xref: /linux/drivers/net/ethernet/neterion/s2io.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
84 
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87 
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91 
92 #define DRV_VERSION "2.0.26.28"
93 
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97 
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100 
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 	int ret;
104 
105 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 
108 	return ret;
109 }
110 
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
117 	(dev_type == XFRAME_I_DEVICE) ?					\
118 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
119 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128 
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 	"Register test\t(offline)",
132 	"Eeprom test\t(offline)",
133 	"Link test\t(online)",
134 	"RLDRAM test\t(offline)",
135 	"BIST Test\t(offline)"
136 };
137 
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 	{"tmac_frms"},
140 	{"tmac_data_octets"},
141 	{"tmac_drop_frms"},
142 	{"tmac_mcst_frms"},
143 	{"tmac_bcst_frms"},
144 	{"tmac_pause_ctrl_frms"},
145 	{"tmac_ttl_octets"},
146 	{"tmac_ucst_frms"},
147 	{"tmac_nucst_frms"},
148 	{"tmac_any_err_frms"},
149 	{"tmac_ttl_less_fb_octets"},
150 	{"tmac_vld_ip_octets"},
151 	{"tmac_vld_ip"},
152 	{"tmac_drop_ip"},
153 	{"tmac_icmp"},
154 	{"tmac_rst_tcp"},
155 	{"tmac_tcp"},
156 	{"tmac_udp"},
157 	{"rmac_vld_frms"},
158 	{"rmac_data_octets"},
159 	{"rmac_fcs_err_frms"},
160 	{"rmac_drop_frms"},
161 	{"rmac_vld_mcst_frms"},
162 	{"rmac_vld_bcst_frms"},
163 	{"rmac_in_rng_len_err_frms"},
164 	{"rmac_out_rng_len_err_frms"},
165 	{"rmac_long_frms"},
166 	{"rmac_pause_ctrl_frms"},
167 	{"rmac_unsup_ctrl_frms"},
168 	{"rmac_ttl_octets"},
169 	{"rmac_accepted_ucst_frms"},
170 	{"rmac_accepted_nucst_frms"},
171 	{"rmac_discarded_frms"},
172 	{"rmac_drop_events"},
173 	{"rmac_ttl_less_fb_octets"},
174 	{"rmac_ttl_frms"},
175 	{"rmac_usized_frms"},
176 	{"rmac_osized_frms"},
177 	{"rmac_frag_frms"},
178 	{"rmac_jabber_frms"},
179 	{"rmac_ttl_64_frms"},
180 	{"rmac_ttl_65_127_frms"},
181 	{"rmac_ttl_128_255_frms"},
182 	{"rmac_ttl_256_511_frms"},
183 	{"rmac_ttl_512_1023_frms"},
184 	{"rmac_ttl_1024_1518_frms"},
185 	{"rmac_ip"},
186 	{"rmac_ip_octets"},
187 	{"rmac_hdr_err_ip"},
188 	{"rmac_drop_ip"},
189 	{"rmac_icmp"},
190 	{"rmac_tcp"},
191 	{"rmac_udp"},
192 	{"rmac_err_drp_udp"},
193 	{"rmac_xgmii_err_sym"},
194 	{"rmac_frms_q0"},
195 	{"rmac_frms_q1"},
196 	{"rmac_frms_q2"},
197 	{"rmac_frms_q3"},
198 	{"rmac_frms_q4"},
199 	{"rmac_frms_q5"},
200 	{"rmac_frms_q6"},
201 	{"rmac_frms_q7"},
202 	{"rmac_full_q0"},
203 	{"rmac_full_q1"},
204 	{"rmac_full_q2"},
205 	{"rmac_full_q3"},
206 	{"rmac_full_q4"},
207 	{"rmac_full_q5"},
208 	{"rmac_full_q6"},
209 	{"rmac_full_q7"},
210 	{"rmac_pause_cnt"},
211 	{"rmac_xgmii_data_err_cnt"},
212 	{"rmac_xgmii_ctrl_err_cnt"},
213 	{"rmac_accepted_ip"},
214 	{"rmac_err_tcp"},
215 	{"rd_req_cnt"},
216 	{"new_rd_req_cnt"},
217 	{"new_rd_req_rtry_cnt"},
218 	{"rd_rtry_cnt"},
219 	{"wr_rtry_rd_ack_cnt"},
220 	{"wr_req_cnt"},
221 	{"new_wr_req_cnt"},
222 	{"new_wr_req_rtry_cnt"},
223 	{"wr_rtry_cnt"},
224 	{"wr_disc_cnt"},
225 	{"rd_rtry_wr_ack_cnt"},
226 	{"txp_wr_cnt"},
227 	{"txd_rd_cnt"},
228 	{"txd_wr_cnt"},
229 	{"rxd_rd_cnt"},
230 	{"rxd_wr_cnt"},
231 	{"txf_rd_cnt"},
232 	{"rxf_wr_cnt"}
233 };
234 
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 	{"rmac_ttl_1519_4095_frms"},
237 	{"rmac_ttl_4096_8191_frms"},
238 	{"rmac_ttl_8192_max_frms"},
239 	{"rmac_ttl_gt_max_frms"},
240 	{"rmac_osized_alt_frms"},
241 	{"rmac_jabber_alt_frms"},
242 	{"rmac_gt_max_alt_frms"},
243 	{"rmac_vlan_frms"},
244 	{"rmac_len_discard"},
245 	{"rmac_fcs_discard"},
246 	{"rmac_pf_discard"},
247 	{"rmac_da_discard"},
248 	{"rmac_red_discard"},
249 	{"rmac_rts_discard"},
250 	{"rmac_ingm_full_discard"},
251 	{"link_fault_cnt"}
252 };
253 
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 	{"\n DRIVER STATISTICS"},
256 	{"single_bit_ecc_errs"},
257 	{"double_bit_ecc_errs"},
258 	{"parity_err_cnt"},
259 	{"serious_err_cnt"},
260 	{"soft_reset_cnt"},
261 	{"fifo_full_cnt"},
262 	{"ring_0_full_cnt"},
263 	{"ring_1_full_cnt"},
264 	{"ring_2_full_cnt"},
265 	{"ring_3_full_cnt"},
266 	{"ring_4_full_cnt"},
267 	{"ring_5_full_cnt"},
268 	{"ring_6_full_cnt"},
269 	{"ring_7_full_cnt"},
270 	{"alarm_transceiver_temp_high"},
271 	{"alarm_transceiver_temp_low"},
272 	{"alarm_laser_bias_current_high"},
273 	{"alarm_laser_bias_current_low"},
274 	{"alarm_laser_output_power_high"},
275 	{"alarm_laser_output_power_low"},
276 	{"warn_transceiver_temp_high"},
277 	{"warn_transceiver_temp_low"},
278 	{"warn_laser_bias_current_high"},
279 	{"warn_laser_bias_current_low"},
280 	{"warn_laser_output_power_high"},
281 	{"warn_laser_output_power_low"},
282 	{"lro_aggregated_pkts"},
283 	{"lro_flush_both_count"},
284 	{"lro_out_of_sequence_pkts"},
285 	{"lro_flush_due_to_max_pkts"},
286 	{"lro_avg_aggr_pkts"},
287 	{"mem_alloc_fail_cnt"},
288 	{"pci_map_fail_cnt"},
289 	{"watchdog_timer_cnt"},
290 	{"mem_allocated"},
291 	{"mem_freed"},
292 	{"link_up_cnt"},
293 	{"link_down_cnt"},
294 	{"link_up_time"},
295 	{"link_down_time"},
296 	{"tx_tcode_buf_abort_cnt"},
297 	{"tx_tcode_desc_abort_cnt"},
298 	{"tx_tcode_parity_err_cnt"},
299 	{"tx_tcode_link_loss_cnt"},
300 	{"tx_tcode_list_proc_err_cnt"},
301 	{"rx_tcode_parity_err_cnt"},
302 	{"rx_tcode_abort_cnt"},
303 	{"rx_tcode_parity_abort_cnt"},
304 	{"rx_tcode_rda_fail_cnt"},
305 	{"rx_tcode_unkn_prot_cnt"},
306 	{"rx_tcode_fcs_err_cnt"},
307 	{"rx_tcode_buf_size_err_cnt"},
308 	{"rx_tcode_rxd_corrupt_cnt"},
309 	{"rx_tcode_unkn_err_cnt"},
310 	{"tda_err_cnt"},
311 	{"pfc_err_cnt"},
312 	{"pcc_err_cnt"},
313 	{"tti_err_cnt"},
314 	{"tpa_err_cnt"},
315 	{"sm_err_cnt"},
316 	{"lso_err_cnt"},
317 	{"mac_tmac_err_cnt"},
318 	{"mac_rmac_err_cnt"},
319 	{"xgxs_txgxs_err_cnt"},
320 	{"xgxs_rxgxs_err_cnt"},
321 	{"rc_err_cnt"},
322 	{"prc_pcix_err_cnt"},
323 	{"rpa_err_cnt"},
324 	{"rda_err_cnt"},
325 	{"rti_err_cnt"},
326 	{"mc_err_cnt"}
327 };
328 
329 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
332 
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 
339 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
343 	init_timer(&timer);				\
344 	timer.function = handle;			\
345 	timer.data = (unsigned long)arg;		\
346 	mod_timer(&timer, (jiffies + exp))		\
347 
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358 
359 /*
360  * Constants to be programmed into the Xena's registers, to configure
361  * the XAUI.
362  */
363 
364 #define	END_SIGN	0x0
365 static const u64 herc_act_dtx_cfg[] = {
366 	/* Set address */
367 	0x8000051536750000ULL, 0x80000515367500E0ULL,
368 	/* Write data */
369 	0x8000051536750004ULL, 0x80000515367500E4ULL,
370 	/* Set address */
371 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 	/* Write data */
373 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 	/* Set address */
375 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 	/* Write data */
377 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 	/* Set address */
379 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 	/* Write data */
381 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 	/* Done */
383 	END_SIGN
384 };
385 
386 static const u64 xena_dtx_cfg[] = {
387 	/* Set address */
388 	0x8000051500000000ULL, 0x80000515000000E0ULL,
389 	/* Write data */
390 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 	/* Set address */
392 	0x8001051500000000ULL, 0x80010515000000E0ULL,
393 	/* Write data */
394 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 	/* Set address */
396 	0x8002051500000000ULL, 0x80020515000000E0ULL,
397 	/* Write data */
398 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399 	END_SIGN
400 };
401 
402 /*
403  * Constants for Fixing the MacAddress problem seen mostly on
404  * Alpha machines.
405  */
406 static const u64 fix_mac[] = {
407 	0x0060000000000000ULL, 0x0060600000000000ULL,
408 	0x0040600000000000ULL, 0x0000600000000000ULL,
409 	0x0020600000000000ULL, 0x0060600000000000ULL,
410 	0x0020600000000000ULL, 0x0060600000000000ULL,
411 	0x0020600000000000ULL, 0x0060600000000000ULL,
412 	0x0020600000000000ULL, 0x0060600000000000ULL,
413 	0x0020600000000000ULL, 0x0060600000000000ULL,
414 	0x0020600000000000ULL, 0x0060600000000000ULL,
415 	0x0020600000000000ULL, 0x0060600000000000ULL,
416 	0x0020600000000000ULL, 0x0060600000000000ULL,
417 	0x0020600000000000ULL, 0x0060600000000000ULL,
418 	0x0020600000000000ULL, 0x0060600000000000ULL,
419 	0x0020600000000000ULL, 0x0000600000000000ULL,
420 	0x0040600000000000ULL, 0x0060600000000000ULL,
421 	END_SIGN
422 };
423 
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426 
427 
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448 
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450  * aggregation happens until we hit max IP pkt size(64K)
451  */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454 
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458 
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465 
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469 
470 /*
471  * S2IO device table.
472  * This table lists all the devices that this driver supports.
473  */
474 static const struct pci_device_id s2io_tbl[] = {
475 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 	 PCI_ANY_ID, PCI_ANY_ID},
477 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 	 PCI_ANY_ID, PCI_ANY_ID},
479 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480 	 PCI_ANY_ID, PCI_ANY_ID},
481 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 	 PCI_ANY_ID, PCI_ANY_ID},
483 	{0,}
484 };
485 
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487 
488 static const struct pci_error_handlers s2io_err_handler = {
489 	.error_detected = s2io_io_error_detected,
490 	.slot_reset = s2io_io_slot_reset,
491 	.resume = s2io_io_resume,
492 };
493 
494 static struct pci_driver s2io_driver = {
495 	.name = "S2IO",
496 	.id_table = s2io_tbl,
497 	.probe = s2io_init_nic,
498 	.remove = s2io_rem_nic,
499 	.err_handler = &s2io_err_handler,
500 };
501 
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504 
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508 	if (!sp->config.multiq) {
509 		int i;
510 
511 		for (i = 0; i < sp->config.tx_fifo_num; i++)
512 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513 	}
514 	netif_tx_stop_all_queues(sp->dev);
515 }
516 
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519 	if (!sp->config.multiq)
520 		sp->mac_control.fifos[fifo_no].queue_state =
521 			FIFO_QUEUE_STOP;
522 
523 	netif_tx_stop_all_queues(sp->dev);
524 }
525 
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528 	if (!sp->config.multiq) {
529 		int i;
530 
531 		for (i = 0; i < sp->config.tx_fifo_num; i++)
532 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533 	}
534 	netif_tx_start_all_queues(sp->dev);
535 }
536 
537 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
538 {
539 	if (!sp->config.multiq) {
540 		int i;
541 
542 		for (i = 0; i < sp->config.tx_fifo_num; i++)
543 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
544 	}
545 	netif_tx_wake_all_queues(sp->dev);
546 }
547 
548 static inline void s2io_wake_tx_queue(
549 	struct fifo_info *fifo, int cnt, u8 multiq)
550 {
551 
552 	if (multiq) {
553 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
554 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
555 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
556 		if (netif_queue_stopped(fifo->dev)) {
557 			fifo->queue_state = FIFO_QUEUE_START;
558 			netif_wake_queue(fifo->dev);
559 		}
560 	}
561 }
562 
563 /**
564  * init_shared_mem - Allocation and Initialization of Memory
565  * @nic: Device private variable.
566  * Description: The function allocates all the memory areas shared
567  * between the NIC and the driver. This includes Tx descriptors,
568  * Rx descriptors and the statistics block.
569  */
570 
571 static int init_shared_mem(struct s2io_nic *nic)
572 {
573 	u32 size;
574 	void *tmp_v_addr, *tmp_v_addr_next;
575 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
576 	struct RxD_block *pre_rxd_blk = NULL;
577 	int i, j, blk_cnt;
578 	int lst_size, lst_per_page;
579 	struct net_device *dev = nic->dev;
580 	unsigned long tmp;
581 	struct buffAdd *ba;
582 	struct config_param *config = &nic->config;
583 	struct mac_info *mac_control = &nic->mac_control;
584 	unsigned long long mem_allocated = 0;
585 
586 	/* Allocation and initialization of TXDLs in FIFOs */
587 	size = 0;
588 	for (i = 0; i < config->tx_fifo_num; i++) {
589 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
590 
591 		size += tx_cfg->fifo_len;
592 	}
593 	if (size > MAX_AVAILABLE_TXDS) {
594 		DBG_PRINT(ERR_DBG,
595 			  "Too many TxDs requested: %d, max supported: %d\n",
596 			  size, MAX_AVAILABLE_TXDS);
597 		return -EINVAL;
598 	}
599 
600 	size = 0;
601 	for (i = 0; i < config->tx_fifo_num; i++) {
602 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
603 
604 		size = tx_cfg->fifo_len;
605 		/*
606 		 * Legal values are from 2 to 8192
607 		 */
608 		if (size < 2) {
609 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
610 				  "Valid lengths are 2 through 8192\n",
611 				  i, size);
612 			return -EINVAL;
613 		}
614 	}
615 
616 	lst_size = (sizeof(struct TxD) * config->max_txds);
617 	lst_per_page = PAGE_SIZE / lst_size;
618 
619 	for (i = 0; i < config->tx_fifo_num; i++) {
620 		struct fifo_info *fifo = &mac_control->fifos[i];
621 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
622 		int fifo_len = tx_cfg->fifo_len;
623 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
624 
625 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
626 		if (!fifo->list_info) {
627 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
628 			return -ENOMEM;
629 		}
630 		mem_allocated += list_holder_size;
631 	}
632 	for (i = 0; i < config->tx_fifo_num; i++) {
633 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
634 						lst_per_page);
635 		struct fifo_info *fifo = &mac_control->fifos[i];
636 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
637 
638 		fifo->tx_curr_put_info.offset = 0;
639 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
640 		fifo->tx_curr_get_info.offset = 0;
641 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
642 		fifo->fifo_no = i;
643 		fifo->nic = nic;
644 		fifo->max_txds = MAX_SKB_FRAGS + 2;
645 		fifo->dev = dev;
646 
647 		for (j = 0; j < page_num; j++) {
648 			int k = 0;
649 			dma_addr_t tmp_p;
650 			void *tmp_v;
651 			tmp_v = pci_alloc_consistent(nic->pdev,
652 						     PAGE_SIZE, &tmp_p);
653 			if (!tmp_v) {
654 				DBG_PRINT(INFO_DBG,
655 					  "pci_alloc_consistent failed for TxDL\n");
656 				return -ENOMEM;
657 			}
658 			/* If we got a zero DMA address(can happen on
659 			 * certain platforms like PPC), reallocate.
660 			 * Store virtual address of page we don't want,
661 			 * to be freed later.
662 			 */
663 			if (!tmp_p) {
664 				mac_control->zerodma_virt_addr = tmp_v;
665 				DBG_PRINT(INIT_DBG,
666 					  "%s: Zero DMA address for TxDL. "
667 					  "Virtual address %p\n",
668 					  dev->name, tmp_v);
669 				tmp_v = pci_alloc_consistent(nic->pdev,
670 							     PAGE_SIZE, &tmp_p);
671 				if (!tmp_v) {
672 					DBG_PRINT(INFO_DBG,
673 						  "pci_alloc_consistent failed for TxDL\n");
674 					return -ENOMEM;
675 				}
676 				mem_allocated += PAGE_SIZE;
677 			}
678 			while (k < lst_per_page) {
679 				int l = (j * lst_per_page) + k;
680 				if (l == tx_cfg->fifo_len)
681 					break;
682 				fifo->list_info[l].list_virt_addr =
683 					tmp_v + (k * lst_size);
684 				fifo->list_info[l].list_phy_addr =
685 					tmp_p + (k * lst_size);
686 				k++;
687 			}
688 		}
689 	}
690 
691 	for (i = 0; i < config->tx_fifo_num; i++) {
692 		struct fifo_info *fifo = &mac_control->fifos[i];
693 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
694 
695 		size = tx_cfg->fifo_len;
696 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
697 		if (!fifo->ufo_in_band_v)
698 			return -ENOMEM;
699 		mem_allocated += (size * sizeof(u64));
700 	}
701 
702 	/* Allocation and initialization of RXDs in Rings */
703 	size = 0;
704 	for (i = 0; i < config->rx_ring_num; i++) {
705 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
706 		struct ring_info *ring = &mac_control->rings[i];
707 
708 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
709 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
710 				  "multiple of RxDs per Block\n",
711 				  dev->name, i);
712 			return FAILURE;
713 		}
714 		size += rx_cfg->num_rxd;
715 		ring->block_count = rx_cfg->num_rxd /
716 			(rxd_count[nic->rxd_mode] + 1);
717 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
718 	}
719 	if (nic->rxd_mode == RXD_MODE_1)
720 		size = (size * (sizeof(struct RxD1)));
721 	else
722 		size = (size * (sizeof(struct RxD3)));
723 
724 	for (i = 0; i < config->rx_ring_num; i++) {
725 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
726 		struct ring_info *ring = &mac_control->rings[i];
727 
728 		ring->rx_curr_get_info.block_index = 0;
729 		ring->rx_curr_get_info.offset = 0;
730 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
731 		ring->rx_curr_put_info.block_index = 0;
732 		ring->rx_curr_put_info.offset = 0;
733 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
734 		ring->nic = nic;
735 		ring->ring_no = i;
736 
737 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
738 		/*  Allocating all the Rx blocks */
739 		for (j = 0; j < blk_cnt; j++) {
740 			struct rx_block_info *rx_blocks;
741 			int l;
742 
743 			rx_blocks = &ring->rx_blocks[j];
744 			size = SIZE_OF_BLOCK;	/* size is always page size */
745 			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
746 							  &tmp_p_addr);
747 			if (tmp_v_addr == NULL) {
748 				/*
749 				 * In case of failure, free_shared_mem()
750 				 * is called, which should free any
751 				 * memory that was alloced till the
752 				 * failure happened.
753 				 */
754 				rx_blocks->block_virt_addr = tmp_v_addr;
755 				return -ENOMEM;
756 			}
757 			mem_allocated += size;
758 			memset(tmp_v_addr, 0, size);
759 
760 			size = sizeof(struct rxd_info) *
761 				rxd_count[nic->rxd_mode];
762 			rx_blocks->block_virt_addr = tmp_v_addr;
763 			rx_blocks->block_dma_addr = tmp_p_addr;
764 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
765 			if (!rx_blocks->rxds)
766 				return -ENOMEM;
767 			mem_allocated += size;
768 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
769 				rx_blocks->rxds[l].virt_addr =
770 					rx_blocks->block_virt_addr +
771 					(rxd_size[nic->rxd_mode] * l);
772 				rx_blocks->rxds[l].dma_addr =
773 					rx_blocks->block_dma_addr +
774 					(rxd_size[nic->rxd_mode] * l);
775 			}
776 		}
777 		/* Interlinking all Rx Blocks */
778 		for (j = 0; j < blk_cnt; j++) {
779 			int next = (j + 1) % blk_cnt;
780 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
781 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
782 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
783 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
784 
785 			pre_rxd_blk = tmp_v_addr;
786 			pre_rxd_blk->reserved_2_pNext_RxD_block =
787 				(unsigned long)tmp_v_addr_next;
788 			pre_rxd_blk->pNext_RxD_Blk_physical =
789 				(u64)tmp_p_addr_next;
790 		}
791 	}
792 	if (nic->rxd_mode == RXD_MODE_3B) {
793 		/*
794 		 * Allocation of Storages for buffer addresses in 2BUFF mode
795 		 * and the buffers as well.
796 		 */
797 		for (i = 0; i < config->rx_ring_num; i++) {
798 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
799 			struct ring_info *ring = &mac_control->rings[i];
800 
801 			blk_cnt = rx_cfg->num_rxd /
802 				(rxd_count[nic->rxd_mode] + 1);
803 			size = sizeof(struct buffAdd *) * blk_cnt;
804 			ring->ba = kmalloc(size, GFP_KERNEL);
805 			if (!ring->ba)
806 				return -ENOMEM;
807 			mem_allocated += size;
808 			for (j = 0; j < blk_cnt; j++) {
809 				int k = 0;
810 
811 				size = sizeof(struct buffAdd) *
812 					(rxd_count[nic->rxd_mode] + 1);
813 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
814 				if (!ring->ba[j])
815 					return -ENOMEM;
816 				mem_allocated += size;
817 				while (k != rxd_count[nic->rxd_mode]) {
818 					ba = &ring->ba[j][k];
819 					size = BUF0_LEN + ALIGN_SIZE;
820 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
821 					if (!ba->ba_0_org)
822 						return -ENOMEM;
823 					mem_allocated += size;
824 					tmp = (unsigned long)ba->ba_0_org;
825 					tmp += ALIGN_SIZE;
826 					tmp &= ~((unsigned long)ALIGN_SIZE);
827 					ba->ba_0 = (void *)tmp;
828 
829 					size = BUF1_LEN + ALIGN_SIZE;
830 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
831 					if (!ba->ba_1_org)
832 						return -ENOMEM;
833 					mem_allocated += size;
834 					tmp = (unsigned long)ba->ba_1_org;
835 					tmp += ALIGN_SIZE;
836 					tmp &= ~((unsigned long)ALIGN_SIZE);
837 					ba->ba_1 = (void *)tmp;
838 					k++;
839 				}
840 			}
841 		}
842 	}
843 
844 	/* Allocation and initialization of Statistics block */
845 	size = sizeof(struct stat_block);
846 	mac_control->stats_mem =
847 		pci_alloc_consistent(nic->pdev, size,
848 				     &mac_control->stats_mem_phy);
849 
850 	if (!mac_control->stats_mem) {
851 		/*
852 		 * In case of failure, free_shared_mem() is called, which
853 		 * should free any memory that was alloced till the
854 		 * failure happened.
855 		 */
856 		return -ENOMEM;
857 	}
858 	mem_allocated += size;
859 	mac_control->stats_mem_sz = size;
860 
861 	tmp_v_addr = mac_control->stats_mem;
862 	mac_control->stats_info = tmp_v_addr;
863 	memset(tmp_v_addr, 0, size);
864 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
865 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
866 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
867 	return SUCCESS;
868 }
869 
870 /**
871  * free_shared_mem - Free the allocated Memory
872  * @nic:  Device private variable.
873  * Description: This function is to free all memory locations allocated by
874  * the init_shared_mem() function and return it to the kernel.
875  */
876 
877 static void free_shared_mem(struct s2io_nic *nic)
878 {
879 	int i, j, blk_cnt, size;
880 	void *tmp_v_addr;
881 	dma_addr_t tmp_p_addr;
882 	int lst_size, lst_per_page;
883 	struct net_device *dev;
884 	int page_num = 0;
885 	struct config_param *config;
886 	struct mac_info *mac_control;
887 	struct stat_block *stats;
888 	struct swStat *swstats;
889 
890 	if (!nic)
891 		return;
892 
893 	dev = nic->dev;
894 
895 	config = &nic->config;
896 	mac_control = &nic->mac_control;
897 	stats = mac_control->stats_info;
898 	swstats = &stats->sw_stat;
899 
900 	lst_size = sizeof(struct TxD) * config->max_txds;
901 	lst_per_page = PAGE_SIZE / lst_size;
902 
903 	for (i = 0; i < config->tx_fifo_num; i++) {
904 		struct fifo_info *fifo = &mac_control->fifos[i];
905 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
906 
907 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
908 		for (j = 0; j < page_num; j++) {
909 			int mem_blks = (j * lst_per_page);
910 			struct list_info_hold *fli;
911 
912 			if (!fifo->list_info)
913 				return;
914 
915 			fli = &fifo->list_info[mem_blks];
916 			if (!fli->list_virt_addr)
917 				break;
918 			pci_free_consistent(nic->pdev, PAGE_SIZE,
919 					    fli->list_virt_addr,
920 					    fli->list_phy_addr);
921 			swstats->mem_freed += PAGE_SIZE;
922 		}
923 		/* If we got a zero DMA address during allocation,
924 		 * free the page now
925 		 */
926 		if (mac_control->zerodma_virt_addr) {
927 			pci_free_consistent(nic->pdev, PAGE_SIZE,
928 					    mac_control->zerodma_virt_addr,
929 					    (dma_addr_t)0);
930 			DBG_PRINT(INIT_DBG,
931 				  "%s: Freeing TxDL with zero DMA address. "
932 				  "Virtual address %p\n",
933 				  dev->name, mac_control->zerodma_virt_addr);
934 			swstats->mem_freed += PAGE_SIZE;
935 		}
936 		kfree(fifo->list_info);
937 		swstats->mem_freed += tx_cfg->fifo_len *
938 			sizeof(struct list_info_hold);
939 	}
940 
941 	size = SIZE_OF_BLOCK;
942 	for (i = 0; i < config->rx_ring_num; i++) {
943 		struct ring_info *ring = &mac_control->rings[i];
944 
945 		blk_cnt = ring->block_count;
946 		for (j = 0; j < blk_cnt; j++) {
947 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
948 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
949 			if (tmp_v_addr == NULL)
950 				break;
951 			pci_free_consistent(nic->pdev, size,
952 					    tmp_v_addr, tmp_p_addr);
953 			swstats->mem_freed += size;
954 			kfree(ring->rx_blocks[j].rxds);
955 			swstats->mem_freed += sizeof(struct rxd_info) *
956 				rxd_count[nic->rxd_mode];
957 		}
958 	}
959 
960 	if (nic->rxd_mode == RXD_MODE_3B) {
961 		/* Freeing buffer storage addresses in 2BUFF mode. */
962 		for (i = 0; i < config->rx_ring_num; i++) {
963 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
964 			struct ring_info *ring = &mac_control->rings[i];
965 
966 			blk_cnt = rx_cfg->num_rxd /
967 				(rxd_count[nic->rxd_mode] + 1);
968 			for (j = 0; j < blk_cnt; j++) {
969 				int k = 0;
970 				if (!ring->ba[j])
971 					continue;
972 				while (k != rxd_count[nic->rxd_mode]) {
973 					struct buffAdd *ba = &ring->ba[j][k];
974 					kfree(ba->ba_0_org);
975 					swstats->mem_freed +=
976 						BUF0_LEN + ALIGN_SIZE;
977 					kfree(ba->ba_1_org);
978 					swstats->mem_freed +=
979 						BUF1_LEN + ALIGN_SIZE;
980 					k++;
981 				}
982 				kfree(ring->ba[j]);
983 				swstats->mem_freed += sizeof(struct buffAdd) *
984 					(rxd_count[nic->rxd_mode] + 1);
985 			}
986 			kfree(ring->ba);
987 			swstats->mem_freed += sizeof(struct buffAdd *) *
988 				blk_cnt;
989 		}
990 	}
991 
992 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
993 		struct fifo_info *fifo = &mac_control->fifos[i];
994 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
995 
996 		if (fifo->ufo_in_band_v) {
997 			swstats->mem_freed += tx_cfg->fifo_len *
998 				sizeof(u64);
999 			kfree(fifo->ufo_in_band_v);
1000 		}
1001 	}
1002 
1003 	if (mac_control->stats_mem) {
1004 		swstats->mem_freed += mac_control->stats_mem_sz;
1005 		pci_free_consistent(nic->pdev,
1006 				    mac_control->stats_mem_sz,
1007 				    mac_control->stats_mem,
1008 				    mac_control->stats_mem_phy);
1009 	}
1010 }
1011 
1012 /**
1013  * s2io_verify_pci_mode -
1014  */
1015 
1016 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1017 {
1018 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1019 	register u64 val64 = 0;
1020 	int     mode;
1021 
1022 	val64 = readq(&bar0->pci_mode);
1023 	mode = (u8)GET_PCI_MODE(val64);
1024 
1025 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1026 		return -1;      /* Unknown PCI mode */
1027 	return mode;
1028 }
1029 
1030 #define NEC_VENID   0x1033
1031 #define NEC_DEVID   0x0125
1032 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1033 {
1034 	struct pci_dev *tdev = NULL;
1035 	for_each_pci_dev(tdev) {
1036 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1037 			if (tdev->bus == s2io_pdev->bus->parent) {
1038 				pci_dev_put(tdev);
1039 				return 1;
1040 			}
1041 		}
1042 	}
1043 	return 0;
1044 }
1045 
1046 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1047 /**
1048  * s2io_print_pci_mode -
1049  */
1050 static int s2io_print_pci_mode(struct s2io_nic *nic)
1051 {
1052 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1053 	register u64 val64 = 0;
1054 	int	mode;
1055 	struct config_param *config = &nic->config;
1056 	const char *pcimode;
1057 
1058 	val64 = readq(&bar0->pci_mode);
1059 	mode = (u8)GET_PCI_MODE(val64);
1060 
1061 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1062 		return -1;	/* Unknown PCI mode */
1063 
1064 	config->bus_speed = bus_speed[mode];
1065 
1066 	if (s2io_on_nec_bridge(nic->pdev)) {
1067 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1068 			  nic->dev->name);
1069 		return mode;
1070 	}
1071 
1072 	switch (mode) {
1073 	case PCI_MODE_PCI_33:
1074 		pcimode = "33MHz PCI bus";
1075 		break;
1076 	case PCI_MODE_PCI_66:
1077 		pcimode = "66MHz PCI bus";
1078 		break;
1079 	case PCI_MODE_PCIX_M1_66:
1080 		pcimode = "66MHz PCIX(M1) bus";
1081 		break;
1082 	case PCI_MODE_PCIX_M1_100:
1083 		pcimode = "100MHz PCIX(M1) bus";
1084 		break;
1085 	case PCI_MODE_PCIX_M1_133:
1086 		pcimode = "133MHz PCIX(M1) bus";
1087 		break;
1088 	case PCI_MODE_PCIX_M2_66:
1089 		pcimode = "133MHz PCIX(M2) bus";
1090 		break;
1091 	case PCI_MODE_PCIX_M2_100:
1092 		pcimode = "200MHz PCIX(M2) bus";
1093 		break;
1094 	case PCI_MODE_PCIX_M2_133:
1095 		pcimode = "266MHz PCIX(M2) bus";
1096 		break;
1097 	default:
1098 		pcimode = "unsupported bus!";
1099 		mode = -1;
1100 	}
1101 
1102 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1103 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1104 
1105 	return mode;
1106 }
1107 
1108 /**
1109  *  init_tti - Initialization transmit traffic interrupt scheme
1110  *  @nic: device private variable
1111  *  @link: link status (UP/DOWN) used to enable/disable continuous
1112  *  transmit interrupts
1113  *  Description: The function configures transmit traffic interrupts
1114  *  Return Value:  SUCCESS on success and
1115  *  '-1' on failure
1116  */
1117 
1118 static int init_tti(struct s2io_nic *nic, int link)
1119 {
1120 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1121 	register u64 val64 = 0;
1122 	int i;
1123 	struct config_param *config = &nic->config;
1124 
1125 	for (i = 0; i < config->tx_fifo_num; i++) {
1126 		/*
1127 		 * TTI Initialization. Default Tx timer gets us about
1128 		 * 250 interrupts per sec. Continuous interrupts are enabled
1129 		 * by default.
1130 		 */
1131 		if (nic->device_type == XFRAME_II_DEVICE) {
1132 			int count = (nic->config.bus_speed * 125)/2;
1133 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1134 		} else
1135 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1136 
1137 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1138 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1139 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1140 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1141 		if (i == 0)
1142 			if (use_continuous_tx_intrs && (link == LINK_UP))
1143 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1144 		writeq(val64, &bar0->tti_data1_mem);
1145 
1146 		if (nic->config.intr_type == MSI_X) {
1147 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1148 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1149 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1150 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1151 		} else {
1152 			if ((nic->config.tx_steering_type ==
1153 			     TX_DEFAULT_STEERING) &&
1154 			    (config->tx_fifo_num > 1) &&
1155 			    (i >= nic->udp_fifo_idx) &&
1156 			    (i < (nic->udp_fifo_idx +
1157 				  nic->total_udp_fifos)))
1158 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1159 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1160 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1161 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1162 			else
1163 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1164 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1165 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1166 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1167 		}
1168 
1169 		writeq(val64, &bar0->tti_data2_mem);
1170 
1171 		val64 = TTI_CMD_MEM_WE |
1172 			TTI_CMD_MEM_STROBE_NEW_CMD |
1173 			TTI_CMD_MEM_OFFSET(i);
1174 		writeq(val64, &bar0->tti_command_mem);
1175 
1176 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1177 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1178 					  S2IO_BIT_RESET) != SUCCESS)
1179 			return FAILURE;
1180 	}
1181 
1182 	return SUCCESS;
1183 }
1184 
1185 /**
1186  *  init_nic - Initialization of hardware
1187  *  @nic: device private variable
1188  *  Description: The function sequentially configures every block
1189  *  of the H/W from their reset values.
