TXDMA_TTI_INT) { 4469 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, 4470 &bar0->tti_err_reg, 4471 &sw_stat->tti_err_cnt)) 4472 goto reset; 4473 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, 4474 &bar0->tti_err_reg, 4475 &sw_stat->tti_err_cnt); 4476 } 4477 4478 /*check for lso_err*/ 4479 if (val64 & TXDMA_LSO_INT) { 4480 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 4481 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, 4482 &bar0->lso_err_reg, 4483 &sw_stat->lso_err_cnt)) 4484 goto reset; 4485 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 4486 &bar0->lso_err_reg, 4487 &sw_stat->lso_err_cnt); 4488 } 4489 4490 /*check for tpa_err*/ 4491 if (val64 & TXDMA_TPA_INT) { 4492 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, 4493 &bar0->tpa_err_reg, 4494 &sw_stat->tpa_err_cnt)) 4495 goto reset; 4496 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, 4497 &bar0->tpa_err_reg, 4498 &sw_stat->tpa_err_cnt); 4499 } 4500 4501 /*check for sm_err*/ 4502 if (val64 & TXDMA_SM_INT) { 4503 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, 4504 &bar0->sm_err_reg, 4505 &sw_stat->sm_err_cnt)) 4506 goto reset; 4507 } 4508 4509 val64 = readq(&bar0->mac_int_status); 4510 if (val64 & MAC_INT_STATUS_TMAC_INT) { 4511 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, 4512 &bar0->mac_tmac_err_reg, 4513 &sw_stat->mac_tmac_err_cnt)) 4514 goto reset; 4515 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 4516 TMAC_DESC_ECC_SG_ERR | 4517 TMAC_DESC_ECC_DB_ERR, 4518 &bar0->mac_tmac_err_reg, 4519 &sw_stat->mac_tmac_err_cnt); 4520 } 4521 4522 val64 = readq(&bar0->xgxs_int_status); 4523 if (val64 & XGXS_INT_STATUS_TXGXS) { 4524 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, 4525 &bar0->xgxs_txgxs_err_reg, 4526 &sw_stat->xgxs_txgxs_err_cnt)) 4527 goto reset; 4528 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 4529 &bar0->xgxs_txgxs_err_reg, 4530 &sw_stat->xgxs_txgxs_err_cnt); 4531 } 4532 4533 val64 = readq(&bar0->rxdma_int_status); 4534 if (val64 & RXDMA_INT_RC_INT_M) { 4535 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | 4536 RC_FTC_ECC_DB_ERR | 4537 RC_PRCn_SM_ERR_ALARM | 4538 RC_FTC_SM_ERR_ALARM, 4539 &bar0->rc_err_reg, 4540 &sw_stat->rc_err_cnt)) 4541 goto reset; 4542 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | 4543 RC_FTC_ECC_SG_ERR | 4544 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, 4545 &sw_stat->rc_err_cnt); 4546 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | 4547 PRC_PCI_AB_WR_Rn | 4548 PRC_PCI_AB_F_WR_Rn, 4549 &bar0->prc_pcix_err_reg, 4550 &sw_stat->prc_pcix_err_cnt)) 4551 goto reset; 4552 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | 4553 PRC_PCI_DP_WR_Rn | 4554 PRC_PCI_DP_F_WR_Rn, 4555 &bar0->prc_pcix_err_reg, 4556 &sw_stat->prc_pcix_err_cnt); 4557 } 4558 4559 if (val64 & RXDMA_INT_RPA_INT_M) { 4560 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, 4561 &bar0->rpa_err_reg, 4562 &sw_stat->rpa_err_cnt)) 4563 goto reset; 4564 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, 4565 &bar0->rpa_err_reg, 4566 &sw_stat->rpa_err_cnt); 4567 } 4568 4569 if (val64 & RXDMA_INT_RDA_INT_M) { 4570 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 4571 RDA_FRM_ECC_DB_N_AERR | 4572 RDA_SM1_ERR_ALARM | 4573 RDA_SM0_ERR_ALARM | 4574 RDA_RXD_ECC_DB_SERR, 4575 &bar0->rda_err_reg, 4576 &sw_stat->rda_err_cnt)) 4577 goto reset; 4578 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | 4579 RDA_FRM_ECC_SG_ERR | 4580 RDA_MISC_ERR | 4581 RDA_PCIX_ERR, 4582 &bar0->rda_err_reg, 4583 &sw_stat->rda_err_cnt); 4584 } 4585 4586 if (val64 & RXDMA_INT_RTI_INT_M) { 4587 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, 4588 &bar0->rti_err_reg, 4589 &sw_stat->rti_err_cnt)) 4590 goto reset; 4591 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 4592 &bar0->rti_err_reg, 4593 &sw_stat->rti_err_cnt); 4594 } 4595 4596 val64 = readq(&bar0->mac_int_status); 4597 if (val64 & MAC_INT_STATUS_RMAC_INT) { 4598 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, 4599 &bar0->mac_rmac_err_reg, 4600 &sw_stat->mac_rmac_err_cnt)) 4601 goto reset; 4602 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | 4603 RMAC_SINGLE_ECC_ERR | 4604 RMAC_DOUBLE_ECC_ERR, 4605 &bar0->mac_rmac_err_reg, 4606 &sw_stat->mac_rmac_err_cnt); 4607 } 4608 4609 val64 = readq(&bar0->xgxs_int_status); 4610 if (val64 & XGXS_INT_STATUS_RXGXS) { 4611 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, 4612 &bar0->xgxs_rxgxs_err_reg, 4613 &sw_stat->xgxs_rxgxs_err_cnt)) 4614 goto reset; 4615 } 4616 4617 val64 = readq(&bar0->mc_int_status); 4618 if (val64 & MC_INT_STATUS_MC_INT) { 4619 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, 4620 &bar0->mc_err_reg, 4621 &sw_stat->mc_err_cnt)) 4622 goto reset; 4623 4624 /* Handling Ecc errors */ 4625 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { 4626 writeq(val64, &bar0->mc_err_reg); 4627 if (val64 & MC_ERR_REG_ECC_ALL_DBL) { 4628 sw_stat->double_ecc_errs++; 4629 if (sp->device_type != XFRAME_II_DEVICE) { 4630 /* 4631 * Reset XframeI only if critical error 4632 */ 4633 if (val64 & 4634 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | 4635 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) 4636 goto reset; 4637 } 4638 } else 4639 sw_stat->single_ecc_errs++; 4640 } 4641 } 4642 return; 4643 4644 reset: 4645 s2io_stop_all_tx_queue(sp); 4646 schedule_work(&sp->rst_timer_task); 4647 sw_stat->soft_reset_cnt++; 4648 } 4649 4650 /** 4651 * s2io_isr - ISR handler of the device . 4652 * @irq: the irq of the device. 4653 * @dev_id: a void pointer to the dev structure of the NIC. 4654 * Description: This function is the ISR handler of the device. It 4655 * identifies the reason for the interrupt and calls the relevant 4656 * service routines. As a contongency measure, this ISR allocates the 4657 * recv buffers, if their numbers are below the panic value which is 4658 * presently set to 25% of the original number of rcv buffers allocated. 4659 * Return value: 4660 * IRQ_HANDLED: will be returned if IRQ was handled by this routine 4661 * IRQ_NONE: will be returned if interrupt is not from our device 4662 */ 4663 static irqreturn_t s2io_isr(int irq, void *dev_id) 4664 { 4665 struct net_device *dev = (struct net_device *)dev_id; 4666 struct s2io_nic *sp = netdev_priv(dev); 4667 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4668 int i; 4669 u64 reason = 0; 4670 struct mac_info *mac_control; 4671 struct config_param *config; 4672 4673 /* Pretend we handled any irq's from a disconnected card */ 4674 if (pci_channel_offline(sp->pdev)) 4675 return IRQ_NONE; 4676 4677 if (!is_s2io_card_up(sp)) 4678 return IRQ_NONE; 4679 4680 config = &sp->config; 4681 mac_control = &sp->mac_control; 4682 4683 /* 4684 * Identify the cause for interrupt and call the appropriate 4685 * interrupt handler. Causes for the interrupt could be; 4686 * 1. Rx of packet. 4687 * 2. Tx complete. 4688 * 3. Link down. 4689 */ 4690 reason = readq(&bar0->general_int_status); 4691 4692 if (unlikely(reason == S2IO_MINUS_ONE)) 4693 return IRQ_HANDLED; /* Nothing much can be done. Get out */ 4694 4695 if (reason & 4696 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { 4697 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4698 4699 if (config->napi) { 4700 if (reason & GEN_INTR_RXTRAFFIC) { 4701 napi_schedule(&sp->napi); 4702 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); 4703 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4704 readl(&bar0->rx_traffic_int); 4705 } 4706 } else { 4707 /* 4708 * rx_traffic_int reg is an R1 register, writing all 1's 4709 * will ensure that the actual interrupt causing bit 4710 * get's cleared and hence a read can be avoided. 4711 */ 4712 if (reason & GEN_INTR_RXTRAFFIC) 4713 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4714 4715 for (i = 0; i < config->rx_ring_num; i++) { 4716 struct ring_info *ring = &mac_control->rings[i]; 4717 4718 rx_intr_handler(ring, 0); 4719 } 4720 } 4721 4722 /* 4723 * tx_traffic_int reg is an R1 register, writing all 1's 4724 * will ensure that the actual interrupt causing bit get's 4725 * cleared and hence a read can be avoided. 4726 */ 4727 if (reason & GEN_INTR_TXTRAFFIC) 4728 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4729 4730 for (i = 0; i < config->tx_fifo_num; i++) 4731 tx_intr_handler(&mac_control->fifos[i]); 4732 4733 if (reason & GEN_INTR_TXPIC) 4734 s2io_txpic_intr_handle(sp); 4735 4736 /* 4737 * Reallocate the buffers from the interrupt handler itself. 4738 */ 4739 if (!config->napi) { 4740 for (i = 0; i < config->rx_ring_num; i++) { 4741 struct ring_info *ring = &mac_control->rings[i]; 4742 4743 s2io_chk_rx_buffers(sp, ring); 4744 } 4745 } 4746 writeq(sp->general_int_mask, &bar0->general_int_mask); 4747 readl(&bar0->general_int_status); 4748 4749 return IRQ_HANDLED; 4750 4751 } else if (!reason) { 4752 /* The interrupt was not raised by us */ 4753 return IRQ_NONE; 4754 } 4755 4756 return IRQ_HANDLED; 4757 } 4758 4759 /* 4760 * s2io_updt_stats - 4761 */ 4762 static void s2io_updt_stats(struct s2io_nic *sp) 4763 { 4764 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4765 u64 val64; 4766 int cnt = 0; 4767 4768 if (is_s2io_card_up(sp)) { 4769 /* Apprx 30us on a 133 MHz bus */ 4770 val64 = SET_UPDT_CLICKS(10) | 4771 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; 4772 writeq(val64, &bar0->stat_cfg); 4773 do { 4774 udelay(100); 4775 val64 = readq(&bar0->stat_cfg); 4776 if (!(val64 & s2BIT(0))) 4777 break; 4778 cnt++; 4779 if (cnt == 5) 4780 break; /* Updt failed */ 4781 } while (1); 4782 } 4783 } 4784 4785 /** 4786 * s2io_get_stats - Updates the device statistics structure. 4787 * @dev : pointer to the device structure. 4788 * Description: 4789 * This function updates the device statistics structure in the s2io_nic 4790 * structure and returns a pointer to the same. 4791 * Return value: 4792 * pointer to the updated net_device_stats structure. 4793 */ 4794 static struct net_device_stats *s2io_get_stats(struct net_device *dev) 4795 { 4796 struct s2io_nic *sp = netdev_priv(dev); 4797 struct mac_info *mac_control = &sp->mac_control; 4798 struct stat_block *stats = mac_control->stats_info; 4799 u64 delta; 4800 4801 /* Configure Stats for immediate updt */ 4802 s2io_updt_stats(sp); 4803 4804 /* A device reset will cause the on-adapter statistics to be zero'ed. 4805 * This can be done while running by changing the MTU. To prevent the 4806 * system from having the stats zero'ed, the driver keeps a copy of the 4807 * last update to the system (which is also zero'ed on reset). This 4808 * enables the driver to accurately know the delta between the last 4809 * update and the current update. 4810 */ 4811 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 4812 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; 4813 sp->stats.rx_packets += delta; 4814 dev->stats.rx_packets += delta; 4815 4816 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | 4817 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; 4818 sp->stats.tx_packets += delta; 4819 dev->stats.tx_packets += delta; 4820 4821 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 4822 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; 4823 sp->stats.rx_bytes += delta; 4824 dev->stats.rx_bytes += delta; 4825 4826 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 4827 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; 4828 sp->stats.tx_bytes += delta; 4829 dev->stats.tx_bytes += delta; 4830 4831 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; 4832 sp->stats.rx_errors += delta; 4833 dev->stats.rx_errors += delta; 4834 4835 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 4836 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; 4837 sp->stats.tx_errors += delta; 4838 dev->stats.tx_errors += delta; 4839 4840 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; 4841 sp->stats.rx_dropped += delta; 4842 dev->stats.rx_dropped += delta; 4843 4844 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; 4845 sp->stats.tx_dropped += delta; 4846 dev->stats.tx_dropped += delta; 4847 4848 /* The adapter MAC interprets pause frames as multicast packets, but 4849 * does not pass them up. This erroneously increases the multicast 4850 * packet count and needs to be deducted when the multicast frame count 4851 * is queried. 4852 */ 4853 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 4854 le32_to_cpu(stats->rmac_vld_mcst_frms); 4855 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); 4856 delta -= sp->stats.multicast; 4857 sp->stats.multicast += delta; 4858 dev->stats.multicast += delta; 4859 4860 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 4861 le32_to_cpu(stats->rmac_usized_frms)) + 4862 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; 4863 sp->stats.rx_length_errors += delta; 4864 dev->stats.rx_length_errors += delta; 4865 4866 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; 4867 sp->stats.rx_crc_errors += delta; 4868 dev->stats.rx_crc_errors += delta; 4869 4870 return &dev->stats; 4871 } 4872 4873 /** 4874 * s2io_set_multicast - entry point for multicast address enable/disable. 4875 * @dev : pointer to the device structure 4876 * @may_sleep: parameter indicates if sleeping when waiting for command 4877 * complete 4878 * Description: 4879 * This function is a driver entry point which gets called by the kernel 4880 * whenever multicast addresses must be enabled/disabled. This also gets 4881 * called to set/reset promiscuous mode. Depending on the deivce flag, we 4882 * determine, if multicast address must be enabled or if promiscuous mode 4883 * is to be disabled etc. 4884 * Return value: 4885 * void. 4886 */ 4887 static void s2io_set_multicast(struct net_device *dev, bool may_sleep) 4888 { 4889 int i, j, prev_cnt; 4890 struct netdev_hw_addr *ha; 4891 struct s2io_nic *sp = netdev_priv(dev); 4892 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4893 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 4894 0xfeffffffffffULL; 4895 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; 4896 void __iomem *add; 4897 struct config_param *config = &sp->config; 4898 4899 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { 4900 /* Enable all Multicast addresses */ 4901 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), 4902 &bar0->rmac_addr_data0_mem); 4903 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), 4904 &bar0->rmac_addr_data1_mem); 4905 val64 = RMAC_ADDR_CMD_MEM_WE | 4906 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4907 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); 4908 writeq(val64, &bar0->rmac_addr_cmd_mem); 4909 /* Wait till command completes */ 4910 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4911 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4912 S2IO_BIT_RESET, may_sleep); 4913 4914 sp->m_cast_flg = 1; 4915 sp->all_multi_pos = config->max_mc_addr - 1; 4916 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { 4917 /* Disable all Multicast addresses */ 4918 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4919 &bar0->rmac_addr_data0_mem); 4920 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), 4921 &bar0->rmac_addr_data1_mem); 4922 val64 = RMAC_ADDR_CMD_MEM_WE | 4923 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4924 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4925 writeq(val64, &bar0->rmac_addr_cmd_mem); 4926 /* Wait till command completes */ 4927 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4928 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4929 S2IO_BIT_RESET, may_sleep); 4930 4931 sp->m_cast_flg = 0; 4932 sp->all_multi_pos = 0; 4933 } 4934 4935 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { 4936 /* Put the NIC into promiscuous mode */ 4937 add = &bar0->mac_cfg; 4938 val64 = readq(&bar0->mac_cfg); 4939 val64 |= MAC_CFG_RMAC_PROM_ENABLE; 4940 4941 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4942 writel((u32)val64, add); 4943 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4944 writel((u32) (val64 >> 32), (add + 4)); 4945 4946 if (vlan_tag_strip != 1) { 4947 val64 = readq(&bar0->rx_pa_cfg); 4948 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 4949 