1190  *  Return Value:  SUCCESS on success and
1191  *  '-1' on failure (endian settings incorrect).
1192  */
1193 
1194 static int init_nic(struct s2io_nic *nic)
1195 {
1196 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1197 	struct net_device *dev = nic->dev;
1198 	register u64 val64 = 0;
1199 	void __iomem *add;
1200 	u32 time;
1201 	int i, j;
1202 	int dtx_cnt = 0;
1203 	unsigned long long mem_share;
1204 	int mem_size;
1205 	struct config_param *config = &nic->config;
1206 	struct mac_info *mac_control = &nic->mac_control;
1207 
1208 	/* to set the swapper controle on the card */
1209 	if (s2io_set_swapper(nic)) {
1210 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1211 		return -EIO;
1212 	}
1213 
1214 	/*
1215 	 * Herc requires EOI to be removed from reset before XGXS, so..
1216 	 */
1217 	if (nic->device_type & XFRAME_II_DEVICE) {
1218 		val64 = 0xA500000000ULL;
1219 		writeq(val64, &bar0->sw_reset);
1220 		msleep(500);
1221 		val64 = readq(&bar0->sw_reset);
1222 	}
1223 
1224 	/* Remove XGXS from reset state */
1225 	val64 = 0;
1226 	writeq(val64, &bar0->sw_reset);
1227 	msleep(500);
1228 	val64 = readq(&bar0->sw_reset);
1229 
1230 	/* Ensure that it's safe to access registers by checking
1231 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1232 	 */
1233 	if (nic->device_type == XFRAME_II_DEVICE) {
1234 		for (i = 0; i < 50; i++) {
1235 			val64 = readq(&bar0->adapter_status);
1236 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1237 				break;
1238 			msleep(10);
1239 		}
1240 		if (i == 50)
1241 			return -ENODEV;
1242 	}
1243 
1244 	/*  Enable Receiving broadcasts */
1245 	add = &bar0->mac_cfg;
1246 	val64 = readq(&bar0->mac_cfg);
1247 	val64 |= MAC_RMAC_BCAST_ENABLE;
1248 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1249 	writel((u32)val64, add);
1250 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1251 	writel((u32) (val64 >> 32), (add + 4));
1252 
1253 	/* Read registers in all blocks */
1254 	val64 = readq(&bar0->mac_int_mask);
1255 	val64 = readq(&bar0->mc_int_mask);
1256 	val64 = readq(&bar0->xgxs_int_mask);
1257 
1258 	/*  Set MTU */
1259 	val64 = dev->mtu;
1260 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1261 
1262 	if (nic->device_type & XFRAME_II_DEVICE) {
1263 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1264 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1265 					  &bar0->dtx_control, UF);
1266 			if (dtx_cnt & 0x1)
1267 				msleep(1); /* Necessary!! */
1268 			dtx_cnt++;
1269 		}
1270 	} else {
1271 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1272 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1273 					  &bar0->dtx_control, UF);
1274 			val64 = readq(&bar0->dtx_control);
1275 			dtx_cnt++;
1276 		}
1277 	}
1278 
1279 	/*  Tx DMA Initialization */
1280 	val64 = 0;
1281 	writeq(val64, &bar0->tx_fifo_partition_0);
1282 	writeq(val64, &bar0->tx_fifo_partition_1);
1283 	writeq(val64, &bar0->tx_fifo_partition_2);
1284 	writeq(val64, &bar0->tx_fifo_partition_3);
1285 
1286 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1287 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1288 
1289 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1290 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1291 
1292 		if (i == (config->tx_fifo_num - 1)) {
1293 			if (i % 2 == 0)
1294 				i++;
1295 		}
1296 
1297 		switch (i) {
1298 		case 1:
1299 			writeq(val64, &bar0->tx_fifo_partition_0);
1300 			val64 = 0;
1301 			j = 0;
1302 			break;
1303 		case 3:
1304 			writeq(val64, &bar0->tx_fifo_partition_1);
1305 			val64 = 0;
1306 			j = 0;
1307 			break;
1308 		case 5:
1309 			writeq(val64, &bar0->tx_fifo_partition_2);
1310 			val64 = 0;
1311 			j = 0;
1312 			break;
1313 		case 7:
1314 			writeq(val64, &bar0->tx_fifo_partition_3);
1315 			val64 = 0;
1316 			j = 0;
1317 			break;
1318 		default:
1319 			j++;
1320 			break;
1321 		}
1322 	}
1323 
1324 	/*
1325 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1326 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1327 	 */
1328 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1329 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1330 
1331 	val64 = readq(&bar0->tx_fifo_partition_0);
1332 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1333 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1334 
1335 	/*
1336 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1337 	 * integrity checking.
1338 	 */
1339 	val64 = readq(&bar0->tx_pa_cfg);
1340 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1341 		TX_PA_CFG_IGNORE_SNAP_OUI |
1342 		TX_PA_CFG_IGNORE_LLC_CTRL |
1343 		TX_PA_CFG_IGNORE_L2_ERR;
1344 	writeq(val64, &bar0->tx_pa_cfg);
1345 
1346 	/* Rx DMA initialization. */
1347 	val64 = 0;
1348 	for (i = 0; i < config->rx_ring_num; i++) {
1349 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1350 
1351 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1352 	}
1353 	writeq(val64, &bar0->rx_queue_priority);
1354 
1355 	/*
1356 	 * Allocating equal share of memory to all the
1357 	 * configured Rings.
1358 	 */
1359 	val64 = 0;
1360 	if (nic->device_type & XFRAME_II_DEVICE)
1361 		mem_size = 32;
1362 	else
1363 		mem_size = 64;
1364 
1365 	for (i = 0; i < config->rx_ring_num; i++) {
1366 		switch (i) {
1367 		case 0:
1368 			mem_share = (mem_size / config->rx_ring_num +
1369 				     mem_size % config->rx_ring_num);
1370 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1371 			continue;
1372 		case 1:
1373 			mem_share = (mem_size / config->rx_ring_num);
1374 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1375 			continue;
1376 		case 2:
1377 			mem_share = (mem_size / config->rx_ring_num);
1378 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1379 			continue;
1380 		case 3:
1381 			mem_share = (mem_size / config->rx_ring_num);
1382 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1383 			continue;
1384 		case 4:
1385 			mem_share = (mem_size / config->rx_ring_num);
1386 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1387 			continue;
1388 		case 5:
1389 			mem_share = (mem_size / config->rx_ring_num);
1390 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1391 			continue;
1392 		case 6:
1393 			mem_share = (mem_size / config->rx_ring_num);
1394 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1395 			continue;
1396 		case 7:
1397 			mem_share = (mem_size / config->rx_ring_num);
1398 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1399 			continue;
1400 		}
1401 	}
1402 	writeq(val64, &bar0->rx_queue_cfg);
1403 
1404 	/*
1405 	 * Filling Tx round robin registers
1406 	 * as per the number of FIFOs for equal scheduling priority
1407 	 */
1408 	switch (config->tx_fifo_num) {
1409 	case 1:
1410 		val64 = 0x0;
1411 		writeq(val64, &bar0->tx_w_round_robin_0);
1412 		writeq(val64, &bar0->tx_w_round_robin_1);
1413 		writeq(val64, &bar0->tx_w_round_robin_2);
1414 		writeq(val64, &bar0->tx_w_round_robin_3);
1415 		writeq(val64, &bar0->tx_w_round_robin_4);
1416 		break;
1417 	case 2:
1418 		val64 = 0x0001000100010001ULL;
1419 		writeq(val64, &bar0->tx_w_round_robin_0);
1420 		writeq(val64, &bar0->tx_w_round_robin_1);
1421 		writeq(val64, &bar0->tx_w_round_robin_2);
1422 		writeq(val64, &bar0->tx_w_round_robin_3);
1423 		val64 = 0x0001000100000000ULL;
1424 		writeq(val64, &bar0->tx_w_round_robin_4);
1425 		break;
1426 	case 3:
1427 		val64 = 0x0001020001020001ULL;
1428 		writeq(val64, &bar0->tx_w_round_robin_0);
1429 		val64 = 0x0200010200010200ULL;
1430 		writeq(val64, &bar0->tx_w_round_robin_1);
1431 		val64 = 0x0102000102000102ULL;
1432 		writeq(val64, &bar0->tx_w_round_robin_2);
1433 		val64 = 0x0001020001020001ULL;
1434 		writeq(val64, &bar0->tx_w_round_robin_3);
1435 		val64 = 0x0200010200000000ULL;
1436 		writeq(val64, &bar0->tx_w_round_robin_4);
1437 		break;
1438 	case 4:
1439 		val64 = 0x0001020300010203ULL;
1440 		writeq(val64, &bar0->tx_w_round_robin_0);
1441 		writeq(val64, &bar0->tx_w_round_robin_1);
1442 		writeq(val64, &bar0->tx_w_round_robin_2);
1443 		writeq(val64, &bar0->tx_w_round_robin_3);
1444 		val64 = 0x0001020300000000ULL;
1445 		writeq(val64, &bar0->tx_w_round_robin_4);
1446 		break;
1447 	case 5:
1448 		val64 = 0x0001020304000102ULL;
1449 		writeq(val64, &bar0->tx_w_round_robin_0);
1450 		val64 = 0x0304000102030400ULL;
1451 		writeq(val64, &bar0->tx_w_round_robin_1);
1452 		val64 = 0x0102030400010203ULL;
1453 		writeq(val64, &bar0->tx_w_round_robin_2);
1454 		val64 = 0x0400010203040001ULL;
1455 		writeq(val64, &bar0->tx_w_round_robin_3);
1456 		val64 = 0x0203040000000000ULL;
1457 		writeq(val64, &bar0->tx_w_round_robin_4);
1458 		break;
1459 	case 6:
1460 		val64 = 0x0001020304050001ULL;
1461 		writeq(val64, &bar0->tx_w_round_robin_0);
1462 		val64 = 0x0203040500010203ULL;
1463 		writeq(val64, &bar0->tx_w_round_robin_1);
1464 		val64 = 0x0405000102030405ULL;
1465 		writeq(val64, &bar0->tx_w_round_robin_2);
1466 		val64 = 0x0001020304050001ULL;
1467 		writeq(val64, &bar0->tx_w_round_robin_3);
1468 		val64 = 0x0203040500000000ULL;
1469 		writeq(val64, &bar0->tx_w_round_robin_4);
1470 		break;
1471 	case 7:
1472 		val64 = 0x0001020304050600ULL;
1473 		writeq(val64, &bar0->tx_w_round_robin_0);
1474 		val64 = 0x0102030405060001ULL;
1475 		writeq(val64, &bar0->tx_w_round_robin_1);
1476 		val64 = 0x0203040506000102ULL;
1477 		writeq(val64, &bar0->tx_w_round_robin_2);
1478 		val64 = 0x0304050600010203ULL;
1479 		writeq(val64, &bar0->tx_w_round_robin_3);
1480 		val64 = 0x0405060000000000ULL;
1481 		writeq(val64, &bar0->tx_w_round_robin_4);
1482 		break;
1483 	case 8:
1484 		val64 = 0x0001020304050607ULL;
1485 		writeq(val64, &bar0->tx_w_round_robin_0);
1486 		writeq(val64, &bar0->tx_w_round_robin_1);
1487 		writeq(val64, &bar0->tx_w_round_robin_2);
1488 		writeq(val64, &bar0->tx_w_round_robin_3);
1489 		val64 = 0x0001020300000000ULL;
1490 		writeq(val64, &bar0->tx_w_round_robin_4);
1491 		break;
1492 	}
1493 
1494 	/* Enable all configured Tx FIFO partitions */
1495 	val64 = readq(&bar0->tx_fifo_partition_0);
1496 	val64 |= (TX_FIFO_PARTITION_EN);
1497 	writeq(val64, &bar0->tx_fifo_partition_0);
1498 
1499 	/* Filling the Rx round robin registers as per the
1500 	 * number of Rings and steering based on QoS with
1501 	 * equal priority.
1502 	 */
1503 	switch (config->rx_ring_num) {
1504 	case 1:
1505 		val64 = 0x0;
1506 		writeq(val64, &bar0->rx_w_round_robin_0);
1507 		writeq(val64, &bar0->rx_w_round_robin_1);
1508 		writeq(val64, &bar0->rx_w_round_robin_2);
1509 		writeq(val64, &bar0->rx_w_round_robin_3);
1510 		writeq(val64, &bar0->rx_w_round_robin_4);
1511 
1512 		val64 = 0x8080808080808080ULL;
1513 		writeq(val64, &bar0->rts_qos_steering);
1514 		break;
1515 	case 2:
1516 		val64 = 0x0001000100010001ULL;
1517 		writeq(val64, &bar0->rx_w_round_robin_0);
1518 		writeq(val64, &bar0->rx_w_round_robin_1);
1519 		writeq(val64, &bar0->rx_w_round_robin_2);
1520 		writeq(val64, &bar0->rx_w_round_robin_3);
1521 		val64 = 0x0001000100000000ULL;
1522 		writeq(val64, &bar0->rx_w_round_robin_4);
1523 
1524 		val64 = 0x8080808040404040ULL;
1525 		writeq(val64, &bar0->rts_qos_steering);
1526 		break;
1527 	case 3:
1528 		val64 = 0x0001020001020001ULL;
1529 		writeq(val64, &bar0->rx_w_round_robin_0);
1530 		val64 = 0x0200010200010200ULL;
1531 		writeq(val64, &bar0->rx_w_round_robin_1);
1532 		val64 = 0x0102000102000102ULL;
1533 		writeq(val64, &bar0->rx_w_round_robin_2);
1534 		val64 = 0x0001020001020001ULL;
1535 		writeq(val64, &bar0->rx_w_round_robin_3);
1536 		val64 = 0x0200010200000000ULL;
1537 		writeq(val64, &bar0->rx_w_round_robin_4);
1538 
1539 		val64 = 0x8080804040402020ULL;
1540 		writeq(val64, &bar0->rts_qos_steering);
1541 		break;
1542 	case 4:
1543 		val64 = 0x0001020300010203ULL;
1544 		writeq(val64, &bar0->rx_w_round_robin_0);
1545 		writeq(val64, &bar0->rx_w_round_robin_1);
1546 		writeq(val64, &bar0->rx_w_round_robin_2);
1547 		writeq(val64, &bar0->rx_w_round_robin_3);
1548 		val64 = 0x0001020300000000ULL;
1549 		writeq(val64, &bar0->rx_w_round_robin_4);
1550 
1551 		val64 = 0x8080404020201010ULL;
1552 		writeq(val64, &bar0->rts_qos_steering);
1553 		break;
1554 	case 5:
1555 		val64 = 0x0001020304000102ULL;
1556 		writeq(val64, &bar0->rx_w_round_robin_0);
1557 		val64 = 0x0304000102030400ULL;
1558 		writeq(val64, &bar0->rx_w_round_robin_1);
1559 		val64 = 0x0102030400010203ULL;
1560 		writeq(val64, &bar0->rx_w_round_robin_2);
1561 		val64 = 0x0400010203040001ULL;
1562 		writeq(val64, &bar0->rx_w_round_robin_3);
1563 		val64 = 0x0203040000000000ULL;
1564 		writeq(val64, &bar0->rx_w_round_robin_4);
1565 
1566 		val64 = 0x8080404020201008ULL;
1567 		writeq(val64, &bar0->rts_qos_steering);
1568 		break;
1569 	case 6:
1570 		val64 = 0x0001020304050001ULL;
1571 		writeq(val64, &bar0->rx_w_round_robin_0);
1572 		val64 = 0x0203040500010203ULL;
1573 		writeq(val64, &bar0->rx_w_round_robin_1);
1574 		val64 = 0x0405000102030405ULL;
1575 		writeq(val64, &bar0->rx_w_round_robin_2);
1576 		val64 = 0x0001020304050001ULL;
1577 		writeq(val64, &bar0->rx_w_round_robin_3);
1578 		val64 = 0x0203040500000000ULL;
1579 		writeq(val64, &bar0->rx_w_round_robin_4);
1580 
1581 		val64 = 0x8080404020100804ULL;
1582 		writeq(val64, &bar0->rts_qos_steering);
1583 		break;
1584 	case 7:
1585 		val64 = 0x0001020304050600ULL;
1586 		writeq(val64, &bar0->rx_w_round_robin_0);
1587 		val64 = 0x0102030405060001ULL;
1588 		writeq(val64, &bar0->rx_w_round_robin_1);
1589 		val64 = 0x0203040506000102ULL;
1590 		writeq(val64, &bar0->rx_w_round_robin_2);
1591 		val64 = 0x0304050600010203ULL;
1592 		writeq(val64, &bar0->rx_w_round_robin_3);
1593 		val64 = 0x0405060000000000ULL;
1594 		writeq(val64, &bar0->rx_w_round_robin_4);
1595 
1596 		val64 = 0x8080402010080402ULL;
1597 		writeq(val64, &bar0->rts_qos_steering);
1598 		break;
1599 	case 8:
1600 		val64 = 0x0001020304050607ULL;
1601 		writeq(val64, &bar0->rx_w_round_robin_0);
1602 		writeq(val64, &bar0->rx_w_round_robin_1);
1603 		writeq(val64, &bar0->rx_w_round_robin_2);
1604 		writeq(val64, &bar0->rx_w_round_robin_3);
1605 		val64 = 0x0001020300000000ULL;
1606 		writeq(val64, &bar0->rx_w_round_robin_4);
1607 
1608 		val64 = 0x8040201008040201ULL;
1609 		writeq(val64, &bar0->rts_qos_steering);
1610 		break;
1611 	}
1612 
1613 	/* UDP Fix */
1614 	val64 = 0;
1615 	for (i = 0; i < 8; i++)
1616 		writeq(val64, &bar0->rts_frm_len_n[i]);
1617 
1618 	/* Set the default rts frame length for the rings configured */
1619 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1620 	for (i = 0 ; i < config->rx_ring_num ; i++)
1621 		writeq(val64, &bar0->rts_frm_len_n[i]);
1622 
1623 	/* Set the frame length for the configured rings
1624 	 * desired by the user
1625 	 */
1626 	for (i = 0; i < config->rx_ring_num; i++) {
1627 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1628 		 * specified frame length steering.
1629 		 * If the user provides the frame length then program
1630 		 * the rts_frm_len register for those values or else
1631 		 * leave it as it is.
1632 		 */
1633 		if (rts_frm_len[i] != 0) {
1634 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1635 			       &bar0->rts_frm_len_n[i]);
1636 		}
1637 	}
1638 
1639 	/* Disable differentiated services steering logic */
1640 	for (i = 0; i < 64; i++) {
1641 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1642 			DBG_PRINT(ERR_DBG,
1643 				  "%s: rts_ds_steer failed on codepoint %d\n",
1644 				  dev->name, i);
1645 			return -ENODEV;
1646 		}
1647 	}
1648 
1649 	/* Program statistics memory */
1650 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1651 
1652 	if (nic->device_type == XFRAME_II_DEVICE) {
1653 		val64 = STAT_BC(0x320);
1654 		writeq(val64, &bar0->stat_byte_cnt);
1655 	}
1656 
1657 	/*
1658 	 * Initializing the sampling rate for the device to calculate the
1659 	 * bandwidth utilization.
1660 	 */
1661 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1662 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1663 	writeq(val64, &bar0->mac_link_util);
1664 
1665 	/*
1666 	 * Initializing the Transmit and Receive Traffic Interrupt
1667 	 * Scheme.
1668 	 */
1669 
1670 	/* Initialize TTI */
1671 	if (SUCCESS != init_tti(nic, nic->last_link_state))
1672 		return -ENODEV;
1673 
1674 	/* RTI Initialization */
1675 	if (nic->device_type == XFRAME_II_DEVICE) {
1676 		/*
1677 		 * Programmed to generate Apprx 500 Intrs per
1678 		 * second
1679 		 */
1680 		int count = (nic->config.bus_speed * 125)/4;
1681 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1682 	} else
1683 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1684 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1685 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1686 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1687 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1688 
1689 	writeq(val64, &bar0->rti_data1_mem);
1690 
1691 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1692 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1693 	if (nic->config.intr_type == MSI_X)
1694 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1695 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1696 	else
1697 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1698 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1699 	writeq(val64, &bar0->rti_data2_mem);
1700 
1701 	for (i = 0; i < config->rx_ring_num; i++) {
1702 		val64 = RTI_CMD_MEM_WE |
1703 			RTI_CMD_MEM_STROBE_NEW_CMD |
1704 			RTI_CMD_MEM_OFFSET(i);
1705 		writeq(val64, &bar0->rti_command_mem);
1706 
1707 		/*
1708 		 * Once the operation completes, the Strobe bit of the
1709 		 * command register will be reset. We poll for this
1710 		 * particular condition. We wait for a maximum of 500ms
1711 		 * for the operation to complete, if it's not complete
1712 		 * by then we return error.
1713 		 */
1714 		time = 0;
1715 		while (true) {
1716 			val64 = readq(&bar0->rti_command_mem);
1717 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1718 				break;
1719 
1720 			if (time > 10) {
1721 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1722 					  dev->name);
1723 				return -ENODEV;
1724 			}
1725 			time++;
1726 			msleep(50);
1727 		}
1728 	}
1729 
1730 	/*
1731 	 * Initializing proper values as Pause threshold into all
1732 	 * the 8 Queues on Rx side.
1733 	 */
1734 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1735 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1736 
1737 	/* Disable RMAC PAD STRIPPING */
1738 	add = &bar0->mac_cfg;
1739 	val64 = readq(&bar0->mac_cfg);
1740 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1741 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1742 	writel((u32) (val64), add);
1743 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1744 	writel((u32) (val64 >> 32), (add + 4));
1745 	val64 = readq(&bar0->mac_cfg);
1746 
1747 	/* Enable FCS stripping by adapter */
1748 	add = &bar0->mac_cfg;
1749 	val64 = readq(&bar0->mac_cfg);
1750 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1751 	if (nic->device_type == XFRAME_II_DEVICE)
1752 		writeq(val64, &bar0->mac_cfg);
1753 	else {
1754 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1755 		writel((u32) (val64), add);
1756 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1757 		writel((u32) (val64 >> 32), (add + 4));
1758 	}
1759 
1760 	/*
1761 	 * Set the time value to be inserted in the pause frame
1762 	 * generated by xena.
1763 	 */
1764 	val64 = readq(&bar0->rmac_pause_cfg);
1765 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1766 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1767 	writeq(val64, &bar0->rmac_pause_cfg);
1768 
1769 	/*
1770 	 * Set the Threshold Limit for Generating the pause frame
1771 	 * If the amount of data in any Queue exceeds ratio of
1772 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1773 	 * pause frame is generated
1774 	 */
1775 	val64 = 0;
1776 	for (i = 0; i < 4; i++) {
1777 		val64 |= (((u64)0xFF00 |
1778 			   nic->mac_control.mc_pause_threshold_q0q3)
1779 			  << (i * 2 * 8));
1780 	}
1781 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1782 
1783 	val64 = 0;
1784 	for (i = 0; i < 4; i++) {
1785 		val64 |= (((u64)0xFF00 |
1786 			   nic->mac_control.mc_pause_threshold_q4q7)
1787 			  << (i * 2 * 8));
1788 	}
1789 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1790 
1791 	/*
1792 	 * TxDMA will stop Read request if the number of read split has
1793 	 * exceeded the limit pointed by shared_splits
1794 	 */
1795 	val64 = readq(&bar0->pic_control);
1796 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1797 	writeq(val64, &bar0->pic_control);
1798 
1799 	if (nic->config.bus_speed == 266) {
1800 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1801 		writeq(0x0, &bar0->read_retry_delay);
1802 		writeq(0x0, &bar0->write_retry_delay);
1803 	}
1804 
1805 	/*
1806 	 * Programming the Herc to split every write transaction
1807 	 * that does not start on an ADB to reduce disconnects.
1808 	 */
1809 	if (nic->device_type == XFRAME_II_DEVICE) {
1810 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1811 			MISC_LINK_STABILITY_PRD(3);
1812 		writeq(val64, &bar0->misc_control);
1813 		val64 = readq(&bar0->pic_control2);
1814 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1815 		writeq(val64, &bar0->pic_control2);
1816 	}
1817 	if (strstr(nic->product_name, "CX4")) {
1818 		val64 = TMAC_AVG_IPG(0x17);
1819 		writeq(val64, &bar0->tmac_avg_ipg);
1820 	}
1821 
1822 	return SUCCESS;
1823 }
1824 #define LINK_UP_DOWN_INTERRUPT		1
1825 #define MAC_RMAC_ERR_TIMER		2
1826 
1827 static int s2io_link_fault_indication(struct s2io_nic *nic)
1828 {
1829 	if (nic->device_type == XFRAME_II_DEVICE)
1830 		return LINK_UP_DOWN_INTERRUPT;
1831 	else
1832 		return MAC_RMAC_ERR_TIMER;
1833 }
1834 
1835 /**
1836  *  do_s2io_write_bits -  update alarm bits in alarm register
1837  *  @value: alarm bits
1838  *  @flag: interrupt status
1839  *  @addr: address value
1840  *  Description: update alarm bits in alarm register
1841  *  Return Value:
1842  *  NONE.
1843  */
1844 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1845 {
1846 	u64 temp64;
1847 
1848 	temp64 = readq(addr);
1849 
1850 	if (flag == ENABLE_INTRS)
1851 		temp64 &= ~((u64)value);
1852 	else
1853 		temp64 |= ((u64)value);
1854 	writeq(temp64, addr);
1855 }
1856 
1857 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1858 {
1859 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1860 	register u64 gen_int_mask = 0;
1861 	u64 interruptible;
1862 
1863 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1864 	if (mask & TX_DMA_INTR) {
1865 		gen_int_mask |= TXDMA_INT_M;
1866 
1867 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1868 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1869 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1870 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1871 
1872 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1873 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1874 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1875 				   &bar0->pfc_err_mask);
1876 
1877 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1878 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1879 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1880 
1881 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1882 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1883 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1884 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1885 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1886 				   PCC_TXB_ECC_SG_ERR,
1887 				   flag, &bar0->pcc_err_mask);
1888 
1889 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1890 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1891 
1892 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1893 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1894 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1895 				   flag, &bar0->lso_err_mask);
1896 
1897 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1898 				   flag, &bar0->tpa_err_mask);
1899 
1900 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1901 	}
1902 
1903 	if (mask & TX_MAC_INTR) {
1904 		gen_int_mask |= TXMAC_INT_M;
1905 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1906 				   &bar0->mac_int_mask);
1907 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1908 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1909 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1910 				   flag, &bar0->mac_tmac_err_mask);
1911 	}
1912 
1913 	if (mask & TX_XGXS_INTR) {
1914 		gen_int_mask |= TXXGXS_INT_M;
1915 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1916 				   &bar0->xgxs_int_mask);
1917 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1918 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1919 				   flag, &bar0->xgxs_txgxs_err_mask);
1920 	}
1921 
1922 	if (mask & RX_DMA_INTR) {
1923 		gen_int_mask |= RXDMA_INT_M;
1924 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1925 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1926 				   flag, &bar0->rxdma_int_mask);
1927 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1928 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1929 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1930 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1931 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1932 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1933 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1934 				   &bar0->prc_pcix_err_mask);
1935 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1936 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1937 				   &bar0->rpa_err_mask);
1938 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1939 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1940 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1941 				   RDA_FRM_ECC_SG_ERR |
1942 				   RDA_MISC_ERR|RDA_PCIX_ERR,
1943 				   flag, &bar0->rda_err_mask);
1944 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1945 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1946 				   flag, &bar0->rti_err_mask);
1947 	}
1948 
1949 	if (mask & RX_MAC_INTR) {
1950 		gen_int_mask |= RXMAC_INT_M;
1951 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1952 				   &bar0->mac_int_mask);
1953 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1954 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1955 				 RMAC_DOUBLE_ECC_ERR);
1956 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1957 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1958 		do_s2io_write_bits(interruptible,
1959 				   flag, &bar0->mac_rmac_err_mask);
1960 	}
1961 
1962 	if (mask & RX_XGXS_INTR) {
1963 		gen_int_mask |= RXXGXS_INT_M;
1964 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1965 				   &bar0->xgxs_int_mask);
1966 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1967 				   &bar0->xgxs_rxgxs_err_mask);
1968 	}
1969 
1970 	if (mask & MC_INTR) {
1971 		gen_int_mask |= MC_INT_M;
1972 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1973 				   flag, &bar0->mc_int_mask);
1974 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1975 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1976 				   &bar0->mc_err_mask);
1977 	}
1978 	nic->general_int_mask = gen_int_mask;
1979 
1980 	/* Remove this line when alarm interrupts are enabled */
1981 	nic->general_int_mask = 0;
1982 }
1983 
1984 /**
1985  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1986  *  @nic: device private variable,
1987  *  @mask: A mask indicating which Intr block must be modified and,
1988  *  @flag: A flag indicating whether to enable or disable the Intrs.
1989  *  Description: This function will either disable or enable the interrupts
1990  *  depending on the flag argument. The mask argument can be used to
1991  *  enable/disable any Intr block.
1992  *  Return Value: NONE.
1993  */
1994 
1995 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1996 {
1997 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1998 	register u64 temp64 = 0, intr_mask = 0;
1999 
2000 	intr_mask = nic->general_int_mask;
2001 
2002 	/*  Top level interrupt classification */
2003 	/*  PIC Interrupts */
2004 	if (mask & TX_PIC_INTR) {
2005 		/*  Enable PIC Intrs in the general intr mask register */
2006 		intr_mask |= TXPIC_INT_M;
2007 		if (flag == ENABLE_INTRS) {
2008 			/*
2009 			 * If Hercules adapter enable GPIO otherwise
2010 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2011 			 * interrupts for now.
2012 			 * TODO
2013 			 */
2014 			if (s2io_link_fault_indication(nic) ==
2015 			    LINK_UP_DOWN_INTERRUPT) {
2016 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2017 						   &bar0->pic_int_mask);
2018 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2019 						   &bar0->gpio_int_mask);
2020 			} else
2021 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2022 		} else if (flag == DISABLE_INTRS) {
2023 			/*
2024 			 * Disable PIC Intrs in the general
2025 			 * intr mask register
2026 			 */
2027 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2028 		}
2029 	}
2030 
2031 	/*  Tx traffic interrupts */
2032 	if (mask & TX_TRAFFIC_INTR) {
2033 		intr_mask |= TXTRAFFIC_INT_M;
2034 		if (flag == ENABLE_INTRS) {
2035 			/*
2036 			 * Enable all the Tx side interrupts
2037 			 * writing 0 Enables all 64 TX interrupt levels
2038 			 */
2039 			writeq(0x0, &bar0->tx_traffic_mask);
2040 		} else if (flag == DISABLE_INTRS) {
2041 			/*
2042 			 * Disable Tx Traffic Intrs in the general intr mask
2043 			 * register.
2044 			 */
2045 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2046 		}
2047 	}
2048 
2049 	/*  Rx traffic interrupts */
2050 	if (mask & RX_TRAFFIC_INTR) {
2051 		intr_mask |= RXTRAFFIC_INT_M;
2052 		if (flag == ENABLE_INTRS) {
2053 			/* writing 0 Enables all 8 RX interrupt levels */
2054 			writeq(0x0, &bar0->rx_traffic_mask);
2055 		} else if (flag == DISABLE_INTRS) {
2056 			/*
2057 			 * Disable Rx Traffic Intrs in the general intr mask
2058 			 * register.
2059 			 */
2060 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2061 		}
2062 	}
2063 
2064 	temp64 = readq(&bar0->general_int_mask);
2065 	if (flag == ENABLE_INTRS)
2066 		temp64 &= ~((u64)intr_mask);
2067 	else
2068 		temp64 = DISABLE_ALL_INTRS;
2069 	writeq(temp64, &bar0->general_int_mask);
2070 
2071 	nic->general_int_mask = readq(&bar0->general_int_mask);
2072 }
2073 
2074 /**
2075  *  verify_pcc_quiescent- Checks for PCC quiescent state
2076  *  Return: 1 If PCC is quiescence
2077  *          0 If PCC is not quiescence
2078  */
2079 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2080 {
2081 	int ret = 0, herc;
2082 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2083 	u64 val64 = readq(&bar0->adapter_status);
2084 
2085 	herc = (sp->device_type == XFRAME_II_DEVICE);
2086 
2087 	if (flag == false) {
2088 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2089 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2090 				ret = 1;
2091 		} else {
2092 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2093 				ret = 1;
2094 		}
2095 	} else {
2096 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2097 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2098 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2099 				ret = 1;
2100 		} else {
2101 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2102 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2103 				ret = 1;
2104 		}
2105 	}
2106 
2107 	return ret;
2108 }
2109 /**
2110  *  verify_xena_quiescence - Checks whether the H/W is ready
2111  *  Description: Returns whether the H/W is ready to go or not. Depending
2112  *  on whether adapter enable bit was written or not the comparison
2113  *  differs and the calling function passes the input argument flag to
2114  *  indicate this.
2115  *  Return: 1 If xena is quiescence
2116  *          0 If Xena is not quiescence
2117  */
2118 
2119 static int verify_xena_quiescence(struct s2io_nic *sp)
2120 {
2121 	int  mode;
2122 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2123 	u64 val64 = readq(&bar0->adapter_status);
2124 	mode = s2io_verify_pci_mode(sp);
2125 
2126 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2127 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2128 		return 0;
2129 	}
2130 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2131 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2132 		return 0;
2133 	}
2134 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2135 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2136 		return 0;
2137 	}
2138 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2139 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2140 		return 0;
2141 	}
2142 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2143 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2144 		return 0;
2145 	}
2146 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2147 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2148 		return 0;
2149 	}
2150 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2151 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2152 		return 0;
2153 	}
2154 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2155 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2156 		return 0;
2157 	}
2158 
2159 	/*
2160 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2161 	 * the the P_PLL_LOCK bit in the adapter_status register will
2162 	 * not be asserted.