writeq(val64, &bar0->rx_pa_cfg); 4950 sp->vlan_strip_flag = 0; 4951 } 4952 4953 val64 = readq(&bar0->mac_cfg); 4954 sp->promisc_flg = 1; 4955 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", 4956 dev->name); 4957 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { 4958 /* Remove the NIC from promiscuous mode */ 4959 add = &bar0->mac_cfg; 4960 val64 = readq(&bar0->mac_cfg); 4961 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; 4962 4963 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4964 writel((u32)val64, add); 4965 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4966 writel((u32) (val64 >> 32), (add + 4)); 4967 4968 if (vlan_tag_strip != 0) { 4969 val64 = readq(&bar0->rx_pa_cfg); 4970 val64 |= RX_PA_CFG_STRIP_VLAN_TAG; 4971 writeq(val64, &bar0->rx_pa_cfg); 4972 sp->vlan_strip_flag = 1; 4973 } 4974 4975 val64 = readq(&bar0->mac_cfg); 4976 sp->promisc_flg = 0; 4977 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); 4978 } 4979 4980 /* Update individual M_CAST address list */ 4981 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { 4982 if (netdev_mc_count(dev) > 4983 (config->max_mc_addr - config->max_mac_addr)) { 4984 DBG_PRINT(ERR_DBG, 4985 "%s: No more Rx filters can be added - " 4986 "please enable ALL_MULTI instead\n", 4987 dev->name); 4988 return; 4989 } 4990 4991 prev_cnt = sp->mc_addr_count; 4992 sp->mc_addr_count = netdev_mc_count(dev); 4993 4994 /* Clear out the previous list of Mc in the H/W. */ 4995 for (i = 0; i < prev_cnt; i++) { 4996 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4997 &bar0->rmac_addr_data0_mem); 4998 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 4999 &bar0->rmac_addr_data1_mem); 5000 val64 = RMAC_ADDR_CMD_MEM_WE | 5001 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5002 RMAC_ADDR_CMD_MEM_OFFSET 5003 (config->mc_start_offset + i); 5004 writeq(val64, &bar0->rmac_addr_cmd_mem); 5005 5006 /* Wait for command completes */ 5007 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5008 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5009 S2IO_BIT_RESET, may_sleep)) { 5010 DBG_PRINT(ERR_DBG, 5011 "%s: Adding Multicasts failed\n", 5012 dev->name); 5013 return; 5014 } 5015 } 5016 5017 /* Create the new Rx filter list and update the same in H/W. */ 5018 i = 0; 5019 netdev_for_each_mc_addr(ha, dev) { 5020 mac_addr = 0; 5021 for (j = 0; j < ETH_ALEN; j++) { 5022 mac_addr |= ha->addr[j]; 5023 mac_addr <<= 8; 5024 } 5025 mac_addr >>= 8; 5026 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), 5027 &bar0->rmac_addr_data0_mem); 5028 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5029 &bar0->rmac_addr_data1_mem); 5030 val64 = RMAC_ADDR_CMD_MEM_WE | 5031 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5032 RMAC_ADDR_CMD_MEM_OFFSET 5033 (i + config->mc_start_offset); 5034 writeq(val64, &bar0->rmac_addr_cmd_mem); 5035 5036 /* Wait for command completes */ 5037 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5038 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5039 S2IO_BIT_RESET, may_sleep)) { 5040 DBG_PRINT(ERR_DBG, 5041 "%s: Adding Multicasts failed\n", 5042 dev->name); 5043 return; 5044 } 5045 i++; 5046 } 5047 } 5048 } 5049 5050 /* NDO wrapper for s2io_set_multicast */ 5051 static void s2io_ndo_set_multicast(struct net_device *dev) 5052 { 5053 s2io_set_multicast(dev, false); 5054 } 5055 5056 /* read from CAM unicast & multicast addresses and store it in 5057 * def_mac_addr structure 5058 */ 5059 static void do_s2io_store_unicast_mc(struct s2io_nic *sp) 5060 { 5061 int offset; 5062 u64 mac_addr = 0x0; 5063 struct config_param *config = &sp->config; 5064 5065 /* store unicast & multicast mac addresses */ 5066 for (offset = 0; offset < config->max_mc_addr; offset++) { 5067 mac_addr = do_s2io_read_unicast_mc(sp, offset); 5068 /* if read fails disable the entry */ 5069 if (mac_addr == FAILURE) 5070 mac_addr = S2IO_DISABLE_MAC_ENTRY; 5071 do_s2io_copy_mac_addr(sp, offset, mac_addr); 5072 } 5073 } 5074 5075 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ 5076 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) 5077 { 5078 int offset; 5079 struct config_param *config = &sp->config; 5080 /* restore unicast mac address */ 5081 for (offset = 0; offset < config->max_mac_addr; offset++) 5082 do_s2io_prog_unicast(sp->dev, 5083 sp->def_mac_addr[offset].mac_addr); 5084 5085 /* restore multicast mac address */ 5086 for (offset = config->mc_start_offset; 5087 offset < config->max_mc_addr; offset++) 5088 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); 5089 } 5090 5091 /* add a multicast MAC address to CAM */ 5092 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) 5093 { 5094 int i; 5095 u64 mac_addr; 5096 struct config_param *config = &sp->config; 5097 5098 mac_addr = ether_addr_to_u64(addr); 5099 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) 5100 return SUCCESS; 5101 5102 /* check if the multicast mac already preset in CAM */ 5103 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { 5104 u64 tmp64; 5105 tmp64 = do_s2io_read_unicast_mc(sp, i); 5106 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5107 break; 5108 5109 if (tmp64 == mac_addr) 5110 return SUCCESS; 5111 } 5112 if (i == config->max_mc_addr) { 5113 DBG_PRINT(ERR_DBG, 5114 "CAM full no space left for multicast MAC\n"); 5115 return FAILURE; 5116 } 5117 /* Update the internal structure with this new mac address */ 5118 do_s2io_copy_mac_addr(sp, i, mac_addr); 5119 5120 return do_s2io_add_mac(sp, mac_addr, i); 5121 } 5122 5123 /* add MAC address to CAM */ 5124 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) 5125 { 5126 u64 val64; 5127 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5128 5129 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), 5130 &bar0->rmac_addr_data0_mem); 5131 5132 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5133 RMAC_ADDR_CMD_MEM_OFFSET(off); 5134 writeq(val64, &bar0->rmac_addr_cmd_mem); 5135 5136 /* Wait till command completes */ 5137 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5138 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5139 S2IO_BIT_RESET, true)) { 5140 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); 5141 return FAILURE; 5142 } 5143 return SUCCESS; 5144 } 5145 /* deletes a specified unicast/multicast mac entry from CAM */ 5146 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) 5147 { 5148 int offset; 5149 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; 5150 struct config_param *config = &sp->config; 5151 5152 for (offset = 1; 5153 offset < config->max_mc_addr; offset++) { 5154 tmp64 = do_s2io_read_unicast_mc(sp, offset); 5155 if (tmp64 == addr) { 5156 /* disable the entry by writing 0xffffffffffffULL */ 5157 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) 5158 return FAILURE; 5159 /* store the new mac list from CAM */ 5160 do_s2io_store_unicast_mc(sp); 5161 return SUCCESS; 5162 } 5163 } 5164 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", 5165 (unsigned long long)addr); 5166 return FAILURE; 5167 } 5168 5169 /* read mac entries from CAM */ 5170 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) 5171 { 5172 u64 tmp64, val64; 5173 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5174 5175 /* read mac addr */ 5176 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5177 RMAC_ADDR_CMD_MEM_OFFSET(offset); 5178 writeq(val64, &bar0->rmac_addr_cmd_mem); 5179 5180 /* Wait till command completes */ 5181 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5182 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5183 S2IO_BIT_RESET, true)) { 5184 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); 5185 return FAILURE; 5186 } 5187 tmp64 = readq(&bar0->rmac_addr_data0_mem); 5188 5189 return tmp64 >> 16; 5190 } 5191 5192 /* 5193 * s2io_set_mac_addr - driver entry point 5194 */ 5195 5196 static int s2io_set_mac_addr(struct net_device *dev, void *p) 5197 { 5198 struct sockaddr *addr = p; 5199 5200 if (!is_valid_ether_addr(addr->sa_data)) 5201 return -EADDRNOTAVAIL; 5202 5203 eth_hw_addr_set(dev, addr->sa_data); 5204 5205 /* store the MAC address in CAM */ 5206 return do_s2io_prog_unicast(dev, dev->dev_addr); 5207 } 5208 /** 5209 * do_s2io_prog_unicast - Programs the Xframe mac address 5210 * @dev : pointer to the device structure. 5211 * @addr: a uchar pointer to the new mac address which is to be set. 5212 * Description : This procedure will program the Xframe to receive 5213 * frames with new Mac Address 5214 * Return value: SUCCESS on success and an appropriate (-)ve integer 5215 * as defined in errno.h file on failure. 5216 */ 5217 5218 static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr) 5219 { 5220 struct s2io_nic *sp = netdev_priv(dev); 5221 register u64 mac_addr, perm_addr; 5222 int i; 5223 u64 tmp64; 5224 struct config_param *config = &sp->config; 5225 5226 /* 5227 * Set the new MAC address as the new unicast filter and reflect this 5228 * change on the device address registered with the OS. It will be 5229 * at offset 0. 5230 */ 5231 mac_addr = ether_addr_to_u64(addr); 5232 perm_addr = ether_addr_to_u64(sp->def_mac_addr[0].mac_addr); 5233 5234 /* check if the dev_addr is different than perm_addr */ 5235 if (mac_addr == perm_addr) 5236 return SUCCESS; 5237 5238 /* check if the mac already preset in CAM */ 5239 for (i = 1; i < config->max_mac_addr; i++) { 5240 tmp64 = do_s2io_read_unicast_mc(sp, i); 5241 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5242 break; 5243 5244 if (tmp64 == mac_addr) { 5245 DBG_PRINT(INFO_DBG, 5246 "MAC addr:0x%llx already present in CAM\n", 5247 (unsigned long long)mac_addr); 5248 return SUCCESS; 5249 } 5250 } 5251 if (i == config->max_mac_addr) { 5252 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); 5253 return FAILURE; 5254 } 5255 /* Update the internal structure with this new mac address */ 5256 do_s2io_copy_mac_addr(sp, i, mac_addr); 5257 5258 return do_s2io_add_mac(sp, mac_addr, i); 5259 } 5260 5261 /** 5262 * s2io_ethtool_set_link_ksettings - Sets different link parameters. 5263 * @dev : pointer to netdev 5264 * @cmd: pointer to the structure with parameters given by ethtool to set 5265 * link information. 5266 * Description: 5267 * The function sets different link parameters provided by the user onto 5268 * the NIC. 5269 * Return value: 5270 * 0 on success. 5271 */ 5272 5273 static int 5274 s2io_ethtool_set_link_ksettings(struct net_device *dev, 5275 const struct ethtool_link_ksettings *cmd) 5276 { 5277 struct s2io_nic *sp = netdev_priv(dev); 5278 if ((cmd->base.autoneg == AUTONEG_ENABLE) || 5279 (cmd->base.speed != SPEED_10000) || 5280 (cmd->base.duplex != DUPLEX_FULL)) 5281 return -EINVAL; 5282 else { 5283 s2io_close(sp->dev); 5284 s2io_open(sp->dev); 5285 } 5286 5287 return 0; 5288 } 5289 5290 /** 5291 * s2io_ethtool_get_link_ksettings - Return link specific information. 5292 * @dev: pointer to netdev 5293 * @cmd : pointer to the structure with parameters given by ethtool 5294 * to return link information. 5295 * Description: 5296 * Returns link specific information like speed, duplex etc.. to ethtool. 5297 * Return value : 5298 * return 0 on success. 5299 */ 5300 5301 static int 5302 s2io_ethtool_get_link_ksettings(struct net_device *dev, 5303 struct ethtool_link_ksettings *cmd) 5304 { 5305 struct s2io_nic *sp = netdev_priv(dev); 5306 5307 ethtool_link_ksettings_zero_link_mode(cmd, supported); 5308 ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full); 5309 ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE); 5310 5311 ethtool_link_ksettings_zero_link_mode(cmd, advertising); 5312 ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full); 5313 ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE); 5314 5315 cmd->base.port = PORT_FIBRE; 5316 5317 if (netif_carrier_ok(sp->dev)) { 5318 cmd->base.speed = SPEED_10000; 5319 cmd->base.duplex = DUPLEX_FULL; 5320 } else { 5321 cmd->base.speed = SPEED_UNKNOWN; 5322 cmd->base.duplex = DUPLEX_UNKNOWN; 5323 } 5324 5325 cmd->base.autoneg = AUTONEG_DISABLE; 5326 return 0; 5327 } 5328 5329 /** 5330 * s2io_ethtool_gdrvinfo - Returns driver specific information. 5331 * @dev: pointer to netdev 5332 * @info : pointer to the structure with parameters given by ethtool to 5333 * return driver information. 5334 * Description: 5335 * Returns driver specefic information like name, version etc.. to ethtool. 5336 * Return value: 5337 * void 5338 */ 5339 5340 static void s2io_ethtool_gdrvinfo(struct net_device *dev, 5341 struct ethtool_drvinfo *info) 5342 { 5343 struct s2io_nic *sp = netdev_priv(dev); 5344 5345 strscpy(info->driver, s2io_driver_name, sizeof(info->driver)); 5346 strscpy(info->version, s2io_driver_version, sizeof(info->version)); 5347 strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); 5348 } 5349 5350 /** 5351 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. 5352 * @dev: pointer to netdev 5353 * @regs : pointer to the structure with parameters given by ethtool for 5354 * dumping the registers. 5355 * @space: The input argument into which all the registers are dumped. 5356 * Description: 5357 * Dumps the entire register space of xFrame NIC into the user given 5358 * buffer area. 5359 * Return value : 5360 * void . 5361 */ 5362 5363 static void s2io_ethtool_gregs(struct net_device *dev, 5364 struct ethtool_regs *regs, void *space) 5365 { 5366 int i; 5367 u64 reg; 5368 u8 *reg_space = (u8 *)space; 5369 struct s2io_nic *sp = netdev_priv(dev); 5370 5371 regs->len = XENA_REG_SPACE; 5372 regs->version = sp->pdev->subsystem_device; 5373 5374 for (i = 0; i < regs->len; i += 8) { 5375 reg = readq(sp->bar0 + i); 5376 memcpy((reg_space + i), ®, 8); 5377 } 5378 } 5379 5380 /* 5381 * s2io_set_led - control NIC led 5382 */ 5383 static void s2io_set_led(struct s2io_nic *sp, bool on) 5384 { 5385 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5386 u16 subid = sp->pdev->subsystem_device; 5387 u64 val64; 5388 5389 if ((sp->device_type == XFRAME_II_DEVICE) || 5390 ((subid & 0xFF) >= 0x07)) { 5391 val64 = readq(&bar0->gpio_control); 5392 if (on) 5393 val64 |= GPIO_CTRL_GPIO_0; 5394 else 5395 val64 &= ~GPIO_CTRL_GPIO_0; 5396 5397 writeq(val64, &bar0->gpio_control); 5398 } else { 5399 val64 = readq(&bar0->adapter_control); 5400 if (on) 5401 val64 |= ADAPTER_LED_ON; 5402 else 5403 val64 &= ~ADAPTER_LED_ON; 5404 5405 writeq(val64, &bar0->adapter_control); 5406 } 5407 5408 } 5409 5410 /** 5411 * s2io_ethtool_set_led - To physically identify the nic on the system. 5412 * @dev : network device 5413 * @state: led setting 5414 * 5415 * Description: Used to physically identify the NIC on the system. 5416 * The Link LED will blink for a time specified by the user for 5417 * identification. 5418 * NOTE: The Link has to be Up to be able to blink the LED. Hence 5419 * identification is possible only if it's link is up. 5420 */ 5421 5422 static int s2io_ethtool_set_led(struct net_device *dev, 5423 enum ethtool_phys_id_state state) 5424 { 5425 struct s2io_nic *sp = netdev_priv(dev); 5426 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5427 u16 subid = sp->pdev->subsystem_device; 5428 5429 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { 5430 u64 val64 = readq(&bar0->adapter_control); 5431 if (!(val64 & ADAPTER_CNTL_EN)) { 5432 pr_err("Adapter Link down, cannot blink LED\n"); 5433 return -EAGAIN; 5434 } 5435 } 5436 5437 switch (state) { 5438 case ETHTOOL_ID_ACTIVE: 5439 sp->adapt_ctrl_org = readq(&bar0->gpio_control); 5440 return 1; /* cycle on/off once per second */ 5441 5442 case ETHTOOL_ID_ON: 5443 s2io_set_led(sp, true); 5444 break; 5445 5446 case ETHTOOL_ID_OFF: 5447 s2io_set_led(sp, false); 5448 break; 5449 5450 case ETHTOOL_ID_INACTIVE: 5451 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) 5452 writeq(sp->adapt_ctrl_org, &bar0->gpio_control); 5453 } 5454 5455 return 0; 5456 } 5457 5458 static void 5459 s2io_ethtool_gringparam(struct net_device *dev, 5460 struct ethtool_ringparam *ering, 5461 struct kernel_ethtool_ringparam *kernel_ering, 5462 struct netlink_ext_ack *extack) 5463 { 5464 struct s2io_nic *sp = netdev_priv(dev); 5465 int i, tx_desc_count = 0, rx_desc_count = 0; 5466 5467 if (sp->rxd_mode == RXD_MODE_1) { 5468 ering->rx_max_pending = MAX_RX_DESC_1; 5469 ering->rx_jumbo_max_pending = MAX_RX_DESC_1; 5470 } else { 5471 ering->rx_max_pending = MAX_RX_DESC_2; 5472 ering->rx_jumbo_max_pending = MAX_RX_DESC_2; 5473 } 5474 5475 ering->tx_max_pending = MAX_TX_DESC; 5476 5477 for (i = 0; i < sp->config.rx_ring_num; i++) 5478 rx_desc_count += sp->config.rx_cfg[i].num_rxd; 5479 ering->rx_pending = rx_desc_count; 5480 ering->rx_jumbo_pending = rx_desc_count; 5481 5482 for (i = 0; i < sp->config.tx_fifo_num; i++) 5483 tx_desc_count += sp->config.tx_cfg[i].fifo_len; 5484 ering->tx_pending = tx_desc_count; 5485 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); 5486 } 5487 5488 /** 5489 * s2io_ethtool_getpause_data -Pause frame generation and reception. 5490 * @dev: pointer to netdev 5491 * @ep : pointer to the structure with pause parameters given by ethtool. 5492 * Description: 5493 * Returns the Pause frame generation and reception capability of the NIC. 5494 * Return value: 5495 * void 5496 */ 5497 static void s2io_ethtool_getpause_data(struct net_device *dev, 5498 struct ethtool_pauseparam *ep) 5499 { 5500 u64 val64; 5501 struct s2io_nic *sp = netdev_priv(dev); 5502 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5503 5504 val64 = readq(&bar0->rmac_pause_cfg); 5505 if (val64 & RMAC_PAUSE_GEN_ENABLE) 5506 ep->tx_pause = true; 5507 if (val64 & RMAC_PAUSE_RX_ENABLE) 5508 ep->rx_pause = true; 5509 ep->autoneg = false; 5510 } 5511 5512 /** 5513 * s2io_ethtool_setpause_data - set/reset pause frame generation. 5514 * @dev: pointer to netdev 5515 * @ep : pointer to the structure with pause parameters given by ethtool. 5516 * Description: 5517 * It can be used to set or reset Pause frame generation or reception 5518 * support of the NIC. 5519 * Return value: 5520 * int, returns 0 on Success 5521 */ 5522 5523 static int s2io_ethtool_setpause_data(struct net_device *dev, 5524 struct ethtool_pauseparam *ep) 5525 { 5526 u64 val64; 5527 struct s2io_nic *sp = netdev_priv(dev); 5528 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5529 5530 val64 = readq(&bar0->rmac_pause_cfg); 5531 if (ep->tx_pause) 5532 val64 |= RMAC_PAUSE_GEN_ENABLE; 5533 else 5534 val64 &= ~RMAC_PAUSE_GEN_ENABLE; 5535 if (ep->rx_pause) 5536 val64 |= RMAC_PAUSE_RX_ENABLE; 5537 else 5538 val64 &= ~RMAC_PAUSE_RX_ENABLE; 5539 writeq(val64, &bar0->rmac_pause_cfg); 5540 return 0; 5541 } 5542 5543 #define S2IO_DEV_ID 5 5544 /** 5545 * read_eeprom - reads 4 bytes of data from user given offset. 5546 * @sp : private member of the device structure, which is a pointer to the 5547 * s2io_nic structure. 5548 * @off : offset at which the data must be written 5549 * @data : Its an output parameter where the data read at the given 5550 * offset is stored. 5551 * Description: 5552 * Will read 4 bytes of data from the user given offset and return the 5553 * read data. 5554 * NOTE: Will allow to read only part of the EEPROM visible through the 5555 * I2C bus. 5556 * Return value: 5557 * -1 on failure and 0 on success. 5558 */ 5559 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) 5560 { 5561 int ret = -1; 5562 u32 exit_cnt = 0; 5563 u64 val64; 5564 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5565 5566 if (sp->device_type == XFRAME_I_DEVICE) { 5567 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5568 I2C_CONTROL_ADDR(off) | 5569 I2C_CONTROL_BYTE_CNT(0x3) | 5570 I2C_CONTROL_READ | 5571 I2C_CONTROL_CNTL_START; 5572 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5573 5574 while (exit_cnt < 5) { 5575 val64 = readq(&bar0->i2c_control); 5576 if (I2C_CONTROL_CNTL_END(val64)) { 5577 *data = I2C_CONTROL_GET_DATA(val64); 5578 ret = 0; 5579 break; 5580 } 5581 msleep(50); 5582 exit_cnt++; 5583 } 5584 } 5585 5586 if (sp->device_type == XFRAME_II_DEVICE) { 5587 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5588 SPI_CONTROL_BYTECNT(0x3) | 5589 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); 5590 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5591 val64 |= SPI_CONTROL_REQ; 5592 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5593 while (exit_cnt < 5) { 5594 val64 = readq(&bar0->spi_control); 5595 if (val64 & SPI_CONTROL_NACK) { 5596 ret = 1; 5597 break; 5598 } else if (val64 & SPI_CONTROL_DONE) { 5599 *data = readq(&bar0->spi_data); 5600 *data &= 0xffffff; 5601 ret = 0; 5602 break; 5603 } 5604 msleep(50); 5605 exit_cnt++; 5606 } 5607 } 5608 return ret; 5609 } 5610 5611 /** 5612 * write_eeprom - actually writes the relevant part of the data value. 5613 * @sp : private member of the device structure, which is a pointer to the 5614 * s2io_nic structure. 5615 * @off : offset at which the data must be written 5616 * @data : The data that is to be written 5617 * @cnt : Number of bytes of the data that are actually to be written into 5618 * the Eeprom. (max of 3) 5619 * Description: 5620 * Actually writes the relevant part of the data value into the Eeprom 5621 * through the I2C bus. 5622 * Return value: 5623 * 0 on success, -1 on failure. 5624 */ 5625 5626 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) 5627 { 5628 int exit_cnt = 0, ret = -1; 5629 u64 val64; 5630 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5631 5632 if (sp->device_type == XFRAME_I_DEVICE) { 5633 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5634 I2C_CONTROL_ADDR(off) | 5635 I2C_CONTROL_BYTE_CNT(cnt) | 5636 I2C_CONTROL_SET_DATA((u32)data) | 5637 I2C_CONTROL_CNTL_START; 5638 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5639 5640 while (exit_cnt < 5) { 5641 val64 = readq(&bar0->i2c_control); 5642 if (I2C_CONTROL_CNTL_END(val64)) { 5643 if (!(val64 & I2C_CONTROL_NACK)) 5644 ret = 0; 5645 break; 5646 } 5647 msleep(50); 5648 exit_cnt++; 5649 } 5650 } 5651 5652 if (sp->device_type == XFRAME_II_DEVICE) { 5653 int write_cnt = (cnt == 8) ? 0 : cnt; 5654 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); 5655 5656 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5657 SPI_CONTROL_BYTECNT(write_cnt) | 5658 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); 5659 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5660 val64 |= SPI_CONTROL_REQ; 5661 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5662 while (exit_cnt < 5) { 5663 val64 = readq(&bar0->spi_control); 5664 if (val64 & SPI_CONTROL_NACK) { 5665 ret = 1; 5666 break; 5667 } else if (val64 & SPI_CONTROL_DONE) { 5668 ret = 0; 5669 break; 5670 } 5671 msleep(50); 5672 exit_cnt++; 5673 } 5674 } 5675 return ret; 5676 } 5677 static void s2io_vpd_read(struct s2io_nic *nic) 5678 { 5679 u8 *vpd_data; 5680 u8 data; 5681 int i = 0, cnt, len, fail = 0; 5682 int vpd_addr = 0x80; 5683 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; 5684 5685 if (nic->device_type == XFRAME_II_DEVICE) { 5686 strcpy(nic->product_name, "Xframe II 10GbE network adapter"); 5687 vpd_addr = 0x80; 5688 } else { 5689 strcpy(nic->product_name, "Xframe I 10GbE network adapter"); 5690 vpd_addr = 0x50; 5691 } 5692 strcpy(nic->serial_num, "NOT AVAILABLE"); 5693 5694 vpd_data = kmalloc(256, GFP_KERNEL); 5695 if (!vpd_data) { 5696 swstats->mem_alloc_fail_cnt++; 5697 return; 5698 } 5699 swstats->mem_allocated += 256; 5700 5701 for (i = 0; i < 256; i += 4) { 5702 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); 5703 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); 5704 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); 5705 for (cnt = 0; cnt < 5; cnt++) { 5706 msleep(2); 5707 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); 5708 if (data == 0x80) 5709 break; 5710 } 5711 if (cnt >= 5) { 5712 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); 5713 fail = 1; 5714 break; 5715 } 5716 pci_read_config_dword(nic->pdev, (vpd_addr + 4), 5717 (u32 *)&vpd_data[i]); 5718 } 5719 5720 if (!fail) { 5721 /* read serial number of adapter */ 5722 for (cnt = 0; cnt < 252; cnt++) { 5723 if ((vpd_data[cnt] == 'S') && 5724 (vpd_data[cnt+1] == 'N')) { 5725 len = vpd_data[cnt+2]; 5726 if (len < min(VPD_STRING_LEN, 256-cnt-2)) { 5727 memcpy(nic->serial_num, 5728 &vpd_data[cnt + 3], 5729 len); 5730 memset(nic->serial_num+len, 5731 0, 5732 VPD_STRING_LEN-len); 5733 break; 5734 } 5735 } 5736 } 5737 } 5738 5739 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { 5740 len = vpd_data[1]; 5741 memcpy(nic->product_name, &vpd_data[3], len); 5742 nic->product_name[len] = 0; 5743 } 5744 kfree(vpd_data); 5745 swstats->mem_freed += 256; 5746 } 5747 5748 /** 5749 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5750 * @dev: pointer to netdev 5751 * @eeprom : pointer to the user level structure provided by ethtool, 5752 * containing all relevant information. 5753 * @data_buf : user defined value to be written into Eeprom. 5754 * Description: Reads the values stored in the Eeprom at given offset 5755 * for a given length. Stores these values int the input argument data 5756 * buffer 'data_buf' and returns these to the caller (ethtool.) 5757 * Return value: 5758 * int 0 on success 5759 */ 5760 5761 static int s2io_ethtool_geeprom(struct net_device *dev, 5762 struct ethtool_eeprom *eeprom, u8 * data_buf) 5763 { 5764 u32 i, valid; 5765 u64 data; 5766 struct s2io_nic *sp = netdev_priv(dev); 5767 5768 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); 5769 5770 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) 5771 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; 5772 5773 for (i = 0; i < eeprom->len; i += 4) { 5774 if (read_eeprom(sp, (eeprom->offset + i), &data)) { 5775 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); 5776 return -EFAULT; 5777 } 5778 valid = INV(data); 5779 memcpy((data_buf + i), &valid, 4); 5780 } 5781 return 0; 5782 } 5783 5784 /** 5785 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom 5786 * @dev: pointer to netdev 5787 * @eeprom : pointer to the user level structure provided by ethtool, 5788 * containing all relevant information. 5789 * @data_buf : user defined value to be written into Eeprom. 5790 * Description: 5791 * Tries to write the user provided value in the Eeprom, at the offset 5792 * given by the user. 5793 * Return value: 5794 * 0 on success, -EFAULT on failure. 5795 */ 5796 5797 static int s2io_ethtool_seeprom(struct net_device *dev, 5798 struct ethtool_eeprom *eeprom, 5799 u8 *data_buf) 5800 { 5801 int len = eeprom->len, cnt = 0; 5802 u64 valid = 0, data; 5803 struct s2io_nic *sp = netdev_priv(dev); 5804 5805 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { 5806 DBG_PRINT(ERR_DBG, 5807 "ETHTOOL_WRITE_EEPROM Err: " 5808 "Magic value is wrong, it is 0x%x should be 0x%x\n", 5809 (sp->pdev->vendor | (sp->pdev->device << 16)), 5810 eeprom->magic); 5811 return -EFAULT; 5812 } 5813 5814 while (len) { 5815 data = (u32)data_buf[cnt] & 0x000000FF; 5816 if (data) 5817 valid = (u32)(data << 24); 5818 else 5819 valid = data; 5820 5821 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { 5822 DBG_PRINT(ERR_DBG, 5823 "ETHTOOL_WRITE_EEPROM Err: " 5824 "Cannot write into the specified offset\n"); 5825 return -EFAULT; 5826 } 5827 cnt++; 5828 len--; 5829 } 5830 5831 return 0; 5832 } 5833 5834 /** 5835 * s2io_register_test - reads and writes into all clock domains. 5836 * @sp : private member of the device structure, which is a pointer to the 5837 * s2io_nic structure. 5838 * @data : variable that returns the result of each of the test conducted b 5839 * by the driver. 5840 * Description: 5841 * Read and write into all clock domains. The NIC has 3 clock domains, 5842 * see that registers in all the three regions are accessible. 5843 * Return value: 5844 * 0 on success. 5845 */ 5846 5847 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) 5848 { 5849 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5850 u64 val64 = 0, exp_val; 5851 int fail = 0; 5852 5853 val64 = readq(&bar0->pif_rd_swapper_fb); 5854 if (val64 != 0x123456789abcdefULL) { 5855 fail = 1; 5856 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); 5857 } 5858 5859 val64 = readq(&bar0->rmac_pause_cfg); 5860 if (val64 != 0xc000ffff00000000ULL) { 5861 fail = 1; 5862 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); 5863 } 5864 5865 val64 = readq(&bar0->rx_queue_cfg); 5866 if (sp->device_type == XFRAME_II_DEVICE) 5867 exp_val = 0x0404040404040404ULL; 5868 else 5869 exp_val = 0x0808080808080808ULL; 5870 if (val64 != exp_val) { 5871 fail = 1; 5872 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); 5873 } 5874 5875 val64 = readq(&bar0->xgxs_efifo_cfg); 5876 if (val64 != 0x000000001923141EULL) { 5877 fail = 1; 5878 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); 5879 } 5880 5881 val64 = 0x5A5A5A5A5A5A5A5AULL; 5882 writeq(val64, &bar0->xmsi_data); 5883 val64 = readq(&bar0->xmsi_data); 5884 if (val64 != 0x5A5A5A5A5A5A5A5AULL) { 5885 fail = 1; 5886 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); 5887 } 5888 5889 val64 = 0xA5A5A5A5A5A5A5A5ULL; 5890 writeq(val64, &bar0->xmsi_data); 5891 val64 = readq(&bar0->xmsi_data); 5892 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { 5893 fail = 1; 5894 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); 5895 } 5896 5897 *data = fail; 5898 return fail; 5899 } 5900 5901 /** 5902 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 5903 * @sp : private member of the device structure, which is a pointer to the 5904 * s2io_nic structure. 5905 * @data:variable that returns the result of each of the test conducted by 5906 * the driver. 5907 * Description: 5908 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 5909 * register. 5910 * Return value: 5911 * 0 on success. 5912 */ 5913 5914 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) 5915 { 5916 int fail = 0; 5917 u64 ret_data, org_4F0, org_7F0; 5918 u8 saved_4F0 = 0, saved_7F0 = 0; 5919 struct net_device *dev = sp->dev; 5920 5921 /* Test Write Error at offset 0 */ 5922 /* Note that SPI interface allows write access to all areas 5923 * of EEPROM. Hence doing all negative testing only for Xframe I. 5924 */ 5925 if (sp->device_type == XFRAME_I_DEVICE) 5926 if (!write_eeprom(sp, 0, 0, 3)) 5927 fail = 1; 5928 5929 /* Save current values at offsets 0x4F0 and 0x7F0 */ 5930 if (!read_eeprom(sp, 0x4F0, &org_4F0)) 5931 saved_4F0 = 1; 5932 if (!read_eeprom(sp, 0x7F0, &org_7F0)) 5933 saved_7F0 = 1; 5934 5935 /* Test Write at offset 4f0 */ 5936 if (write_eeprom(sp, 0x4F0, 0x012345, 3)) 5937 fail = 1; 5938 if (read_eeprom(sp, 0x4F0, &ret_data)) 5939 fail = 1; 5940 5941 if (ret_data != 0x012345) { 5942 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " 5943 "Data written %llx Data read %llx\n", 5944 dev->name, (unsigned long long)0x12345, 5945 (unsigned long long)ret_data); 5946 fail = 1; 5947 } 5948 5949 /* Reset the EEPROM data go FFFF */ 5950 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); 5951 5952 /* Test Write Request Error at offset 0x7c */ 5953 if (sp->device_type == XFRAME_I_DEVICE) 5954 if (!write_eeprom(sp, 0x07C, 0, 3)) 5955 fail = 1; 5956 5957 /* Test Write Request at offset 0x7f0 */ 5958 if (write_eeprom(sp, 0x7F0, 0x012345, 3)) 5959 fail = 1; 5960 if (read_eeprom(sp, 0x7F0, &ret_data)) 5961 fail = 1; 5962 5963 if (ret_data != 0x012345) { 5964 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " 5965 "Data written %llx Data read %llx\n", 5966 dev->name, (unsigned long long)0x12345, 5967 (unsigned long long)ret_data); 5968 fail = 1; 5969 } 5970 5971 /* Reset the EEPROM data go FFFF */ 5972 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); 5973 5974 if (sp->device_type == XFRAME_I_DEVICE) { 5975 /* Test Write Error at offset 0x80 */ 5976 if (!write_eeprom(sp, 0x080, 0, 3)) 5977 fail = 1; 5978 5979 /* Test Write Error at offset 0xfc */ 5980 if (!write_eeprom(sp, 0x0FC, 0, 3)) 5981 fail = 1; 5982 5983 /* Test Write Error at offset 0x100 */ 5984 if (!write_eeprom(sp, 0x100, 0, 3)) 5985 fail = 1; 5986 5987 /* Test Write Error at offset 4ec */ 5988 if (!write_eeprom(sp, 0x4EC, 0, 3)) 5989 fail = 1; 5990 } 5991 5992 /* Restore values at offsets 0x4F0 and 0x7F0 */ 5993 if (saved_4F0) 5994 write_eeprom(sp, 0x4F0, org_4F0, 3); 5995 if (saved_7F0) 5996 write_eeprom(sp, 0x7F0, org_7F0, 3); 5997 5998 *data = fail; 5999 return fail; 6000 } 6001 6002 /** 6003 * s2io_bist_test - invokes the MemBist test of the card . 