2163 	 */
2164 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2165 	    sp->device_type == XFRAME_II_DEVICE &&
2166 	    mode != PCI_MODE_PCI_33) {
2167 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2168 		return 0;
2169 	}
2170 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2171 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2172 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2173 		return 0;
2174 	}
2175 	return 1;
2176 }
2177 
2178 /**
2179  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2180  * @sp: Pointer to device specifc structure
2181  * Description :
2182  * New procedure to clear mac address reading  problems on Alpha platforms
2183  *
2184  */
2185 
2186 static void fix_mac_address(struct s2io_nic *sp)
2187 {
2188 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2189 	int i = 0;
2190 
2191 	while (fix_mac[i] != END_SIGN) {
2192 		writeq(fix_mac[i++], &bar0->gpio_control);
2193 		udelay(10);
2194 		(void) readq(&bar0->gpio_control);
2195 	}
2196 }
2197 
2198 /**
2199  *  start_nic - Turns the device on
2200  *  @nic : device private variable.
2201  *  Description:
2202  *  This function actually turns the device on. Before this  function is
2203  *  called,all Registers are configured from their reset states
2204  *  and shared memory is allocated but the NIC is still quiescent. On
2205  *  calling this function, the device interrupts are cleared and the NIC is
2206  *  literally switched on by writing into the adapter control register.
2207  *  Return Value:
2208  *  SUCCESS on success and -1 on failure.
2209  */
2210 
2211 static int start_nic(struct s2io_nic *nic)
2212 {
2213 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2214 	struct net_device *dev = nic->dev;
2215 	register u64 val64 = 0;
2216 	u16 subid, i;
2217 	struct config_param *config = &nic->config;
2218 	struct mac_info *mac_control = &nic->mac_control;
2219 
2220 	/*  PRC Initialization and configuration */
2221 	for (i = 0; i < config->rx_ring_num; i++) {
2222 		struct ring_info *ring = &mac_control->rings[i];
2223 
2224 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2225 		       &bar0->prc_rxd0_n[i]);
2226 
2227 		val64 = readq(&bar0->prc_ctrl_n[i]);
2228 		if (nic->rxd_mode == RXD_MODE_1)
2229 			val64 |= PRC_CTRL_RC_ENABLED;
2230 		else
2231 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2232 		if (nic->device_type == XFRAME_II_DEVICE)
2233 			val64 |= PRC_CTRL_GROUP_READS;
2234 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2235 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2236 		writeq(val64, &bar0->prc_ctrl_n[i]);
2237 	}
2238 
2239 	if (nic->rxd_mode == RXD_MODE_3B) {
2240 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2241 		val64 = readq(&bar0->rx_pa_cfg);
2242 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2243 		writeq(val64, &bar0->rx_pa_cfg);
2244 	}
2245 
2246 	if (vlan_tag_strip == 0) {
2247 		val64 = readq(&bar0->rx_pa_cfg);
2248 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2249 		writeq(val64, &bar0->rx_pa_cfg);
2250 		nic->vlan_strip_flag = 0;
2251 	}
2252 
2253 	/*
2254 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2255 	 * for around 100ms, which is approximately the time required
2256 	 * for the device to be ready for operation.
2257 	 */
2258 	val64 = readq(&bar0->mc_rldram_mrs);
2259 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2260 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2261 	val64 = readq(&bar0->mc_rldram_mrs);
2262 
2263 	msleep(100);	/* Delay by around 100 ms. */
2264 
2265 	/* Enabling ECC Protection. */
2266 	val64 = readq(&bar0->adapter_control);
2267 	val64 &= ~ADAPTER_ECC_EN;
2268 	writeq(val64, &bar0->adapter_control);
2269 
2270 	/*
2271 	 * Verify if the device is ready to be enabled, if so enable
2272 	 * it.
2273 	 */
2274 	val64 = readq(&bar0->adapter_status);
2275 	if (!verify_xena_quiescence(nic)) {
2276 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2277 			  "Adapter status reads: 0x%llx\n",
2278 			  dev->name, (unsigned long long)val64);
2279 		return FAILURE;
2280 	}
2281 
2282 	/*
2283 	 * With some switches, link might be already up at this point.
2284 	 * Because of this weird behavior, when we enable laser,
2285 	 * we may not get link. We need to handle this. We cannot
2286 	 * figure out which switch is misbehaving. So we are forced to
2287 	 * make a global change.
2288 	 */
2289 
2290 	/* Enabling Laser. */
2291 	val64 = readq(&bar0->adapter_control);
2292 	val64 |= ADAPTER_EOI_TX_ON;
2293 	writeq(val64, &bar0->adapter_control);
2294 
2295 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2296 		/*
2297 		 * Dont see link state interrupts initially on some switches,
2298 		 * so directly scheduling the link state task here.
2299 		 */
2300 		schedule_work(&nic->set_link_task);
2301 	}
2302 	/* SXE-002: Initialize link and activity LED */
2303 	subid = nic->pdev->subsystem_device;
2304 	if (((subid & 0xFF) >= 0x07) &&
2305 	    (nic->device_type == XFRAME_I_DEVICE)) {
2306 		val64 = readq(&bar0->gpio_control);
2307 		val64 |= 0x0000800000000000ULL;
2308 		writeq(val64, &bar0->gpio_control);
2309 		val64 = 0x0411040400000000ULL;
2310 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2311 	}
2312 
2313 	return SUCCESS;
2314 }
2315 /**
2316  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2317  */
2318 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2319 					struct TxD *txdlp, int get_off)
2320 {
2321 	struct s2io_nic *nic = fifo_data->nic;
2322 	struct sk_buff *skb;
2323 	struct TxD *txds;
2324 	u16 j, frg_cnt;
2325 
2326 	txds = txdlp;
2327 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2328 		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2329 				 sizeof(u64), PCI_DMA_TODEVICE);
2330 		txds++;
2331 	}
2332 
2333 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2334 	if (!skb) {
2335 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2336 		return NULL;
2337 	}
2338 	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2339 			 skb_headlen(skb), PCI_DMA_TODEVICE);
2340 	frg_cnt = skb_shinfo(skb)->nr_frags;
2341 	if (frg_cnt) {
2342 		txds++;
2343 		for (j = 0; j < frg_cnt; j++, txds++) {
2344 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2345 			if (!txds->Buffer_Pointer)
2346 				break;
2347 			pci_unmap_page(nic->pdev,
2348 				       (dma_addr_t)txds->Buffer_Pointer,
2349 				       skb_frag_size(frag), PCI_DMA_TODEVICE);
2350 		}
2351 	}
2352 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2353 	return skb;
2354 }
2355 
2356 /**
2357  *  free_tx_buffers - Free all queued Tx buffers
2358  *  @nic : device private variable.
2359  *  Description:
2360  *  Free all queued Tx buffers.
2361  *  Return Value: void
2362  */
2363 
2364 static void free_tx_buffers(struct s2io_nic *nic)
2365 {
2366 	struct net_device *dev = nic->dev;
2367 	struct sk_buff *skb;
2368 	struct TxD *txdp;
2369 	int i, j;
2370 	int cnt = 0;
2371 	struct config_param *config = &nic->config;
2372 	struct mac_info *mac_control = &nic->mac_control;
2373 	struct stat_block *stats = mac_control->stats_info;
2374 	struct swStat *swstats = &stats->sw_stat;
2375 
2376 	for (i = 0; i < config->tx_fifo_num; i++) {
2377 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2378 		struct fifo_info *fifo = &mac_control->fifos[i];
2379 		unsigned long flags;
2380 
2381 		spin_lock_irqsave(&fifo->tx_lock, flags);
2382 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2383 			txdp = fifo->list_info[j].list_virt_addr;
2384 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2385 			if (skb) {
2386 				swstats->mem_freed += skb->truesize;
2387 				dev_kfree_skb(skb);
2388 				cnt++;
2389 			}
2390 		}
2391 		DBG_PRINT(INTR_DBG,
2392 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2393 			  dev->name, cnt, i);
2394 		fifo->tx_curr_get_info.offset = 0;
2395 		fifo->tx_curr_put_info.offset = 0;
2396 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2397 	}
2398 }
2399 
2400 /**
2401  *   stop_nic -  To stop the nic
2402  *   @nic ; device private variable.
2403  *   Description:
2404  *   This function does exactly the opposite of what the start_nic()
2405  *   function does. This function is called to stop the device.
2406  *   Return Value:
2407  *   void.
2408  */
2409 
2410 static void stop_nic(struct s2io_nic *nic)
2411 {
2412 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2413 	register u64 val64 = 0;
2414 	u16 interruptible;
2415 
2416 	/*  Disable all interrupts */
2417 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2418 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2419 	interruptible |= TX_PIC_INTR;
2420 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2421 
2422 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2423 	val64 = readq(&bar0->adapter_control);
2424 	val64 &= ~(ADAPTER_CNTL_EN);
2425 	writeq(val64, &bar0->adapter_control);
2426 }
2427 
2428 /**
2429  *  fill_rx_buffers - Allocates the Rx side skbs
2430  *  @ring_info: per ring structure
2431  *  @from_card_up: If this is true, we will map the buffer to get
2432  *     the dma address for buf0 and buf1 to give it to the card.
2433  *     Else we will sync the already mapped buffer to give it to the card.
2434  *  Description:
2435  *  The function allocates Rx side skbs and puts the physical
2436  *  address of these buffers into the RxD buffer pointers, so that the NIC
2437  *  can DMA the received frame into these locations.
2438  *  The NIC supports 3 receive modes, viz
2439  *  1. single buffer,
2440  *  2. three buffer and
2441  *  3. Five buffer modes.
2442  *  Each mode defines how many fragments the received frame will be split
2443  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2444  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2445  *  is split into 3 fragments. As of now only single buffer mode is
2446  *  supported.
2447  *   Return Value:
2448  *  SUCCESS on success or an appropriate -ve value on failure.
2449  */
2450 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2451 			   int from_card_up)
2452 {
2453 	struct sk_buff *skb;
2454 	struct RxD_t *rxdp;
2455 	int off, size, block_no, block_no1;
2456 	u32 alloc_tab = 0;
2457 	u32 alloc_cnt;
2458 	u64 tmp;
2459 	struct buffAdd *ba;
2460 	struct RxD_t *first_rxdp = NULL;
2461 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2462 	int rxd_index = 0;
2463 	struct RxD1 *rxdp1;
2464 	struct RxD3 *rxdp3;
2465 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2466 
2467 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2468 
2469 	block_no1 = ring->rx_curr_get_info.block_index;
2470 	while (alloc_tab < alloc_cnt) {
2471 		block_no = ring->rx_curr_put_info.block_index;
2472 
2473 		off = ring->rx_curr_put_info.offset;
2474 
2475 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2476 
2477 		rxd_index = off + 1;
2478 		if (block_no)
2479 			rxd_index += (block_no * ring->rxd_count);
2480 
2481 		if ((block_no == block_no1) &&
2482 		    (off == ring->rx_curr_get_info.offset) &&
2483 		    (rxdp->Host_Control)) {
2484 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2485 				  ring->dev->name);
2486 			goto end;
2487 		}
2488 		if (off && (off == ring->rxd_count)) {
2489 			ring->rx_curr_put_info.block_index++;
2490 			if (ring->rx_curr_put_info.block_index ==
2491 			    ring->block_count)
2492 				ring->rx_curr_put_info.block_index = 0;
2493 			block_no = ring->rx_curr_put_info.block_index;
2494 			off = 0;
2495 			ring->rx_curr_put_info.offset = off;
2496 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2497 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2498 				  ring->dev->name, rxdp);
2499 
2500 		}
2501 
2502 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2503 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2504 		     (rxdp->Control_2 & s2BIT(0)))) {
2505 			ring->rx_curr_put_info.offset = off;
2506 			goto end;
2507 		}
2508 		/* calculate size of skb based on ring mode */
2509 		size = ring->mtu +
2510 			HEADER_ETHERNET_II_802_3_SIZE +
2511 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2512 		if (ring->rxd_mode == RXD_MODE_1)
2513 			size += NET_IP_ALIGN;
2514 		else
2515 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2516 
2517 		/* allocate skb */
2518 		skb = netdev_alloc_skb(nic->dev, size);
2519 		if (!skb) {
2520 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2521 				  ring->dev->name);
2522 			if (first_rxdp) {
2523 				dma_wmb();
2524 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2525 			}
2526 			swstats->mem_alloc_fail_cnt++;
2527 
2528 			return -ENOMEM ;
2529 		}
2530 		swstats->mem_allocated += skb->truesize;
2531 
2532 		if (ring->rxd_mode == RXD_MODE_1) {
2533 			/* 1 buffer mode - normal operation mode */
2534 			rxdp1 = (struct RxD1 *)rxdp;
2535 			memset(rxdp, 0, sizeof(struct RxD1));
2536 			skb_reserve(skb, NET_IP_ALIGN);
2537 			rxdp1->Buffer0_ptr =
2538 				pci_map_single(ring->pdev, skb->data,
2539 					       size - NET_IP_ALIGN,
2540 					       PCI_DMA_FROMDEVICE);
2541 			if (pci_dma_mapping_error(nic->pdev,
2542 						  rxdp1->Buffer0_ptr))
2543 				goto pci_map_failed;
2544 
2545 			rxdp->Control_2 =
2546 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2547 			rxdp->Host_Control = (unsigned long)skb;
2548 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2549 			/*
2550 			 * 2 buffer mode -
2551 			 * 2 buffer mode provides 128
2552 			 * byte aligned receive buffers.
2553 			 */
2554 
2555 			rxdp3 = (struct RxD3 *)rxdp;
2556 			/* save buffer pointers to avoid frequent dma mapping */
2557 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2558 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2559 			memset(rxdp, 0, sizeof(struct RxD3));
2560 			/* restore the buffer pointers for dma sync*/
2561 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2562 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2563 
2564 			ba = &ring->ba[block_no][off];
2565 			skb_reserve(skb, BUF0_LEN);
2566 			tmp = (u64)(unsigned long)skb->data;
2567 			tmp += ALIGN_SIZE;
2568 			tmp &= ~ALIGN_SIZE;
2569 			skb->data = (void *) (unsigned long)tmp;
2570 			skb_reset_tail_pointer(skb);
2571 
2572 			if (from_card_up) {
2573 				rxdp3->Buffer0_ptr =
2574 					pci_map_single(ring->pdev, ba->ba_0,
2575 						       BUF0_LEN,
2576 						       PCI_DMA_FROMDEVICE);
2577 				if (pci_dma_mapping_error(nic->pdev,
2578 							  rxdp3->Buffer0_ptr))
2579 					goto pci_map_failed;
2580 			} else
2581 				pci_dma_sync_single_for_device(ring->pdev,
2582 							       (dma_addr_t)rxdp3->Buffer0_ptr,
2583 							       BUF0_LEN,
2584 							       PCI_DMA_FROMDEVICE);
2585 
2586 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2587 			if (ring->rxd_mode == RXD_MODE_3B) {
2588 				/* Two buffer mode */
2589 
2590 				/*
2591 				 * Buffer2 will have L3/L4 header plus
2592 				 * L4 payload
2593 				 */
2594 				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2595 								    skb->data,
2596 								    ring->mtu + 4,
2597 								    PCI_DMA_FROMDEVICE);
2598 
2599 				if (pci_dma_mapping_error(nic->pdev,
2600 							  rxdp3->Buffer2_ptr))
2601 					goto pci_map_failed;
2602 
2603 				if (from_card_up) {
2604 					rxdp3->Buffer1_ptr =
2605 						pci_map_single(ring->pdev,
2606 							       ba->ba_1,
2607 							       BUF1_LEN,
2608 							       PCI_DMA_FROMDEVICE);
2609 
2610 					if (pci_dma_mapping_error(nic->pdev,
2611 								  rxdp3->Buffer1_ptr)) {
2612 						pci_unmap_single(ring->pdev,
2613 								 (dma_addr_t)(unsigned long)
2614 								 skb->data,
2615 								 ring->mtu + 4,
2616 								 PCI_DMA_FROMDEVICE);
2617 						goto pci_map_failed;
2618 					}
2619 				}
2620 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2621 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2622 					(ring->mtu + 4);
2623 			}
2624 			rxdp->Control_2 |= s2BIT(0);
2625 			rxdp->Host_Control = (unsigned long) (skb);
2626 		}
2627 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2628 			rxdp->Control_1 |= RXD_OWN_XENA;
2629 		off++;
2630 		if (off == (ring->rxd_count + 1))
2631 			off = 0;
2632 		ring->rx_curr_put_info.offset = off;
2633 
2634 		rxdp->Control_2 |= SET_RXD_MARKER;
2635 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2636 			if (first_rxdp) {
2637 				dma_wmb();
2638 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2639 			}
2640 			first_rxdp = rxdp;
2641 		}
2642 		ring->rx_bufs_left += 1;
2643 		alloc_tab++;
2644 	}
2645 
2646 end:
2647 	/* Transfer ownership of first descriptor to adapter just before
2648 	 * exiting. Before that, use memory barrier so that ownership
2649 	 * and other fields are seen by adapter correctly.
2650 	 */
2651 	if (first_rxdp) {
2652 		dma_wmb();
2653 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2654 	}
2655 
2656 	return SUCCESS;
2657 
2658 pci_map_failed:
2659 	swstats->pci_map_fail_cnt++;
2660 	swstats->mem_freed += skb->truesize;
2661 	dev_kfree_skb_irq(skb);
2662 	return -ENOMEM;
2663 }
2664 
2665 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2666 {
2667 	struct net_device *dev = sp->dev;
2668 	int j;
2669 	struct sk_buff *skb;
2670 	struct RxD_t *rxdp;
2671 	struct RxD1 *rxdp1;
2672 	struct RxD3 *rxdp3;
2673 	struct mac_info *mac_control = &sp->mac_control;
2674 	struct stat_block *stats = mac_control->stats_info;
2675 	struct swStat *swstats = &stats->sw_stat;
2676 
2677 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2678 		rxdp = mac_control->rings[ring_no].
2679 			rx_blocks[blk].rxds[j].virt_addr;
2680 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2681 		if (!skb)
2682 			continue;
2683 		if (sp->rxd_mode == RXD_MODE_1) {
2684 			rxdp1 = (struct RxD1 *)rxdp;
2685 			pci_unmap_single(sp->pdev,
2686 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2687 					 dev->mtu +
2688 					 HEADER_ETHERNET_II_802_3_SIZE +
2689 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2690 					 PCI_DMA_FROMDEVICE);
2691 			memset(rxdp, 0, sizeof(struct RxD1));
2692 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2693 			rxdp3 = (struct RxD3 *)rxdp;
2694 			pci_unmap_single(sp->pdev,
2695 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2696 					 BUF0_LEN,
2697 					 PCI_DMA_FROMDEVICE);
2698 			pci_unmap_single(sp->pdev,
2699 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2700 					 BUF1_LEN,
2701 					 PCI_DMA_FROMDEVICE);
2702 			pci_unmap_single(sp->pdev,
2703 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2704 					 dev->mtu + 4,
2705 					 PCI_DMA_FROMDEVICE);
2706 			memset(rxdp, 0, sizeof(struct RxD3));
2707 		}
2708 		swstats->mem_freed += skb->truesize;
2709 		dev_kfree_skb(skb);
2710 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2711 	}
2712 }
2713 
2714 /**
2715  *  free_rx_buffers - Frees all Rx buffers
2716  *  @sp: device private variable.
2717  *  Description:
2718  *  This function will free all Rx buffers allocated by host.
2719  *  Return Value:
2720  *  NONE.
2721  */
2722 
2723 static void free_rx_buffers(struct s2io_nic *sp)
2724 {
2725 	struct net_device *dev = sp->dev;
2726 	int i, blk = 0, buf_cnt = 0;
2727 	struct config_param *config = &sp->config;
2728 	struct mac_info *mac_control = &sp->mac_control;
2729 
2730 	for (i = 0; i < config->rx_ring_num; i++) {
2731 		struct ring_info *ring = &mac_control->rings[i];
2732 
2733 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2734 			free_rxd_blk(sp, i, blk);
2735 
2736 		ring->rx_curr_put_info.block_index = 0;
2737 		ring->rx_curr_get_info.block_index = 0;
2738 		ring->rx_curr_put_info.offset = 0;
2739 		ring->rx_curr_get_info.offset = 0;
2740 		ring->rx_bufs_left = 0;
2741 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2742 			  dev->name, buf_cnt, i);
2743 	}
2744 }
2745 
2746 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2747 {
2748 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2749 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2750 			  ring->dev->name);
2751 	}
2752 	return 0;
2753 }
2754 
2755 /**
2756  * s2io_poll - Rx interrupt handler for NAPI support
2757  * @napi : pointer to the napi structure.
2758  * @budget : The number of packets that were budgeted to be processed
2759  * during  one pass through the 'Poll" function.
2760  * Description:
2761  * Comes into picture only if NAPI support has been incorporated. It does
2762  * the same thing that rx_intr_handler does, but not in a interrupt context
2763  * also It will process only a given number of packets.
2764  * Return value:
2765  * 0 on success and 1 if there are No Rx packets to be processed.
2766  */
2767 
2768 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2769 {
2770 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2771 	struct net_device *dev = ring->dev;
2772 	int pkts_processed = 0;
2773 	u8 __iomem *addr = NULL;
2774 	u8 val8 = 0;
2775 	struct s2io_nic *nic = netdev_priv(dev);
2776 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2777 	int budget_org = budget;
2778 
2779 	if (unlikely(!is_s2io_card_up(nic)))
2780 		return 0;
2781 
2782 	pkts_processed = rx_intr_handler(ring, budget);
2783 	s2io_chk_rx_buffers(nic, ring);
2784 
2785 	if (pkts_processed < budget_org) {
2786 		napi_complete(napi);
2787 		/*Re Enable MSI-Rx Vector*/
2788 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2789 		addr += 7 - ring->ring_no;
2790 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2791 		writeb(val8, addr);
2792 		val8 = readb(addr);
2793 	}
2794 	return pkts_processed;
2795 }
2796 
2797 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2798 {
2799 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2800 	int pkts_processed = 0;
2801 	int ring_pkts_processed, i;
2802 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2803 	int budget_org = budget;
2804 	struct config_param *config = &nic->config;
2805 	struct mac_info *mac_control = &nic->mac_control;
2806 
2807 	if (unlikely(!is_s2io_card_up(nic)))
2808 		return 0;
2809 
2810 	for (i = 0; i < config->rx_ring_num; i++) {
2811 		struct ring_info *ring = &mac_control->rings[i];
2812 		ring_pkts_processed = rx_intr_handler(ring, budget);
2813 		s2io_chk_rx_buffers(nic, ring);
2814 		pkts_processed += ring_pkts_processed;
2815 		budget -= ring_pkts_processed;
2816 		if (budget <= 0)
2817 			break;
2818 	}
2819 	if (pkts_processed < budget_org) {
2820 		napi_complete(napi);
2821 		/* Re enable the Rx interrupts for the ring */
2822 		writeq(0, &bar0->rx_traffic_mask);
2823 		readl(&bar0->rx_traffic_mask);
2824 	}
2825 	return pkts_processed;
2826 }
2827 
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2829 /**
2830  * s2io_netpoll - netpoll event handler entry point
2831  * @dev : pointer to the device structure.
2832  * Description:
2833  * 	This function will be called by upper layer to check for events on the
2834  * interface in situations where interrupts are disabled. It is used for
2835  * specific in-kernel networking tasks, such as remote consoles and kernel
2836  * debugging over the network (example netdump in RedHat).
2837  */
2838 static void s2io_netpoll(struct net_device *dev)
2839 {
2840 	struct s2io_nic *nic = netdev_priv(dev);
2841 	const int irq = nic->pdev->irq;
2842 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2844 	int i;
2845 	struct config_param *config = &nic->config;
2846 	struct mac_info *mac_control = &nic->mac_control;
2847 
2848 	if (pci_channel_offline(nic->pdev))
2849 		return;
2850 
2851 	disable_irq(irq);
2852 
2853 	writeq(val64, &bar0->rx_traffic_int);
2854 	writeq(val64, &bar0->tx_traffic_int);
2855 
2856 	/* we need to free up the transmitted skbufs or else netpoll will
2857 	 * run out of skbs and will fail and eventually netpoll application such
2858 	 * as netdump will fail.
2859 	 */
2860 	for (i = 0; i < config->tx_fifo_num; i++)
2861 		tx_intr_handler(&mac_control->fifos[i]);
2862 
2863 	/* check for received packet and indicate up to network */
2864 	for (i = 0; i < config->rx_ring_num; i++) {
2865 		struct ring_info *ring = &mac_control->rings[i];
2866 
2867 		rx_intr_handler(ring, 0);
2868 	}
2869 
2870 	for (i = 0; i < config->rx_ring_num; i++) {
2871 		struct ring_info *ring = &mac_control->rings[i];
2872 
2873 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2874 			DBG_PRINT(INFO_DBG,
2875 				  "%s: Out of memory in Rx Netpoll!!\n",
2876 				  dev->name);
2877 			break;
2878 		}
2879 	}
2880 	enable_irq(irq);
2881 }
2882 #endif
2883 
2884 /**
2885  *  rx_intr_handler - Rx interrupt handler
2886  *  @ring_info: per ring structure.
2887  *  @budget: budget for napi processing.
2888  *  Description:
2889  *  If the interrupt is because of a received frame or if the
2890  *  receive ring contains fresh as yet un-processed frames,this function is
2891  *  called. It picks out the RxD at which place the last Rx processing had
2892  *  stopped and sends the skb to the OSM's Rx handler and then increments
2893  *  the offset.
2894  *  Return Value:
2895  *  No. of napi packets processed.
2896  */
2897 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2898 {
2899 	int get_block, put_block;
2900 	struct rx_curr_get_info get_info, put_info;
2901 	struct RxD_t *rxdp;
2902 	struct sk_buff *skb;
2903 	int pkt_cnt = 0, napi_pkts = 0;
2904 	int i;
2905 	struct RxD1 *rxdp1;
2906 	struct RxD3 *rxdp3;
2907 
2908 	if (budget <= 0)
2909 		return napi_pkts;
2910 
2911 	get_info = ring_data->rx_curr_get_info;
2912 	get_block = get_info.block_index;
2913 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2914 	put_block = put_info.block_index;
2915 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2916 
2917 	while (RXD_IS_UP2DT(rxdp)) {
2918 		/*
2919 		 * If your are next to put index then it's
2920 		 * FIFO full condition
2921 		 */
2922 		if ((get_block == put_block) &&
2923 		    (get_info.offset + 1) == put_info.offset) {
2924 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2925 				  ring_data->dev->name);
2926 			break;
2927 		}
2928 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2929 		if (skb == NULL) {
2930 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2931 				  ring_data->dev->name);
2932 			return 0;
2933 		}
2934 		if (ring_data->rxd_mode == RXD_MODE_1) {
2935 			rxdp1 = (struct RxD1 *)rxdp;
2936 			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2937 					 rxdp1->Buffer0_ptr,
2938 					 ring_data->mtu +
2939 					 HEADER_ETHERNET_II_802_3_SIZE +
2940 					 HEADER_802_2_SIZE +
2941 					 HEADER_SNAP_SIZE,
2942 					 PCI_DMA_FROMDEVICE);
2943 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2944 			rxdp3 = (struct RxD3 *)rxdp;
2945 			pci_dma_sync_single_for_cpu(ring_data->pdev,
2946 						    (dma_addr_t)rxdp3->Buffer0_ptr,
2947 						    BUF0_LEN,
2948 						    PCI_DMA_FROMDEVICE);
2949 			pci_unmap_single(ring_data->pdev,
2950 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2951 					 ring_data->mtu + 4,
2952 					 PCI_DMA_FROMDEVICE);
2953 		}
2954 		prefetch(skb->data);
2955 		rx_osm_handler(ring_data, rxdp);
2956 		get_info.offset++;
2957 		ring_data->rx_curr_get_info.offset = get_info.offset;
2958 		rxdp = ring_data->rx_blocks[get_block].
2959 			rxds[get_info.offset].virt_addr;
2960 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2961 			get_info.offset = 0;
2962 			ring_data->rx_curr_get_info.offset = get_info.offset;
2963 			get_block++;
2964 			if (get_block == ring_data->block_count)
2965 				get_block = 0;
2966 			ring_data->rx_curr_get_info.block_index = get_block;
2967 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2968 		}
2969 
2970 		if (ring_data->nic->config.napi) {
2971 			budget--;
2972 			napi_pkts++;
2973 			if (!budget)
2974 				break;
2975 		}
2976 		pkt_cnt++;
2977 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2978 			break;
2979 	}
2980 	if (ring_data->lro) {
2981 		/* Clear all LRO sessions before exiting */
2982 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2983 			struct lro *lro = &ring_data->lro0_n[i];
2984 			if (lro->in_use) {
2985 				update_L3L4_header(ring_data->nic, lro);
2986 				queue_rx_frame(lro->parent, lro->vlan_tag);
2987 				clear_lro_session(lro);
2988 			}
2989 		}
2990 	}
2991 	return napi_pkts;
2992 }
2993 
2994 /**
2995  *  tx_intr_handler - Transmit interrupt handler
2996  *  @nic : device private variable
2997  *  Description:
2998  *  If an interrupt was raised to indicate DMA complete of the
2999  *  Tx packet, this function is called. It identifies the last TxD
3000  *  whose buffer was freed and frees all skbs whose data have already
3001  *  DMA'ed into the NICs internal memory.
3002  *  Return Value:
3003  *  NONE
3004  */
3005 
3006 static void tx_intr_handler(struct fifo_info *fifo_data)
3007 {
3008 	struct s2io_nic *nic = fifo_data->nic;
3009 	struct tx_curr_get_info get_info, put_info;
3010 	struct sk_buff *skb = NULL;
3011 	struct TxD *txdlp;
3012 	int pkt_cnt = 0;
3013 	unsigned long flags = 0;
3014 	u8 err_mask;
3015 	struct stat_block *stats = nic->mac_control.stats_info;
3016 	struct swStat *swstats = &stats->sw_stat;
3017 
3018 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3019 		return;
3020 
3021 	get_info = fifo_data->tx_curr_get_info;
3022 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3023 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3024 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3025 	       (get_info.offset != put_info.offset) &&
3026 	       (txdlp->Host_Control)) {
3027 		/* Check for TxD errors */
3028 		if (txdlp->Control_1 & TXD_T_CODE) {
3029 			unsigned long long err;
3030 			err = txdlp->Control_1 & TXD_T_CODE;
3031 			if (err & 0x1) {
3032 				swstats->parity_err_cnt++;
3033 			}
3034 
3035 			/* update t_code statistics */
3036 			err_mask = err >> 48;
3037 			switch (err_mask) {
3038 			case 2:
3039 				swstats->tx_buf_abort_cnt++;
3040 				break;
3041 
3042 			case 3:
3043 				swstats->tx_desc_abort_cnt++;
3044 				break;
3045 
3046 			case 7:
3047 				swstats->tx_parity_err_cnt++;
3048 				break;
3049 
3050 			case 10:
3051 				swstats->tx_link_loss_cnt++;
3052 				break;
3053 
3054 			case 15:
3055 				swstats->tx_list_proc_err_cnt++;
3056 				break;
3057 			}
3058 		}
3059 
3060 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3061 		if (skb == NULL) {
3062 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3063 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3064 				  __func__);
3065 			return;
3066 		}
3067 		pkt_cnt++;
3068 
3069 		/* Updating the statistics block */
3070 		swstats->mem_freed += skb->truesize;
3071 		dev_kfree_skb_irq(skb);
3072 
3073 		get_info.offset++;
3074 		if (get_info.offset == get_info.fifo_len + 1)
3075 			get_info.offset = 0;
3076 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3077 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3078 	}
3079 
3080 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3081 
3082 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3083 }
3084 
3085 /**
3086  *  s2io_mdio_write - Function to write in to MDIO registers
3087  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3088  *  @addr     : address value
3089  *  @value    : data value
3090  *  @dev      : pointer to net_device structure
3091  *  Description:
3092  *  This function is used to write values to the MDIO registers
3093  *  NONE
3094  */
3095 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3096 			    struct net_device *dev)
3097 {
3098 	u64 val64;
3099 	struct s2io_nic *sp = netdev_priv(dev);
3100 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3101 
3102 	/* address transaction */
3103 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3104 		MDIO_MMD_DEV_ADDR(mmd_type) |
3105 		MDIO_MMS_PRT_ADDR(0x0);
3106 	writeq(val64, &bar0->mdio_control);
3107 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3108 	writeq(val64, &bar0->mdio_control);
3109 	udelay(100);
3110 
3111 	/* Data transaction */
3112 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3113 		MDIO_MMD_DEV_ADDR(mmd_type) |
3114 		MDIO_MMS_PRT_ADDR(0x0) |
3115 		MDIO_MDIO_DATA(value) |
3116 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3117 	writeq(val64, &bar0->mdio_control);
3118 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3119 	writeq(val64, &bar0->mdio_control);
3120 	udelay(100);
3121 
3122 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3123 		MDIO_MMD_DEV_ADDR(mmd_type) |
3124 		MDIO_MMS_PRT_ADDR(0x0) |
3125 		MDIO_OP(MDIO_OP_READ_TRANS);
3126 	writeq(val64, &bar0->mdio_control);
3127 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3128 	writeq(val64, &bar0->mdio_control);
3129 	udelay(100);
3130 }
3131 
3132 /**
3133  *  s2io_mdio_read - Function to write in to MDIO registers
3134  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3135  *  @addr     : address value
3136  *  @dev      : pointer to net_device structure
3137  *  Description:
3138  *  This function is used to read values to the MDIO registers
3139  *  NONE
3140  */
3141 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3142 {
3143 	u64 val64 = 0x0;
3144 	u64 rval64 = 0x0;
3145 	struct s2io_nic *sp = netdev_priv(dev);
3146 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3147 
3148 	/* address transaction */
3149 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3150 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3151 			 | MDIO_MMS_PRT_ADDR(0x0));
3152 	writeq(val64, &bar0->mdio_control);
3153 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154 	writeq(val64, &bar0->mdio_control);
3155 	udelay(100);
3156 
3157 	/* Data transaction */
3158 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3159 		MDIO_MMD_DEV_ADDR(mmd_type) |
3160 		MDIO_MMS_PRT_ADDR(0x0) |
3161 		MDIO_OP(MDIO_OP_READ_TRANS);
3162 	writeq(val64, &bar0->mdio_control);
3163 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3164 	writeq(val64, &bar0->mdio_control);
3165 	udelay(100);
3166 
3167 	/* Read the value from regs */
3168 	rval64 = readq(&bar0->mdio_control);
3169 	rval64 = rval64 & 0xFFFF0000;
3170 	rval64 = rval64 >> 16;
3171 	return rval64;
3172 }
3173 
3174 /**
3175  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3176  *  @counter      : counter value to be updated
3177  *  @flag         : flag to indicate the status
3178  *  @type         : counter type
3179  *  Description:
3180  *  This function is to check the status of the xpak counters value
3181  *  NONE
3182  */
3183 
3184 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3185 				  u16 flag, u16 type)
3186 {
3187 	u64 mask = 0x3;
3188 	u64 val64;
3189 	int i;
3190 	for (i = 0; i < index; i++)
3191 		mask = mask << 0x2;
3192 
3193 	if (flag > 0) {
3194 		*counter = *counter + 1;
3195 		val64 = *regs_stat & mask;
3196 		val64 = val64 >> (index * 0x2);
3197 		val64 = val64 + 1;
3198 		if (val64 == 3) {
3199 			switch (type) {
3200 			case 1:
3201 				DBG_PRINT(ERR_DBG,
3202 					  "Take Xframe NIC out of service.\n");
3203 				DBG_PRINT(ERR_DBG,
3204 "Excessive temperatures may result in premature transceiver failure.\n");
3205 				break;
3206 			case 2:
3207 				DBG_PRINT(ERR_DBG,
3208 					  "Take Xframe NIC out of service.\n");
3209 				DBG_PRINT(ERR_DBG,
3210 "Excessive bias currents may indicate imminent laser diode failure.\n");
3211 				break;
3212 			case 3:
3213 				DBG_PRINT(ERR_DBG,
3214 					  "Take Xframe NIC out of service.\n");
3215 				DBG_PRINT(ERR_DBG,
3216 "Excessive laser output power may saturate far-end receiver.\n");
3217 				break;
3218 			default:
3219 				DBG_PRINT(ERR_DBG,
3220 					  "Incorrect XPAK Alarm type\n");
3221 			}
3222 			val64 = 0x0;
3223 		}
3224 		val64 = val64 << (index * 0x2);
3225 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3226 
3227 	} else {
3228 		*regs_stat = *regs_stat & (~mask);
3229 	}
3230 }
3231 
3232 /**
3233  *  s2io_updt_xpak_counter - Function to update the xpak counters
3234  *  @dev         : pointer to net_device struct
3235  *  Description:
3236  *  This function is to upate the status of the xpak counters value
3237  *  NONE
3238  */
3239 static void s2io_updt_xpak_counter(struct net_device *dev)
3240 {
3241 	u16 flag  = 0x0;
3242 	u16 type  = 0x0;
3243 	u16 val16 = 0x0;
3244 	u64 val64 = 0x0;
3245 	u64 addr  = 0x0;
3246 
3247 	struct s2io_nic *sp = netdev_priv(dev);
3248 	struct stat_block *stats = sp->mac_control.stats_info;
3249 	struct xpakStat *xstats = &stats->xpak_stat;
3250 
3251 	/* Check the communication with the MDIO slave */
3252 	addr = MDIO_CTRL1;
3253 	val64 = 0x0;
3254 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3255 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3256 		DBG_PRINT(ERR_DBG,
3257 			  "ERR: MDIO slave access failed - Returned %llx\n",
3258 			  (unsigned long long)val64);
3259 		return;
3260 	}
3261 
3262 	/* Check for the expected value of control reg 1 */
3263 	if (val64 != MDIO_CTRL1_SPEED10G) {
3264 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3265 			  "Returned: %llx- Expected: 0x%x\n",
3266 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3267 		return;
3268 	}
3269 
3270 	/* Loading the DOM register to MDIO register */
3271 	addr = 0xA100;
3272 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3273 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3274 
3275 	/* Reading the Alarm flags */
3276 	addr = 0xA070;
3277 	val64 = 0x0;
3278 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279 
3280 	flag = CHECKBIT(val64, 0x7);
3281 	type = 1;
3282 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3283 			      &xstats->xpak_regs_stat,
3284 			      0x0, flag, type);
3285 
3286 	if (CHECKBIT(val64, 0x6))
3287 		xstats->alarm_transceiver_temp_low++;
3288 
3289 	flag = CHECKBIT(val64, 0x3);
3290 	type = 2;
3291 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3292 			      &xstats->xpak_regs_stat,
3293 			      0x2, flag, type);
3294 
3295 	if (CHECKBIT(val64, 0x2))
3296 		xstats->alarm_laser_bias_current_low++;
3297 
3298 	flag = CHECKBIT(val64, 0x1);
3299 	type = 3;
3300 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3301 			      &xstats->xpak_regs_stat,
3302 			      0x4, flag, type);
3303 
3304 	if (CHECKBIT(val64, 0x0))
3305 		xstats->alarm_laser_output_power_low++;
3306 
3307 	/* Reading the Warning flags */
3308 	addr = 0xA074;
3309 	val64 = 0x0;
3310 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3311 
3312 	if (CHECKBIT(val64, 0x7))
3313 		xstats->warn_transceiver_temp_high++;
3314 
3315 	if (CHECKBIT(val64, 0x6))
3316 		xstats->warn_transceiver_temp_low++;
3317 
3318 	if (CHECKBIT(val64, 0x3))
3319 		xstats->warn_laser_bias_current_high++;
3320 
3321 	if (CHECKBIT(val64, 0x2))
3322 		xstats->warn_laser_bias_current_low++;
3323 
3324 	if (CHECKBIT(val64, 0x1))
3325 		xstats->warn_laser_output_power_high++;
3326 
3327 	if (CHECKBIT(val64, 0x0))
3328 		xstats->warn_laser_output_power_low++;
3329 }
3330 
3331 /**
3332  *  wait_for_cmd_complete - waits for a command to complete.
3333  *  @sp : private member of the device structure, which is a pointer to the
3334  *  s2io_nic structure.
3335  *  Description: Function that waits for a command to Write into RMAC
3336  *  ADDR DATA registers to be completed and returns either success or
3337  *  error depending on whether the command was complete or not.
3338  *  Return value:
3339  *   SUCCESS on success and FAILURE on failure.
3340  */
3341 
3342 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3343 				 int bit_state)
3344 {
3345 	int ret = FAILURE, cnt = 0, delay = 1;
3346 	u64 val64;
3347 
3348 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3349 		return FAILURE;
3350 
3351 	do {
3352 		val64 = readq(addr);
3353 		if (bit_state == S2IO_BIT_RESET) {
3354 			if (!(val64 & busy_bit)) {
3355 				ret = SUCCESS;
3356 				break;
3357 			}
3358 		} else {
3359 			if (val64 & busy_bit) {
3360 				ret = SUCCESS;
3361 				break;
3362 			}
3363 		}
3364 
3365 		if (in_interrupt())
3366 			mdelay(delay);
3367 		else
3368 			msleep(delay);
3369 
3370 		if (++cnt >= 10)
3371 			delay = 50;
3372 	} while (cnt < 20);
3373 	return ret;
3374 }
3375 /**
3376  * check_pci_device_id - Checks if the device id is supported
3377  * @id : device id
3378  * Description: Function to check if the pci device id is supported by driver.
3379  * Return value: Actual device id if supported else PCI_ANY_ID
3380  */
3381 static u16 check_pci_device_id(u16 id)
3382 {
3383 	switch (id) {
3384 	case PCI_DEVICE_ID_HERC_WIN:
3385 	case PCI_DEVICE_ID_HERC_UNI:
3386 		return XFRAME_II_DEVICE;
3387 	case PCI_DEVICE_ID_S2IO_UNI:
3388 	case PCI_DEVICE_ID_S2IO_WIN:
3389 		return XFRAME_I_DEVICE;
3390 	default:
3391 		return PCI_ANY_ID;
3392 	}
3393 }
3394 
3395 /**
3396  *  s2io_reset - Resets the card.
3397  *  @sp : private member of the device structure.
3398  *  Description: Function to Reset the card. This function then also
3399  *  restores the previously saved PCI configuration space registers as
3400  *  the card reset also resets the configuration space.
3401  *  Return value:
3402  *  void.
3403  */
3404 
3405 static void s2io_reset(struct s2io_nic *sp)
3406 {
3407 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3408 	u64 val64;
3409 	u16 subid, pci_cmd;
3410 	int i;
3411 	u16 val16;
3412 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3413 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3414 	struct stat_block *stats;
3415 	struct swStat *swstats;
3416 
3417 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3418 		  __func__, pci_name(sp->pdev));
3419 
3420 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3421 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3422 
3423 	val64 = SW_RESET_ALL;
3424 	writeq(val64, &bar0->sw_reset);
3425 	if (strstr(sp->product_name, "CX4"))
3426 		msleep(750);
3427 	msleep(250);
3428 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3429 
3430 		/* Restore the PCI state saved during initialization. */
3431 		pci_restore_state(sp->pdev);
3432 		pci_save_state(sp->pdev);
3433 		pci_read_config_word(sp->pdev, 0x2, &val16);
3434 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3435 			break;
3436 		msleep(200);
3437 	}
3438 
3439 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3440 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3441 
3442 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3443 
3444 	s2io_init_pci(sp);
3445 
3446 	/* Set swapper to enable I/O register access */
3447 	s2io_set_swapper(sp);
3448 
3449 	/* restore mac_addr entries */
3450 	do_s2io_restore_unicast_mc(sp);
3451 
3452 	/* Restore the MSIX table entries from local variables */
3453 	restore_xmsi_data(sp);
3454 
3455 	/* Clear certain PCI/PCI-X fields after reset */
3456 	if (sp->device_type == XFRAME_II_DEVICE) {
3457 		/* Clear "detected parity error" bit */
3458 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3459 
3460 		/* Clearing PCIX Ecc status register */
3461 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3462 
3463 		/* Clearing PCI_STATUS error reflected here */
3464 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3465 	}
3466 
3467 	/* Reset device statistics maintained by OS */
3468 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3469 
3470 	stats = sp->mac_control.stats_info;
3471 	swstats = &stats->sw_stat;
3472 
3473 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3474 	up_cnt = swstats->link_up_cnt;
3475 	down_cnt = swstats->link_down_cnt;
3476 	up_time = swstats->link_up_time;
3477 	down_time = swstats->link_down_time;
3478 	reset_cnt = swstats->soft_reset_cnt;
3479 	mem_alloc_cnt = swstats->mem_allocated;
3480 	mem_free_cnt = swstats->mem_freed;
3481 	watchdog_cnt = swstats->watchdog_timer_cnt;
3482 
3483 	memset(stats, 0, sizeof(struct stat_block));
3484 
3485 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3486 	swstats->link_up_cnt = up_cnt;
3487 	swstats->link_down_cnt = down_cnt;
3488 	swstats->link_up_time = up_time;
3489 	swstats->link_down_time = down_time;
3490 	swstats->soft_reset_cnt = reset_cnt;
3491 	swstats->mem_allocated = mem_alloc_cnt;
3492 	swstats->mem_freed = mem_free_cnt;
3493 	swstats->watchdog_timer_cnt = watchdog_cnt;
3494 
3495 	/* SXE-002: Configure link and activity LED to turn it off */
3496 	subid = sp->pdev->subsystem_device;
3497 	if (((subid & 0xFF) >= 0x07) &&
3498 	    (sp->device_type == XFRAME_I_DEVICE)) {
3499 		val64 = readq(&bar0->gpio_control);
3500 		val64 |= 0x0000800000000000ULL;
3501 		writeq(val64, &bar0->gpio_control);
3502 		val64 = 0x0411040400000000ULL;
3503 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3504 	}
3505 
3506 	/*
3507 	 * Clear spurious ECC interrupts that would have occurred on
3508 	 * XFRAME II cards after reset.
3509 	 */
3510 	if (sp->device_type == XFRAME_II_DEVICE) {
3511 		val64 = readq(&bar0->pcc_err_reg);
3512 		writeq(val64, &bar0->pcc_err_reg);
3513 	}
3514 
3515 	sp->device_enabled_once = false;
3516 }
3517 
3518 /**
3519  *  s2io_set_swapper - to set the swapper controle on the card
3520  *  @sp : private member of the device structure,
3521  *  pointer to the s2io_nic structure.
3522  *  Description: Function to set the swapper control on the card
3523  *  correctly depending on the 'endianness' of the system.
3524  *  Return value:
3525  *  SUCCESS on success and FAILURE on failure.
3526  */
3527 
3528 static int s2io_set_swapper(struct s2io_nic *sp)
3529 {
3530 	struct net_device *dev = sp->dev;
3531 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3532 	u64 val64, valt, valr;
3533 
3534 	/*
3535 	 * Set proper endian settings and verify the same by reading
3536 	 * the PIF Feed-back register.
3537 	 */
3538 
3539 	val64 = readq(&bar0->pif_rd_swapper_fb);
3540 	if (val64 != 0x0123456789ABCDEFULL) {
3541 		int i = 0;
3542 		static const u64 value[] = {
3543 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3544 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3545 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3546 			0			/* FE=0, SE=0 */
3547 		};
3548 
3549 		while (i < 4) {
3550 			writeq(value[i], &bar0->swapper_ctrl);
3551 			val64 = readq(&bar0->pif_rd_swapper_fb);
3552 			if (val64 == 0x0123456789ABCDEFULL)
3553 				break;
3554 			i++;
3555 		}
3556 		if (i == 4) {
3557 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3558 				  "feedback read %llx\n",
3559 				  dev->name, (unsigned long long)val64);
3560 			return FAILURE;
3561 		}
3562 		valr = value[i];
3563 	} else {
3564 		valr = readq(&bar0->swapper_ctrl);
3565 	}
3566 
3567 	valt = 0x0123456789ABCDEFULL;
3568 	writeq(valt, &bar0->xmsi_address);
3569 	val64 = readq(&bar0->xmsi_address);
3570 
3571 	if (val64 != valt) {
3572 		int i = 0;
3573 		static const u64 value[] = {
3574 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3575 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3576 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3577 			0			/* FE=0, SE=0 */
3578 		};
3579 
3580 		while (i < 4) {
3581 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3582 			writeq(valt, &bar0->xmsi_address);
3583 			val64 = readq(&bar0->xmsi_address);
3584 			if (val64 == valt)
3585 				break;
3586 			i++;
3587 		}
3588 		if (i == 4) {
3589 			unsigned long long x = val64;
3590 			DBG_PRINT(ERR_DBG,
3591 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3592 			return FAILURE;
3593 		}
3594 	}
3595 	val64 = readq(&bar0->swapper_ctrl);
3596 	val64 &= 0xFFFF000000000000ULL;
3597 
3598 #ifdef __BIG_ENDIAN
3599 	/*
3600 	 * The device by default set to a big endian format, so a
3601 	 * big endian driver need not set anything.
3602 	 */
3603 	val64 |= (SWAPPER_CTRL_TXP_FE |
3604 		  SWAPPER_CTRL_TXP_SE |
3605 		  SWAPPER_CTRL_TXD_R_FE |
3606 		  SWAPPER_CTRL_TXD_W_FE |
3607 		  SWAPPER_CTRL_TXF_R_FE |
3608 		  SWAPPER_CTRL_RXD_R_FE |
3609 		  SWAPPER_CTRL_RXD_W_FE |
3610 		  SWAPPER_CTRL_RXF_W_FE |
3611 		  SWAPPER_CTRL_XMSI_FE |
3612 		  SWAPPER_CTRL_STATS_FE |
3613 		  SWAPPER_CTRL_STATS_SE);
3614 	if (sp->config.intr_type == INTA)
3615 		val64 |= SWAPPER_CTRL_XMSI_SE;
3616 	writeq(val64, &bar0->swapper_ctrl);
3617 #else
3618 	/*
3619 	 * Initially we enable all bits to make it accessible by the
3620 	 * driver, then we selectively enable only those bits that
3621 	 * we want to set.
3622 	 */
3623 	val64 |= (SWAPPER_CTRL_TXP_FE |
3624 		  SWAPPER_CTRL_TXP_SE |
3625 		  SWAPPER_CTRL_TXD_R_FE |
3626 		  SWAPPER_CTRL_TXD_R_SE |
3627 		  SWAPPER_CTRL_TXD_W_FE |
3628 		  SWAPPER_CTRL_TXD_W_SE |
3629 		  SWAPPER_CTRL_TXF_R_FE |
3630 		  SWAPPER_CTRL_RXD_R_FE |
3631 		  SWAPPER_CTRL_RXD_R_SE |
3632 		  SWAPPER_CTRL_RXD_W_FE |
3633 		  SWAPPER_CTRL_RXD_W_SE |
3634 		  SWAPPER_CTRL_RXF_W_FE |
3635 		  SWAPPER_CTRL_XMSI_FE |
3636 		  SWAPPER_CTRL_STATS_FE |
3637 		  SWAPPER_CTRL_STATS_SE);
3638 	if (sp->config.intr_type == INTA)
3639 		val64 |= SWAPPER_CTRL_XMSI_SE;
3640 	writeq(val64, &bar0->swapper_ctrl);
3641 #endif
3642 	val64 = readq(&bar0->swapper_ctrl);
3643 
3644 	/*
3645 	 * Verifying if endian settings are accurate by reading a
3646 	 * feedback register.
3647 	 */
3648 	val64 = readq(&bar0->pif_rd_swapper_fb);
3649 	if (val64 != 0x0123456789ABCDEFULL) {
3650 		/* Endian settings are incorrect, calls for another dekko. */
3651 		DBG_PRINT(ERR_DBG,
3652 			  "%s: Endian settings are wrong, feedback read %llx\n",
3653 			  dev->name, (unsigned long long)val64);
3654 		return FAILURE;
3655 	}
3656 
3657 	return SUCCESS;
3658 }
3659 
3660 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3661 {
3662 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3663 	u64 val64;
3664 	int ret = 0, cnt = 0;
3665 
3666 	do {
3667 		val64 = readq(&bar0->xmsi_access);
3668 		if (!(val64 & s2BIT(15)))
3669 			break;
3670 		mdelay(1);
3671 		cnt++;
3672 	} while (cnt < 5);
3673 	if (cnt == 5) {
3674 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3675 		ret = 1;
3676 	}
3677 
3678 	return ret;
3679 }
3680 
3681 static void restore_xmsi_data(struct s2io_nic *nic)
3682 {
3683 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3684 	u64 val64;
3685 	int i, msix_index;
3686 
3687 	if (nic->device_type == XFRAME_I_DEVICE)
3688 		return;
3689 
3690 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3691 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3692 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3693 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3694 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3695 		writeq(val64, &bar0->xmsi_access);
3696 		if (wait_for_msix_trans(nic, msix_index)) {
3697 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3698 				  __func__, msix_index);
3699 			continue;
3700 		}
3701 	}
3702 }
3703 
3704 static void store_xmsi_data(struct s2io_nic *nic)
3705 {
3706 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3707 	u64 val64, addr, data;
3708 	int i, msix_index;
3709 
3710 	if (nic->device_type == XFRAME_I_DEVICE)
3711 		return;
3712 
3713 	/* Store and display */
3714 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3715 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3716 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3717 		writeq(val64, &bar0->xmsi_access);
3718 		if (wait_for_msix_trans(nic, msix_index)) {
3719 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3720 				  __func__, msix_index);
3721 			continue;
3722 		}
3723 		addr = readq(&bar0->xmsi_address);
3724 		data = readq(&bar0->xmsi_data);
3725 		if (addr && data) {
3726 			nic->msix_info[i].addr = addr;
3727 			nic->msix_info[i].data = data;
3728 		}
3729 	}
3730 }
3731 
3732 static int s2io_enable_msi_x(struct s2io_nic *nic)
3733 {
3734 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735 	u64 rx_mat;
3736 	u16 msi_control; /* Temp variable */
3737 	int ret, i, j, msix_indx = 1;
3738 	int size;
3739 	struct stat_block *stats = nic->mac_control.stats_info;
3740 	struct swStat *swstats = &stats->sw_stat;
3741 
3742 	size = nic->num_entries * sizeof(struct msix_entry);
3743 	nic->entries = kzalloc(size, GFP_KERNEL);
3744 	if (!nic->entries) {
3745 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3746 			  __func__);
3747 		swstats->mem_alloc_fail_cnt++;
3748 		return -ENOMEM;
3749 	}
3750 	swstats->mem_allocated += size;
3751 
3752 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3753 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3754 	if (!nic->s2io_entries) {
3755 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3756 			  __func__);
3757 		swstats->mem_alloc_fail_cnt++;
3758 		kfree(nic->entries);
3759 		swstats->mem_freed
3760 			+= (nic->num_entries * sizeof(struct msix_entry));
3761 		return -ENOMEM;
3762 	}
3763 	swstats->mem_allocated += size;
3764 
3765 	nic->entries[0].entry = 0;
3766 	nic->s2io_entries[0].entry = 0;
3767 	nic->s2io_entries[0].in_use = MSIX_FLG;
3768 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3769 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3770 
3771 	for (i = 1; i < nic->num_entries; i++) {
3772 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3773 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3774 		nic->s2io_entries[i].arg = NULL;
3775 		nic->s2io_entries[i].in_use = 0;
3776 	}
3777 
3778 	rx_mat = readq(&bar0->rx_mat);
3779 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3780 		rx_mat |= RX_MAT_SET(j, msix_indx);
3781 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3782 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3783 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3784 		msix_indx += 8;
3785 	}
3786 	writeq(rx_mat, &bar0->rx_mat);
3787 	readq(&bar0->rx_mat);
3788 
3789 	ret = pci_enable_msix_range(nic->pdev, nic->entries,
3790 				    nic->num_entries, nic->num_entries);
3791 	/* We fail init if error or we get less vectors than min required */
3792 	if (ret < 0) {
3793 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3794 		kfree(nic->entries);
3795 		swstats->mem_freed += nic->num_entries *
3796 			sizeof(struct msix_entry);
3797 		kfree(nic->s2io_entries);
3798 		swstats->mem_freed += nic->num_entries *
3799 			sizeof(struct s2io_msix_entry);
3800 		nic->entries = NULL;
3801 		nic->s2io_entries = NULL;
3802 		return -ENOMEM;
3803 	}
3804 
3805 	/*
3806 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3807 	 * in the herc NIC. (Temp change, needs to be removed later)
3808 	 */
3809 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3810 	msi_control |= 0x1; /* Enable MSI */
3811 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3812 
3813 	return 0;
3814 }
3815 
3816 /* Handle software interrupt used during MSI(X) test */
3817 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3818 {
3819 	struct s2io_nic *sp = dev_id;
3820 
3821 	sp->msi_detected = 1;
3822 	wake_up(&sp->msi_wait);
3823 
3824 	return IRQ_HANDLED;
3825 }
3826 
3827 /* Test interrupt path by forcing a a software IRQ */
3828 static int s2io_test_msi(struct s2io_nic *sp)
3829 {
3830 	struct pci_dev *pdev = sp->pdev;
3831 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3832 	int err;
3833 	u64 val64, saved64;
3834 
3835 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3836 			  sp->name, sp);
3837 	if (err) {
3838 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3839 			  sp->dev->name, pci_name(pdev), pdev->irq);
3840 		return err;
3841 	}
3842 
3843 	init_waitqueue_head(&sp->msi_wait);
3844 	sp->msi_detected = 0;
3845 
3846 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3847 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3848 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3849 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3850 	writeq(val64, &bar0->scheduled_int_ctrl);
3851 
3852 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3853 
3854 	if (!sp->msi_detected) {
3855 		/* MSI(X) test failed, go back to INTx mode */
3856 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3857 			  "using MSI(X) during test\n",
3858 			  sp->dev->name, pci_name(pdev));
3859 
3860 		err = -EOPNOTSUPP;
3861 	}
3862 
3863 	free_irq(sp->entries[1].vector, sp);
3864 
3865 	writeq(saved64, &bar0->scheduled_int_ctrl);
3866 
3867 	return err;
3868 }
3869 
3870 static void remove_msix_isr(struct s2io_nic *sp)
3871 {
3872 	int i;
3873 	u16 msi_control;
3874 
3875 	for (i = 0; i < sp->num_entries; i++) {
3876 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3877 			int vector = sp->entries[i].vector;
3878 			void *arg = sp->s2io_entries[i].arg;
3879 			free_irq(vector, arg);
3880 		}
3881 	}
3882 
3883 	kfree(sp->entries);
3884 	kfree(sp->s2io_entries);
3885 	sp->entries = NULL;
3886 	sp->s2io_entries = NULL;
3887 
3888 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3889 	msi_control &= 0xFFFE; /* Disable MSI */
3890 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3891 
3892 	pci_disable_msix(sp->pdev);
3893 }
3894 
3895 static void remove_inta_isr(struct s2io_nic *sp)
3896 {
3897 	free_irq(sp->pdev->irq, sp->dev);
3898 }
3899 
3900 /* ********************************************************* *
3901  * Functions defined below concern the OS part of the driver *
3902  * ********************************************************* */
3903 
3904 /**
3905  *  s2io_open - open entry point of the driver
3906  *  @dev : pointer to the device structure.
3907  *  Description:
3908  *  This function is the open entry point of the driver. It mainly calls a
3909  *  function to allocate Rx buffers and inserts them into the buffer
3910  *  descriptors and then enables the Rx part of the NIC.
3911  *  Return value:
3912  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3913  *   file on failure.
3914  */
3915 
3916 static int s2io_open(struct net_device *dev)
3917 {
3918 	struct s2io_nic *sp = netdev_priv(dev);
3919 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3920 	int err = 0;
3921 
3922 	/*
3923 	 * Make sure you have link off by default every time
3924 	 * Nic is initialized
3925 	 */
3926 	netif_carrier_off(dev);
3927 	sp->last_link_state = 0;
3928 
3929 	/* Initialize H/W and enable interrupts */
3930 	err = s2io_card_up(sp);
3931 	if (err) {
3932 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3933 			  dev->name);
3934 		goto hw_init_failed;
3935 	}
3936 
3937 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3938 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3939 		s2io_card_down(sp);
3940 		err = -ENODEV;
3941 		goto hw_init_failed;
3942 	}
3943 	s2io_start_all_tx_queue(sp);
3944 	return 0;
3945 
3946 hw_init_failed:
3947 	if (sp->config.intr_type == MSI_X) {
3948 		if (sp->entries) {
3949 			kfree(sp->entries);
3950 			swstats->mem_freed += sp->num_entries *
3951 				sizeof(struct msix_entry);
3952 		}
3953 		if (sp->s2io_entries) {
3954 			kfree(sp->s2io_entries);
3955 			swstats->mem_freed += sp->num_entries *
3956 				sizeof(struct s2io_msix_entry);
3957 		}
3958 	}
3959 	return err;
3960 }
3961 
3962 /**
3963  *  s2io_close -close entry point of the driver
3964  *  @dev : device pointer.
3965  *  Description:
3966  *  This is the stop entry point of the driver. It needs to undo exactly
3967  *  whatever was done by the open entry point,thus it's usually referred to
3968  *  as the close function.Among other things this function mainly stops the
3969  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3970  *  Return value:
3971  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3972  *  file on failure.
3973  */
3974 
3975 static int s2io_close(struct net_device *dev)
3976 {
3977 	struct s2io_nic *sp = netdev_priv(dev);
3978 	struct config_param *config = &sp->config;
3979 	u64 tmp64;
3980 	int offset;
3981 
3982 	/* Return if the device is already closed               *
3983 	 *  Can happen when s2io_card_up failed in change_mtu    *
3984 	 */
3985 	if (!is_s2io_card_up(sp))
3986 		return 0;
3987 
3988 	s2io_stop_all_tx_queue(sp);
3989 	/* delete all populated mac entries */
3990 	for (offset = 1; offset < config->max_mc_addr; offset++) {
3991 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3992 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3993 			do_s2io_delete_unicast_mc(sp, tmp64);
3994 	}
3995 
3996 	s2io_card_down(sp);
3997 
3998 	return 0;
3999 }
4000 
4001 /**
4002  *  s2io_xmit - Tx entry point of te driver
4003  *  @skb : the socket buffer containing the Tx data.
4004  *  @dev : device pointer.
4005  *  Description :
4006  *  This function is the Tx entry point of the driver. S2IO NIC supports
4007  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4008  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4009  *  not be upadted.
4010  *  Return value:
4011  *  0 on success & 1 on failure.
4012  */
4013 
4014 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4015 {
4016 	struct s2io_nic *sp = netdev_priv(dev);
4017 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4018 	register u64 val64;
4019 	struct TxD *txdp;
4020 	struct TxFIFO_element __iomem *tx_fifo;
4021 	unsigned long flags = 0;
4022 	u16 vlan_tag = 0;
4023 	struct fifo_info *fifo = NULL;
4024 	int offload_type;
4025 	int enable_per_list_interrupt = 0;
4026 	struct config_param *config = &sp->config;
4027 	struct mac_info *mac_control = &sp->mac_control;
4028 	struct stat_block *stats = mac_control->stats_info;
4029 	struct swStat *swstats = &stats->sw_stat;
4030 
4031 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4032 
4033 	if (unlikely(skb->len <= 0)) {
4034 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4035 		dev_kfree_skb_any(skb);
4036 		return NETDEV_TX_OK;
4037 	}
4038 
4039 	if (!is_s2io_card_up(sp)) {
4040 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4041 			  dev->name);
4042 		dev_kfree_skb_any(skb);
4043 		return NETDEV_TX_OK;
4044 	}
4045 
4046 	queue = 0;
4047 	if (skb_vlan_tag_present(skb))
4048 		vlan_tag = skb_vlan_tag_get(skb);
4049 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4050 		if (skb->protocol == htons(ETH_P_IP)) {
4051 			struct iphdr *ip;
4052 			struct tcphdr *th;
4053 			ip = ip_hdr(skb);
4054 
4055 			if (!ip_is_fragment(ip)) {
4056 				th = (struct tcphdr *)(((unsigned char *)ip) +
4057 						       ip->ihl*4);
4058 
4059 				if (ip->protocol == IPPROTO_TCP) {
4060 					queue_len = sp->total_tcp_fifos;
4061 					queue = (ntohs(th->source) +
4062 						 ntohs(th->dest)) &
4063 						sp->fifo_selector[queue_len - 1];
4064 					if (queue >= queue_len)
4065 						queue = queue_len - 1;
4066 				} else if (ip->protocol == IPPROTO_UDP) {
4067 					queue_len = sp->total_udp_fifos;
4068 					queue = (ntohs(th->source) +
4069 						 ntohs(th->dest)) &
4070 						sp->fifo_selector[queue_len - 1];
4071 					if (queue >= queue_len)
4072 						queue = queue_len - 1;
4073 					queue += sp->udp_fifo_idx;
4074 					if (skb->len > 1024)
4075 						enable_per_list_interrupt = 1;
4076 				}
4077 			}
4078 		}
4079 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4080 		/* get fifo number based on skb->priority value */
4081 		queue = config->fifo_mapping
4082 			[skb->priority & (MAX_TX_FIFOS - 1)];
4083 	fifo = &mac_control->fifos[queue];
4084 
4085 	spin_lock_irqsave(&fifo->tx_lock, flags);
4086 
4087 	if (sp->config.multiq) {
4088 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4089 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4090 			return NETDEV_TX_BUSY;
4091 		}
4092 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4093 		if (netif_queue_stopped(dev)) {
4094 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4095 			return NETDEV_TX_BUSY;
4096 		}
4097 	}
4098 
4099 	put_off = (u16)fifo->tx_curr_put_info.offset;
4100 	get_off = (u16)fifo->tx_curr_get_info.offset;
4101 	txdp = fifo->list_info[put_off].list_virt_addr;
4102 
4103 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4104 	/* Avoid "put" pointer going beyond "get" pointer */
4105 	if (txdp->Host_Control ||
4106 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4107 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4108 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4109 		dev_kfree_skb_any(skb);
4110 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4111 		return NETDEV_TX_OK;
4112 	}
4113 
4114 	offload_type = s2io_offload_type(skb);
4115 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4116 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4117 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4118 	}
4119 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4120 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4121 				    TXD_TX_CKO_TCP_EN |
4122 				    TXD_TX_CKO_UDP_EN);
4123 	}
4124 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4125 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4126 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4127 	if (enable_per_list_interrupt)
4128 		if (put_off & (queue_len >> 5))
4129 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4130 	if (vlan_tag) {
4131 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4132 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4133 	}
4134 
4135 	frg_len = skb_headlen(skb);
4136 	if (offload_type == SKB_GSO_UDP) {
4137 		int ufo_size;
4138 
4139 		ufo_size = s2io_udp_mss(skb);
4140 		ufo_size &= ~7;
4141 		txdp->Control_1 |= TXD_UFO_EN;
4142 		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4143 		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4144 #ifdef __BIG_ENDIAN
4145 		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4146 		fifo->ufo_in_band_v[put_off] =
4147 			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4148 #else
4149 		fifo->ufo_in_band_v[put_off] =
4150 			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4151 #endif
4152 		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4153 		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4154 						      fifo->ufo_in_band_v,
4155 						      sizeof(u64),
4156 						      PCI_DMA_TODEVICE);
4157 		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4158 			goto pci_map_failed;
4159 		txdp++;
4160 	}
4161 
4162 	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4163 					      frg_len, PCI_DMA_TODEVICE);
4164 	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4165 		goto pci_map_failed;
4166 
4167 	txdp->Host_Control = (unsigned long)skb;
4168 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4169 	if (offload_type == SKB_GSO_UDP)
4170 		txdp->Control_1 |= TXD_UFO_EN;
4171 
4172 	frg_cnt = skb_shinfo(skb)->nr_frags;
4173 	/* For fragmented SKB. */
4174 	for (i = 0; i < frg_cnt; i++) {
4175 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4176 		/* A '0' length fragment will be ignored */
4177 		if (!skb_frag_size(frag))
4178 			continue;
4179 		txdp++;
4180 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4181 							     frag, 0,
4182 							     skb_frag_size(frag),
4183 							     DMA_TO_DEVICE);
4184 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4185 		if (offload_type == SKB_GSO_UDP)
4186 			txdp->Control_1 |= TXD_UFO_EN;
4187 	}
4188 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4189 
4190 	if (offload_type == SKB_GSO_UDP)
4191 		frg_cnt++; /* as Txd0 was used for inband header */
4192 
4193 	tx_fifo = mac_control->tx_FIFO_start[queue];
4194 	val64 = fifo->list_info[put_off].list_phy_addr;
4195 	writeq(val64, &tx_fifo->TxDL_Pointer);
4196 
4197 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4198 		 TX_FIFO_LAST_LIST);
4199 	if (offload_type)
4200 		val64 |= TX_FIFO_SPECIAL_FUNC;
4201 
4202 	writeq(val64, &tx_fifo->List_Control);
4203 
4204 	mmiowb();
4205 
4206 	put_off++;
4207 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4208 		put_off = 0;
4209 	fifo->tx_curr_put_info.offset = put_off;
4210 
4211 	/* Avoid "put" pointer going beyond "get" pointer */
4212 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4213 		swstats->fifo_full_cnt++;
4214 		DBG_PRINT(TX_DBG,
4215 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4216 			  put_off, get_off);
4217 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4218 	}
4219 	swstats->mem_allocated += skb->truesize;
4220 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4221 
4222 	if (sp->config.intr_type == MSI_X)
4223 		tx_intr_handler(fifo);
4224 
4225 	return NETDEV_TX_OK;
4226 
4227 pci_map_failed:
4228 	swstats->pci_map_fail_cnt++;
4229 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4230 	swstats->mem_freed += skb->truesize;
4231 	dev_kfree_skb_any(skb);
4232 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4233 	return NETDEV_TX_OK;
4234 }
4235 
4236 static void
4237 s2io_alarm_handle(unsigned long data)
4238 {
4239 	struct s2io_nic *sp = (struct s2io_nic *)data;
4240 	struct net_device *dev = sp->dev;
4241 
4242 	s2io_handle_errors(dev);
4243 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4244 }
4245 
4246 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4247 {
4248 	struct ring_info *ring = (struct ring_info *)dev_id;
4249 	struct s2io_nic *sp = ring->nic;
4250 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4251 
4252 	if (unlikely(!is_s2io_card_up(sp)))
4253 		return IRQ_HANDLED;
4254 
4255 	if (sp->config.napi) {
4256 		u8 __iomem *addr = NULL;
4257 		u8 val8 = 0;
4258 
4259 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4260 		addr += (7 - ring->ring_no);
4261 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4262 		writeb(val8, addr);
4263 		val8 = readb(addr);
4264 		napi_schedule(&ring->napi);
4265 	} else {
4266 		rx_intr_handler(ring, 0);
4267 		s2io_chk_rx_buffers(sp, ring);
4268 	}
4269 
4270 	return IRQ_HANDLED;
4271 }
4272 
4273 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4274 {
4275 	int i;
4276 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4277 	struct s2io_nic *sp = fifos->nic;
4278 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4279 	struct config_param *config  = &sp->config;
4280 	u64 reason;
4281 
4282 	if (unlikely(!is_s2io_card_up(sp)))
4283 		return IRQ_NONE;
4284 
4285 	reason = readq(&bar0->general_int_status);
4286 	if (unlikely(reason == S2IO_MINUS_ONE))
4287 		/* Nothing much can be done. Get out */
4288 		return IRQ_HANDLED;
4289 
4290 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4291 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4292 
4293 		if (reason & GEN_INTR_TXPIC)
4294 			s2io_txpic_intr_handle(sp);
4295 
4296 		if (reason & GEN_INTR_TXTRAFFIC)
4297 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4298 
4299 		for (i = 0; i < config->tx_fifo_num; i++)
4300 			tx_intr_handler(&fifos[i]);
4301 
4302 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4303 		readl(&bar0->general_int_status);
4304 		return IRQ_HANDLED;
4305 	}
4306 	/* The interrupt was not raised by us */
4307 	return IRQ_NONE;
4308 }
4309 
4310 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4311 {
4312 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4313 	u64 val64;
4314 
4315 	val64 = readq(&bar0->pic_int_status);
4316 	if (val64 & PIC_INT_GPIO) {
4317 		val64 = readq(&bar0->gpio_int_reg);
4318 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4319 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4320 			/*
4321 			 * This is unstable state so clear both up/down
4322 			 * interrupt and adapter to re-evaluate the link state.