6004 * @sp : private member of the device structure, which is a pointer to the 6005 * s2io_nic structure. 6006 * @data:variable that returns the result of each of the test conducted by 6007 * the driver. 6008 * Description: 6009 * This invokes the MemBist test of the card. We give around 6010 * 2 secs time for the Test to complete. If it's still not complete 6011 * within this peiod, we consider that the test failed. 6012 * Return value: 6013 * 0 on success and -1 on failure. 6014 */ 6015 6016 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) 6017 { 6018 u8 bist = 0; 6019 int cnt = 0, ret = -1; 6020 6021 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6022 bist |= PCI_BIST_START; 6023 pci_write_config_word(sp->pdev, PCI_BIST, bist); 6024 6025 while (cnt < 20) { 6026 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6027 if (!(bist & PCI_BIST_START)) { 6028 *data = (bist & PCI_BIST_CODE_MASK); 6029 ret = 0; 6030 break; 6031 } 6032 msleep(100); 6033 cnt++; 6034 } 6035 6036 return ret; 6037 } 6038 6039 /** 6040 * s2io_link_test - verifies the link state of the nic 6041 * @sp: private member of the device structure, which is a pointer to the 6042 * s2io_nic structure. 6043 * @data: variable that returns the result of each of the test conducted by 6044 * the driver. 6045 * Description: 6046 * The function verifies the link state of the NIC and updates the input 6047 * argument 'data' appropriately. 6048 * Return value: 6049 * 0 on success. 6050 */ 6051 6052 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) 6053 { 6054 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6055 u64 val64; 6056 6057 val64 = readq(&bar0->adapter_status); 6058 if (!(LINK_IS_UP(val64))) 6059 *data = 1; 6060 else 6061 *data = 0; 6062 6063 return *data; 6064 } 6065 6066 /** 6067 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 6068 * @sp: private member of the device structure, which is a pointer to the 6069 * s2io_nic structure. 6070 * @data: variable that returns the result of each of the test 6071 * conducted by the driver. 6072 * Description: 6073 * This is one of the offline test that tests the read and write 6074 * access to the RldRam chip on the NIC. 6075 * Return value: 6076 * 0 on success. 6077 */ 6078 6079 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) 6080 { 6081 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6082 u64 val64; 6083 int cnt, iteration = 0, test_fail = 0; 6084 6085 val64 = readq(&bar0->adapter_control); 6086 val64 &= ~ADAPTER_ECC_EN; 6087 writeq(val64, &bar0->adapter_control); 6088 6089 val64 = readq(&bar0->mc_rldram_test_ctrl); 6090 val64 |= MC_RLDRAM_TEST_MODE; 6091 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6092 6093 val64 = readq(&bar0->mc_rldram_mrs); 6094 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; 6095 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6096 6097 val64 |= MC_RLDRAM_MRS_ENABLE; 6098 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6099 6100 while (iteration < 2) { 6101 val64 = 0x55555555aaaa0000ULL; 6102 if (iteration == 1) 6103 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6104 writeq(val64, &bar0->mc_rldram_test_d0); 6105 6106 val64 = 0xaaaa5a5555550000ULL; 6107 if (iteration == 1) 6108 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6109 writeq(val64, &bar0->mc_rldram_test_d1); 6110 6111 val64 = 0x55aaaaaaaa5a0000ULL; 6112 if (iteration == 1) 6113 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6114 writeq(val64, &bar0->mc_rldram_test_d2); 6115 6116 val64 = (u64) (0x0000003ffffe0100ULL); 6117 writeq(val64, &bar0->mc_rldram_test_add); 6118 6119 val64 = MC_RLDRAM_TEST_MODE | 6120 MC_RLDRAM_TEST_WRITE | 6121 MC_RLDRAM_TEST_GO; 6122 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6123 6124 for (cnt = 0; cnt < 5; cnt++) { 6125 val64 = readq(&bar0->mc_rldram_test_ctrl); 6126 if (val64 & MC_RLDRAM_TEST_DONE) 6127 break; 6128 msleep(200); 6129 } 6130 6131 if (cnt == 5) 6132 break; 6133 6134 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; 6135 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6136 6137 for (cnt = 0; cnt < 5; cnt++) { 6138 val64 = readq(&bar0->mc_rldram_test_ctrl); 6139 if (val64 & MC_RLDRAM_TEST_DONE) 6140 break; 6141 msleep(500); 6142 } 6143 6144 if (cnt == 5) 6145 break; 6146 6147 val64 = readq(&bar0->mc_rldram_test_ctrl); 6148 if (!(val64 & MC_RLDRAM_TEST_PASS)) 6149 test_fail = 1; 6150 6151 iteration++; 6152 } 6153 6154 *data = test_fail; 6155 6156 /* Bring the adapter out of test mode */ 6157 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); 6158 6159 return test_fail; 6160 } 6161 6162 /** 6163 * s2io_ethtool_test - conducts 6 tsets to determine the health of card. 6164 * @dev: pointer to netdev 6165 * @ethtest : pointer to a ethtool command specific structure that will be 6166 * returned to the user. 6167 * @data : variable that returns the result of each of the test 6168 * conducted by the driver. 6169 * Description: 6170 * This function conducts 6 tests ( 4 offline and 2 online) to determine 6171 * the health of the card. 6172 * Return value: 6173 * void 6174 */ 6175 6176 static void s2io_ethtool_test(struct net_device *dev, 6177 struct ethtool_test *ethtest, 6178 uint64_t *data) 6179 { 6180 struct s2io_nic *sp = netdev_priv(dev); 6181 int orig_state = netif_running(sp->dev); 6182 6183 if (ethtest->flags == ETH_TEST_FL_OFFLINE) { 6184 /* Offline Tests. */ 6185 if (orig_state) 6186 s2io_close(sp->dev); 6187 6188 if (s2io_register_test(sp, &data[0])) 6189 ethtest->flags |= ETH_TEST_FL_FAILED; 6190 6191 s2io_reset(sp); 6192 6193 if (s2io_rldram_test(sp, &data[3])) 6194 ethtest->flags |= ETH_TEST_FL_FAILED; 6195 6196 s2io_reset(sp); 6197 6198 if (s2io_eeprom_test(sp, &data[1])) 6199 ethtest->flags |= ETH_TEST_FL_FAILED; 6200 6201 if (s2io_bist_test(sp, &data[4])) 6202 ethtest->flags |= ETH_TEST_FL_FAILED; 6203 6204 if (orig_state) 6205 s2io_open(sp->dev); 6206 6207 data[2] = 0; 6208 } else { 6209 /* Online Tests. */ 6210 if (!orig_state) { 6211 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", 6212 dev->name); 6213 data[0] = -1; 6214 data[1] = -1; 6215 data[2] = -1; 6216 data[3] = -1; 6217 data[4] = -1; 6218 } 6219 6220 if (s2io_link_test(sp, &data[2])) 6221 ethtest->flags |= ETH_TEST_FL_FAILED; 6222 6223 data[0] = 0; 6224 data[1] = 0; 6225 data[3] = 0; 6226 data[4] = 0; 6227 } 6228 } 6229 6230 static void s2io_get_ethtool_stats(struct net_device *dev, 6231 struct ethtool_stats *estats, 6232 u64 *tmp_stats) 6233 { 6234 int i = 0, k; 6235 struct s2io_nic *sp = netdev_priv(dev); 6236 struct stat_block *stats = sp->mac_control.stats_info; 6237 struct swStat *swstats = &stats->sw_stat; 6238 struct xpakStat *xstats = &stats->xpak_stat; 6239 6240 s2io_updt_stats(sp); 6241 tmp_stats[i++] = 6242 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | 6243 le32_to_cpu(stats->tmac_frms); 6244 tmp_stats[i++] = 6245 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 6246 le32_to_cpu(stats->tmac_data_octets); 6247 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); 6248 tmp_stats[i++] = 6249 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | 6250 le32_to_cpu(stats->tmac_mcst_frms); 6251 tmp_stats[i++] = 6252 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | 6253 le32_to_cpu(stats->tmac_bcst_frms); 6254 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); 6255 tmp_stats[i++] = 6256 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | 6257 le32_to_cpu(stats->tmac_ttl_octets); 6258 tmp_stats[i++] = 6259 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | 6260 le32_to_cpu(stats->tmac_ucst_frms); 6261 tmp_stats[i++] = 6262 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | 6263 le32_to_cpu(stats->tmac_nucst_frms); 6264 tmp_stats[i++] = 6265 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 6266 le32_to_cpu(stats->tmac_any_err_frms); 6267 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); 6268 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); 6269 tmp_stats[i++] = 6270 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | 6271 le32_to_cpu(stats->tmac_vld_ip); 6272 tmp_stats[i++] = 6273 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | 6274 le32_to_cpu(stats->tmac_drop_ip); 6275 tmp_stats[i++] = 6276 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | 6277 le32_to_cpu(stats->tmac_icmp); 6278 tmp_stats[i++] = 6279 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | 6280 le32_to_cpu(stats->tmac_rst_tcp); 6281 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); 6282 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | 6283 le32_to_cpu(stats->tmac_udp); 6284 tmp_stats[i++] = 6285 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 6286 le32_to_cpu(stats->rmac_vld_frms); 6287 tmp_stats[i++] = 6288 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 6289 le32_to_cpu(stats->rmac_data_octets); 6290 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); 6291 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); 6292 tmp_stats[i++] = 6293 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 6294 le32_to_cpu(stats->rmac_vld_mcst_frms); 6295 tmp_stats[i++] = 6296 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | 6297 le32_to_cpu(stats->rmac_vld_bcst_frms); 6298 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); 6299 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); 6300 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); 6301 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); 6302 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); 6303 tmp_stats[i++] = 6304 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | 6305 le32_to_cpu(stats->rmac_ttl_octets); 6306 tmp_stats[i++] = 6307 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 6308 | le32_to_cpu(stats->rmac_accepted_ucst_frms); 6309 tmp_stats[i++] = 6310 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) 6311 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); 6312 tmp_stats[i++] = 6313 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | 6314 le32_to_cpu(stats->rmac_discarded_frms); 6315 tmp_stats[i++] = 6316 (u64)le32_to_cpu(stats->rmac_drop_events_oflow) 6317 << 32 | le32_to_cpu(stats->rmac_drop_events); 6318 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); 6319 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); 6320 tmp_stats[i++] = 6321 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 6322 le32_to_cpu(stats->rmac_usized_frms); 6323 tmp_stats[i++] = 6324 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | 6325 le32_to_cpu(stats->rmac_osized_frms); 6326 tmp_stats[i++] = 6327 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | 6328 le32_to_cpu(stats->rmac_frag_frms); 6329 tmp_stats[i++] = 6330 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | 6331 le32_to_cpu(stats->rmac_jabber_frms); 6332 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); 6333 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); 6334 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); 6335 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); 6336 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); 6337 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); 6338 tmp_stats[i++] = 6339 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | 6340 le32_to_cpu(stats->rmac_ip); 6341 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); 6342 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); 6343 tmp_stats[i++] = 6344 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | 6345 le32_to_cpu(stats->rmac_drop_ip); 6346 tmp_stats[i++] = 6347 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | 6348 le32_to_cpu(stats->rmac_icmp); 6349 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); 6350 tmp_stats[i++] = 6351 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | 6352 le32_to_cpu(stats->rmac_udp); 6353 tmp_stats[i++] = 6354 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | 6355 le32_to_cpu(stats->rmac_err_drp_udp); 6356 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); 6357 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); 6358 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); 6359 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); 6360 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); 6361 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); 6362 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); 6363 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); 6364 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); 6365 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); 6366 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); 6367 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); 6368 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); 6369 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); 6370 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); 6371 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); 6372 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); 6373 tmp_stats[i++] = 6374 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | 6375 le32_to_cpu(stats->rmac_pause_cnt); 6376 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); 6377 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); 6378 tmp_stats[i++] = 6379 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | 6380 le32_to_cpu(stats->rmac_accepted_ip); 6381 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); 6382 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); 6383 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); 6384 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); 6385 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); 6386 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); 6387 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); 6388 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); 6389 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); 6390 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); 6391 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); 6392 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); 6393 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); 6394 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); 6395 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); 6396 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); 6397 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); 6398 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); 6399 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); 6400 6401 /* Enhanced statistics exist only for Hercules */ 6402 if (sp->device_type == XFRAME_II_DEVICE) { 6403 tmp_stats[i++] = 6404 le64_to_cpu(stats->rmac_ttl_1519_4095_frms); 6405 tmp_stats[i++] = 6406 le64_to_cpu(stats->rmac_ttl_4096_8191_frms); 6407 tmp_stats[i++] = 6408 le64_to_cpu(stats->rmac_ttl_8192_max_frms); 6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); 6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); 6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); 6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); 6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); 6414 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); 6415 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); 6416 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); 6417 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); 6418 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); 6419 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); 6420 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); 6421 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); 6422 } 6423 6424 tmp_stats[i++] = 0; 6425 tmp_stats[i++] = swstats->single_ecc_errs; 6426 tmp_stats[i++] = swstats->double_ecc_errs; 6427 tmp_stats[i++] = swstats->parity_err_cnt; 6428 tmp_stats[i++] = swstats->serious_err_cnt; 6429 tmp_stats[i++] = swstats->soft_reset_cnt; 6430 tmp_stats[i++] = swstats->fifo_full_cnt; 6431 for (k = 0; k < MAX_RX_RINGS; k++) 6432 tmp_stats[i++] = swstats->ring_full_cnt[k]; 6433 tmp_stats[i++] = xstats->alarm_transceiver_temp_high; 6434 tmp_stats[i++] = xstats->alarm_transceiver_temp_low; 6435 tmp_stats[i++] = xstats->alarm_laser_bias_current_high; 6436 tmp_stats[i++] = xstats->alarm_laser_bias_current_low; 6437 tmp_stats[i++] = xstats->alarm_laser_output_power_high; 6438 tmp_stats[i++] = xstats->alarm_laser_output_power_low; 6439 tmp_stats[i++] = xstats->warn_transceiver_temp_high; 6440 tmp_stats[i++] = xstats->warn_transceiver_temp_low; 6441 tmp_stats[i++] = xstats->warn_laser_bias_current_high; 6442 tmp_stats[i++] = xstats->warn_laser_bias_current_low; 6443 tmp_stats[i++] = xstats->warn_laser_output_power_high; 6444 tmp_stats[i++] = xstats->warn_laser_output_power_low; 6445 tmp_stats[i++] = swstats->clubbed_frms_cnt; 6446 tmp_stats[i++] = swstats->sending_both; 6447 tmp_stats[i++] = swstats->outof_sequence_pkts; 6448 tmp_stats[i++] = swstats->flush_max_pkts; 6449 if (swstats->num_aggregations) { 6450 u64 tmp = swstats->sum_avg_pkts_aggregated; 6451 int count = 0; 6452 /* 6453 * Since 64-bit divide does not work on all platforms, 6454 * do repeated subtraction. 6455 */ 6456 while (tmp >= swstats->num_aggregations) { 6457 tmp -= swstats->num_aggregations; 6458 count++; 6459 } 6460 tmp_stats[i++] = count; 6461 } else 6462 tmp_stats[i++] = 0; 6463 tmp_stats[i++] = swstats->mem_alloc_fail_cnt; 6464 tmp_stats[i++] = swstats->pci_map_fail_cnt; 6465 tmp_stats[i++] = swstats->watchdog_timer_cnt; 6466 tmp_stats[i++] = swstats->mem_allocated; 6467 tmp_stats[i++] = swstats->mem_freed; 6468 tmp_stats[i++] = swstats->link_up_cnt; 6469 tmp_stats[i++] = swstats->link_down_cnt; 6470 tmp_stats[i++] = swstats->link_up_time; 6471 tmp_stats[i++] = swstats->link_down_time; 6472 6473 tmp_stats[i++] = swstats->tx_buf_abort_cnt; 6474 tmp_stats[i++] = swstats->tx_desc_abort_cnt; 6475 tmp_stats[i++] = swstats->tx_parity_err_cnt; 6476 tmp_stats[i++] = swstats->tx_link_loss_cnt; 6477 tmp_stats[i++] = swstats->tx_list_proc_err_cnt; 6478 6479 tmp_stats[i++] = swstats->rx_parity_err_cnt; 6480 tmp_stats[i++] = swstats->rx_abort_cnt; 6481 tmp_stats[i++] = swstats->rx_parity_abort_cnt; 6482 tmp_stats[i++] = swstats->rx_rda_fail_cnt; 6483 tmp_stats[i++] = swstats->rx_unkn_prot_cnt; 6484 tmp_stats[i++] = swstats->rx_fcs_err_cnt; 6485 tmp_stats[i++] = swstats->rx_buf_size_err_cnt; 6486 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; 6487 tmp_stats[i++] = swstats->rx_unkn_err_cnt; 6488 tmp_stats[i++] = swstats->tda_err_cnt; 6489 tmp_stats[i++] = swstats->pfc_err_cnt; 6490 tmp_stats[i++] = swstats->pcc_err_cnt; 6491 tmp_stats[i++] = swstats->tti_err_cnt; 6492 tmp_stats[i++] = swstats->tpa_err_cnt; 6493 tmp_stats[i++] = swstats->sm_err_cnt; 6494 tmp_stats[i++] = swstats->lso_err_cnt; 6495 tmp_stats[i++] = swstats->mac_tmac_err_cnt; 6496 tmp_stats[i++] = swstats->mac_rmac_err_cnt; 6497 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; 6498 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; 6499 tmp_stats[i++] = swstats->rc_err_cnt; 6500 tmp_stats[i++] = swstats->prc_pcix_err_cnt; 6501 tmp_stats[i++] = swstats->rpa_err_cnt; 6502 tmp_stats[i++] = swstats->rda_err_cnt; 6503 tmp_stats[i++] = swstats->rti_err_cnt; 6504 tmp_stats[i++] = swstats->mc_err_cnt; 6505 } 6506 6507 static int s2io_ethtool_get_regs_len(struct net_device *dev) 6508 { 6509 return XENA_REG_SPACE; 6510 } 6511 6512 6513 static int s2io_get_eeprom_len(struct net_device *dev) 6514 { 6515 return XENA_EEPROM_SPACE; 6516 } 6517 6518 static int s2io_get_sset_count(struct net_device *dev, int sset) 6519 { 6520 struct s2io_nic *sp = netdev_priv(dev); 6521 6522 switch (sset) { 6523 case ETH_SS_TEST: 6524 return S2IO_TEST_LEN; 6525 case ETH_SS_STATS: 6526 switch (sp->device_type) { 6527 case XFRAME_I_DEVICE: 6528 return XFRAME_I_STAT_LEN; 6529 case XFRAME_II_DEVICE: 6530 return XFRAME_II_STAT_LEN; 6531 default: 6532 return 0; 6533 } 6534 default: 6535 return -EOPNOTSUPP; 6536 } 6537 } 6538 6539 static void s2io_ethtool_get_strings(struct net_device *dev, 6540 u32 stringset, u8 *data) 6541 { 6542 int stat_size = 0; 6543 struct s2io_nic *sp = netdev_priv(dev); 6544 6545 switch (stringset) { 6546 case ETH_SS_TEST: 6547 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); 6548 break; 6549 case ETH_SS_STATS: 6550 stat_size = sizeof(ethtool_xena_stats_keys); 6551 memcpy(data, ðtool_xena_stats_keys, stat_size); 6552 if (sp->device_type == XFRAME_II_DEVICE) { 6553 memcpy(data + stat_size, 6554 ðtool_enhanced_stats_keys, 6555 sizeof(ethtool_enhanced_stats_keys)); 6556 stat_size += sizeof(ethtool_enhanced_stats_keys); 6557 } 6558 6559 memcpy(data + stat_size, ðtool_driver_stats_keys, 6560 sizeof(ethtool_driver_stats_keys)); 6561 } 6562 } 6563 6564 static int s2io_set_features(struct net_device *dev, netdev_features_t features) 6565 { 6566 struct s2io_nic *sp = netdev_priv(dev); 6567 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; 6568 6569 if (changed && netif_running(dev)) { 6570 int rc; 6571 6572 s2io_stop_all_tx_queue(sp); 6573 s2io_card_down(sp); 6574 dev->features = features; 6575 rc = s2io_card_up(sp); 6576 if (rc) 6577 s2io_reset(sp); 6578 else 6579 s2io_start_all_tx_queue(sp); 6580 6581 return rc ? rc : 1; 6582 } 6583 6584 return 0; 6585 } 6586 6587 static const struct ethtool_ops netdev_ethtool_ops = { 6588 .get_drvinfo = s2io_ethtool_gdrvinfo, 6589 .get_regs_len = s2io_ethtool_get_regs_len, 6590 .get_regs = s2io_ethtool_gregs, 6591 .get_link = ethtool_op_get_link, 6592 .get_eeprom_len = s2io_get_eeprom_len, 6593 .get_eeprom = s2io_ethtool_geeprom, 6594 .set_eeprom = s2io_ethtool_seeprom, 6595 .get_ringparam = s2io_ethtool_gringparam, 6596 .get_pauseparam = s2io_ethtool_getpause_data, 6597 .set_pauseparam = s2io_ethtool_setpause_data, 6598 .self_test = s2io_ethtool_test, 6599 .get_strings = s2io_ethtool_get_strings, 6600 .set_phys_id = s2io_ethtool_set_led, 6601 .get_ethtool_stats = s2io_get_ethtool_stats, 6602 .get_sset_count = s2io_get_sset_count, 6603 .get_link_ksettings = s2io_ethtool_get_link_ksettings, 6604 .set_link_ksettings = s2io_ethtool_set_link_ksettings, 6605 }; 6606 6607 /** 6608 * s2io_ioctl - Entry point for the Ioctl 6609 * @dev : Device pointer. 6610 * @rq : An IOCTL specefic structure, that can contain a pointer to 6611 * a proprietary structure used to pass information to the driver. 6612 * @cmd : This is used to distinguish between the different commands that 6613 * can be passed to the IOCTL functions. 6614 * Description: 6615 * Currently there are no special functionality supported in IOCTL, hence 6616 * function always return EOPNOTSUPPORTED 6617 */ 6618 6619 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6620 { 6621 return -EOPNOTSUPP; 6622 } 6623 6624 /** 6625 * s2io_change_mtu - entry point to change MTU size for the device. 6626 * @dev : device pointer. 6627 * @new_mtu : the new MTU size for the device. 6628 * Description: A driver entry point to change MTU size for the device. 6629 * Before changing the MTU the device must be stopped. 6630 * Return value: 6631 * 0 on success and an appropriate (-)ve integer as defined in errno.h 6632 * file on failure. 6633 */ 6634 6635 static int s2io_change_mtu(struct net_device *dev, int new_mtu) 6636 { 6637 struct s2io_nic *sp = netdev_priv(dev); 6638 int ret = 0; 6639 6640 WRITE_ONCE(dev->mtu, new_mtu); 6641 if (netif_running(dev)) { 6642 s2io_stop_all_tx_queue(sp); 6643 s2io_card_down(sp); 6644 ret = s2io_card_up(sp); 6645 if (ret) { 6646 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6647 __func__); 6648 return ret; 6649 } 6650 s2io_wake_all_tx_queue(sp); 6651 } else { /* Device is down */ 6652 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6653 u64 val64 = new_mtu; 6654 6655 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 6656 } 6657 6658 return ret; 6659 } 6660 6661 /** 6662 * s2io_set_link - Set the LInk status 6663 * @work: work struct containing a pointer to device private structure 6664 * Description: Sets the link status for the adapter 6665 */ 6666 6667 static void s2io_set_link(struct work_struct *work) 6668 { 6669 struct s2io_nic *nic = container_of(work, struct s2io_nic, 6670 set_link_task); 6671 struct net_device *dev = nic->dev; 6672 struct XENA_dev_config __iomem *bar0 = nic->bar0; 6673 register u64 val64; 6674 u16 subid; 6675 6676 rtnl_lock(); 6677 6678 if (!netif_running(dev)) 6679 goto out_unlock; 6680 6681 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { 6682 /* The card is being reset, no point doing anything */ 6683 goto out_unlock; 6684 } 6685 6686 subid = nic->pdev->subsystem_device; 6687 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 6688 /* 6689 * Allow a small delay for the NICs self initiated 6690 * cleanup to complete. 6691 */ 6692 msleep(100); 6693 } 6694 6695 val64 = readq(&bar0->adapter_status); 6696 if (LINK_IS_UP(val64)) { 6697 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { 6698 if (verify_xena_quiescence(nic)) { 6699 val64 = readq(&bar0->adapter_control); 6700 val64 |= ADAPTER_CNTL_EN; 6701 writeq(val64, &bar0->adapter_control); 6702 if (CARDS_WITH_FAULTY_LINK_INDICATORS( 6703 nic->device_type, subid)) { 6704 val64 = readq(&bar0->gpio_control); 6705 val64 |= GPIO_CTRL_GPIO_0; 6706 writeq(val64, &bar0->gpio_control); 6707 val64 = readq(&bar0->gpio_control); 6708 } else { 6709 val64 |= ADAPTER_LED_ON; 6710 writeq(val64, &bar0->adapter_control); 6711 } 6712 nic->device_enabled_once = true; 6713 } else { 6714 DBG_PRINT(ERR_DBG, 6715 "%s: Error: device is not Quiescent\n", 6716 dev->name); 6717 s2io_stop_all_tx_queue(nic); 6718 } 6719 } 6720 val64 = readq(&bar0->adapter_control); 6721 val64 |= ADAPTER_LED_ON; 6722 writeq(val64, &bar0->adapter_control); 6723 s2io_link(nic, LINK_UP); 6724 } else { 6725 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, 6726 subid)) { 6727 val64 = readq(&bar0->gpio_control); 6728 val64 &= ~GPIO_CTRL_GPIO_0; 6729 writeq(val64, &bar0->gpio_control); 6730 val64 = readq(&bar0->gpio_control); 6731 } 6732 /* turn off LED */ 6733 val64 = readq(&bar0->adapter_control); 6734 val64 = val64 & (~ADAPTER_LED_ON); 6735 writeq(val64, &bar0->adapter_control); 6736 s2io_link(nic, LINK_DOWN); 6737 } 6738 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); 6739 6740 out_unlock: 6741 rtnl_unlock(); 6742 } 6743 6744 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, 6745 struct buffAdd *ba, 6746 struct sk_buff **skb, u64 *temp0, u64 *temp1, 6747 u64 *temp2, int size) 6748 { 6749 struct net_device *dev = sp->dev; 6750 struct swStat *stats = &sp->mac_control.stats_info->sw_stat; 6751 6752 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { 6753 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; 6754 /* allocate skb */ 6755 if (*skb) { 6756 DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); 6757 /* 6758 * As Rx frame are not going to be processed, 6759 * using same mapped address for the Rxd 6760 * buffer pointer 6761 */ 6762 rxdp1->Buffer0_ptr = *temp0; 6763 } else { 6764 *skb = netdev_alloc_skb(dev, size); 6765 if (!(*skb)) { 6766 DBG_PRINT(INFO_DBG, 6767 "%s: Out of memory to allocate %s\n", 6768 dev->name, "1 buf mode SKBs"); 6769 stats->mem_alloc_fail_cnt++; 6770 return -ENOMEM ; 6771 } 6772 stats->mem_allocated += (*skb)->truesize; 6773 /* storing the mapped addr in a temp variable 6774 * such it will be used for next rxd whose 6775 * Host Control is NULL 6776 */ 6777 rxdp1->Buffer0_ptr = *temp0 = 6778 dma_map_single(&sp->pdev->dev, (*skb)->data, 6779 size - NET_IP_ALIGN, 6780 DMA_FROM_DEVICE); 6781 if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr)) 6782 goto memalloc_failed; 6783 rxdp->Host_Control = (unsigned long) (*skb); 6784 } 6785 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { 6786 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; 6787 /* Two buffer Mode */ 6788 if (*skb) { 6789 rxdp3->Buffer2_ptr = *temp2; 6790 rxdp3->Buffer0_ptr = *temp0; 6791 rxdp3->Buffer1_ptr = *temp1; 6792 } else { 6793 *skb = netdev_alloc_skb(dev, size); 6794 if (!(*skb)) { 6795 DBG_PRINT(INFO_DBG, 6796 "%s: Out of memory to allocate %s\n", 6797 dev->name, 6798 "2 buf mode SKBs"); 6799 stats->mem_alloc_fail_cnt++; 6800 return -ENOMEM; 6801 } 6802 stats->mem_allocated += (*skb)->truesize; 6803 rxdp3->Buffer2_ptr = *temp2 = 6804 dma_map_single(&sp->pdev->dev, (*skb)->data, 6805 dev->mtu + 4, DMA_FROM_DEVICE); 6806 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr)) 6807 goto memalloc_failed; 6808 rxdp3->Buffer0_ptr = *temp0 = 6809 dma_map_single(&sp->pdev->dev, ba->ba_0, 6810 BUF0_LEN, DMA_FROM_DEVICE); 6811 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) { 6812 dma_unmap_single(&sp->pdev->dev, 6813 (dma_addr_t)rxdp3->Buffer2_ptr, 6814 dev->mtu + 4, 6815 DMA_FROM_DEVICE); 6816 goto memalloc_failed; 6817 } 6818 rxdp->Host_Control = (unsigned long) (*skb); 6819 6820 /* Buffer-1 will be dummy buffer not used */ 6821 rxdp3->Buffer1_ptr = *temp1 = 6822 dma_map_single(&sp->pdev->dev, ba->ba_1, 6823 BUF1_LEN, DMA_FROM_DEVICE); 6824 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) { 6825 dma_unmap_single(&sp->pdev->dev, 6826 (dma_addr_t)rxdp3->Buffer0_ptr, 6827 BUF0_LEN, DMA_FROM_DEVICE); 6828 dma_unmap_single(&sp->pdev->dev, 6829 (dma_addr_t)rxdp3->Buffer2_ptr, 6830 dev->mtu + 4, 6831 DMA_FROM_DEVICE); 6832 goto memalloc_failed; 6833 } 6834 } 6835 } 6836 return 0; 6837 6838 memalloc_failed: 6839 stats->pci_map_fail_cnt++; 6840 stats->mem_freed += (*skb)->truesize; 6841 dev_kfree_skb(*skb); 6842 return -ENOMEM; 6843 } 6844 6845 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, 6846 int size) 6847 { 6848 struct net_device *dev = sp->dev; 6849 if (sp->rxd_mode == RXD_MODE_1) { 6850 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 6851 } else if (sp->rxd_mode == RXD_MODE_3B) { 6852 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 6853 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 6854 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); 6855 } 6856 } 6857 6858 static int rxd_owner_bit_reset(struct s2io_nic *sp) 6859 { 6860 int i, j, k, blk_cnt = 0, size; 6861 struct config_param *config = &sp->config; 6862 struct mac_info *mac_control = &sp->mac_control; 6863 struct net_device *dev = sp->dev; 6864 struct RxD_t *rxdp = NULL; 6865 struct sk_buff *skb = NULL; 6866 struct buffAdd *ba = NULL; 6867 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; 6868 6869 /* Calculate the size based on ring mode */ 6870 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + 6871 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 6872 if (sp->rxd_mode == RXD_MODE_1) 6873 size += NET_IP_ALIGN; 6874 else if (sp->rxd_mode == RXD_MODE_3B) 6875 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; 6876 6877 for (i = 0; i < config->rx_ring_num; i++) { 6878 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 6879 struct ring_info *ring = &mac_control->rings[i]; 6880 6881 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); 6882 6883 for (j = 0; j < blk_cnt; j++) { 6884 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { 6885 rxdp = ring->rx_blocks[j].rxds[k].virt_addr; 6886 if (sp->rxd_mode == RXD_MODE_3B) 6887 ba = &ring->ba[j][k]; 6888 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, 6889 &temp0_64, 6890 &temp1_64, 6891 &temp2_64, 6892 size) == -ENOMEM) { 6893 return 0; 6894 } 6895 6896 set_rxd_buffer_size(sp, rxdp, size); 6897 dma_wmb(); 6898 /* flip the Ownership bit to Hardware */ 6899 rxdp->Control_1 |= RXD_OWN_XENA; 6900 } 6901 } 6902 } 6903 return 0; 6904 6905 } 6906 6907 static int s2io_add_isr(struct s2io_nic *sp) 6908 { 6909 int ret = 0; 6910 struct net_device *dev = sp->dev; 6911 int err = 0; 6912 6913 if (sp->config.intr_type == MSI_X) 6914 ret = s2io_enable_msi_x(sp); 6915 if (ret) { 6916 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); 6917 sp->config.intr_type = INTA; 6918 } 6919 6920 /* 6921 * Store the values of the MSIX table in 6922 * the struct s2io_nic structure 6923 */ 6924 store_xmsi_data(sp); 6925 6926 /* After proper initialization of H/W, register ISR */ 6927 if (sp->config.intr_type == MSI_X) { 6928 int i, msix_rx_cnt = 0; 6929 6930 for (i = 0; i < sp->num_entries; i++) { 6931 if (sp->s2io_entries[i].in_use == MSIX_FLG) { 6932 if (sp->s2io_entries[i].type == 6933 MSIX_RING_TYPE) { 6934 snprintf(sp->desc[i], 6935 sizeof(sp->desc[i]), 6936 "%s:MSI-X-%d-RX", 6937 dev->name, i); 6938 err = request_irq(sp->entries[i].vector, 6939 s2io_msix_ring_handle, 6940 0, 6941 sp->desc[i], 6942 sp->s2io_entries[i].arg); 6943 } else if (sp->s2io_entries[i].type == 6944 MSIX_ALARM_TYPE) { 6945 snprintf(sp->desc[i], 6946 sizeof(sp->desc[i]), 6947 "%s:MSI-X-%d-TX", 6948 dev->name, i); 6949 err = request_irq(sp->entries[i].vector, 6950 s2io_msix_fifo_handle, 6951 0, 6952 sp->desc[i], 6953 sp->s2io_entries[i].arg); 6954 6955 } 6956 /* if either data or addr is zero print it. */ 6957 if (!