4323 			 */
4324 			val64 |= GPIO_INT_REG_LINK_DOWN;
4325 			val64 |= GPIO_INT_REG_LINK_UP;
4326 			writeq(val64, &bar0->gpio_int_reg);
4327 			val64 = readq(&bar0->gpio_int_mask);
4328 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4329 				   GPIO_INT_MASK_LINK_DOWN);
4330 			writeq(val64, &bar0->gpio_int_mask);
4331 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4332 			val64 = readq(&bar0->adapter_status);
4333 			/* Enable Adapter */
4334 			val64 = readq(&bar0->adapter_control);
4335 			val64 |= ADAPTER_CNTL_EN;
4336 			writeq(val64, &bar0->adapter_control);
4337 			val64 |= ADAPTER_LED_ON;
4338 			writeq(val64, &bar0->adapter_control);
4339 			if (!sp->device_enabled_once)
4340 				sp->device_enabled_once = 1;
4341 
4342 			s2io_link(sp, LINK_UP);
4343 			/*
4344 			 * unmask link down interrupt and mask link-up
4345 			 * intr
4346 			 */
4347 			val64 = readq(&bar0->gpio_int_mask);
4348 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4349 			val64 |= GPIO_INT_MASK_LINK_UP;
4350 			writeq(val64, &bar0->gpio_int_mask);
4351 
4352 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4353 			val64 = readq(&bar0->adapter_status);
4354 			s2io_link(sp, LINK_DOWN);
4355 			/* Link is down so unmaks link up interrupt */
4356 			val64 = readq(&bar0->gpio_int_mask);
4357 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4358 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4359 			writeq(val64, &bar0->gpio_int_mask);
4360 
4361 			/* turn off LED */
4362 			val64 = readq(&bar0->adapter_control);
4363 			val64 = val64 & (~ADAPTER_LED_ON);
4364 			writeq(val64, &bar0->adapter_control);
4365 		}
4366 	}
4367 	val64 = readq(&bar0->gpio_int_mask);
4368 }
4369 
4370 /**
4371  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4372  *  @value: alarm bits
4373  *  @addr: address value
4374  *  @cnt: counter variable
4375  *  Description: Check for alarm and increment the counter
4376  *  Return Value:
4377  *  1 - if alarm bit set
4378  *  0 - if alarm bit is not set
4379  */
4380 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4381 				 unsigned long long *cnt)
4382 {
4383 	u64 val64;
4384 	val64 = readq(addr);
4385 	if (val64 & value) {
4386 		writeq(val64, addr);
4387 		(*cnt)++;
4388 		return 1;
4389 	}
4390 	return 0;
4391 
4392 }
4393 
4394 /**
4395  *  s2io_handle_errors - Xframe error indication handler
4396  *  @nic: device private variable
4397  *  Description: Handle alarms such as loss of link, single or
4398  *  double ECC errors, critical and serious errors.
4399  *  Return Value:
4400  *  NONE
4401  */
4402 static void s2io_handle_errors(void *dev_id)
4403 {
4404 	struct net_device *dev = (struct net_device *)dev_id;
4405 	struct s2io_nic *sp = netdev_priv(dev);
4406 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4407 	u64 temp64 = 0, val64 = 0;
4408 	int i = 0;
4409 
4410 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4411 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4412 
4413 	if (!is_s2io_card_up(sp))
4414 		return;
4415 
4416 	if (pci_channel_offline(sp->pdev))
4417 		return;
4418 
4419 	memset(&sw_stat->ring_full_cnt, 0,
4420 	       sizeof(sw_stat->ring_full_cnt));
4421 
4422 	/* Handling the XPAK counters update */
4423 	if (stats->xpak_timer_count < 72000) {
4424 		/* waiting for an hour */
4425 		stats->xpak_timer_count++;
4426 	} else {
4427 		s2io_updt_xpak_counter(dev);
4428 		/* reset the count to zero */
4429 		stats->xpak_timer_count = 0;
4430 	}
4431 
4432 	/* Handling link status change error Intr */
4433 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4434 		val64 = readq(&bar0->mac_rmac_err_reg);
4435 		writeq(val64, &bar0->mac_rmac_err_reg);
4436 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4437 			schedule_work(&sp->set_link_task);
4438 	}
4439 
4440 	/* In case of a serious error, the device will be Reset. */
4441 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4442 				  &sw_stat->serious_err_cnt))
4443 		goto reset;
4444 
4445 	/* Check for data parity error */
4446 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4447 				  &sw_stat->parity_err_cnt))
4448 		goto reset;
4449 
4450 	/* Check for ring full counter */
4451 	if (sp->device_type == XFRAME_II_DEVICE) {
4452 		val64 = readq(&bar0->ring_bump_counter1);
4453 		for (i = 0; i < 4; i++) {
4454 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4455 			temp64 >>= 64 - ((i+1)*16);
4456 			sw_stat->ring_full_cnt[i] += temp64;
4457 		}
4458 
4459 		val64 = readq(&bar0->ring_bump_counter2);
4460 		for (i = 0; i < 4; i++) {
4461 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4462 			temp64 >>= 64 - ((i+1)*16);
4463 			sw_stat->ring_full_cnt[i+4] += temp64;
4464 		}
4465 	}
4466 
4467 	val64 = readq(&bar0->txdma_int_status);
4468 	/*check for pfc_err*/
4469 	if (val64 & TXDMA_PFC_INT) {
4470 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4471 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4472 					  PFC_PCIX_ERR,
4473 					  &bar0->pfc_err_reg,
4474 					  &sw_stat->pfc_err_cnt))
4475 			goto reset;
4476 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4477 				      &bar0->pfc_err_reg,
4478 				      &sw_stat->pfc_err_cnt);
4479 	}
4480 
4481 	/*check for tda_err*/
4482 	if (val64 & TXDMA_TDA_INT) {
4483 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4484 					  TDA_SM0_ERR_ALARM |
4485 					  TDA_SM1_ERR_ALARM,
4486 					  &bar0->tda_err_reg,
4487 					  &sw_stat->tda_err_cnt))
4488 			goto reset;
4489 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4490 				      &bar0->tda_err_reg,
4491 				      &sw_stat->tda_err_cnt);
4492 	}
4493 	/*check for pcc_err*/
4494 	if (val64 & TXDMA_PCC_INT) {
4495 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4496 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4497 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4498 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4499 					  PCC_TXB_ECC_DB_ERR,
4500 					  &bar0->pcc_err_reg,
4501 					  &sw_stat->pcc_err_cnt))
4502 			goto reset;
4503 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4504 				      &bar0->pcc_err_reg,
4505 				      &sw_stat->pcc_err_cnt);
4506 	}
4507 
4508 	/*check for tti_err*/
4509 	if (val64 & TXDMA_TTI_INT) {
4510 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4511 					  &bar0->tti_err_reg,
4512 					  &sw_stat->tti_err_cnt))
4513 			goto reset;
4514 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4515 				      &bar0->tti_err_reg,
4516 				      &sw_stat->tti_err_cnt);
4517 	}
4518 
4519 	/*check for lso_err*/
4520 	if (val64 & TXDMA_LSO_INT) {
4521 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4522 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4523 					  &bar0->lso_err_reg,
4524 					  &sw_stat->lso_err_cnt))
4525 			goto reset;
4526 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4527 				      &bar0->lso_err_reg,
4528 				      &sw_stat->lso_err_cnt);
4529 	}
4530 
4531 	/*check for tpa_err*/
4532 	if (val64 & TXDMA_TPA_INT) {
4533 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4534 					  &bar0->tpa_err_reg,
4535 					  &sw_stat->tpa_err_cnt))
4536 			goto reset;
4537 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4538 				      &bar0->tpa_err_reg,
4539 				      &sw_stat->tpa_err_cnt);
4540 	}
4541 
4542 	/*check for sm_err*/
4543 	if (val64 & TXDMA_SM_INT) {
4544 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4545 					  &bar0->sm_err_reg,
4546 					  &sw_stat->sm_err_cnt))
4547 			goto reset;
4548 	}
4549 
4550 	val64 = readq(&bar0->mac_int_status);
4551 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4552 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4553 					  &bar0->mac_tmac_err_reg,
4554 					  &sw_stat->mac_tmac_err_cnt))
4555 			goto reset;
4556 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4557 				      TMAC_DESC_ECC_SG_ERR |
4558 				      TMAC_DESC_ECC_DB_ERR,
4559 				      &bar0->mac_tmac_err_reg,
4560 				      &sw_stat->mac_tmac_err_cnt);
4561 	}
4562 
4563 	val64 = readq(&bar0->xgxs_int_status);
4564 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4565 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4566 					  &bar0->xgxs_txgxs_err_reg,
4567 					  &sw_stat->xgxs_txgxs_err_cnt))
4568 			goto reset;
4569 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4570 				      &bar0->xgxs_txgxs_err_reg,
4571 				      &sw_stat->xgxs_txgxs_err_cnt);
4572 	}
4573 
4574 	val64 = readq(&bar0->rxdma_int_status);
4575 	if (val64 & RXDMA_INT_RC_INT_M) {
4576 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4577 					  RC_FTC_ECC_DB_ERR |
4578 					  RC_PRCn_SM_ERR_ALARM |
4579 					  RC_FTC_SM_ERR_ALARM,
4580 					  &bar0->rc_err_reg,
4581 					  &sw_stat->rc_err_cnt))
4582 			goto reset;
4583 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4584 				      RC_FTC_ECC_SG_ERR |
4585 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4586 				      &sw_stat->rc_err_cnt);
4587 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4588 					  PRC_PCI_AB_WR_Rn |
4589 					  PRC_PCI_AB_F_WR_Rn,
4590 					  &bar0->prc_pcix_err_reg,
4591 					  &sw_stat->prc_pcix_err_cnt))
4592 			goto reset;
4593 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4594 				      PRC_PCI_DP_WR_Rn |
4595 				      PRC_PCI_DP_F_WR_Rn,
4596 				      &bar0->prc_pcix_err_reg,
4597 				      &sw_stat->prc_pcix_err_cnt);
4598 	}
4599 
4600 	if (val64 & RXDMA_INT_RPA_INT_M) {
4601 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4602 					  &bar0->rpa_err_reg,
4603 					  &sw_stat->rpa_err_cnt))
4604 			goto reset;
4605 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4606 				      &bar0->rpa_err_reg,
4607 				      &sw_stat->rpa_err_cnt);
4608 	}
4609 
4610 	if (val64 & RXDMA_INT_RDA_INT_M) {
4611 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4612 					  RDA_FRM_ECC_DB_N_AERR |
4613 					  RDA_SM1_ERR_ALARM |
4614 					  RDA_SM0_ERR_ALARM |
4615 					  RDA_RXD_ECC_DB_SERR,
4616 					  &bar0->rda_err_reg,
4617 					  &sw_stat->rda_err_cnt))
4618 			goto reset;
4619 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4620 				      RDA_FRM_ECC_SG_ERR |
4621 				      RDA_MISC_ERR |
4622 				      RDA_PCIX_ERR,
4623 				      &bar0->rda_err_reg,
4624 				      &sw_stat->rda_err_cnt);
4625 	}
4626 
4627 	if (val64 & RXDMA_INT_RTI_INT_M) {
4628 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4629 					  &bar0->rti_err_reg,
4630 					  &sw_stat->rti_err_cnt))
4631 			goto reset;
4632 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4633 				      &bar0->rti_err_reg,
4634 				      &sw_stat->rti_err_cnt);
4635 	}
4636 
4637 	val64 = readq(&bar0->mac_int_status);
4638 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4639 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4640 					  &bar0->mac_rmac_err_reg,
4641 					  &sw_stat->mac_rmac_err_cnt))
4642 			goto reset;
4643 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4644 				      RMAC_SINGLE_ECC_ERR |
4645 				      RMAC_DOUBLE_ECC_ERR,
4646 				      &bar0->mac_rmac_err_reg,
4647 				      &sw_stat->mac_rmac_err_cnt);
4648 	}
4649 
4650 	val64 = readq(&bar0->xgxs_int_status);
4651 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4652 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4653 					  &bar0->xgxs_rxgxs_err_reg,
4654 					  &sw_stat->xgxs_rxgxs_err_cnt))
4655 			goto reset;
4656 	}
4657 
4658 	val64 = readq(&bar0->mc_int_status);
4659 	if (val64 & MC_INT_STATUS_MC_INT) {
4660 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4661 					  &bar0->mc_err_reg,
4662 					  &sw_stat->mc_err_cnt))
4663 			goto reset;
4664 
4665 		/* Handling Ecc errors */
4666 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4667 			writeq(val64, &bar0->mc_err_reg);
4668 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4669 				sw_stat->double_ecc_errs++;
4670 				if (sp->device_type != XFRAME_II_DEVICE) {
4671 					/*
4672 					 * Reset XframeI only if critical error
4673 					 */
4674 					if (val64 &
4675 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4676 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4677 						goto reset;
4678 				}
4679 			} else
4680 				sw_stat->single_ecc_errs++;
4681 		}
4682 	}
4683 	return;
4684 
4685 reset:
4686 	s2io_stop_all_tx_queue(sp);
4687 	schedule_work(&sp->rst_timer_task);
4688 	sw_stat->soft_reset_cnt++;
4689 }
4690 
4691 /**
4692  *  s2io_isr - ISR handler of the device .
4693  *  @irq: the irq of the device.
4694  *  @dev_id: a void pointer to the dev structure of the NIC.
4695  *  Description:  This function is the ISR handler of the device. It
4696  *  identifies the reason for the interrupt and calls the relevant
4697  *  service routines. As a contongency measure, this ISR allocates the
4698  *  recv buffers, if their numbers are below the panic value which is
4699  *  presently set to 25% of the original number of rcv buffers allocated.
4700  *  Return value:
4701  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4702  *   IRQ_NONE: will be returned if interrupt is not from our device
4703  */
4704 static irqreturn_t s2io_isr(int irq, void *dev_id)
4705 {
4706 	struct net_device *dev = (struct net_device *)dev_id;
4707 	struct s2io_nic *sp = netdev_priv(dev);
4708 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4709 	int i;
4710 	u64 reason = 0;
4711 	struct mac_info *mac_control;
4712 	struct config_param *config;
4713 
4714 	/* Pretend we handled any irq's from a disconnected card */
4715 	if (pci_channel_offline(sp->pdev))
4716 		return IRQ_NONE;
4717 
4718 	if (!is_s2io_card_up(sp))
4719 		return IRQ_NONE;
4720 
4721 	config = &sp->config;
4722 	mac_control = &sp->mac_control;
4723 
4724 	/*
4725 	 * Identify the cause for interrupt and call the appropriate
4726 	 * interrupt handler. Causes for the interrupt could be;
4727 	 * 1. Rx of packet.
4728 	 * 2. Tx complete.
4729 	 * 3. Link down.
4730 	 */
4731 	reason = readq(&bar0->general_int_status);
4732 
4733 	if (unlikely(reason == S2IO_MINUS_ONE))
4734 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4735 
4736 	if (reason &
4737 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4738 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4739 
4740 		if (config->napi) {
4741 			if (reason & GEN_INTR_RXTRAFFIC) {
4742 				napi_schedule(&sp->napi);
4743 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4744 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4745 				readl(&bar0->rx_traffic_int);
4746 			}
4747 		} else {
4748 			/*
4749 			 * rx_traffic_int reg is an R1 register, writing all 1's
4750 			 * will ensure that the actual interrupt causing bit
4751 			 * get's cleared and hence a read can be avoided.
4752 			 */
4753 			if (reason & GEN_INTR_RXTRAFFIC)
4754 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4755 
4756 			for (i = 0; i < config->rx_ring_num; i++) {
4757 				struct ring_info *ring = &mac_control->rings[i];
4758 
4759 				rx_intr_handler(ring, 0);
4760 			}
4761 		}
4762 
4763 		/*
4764 		 * tx_traffic_int reg is an R1 register, writing all 1's
4765 		 * will ensure that the actual interrupt causing bit get's
4766 		 * cleared and hence a read can be avoided.
4767 		 */
4768 		if (reason & GEN_INTR_TXTRAFFIC)
4769 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4770 
4771 		for (i = 0; i < config->tx_fifo_num; i++)
4772 			tx_intr_handler(&mac_control->fifos[i]);
4773 
4774 		if (reason & GEN_INTR_TXPIC)
4775 			s2io_txpic_intr_handle(sp);
4776 
4777 		/*
4778 		 * Reallocate the buffers from the interrupt handler itself.
4779 		 */
4780 		if (!config->napi) {
4781 			for (i = 0; i < config->rx_ring_num; i++) {
4782 				struct ring_info *ring = &mac_control->rings[i];
4783 
4784 				s2io_chk_rx_buffers(sp, ring);
4785 			}
4786 		}
4787 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4788 		readl(&bar0->general_int_status);
4789 
4790 		return IRQ_HANDLED;
4791 
4792 	} else if (!reason) {
4793 		/* The interrupt was not raised by us */
4794 		return IRQ_NONE;
4795 	}
4796 
4797 	return IRQ_HANDLED;
4798 }
4799 
4800 /**
4801  * s2io_updt_stats -
4802  */
4803 static void s2io_updt_stats(struct s2io_nic *sp)
4804 {
4805 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4806 	u64 val64;
4807 	int cnt = 0;
4808 
4809 	if (is_s2io_card_up(sp)) {
4810 		/* Apprx 30us on a 133 MHz bus */
4811 		val64 = SET_UPDT_CLICKS(10) |
4812 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4813 		writeq(val64, &bar0->stat_cfg);
4814 		do {
4815 			udelay(100);
4816 			val64 = readq(&bar0->stat_cfg);
4817 			if (!(val64 & s2BIT(0)))
4818 				break;
4819 			cnt++;
4820 			if (cnt == 5)
4821 				break; /* Updt failed */
4822 		} while (1);
4823 	}
4824 }
4825 
4826 /**
4827  *  s2io_get_stats - Updates the device statistics structure.
4828  *  @dev : pointer to the device structure.
4829  *  Description:
4830  *  This function updates the device statistics structure in the s2io_nic
4831  *  structure and returns a pointer to the same.
4832  *  Return value:
4833  *  pointer to the updated net_device_stats structure.
4834  */
4835 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4836 {
4837 	struct s2io_nic *sp = netdev_priv(dev);
4838 	struct mac_info *mac_control = &sp->mac_control;
4839 	struct stat_block *stats = mac_control->stats_info;
4840 	u64 delta;
4841 
4842 	/* Configure Stats for immediate updt */
4843 	s2io_updt_stats(sp);
4844 
4845 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4846 	 * This can be done while running by changing the MTU.  To prevent the
4847 	 * system from having the stats zero'ed, the driver keeps a copy of the
4848 	 * last update to the system (which is also zero'ed on reset).  This
4849 	 * enables the driver to accurately know the delta between the last
4850 	 * update and the current update.
4851 	 */
4852 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4853 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4854 	sp->stats.rx_packets += delta;
4855 	dev->stats.rx_packets += delta;
4856 
4857 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4858 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4859 	sp->stats.tx_packets += delta;
4860 	dev->stats.tx_packets += delta;
4861 
4862 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4863 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4864 	sp->stats.rx_bytes += delta;
4865 	dev->stats.rx_bytes += delta;
4866 
4867 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4868 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4869 	sp->stats.tx_bytes += delta;
4870 	dev->stats.tx_bytes += delta;
4871 
4872 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4873 	sp->stats.rx_errors += delta;
4874 	dev->stats.rx_errors += delta;
4875 
4876 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4877 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4878 	sp->stats.tx_errors += delta;
4879 	dev->stats.tx_errors += delta;
4880 
4881 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4882 	sp->stats.rx_dropped += delta;
4883 	dev->stats.rx_dropped += delta;
4884 
4885 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4886 	sp->stats.tx_dropped += delta;
4887 	dev->stats.tx_dropped += delta;
4888 
4889 	/* The adapter MAC interprets pause frames as multicast packets, but
4890 	 * does not pass them up.  This erroneously increases the multicast
4891 	 * packet count and needs to be deducted when the multicast frame count
4892 	 * is queried.
4893 	 */
4894 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4895 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4896 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4897 	delta -= sp->stats.multicast;
4898 	sp->stats.multicast += delta;
4899 	dev->stats.multicast += delta;
4900 
4901 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4902 		le32_to_cpu(stats->rmac_usized_frms)) +
4903 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4904 	sp->stats.rx_length_errors += delta;
4905 	dev->stats.rx_length_errors += delta;
4906 
4907 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4908 	sp->stats.rx_crc_errors += delta;
4909 	dev->stats.rx_crc_errors += delta;
4910 
4911 	return &dev->stats;
4912 }
4913 
4914 /**
4915  *  s2io_set_multicast - entry point for multicast address enable/disable.
4916  *  @dev : pointer to the device structure
4917  *  Description:
4918  *  This function is a driver entry point which gets called by the kernel
4919  *  whenever multicast addresses must be enabled/disabled. This also gets
4920  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4921  *  determine, if multicast address must be enabled or if promiscuous mode
4922  *  is to be disabled etc.
4923  *  Return value:
4924  *  void.
4925  */
4926 
4927 static void s2io_set_multicast(struct net_device *dev)
4928 {
4929 	int i, j, prev_cnt;
4930 	struct netdev_hw_addr *ha;
4931 	struct s2io_nic *sp = netdev_priv(dev);
4932 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4933 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4934 		0xfeffffffffffULL;
4935 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4936 	void __iomem *add;
4937 	struct config_param *config = &sp->config;
4938 
4939 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4940 		/*  Enable all Multicast addresses */
4941 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4942 		       &bar0->rmac_addr_data0_mem);
4943 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4944 		       &bar0->rmac_addr_data1_mem);
4945 		val64 = RMAC_ADDR_CMD_MEM_WE |
4946 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4947 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4948 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4949 		/* Wait till command completes */
4950 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4951 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4952 				      S2IO_BIT_RESET);
4953 
4954 		sp->m_cast_flg = 1;
4955 		sp->all_multi_pos = config->max_mc_addr - 1;
4956 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4957 		/*  Disable all Multicast addresses */
4958 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4959 		       &bar0->rmac_addr_data0_mem);
4960 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4961 		       &bar0->rmac_addr_data1_mem);
4962 		val64 = RMAC_ADDR_CMD_MEM_WE |
4963 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4964 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4965 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4966 		/* Wait till command completes */
4967 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4968 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4969 				      S2IO_BIT_RESET);
4970 
4971 		sp->m_cast_flg = 0;
4972 		sp->all_multi_pos = 0;
4973 	}
4974 
4975 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4976 		/*  Put the NIC into promiscuous mode */
4977 		add = &bar0->mac_cfg;
4978 		val64 = readq(&bar0->mac_cfg);
4979 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4980 
4981 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4982 		writel((u32)val64, add);
4983 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4984 		writel((u32) (val64 >> 32), (add + 4));
4985 
4986 		if (vlan_tag_strip != 1) {
4987 			val64 = readq(&bar0->rx_pa_cfg);
4988 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4989 			writeq(val64, &bar0->rx_pa_cfg);
4990 			sp->vlan_strip_flag = 0;
4991 		}
4992 
4993 		val64 = readq(&bar0->mac_cfg);
4994 		sp->promisc_flg = 1;
4995 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4996 			  dev->name);
4997 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4998 		/*  Remove the NIC from promiscuous mode */
4999 		add = &bar0->mac_cfg;
5000 		val64 = readq(&bar0->mac_cfg);
5001 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5002 
5003 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5004 		writel((u32)val64, add);
5005 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5006 		writel((u32) (val64 >> 32), (add + 4));
5007 
5008 		if (vlan_tag_strip != 0) {
5009 			val64 = readq(&bar0->rx_pa_cfg);
5010 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5011 			writeq(val64, &bar0->rx_pa_cfg);
5012 			sp->vlan_strip_flag = 1;
5013 		}
5014 
5015 		val64 = readq(&bar0->mac_cfg);
5016 		sp->promisc_flg = 0;
5017 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5018 	}
5019 
5020 	/*  Update individual M_CAST address list */
5021 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5022 		if (netdev_mc_count(dev) >
5023 		    (config->max_mc_addr - config->max_mac_addr)) {
5024 			DBG_PRINT(ERR_DBG,
5025 				  "%s: No more Rx filters can be added - "
5026 				  "please enable ALL_MULTI instead\n",
5027 				  dev->name);
5028 			return;
5029 		}
5030 
5031 		prev_cnt = sp->mc_addr_count;
5032 		sp->mc_addr_count = netdev_mc_count(dev);
5033 
5034 		/* Clear out the previous list of Mc in the H/W. */
5035 		for (i = 0; i < prev_cnt; i++) {
5036 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5037 			       &bar0->rmac_addr_data0_mem);
5038 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5039 			       &bar0->rmac_addr_data1_mem);
5040 			val64 = RMAC_ADDR_CMD_MEM_WE |
5041 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5042 				RMAC_ADDR_CMD_MEM_OFFSET
5043 				(config->mc_start_offset + i);
5044 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5045 
5046 			/* Wait for command completes */
5047 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5048 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5049 						  S2IO_BIT_RESET)) {
5050 				DBG_PRINT(ERR_DBG,
5051 					  "%s: Adding Multicasts failed\n",
5052 					  dev->name);
5053 				return;
5054 			}
5055 		}
5056 
5057 		/* Create the new Rx filter list and update the same in H/W. */
5058 		i = 0;
5059 		netdev_for_each_mc_addr(ha, dev) {
5060 			mac_addr = 0;
5061 			for (j = 0; j < ETH_ALEN; j++) {
5062 				mac_addr |= ha->addr[j];
5063 				mac_addr <<= 8;
5064 			}
5065 			mac_addr >>= 8;
5066 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5067 			       &bar0->rmac_addr_data0_mem);
5068 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5069 			       &bar0->rmac_addr_data1_mem);
5070 			val64 = RMAC_ADDR_CMD_MEM_WE |
5071 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5072 				RMAC_ADDR_CMD_MEM_OFFSET
5073 				(i + config->mc_start_offset);
5074 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5075 
5076 			/* Wait for command completes */
5077 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5078 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5079 						  S2IO_BIT_RESET)) {
5080 				DBG_PRINT(ERR_DBG,
5081 					  "%s: Adding Multicasts failed\n",
5082 					  dev->name);
5083 				return;
5084 			}
5085 			i++;
5086 		}
5087 	}
5088 }
5089 
5090 /* read from CAM unicast & multicast addresses and store it in
5091  * def_mac_addr structure
5092  */
5093 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5094 {
5095 	int offset;
5096 	u64 mac_addr = 0x0;
5097 	struct config_param *config = &sp->config;
5098 
5099 	/* store unicast & multicast mac addresses */
5100 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5101 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5102 		/* if read fails disable the entry */
5103 		if (mac_addr == FAILURE)
5104 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5105 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5106 	}
5107 }
5108 
5109 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5110 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5111 {
5112 	int offset;
5113 	struct config_param *config = &sp->config;
5114 	/* restore unicast mac address */
5115 	for (offset = 0; offset < config->max_mac_addr; offset++)
5116 		do_s2io_prog_unicast(sp->dev,
5117 				     sp->def_mac_addr[offset].mac_addr);
5118 
5119 	/* restore multicast mac address */
5120 	for (offset = config->mc_start_offset;
5121 	     offset < config->max_mc_addr; offset++)
5122 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5123 }
5124 
5125 /* add a multicast MAC address to CAM */
5126 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5127 {
5128 	int i;
5129 	u64 mac_addr = 0;
5130 	struct config_param *config = &sp->config;
5131 
5132 	for (i = 0; i < ETH_ALEN; i++) {
5133 		mac_addr <<= 8;
5134 		mac_addr |= addr[i];
5135 	}
5136 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5137 		return SUCCESS;
5138 
5139 	/* check if the multicast mac already preset in CAM */
5140 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5141 		u64 tmp64;
5142 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5143 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5144 			break;
5145 
5146 		if (tmp64 == mac_addr)
5147 			return SUCCESS;
5148 	}
5149 	if (i == config->max_mc_addr) {
5150 		DBG_PRINT(ERR_DBG,
5151 			  "CAM full no space left for multicast MAC\n");
5152 		return FAILURE;
5153 	}
5154 	/* Update the internal structure with this new mac address */
5155 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5156 
5157 	return do_s2io_add_mac(sp, mac_addr, i);
5158 }
5159 
5160 /* add MAC address to CAM */
5161 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5162 {
5163 	u64 val64;
5164 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5165 
5166 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5167 	       &bar0->rmac_addr_data0_mem);
5168 
5169 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5170 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5171 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5172 
5173 	/* Wait till command completes */
5174 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5175 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5176 				  S2IO_BIT_RESET)) {
5177 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5178 		return FAILURE;
5179 	}
5180 	return SUCCESS;
5181 }
5182 /* deletes a specified unicast/multicast mac entry from CAM */
5183 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5184 {
5185 	int offset;
5186 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5187 	struct config_param *config = &sp->config;
5188 
5189 	for (offset = 1;
5190 	     offset < config->max_mc_addr; offset++) {
5191 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5192 		if (tmp64 == addr) {
5193 			/* disable the entry by writing  0xffffffffffffULL */
5194 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5195 				return FAILURE;
5196 			/* store the new mac list from CAM */
5197 			do_s2io_store_unicast_mc(sp);
5198 			return SUCCESS;
5199 		}
5200 	}
5201 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5202 		  (unsigned long long)addr);
5203 	return FAILURE;
5204 }
5205 
5206 /* read mac entries from CAM */
5207 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5208 {
5209 	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5210 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5211 
5212 	/* read mac addr */
5213 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5214 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5215 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5216 
5217 	/* Wait till command completes */
5218 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5219 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5220 				  S2IO_BIT_RESET)) {
5221 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5222 		return FAILURE;
5223 	}
5224 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5225 
5226 	return tmp64 >> 16;
5227 }
5228 
5229 /**
5230  * s2io_set_mac_addr - driver entry point
5231  */
5232 
5233 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5234 {
5235 	struct sockaddr *addr = p;
5236 
5237 	if (!is_valid_ether_addr(addr->sa_data))
5238 		return -EADDRNOTAVAIL;
5239 
5240 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5241 
5242 	/* store the MAC address in CAM */
5243 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5244 }
5245 /**
5246  *  do_s2io_prog_unicast - Programs the Xframe mac address
5247  *  @dev : pointer to the device structure.
5248  *  @addr: a uchar pointer to the new mac address which is to be set.
5249  *  Description : This procedure will program the Xframe to receive
5250  *  frames with new Mac Address
5251  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5252  *  as defined in errno.h file on failure.
5253  */
5254 
5255 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5256 {
5257 	struct s2io_nic *sp = netdev_priv(dev);
5258 	register u64 mac_addr = 0, perm_addr = 0;
5259 	int i;
5260 	u64 tmp64;
5261 	struct config_param *config = &sp->config;
5262 
5263 	/*
5264 	 * Set the new MAC address as the new unicast filter and reflect this
5265 	 * change on the device address registered with the OS. It will be
5266 	 * at offset 0.
5267 	 */
5268 	for (i = 0; i < ETH_ALEN; i++) {
5269 		mac_addr <<= 8;
5270 		mac_addr |= addr[i];
5271 		perm_addr <<= 8;
5272 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5273 	}
5274 
5275 	/* check if the dev_addr is different than perm_addr */
5276 	if (mac_addr == perm_addr)
5277 		return SUCCESS;
5278 
5279 	/* check if the mac already preset in CAM */
5280 	for (i = 1; i < config->max_mac_addr; i++) {
5281 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5282 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5283 			break;
5284 
5285 		if (tmp64 == mac_addr) {
5286 			DBG_PRINT(INFO_DBG,
5287 				  "MAC addr:0x%llx already present in CAM\n",
5288 				  (unsigned long long)mac_addr);
5289 			return SUCCESS;
5290 		}
5291 	}
5292 	if (i == config->max_mac_addr) {
5293 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5294 		return FAILURE;
5295 	}
5296 	/* Update the internal structure with this new mac address */
5297 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5298 
5299 	return do_s2io_add_mac(sp, mac_addr, i);
5300 }
5301 
5302 /**
5303  * s2io_ethtool_sset - Sets different link parameters.
5304  * @sp : private member of the device structure, which is a pointer to the
5305  * s2io_nic structure.
5306  * @info: pointer to the structure with parameters given by ethtool to set
5307  * link information.
5308  * Description:
5309  * The function sets different link parameters provided by the user onto
5310  * the NIC.