(sp->msix_info[i].addr && 6958 sp->msix_info[i].data)) { 6959 DBG_PRINT(ERR_DBG, 6960 "%s @Addr:0x%llx Data:0x%llx\n", 6961 sp->desc[i], 6962 (unsigned long long) 6963 sp->msix_info[i].addr, 6964 (unsigned long long) 6965 ntohl(sp->msix_info[i].data)); 6966 } else 6967 msix_rx_cnt++; 6968 if (err) { 6969 remove_msix_isr(sp); 6970 6971 DBG_PRINT(ERR_DBG, 6972 "%s:MSI-X-%d registration " 6973 "failed\n", dev->name, i); 6974 6975 DBG_PRINT(ERR_DBG, 6976 "%s: Defaulting to INTA\n", 6977 dev->name); 6978 sp->config.intr_type = INTA; 6979 break; 6980 } 6981 sp->s2io_entries[i].in_use = 6982 MSIX_REGISTERED_SUCCESS; 6983 } 6984 } 6985 if (!err) { 6986 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); 6987 DBG_PRINT(INFO_DBG, 6988 "MSI-X-TX entries enabled through alarm vector\n"); 6989 } 6990 } 6991 if (sp->config.intr_type == INTA) { 6992 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED, 6993 sp->name, dev); 6994 if (err) { 6995 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", 6996 dev->name); 6997 return -1; 6998 } 6999 } 7000 return 0; 7001 } 7002 7003 static void s2io_rem_isr(struct s2io_nic *sp) 7004 { 7005 if (sp->config.intr_type == MSI_X) 7006 remove_msix_isr(sp); 7007 else 7008 remove_inta_isr(sp); 7009 } 7010 7011 static void do_s2io_card_down(struct s2io_nic *sp, int do_io) 7012 { 7013 int cnt = 0; 7014 struct XENA_dev_config __iomem *bar0 = sp->bar0; 7015 register u64 val64 = 0; 7016 struct config_param *config; 7017 config = &sp->config; 7018 7019 if (!is_s2io_card_up(sp)) 7020 return; 7021 7022 del_timer_sync(&sp->alarm_timer); 7023 /* If s2io_set_link task is executing, wait till it completes. */ 7024 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) 7025 msleep(50); 7026 clear_bit(__S2IO_STATE_CARD_UP, &sp->state); 7027 7028 /* Disable napi */ 7029 if (sp->config.napi) { 7030 int off = 0; 7031 if (config->intr_type == MSI_X) { 7032 for (; off < sp->config.rx_ring_num; off++) 7033 napi_disable(&sp->mac_control.rings[off].napi); 7034 } 7035 else 7036 napi_disable(&sp->napi); 7037 } 7038 7039 /* disable Tx and Rx traffic on the NIC */ 7040 if (do_io) 7041 stop_nic(sp); 7042 7043 s2io_rem_isr(sp); 7044 7045 /* stop the tx queue, indicate link down */ 7046 s2io_link(sp, LINK_DOWN); 7047 7048 /* Check if the device is Quiescent and then Reset the NIC */ 7049 while (do_io) { 7050 /* As per the HW requirement we need to replenish the 7051 * receive buffer to avoid the ring bump. Since there is 7052 * no intention of processing the Rx frame at this pointwe are 7053 * just setting the ownership bit of rxd in Each Rx 7054 * ring to HW and set the appropriate buffer size 7055 * based on the ring mode 7056 */ 7057 rxd_owner_bit_reset(sp); 7058 7059 val64 = readq(&bar0->adapter_status); 7060 if (verify_xena_quiescence(sp)) { 7061 if (verify_pcc_quiescent(sp, sp->device_enabled_once)) 7062 break; 7063 } 7064 7065 msleep(50); 7066 cnt++; 7067 if (cnt == 10) { 7068 DBG_PRINT(ERR_DBG, "Device not Quiescent - " 7069 "adapter status reads 0x%llx\n", 7070 (unsigned long long)val64); 7071 break; 7072 } 7073 } 7074 if (do_io) 7075 s2io_reset(sp); 7076 7077 /* Free all Tx buffers */ 7078 free_tx_buffers(sp); 7079 7080 /* Free all Rx buffers */ 7081 free_rx_buffers(sp); 7082 7083 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); 7084 } 7085 7086 static void s2io_card_down(struct s2io_nic *sp) 7087 { 7088 do_s2io_card_down(sp, 1); 7089 } 7090 7091 static int s2io_card_up(struct s2io_nic *sp) 7092 { 7093 int i, ret = 0; 7094 struct config_param *config; 7095 struct mac_info *mac_control; 7096 struct net_device *dev = sp->dev; 7097 u16 interruptible; 7098 7099 /* Initialize the H/W I/O registers */ 7100 ret = init_nic(sp); 7101 if (ret != 0) { 7102 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 7103 dev->name); 7104 if (ret != -EIO) 7105 s2io_reset(sp); 7106 return ret; 7107 } 7108 7109 /* 7110 * Initializing the Rx buffers. For now we are considering only 1 7111 * Rx ring and initializing buffers into 30 Rx blocks 7112 */ 7113 config = &sp->config; 7114 mac_control = &sp->mac_control; 7115 7116 for (i = 0; i < config->rx_ring_num; i++) { 7117 struct ring_info *ring = &mac_control->rings[i]; 7118 7119 ring->mtu = dev->mtu; 7120 ring->lro = !!(dev->features & NETIF_F_LRO); 7121 ret = fill_rx_buffers(sp, ring, 1); 7122 if (ret) { 7123 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", 7124 dev->name); 7125 ret = -ENOMEM; 7126 goto err_fill_buff; 7127 } 7128 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, 7129 ring->rx_bufs_left); 7130 } 7131 7132 /* Initialise napi */ 7133 if (config->napi) { 7134 if (config->intr_type == MSI_X) { 7135 for (i = 0; i < sp->config.rx_ring_num; i++) 7136 napi_enable(&sp->mac_control.rings[i].napi); 7137 } else { 7138 napi_enable(&sp->napi); 7139 } 7140 } 7141 7142 /* Maintain the state prior to the open */ 7143 if (sp->promisc_flg) 7144 sp->promisc_flg = 0; 7145 if (sp->m_cast_flg) { 7146 sp->m_cast_flg = 0; 7147 sp->all_multi_pos = 0; 7148 } 7149 7150 /* Setting its receive mode */ 7151 s2io_set_multicast(dev, true); 7152 7153 if (dev->features & NETIF_F_LRO) { 7154 /* Initialize max aggregatable pkts per session based on MTU */ 7155 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; 7156 /* Check if we can use (if specified) user provided value */ 7157 if (lro_max_pkts < sp->lro_max_aggr_per_sess) 7158 sp->lro_max_aggr_per_sess = lro_max_pkts; 7159 } 7160 7161 /* Enable Rx Traffic and interrupts on the NIC */ 7162 if (start_nic(sp)) { 7163 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); 7164 ret = -ENODEV; 7165 goto err_out; 7166 } 7167 7168 /* Add interrupt service routine */ 7169 if (s2io_add_isr(sp) != 0) { 7170 if (sp->config.intr_type == MSI_X) 7171 s2io_rem_isr(sp); 7172 ret = -ENODEV; 7173 goto err_out; 7174 } 7175 7176 timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0); 7177 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 7178 7179 set_bit(__S2IO_STATE_CARD_UP, &sp->state); 7180 7181 /* Enable select interrupts */ 7182 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); 7183 if (sp->config.intr_type != INTA) { 7184 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; 7185 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7186 } else { 7187 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 7188 interruptible |= TX_PIC_INTR; 7189 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7190 } 7191 7192 return 0; 7193 7194 err_out: 7195 if (config->napi) { 7196 if (config->intr_type == MSI_X) { 7197 for (i = 0; i < sp->config.rx_ring_num; i++) 7198 napi_disable(&sp->mac_control.rings[i].napi); 7199 } else { 7200 napi_disable(&sp->napi); 7201 } 7202 } 7203 err_fill_buff: 7204 s2io_reset(sp); 7205 free_rx_buffers(sp); 7206 return ret; 7207 } 7208 7209 /** 7210 * s2io_restart_nic - Resets the NIC. 7211 * @work : work struct containing a pointer to the device private structure 7212 * Description: 7213 * This function is scheduled to be run by the s2io_tx_watchdog 7214 * function after 0.5 secs to reset the NIC. The idea is to reduce 7215 * the run time of the watch dog routine which is run holding a 7216 * spin lock. 7217 */ 7218 7219 static void s2io_restart_nic(struct work_struct *work) 7220 { 7221 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); 7222 struct net_device *dev = sp->dev; 7223 7224 rtnl_lock(); 7225 7226 if (!netif_running(dev)) 7227 goto out_unlock; 7228 7229 s2io_card_down(sp); 7230 if (s2io_card_up(sp)) { 7231 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); 7232 } 7233 s2io_wake_all_tx_queue(sp); 7234 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); 7235 out_unlock: 7236 rtnl_unlock(); 7237 } 7238 7239 /** 7240 * s2io_tx_watchdog - Watchdog for transmit side. 7241 * @dev : Pointer to net device structure 7242 * @txqueue: index of the hanging queue 7243 * Description: 7244 * This function is triggered if the Tx Queue is stopped 7245 * for a pre-defined amount of time when the Interface is still up. 7246 * If the Interface is jammed in such a situation, the hardware is 7247 * reset (by s2io_close) and restarted again (by s2io_open) to 7248 * overcome any problem that might have been caused in the hardware. 7249 * Return value: 7250 * void 7251 */ 7252 7253 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue) 7254 { 7255 struct s2io_nic *sp = netdev_priv(dev); 7256 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7257 7258 if (netif_carrier_ok(dev)) { 7259 swstats->watchdog_timer_cnt++; 7260 schedule_work(&sp->rst_timer_task); 7261 swstats->soft_reset_cnt++; 7262 } 7263 } 7264 7265 /** 7266 * rx_osm_handler - To perform some OS related operations on SKB. 7267 * @ring_data : the ring from which this RxD was extracted. 7268 * @rxdp: descriptor 7269 * Description: 7270 * This function is called by the Rx interrupt serivce routine to perform 7271 * some OS related operations on the SKB before passing it to the upper 7272 * layers. It mainly checks if the checksum is OK, if so adds it to the 7273 * SKBs cksum variable, increments the Rx packet count and passes the SKB 7274 * to the upper layer. If the checksum is wrong, it increments the Rx 7275 * packet error count, frees the SKB and returns error. 7276 * Return value: 7277 * SUCCESS on success and -1 on failure. 7278 */ 7279 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) 7280 { 7281 struct s2io_nic *sp = ring_data->nic; 7282 struct net_device *dev = ring_data->dev; 7283 struct sk_buff *skb = (struct sk_buff *) 7284 ((unsigned long)rxdp->Host_Control); 7285 int ring_no = ring_data->ring_no; 7286 u16 l3_csum, l4_csum; 7287 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 7288 struct lro *lro; 7289 u8 err_mask; 7290 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7291 7292 skb->dev = dev; 7293 7294 if (err) { 7295 /* Check for parity error */ 7296 if (err & 0x1) 7297 swstats->parity_err_cnt++; 7298 7299 err_mask = err >> 48; 7300 switch (err_mask) { 7301 case 1: 7302 swstats->rx_parity_err_cnt++; 7303 break; 7304 7305 case 2: 7306 swstats->rx_abort_cnt++; 7307 break; 7308 7309 case 3: 7310 swstats->rx_parity_abort_cnt++; 7311 break; 7312 7313 case 4: 7314 swstats->rx_rda_fail_cnt++; 7315 break; 7316 7317 case 5: 7318 swstats->rx_unkn_prot_cnt++; 7319 break; 7320 7321 case 6: 7322 swstats->rx_fcs_err_cnt++; 7323 break; 7324 7325 case 7: 7326 swstats->rx_buf_size_err_cnt++; 7327 break; 7328 7329 case 8: 7330 swstats->rx_rxd_corrupt_cnt++; 7331 break; 7332 7333 case 15: 7334 swstats->rx_unkn_err_cnt++; 7335 break; 7336 } 7337 /* 7338 * Drop the packet if bad transfer code. Exception being 7339 * 0x5, which could be due to unsupported IPv6 extension header. 7340 * In this case, we let stack handle the packet. 7341 * Note that in this case, since checksum will be incorrect, 7342 * stack will validate the same. 7343 */ 7344 if (err_mask != 0x5) { 7345 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", 7346 dev->name, err_mask); 7347 dev->stats.rx_crc_errors++; 7348 swstats->mem_freed 7349 += skb->truesize; 7350 dev_kfree_skb(skb); 7351 ring_data->rx_bufs_left -= 1; 7352 rxdp->Host_Control = 0; 7353 return 0; 7354 } 7355 } 7356 7357 rxdp->Host_Control = 0; 7358 if (sp->rxd_mode == RXD_MODE_1) { 7359 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); 7360 7361 skb_put(skb, len); 7362 } else if (sp->rxd_mode == RXD_MODE_3B) { 7363 int get_block = ring_data->rx_curr_get_info.block_index; 7364 int get_off = ring_data->rx_curr_get_info.offset; 7365 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); 7366 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); 7367 7368 struct buffAdd *ba = &ring_data->ba[get_block][get_off]; 7369 skb_put_data(skb, ba->ba_0, buf0_len); 7370 skb_put(skb, buf2_len); 7371 } 7372 7373 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && 7374 ((!ring_data->lro) || 7375 (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) && 7376 (dev->features & NETIF_F_RXCSUM)) { 7377 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); 7378 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); 7379 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { 7380 /* 7381 * NIC verifies if the Checksum of the received 7382 * frame is Ok or not and accordingly returns 7383 * a flag in the RxD. 7384 */ 7385 skb->ip_summed = CHECKSUM_UNNECESSARY; 7386 if (ring_data->lro) { 7387 u32 tcp_len = 0; 7388 u8 *tcp; 7389 int ret = 0; 7390 7391 ret = s2io_club_tcp_session(ring_data, 7392 skb->data, &tcp, 7393 &tcp_len, &lro, 7394 rxdp, sp); 7395 switch (ret) { 7396 case 3: /* Begin anew */ 7397 lro->parent = skb; 7398 goto aggregate; 7399 case 1: /* Aggregate */ 7400 lro_append_pkt(sp, lro, skb, tcp_len); 7401 goto aggregate; 7402 case 4: /* Flush session */ 7403 lro_append_pkt(sp, lro, skb, tcp_len); 7404 queue_rx_frame(lro->parent, 7405 lro->vlan_tag); 7406 clear_lro_session(lro); 7407 swstats->flush_max_pkts++; 7408 goto aggregate; 7409 case 2: /* Flush both */ 7410 lro->parent->data_len = lro->frags_len; 7411 swstats->sending_both++; 7412 queue_rx_frame(lro->parent, 7413 lro->vlan_tag); 7414 clear_lro_session(lro); 7415 goto send_up; 7416 case 0: /* sessions exceeded */ 7417 case -1: /* non-TCP or not L2 aggregatable */ 7418 case 5: /* 7419 * First pkt in session not 7420 * L3/L4 aggregatable 7421 */ 7422 break; 7423 default: 7424 DBG_PRINT(ERR_DBG, 7425 "%s: Samadhana!!\n", 7426 __func__); 7427 BUG(); 7428 } 7429 } 7430 } else { 7431 /* 7432 * Packet with erroneous checksum, let the 7433 * upper layers deal with it. 7434 */ 7435 skb_checksum_none_assert(skb); 7436 } 7437 } else 7438 skb_checksum_none_assert(skb); 7439 7440 swstats->mem_freed += skb->truesize; 7441 send_up: 7442 skb_record_rx_queue(skb, ring_no); 7443 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); 7444 aggregate: 7445 sp->mac_control.rings[ring_no].rx_bufs_left -= 1; 7446 return SUCCESS; 7447 } 7448 7449 /** 7450 * s2io_link - stops/starts the Tx queue. 7451 * @sp : private member of the device structure, which is a pointer to the 7452 * s2io_nic structure. 7453 * @link : inidicates whether link is UP/DOWN. 7454 * Description: 7455 * This function stops/starts the Tx queue depending on whether the link 7456 * status of the NIC is down or up. This is called by the Alarm 7457 * interrupt handler whenever a link change interrupt comes up. 7458 * Return value: 7459 * void. 7460 */ 7461 7462 static void s2io_link(struct s2io_nic *sp, int link) 7463 { 7464 struct net_device *dev = sp->dev; 7465 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7466 7467 if (link != sp->last_link_state) { 7468 init_tti(sp, link, false); 7469 if (link == LINK_DOWN) { 7470 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); 7471 s2io_stop_all_tx_queue(sp); 7472 netif_carrier_off(dev); 7473 if (swstats->link_up_cnt) 7474 swstats->link_up_time = 7475 jiffies - sp->start_time; 7476 swstats->link_down_cnt++; 7477 } else { 7478 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); 7479 if (swstats->link_down_cnt) 7480 swstats->link_down_time = 7481 jiffies - sp->start_time; 7482 swstats->link_up_cnt++; 7483 netif_carrier_on(dev); 7484 s2io_wake_all_tx_queue(sp); 7485 } 7486 } 7487 sp->last_link_state = link; 7488 sp->start_time = jiffies; 7489 } 7490 7491 /** 7492 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 7493 * @sp : private member of the device structure, which is a pointer to the 7494 * s2io_nic structure. 7495 * Description: 7496 * This function initializes a few of the PCI and PCI-X configuration registers 7497 * with recommended values. 