5311  * Return value:
5312  * 0 on success.
5313  */
5314 
5315 static int s2io_ethtool_sset(struct net_device *dev,
5316 			     struct ethtool_cmd *info)
5317 {
5318 	struct s2io_nic *sp = netdev_priv(dev);
5319 	if ((info->autoneg == AUTONEG_ENABLE) ||
5320 	    (ethtool_cmd_speed(info) != SPEED_10000) ||
5321 	    (info->duplex != DUPLEX_FULL))
5322 		return -EINVAL;
5323 	else {
5324 		s2io_close(sp->dev);
5325 		s2io_open(sp->dev);
5326 	}
5327 
5328 	return 0;
5329 }
5330 
5331 /**
5332  * s2io_ethtol_gset - Return link specific information.
5333  * @sp : private member of the device structure, pointer to the
5334  *      s2io_nic structure.
5335  * @info : pointer to the structure with parameters given by ethtool
5336  * to return link information.
5337  * Description:
5338  * Returns link specific information like speed, duplex etc.. to ethtool.
5339  * Return value :
5340  * return 0 on success.
5341  */
5342 
5343 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5344 {
5345 	struct s2io_nic *sp = netdev_priv(dev);
5346 	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5347 	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5348 	info->port = PORT_FIBRE;
5349 
5350 	/* info->transceiver */
5351 	info->transceiver = XCVR_EXTERNAL;
5352 
5353 	if (netif_carrier_ok(sp->dev)) {
5354 		ethtool_cmd_speed_set(info, SPEED_10000);
5355 		info->duplex = DUPLEX_FULL;
5356 	} else {
5357 		ethtool_cmd_speed_set(info, SPEED_UNKNOWN);
5358 		info->duplex = DUPLEX_UNKNOWN;
5359 	}
5360 
5361 	info->autoneg = AUTONEG_DISABLE;
5362 	return 0;
5363 }
5364 
5365 /**
5366  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5367  * @sp : private member of the device structure, which is a pointer to the
5368  * s2io_nic structure.
5369  * @info : pointer to the structure with parameters given by ethtool to
5370  * return driver information.
5371  * Description:
5372  * Returns driver specefic information like name, version etc.. to ethtool.
5373  * Return value:
5374  *  void
5375  */
5376 
5377 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5378 				  struct ethtool_drvinfo *info)
5379 {
5380 	struct s2io_nic *sp = netdev_priv(dev);
5381 
5382 	strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5383 	strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5384 	strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5385 }
5386 
5387 /**
5388  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5389  *  @sp: private member of the device structure, which is a pointer to the
5390  *  s2io_nic structure.
5391  *  @regs : pointer to the structure with parameters given by ethtool for
5392  *  dumping the registers.
5393  *  @reg_space: The input argumnet into which all the registers are dumped.
5394  *  Description:
5395  *  Dumps the entire register space of xFrame NIC into the user given
5396  *  buffer area.
5397  * Return value :
5398  * void .
5399  */
5400 
5401 static void s2io_ethtool_gregs(struct net_device *dev,
5402 			       struct ethtool_regs *regs, void *space)
5403 {
5404 	int i;
5405 	u64 reg;
5406 	u8 *reg_space = (u8 *)space;
5407 	struct s2io_nic *sp = netdev_priv(dev);
5408 
5409 	regs->len = XENA_REG_SPACE;
5410 	regs->version = sp->pdev->subsystem_device;
5411 
5412 	for (i = 0; i < regs->len; i += 8) {
5413 		reg = readq(sp->bar0 + i);
5414 		memcpy((reg_space + i), &reg, 8);
5415 	}
5416 }
5417 
5418 /*
5419  *  s2io_set_led - control NIC led
5420  */
5421 static void s2io_set_led(struct s2io_nic *sp, bool on)
5422 {
5423 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5424 	u16 subid = sp->pdev->subsystem_device;
5425 	u64 val64;
5426 
5427 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5428 	    ((subid & 0xFF) >= 0x07)) {
5429 		val64 = readq(&bar0->gpio_control);
5430 		if (on)
5431 			val64 |= GPIO_CTRL_GPIO_0;
5432 		else
5433 			val64 &= ~GPIO_CTRL_GPIO_0;
5434 
5435 		writeq(val64, &bar0->gpio_control);
5436 	} else {
5437 		val64 = readq(&bar0->adapter_control);
5438 		if (on)
5439 			val64 |= ADAPTER_LED_ON;
5440 		else
5441 			val64 &= ~ADAPTER_LED_ON;
5442 
5443 		writeq(val64, &bar0->adapter_control);
5444 	}
5445 
5446 }
5447 
5448 /**
5449  * s2io_ethtool_set_led - To physically identify the nic on the system.
5450  * @dev : network device
5451  * @state: led setting
5452  *
5453  * Description: Used to physically identify the NIC on the system.
5454  * The Link LED will blink for a time specified by the user for
5455  * identification.
5456  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5457  * identification is possible only if it's link is up.
5458  */
5459 
5460 static int s2io_ethtool_set_led(struct net_device *dev,
5461 				enum ethtool_phys_id_state state)
5462 {
5463 	struct s2io_nic *sp = netdev_priv(dev);
5464 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5465 	u16 subid = sp->pdev->subsystem_device;
5466 
5467 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5468 		u64 val64 = readq(&bar0->adapter_control);
5469 		if (!(val64 & ADAPTER_CNTL_EN)) {
5470 			pr_err("Adapter Link down, cannot blink LED\n");
5471 			return -EAGAIN;
5472 		}
5473 	}
5474 
5475 	switch (state) {
5476 	case ETHTOOL_ID_ACTIVE:
5477 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5478 		return 1;	/* cycle on/off once per second */
5479 
5480 	case ETHTOOL_ID_ON:
5481 		s2io_set_led(sp, true);
5482 		break;
5483 
5484 	case ETHTOOL_ID_OFF:
5485 		s2io_set_led(sp, false);
5486 		break;
5487 
5488 	case ETHTOOL_ID_INACTIVE:
5489 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5490 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5491 	}
5492 
5493 	return 0;
5494 }
5495 
5496 static void s2io_ethtool_gringparam(struct net_device *dev,
5497 				    struct ethtool_ringparam *ering)
5498 {
5499 	struct s2io_nic *sp = netdev_priv(dev);
5500 	int i, tx_desc_count = 0, rx_desc_count = 0;
5501 
5502 	if (sp->rxd_mode == RXD_MODE_1) {
5503 		ering->rx_max_pending = MAX_RX_DESC_1;
5504 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5505 	} else {
5506 		ering->rx_max_pending = MAX_RX_DESC_2;
5507 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5508 	}
5509 
5510 	ering->tx_max_pending = MAX_TX_DESC;
5511 
5512 	for (i = 0; i < sp->config.rx_ring_num; i++)
5513 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5514 	ering->rx_pending = rx_desc_count;
5515 	ering->rx_jumbo_pending = rx_desc_count;
5516 
5517 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5518 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5519 	ering->tx_pending = tx_desc_count;
5520 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5521 }
5522 
5523 /**
5524  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5525  * @sp : private member of the device structure, which is a pointer to the
5526  *	s2io_nic structure.
5527  * @ep : pointer to the structure with pause parameters given by ethtool.
5528  * Description:
5529  * Returns the Pause frame generation and reception capability of the NIC.
5530  * Return value:
5531  *  void
5532  */
5533 static void s2io_ethtool_getpause_data(struct net_device *dev,
5534 				       struct ethtool_pauseparam *ep)
5535 {
5536 	u64 val64;
5537 	struct s2io_nic *sp = netdev_priv(dev);
5538 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5539 
5540 	val64 = readq(&bar0->rmac_pause_cfg);
5541 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5542 		ep->tx_pause = true;
5543 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5544 		ep->rx_pause = true;
5545 	ep->autoneg = false;
5546 }
5547 
5548 /**
5549  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5550  * @sp : private member of the device structure, which is a pointer to the
5551  *      s2io_nic structure.
5552  * @ep : pointer to the structure with pause parameters given by ethtool.
5553  * Description:
5554  * It can be used to set or reset Pause frame generation or reception
5555  * support of the NIC.
5556  * Return value:
5557  * int, returns 0 on Success
5558  */
5559 
5560 static int s2io_ethtool_setpause_data(struct net_device *dev,
5561 				      struct ethtool_pauseparam *ep)
5562 {
5563 	u64 val64;
5564 	struct s2io_nic *sp = netdev_priv(dev);
5565 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5566 
5567 	val64 = readq(&bar0->rmac_pause_cfg);
5568 	if (ep->tx_pause)
5569 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5570 	else
5571 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5572 	if (ep->rx_pause)
5573 		val64 |= RMAC_PAUSE_RX_ENABLE;
5574 	else
5575 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5576 	writeq(val64, &bar0->rmac_pause_cfg);
5577 	return 0;
5578 }
5579 
5580 /**
5581  * read_eeprom - reads 4 bytes of data from user given offset.
5582  * @sp : private member of the device structure, which is a pointer to the
5583  *      s2io_nic structure.
5584  * @off : offset at which the data must be written
5585  * @data : Its an output parameter where the data read at the given
5586  *	offset is stored.
5587  * Description:
5588  * Will read 4 bytes of data from the user given offset and return the
5589  * read data.
5590  * NOTE: Will allow to read only part of the EEPROM visible through the
5591  *   I2C bus.
5592  * Return value:
5593  *  -1 on failure and 0 on success.
5594  */
5595 
5596 #define S2IO_DEV_ID		5
5597 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5598 {
5599 	int ret = -1;
5600 	u32 exit_cnt = 0;
5601 	u64 val64;
5602 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5603 
5604 	if (sp->device_type == XFRAME_I_DEVICE) {
5605 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5606 			I2C_CONTROL_ADDR(off) |
5607 			I2C_CONTROL_BYTE_CNT(0x3) |
5608 			I2C_CONTROL_READ |
5609 			I2C_CONTROL_CNTL_START;
5610 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5611 
5612 		while (exit_cnt < 5) {
5613 			val64 = readq(&bar0->i2c_control);
5614 			if (I2C_CONTROL_CNTL_END(val64)) {
5615 				*data = I2C_CONTROL_GET_DATA(val64);
5616 				ret = 0;
5617 				break;
5618 			}
5619 			msleep(50);
5620 			exit_cnt++;
5621 		}
5622 	}
5623 
5624 	if (sp->device_type == XFRAME_II_DEVICE) {
5625 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5626 			SPI_CONTROL_BYTECNT(0x3) |
5627 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5628 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5629 		val64 |= SPI_CONTROL_REQ;
5630 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5631 		while (exit_cnt < 5) {
5632 			val64 = readq(&bar0->spi_control);
5633 			if (val64 & SPI_CONTROL_NACK) {
5634 				ret = 1;
5635 				break;
5636 			} else if (val64 & SPI_CONTROL_DONE) {
5637 				*data = readq(&bar0->spi_data);
5638 				*data &= 0xffffff;
5639 				ret = 0;
5640 				break;
5641 			}
5642 			msleep(50);
5643 			exit_cnt++;
5644 		}
5645 	}
5646 	return ret;
5647 }
5648 
5649 /**
5650  *  write_eeprom - actually writes the relevant part of the data value.
5651  *  @sp : private member of the device structure, which is a pointer to the
5652  *       s2io_nic structure.
5653  *  @off : offset at which the data must be written
5654  *  @data : The data that is to be written
5655  *  @cnt : Number of bytes of the data that are actually to be written into
5656  *  the Eeprom. (max of 3)
5657  * Description:
5658  *  Actually writes the relevant part of the data value into the Eeprom
5659  *  through the I2C bus.
5660  * Return value:
5661  *  0 on success, -1 on failure.
5662  */
5663 
5664 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5665 {
5666 	int exit_cnt = 0, ret = -1;
5667 	u64 val64;
5668 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5669 
5670 	if (sp->device_type == XFRAME_I_DEVICE) {
5671 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5672 			I2C_CONTROL_ADDR(off) |
5673 			I2C_CONTROL_BYTE_CNT(cnt) |
5674 			I2C_CONTROL_SET_DATA((u32)data) |
5675 			I2C_CONTROL_CNTL_START;
5676 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5677 
5678 		while (exit_cnt < 5) {
5679 			val64 = readq(&bar0->i2c_control);
5680 			if (I2C_CONTROL_CNTL_END(val64)) {
5681 				if (!(val64 & I2C_CONTROL_NACK))
5682 					ret = 0;
5683 				break;
5684 			}
5685 			msleep(50);
5686 			exit_cnt++;
5687 		}
5688 	}
5689 
5690 	if (sp->device_type == XFRAME_II_DEVICE) {
5691 		int write_cnt = (cnt == 8) ? 0 : cnt;
5692 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5693 
5694 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5695 			SPI_CONTROL_BYTECNT(write_cnt) |
5696 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5697 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5698 		val64 |= SPI_CONTROL_REQ;
5699 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5700 		while (exit_cnt < 5) {
5701 			val64 = readq(&bar0->spi_control);
5702 			if (val64 & SPI_CONTROL_NACK) {
5703 				ret = 1;
5704 				break;
5705 			} else if (val64 & SPI_CONTROL_DONE) {
5706 				ret = 0;
5707 				break;
5708 			}
5709 			msleep(50);
5710 			exit_cnt++;
5711 		}
5712 	}
5713 	return ret;
5714 }
5715 static void s2io_vpd_read(struct s2io_nic *nic)
5716 {
5717 	u8 *vpd_data;
5718 	u8 data;
5719 	int i = 0, cnt, len, fail = 0;
5720 	int vpd_addr = 0x80;
5721 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5722 
5723 	if (nic->device_type == XFRAME_II_DEVICE) {
5724 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5725 		vpd_addr = 0x80;
5726 	} else {
5727 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5728 		vpd_addr = 0x50;
5729 	}
5730 	strcpy(nic->serial_num, "NOT AVAILABLE");
5731 
5732 	vpd_data = kmalloc(256, GFP_KERNEL);
5733 	if (!vpd_data) {
5734 		swstats->mem_alloc_fail_cnt++;
5735 		return;
5736 	}
5737 	swstats->mem_allocated += 256;
5738 
5739 	for (i = 0; i < 256; i += 4) {
5740 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5741 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5742 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5743 		for (cnt = 0; cnt < 5; cnt++) {
5744 			msleep(2);
5745 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5746 			if (data == 0x80)
5747 				break;
5748 		}
5749 		if (cnt >= 5) {
5750 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5751 			fail = 1;
5752 			break;
5753 		}
5754 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5755 				      (u32 *)&vpd_data[i]);
5756 	}
5757 
5758 	if (!fail) {
5759 		/* read serial number of adapter */
5760 		for (cnt = 0; cnt < 252; cnt++) {
5761 			if ((vpd_data[cnt] == 'S') &&
5762 			    (vpd_data[cnt+1] == 'N')) {
5763 				len = vpd_data[cnt+2];
5764 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5765 					memcpy(nic->serial_num,
5766 					       &vpd_data[cnt + 3],
5767 					       len);
5768 					memset(nic->serial_num+len,
5769 					       0,
5770 					       VPD_STRING_LEN-len);
5771 					break;
5772 				}
5773 			}
5774 		}
5775 	}
5776 
5777 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5778 		len = vpd_data[1];
5779 		memcpy(nic->product_name, &vpd_data[3], len);
5780 		nic->product_name[len] = 0;
5781 	}
5782 	kfree(vpd_data);
5783 	swstats->mem_freed += 256;
5784 }
5785 
5786 /**
5787  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5788  *  @sp : private member of the device structure, which is a pointer to the
5789  *  s2io_nic structure.
5790  *  @eeprom : pointer to the user level structure provided by ethtool,
5791  *  containing all relevant information.
5792  *  @data_buf : user defined value to be written into Eeprom.
5793  *  Description: Reads the values stored in the Eeprom at given offset
5794  *  for a given length. Stores these values int the input argument data
5795  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5796  *  Return value:
5797  *  int  0 on success
5798  */
5799 
5800 static int s2io_ethtool_geeprom(struct net_device *dev,
5801 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5802 {
5803 	u32 i, valid;
5804 	u64 data;
5805 	struct s2io_nic *sp = netdev_priv(dev);
5806 
5807 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5808 
5809 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5810 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5811 
5812 	for (i = 0; i < eeprom->len; i += 4) {
5813 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5814 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5815 			return -EFAULT;
5816 		}
5817 		valid = INV(data);
5818 		memcpy((data_buf + i), &valid, 4);
5819 	}
5820 	return 0;
5821 }
5822 
5823 /**
5824  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5825  *  @sp : private member of the device structure, which is a pointer to the
5826  *  s2io_nic structure.
5827  *  @eeprom : pointer to the user level structure provided by ethtool,
5828  *  containing all relevant information.
5829  *  @data_buf ; user defined value to be written into Eeprom.
5830  *  Description:
5831  *  Tries to write the user provided value in the Eeprom, at the offset
5832  *  given by the user.
5833  *  Return value:
5834  *  0 on success, -EFAULT on failure.
5835  */
5836 
5837 static int s2io_ethtool_seeprom(struct net_device *dev,
5838 				struct ethtool_eeprom *eeprom,
5839 				u8 *data_buf)
5840 {
5841 	int len = eeprom->len, cnt = 0;
5842 	u64 valid = 0, data;
5843 	struct s2io_nic *sp = netdev_priv(dev);
5844 
5845 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5846 		DBG_PRINT(ERR_DBG,
5847 			  "ETHTOOL_WRITE_EEPROM Err: "
5848 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5849 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5850 			  eeprom->magic);
5851 		return -EFAULT;
5852 	}
5853 
5854 	while (len) {
5855 		data = (u32)data_buf[cnt] & 0x000000FF;
5856 		if (data)
5857 			valid = (u32)(data << 24);
5858 		else
5859 			valid = data;
5860 
5861 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5862 			DBG_PRINT(ERR_DBG,
5863 				  "ETHTOOL_WRITE_EEPROM Err: "
5864 				  "Cannot write into the specified offset\n");
5865 			return -EFAULT;
5866 		}
5867 		cnt++;
5868 		len--;
5869 	}
5870 
5871 	return 0;
5872 }
5873 
5874 /**
5875  * s2io_register_test - reads and writes into all clock domains.
5876  * @sp : private member of the device structure, which is a pointer to the
5877  * s2io_nic structure.
5878  * @data : variable that returns the result of each of the test conducted b
5879  * by the driver.
5880  * Description:
5881  * Read and write into all clock domains. The NIC has 3 clock domains,
5882  * see that registers in all the three regions are accessible.
5883  * Return value:
5884  * 0 on success.
5885  */
5886 
5887 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5888 {
5889 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5890 	u64 val64 = 0, exp_val;
5891 	int fail = 0;
5892 
5893 	val64 = readq(&bar0->pif_rd_swapper_fb);
5894 	if (val64 != 0x123456789abcdefULL) {
5895 		fail = 1;
5896 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5897 	}
5898 
5899 	val64 = readq(&bar0->rmac_pause_cfg);
5900 	if (val64 != 0xc000ffff00000000ULL) {
5901 		fail = 1;
5902 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5903 	}
5904 
5905 	val64 = readq(&bar0->rx_queue_cfg);
5906 	if (sp->device_type == XFRAME_II_DEVICE)
5907 		exp_val = 0x0404040404040404ULL;
5908 	else
5909 		exp_val = 0x0808080808080808ULL;
5910 	if (val64 != exp_val) {
5911 		fail = 1;
5912 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5913 	}
5914 
5915 	val64 = readq(&bar0->xgxs_efifo_cfg);
5916 	if (val64 != 0x000000001923141EULL) {
5917 		fail = 1;
5918 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5919 	}
5920 
5921 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5922 	writeq(val64, &bar0->xmsi_data);
5923 	val64 = readq(&bar0->xmsi_data);
5924 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5925 		fail = 1;
5926 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5927 	}
5928 
5929 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5930 	writeq(val64, &bar0->xmsi_data);
5931 	val64 = readq(&bar0->xmsi_data);
5932 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5933 		fail = 1;
5934 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5935 	}
5936 
5937 	*data = fail;
5938 	return fail;
5939 }
5940 
5941 /**
5942  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5943  * @sp : private member of the device structure, which is a pointer to the
5944  * s2io_nic structure.
5945  * @data:variable that returns the result of each of the test conducted by
5946  * the driver.
5947  * Description:
5948  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5949  * register.
5950  * Return value:
5951  * 0 on success.
5952  */
5953 
5954 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5955 {
5956 	int fail = 0;
5957 	u64 ret_data, org_4F0, org_7F0;
5958 	u8 saved_4F0 = 0, saved_7F0 = 0;
5959 	struct net_device *dev = sp->dev;
5960 
5961 	/* Test Write Error at offset 0 */
5962 	/* Note that SPI interface allows write access to all areas
5963 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5964 	 */
5965 	if (sp->device_type == XFRAME_I_DEVICE)
5966 		if (!write_eeprom(sp, 0, 0, 3))
5967 			fail = 1;
5968 
5969 	/* Save current values at offsets 0x4F0 and 0x7F0 */
5970 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5971 		saved_4F0 = 1;
5972 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5973 		saved_7F0 = 1;
5974 
5975 	/* Test Write at offset 4f0 */
5976 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5977 		fail = 1;
5978 	if (read_eeprom(sp, 0x4F0, &ret_data))
5979 		fail = 1;
5980 
5981 	if (ret_data != 0x012345) {
5982 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5983 			  "Data written %llx Data read %llx\n",
5984 			  dev->name, (unsigned long long)0x12345,
5985 			  (unsigned long long)ret_data);
5986 		fail = 1;
5987 	}
5988 
5989 	/* Reset the EEPROM data go FFFF */
5990 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5991 
5992 	/* Test Write Request Error at offset 0x7c */
5993 	if (sp->device_type == XFRAME_I_DEVICE)
5994 		if (!write_eeprom(sp, 0x07C, 0, 3))
5995 			fail = 1;
5996 
5997 	/* Test Write Request at offset 0x7f0 */
5998 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5999 		fail = 1;
6000 	if (read_eeprom(sp, 0x7F0, &ret_data))
6001 		fail = 1;
6002 
6003 	if (ret_data != 0x012345) {
6004 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6005 			  "Data written %llx Data read %llx\n",
6006 			  dev->name, (unsigned long long)0x12345,
6007 			  (unsigned long long)ret_data);
6008 		fail = 1;
6009 	}
6010 
6011 	/* Reset the EEPROM data go FFFF */
6012 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6013 
6014 	if (sp->device_type == XFRAME_I_DEVICE) {
6015 		/* Test Write Error at offset 0x80 */
6016 		if (!write_eeprom(sp, 0x080, 0, 3))
6017 			fail = 1;
6018 
6019 		/* Test Write Error at offset 0xfc */
6020 		if (!write_eeprom(sp, 0x0FC, 0, 3))
6021 			fail = 1;
6022 
6023 		/* Test Write Error at offset 0x100 */
6024 		if (!write_eeprom(sp, 0x100, 0, 3))
6025 			fail = 1;
6026 
6027 		/* Test Write Error at offset 4ec */
6028 		if (!write_eeprom(sp, 0x4EC, 0, 3))
6029 			fail = 1;
6030 	}
6031 
6032 	/* Restore values at offsets 0x4F0 and 0x7F0 */
6033 	if (saved_4F0)
6034 		write_eeprom(sp, 0x4F0, org_4F0, 3);
6035 	if (saved_7F0)
6036 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6037 
6038 	*data = fail;
6039 	return fail;
6040 }
6041 
6042 /**
6043  * s2io_bist_test - invokes the MemBist test of the card .
6044  * @sp : private member of the device structure, which is a pointer to the
6045  * s2io_nic structure.
6046  * @data:variable that returns the result of each of the test conducted by
6047  * the driver.
6048  * Description:
6049  * This invokes the MemBist test of the card. We give around
6050  * 2 secs time for the Test to complete. If it's still not complete
6051  * within this peiod, we consider that the test failed.
6052  * Return value:
6053  * 0 on success and -1 on failure.
6054  */
6055 
6056 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6057 {
6058 	u8 bist = 0;
6059 	int cnt = 0, ret = -1;
6060 
6061 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6062 	bist |= PCI_BIST_START;
6063 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6064 
6065 	while (cnt < 20) {
6066 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6067 		if (!(bist & PCI_BIST_START)) {
6068 			*data = (bist & PCI_BIST_CODE_MASK);
6069 			ret = 0;
6070 			break;
6071 		}
6072 		msleep(100);
6073 		cnt++;
6074 	}
6075 
6076 	return ret;
6077 }
6078 
6079 /**
6080  * s2io_link_test - verifies the link state of the nic
6081  * @sp ; private member of the device structure, which is a pointer to the
6082  * s2io_nic structure.
6083  * @data: variable that returns the result of each of the test conducted by
6084  * the driver.
6085  * Description:
6086  * The function verifies the link state of the NIC and updates the input
6087  * argument 'data' appropriately.
6088  * Return value:
6089  * 0 on success.
6090  */
6091 
6092 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6093 {
6094 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6095 	u64 val64;
6096 
6097 	val64 = readq(&bar0->adapter_status);
6098 	if (!(LINK_IS_UP(val64)))
6099 		*data = 1;
6100 	else
6101 		*data = 0;
6102 
6103 	return *data;
6104 }
6105 
6106 /**
6107  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6108  * @sp: private member of the device structure, which is a pointer to the
6109  * s2io_nic structure.
6110  * @data: variable that returns the result of each of the test
6111  * conducted by the driver.
6112  * Description:
6113  *  This is one of the offline test that tests the read and write
6114  *  access to the RldRam chip on the NIC.
6115  * Return value:
6116  *  0 on success.
6117  */
6118 
6119 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6120 {
6121 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6122 	u64 val64;
6123 	int cnt, iteration = 0, test_fail = 0;
6124 
6125 	val64 = readq(&bar0->adapter_control);
6126 	val64 &= ~ADAPTER_ECC_EN;
6127 	writeq(val64, &bar0->adapter_control);
6128 
6129 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6130 	val64 |= MC_RLDRAM_TEST_MODE;
6131 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6132 
6133 	val64 = readq(&bar0->mc_rldram_mrs);
6134 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6135 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6136 
6137 	val64 |= MC_RLDRAM_MRS_ENABLE;
6138 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6139 
6140 	while (iteration < 2) {
6141 		val64 = 0x55555555aaaa0000ULL;
6142 		if (iteration == 1)
6143 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6144 		writeq(val64, &bar0->mc_rldram_test_d0);
6145 
6146 		val64 = 0xaaaa5a5555550000ULL;
6147 		if (iteration == 1)
6148 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6149 		writeq(val64, &bar0->mc_rldram_test_d1);
6150 
6151 		val64 = 0x55aaaaaaaa5a0000ULL;
6152 		if (iteration == 1)
6153 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6154 		writeq(val64, &bar0->mc_rldram_test_d2);
6155 
6156 		val64 = (u64) (0x0000003ffffe0100ULL);
6157 		writeq(val64, &bar0->mc_rldram_test_add);
6158 
6159 		val64 = MC_RLDRAM_TEST_MODE |
6160 			MC_RLDRAM_TEST_WRITE |
6161 			MC_RLDRAM_TEST_GO;
6162 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6163 
6164 		for (cnt = 0; cnt < 5; cnt++) {
6165 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6166 			if (val64 & MC_RLDRAM_TEST_DONE)
6167 				break;
6168 			msleep(200);
6169 		}
6170 
6171 		if (cnt == 5)
6172 			break;
6173 
6174 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6175 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6176 
6177 		for (cnt = 0; cnt < 5; cnt++) {
6178 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6179 			if (val64 & MC_RLDRAM_TEST_DONE)
6180 				break;
6181 			msleep(500);
6182 		}
6183 
6184 		if (cnt == 5)
6185 			break;
6186 
6187 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6188 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6189 			test_fail = 1;
6190 
6191 		iteration++;
6192 	}
6193 
6194 	*data = test_fail;
6195 
6196 	/* Bring the adapter out of test mode */
6197 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6198 
6199 	return test_fail;
6200 }
6201 
6202 /**
6203  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6204  *  @sp : private member of the device structure, which is a pointer to the
6205  *  s2io_nic structure.
6206  *  @ethtest : pointer to a ethtool command specific structure that will be
6207  *  returned to the user.
6208  *  @data : variable that returns the result of each of the test
6209  * conducted by the driver.
6210  * Description:
6211  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6212  *  the health of the card.
6213  * Return value:
6214  *  void
6215  */
6216 
6217 static void s2io_ethtool_test(struct net_device *dev,
6218 			      struct ethtool_test *ethtest,
6219 			      uint64_t *data)
6220 {
6221 	struct s2io_nic *sp = netdev_priv(dev);
6222 	int orig_state = netif_running(sp->dev);
6223 
6224 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6225 		/* Offline Tests. */
6226 		if (orig_state)
6227 			s2io_close(sp->dev);
6228 
6229 		if (s2io_register_test(sp, &data[0]))
6230 			ethtest->flags |= ETH_TEST_FL_FAILED;
6231 
6232 		s2io_reset(sp);
6233 
6234 		if (s2io_rldram_test(sp, &data[3]))
6235 			ethtest->flags |= ETH_TEST_FL_FAILED;
6236 
6237 		s2io_reset(sp);
6238 
6239 		if (s2io_eeprom_test(sp, &data[1]))
6240 			ethtest->flags |= ETH_TEST_FL_FAILED;
6241 
6242 		if (s2io_bist_test(sp, &data[4]))
6243 			ethtest->flags |= ETH_TEST_FL_FAILED;
6244 
6245 		if (orig_state)
6246 			s2io_open(sp->dev);
6247 
6248 		data[2] = 0;
6249 	} else {
6250 		/* Online Tests. */
6251 		if (!orig_state) {
6252 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6253 				  dev->name);
6254 			data[0] = -1;
6255 			data[1] = -1;
6256 			data[2] = -1;
6257 			data[3] = -1;
6258 			data[4] = -1;
6259 		}
6260 
6261 		if (s2io_link_test(sp, &data[2]))
6262 			ethtest->flags |= ETH_TEST_FL_FAILED;
6263 
6264 		data[0] = 0;
6265 		data[1] = 0;
6266 		data[3] = 0;
6267 		data[4] = 0;
6268 	}
6269 }
6270 
6271 static void s2io_get_ethtool_stats(struct net_device *dev,
6272 				   struct ethtool_stats *estats,
6273 				   u64 *tmp_stats)
6274 {
6275 	int i = 0, k;
6276 	struct s2io_nic *sp = netdev_priv(dev);
6277 	struct stat_block *stats = sp->mac_control.stats_info;
6278 	struct swStat *swstats = &stats->sw_stat;
6279 	struct xpakStat *xstats = &stats->xpak_stat;
6280 
6281 	s2io_updt_stats(sp);
6282 	tmp_stats[i++] =
6283 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6284 		le32_to_cpu(stats->tmac_frms);
6285 	tmp_stats[i++] =
6286 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6287 		le32_to_cpu(stats->tmac_data_octets);
6288 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6289 	tmp_stats[i++] =
6290 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6291 		le32_to_cpu(stats->tmac_mcst_frms);
6292 	tmp_stats[i++] =
6293 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6294 		le32_to_cpu(stats->tmac_bcst_frms);
6295 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6296 	tmp_stats[i++] =
6297 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6298 		le32_to_cpu(stats->tmac_ttl_octets);
6299 	tmp_stats[i++] =
6300 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6301 		le32_to_cpu(stats->tmac_ucst_frms);
6302 	tmp_stats[i++] =
6303 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6304 		le32_to_cpu(stats->tmac_nucst_frms);
6305 	tmp_stats[i++] =
6306 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6307 		le32_to_cpu(stats->tmac_any_err_frms);
6308 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6309 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6310 	tmp_stats[i++] =
6311 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6312 		le32_to_cpu(stats->tmac_vld_ip);
6313 	tmp_stats[i++] =
6314 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6315 		le32_to_cpu(stats->tmac_drop_ip);
6316 	tmp_stats[i++] =
6317 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6318 		le32_to_cpu(stats->tmac_icmp);
6319 	tmp_stats[i++] =
6320 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6321 		le32_to_cpu(stats->tmac_rst_tcp);
6322 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6323 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6324 		le32_to_cpu(stats->tmac_udp);
6325 	tmp_stats[i++] =
6326 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6327 		le32_to_cpu(stats->rmac_vld_frms);
6328 	tmp_stats[i++] =
6329 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6330 		le32_to_cpu(stats->rmac_data_octets);
6331 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6332 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6333 	tmp_stats[i++] =
6334 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6335 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6336 	tmp_stats[i++] =
6337 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6338 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6339 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6340 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6341 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6342 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6343 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6344 	tmp_stats[i++] =
6345 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6346 		le32_to_cpu(stats->rmac_ttl_octets);
6347 	tmp_stats[i++] =
6348 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6349 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6350 	tmp_stats[i++] =
6351 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6352 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6353 	tmp_stats[i++] =
6354 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6355 		le32_to_cpu(stats->rmac_discarded_frms);
6356 	tmp_stats[i++] =
6357 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6358 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6359 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6360 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6361 	tmp_stats[i++] =
6362 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6363 		le32_to_cpu(stats->rmac_usized_frms);
6364 	tmp_stats[i++] =
6365 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6366 		le32_to_cpu(stats->rmac_osized_frms);
6367 	tmp_stats[i++] =
6368 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6369 		le32_to_cpu(stats->rmac_frag_frms);
6370 	tmp_stats[i++] =
6371 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6372 		le32_to_cpu(stats->rmac_jabber_frms);
6373 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6374 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6375 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6376 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6377 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6378 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6379 	tmp_stats[i++] =
6380 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6381 		le32_to_cpu(stats->rmac_ip);
6382 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6383 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6384 	tmp_stats[i++] =
6385 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6386 		le32_to_cpu(stats->rmac_drop_ip);
6387 	tmp_stats[i++] =
6388 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6389 		le32_to_cpu(stats->rmac_icmp);
6390 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6391 	tmp_stats[i++] =
6392 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6393 		le32_to_cpu(stats->rmac_udp);
6394 	tmp_stats[i++] =
6395 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6396 		le32_to_cpu(stats->rmac_err_drp_udp);
6397 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6398 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6399 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6400 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6401 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6402 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6403 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6404 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6405 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6406 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6407 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6408 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6409 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6410 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6411 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6412 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6413 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6414 	tmp_stats[i++] =
6415 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6416 		le32_to_cpu(stats->rmac_pause_cnt);
6417 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6418 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6419 	tmp_stats[i++] =
6420 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6421 		le32_to_cpu(stats->rmac_accepted_ip);
6422 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6423 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6424 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6425 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6426 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6427 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6428 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6429 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6430 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6431 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6432 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6433 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6434 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6435 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6436 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6437 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6438 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6439 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6440 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6441 
6442 	/* Enhanced statistics exist only for Hercules */
6443 	if (sp->device_type == XFRAME_II_DEVICE) {
6444 		tmp_stats[i++] =
6445 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6446 		tmp_stats[i++] =
6447 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6448 		tmp_stats[i++] =
6449 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6450 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6451 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6452 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6453 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6454 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6455 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6456 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6457 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6458 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6459 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6460 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6461 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6462 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6463 	}
6464 
6465 	tmp_stats[i++] = 0;
6466 	tmp_stats[i++] = swstats->single_ecc_errs;
6467 	tmp_stats[i++] = swstats->double_ecc_errs;
6468 	tmp_stats[i++] = swstats->parity_err_cnt;
6469 	tmp_stats[i++] = swstats->serious_err_cnt;
6470 	tmp_stats[i++] = swstats->soft_reset_cnt;
6471 	tmp_stats[i++] = swstats->fifo_full_cnt;
6472 	for (k = 0; k < MAX_RX_RINGS; k++)
6473 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6474 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6475 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6476 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6477 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6478 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6479 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6480 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6481 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6482 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6483 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6484 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6485 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6486 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6487 	tmp_stats[i++] = swstats->sending_both;
6488 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6489 	tmp_stats[i++] = swstats->flush_max_pkts;
6490 	if (swstats->num_aggregations) {
6491 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6492 		int count = 0;
6493 		/*
6494 		 * Since 64-bit divide does not work on all platforms,
6495 		 * do repeated subtraction.
6496 		 */
6497 		while (tmp >= swstats->num_aggregations) {
6498 			tmp -= swstats->num_aggregations;
6499 			count++;
6500 		}
6501 		tmp_stats[i++] = count;
6502 	} else
6503 		tmp_stats[i++] = 0;
6504 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6505 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6506 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6507 	tmp_stats[i++] = swstats->mem_allocated;
6508 	tmp_stats[i++] = swstats->mem_freed;
6509 	tmp_stats[i++] = swstats->link_up_cnt;
6510 	tmp_stats[i++] = swstats->link_down_cnt;
6511 	tmp_stats[i++] = swstats->link_up_time;
6512 	tmp_stats[i++] = swstats->link_down_time;
6513 
6514 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6515 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6516 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6517 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6518 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6519 
6520 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6521 	tmp_stats[i++] = swstats->rx_abort_cnt;
6522 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6523 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6524 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6525 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6526 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6527 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6528 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6529 	tmp_stats[i++] = swstats->tda_err_cnt;
6530 	tmp_stats[i++] = swstats->pfc_err_cnt;
6531 	tmp_stats[i++] = swstats->pcc_err_cnt;
6532 	tmp_stats[i++] = swstats->tti_err_cnt;
6533 	tmp_stats[i++] = swstats->tpa_err_cnt;
6534 	tmp_stats[i++] = swstats->sm_err_cnt;
6535 	tmp_stats[i++] = swstats->lso_err_cnt;
6536 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6537 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6538 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6539 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6540 	tmp_stats[i++] = swstats->rc_err_cnt;
6541 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6542 	tmp_stats[i++] = swstats->rpa_err_cnt;
6543 	tmp_stats[i++] = swstats->rda_err_cnt;
6544 	tmp_stats[i++] = swstats->rti_err_cnt;
6545 	tmp_stats[i++] = swstats->mc_err_cnt;
6546 }
6547 
6548 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6549 {
6550 	return XENA_REG_SPACE;
6551 }
6552 
6553 
6554 static int s2io_get_eeprom_len(struct net_device *dev)
6555 {
6556 	return XENA_EEPROM_SPACE;
6557 }
6558 
6559 static int s2io_get_sset_count(struct net_device *dev, int sset)
6560 {
6561 	struct s2io_nic *sp = netdev_priv(dev);
6562 
6563 	switch (sset) {
6564 	case ETH_SS_TEST:
6565 		return S2IO_TEST_LEN;
6566 	case ETH_SS_STATS:
6567 		switch (sp->device_type) {
6568 		case XFRAME_I_DEVICE:
6569 			return XFRAME_I_STAT_LEN;
6570 		case XFRAME_II_DEVICE:
6571 			return XFRAME_II_STAT_LEN;
6572 		default:
6573 			return 0;
6574 		}
6575 	default:
6576 		return -EOPNOTSUPP;
6577 	}
6578 }
6579 
6580 static void s2io_ethtool_get_strings(struct net_device *dev,
6581 				     u32 stringset, u8 *data)
6582 {
6583 	int stat_size = 0;
6584 	struct s2io_nic *sp = netdev_priv(dev);
6585 
6586 	switch (stringset) {
6587 	case ETH_SS_TEST:
6588 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6589 		break;
6590 	case ETH_SS_STATS:
6591 		stat_size = sizeof(ethtool_xena_stats_keys);
6592 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6593 		if (sp->device_type == XFRAME_II_DEVICE) {
6594 			memcpy(data + stat_size,
6595 			       &ethtool_enhanced_stats_keys,
6596 			       sizeof(ethtool_enhanced_stats_keys));
6597 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6598 		}
6599 
6600 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6601 		       sizeof(ethtool_driver_stats_keys));
6602 	}
6603 }
6604 
6605 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6606 {
6607 	struct s2io_nic *sp = netdev_priv(dev);
6608 	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6609 
6610 	if (changed && netif_running(dev)) {
6611 		int rc;
6612 
6613 		s2io_stop_all_tx_queue(sp);
6614 		s2io_card_down(sp);
6615 		dev->features = features;
6616 		rc = s2io_card_up(sp);
6617 		if (rc)
6618 			s2io_reset(sp);
6619 		else
6620 			s2io_start_all_tx_queue(sp);
6621 
6622 		return rc ? rc : 1;
6623 	}
6624 
6625 	return 0;
6626 }
6627 
6628 static const struct ethtool_ops netdev_ethtool_ops = {
6629 	.get_settings = s2io_ethtool_gset,
6630 	.set_settings = s2io_ethtool_sset,
6631 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6632 	.get_regs_len = s2io_ethtool_get_regs_len,
6633 	.get_regs = s2io_ethtool_gregs,
6634 	.get_link = ethtool_op_get_link,
6635 	.get_eeprom_len = s2io_get_eeprom_len,
6636 	.get_eeprom = s2io_ethtool_geeprom,
6637 	.set_eeprom = s2io_ethtool_seeprom,
6638 	.get_ringparam = s2io_ethtool_gringparam,
6639 	.get_pauseparam = s2io_ethtool_getpause_data,
6640 	.set_pauseparam = s2io_ethtool_setpause_data,
6641 	.self_test = s2io_ethtool_test,
6642 	.get_strings = s2io_ethtool_get_strings,
6643 	.set_phys_id = s2io_ethtool_set_led,
6644 	.get_ethtool_stats = s2io_get_ethtool_stats,
6645 	.get_sset_count = s2io_get_sset_count,
6646 };
6647 
6648 /**
6649  *  s2io_ioctl - Entry point for the Ioctl
6650  *  @dev :  Device pointer.
6651  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6652  *  a proprietary structure used to pass information to the driver.
6653  *  @cmd :  This is used to distinguish between the different commands that
6654  *  can be passed to the IOCTL functions.
6655  *  Description:
6656  *  Currently there are no special functionality supported in IOCTL, hence
6657  *  function always return EOPNOTSUPPORTED
6658  */
6659 
6660 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6661 {
6662 	return -EOPNOTSUPP;
6663 }
6664 
6665 /**
6666  *  s2io_change_mtu - entry point to change MTU size for the device.
6667  *   @dev : device pointer.
6668  *   @new_mtu : the new MTU size for the device.
6669  *   Description: A driver entry point to change MTU size for the device.
6670  *   Before changing the MTU the device must be stopped.
6671  *  Return value:
6672  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6673  *   file on failure.
6674  */
6675 
6676 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6677 {
6678 	struct s2io_nic *sp = netdev_priv(dev);
6679 	int ret = 0;
6680 
6681 	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6682 		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6683 		return -EPERM;
6684 	}
6685 
6686 	dev->mtu = new_mtu;
6687 	if (netif_running(dev)) {
6688 		s2io_stop_all_tx_queue(sp);
6689 		s2io_card_down(sp);
6690 		ret = s2io_card_up(sp);
6691 		if (ret) {
6692 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6693 				  __func__);
6694 			return ret;
6695 		}
6696 		s2io_wake_all_tx_queue(sp);
6697 	} else { /* Device is down */
6698 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6699 		u64 val64 = new_mtu;
6700 
6701 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6702 	}
6703 
6704 	return ret;
6705 }
6706 
6707 /**
6708  * s2io_set_link - Set the LInk status
6709  * @data: long pointer to device private structue
6710  * Description: Sets the link status for the adapter
6711  */
6712 
6713 static void s2io_set_link(struct work_struct *work)
6714 {
6715 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6716 					    set_link_task);
6717 	struct net_device *dev = nic->dev;
6718 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6719 	register u64 val64;
6720 	u16 subid;
6721 
6722 	rtnl_lock();
6723 
6724 	if (!netif_running(dev))
6725 		goto out_unlock;
6726 
6727 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6728 		/* The card is being reset, no point doing anything */
6729 		goto out_unlock;
6730 	}
6731 
6732 	subid = nic->pdev->subsystem_device;
6733 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6734 		/*
6735 		 * Allow a small delay for the NICs self initiated
6736 		 * cleanup to complete.
6737 		 */
6738 		msleep(100);
6739 	}
6740 
6741 	val64 = readq(&bar0->adapter_status);
6742 	if (LINK_IS_UP(val64)) {
6743 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6744 			if (verify_xena_quiescence(nic)) {
6745 				val64 = readq(&bar0->adapter_control);
6746 				val64 |= ADAPTER_CNTL_EN;
6747 				writeq(val64, &bar0->adapter_control);
6748 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6749 					    nic->device_type, subid)) {
6750 					val64 = readq(&bar0->gpio_control);
6751 					val64 |= GPIO_CTRL_GPIO_0;
6752 					writeq(val64, &bar0->gpio_control);
6753 					val64 = readq(&bar0->gpio_control);
6754 				} else {
6755 					val64 |= ADAPTER_LED_ON;
6756 					writeq(val64, &bar0->adapter_control);
6757 				}
6758 				nic->device_enabled_once = true;
6759 			} else {
6760 				DBG_PRINT(ERR_DBG,
6761 					  "%s: Error: device is not Quiescent\n",
6762 					  dev->name);
6763 				s2io_stop_all_tx_queue(nic);
6764 			}
6765 		}
6766 		val64 = readq(&bar0->adapter_control);
6767 		val64 |= ADAPTER_LED_ON;
6768 		writeq(val64, &bar0->adapter_control);
6769 		s2io_link(nic, LINK_UP);
6770 	} else {
6771 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6772 						      subid)) {
6773 			val64 = readq(&bar0->gpio_control);
6774 			val64 &= ~GPIO_CTRL_GPIO_0;
6775 			writeq(val64, &bar0->gpio_control);
6776 			val64 = readq(&bar0->gpio_control);
6777 		}
6778 		/* turn off LED */
6779 		val64 = readq(&bar0->adapter_control);
6780 		val64 = val64 & (~ADAPTER_LED_ON);
6781 		writeq(val64, &bar0->adapter_control);
6782 		s2io_link(nic, LINK_DOWN);
6783 	}
6784 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6785 
6786 out_unlock:
6787 	rtnl_unlock();
6788 }
6789 
6790 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6791 				  struct buffAdd *ba,
6792 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6793 				  u64 *temp2, int size)
6794 {
6795 	struct net_device *dev = sp->dev;
6796 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6797 
6798 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6799 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6800 		/* allocate skb */
6801 		if (*skb) {
6802 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6803 			/*
6804 			 * As Rx frame are not going to be processed,
6805 			 * using same mapped address for the Rxd
6806 			 * buffer pointer
6807 			 */
6808 			rxdp1->Buffer0_ptr = *temp0;
6809 		} else {
6810 			*skb = netdev_alloc_skb(dev, size);
6811 			if (!(*skb)) {
6812 				DBG_PRINT(INFO_DBG,
6813 					  "%s: Out of memory to allocate %s\n",
6814 					  dev->name, "1 buf mode SKBs");
6815 				stats->mem_alloc_fail_cnt++;
6816 				return -ENOMEM ;
6817 			}
6818 			stats->mem_allocated += (*skb)->truesize;
6819 			/* storing the mapped addr in a temp variable
6820 			 * such it will be used for next rxd whose
6821 			 * Host Control is NULL
6822 			 */
6823 			rxdp1->Buffer0_ptr = *temp0 =
6824 				pci_map_single(sp->pdev, (*skb)->data,
6825 					       size - NET_IP_ALIGN,
6826 					       PCI_DMA_FROMDEVICE);
6827 			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6828 				goto memalloc_failed;
6829 			rxdp->Host_Control = (unsigned long) (*skb);
6830 		}
6831 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6832 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6833 		/* Two buffer Mode */
6834 		if (*skb) {
6835 			rxdp3->Buffer2_ptr = *temp2;
6836 			rxdp3->Buffer0_ptr = *temp0;
6837 			rxdp3->Buffer1_ptr = *temp1;
6838 		} else {
6839 			*skb = netdev_alloc_skb(dev, size);
6840 			if (!(*skb)) {
6841 				DBG_PRINT(INFO_DBG,
6842 					  "%s: Out of memory to allocate %s\n",
6843 					  dev->name,
6844 					  "2 buf mode SKBs");
6845 				stats->mem_alloc_fail_cnt++;
6846 				return -ENOMEM;
6847 			}
6848 			stats->mem_allocated += (*skb)->truesize;
6849 			rxdp3->Buffer2_ptr = *temp2 =
6850 				pci_map_single(sp->pdev, (*skb)->data,
6851 					       dev->mtu + 4,
6852 					       PCI_DMA_FROMDEVICE);
6853 			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6854 				goto memalloc_failed;
6855 			rxdp3->Buffer0_ptr = *temp0 =
6856 				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6857 					       PCI_DMA_FROMDEVICE);
6858 			if (pci_dma_mapping_error(sp->pdev,
6859 						  rxdp3->Buffer0_ptr)) {
6860 				pci_unmap_single(sp->pdev,
6861 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6862 						 dev->mtu + 4,
6863 						 PCI_DMA_FROMDEVICE);
6864 				goto memalloc_failed;
6865 			}
6866 			rxdp->Host_Control = (unsigned long) (*skb);
6867 
6868 			/* Buffer-1 will be dummy buffer not used */
6869 			rxdp3->Buffer1_ptr = *temp1 =
6870 				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6871 					       PCI_DMA_FROMDEVICE);
6872 			if (pci_dma_mapping_error(sp->pdev,
6873 						  rxdp3->Buffer1_ptr)) {
6874 				pci_unmap_single(sp->pdev,
6875 						 (dma_addr_t)rxdp3->Buffer0_ptr,
6876 						 BUF0_LEN, PCI_DMA_FROMDEVICE);
6877 				pci_unmap_single(sp->pdev,
6878 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6879 						 dev->mtu + 4,
6880 						 PCI_DMA_FROMDEVICE);
6881 				goto memalloc_failed;
6882 			}
6883 		}
6884 	}
6885 	return 0;
6886 
6887 memalloc_failed:
6888 	stats->pci_map_fail_cnt++;
6889 	stats->mem_freed += (*skb)->truesize;
6890 	dev_kfree_skb(*skb);
6891 	return -ENOMEM;
6892 }
6893 
6894 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6895 				int size)
6896 {
6897 	struct net_device *dev = sp->dev;
6898 	if (sp->rxd_mode == RXD_MODE_1) {
6899 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6900 	} else if (sp->rxd_mode == RXD_MODE_3B) {
6901 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6902 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6903 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6904 	}
6905 }
6906 
6907 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6908 {
6909 	int i, j, k, blk_cnt = 0, size;
6910 	struct config_param *config = &sp->config;
6911 	struct mac_info *mac_control = &sp->mac_control;
6912 	struct net_device *dev = sp->dev;
6913 	struct RxD_t *rxdp = NULL;
6914 	struct sk_buff *skb = NULL;
6915 	struct buffAdd *ba = NULL;
6916 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6917 
6918 	/* Calculate the size based on ring mode */
6919 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6920 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6921 	if (sp->rxd_mode == RXD_MODE_1)
6922 		size += NET_IP_ALIGN;
6923 	else if (sp->rxd_mode == RXD_MODE_3B)
6924 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6925 
6926 	for (i = 0; i < config->rx_ring_num; i++) {
6927 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6928 		struct ring_info *ring = &mac_control->rings[i];
6929 
6930 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6931 
6932 		for (j = 0; j < blk_cnt; j++) {
6933 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6934 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6935 				if (sp->rxd_mode == RXD_MODE_3B)
6936 					ba = &ring->ba[j][k];
6937 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6938 							   &temp0_64,
6939 							   &temp1_64,
6940 							   &temp2_64,
6941 							   size) == -ENOMEM) {
6942 					return 0;
6943 				}
6944 
6945 				set_rxd_buffer_size(sp, rxdp, size);
6946 				dma_wmb();
6947 				/* flip the Ownership bit to Hardware */
6948 				rxdp->Control_1 |= RXD_OWN_XENA;
6949 			}
6950 		}
6951 	}
6952 	return 0;
6953 
6954 }
6955 
6956 static int s2io_add_isr(struct s2io_nic *sp)
6957 {
6958 	int ret = 0;
6959 	struct net_device *dev = sp->dev;
6960 	int err = 0;
6961 
6962 	if (sp->config.intr_type == MSI_X)
6963 		ret = s2io_enable_msi_x(sp);
6964 	if (ret) {
6965 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6966 		sp->config.intr_type = INTA;
6967 	}
6968 
6969 	/*
6970 	 * Store the values of the MSIX table in
6971 	 * the struct s2io_nic structure
6972 	 */
6973 	store_xmsi_data(sp);
6974 
6975 	/* After proper initialization of H/W, register ISR */
6976 	if (sp->config.intr_type == MSI_X) {
6977 		int i, msix_rx_cnt = 0;
6978 
6979 		for (i = 0; i < sp->num_entries; i++) {
6980 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6981 				if (sp->s2io_entries[i].type ==
6982 				    MSIX_RING_TYPE) {
6983 					snprintf(sp->desc[i],
6984 						sizeof(sp->desc[i]),
6985 						"%s:MSI-X-%d-RX",
6986 						dev->name, i);
6987 					err = request_irq(sp->entries[i].vector,
6988 							  s2io_msix_ring_handle,
6989 							  0,
6990 							  sp->desc[i],
6991 							  sp->s2io_entries[i].arg);
6992 				} else if (sp->s2io_entries[i].type ==
6993 					   MSIX_ALARM_TYPE) {
6994 					snprintf(sp->desc[i],
6995 						sizeof(sp->desc[i]),
6996 						"%s:MSI-X-%d-TX",
6997 						dev->name, i);
6998 					err = request_irq(sp->entries[i].vector,
6999 							  s2io_msix_fifo_handle,
7000 							  0,
7001 							  sp->desc[i],
7002 							  sp->s2io_entries[i].arg);
7003 
7004 				}
7005 				/* if either data or addr is zero print it. */
7006 				if (!(sp->msix_info[i].addr &&
7007 				      sp->msix_info[i].data)) {
7008 					DBG_PRINT(ERR_DBG,
7009 						  "%s @Addr:0x%llx Data:0x%llx\n",
7010 						  sp->desc[i],
7011 						  (unsigned long long)
7012 						  sp->msix_info[i].addr,
7013 						  (unsigned long long)
7014 						  ntohl(sp->msix_info[i].data));
7015 				} else
7016 					msix_rx_cnt++;
7017 				if (err) {
7018 					remove_msix_isr(sp);
7019 
7020 					DBG_PRINT(ERR_DBG,
7021 						  "%s:MSI-X-%d registration "
7022 						  "failed\n", dev->name, i);
7023 
7024 					DBG_PRINT(ERR_DBG,
7025 						  "%s: Defaulting to INTA\n",
7026 						  dev->name);
7027 					sp->config.intr_type = INTA;
7028 					break;
7029 				}
7030 				sp->s2io_entries[i].in_use =
7031 					MSIX_REGISTERED_SUCCESS;
7032 			}
7033 		}
7034 		if (!err) {
7035 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7036 			DBG_PRINT(INFO_DBG,
7037 				  "MSI-X-TX entries enabled through alarm vector\n");
7038 		}
7039 	}
7040 	if (sp->config.intr_type == INTA) {
7041 		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7042 				  sp->name, dev);
7043 		if (err) {
7044 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7045 				  dev->name);
7046 			return -1;
7047 		}
7048 	}
7049 	return 0;
7050 }
7051 
7052 static void s2io_rem_isr(struct s2io_nic *sp)
7053 {
7054 	if (sp->config.intr_type == MSI_X)
7055 		remove_msix_isr(sp);
7056 	else
7057 		remove_inta_isr(sp);
7058 }
7059 
7060 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7061 {
7062 	int cnt = 0;
7063 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7064 	register u64 val64 = 0;
7065 	struct config_param *config;
7066 	config = &sp->config;
7067 
7068 	if (!is_s2io_card_up(sp))
7069 		return;
7070 
7071 	del_timer_sync(&sp->alarm_timer);
7072 	/* If s2io_set_link task is executing, wait till it completes. */
7073 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7074 		msleep(50);
7075 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7076 
7077 	/* Disable napi */
7078 	if (sp->config.napi) {
7079 		int off = 0;
7080 		if (config->intr_type ==  MSI_X) {
7081 			for (; off < sp->config.rx_ring_num; off++)
7082 				napi_disable(&sp->mac_control.rings[off].napi);
7083 		}
7084 		else
7085 			napi_disable(&sp->napi);
7086 	}
7087 
7088 	/* disable Tx and Rx traffic on the NIC */
7089 	if (do_io)
7090 		stop_nic(sp);
7091 
7092 	s2io_rem_isr(sp);
7093 
7094 	/* stop the tx queue, indicate link down */
7095 	s2io_link(sp, LINK_DOWN);
7096 
7097 	/* Check if the device is Quiescent and then Reset the NIC */
7098 	while (do_io) {
7099 		/* As per the HW requirement we need to replenish the
7100 		 * receive buffer to avoid the ring bump. Since there is
7101 		 * no intention of processing the Rx frame at this pointwe are
7102 		 * just setting the ownership bit of rxd in Each Rx
7103 		 * ring to HW and set the appropriate buffer size
7104 		 * based on the ring mode
7105 		 */
7106 		rxd_owner_bit_reset(sp);
7107 
7108 		val64 = readq(&bar0->adapter_status);
7109 		if (verify_xena_quiescence(sp)) {
7110 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7111 				break;
7112 		}
7113 
7114 		msleep(50);
7115 		cnt++;
7116 		if (cnt == 10) {
7117 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7118 				  "adapter status reads 0x%llx\n",
7119 				  (unsigned long long)val64);
7120 			break;
7121 		}
7122 	}
7123 	if (do_io)
7124 		s2io_reset(sp);
7125 
7126 	/* Free all Tx buffers */
7127 	free_tx_buffers(sp);
7128 
7129 	/* Free all Rx buffers */
7130 	free_rx_buffers(sp);
7131 
7132 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7133 }
7134 
7135 static void s2io_card_down(struct s2io_nic *sp)
7136 {
7137 	do_s2io_card_down(sp, 1);
7138 }
7139 
7140 static int s2io_card_up(struct s2io_nic *sp)
7141 {
7142 	int i, ret = 0;
7143 	struct config_param *config;
7144 	struct mac_info *mac_control;
7145 	struct net_device *dev = sp->dev;
7146 	u16 interruptible;
7147 
7148 	/* Initialize the H/W I/O registers */
7149 	ret = init_nic(sp);
7150 	if (ret != 0) {
7151 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7152 			  dev->name);
7153 		if (ret != -EIO)
7154 			s2io_reset(sp);
7155 		return ret;
7156 	}
7157 
7158 	/*
7159 	 * Initializing the Rx buffers. For now we are considering only 1
7160 	 * Rx ring and initializing buffers into 30 Rx blocks
7161 	 */
7162 	config = &sp->config;
7163 	mac_control = &sp->mac_control;
7164 
7165 	for (i = 0; i < config->rx_ring_num; i++) {
7166 		struct ring_info *ring = &mac_control->rings[i];
7167 
7168 		ring->mtu = dev->mtu;
7169 		ring->lro = !!(dev->features & NETIF_F_LRO);
7170 		ret = fill_rx_buffers(sp, ring, 1);
7171 		if (ret) {
7172 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7173 				  dev->name);
7174 			s2io_reset(sp);
7175 			free_rx_buffers(sp);
7176 			return -ENOMEM;
7177 		}
7178 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7179 			  ring->rx_bufs_left);
7180 	}
7181 
7182 	/* Initialise napi */
7183 	if (config->napi) {
7184 		if (config->intr_type ==  MSI_X) {
7185 			for (i = 0; i < sp->config.rx_ring_num; i++)
7186 				napi_enable(&sp->mac_control.rings[i].napi);
7187 		} else {
7188 			napi_enable(&sp->napi);
7189 		}
7190 	}
7191 
7192 	/* Maintain the state prior to the open */
7193 	if (sp->promisc_flg)
7194 		sp->promisc_flg = 0;
7195 	if (sp->m_cast_flg) {
7196 		sp->m_cast_flg = 0;
7197 		sp->all_multi_pos = 0;
7198 	}
7199 
7200 	/* Setting its receive mode */
7201 	s2io_set_multicast(dev);
7202 
7203 	if (dev->features & NETIF_F_LRO) {
7204 		/* Initialize max aggregatable pkts per session based on MTU */
7205 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7206 		/* Check if we can use (if specified) user provided value */
7207 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7208 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7209 	}
7210 
7211 	/* Enable Rx Traffic and interrupts on the NIC */
7212 	if (start_nic(sp)) {
7213 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7214 		s2io_reset(sp);
7215 		free_rx_buffers(sp);
7216 		return -ENODEV;
7217 	}
7218 
7219 	/* Add interrupt service routine */
7220 	if (s2io_add_isr(sp) != 0) {
7221 		if (sp->config.intr_type == MSI_X)
7222 			s2io_rem_isr(sp);
7223 		s2io_reset(sp);
7224 		free_rx_buffers(sp);
7225 		return -ENODEV;
7226 	}
7227 
7228 	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7229 
7230 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7231 
7232 	/*  Enable select interrupts */
7233 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7234 	if (sp->config.intr_type != INTA) {
7235 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7236 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7237 	} else {
7238 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7239 		interruptible |= TX_PIC_INTR;
7240 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7241 	}
7242 
7243 	return 0;
7244 }
7245 
7246 /**
7247  * s2io_restart_nic - Resets the NIC.
7248  * @data : long pointer to the device private structure
7249  * Description:
7250  * This function is scheduled to be run by the s2io_tx_watchdog
7251  * function after 0.5 secs to reset the NIC. The idea is to reduce
7252  * the run time of the watch dog routine which is run holding a
7253  * spin lock.
7254  */
7255 
7256 static void s2io_restart_nic(struct work_struct *work)
7257 {
7258 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7259 	struct net_device *dev = sp->dev;
7260 
7261 	rtnl_lock();
7262 
7263 	if (!netif_running(dev))
7264 		goto out_unlock;
7265 
7266 	s2io_card_down(sp);
7267 	if (s2io_card_up(sp)) {
7268 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7269 	}
7270 	s2io_wake_all_tx_queue(sp);
7271 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7272 out_unlock:
7273 	rtnl_unlock();
7274 }
7275 
7276 /**
7277  *  s2io_tx_watchdog - Watchdog for transmit side.
7278  *  @dev : Pointer to net device structure
7279  *  Description:
7280  *  This function is triggered if the Tx Queue is stopped
7281  *  for a pre-defined amount of time when the Interface is still up.
7282  *  If the Interface is jammed in such a situation, the hardware is
7283  *  reset (by s2io_close) and restarted again (by s2io_open) to
7284  *  overcome any problem that might have been caused in the hardware.
7285  *  Return value:
7286  *  void
7287  */
7288 
7289 static void s2io_tx_watchdog(struct net_device *dev)
7290 {
7291 	struct s2io_nic *sp = netdev_priv(dev);
7292 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7293 
7294 	if (netif_carrier_ok(dev)) {
7295 		swstats->watchdog_timer_cnt++;
7296 		schedule_work(&sp->rst_timer_task);
7297 		swstats->soft_reset_cnt++;
7298 	}
7299 }
7300 
7301 /**
7302  *   rx_osm_handler - To perform some OS related operations on SKB.
7303  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7304  *   @skb : the socket buffer pointer.
7305  *   @len : length of the packet
7306  *   @cksum : FCS checksum of the frame.
7307  *   @ring_no : the ring from which this RxD was extracted.
7308  *   Description:
7309  *   This function is called by the Rx interrupt serivce routine to perform
7310  *   some OS related operations on the SKB before passing it to the upper
7311  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7312  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7313  *   to the upper layer. If the checksum is wrong, it increments the Rx
7314  *   packet error count, frees the SKB and returns error.
7315  *   Return value:
7316  *   SUCCESS on success and -1 on failure.
7317  */
7318 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7319 {
7320 	struct s2io_nic *sp = ring_data->nic;
7321 	struct net_device *dev = ring_data->dev;
7322 	struct sk_buff *skb = (struct sk_buff *)
7323 		((unsigned long)rxdp->Host_Control);
7324 	int ring_no = ring_data->ring_no;
7325 	u16 l3_csum, l4_csum;
7326 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7327 	struct lro *uninitialized_var(lro);
7328 	u8 err_mask;
7329 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7330 
7331 	skb->dev = dev;
7332 
7333 	if (err) {
7334 		/* Check for parity error */
7335 		if (err & 0x1)
7336 			swstats->parity_err_cnt++;
7337 
7338 		err_mask = err >> 48;
7339 		switch (err_mask) {
7340 		case 1:
7341 			swstats->rx_parity_err_cnt++;
7342 			break;
7343 
7344 		case 2:
7345 			swstats->rx_abort_cnt++;
7346 			break;
7347 
7348 		case 3:
7349 			swstats->rx_parity_abort_cnt++;
7350 			break;
7351 
7352 		case 4:
7353 			swstats->rx_rda_fail_cnt++;
7354 			break;
7355 
7356 		case 5:
7357 			swstats->rx_unkn_prot_cnt++;
7358 			break;
7359 
7360 		case 6:
7361 			swstats->rx_fcs_err_cnt++;
7362 			break;
7363 
7364 		case 7:
7365 			swstats->rx_buf_size_err_cnt++;
7366 			break;
7367 
7368 		case 8:
7369 			swstats->rx_rxd_corrupt_cnt++;
7370 			break;
7371 
7372 		case 15:
7373 			swstats->rx_unkn_err_cnt++;
7374 			break;
7375 		}
7376 		/*
7377 		 * Drop the packet if bad transfer code. Exception being
7378 		 * 0x5, which could be due to unsupported IPv6 extension header.
7379 		 * In this case, we let stack handle the packet.
7380 		 * Note that in this case, since checksum will be incorrect,
7381 		 * stack will validate the same.
7382 		 */
7383 		if (err_mask != 0x5) {
7384 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7385 				  dev->name, err_mask);
7386 			dev->stats.rx_crc_errors++;
7387 			swstats->mem_freed
7388 				+= skb->truesize;
7389 			dev_kfree_skb(skb);
7390 			ring_data->rx_bufs_left -= 1;
7391 			rxdp->Host_Control = 0;
7392 			return 0;
7393 		}
7394 	}
7395 
7396 	rxdp->Host_Control = 0;
7397 	if (sp->rxd_mode == RXD_MODE_1) {
7398 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7399 
7400 		skb_put(skb, len);
7401 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7402 		int get_block = ring_data->rx_curr_get_info.block_index;
7403 		int get_off = ring_data->rx_curr_get_info.offset;
7404 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7405 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7406 		unsigned char *buff = skb_push(skb, buf0_len);
7407 
7408 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7409 		memcpy(buff, ba->ba_0, buf0_len);
7410 		skb_put(skb, buf2_len);
7411 	}
7412 
7413 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7414 	    ((!ring_data->lro) ||
7415 	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7416 	    (dev->features & NETIF_F_RXCSUM)) {
7417 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7418 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7419 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7420 			/*
7421 			 * NIC verifies if the Checksum of the received
7422 			 * frame is Ok or not and accordingly returns
7423 			 * a flag in the RxD.
7424 			 */
7425 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7426 			if (ring_data->lro) {
7427 				u32 tcp_len = 0;
7428 				u8 *tcp;
7429 				int ret = 0;
7430 
7431 				ret = s2io_club_tcp_session(ring_data,
7432 							    skb->data, &tcp,
7433 							    &tcp_len, &lro,
7434 							    rxdp, sp);
7435 				switch (ret) {
7436 				case 3: /* Begin anew */
7437 					lro->parent = skb;
7438 					goto aggregate;
7439 				case 1: /* Aggregate */
7440 					lro_append_pkt(sp, lro, skb, tcp_len);
7441 					goto aggregate;
7442 				case 4: /* Flush session */
7443 					lro_append_pkt(sp, lro, skb, tcp_len);
7444 					queue_rx_frame(lro->parent,
7445 						       lro->vlan_tag);
7446 					clear_lro_session(lro);
7447 					swstats->flush_max_pkts++;
7448 					goto aggregate;
7449 				case 2: /* Flush both */
7450 					lro->parent->data_len = lro->frags_len;
7451 					swstats->sending_both++;
7452 					queue_rx_frame(lro->parent,
7453 						       lro->vlan_tag);
7454 					clear_lro_session(lro);
7455 					goto send_up;
7456 				case 0: /* sessions exceeded */
7457 				case -1: /* non-TCP or not L2 aggregatable */
7458 				case 5: /*
7459 					 * First pkt in session not
7460 					 * L3/L4 aggregatable
7461 					 */
7462 					break;
7463 				default:
7464 					DBG_PRINT(ERR_DBG,
7465 						  "%s: Samadhana!!\n",
7466 						  __func__);
7467 					BUG();
7468 				}
7469 			}
7470 		} else {
7471 			/*
7472 			 * Packet with erroneous checksum, let the
7473 			 * upper layers deal with it.
7474 			 */
7475 			skb_checksum_none_assert(skb);
7476 		}
7477 	} else
7478 		skb_checksum_none_assert(skb);
7479 
7480 	swstats->mem_freed += skb->truesize;
7481 send_up:
7482 	skb_record_rx_queue(skb, ring_no);
7483 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7484 aggregate:
7485 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7486 	return SUCCESS;
7487 }
7488 
7489 /**
7490  *  s2io_link - stops/starts the Tx queue.
7491  *  @sp : private member of the device structure, which is a pointer to the
7492  *  s2io_nic structure.
7493  *  @link : inidicates whether link is UP/DOWN.
7494  *  Description:
7495  *  This function stops/starts the Tx queue depending on whether the link
7496  *  status of the NIC is is down or up. This is called by the Alarm
7497  *  interrupt handler whenever a link change interrupt comes up.
7498  *  Return value:
7499  *  void.