7498 * Return value: 7499 * void 7500 */ 7501 7502 static void s2io_init_pci(struct s2io_nic *sp) 7503 { 7504 u16 pci_cmd = 0, pcix_cmd = 0; 7505 7506 /* Enable Data Parity Error Recovery in PCI-X command register. */ 7507 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7508 &(pcix_cmd)); 7509 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7510 (pcix_cmd | 1)); 7511 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7512 &(pcix_cmd)); 7513 7514 /* Set the PErr Response bit in PCI command register. */ 7515 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7516 pci_write_config_word(sp->pdev, PCI_COMMAND, 7517 (pci_cmd | PCI_COMMAND_PARITY)); 7518 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7519 } 7520 7521 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, 7522 u8 *dev_multiq) 7523 { 7524 int i; 7525 7526 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { 7527 DBG_PRINT(ERR_DBG, "Requested number of tx fifos " 7528 "(%d) not supported\n", tx_fifo_num); 7529 7530 if (tx_fifo_num < 1) 7531 tx_fifo_num = 1; 7532 else 7533 tx_fifo_num = MAX_TX_FIFOS; 7534 7535 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); 7536 } 7537 7538 if (multiq) 7539 *dev_multiq = multiq; 7540 7541 if (tx_steering_type && (1 == tx_fifo_num)) { 7542 if (tx_steering_type != TX_DEFAULT_STEERING) 7543 DBG_PRINT(ERR_DBG, 7544 "Tx steering is not supported with " 7545 "one fifo. Disabling Tx steering.\n"); 7546 tx_steering_type = NO_STEERING; 7547 } 7548 7549 if ((tx_steering_type < NO_STEERING) || 7550 (tx_steering_type > TX_DEFAULT_STEERING)) { 7551 DBG_PRINT(ERR_DBG, 7552 "Requested transmit steering not supported\n"); 7553 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); 7554 tx_steering_type = NO_STEERING; 7555 } 7556 7557 if (rx_ring_num > MAX_RX_RINGS) { 7558 DBG_PRINT(ERR_DBG, 7559 "Requested number of rx rings not supported\n"); 7560 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", 7561 MAX_RX_RINGS); 7562 rx_ring_num = MAX_RX_RINGS; 7563 } 7564 7565 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { 7566 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " 7567 "Defaulting to INTA\n"); 7568 *dev_intr_type = INTA; 7569 } 7570 7571 if ((*dev_intr_type == MSI_X) && 7572 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && 7573 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { 7574 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " 7575 "Defaulting to INTA\n"); 7576 *dev_intr_type = INTA; 7577 } 7578 7579 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { 7580 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); 7581 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); 7582 rx_ring_mode = 1; 7583 } 7584 7585 for (i = 0; i < MAX_RX_RINGS; i++) 7586 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { 7587 DBG_PRINT(ERR_DBG, "Requested rx ring size not " 7588 "supported\nDefaulting to %d\n", 7589 MAX_RX_BLOCKS_PER_RING); 7590 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; 7591 } 7592 7593 return SUCCESS; 7594 } 7595 7596 /** 7597 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively. 7598 * @nic: device private variable 7599 * @ds_codepoint: data 7600 * @ring: ring index 7601 * Description: The function configures the receive steering to 7602 * desired receive ring. 7603 * Return Value: SUCCESS on success and 7604 * '-1' on failure (endian settings incorrect). 7605 */ 7606 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) 7607 { 7608 struct XENA_dev_config __iomem *bar0 = nic->bar0; 7609 register u64 val64 = 0; 7610 7611 if (ds_codepoint > 63) 7612 return FAILURE; 7613 7614 val64 = RTS_DS_MEM_DATA(ring); 7615 writeq(val64, &bar0->rts_ds_mem_data); 7616 7617 val64 = RTS_DS_MEM_CTRL_WE | 7618 RTS_DS_MEM_CTRL_STROBE_NEW_CMD | 7619 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); 7620 7621 writeq(val64, &bar0->rts_ds_mem_ctrl); 7622 7623 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, 7624 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, 7625 S2IO_BIT_RESET, true); 7626 } 7627 7628 static const struct net_device_ops s2io_netdev_ops = { 7629 .ndo_open = s2io_open, 7630 .ndo_stop = s2io_close, 7631 .ndo_get_stats = s2io_get_stats, 7632 .ndo_start_xmit = s2io_xmit, 7633 .ndo_validate_addr = eth_validate_addr, 7634 .ndo_set_rx_mode = s2io_ndo_set_multicast, 7635 .ndo_eth_ioctl = s2io_ioctl, 7636 .ndo_set_mac_address = s2io_set_mac_addr, 7637 .ndo_change_mtu = s2io_change_mtu, 7638 .ndo_set_features = s2io_set_features, 7639 .ndo_tx_timeout = s2io_tx_watchdog, 7640 #ifdef CONFIG_NET_POLL_CONTROLLER 7641 .ndo_poll_controller = s2io_netpoll, 7642 #endif 7643 }; 7644 7645 /** 7646 * s2io_init_nic - Initialization of the adapter . 7647 * @pdev : structure containing the PCI related information of the device. 7648 * @pre: List of PCI devices supported by the driver listed in s2io_tbl. 7649 * Description: 7650 * The function initializes an adapter identified by the pci_dec structure. 7651 * All OS related initialization including memory and device structure and 7652 * initlaization of the device private variable is done. Also the swapper 7653 * control register is initialized to enable read and write into the I/O 7654 * registers of the device. 7655 * Return value: 7656 * returns 0 on success and negative on failure. 7657 */ 7658 7659 static int 7660 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) 7661 { 7662 struct s2io_nic *sp; 7663 struct net_device *dev; 7664 int i, j, ret; 7665 u32 mac_up, mac_down; 7666 u64 val64 = 0, tmp64 = 0; 7667 struct XENA_dev_config __iomem *bar0 = NULL; 7668 u16 subid; 7669 struct config_param *config; 7670 struct mac_info *mac_control; 7671 int mode; 7672 u8 dev_intr_type = intr_type; 7673 u8 dev_multiq = 0; 7674 7675 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); 7676 if (ret) 7677 return ret; 7678 7679 ret = pci_enable_device(pdev); 7680 if (ret) { 7681 DBG_PRINT(ERR_DBG, 7682 "%s: pci_enable_device failed\n", __func__); 7683 return ret; 7684 } 7685 7686 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 7687 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); 7688 } else { 7689 pci_disable_device(pdev); 7690 return -ENOMEM; 7691 } 7692 ret = pci_request_regions(pdev, s2io_driver_name); 7693 if (ret) { 7694 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", 7695 __func__, ret); 7696 pci_disable_device(pdev); 7697 return -ENODEV; 7698 } 7699 if (dev_multiq) 7700 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); 7701 else 7702 dev = alloc_etherdev(sizeof(struct s2io_nic)); 7703 if (dev == NULL) { 7704 pci_disable_device(pdev); 7705 pci_release_regions(pdev); 7706 return -ENODEV; 7707 } 7708 7709 pci_set_master(pdev); 7710 pci_set_drvdata(pdev, dev); 7711 SET_NETDEV_DEV(dev, &pdev->dev); 7712 7713 /* Private member variable initialized to s2io NIC structure */ 7714 sp = netdev_priv(dev); 7715 sp->dev = dev; 7716 sp->pdev = pdev; 7717 sp->device_enabled_once = false; 7718 if (rx_ring_mode == 1) 7719 sp->rxd_mode = RXD_MODE_1; 7720 if (rx_ring_mode == 2) 7721 sp->rxd_mode = RXD_MODE_3B; 7722 7723 sp->config.intr_type = dev_intr_type; 7724 7725 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || 7726 (pdev->device == PCI_DEVICE_ID_HERC_UNI)) 7727 sp->device_type = XFRAME_II_DEVICE; 7728 else 7729 sp->device_type = XFRAME_I_DEVICE; 7730 7731 7732 /* Initialize some PCI/PCI-X fields of the NIC. */ 7733 s2io_init_pci(sp); 7734 7735 /* 7736 * Setting the device configuration parameters. 7737 * Most of these parameters can be specified by the user during 7738 * module insertion as they are module loadable parameters. If 7739 * these parameters are not specified during load time, they 7740 * are initialized with default values. 7741 */ 7742 config = &sp->config; 7743 mac_control = &sp->mac_control; 7744 7745 config->napi = napi; 7746 config->tx_steering_type = tx_steering_type; 7747 7748 /* Tx side parameters. */ 7749 if (config->tx_steering_type == TX_PRIORITY_STEERING) 7750 config->tx_fifo_num = MAX_TX_FIFOS; 7751 else 7752 config->tx_fifo_num = tx_fifo_num; 7753 7754 /* Initialize the fifos used for tx steering */ 7755 if (config->tx_fifo_num < 5) { 7756 if (config->tx_fifo_num == 1) 7757 sp->total_tcp_fifos = 1; 7758 else 7759 sp->total_tcp_fifos = config->tx_fifo_num - 1; 7760 sp->udp_fifo_idx = config->tx_fifo_num - 1; 7761 sp->total_udp_fifos = 1; 7762 sp->other_fifo_idx = sp->total_tcp_fifos - 1; 7763 } else { 7764 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - 7765 FIFO_OTHER_MAX_NUM); 7766 sp->udp_fifo_idx = sp->total_tcp_fifos; 7767 sp->total_udp_fifos = FIFO_UDP_MAX_NUM; 7768 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; 7769 } 7770 7771 config->multiq = dev_multiq; 7772 for (i = 0; i < config->tx_fifo_num; i++) { 7773 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7774 7775 tx_cfg->fifo_len = tx_fifo_len[i]; 7776 tx_cfg->fifo_priority = i; 7777 } 7778 7779 /* mapping the QoS priority to the configured fifos */ 7780 for (i = 0; i < MAX_TX_FIFOS; i++) 7781 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; 7782 7783 /* map the hashing selector table to the configured fifos */ 7784 for (i = 0; i < config->tx_fifo_num; i++) 7785 sp->fifo_selector[i] = fifo_selector[i]; 7786 7787 7788 config->tx_intr_type = TXD_INT_TYPE_UTILZ; 7789 for (i = 0; i < config->tx_fifo_num; i++) { 7790 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7791 7792 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); 7793 if (tx_cfg->fifo_len < 65) { 7794 config->tx_intr_type = TXD_INT_TYPE_PER_LIST; 7795 break; 7796 } 7797 } 7798 /* + 2 because one Txd for skb->data and one Txd for UFO */ 7799 config->max_txds = MAX_SKB_FRAGS + 2; 7800 7801 /* Rx side parameters. */ 7802 config->rx_ring_num = rx_ring_num; 7803 for (i = 0; i < config->rx_ring_num; i++) { 7804 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7805 struct ring_info *ring = &mac_control->rings[i]; 7806 7807 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); 7808 rx_cfg->ring_priority = i; 7809 ring->rx_bufs_left = 0; 7810 ring->rxd_mode = sp->rxd_mode; 7811 ring->rxd_count = rxd_count[sp->rxd_mode]; 7812 ring->pdev = sp->pdev; 7813 ring->dev = sp->dev; 7814 } 7815 7816 for (i = 0; i < rx_ring_num; i++) { 7817 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7818 7819 rx_cfg->ring_org = RING_ORG_BUFF1; 7820 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); 7821 } 7822 7823 /* Setting Mac Control parameters */ 7824 mac_control->rmac_pause_time = rmac_pause_time; 7825 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; 7826 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; 7827 7828 7829 /* initialize the shared memory used by the NIC and the host */ 7830 if (init_shared_mem(sp)) { 7831 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); 7832 ret = -ENOMEM; 7833 goto mem_alloc_failed; 7834 } 7835 7836 sp->bar0 = pci_ioremap_bar(pdev, 0); 7837 if (!sp->bar0) { 7838 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", 7839 dev->name); 7840 ret = -ENOMEM; 7841 goto bar0_remap_failed; 7842 } 7843 7844 sp->bar1 = pci_ioremap_bar(pdev, 2); 7845 if (!sp->bar1) { 7846 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", 7847 dev->name); 7848 ret = -ENOMEM; 7849 goto bar1_remap_failed; 7850 } 7851 7852 /* Initializing the BAR1 address as the start of the FIFO pointer. */ 7853 for (j = 0; j < MAX_TX_FIFOS; j++) { 7854 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); 7855 } 7856 7857 /* Driver entry points */ 7858 dev->netdev_ops = &s2io_netdev_ops; 7859 dev->ethtool_ops = &netdev_ethtool_ops; 7860 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 7861 NETIF_F_TSO | NETIF_F_TSO6 | 7862 NETIF_F_RXCSUM | NETIF_F_LRO; 7863 dev->features |= dev->hw_features | 7864 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 7865 NETIF_F_HIGHDMA; 7866 dev->watchdog_timeo = WATCH_DOG_TIMEOUT; 7867 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); 7868 INIT_WORK(&sp->set_link_task, s2io_set_link); 7869 7870 pci_save_state(sp->pdev); 7871 7872 /* Setting swapper control on the NIC, for proper reset operation */ 7873 if (s2io_set_swapper(sp)) { 7874 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", 7875 dev->name); 7876 ret = -EAGAIN; 7877 goto set_swap_failed; 7878 } 7879 7880 /* Verify if the Herc works on the slot its placed into */ 7881 if (sp->device_type & XFRAME_II_DEVICE) { 7882 mode = s2io_verify_pci_mode(sp); 7883 if (mode < 0) { 7884 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", 7885 __func__); 7886 ret = -EBADSLT; 7887 goto set_swap_failed; 7888 } 7889 } 7890 7891 if (sp->config.intr_type == MSI_X) { 7892 sp->num_entries = config->rx_ring_num + 1; 7893 ret = s2io_enable_msi_x(sp); 7894 7895 if (!ret) { 7896 ret = s2io_test_msi(sp); 7897 /* rollback MSI-X, will re-enable during add_isr() */ 7898 remove_msix_isr(sp); 7899 } 7900 if (ret) { 7901 7902 DBG_PRINT(ERR_DBG, 7903 "MSI-X requested but failed to enable\n"); 7904 sp->config.intr_type = INTA; 7905 } 7906 } 7907 7908 if (config->intr_type == MSI_X) { 7909 for (i = 0; i < config->rx_ring_num ; i++) { 7910 struct ring_info *ring = &mac_control->rings[i]; 7911 7912 netif_napi_add(dev, &ring->napi, s2io_poll_msix); 7913 } 7914 } else { 7915 netif_napi_add(dev, &sp->napi, s2io_poll_inta); 7916 } 7917 7918 /* Not needed for Herc */ 7919 if (sp->device_type & XFRAME_I_DEVICE) { 7920 /* 7921 * Fix for all "FFs" MAC address problems observed on 7922 * Alpha platforms 7923 */ 7924 fix_mac_address(sp); 7925 s2io_reset(sp); 7926 } 7927 7928 /* 7929 * MAC address initialization. 7930 * For now only one mac address will be read and used. 7931 */ 7932 bar0 = sp->bar0; 7933 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 7934 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); 7935 writeq(val64, &bar0->rmac_addr_cmd_mem); 7936 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 7937 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 7938 S2IO_BIT_RESET, true); 7939 tmp64 = readq(&bar0->rmac_addr_data0_mem); 7940 mac_down = (u32)tmp64; 7941 mac_up = (u32) (tmp64 >> 32); 7942 7943 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); 7944 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); 7945 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); 7946 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); 7947 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); 7948 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); 7949 7950 /* Set the factory defined MAC address initially */ 7951 dev->addr_len = ETH_ALEN; 7952 eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr); 7953 7954 /* initialize number of multicast & unicast MAC entries variables */ 7955 if (sp->device_type == XFRAME_I_DEVICE) { 7956 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; 7957 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; 7958 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; 7959 } else if (sp->device_type == XFRAME_II_DEVICE) { 7960 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; 7961 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; 7962 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; 7963 } 7964 7965 /* MTU range: 46 - 9600 */ 7966 dev->min_mtu = MIN_MTU; 7967 dev->max_mtu = S2IO_JUMBO_SIZE; 7968 7969 /* store mac addresses from CAM to s2io_nic structure */ 7970 do_s2io_store_unicast_mc(sp); 7971 7972 /* Configure MSIX vector for number of rings configured plus one */ 7973 if ((sp->device_type == XFRAME_II_DEVICE) && 7974 (config->intr_type == MSI_X)) 7975 sp->num_entries = config->rx_ring_num + 1; 7976 7977 /* Store the values of the MSIX table in the s2io_nic structure */ 7978 store_xmsi_data(sp); 7979 /* reset Nic and bring it to known state */ 7980 s2io_reset(sp); 7981 7982 /* 7983 * Initialize link state flags 7984 * and the card state parameter 7985 */ 7986 sp->state = 0; 7987 7988 /* Initialize spinlocks */ 7989 for (i = 0; i < sp->config.tx_fifo_num; i++) { 7990 struct fifo_info *fifo = &mac_control->fifos[i]; 7991 7992 spin_lock_init(&fifo->tx_lock); 7993 } 7994 7995 /* 7996 * SXE-002: Configure link and activity LED to init state 7997 * on driver load. 7998 */ 7999 subid = sp->pdev->subsystem_device; 8000 if ((subid & 0xFF) >= 0x07) { 8001 val64 = readq(&bar0->gpio_control); 8002 val64 |= 0x0000800000000000ULL; 8003 writeq(val64, &bar0->gpio_control); 8004 val64 = 0x0411040400000000ULL; 8005 writeq(val64, (void __iomem *)bar0 + 0x2700); 8006 val64 = readq(&bar0->gpio_control); 8007 } 8008 8009 sp->rx_csum = 1; /* Rx chksum verify enabled by default */ 8010 8011 if (register_netdev(dev)) { 8012 DBG_PRINT(ERR_DBG, "Device registration failed\n"); 8013 ret = -ENODEV; 8014 goto register_failed; 8015 } 8016 s2io_vpd_read(sp); 8017 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); 8018 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, 8019 sp->product_name, pdev->revision); 8020 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, 8021 s2io_driver_version); 8022 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); 8023 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); 8024 if (sp->device_type & XFRAME_II_DEVICE) { 8025 mode = s2io_print_pci_mode(sp); 8026 if (mode < 0) { 8027 ret = -EBADSLT; 8028 unregister_netdev(dev); 8029 goto set_swap_failed; 8030 } 8031 } 8032 switch (sp->rxd_mode) { 8033 case RXD_MODE_1: 8034 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", 8035 dev->name); 8036 break; 8037 case RXD_MODE_3B: 8038 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", 8039 dev->name); 8040 break; 8041 } 8042 8043 switch (sp->config.napi) { 8044 case 0: 8045 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); 8046 break; 8047 case 1: 8048 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); 8049 break; 8050 } 8051 8052 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, 8053 sp->config.tx_fifo_num); 8054 8055 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, 8056 sp->config.rx_ring_num); 8057 8058 switch (sp->config.intr_type) { 8059 case INTA: 8060 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); 8061 break; 8062 case MSI_X: 8063 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); 8064 break; 8065 } 8066 if (sp->config.multiq) { 8067 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8068 struct fifo_info *fifo = &mac_control->fifos[i]; 8069 8070 fifo->multiq = config->multiq; 8071 } 8072 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", 8073 dev->name); 8074 } else 8075 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", 8076 dev->name); 8077 8078 switch (sp->config.tx_steering_type) { 8079 case NO_STEERING: 8080 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", 8081 dev->name); 8082 break; 8083 case TX_PRIORITY_STEERING: 8084 DBG_PRINT(ERR_DBG, 8085 "%s: Priority steering enabled for transmit\n", 8086 dev->name); 8087 break; 8088 case TX_DEFAULT_STEERING: 8089 DBG_PRINT(ERR_DBG, 8090 "%s: Default steering enabled for transmit\n", 8091 dev->name); 8092 } 8093 8094 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 8095 dev->name); 8096 /* Initialize device name */ 8097 snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name, 8098 sp->product_name); 8099 8100 if (vlan_tag_strip) 8101 sp->vlan_strip_flag = 1; 8102 else 8103 sp->vlan_strip_flag = 0; 8104 8105 /* 8106 * Make Link state as off at this point, when the Link change 8107 * interrupt comes the state will be automatically changed to 8108 * the right state. 8109 */ 8110 netif_carrier_off(dev); 8111 8112 return 0; 8113 8114 register_failed: 8115 set_swap_failed: 8116 iounmap(sp->bar1); 8117 bar1_remap_failed: 8118 iounmap(sp->bar0); 8119 bar0_remap_failed: 8120 mem_alloc_failed: 8121 free_shared_mem(sp); 8122 pci_disable_device(pdev); 8123 pci_release_regions(pdev); 8124 free_netdev(dev); 8125 8126 return ret; 8127 } 8128 8129 /** 8130 * s2io_rem_nic - Free the PCI device 8131 * @pdev: structure containing the PCI related information of the device. 8132 * Description: This function is called by the Pci subsystem to release a 8133 * PCI device and free up all resource held up by the device. This could 8134 * be in response to a Hot plug event or when the driver is to be removed 8135 * from memory. 8136 */ 8137 8138 static void s2io_rem_nic(struct pci_dev *pdev) 8139 { 8140 struct net_device *dev = pci_get_drvdata(pdev); 8141 struct s2io_nic *sp; 8142 8143 if (dev == NULL) { 8144 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); 8145 return; 8146 } 8147 8148 sp = netdev_priv(dev); 8149 8150 cancel_work_sync(&sp->rst_timer_task); 8151 cancel_work_sync(&sp->set_link_task); 8152 8153 unregister_netdev(dev); 8154 8155 free_shared_mem(sp); 8156 iounmap(sp->bar0); 8157 iounmap(sp->bar1); 8158 pci_release_regions(pdev); 8159 free_netdev(dev); 8160 pci_disable_device(pdev); 8161 } 8162 8163 module_pci_driver(s2io_driver); 8164 8165 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 8166 struct tcphdr **tcp, struct RxD_t *rxdp, 8167 struct s2io_nic *sp) 8168 { 8169 int ip_off; 8170 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; 8171 8172 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { 8173 DBG_PRINT(INIT_DBG, 8174 "%s: Non-TCP frames not supported for LRO\n", 8175 __func__); 8176 return -1; 8177 } 8178 8179 /* Checking for DIX type or DIX type with VLAN */ 8180 if ((l2_type == 0) || (l2_type == 4)) { 8181 ip_off = HEADER_ETHERNET_II_802_3_SIZE; 8182 /* 8183 * If vlan stripping is disabled and the frame is VLAN tagged, 8184 * shift the offset by the VLAN header size bytes. 8185 */ 8186 if ((!sp->vlan_strip_flag) && 8187 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) 8188 ip_off += HEADER_VLAN_SIZE; 8189 } else { 8190 /* LLC, SNAP etc are considered non-mergeable */ 8191 return -1; 8192 } 8193 8194 *ip = (struct iphdr *)(buffer + ip_off); 8195 ip_len = (u8)((*ip)->ihl); 8196 ip_len <<= 2; 8197 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); 8198 8199 return 0; 8200 } 8201 8202 static int check_for_socket_match(struct lro *lro, struct iphdr *ip, 8203 struct tcphdr *tcp) 8204 { 8205 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8206 if ((lro->iph->saddr != ip->saddr) || 8207 (lro->iph->daddr != ip->daddr) || 8208 (lro->tcph->source != tcp->source) || 8209 (lro->tcph->dest != tcp->dest)) 8210 return -1; 8211 return 0; 8212 } 8213 8214 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) 8215 { 8216 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); 8217 } 8218 8219 static void initiate_new_session(struct lro *lro, u8 *l2h, 8220 struct iphdr *ip, struct tcphdr *tcp, 8221 u32 tcp_pyld_len, u16 vlan_tag) 8222 { 8223 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8224 lro->l2h = l2h; 8225 lro->iph = ip; 8226 lro->tcph = tcp; 8227 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); 8228 lro->tcp_ack = tcp->ack_seq; 8229 lro->sg_num = 1; 8230 lro->total_len = ntohs(ip->tot_len); 8231 lro->frags_len = 0; 8232 lro->vlan_tag = vlan_tag; 8233 /* 8234 * Check if we saw TCP timestamp. 8235 * Other consistency checks have already been done. 8236 */ 8237 if (tcp->doff == 8) { 8238 __be32 *ptr; 8239 ptr = (__be32 *)(tcp+1); 8240 lro->saw_ts = 1; 8241 lro->cur_tsval = ntohl(*(ptr+1)); 8242 lro->cur_tsecr = *(ptr+2); 8243 } 8244 lro->in_use = 1; 8245 } 8246 8247 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) 8248 { 8249 struct iphdr *ip = lro->iph; 8250 struct tcphdr *tcp = lro->tcph; 8251 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8252 8253 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8254 8255 /* Update L3 header */ 8256 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len)); 8257 ip->tot_len = htons(lro->total_len); 8258 8259 /* Update L4 header */ 8260 tcp->ack_seq = lro->tcp_ack; 8261 tcp->window = lro->window; 8262 8263 /* Update tsecr field if this session has timestamps enabled */ 8264 if (lro->saw_ts) { 8265 __be32 *ptr = (__be32 *)(tcp + 1); 8266 *(ptr+2) = lro->cur_tsecr; 8267 } 8268 8269 /* Update counters required for calculation of 8270 * average no. of packets aggregated. 8271 */ 8272 swstats->sum_avg_pkts_aggregated += lro->sg_num; 8273 swstats->num_aggregations++; 8274 } 8275 8276 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, 8277 struct tcphdr *tcp, u32 l4_pyld) 8278 { 8279 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8280 lro->total_len += l4_pyld; 8281 lro->frags_len += l4_pyld; 8282 lro->tcp_next_seq += l4_pyld; 8283 lro->sg_num++; 8284 8285 /* Update ack seq no. and window ad(from this pkt) in LRO object */ 8286 lro->tcp_ack = tcp->ack_seq; 8287 lro->window = tcp->window; 8288 8289 if (lro->saw_ts) { 8290 __be32 *ptr; 8291 /* Update tsecr and tsval from this packet */ 8292 ptr = (__be32 *)(tcp+1); 8293 lro->cur_tsval = ntohl(*(ptr+1)); 8294 lro->cur_tsecr = *(ptr + 2); 8295 } 8296 } 8297 8298 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, 8299 struct tcphdr *tcp, u32 tcp_pyld_len) 8300 { 8301 u8 *ptr; 8302 8303 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8304 8305 if (!tcp_pyld_len) { 8306 /* Runt frame or a pure ack */ 8307 return -1; 8308 } 8309 8310 if (ip->ihl != 5) /* IP has options */ 8311 return -1; 8312 8313 /* If we see CE codepoint in IP header, packet is not mergeable */ 8314 if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) 8315 return -1; 8316 8317 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ 8318 if (tcp->urg || tcp->psh || tcp->rst || 8319 tcp->syn || tcp->fin || 8320 tcp->ece || tcp->cwr || !tcp->ack) { 8321 /* 8322 * Currently recognize only the ack control word and 8323 * any other control field being set would result in 8324 * flushing the LRO session 8325 */ 8326 return -1; 8327 } 8328 8329 /* 8330 * Allow only one TCP timestamp option. Don't aggregate if 8331 * any other options are detected. 8332 */ 8333 if (tcp->doff != 5 && tcp->doff != 8) 8334 return -1; 8335 8336 if (tcp->doff == 8) { 8337 ptr = (u8 *)(tcp + 1); 8338 while (*ptr == TCPOPT_NOP) 8339 ptr++; 8340 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) 8341 return -1; 8342 8343 /* Ensure timestamp value increases monotonically */ 8344 if (l_lro) 8345 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) 8346 return -1; 8347 8348 /* timestamp echo reply should be non-zero */ 8349 if (*((__be32 *)(ptr+6)) == 0) 8350 return -1; 8351 } 8352 8353 return 0; 8354 } 8355 8356 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, 8357 u8 **tcp, u32 *tcp_len, struct lro **lro, 8358 struct RxD_t *rxdp, struct s2io_nic *sp) 8359 { 8360 struct iphdr *ip; 8361 struct tcphdr *tcph; 8362 int ret = 0, i; 8363 u16 vlan_tag = 0; 8364 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8365 8366 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, 8367 rxdp, sp); 8368 if (ret) 8369 return ret; 8370 8371 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); 8372 8373 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); 8374 tcph = (struct tcphdr *)*tcp; 8375 *tcp_len = get_l4_pyld_length(ip, tcph); 8376 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8377 struct lro *l_lro = &ring_data->lro0_n[i]; 8378 if (l_lro->in_use) { 8379 if (check_for_socket_match(l_lro, ip, tcph)) 8380 continue; 8381 /* Sock pair matched */ 8382 *lro = l_lro; 8383 8384 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { 8385 DBG_PRINT(INFO_DBG, "%s: Out of sequence. " 8386 "expected 0x%x, actual 0x%x\n", 8387 __func__, 8388 (*lro)->tcp_next_seq, 8389 ntohl(tcph->seq)); 8390 8391 swstats->outof_sequence_pkts++; 8392 ret = 2; 8393 break; 8394 } 8395 8396 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, 8397 *tcp_len)) 8398 ret = 1; /* Aggregate */ 8399 else 8400 ret = 2; /* Flush both */ 8401 break; 8402 } 8403 } 8404 8405 if (ret == 0) { 8406 /* Before searching for available LRO objects, 8407 * check if the pkt is L3/L4 aggregatable. If not 8408 * don't create new LRO session. Just send this 8409 * packet up. 8410 */ 8411 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) 8412 return 5; 8413 8414 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8415 struct lro *l_lro = &ring_data->lro0_n[i]; 8416 if (!(l_lro->in_use)) { 8417 *lro = l_lro; 8418 ret = 3; /* Begin anew */ 8419 break; 8420 } 8421 } 8422 } 8423 8424 if (ret == 0) { /* sessions exceeded */ 8425 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", 8426 __func__); 8427 *lro = NULL; 8428 return ret; 8429 } 8430 8431 switch (ret) { 8432 case 3: 8433 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, 8434 vlan_tag); 8435 break; 8436 case 2: 8437 update_L3L4_header(sp, *lro); 8438 break; 8439 case 1: 8440 aggregate_new_rx(*lro, ip, tcph, *tcp_len); 8441 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { 8442 update_L3L4_header(sp, *lro); 8443 ret = 4; /* Flush the LRO */ 8444 } 8445 break; 8446 default: 8447 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); 8448 break; 8449 } 8450 8451 return ret; 8452 } 8453 8454 static void clear_lro_session(struct lro *lro) 8455 { 8456 static u16 lro_struct_size = sizeof(struct lro); 8457 8458 memset(lro, 0, lro_struct_size); 8459 } 8460 8461 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) 8462 { 8463 struct net_device *dev = skb->dev; 8464 struct s2io_nic *sp = netdev_priv(dev); 8465 8466 skb->protocol = eth_type_trans(skb, dev); 8467 if (vlan_tag && sp->vlan_strip_flag) 8468 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 8469 if (sp->config.napi) 8470 netif_receive_skb(skb); 8471 else 8472 netif_rx(skb); 8473 } 8474 8475 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, 8476 struct sk_buff *skb, u32 tcp_len) 8477 { 8478 struct sk_buff *first = lro->parent; 8479 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8480 8481 first->len += tcp_len; 8482 first->data_len = lro->frags_len; 8483 skb_pull(skb, (skb->len - tcp_len)); 8484 if (skb_shinfo(first)->frag_list) 8485 lro->last_frag->next = skb; 8486 else 8487 skb_shinfo(first)->frag_list = skb; 8488 first->truesize += skb->truesize; 8489 lro->last_frag = skb; 8490 swstats->clubbed_frms_cnt++; 8491 } 8492 8493 /** 8494 * s2io_io_error_detected - called when PCI error is detected 8495 * @pdev: Pointer to PCI device 8496 * @state: The current pci connection state 8497 * 8498 * This function is called after a PCI bus error affecting 8499 * this device has been detected. 8500 */ 8501 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, 8502 pci_channel_state_t state) 8503 { 8504 struct net_device *netdev = pci_get_drvdata(pdev); 8505 struct s2io_nic *sp = netdev_priv(netdev); 8506 8507 netif_device_detach(netdev); 8508 8509 if (state == pci_channel_io_perm_failure) 8510 return PCI_ERS_RESULT_DISCONNECT; 8511 8512 if (netif_running(netdev)) { 8513 /* Bring down the card, while avoiding PCI I/O */ 8514 do_s2io_card_down(sp, 0); 8515 } 8516 pci_disable_device(pdev); 8517 8518 return PCI_ERS_RESULT_NEED_RESET; 8519 } 8520 8521 /** 8522 * s2io_io_slot_reset - called after the pci bus has been reset. 8523 * @pdev: Pointer to PCI device 8524 * 8525 * Restart the card from scratch, as if from a cold-boot. 8526 * At this point, the card has experienced a hard reset, 8527 * followed by fixups by BIOS, and has its config space 8528 * set up identically to what it was at cold boot. 8529 */ 8530 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) 8531 { 8532 struct net_device *netdev = pci_get_drvdata(pdev); 8533 struct s2io_nic *sp = netdev_priv(netdev); 8534 8535 if (pci_enable_device(pdev)) { 8536 pr_err("Cannot re-enable PCI device after reset.\n"); 8537 return PCI_ERS_RESULT_DISCONNECT; 8538 } 8539 8540 pci_set_master(pdev); 8541 s2io_reset(sp); 8542 8543 return PCI_ERS_RESULT_RECOVERED; 8544 } 8545 8546 /** 8547 * s2io_io_resume - called when traffic can start flowing again. 8548 * @pdev: Pointer to PCI device 8549 * 8550 * This callback is called when the error recovery driver tells 8551 * us that its OK to resume normal operation. 8552 */ 8553 static void s2io_io_resume(struct pci_dev *pdev) 8554 { 8555 struct net_device *netdev = pci_get_drvdata(pdev); 8556 struct s2io_nic *sp = netdev_priv(netdev); 8557 8558 if (netif_running(netdev)) { 8559 if (s2io_card_up(sp)) { 8560 pr_err("Can't bring device back up after reset.\n"); 8561 return; 8562 } 8563 8564 if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) { 8565 s2io_card_down(sp); 8566 pr_err("Can't restore mac addr after reset.\n"); 8567 return; 8568 } 8569 } 8570 8571 netif_device_attach(netdev); 8572 netif_tx_wake_all_queues(netdev); 8573 } 8574