7500  */
7501 
7502 static void s2io_link(struct s2io_nic *sp, int link)
7503 {
7504 	struct net_device *dev = sp->dev;
7505 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7506 
7507 	if (link != sp->last_link_state) {
7508 		init_tti(sp, link);
7509 		if (link == LINK_DOWN) {
7510 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7511 			s2io_stop_all_tx_queue(sp);
7512 			netif_carrier_off(dev);
7513 			if (swstats->link_up_cnt)
7514 				swstats->link_up_time =
7515 					jiffies - sp->start_time;
7516 			swstats->link_down_cnt++;
7517 		} else {
7518 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7519 			if (swstats->link_down_cnt)
7520 				swstats->link_down_time =
7521 					jiffies - sp->start_time;
7522 			swstats->link_up_cnt++;
7523 			netif_carrier_on(dev);
7524 			s2io_wake_all_tx_queue(sp);
7525 		}
7526 	}
7527 	sp->last_link_state = link;
7528 	sp->start_time = jiffies;
7529 }
7530 
7531 /**
7532  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7533  *  @sp : private member of the device structure, which is a pointer to the
7534  *  s2io_nic structure.
7535  *  Description:
7536  *  This function initializes a few of the PCI and PCI-X configuration registers
7537  *  with recommended values.
7538  *  Return value:
7539  *  void
7540  */
7541 
7542 static void s2io_init_pci(struct s2io_nic *sp)
7543 {
7544 	u16 pci_cmd = 0, pcix_cmd = 0;
7545 
7546 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7547 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7548 			     &(pcix_cmd));
7549 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7550 			      (pcix_cmd | 1));
7551 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7552 			     &(pcix_cmd));
7553 
7554 	/* Set the PErr Response bit in PCI command register. */
7555 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7556 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7557 			      (pci_cmd | PCI_COMMAND_PARITY));
7558 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7559 }
7560 
7561 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7562 			    u8 *dev_multiq)
7563 {
7564 	int i;
7565 
7566 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7567 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7568 			  "(%d) not supported\n", tx_fifo_num);
7569 
7570 		if (tx_fifo_num < 1)
7571 			tx_fifo_num = 1;
7572 		else
7573 			tx_fifo_num = MAX_TX_FIFOS;
7574 
7575 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7576 	}
7577 
7578 	if (multiq)
7579 		*dev_multiq = multiq;
7580 
7581 	if (tx_steering_type && (1 == tx_fifo_num)) {
7582 		if (tx_steering_type != TX_DEFAULT_STEERING)
7583 			DBG_PRINT(ERR_DBG,
7584 				  "Tx steering is not supported with "
7585 				  "one fifo. Disabling Tx steering.\n");
7586 		tx_steering_type = NO_STEERING;
7587 	}
7588 
7589 	if ((tx_steering_type < NO_STEERING) ||
7590 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7591 		DBG_PRINT(ERR_DBG,
7592 			  "Requested transmit steering not supported\n");
7593 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7594 		tx_steering_type = NO_STEERING;
7595 	}
7596 
7597 	if (rx_ring_num > MAX_RX_RINGS) {
7598 		DBG_PRINT(ERR_DBG,
7599 			  "Requested number of rx rings not supported\n");
7600 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7601 			  MAX_RX_RINGS);
7602 		rx_ring_num = MAX_RX_RINGS;
7603 	}
7604 
7605 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7606 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7607 			  "Defaulting to INTA\n");
7608 		*dev_intr_type = INTA;
7609 	}
7610 
7611 	if ((*dev_intr_type == MSI_X) &&
7612 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7613 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7614 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7615 			  "Defaulting to INTA\n");
7616 		*dev_intr_type = INTA;
7617 	}
7618 
7619 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7620 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7621 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7622 		rx_ring_mode = 1;
7623 	}
7624 
7625 	for (i = 0; i < MAX_RX_RINGS; i++)
7626 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7627 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7628 				  "supported\nDefaulting to %d\n",
7629 				  MAX_RX_BLOCKS_PER_RING);
7630 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7631 		}
7632 
7633 	return SUCCESS;
7634 }
7635 
7636 /**
7637  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7638  * or Traffic class respectively.
7639  * @nic: device private variable
7640  * Description: The function configures the receive steering to
7641  * desired receive ring.
7642  * Return Value:  SUCCESS on success and
7643  * '-1' on failure (endian settings incorrect).
7644  */
7645 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7646 {
7647 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7648 	register u64 val64 = 0;
7649 
7650 	if (ds_codepoint > 63)
7651 		return FAILURE;
7652 
7653 	val64 = RTS_DS_MEM_DATA(ring);
7654 	writeq(val64, &bar0->rts_ds_mem_data);
7655 
7656 	val64 = RTS_DS_MEM_CTRL_WE |
7657 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7658 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7659 
7660 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7661 
7662 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7663 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7664 				     S2IO_BIT_RESET);
7665 }
7666 
7667 static const struct net_device_ops s2io_netdev_ops = {
7668 	.ndo_open	        = s2io_open,
7669 	.ndo_stop	        = s2io_close,
7670 	.ndo_get_stats	        = s2io_get_stats,
7671 	.ndo_start_xmit    	= s2io_xmit,
7672 	.ndo_validate_addr	= eth_validate_addr,
7673 	.ndo_set_rx_mode	= s2io_set_multicast,
7674 	.ndo_do_ioctl	   	= s2io_ioctl,
7675 	.ndo_set_mac_address    = s2io_set_mac_addr,
7676 	.ndo_change_mtu	   	= s2io_change_mtu,
7677 	.ndo_set_features	= s2io_set_features,
7678 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7679 #ifdef CONFIG_NET_POLL_CONTROLLER
7680 	.ndo_poll_controller    = s2io_netpoll,
7681 #endif
7682 };
7683 
7684 /**
7685  *  s2io_init_nic - Initialization of the adapter .
7686  *  @pdev : structure containing the PCI related information of the device.
7687  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7688  *  Description:
7689  *  The function initializes an adapter identified by the pci_dec structure.
7690  *  All OS related initialization including memory and device structure and
7691  *  initlaization of the device private variable is done. Also the swapper
7692  *  control register is initialized to enable read and write into the I/O
7693  *  registers of the device.
7694  *  Return value:
7695  *  returns 0 on success and negative on failure.
7696  */
7697 
7698 static int
7699 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7700 {
7701 	struct s2io_nic *sp;
7702 	struct net_device *dev;
7703 	int i, j, ret;
7704 	int dma_flag = false;
7705 	u32 mac_up, mac_down;
7706 	u64 val64 = 0, tmp64 = 0;
7707 	struct XENA_dev_config __iomem *bar0 = NULL;
7708 	u16 subid;
7709 	struct config_param *config;
7710 	struct mac_info *mac_control;
7711 	int mode;
7712 	u8 dev_intr_type = intr_type;
7713 	u8 dev_multiq = 0;
7714 
7715 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7716 	if (ret)
7717 		return ret;
7718 
7719 	ret = pci_enable_device(pdev);
7720 	if (ret) {
7721 		DBG_PRINT(ERR_DBG,
7722 			  "%s: pci_enable_device failed\n", __func__);
7723 		return ret;
7724 	}
7725 
7726 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7727 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7728 		dma_flag = true;
7729 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7730 			DBG_PRINT(ERR_DBG,
7731 				  "Unable to obtain 64bit DMA "
7732 				  "for consistent allocations\n");
7733 			pci_disable_device(pdev);
7734 			return -ENOMEM;
7735 		}
7736 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7737 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7738 	} else {
7739 		pci_disable_device(pdev);
7740 		return -ENOMEM;
7741 	}
7742 	ret = pci_request_regions(pdev, s2io_driver_name);
7743 	if (ret) {
7744 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7745 			  __func__, ret);
7746 		pci_disable_device(pdev);
7747 		return -ENODEV;
7748 	}
7749 	if (dev_multiq)
7750 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7751 	else
7752 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7753 	if (dev == NULL) {
7754 		pci_disable_device(pdev);
7755 		pci_release_regions(pdev);
7756 		return -ENODEV;
7757 	}
7758 
7759 	pci_set_master(pdev);
7760 	pci_set_drvdata(pdev, dev);
7761 	SET_NETDEV_DEV(dev, &pdev->dev);
7762 
7763 	/*  Private member variable initialized to s2io NIC structure */
7764 	sp = netdev_priv(dev);
7765 	sp->dev = dev;
7766 	sp->pdev = pdev;
7767 	sp->high_dma_flag = dma_flag;
7768 	sp->device_enabled_once = false;
7769 	if (rx_ring_mode == 1)
7770 		sp->rxd_mode = RXD_MODE_1;
7771 	if (rx_ring_mode == 2)
7772 		sp->rxd_mode = RXD_MODE_3B;
7773 
7774 	sp->config.intr_type = dev_intr_type;
7775 
7776 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7777 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7778 		sp->device_type = XFRAME_II_DEVICE;
7779 	else
7780 		sp->device_type = XFRAME_I_DEVICE;
7781 
7782 
7783 	/* Initialize some PCI/PCI-X fields of the NIC. */
7784 	s2io_init_pci(sp);
7785 
7786 	/*
7787 	 * Setting the device configuration parameters.
7788 	 * Most of these parameters can be specified by the user during
7789 	 * module insertion as they are module loadable parameters. If
7790 	 * these parameters are not not specified during load time, they
7791 	 * are initialized with default values.
7792 	 */
7793 	config = &sp->config;
7794 	mac_control = &sp->mac_control;
7795 
7796 	config->napi = napi;
7797 	config->tx_steering_type = tx_steering_type;
7798 
7799 	/* Tx side parameters. */
7800 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7801 		config->tx_fifo_num = MAX_TX_FIFOS;
7802 	else
7803 		config->tx_fifo_num = tx_fifo_num;
7804 
7805 	/* Initialize the fifos used for tx steering */
7806 	if (config->tx_fifo_num < 5) {
7807 		if (config->tx_fifo_num  == 1)
7808 			sp->total_tcp_fifos = 1;
7809 		else
7810 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7811 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7812 		sp->total_udp_fifos = 1;
7813 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7814 	} else {
7815 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7816 				       FIFO_OTHER_MAX_NUM);
7817 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7818 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7819 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7820 	}
7821 
7822 	config->multiq = dev_multiq;
7823 	for (i = 0; i < config->tx_fifo_num; i++) {
7824 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7825 
7826 		tx_cfg->fifo_len = tx_fifo_len[i];
7827 		tx_cfg->fifo_priority = i;
7828 	}
7829 
7830 	/* mapping the QoS priority to the configured fifos */
7831 	for (i = 0; i < MAX_TX_FIFOS; i++)
7832 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7833 
7834 	/* map the hashing selector table to the configured fifos */
7835 	for (i = 0; i < config->tx_fifo_num; i++)
7836 		sp->fifo_selector[i] = fifo_selector[i];
7837 
7838 
7839 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7840 	for (i = 0; i < config->tx_fifo_num; i++) {
7841 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7842 
7843 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7844 		if (tx_cfg->fifo_len < 65) {
7845 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7846 			break;
7847 		}
7848 	}
7849 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7850 	config->max_txds = MAX_SKB_FRAGS + 2;
7851 
7852 	/* Rx side parameters. */
7853 	config->rx_ring_num = rx_ring_num;
7854 	for (i = 0; i < config->rx_ring_num; i++) {
7855 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7856 		struct ring_info *ring = &mac_control->rings[i];
7857 
7858 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7859 		rx_cfg->ring_priority = i;
7860 		ring->rx_bufs_left = 0;
7861 		ring->rxd_mode = sp->rxd_mode;
7862 		ring->rxd_count = rxd_count[sp->rxd_mode];
7863 		ring->pdev = sp->pdev;
7864 		ring->dev = sp->dev;
7865 	}
7866 
7867 	for (i = 0; i < rx_ring_num; i++) {
7868 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7869 
7870 		rx_cfg->ring_org = RING_ORG_BUFF1;
7871 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7872 	}
7873 
7874 	/*  Setting Mac Control parameters */
7875 	mac_control->rmac_pause_time = rmac_pause_time;
7876 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7877 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7878 
7879 
7880 	/*  initialize the shared memory used by the NIC and the host */
7881 	if (init_shared_mem(sp)) {
7882 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7883 		ret = -ENOMEM;
7884 		goto mem_alloc_failed;
7885 	}
7886 
7887 	sp->bar0 = pci_ioremap_bar(pdev, 0);
7888 	if (!sp->bar0) {
7889 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7890 			  dev->name);
7891 		ret = -ENOMEM;
7892 		goto bar0_remap_failed;
7893 	}
7894 
7895 	sp->bar1 = pci_ioremap_bar(pdev, 2);
7896 	if (!sp->bar1) {
7897 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7898 			  dev->name);
7899 		ret = -ENOMEM;
7900 		goto bar1_remap_failed;
7901 	}
7902 
7903 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7904 	for (j = 0; j < MAX_TX_FIFOS; j++) {
7905 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7906 	}
7907 
7908 	/*  Driver entry points */
7909 	dev->netdev_ops = &s2io_netdev_ops;
7910 	dev->ethtool_ops = &netdev_ethtool_ops;
7911 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7912 		NETIF_F_TSO | NETIF_F_TSO6 |
7913 		NETIF_F_RXCSUM | NETIF_F_LRO;
7914 	dev->features |= dev->hw_features |
7915 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7916 	if (sp->device_type & XFRAME_II_DEVICE) {
7917 		dev->hw_features |= NETIF_F_UFO;
7918 		if (ufo)
7919 			dev->features |= NETIF_F_UFO;
7920 	}
7921 	if (sp->high_dma_flag == true)
7922 		dev->features |= NETIF_F_HIGHDMA;
7923 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7924 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7925 	INIT_WORK(&sp->set_link_task, s2io_set_link);
7926 
7927 	pci_save_state(sp->pdev);
7928 
7929 	/* Setting swapper control on the NIC, for proper reset operation */
7930 	if (s2io_set_swapper(sp)) {
7931 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7932 			  dev->name);
7933 		ret = -EAGAIN;
7934 		goto set_swap_failed;
7935 	}
7936 
7937 	/* Verify if the Herc works on the slot its placed into */
7938 	if (sp->device_type & XFRAME_II_DEVICE) {
7939 		mode = s2io_verify_pci_mode(sp);
7940 		if (mode < 0) {
7941 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7942 				  __func__);
7943 			ret = -EBADSLT;
7944 			goto set_swap_failed;
7945 		}
7946 	}
7947 
7948 	if (sp->config.intr_type == MSI_X) {
7949 		sp->num_entries = config->rx_ring_num + 1;
7950 		ret = s2io_enable_msi_x(sp);
7951 
7952 		if (!ret) {
7953 			ret = s2io_test_msi(sp);
7954 			/* rollback MSI-X, will re-enable during add_isr() */
7955 			remove_msix_isr(sp);
7956 		}
7957 		if (ret) {
7958 
7959 			DBG_PRINT(ERR_DBG,
7960 				  "MSI-X requested but failed to enable\n");
7961 			sp->config.intr_type = INTA;
7962 		}
7963 	}
7964 
7965 	if (config->intr_type ==  MSI_X) {
7966 		for (i = 0; i < config->rx_ring_num ; i++) {
7967 			struct ring_info *ring = &mac_control->rings[i];
7968 
7969 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7970 		}
7971 	} else {
7972 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7973 	}
7974 
7975 	/* Not needed for Herc */
7976 	if (sp->device_type & XFRAME_I_DEVICE) {
7977 		/*
7978 		 * Fix for all "FFs" MAC address problems observed on
7979 		 * Alpha platforms
7980 		 */
7981 		fix_mac_address(sp);
7982 		s2io_reset(sp);
7983 	}
7984 
7985 	/*
7986 	 * MAC address initialization.
7987 	 * For now only one mac address will be read and used.
7988 	 */
7989 	bar0 = sp->bar0;
7990 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7991 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7992 	writeq(val64, &bar0->rmac_addr_cmd_mem);
7993 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7994 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7995 			      S2IO_BIT_RESET);
7996 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
7997 	mac_down = (u32)tmp64;
7998 	mac_up = (u32) (tmp64 >> 32);
7999 
8000 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8001 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8002 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8003 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8004 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8005 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8006 
8007 	/*  Set the factory defined MAC address initially   */
8008 	dev->addr_len = ETH_ALEN;
8009 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8010 
8011 	/* initialize number of multicast & unicast MAC entries variables */
8012 	if (sp->device_type == XFRAME_I_DEVICE) {
8013 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8014 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8015 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8016 	} else if (sp->device_type == XFRAME_II_DEVICE) {
8017 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8018 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8019 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8020 	}
8021 
8022 	/* store mac addresses from CAM to s2io_nic structure */
8023 	do_s2io_store_unicast_mc(sp);
8024 
8025 	/* Configure MSIX vector for number of rings configured plus one */
8026 	if ((sp->device_type == XFRAME_II_DEVICE) &&
8027 	    (config->intr_type == MSI_X))
8028 		sp->num_entries = config->rx_ring_num + 1;
8029 
8030 	/* Store the values of the MSIX table in the s2io_nic structure */
8031 	store_xmsi_data(sp);
8032 	/* reset Nic and bring it to known state */
8033 	s2io_reset(sp);
8034 
8035 	/*
8036 	 * Initialize link state flags
8037 	 * and the card state parameter
8038 	 */
8039 	sp->state = 0;
8040 
8041 	/* Initialize spinlocks */
8042 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8043 		struct fifo_info *fifo = &mac_control->fifos[i];
8044 
8045 		spin_lock_init(&fifo->tx_lock);
8046 	}
8047 
8048 	/*
8049 	 * SXE-002: Configure link and activity LED to init state
8050 	 * on driver load.
8051 	 */
8052 	subid = sp->pdev->subsystem_device;
8053 	if ((subid & 0xFF) >= 0x07) {
8054 		val64 = readq(&bar0->gpio_control);
8055 		val64 |= 0x0000800000000000ULL;
8056 		writeq(val64, &bar0->gpio_control);
8057 		val64 = 0x0411040400000000ULL;
8058 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8059 		val64 = readq(&bar0->gpio_control);
8060 	}
8061 
8062 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8063 
8064 	if (register_netdev(dev)) {
8065 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8066 		ret = -ENODEV;
8067 		goto register_failed;
8068 	}
8069 	s2io_vpd_read(sp);
8070 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8071 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8072 		  sp->product_name, pdev->revision);
8073 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8074 		  s2io_driver_version);
8075 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8076 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8077 	if (sp->device_type & XFRAME_II_DEVICE) {
8078 		mode = s2io_print_pci_mode(sp);
8079 		if (mode < 0) {
8080 			ret = -EBADSLT;
8081 			unregister_netdev(dev);
8082 			goto set_swap_failed;
8083 		}
8084 	}
8085 	switch (sp->rxd_mode) {
8086 	case RXD_MODE_1:
8087 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8088 			  dev->name);
8089 		break;
8090 	case RXD_MODE_3B:
8091 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8092 			  dev->name);
8093 		break;
8094 	}
8095 
8096 	switch (sp->config.napi) {
8097 	case 0:
8098 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8099 		break;
8100 	case 1:
8101 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8102 		break;
8103 	}
8104 
8105 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8106 		  sp->config.tx_fifo_num);
8107 
8108 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8109 		  sp->config.rx_ring_num);
8110 
8111 	switch (sp->config.intr_type) {
8112 	case INTA:
8113 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8114 		break;
8115 	case MSI_X:
8116 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8117 		break;
8118 	}
8119 	if (sp->config.multiq) {
8120 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8121 			struct fifo_info *fifo = &mac_control->fifos[i];
8122 
8123 			fifo->multiq = config->multiq;
8124 		}
8125 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8126 			  dev->name);
8127 	} else
8128 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8129 			  dev->name);
8130 
8131 	switch (sp->config.tx_steering_type) {
8132 	case NO_STEERING:
8133 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8134 			  dev->name);
8135 		break;
8136 	case TX_PRIORITY_STEERING:
8137 		DBG_PRINT(ERR_DBG,
8138 			  "%s: Priority steering enabled for transmit\n",
8139 			  dev->name);
8140 		break;
8141 	case TX_DEFAULT_STEERING:
8142 		DBG_PRINT(ERR_DBG,
8143 			  "%s: Default steering enabled for transmit\n",
8144 			  dev->name);
8145 	}
8146 
8147 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8148 		  dev->name);
8149 	if (ufo)
8150 		DBG_PRINT(ERR_DBG,
8151 			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8152 			  dev->name);
8153 	/* Initialize device name */
8154 	snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8155 		 sp->product_name);
8156 
8157 	if (vlan_tag_strip)
8158 		sp->vlan_strip_flag = 1;
8159 	else
8160 		sp->vlan_strip_flag = 0;
8161 
8162 	/*
8163 	 * Make Link state as off at this point, when the Link change
8164 	 * interrupt comes the state will be automatically changed to
8165 	 * the right state.
8166 	 */
8167 	netif_carrier_off(dev);
8168 
8169 	return 0;
8170 
8171 register_failed:
8172 set_swap_failed:
8173 	iounmap(sp->bar1);
8174 bar1_remap_failed:
8175 	iounmap(sp->bar0);
8176 bar0_remap_failed:
8177 mem_alloc_failed:
8178 	free_shared_mem(sp);
8179 	pci_disable_device(pdev);
8180 	pci_release_regions(pdev);
8181 	free_netdev(dev);
8182 
8183 	return ret;
8184 }
8185 
8186 /**
8187  * s2io_rem_nic - Free the PCI device
8188  * @pdev: structure containing the PCI related information of the device.
8189  * Description: This function is called by the Pci subsystem to release a
8190  * PCI device and free up all resource held up by the device. This could
8191  * be in response to a Hot plug event or when the driver is to be removed
8192  * from memory.
8193  */
8194 
8195 static void s2io_rem_nic(struct pci_dev *pdev)
8196 {
8197 	struct net_device *dev = pci_get_drvdata(pdev);
8198 	struct s2io_nic *sp;
8199 
8200 	if (dev == NULL) {
8201 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8202 		return;
8203 	}
8204 
8205 	sp = netdev_priv(dev);
8206 
8207 	cancel_work_sync(&sp->rst_timer_task);
8208 	cancel_work_sync(&sp->set_link_task);
8209 
8210 	unregister_netdev(dev);
8211 
8212 	free_shared_mem(sp);
8213 	iounmap(sp->bar0);
8214 	iounmap(sp->bar1);
8215 	pci_release_regions(pdev);
8216 	free_netdev(dev);
8217 	pci_disable_device(pdev);
8218 }
8219 
8220 module_pci_driver(s2io_driver);
8221 
8222 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8223 				struct tcphdr **tcp, struct RxD_t *rxdp,
8224 				struct s2io_nic *sp)
8225 {
8226 	int ip_off;
8227 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8228 
8229 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8230 		DBG_PRINT(INIT_DBG,
8231 			  "%s: Non-TCP frames not supported for LRO\n",
8232 			  __func__);
8233 		return -1;
8234 	}
8235 
8236 	/* Checking for DIX type or DIX type with VLAN */
8237 	if ((l2_type == 0) || (l2_type == 4)) {
8238 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8239 		/*
8240 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8241 		 * shift the offset by the VLAN header size bytes.
8242 		 */
8243 		if ((!sp->vlan_strip_flag) &&
8244 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8245 			ip_off += HEADER_VLAN_SIZE;
8246 	} else {
8247 		/* LLC, SNAP etc are considered non-mergeable */
8248 		return -1;
8249 	}
8250 
8251 	*ip = (struct iphdr *)(buffer + ip_off);
8252 	ip_len = (u8)((*ip)->ihl);
8253 	ip_len <<= 2;
8254 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8255 
8256 	return 0;
8257 }
8258 
8259 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8260 				  struct tcphdr *tcp)
8261 {
8262 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8263 	if ((lro->iph->saddr != ip->saddr) ||
8264 	    (lro->iph->daddr != ip->daddr) ||
8265 	    (lro->tcph->source != tcp->source) ||
8266 	    (lro->tcph->dest != tcp->dest))
8267 		return -1;
8268 	return 0;
8269 }
8270 
8271 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8272 {
8273 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8274 }
8275 
8276 static void initiate_new_session(struct lro *lro, u8 *l2h,
8277 				 struct iphdr *ip, struct tcphdr *tcp,
8278 				 u32 tcp_pyld_len, u16 vlan_tag)
8279 {
8280 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8281 	lro->l2h = l2h;
8282 	lro->iph = ip;
8283 	lro->tcph = tcp;
8284 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8285 	lro->tcp_ack = tcp->ack_seq;
8286 	lro->sg_num = 1;
8287 	lro->total_len = ntohs(ip->tot_len);
8288 	lro->frags_len = 0;
8289 	lro->vlan_tag = vlan_tag;
8290 	/*
8291 	 * Check if we saw TCP timestamp.
8292 	 * Other consistency checks have already been done.
8293 	 */
8294 	if (tcp->doff == 8) {
8295 		__be32 *ptr;
8296 		ptr = (__be32 *)(tcp+1);
8297 		lro->saw_ts = 1;
8298 		lro->cur_tsval = ntohl(*(ptr+1));
8299 		lro->cur_tsecr = *(ptr+2);
8300 	}
8301 	lro->in_use = 1;
8302 }
8303 
8304 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8305 {
8306 	struct iphdr *ip = lro->iph;
8307 	struct tcphdr *tcp = lro->tcph;
8308 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8309 
8310 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8311 
8312 	/* Update L3 header */
8313 	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8314 	ip->tot_len = htons(lro->total_len);
8315 
8316 	/* Update L4 header */
8317 	tcp->ack_seq = lro->tcp_ack;
8318 	tcp->window = lro->window;
8319 
8320 	/* Update tsecr field if this session has timestamps enabled */
8321 	if (lro->saw_ts) {
8322 		__be32 *ptr = (__be32 *)(tcp + 1);
8323 		*(ptr+2) = lro->cur_tsecr;
8324 	}
8325 
8326 	/* Update counters required for calculation of
8327 	 * average no. of packets aggregated.
8328 	 */
8329 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8330 	swstats->num_aggregations++;
8331 }
8332 
8333 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8334 			     struct tcphdr *tcp, u32 l4_pyld)
8335 {
8336 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8337 	lro->total_len += l4_pyld;
8338 	lro->frags_len += l4_pyld;
8339 	lro->tcp_next_seq += l4_pyld;
8340 	lro->sg_num++;
8341 
8342 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8343 	lro->tcp_ack = tcp->ack_seq;
8344 	lro->window = tcp->window;
8345 
8346 	if (lro->saw_ts) {
8347 		__be32 *ptr;
8348 		/* Update tsecr and tsval from this packet */
8349 		ptr = (__be32 *)(tcp+1);
8350 		lro->cur_tsval = ntohl(*(ptr+1));
8351 		lro->cur_tsecr = *(ptr + 2);
8352 	}
8353 }
8354 
8355 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8356 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8357 {
8358 	u8 *ptr;
8359 
8360 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8361 
8362 	if (!tcp_pyld_len) {
8363 		/* Runt frame or a pure ack */
8364 		return -1;
8365 	}
8366 
8367 	if (ip->ihl != 5) /* IP has options */
8368 		return -1;
8369 
8370 	/* If we see CE codepoint in IP header, packet is not mergeable */
8371 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8372 		return -1;
8373 
8374 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8375 	if (tcp->urg || tcp->psh || tcp->rst ||
8376 	    tcp->syn || tcp->fin ||
8377 	    tcp->ece || tcp->cwr || !tcp->ack) {
8378 		/*
8379 		 * Currently recognize only the ack control word and
8380 		 * any other control field being set would result in
8381 		 * flushing the LRO session
8382 		 */
8383 		return -1;
8384 	}
8385 
8386 	/*
8387 	 * Allow only one TCP timestamp option. Don't aggregate if
8388 	 * any other options are detected.
8389 	 */
8390 	if (tcp->doff != 5 && tcp->doff != 8)
8391 		return -1;
8392 
8393 	if (tcp->doff == 8) {
8394 		ptr = (u8 *)(tcp + 1);
8395 		while (*ptr == TCPOPT_NOP)
8396 			ptr++;
8397 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8398 			return -1;
8399 
8400 		/* Ensure timestamp value increases monotonically */
8401 		if (l_lro)
8402 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8403 				return -1;
8404 
8405 		/* timestamp echo reply should be non-zero */
8406 		if (*((__be32 *)(ptr+6)) == 0)
8407 			return -1;
8408 	}
8409 
8410 	return 0;
8411 }
8412 
8413 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8414 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8415 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8416 {
8417 	struct iphdr *ip;
8418 	struct tcphdr *tcph;
8419 	int ret = 0, i;
8420 	u16 vlan_tag = 0;
8421 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8422 
8423 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8424 				   rxdp, sp);
8425 	if (ret)
8426 		return ret;
8427 
8428 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8429 
8430 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8431 	tcph = (struct tcphdr *)*tcp;
8432 	*tcp_len = get_l4_pyld_length(ip, tcph);
8433 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8434 		struct lro *l_lro = &ring_data->lro0_n[i];
8435 		if (l_lro->in_use) {
8436 			if (check_for_socket_match(l_lro, ip, tcph))
8437 				continue;
8438 			/* Sock pair matched */
8439 			*lro = l_lro;
8440 
8441 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8442 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8443 					  "expected 0x%x, actual 0x%x\n",
8444 					  __func__,
8445 					  (*lro)->tcp_next_seq,
8446 					  ntohl(tcph->seq));
8447 
8448 				swstats->outof_sequence_pkts++;
8449 				ret = 2;
8450 				break;
8451 			}
8452 
8453 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8454 						      *tcp_len))
8455 				ret = 1; /* Aggregate */
8456 			else
8457 				ret = 2; /* Flush both */
8458 			break;
8459 		}
8460 	}
8461 
8462 	if (ret == 0) {
8463 		/* Before searching for available LRO objects,
8464 		 * check if the pkt is L3/L4 aggregatable. If not
8465 		 * don't create new LRO session. Just send this
8466 		 * packet up.
8467 		 */
8468 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8469 			return 5;
8470 
8471 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8472 			struct lro *l_lro = &ring_data->lro0_n[i];
8473 			if (!(l_lro->in_use)) {
8474 				*lro = l_lro;
8475 				ret = 3; /* Begin anew */
8476 				break;
8477 			}
8478 		}
8479 	}
8480 
8481 	if (ret == 0) { /* sessions exceeded */
8482 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8483 			  __func__);
8484 		*lro = NULL;
8485 		return ret;
8486 	}
8487 
8488 	switch (ret) {
8489 	case 3:
8490 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8491 				     vlan_tag);
8492 		break;
8493 	case 2:
8494 		update_L3L4_header(sp, *lro);
8495 		break;
8496 	case 1:
8497 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8498 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8499 			update_L3L4_header(sp, *lro);
8500 			ret = 4; /* Flush the LRO */
8501 		}
8502 		break;
8503 	default:
8504 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8505 		break;
8506 	}
8507 
8508 	return ret;
8509 }
8510 
8511 static void clear_lro_session(struct lro *lro)
8512 {
8513 	static u16 lro_struct_size = sizeof(struct lro);
8514 
8515 	memset(lro, 0, lro_struct_size);
8516 }
8517 
8518 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8519 {
8520 	struct net_device *dev = skb->dev;
8521 	struct s2io_nic *sp = netdev_priv(dev);
8522 
8523 	skb->protocol = eth_type_trans(skb, dev);
8524 	if (vlan_tag && sp->vlan_strip_flag)
8525 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8526 	if (sp->config.napi)
8527 		netif_receive_skb(skb);
8528 	else
8529 		netif_rx(skb);
8530 }
8531 
8532 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8533 			   struct sk_buff *skb, u32 tcp_len)
8534 {
8535 	struct sk_buff *first = lro->parent;
8536 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8537 
8538 	first->len += tcp_len;
8539 	first->data_len = lro->frags_len;
8540 	skb_pull(skb, (skb->len - tcp_len));
8541 	if (skb_shinfo(first)->frag_list)
8542 		lro->last_frag->next = skb;
8543 	else
8544 		skb_shinfo(first)->frag_list = skb;
8545 	first->truesize += skb->truesize;
8546 	lro->last_frag = skb;
8547 	swstats->clubbed_frms_cnt++;
8548 }
8549 
8550 /**
8551  * s2io_io_error_detected - called when PCI error is detected
8552  * @pdev: Pointer to PCI device
8553  * @state: The current pci connection state
8554  *
8555  * This function is called after a PCI bus error affecting
8556  * this device has been detected.
8557  */
8558 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8559 					       pci_channel_state_t state)
8560 {
8561 	struct net_device *netdev = pci_get_drvdata(pdev);
8562 	struct s2io_nic *sp = netdev_priv(netdev);
8563 
8564 	netif_device_detach(netdev);
8565 
8566 	if (state == pci_channel_io_perm_failure)
8567 		return PCI_ERS_RESULT_DISCONNECT;
8568 
8569 	if (netif_running(netdev)) {
8570 		/* Bring down the card, while avoiding PCI I/O */
8571 		do_s2io_card_down(sp, 0);
8572 	}
8573 	pci_disable_device(pdev);
8574 
8575 	return PCI_ERS_RESULT_NEED_RESET;
8576 }
8577 
8578 /**
8579  * s2io_io_slot_reset - called after the pci bus has been reset.
8580  * @pdev: Pointer to PCI device
8581  *
8582  * Restart the card from scratch, as if from a cold-boot.
8583  * At this point, the card has exprienced a hard reset,
8584  * followed by fixups by BIOS, and has its config space
8585  * set up identically to what it was at cold boot.
8586  */
8587 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8588 {
8589 	struct net_device *netdev = pci_get_drvdata(pdev);
8590 	struct s2io_nic *sp = netdev_priv(netdev);
8591 
8592 	if (pci_enable_device(pdev)) {
8593 		pr_err("Cannot re-enable PCI device after reset.\n");
8594 		return PCI_ERS_RESULT_DISCONNECT;
8595 	}
8596 
8597 	pci_set_master(pdev);
8598 	s2io_reset(sp);
8599 
8600 	return PCI_ERS_RESULT_RECOVERED;
8601 }
8602 
8603 /**
8604  * s2io_io_resume - called when traffic can start flowing again.
8605  * @pdev: Pointer to PCI device
8606  *
8607  * This callback is called when the error recovery driver tells
8608  * us that its OK to resume normal operation.
8609  */
8610 static void s2io_io_resume(struct pci_dev *pdev)
8611 {
8612 	struct net_device *netdev = pci_get_drvdata(pdev);
8613 	struct s2io_nic *sp = netdev_priv(netdev);
8614 
8615 	if (netif_running(netdev)) {
8616 		if (s2io_card_up(sp)) {
8617 			pr_err("Can't bring device back up after reset.\n");
8618 			return;
8619 		}
8620 
8621 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8622 			s2io_card_down(sp);
8623 			pr_err("Can't restore mac addr after reset.\n");
8624 			return;
8625 		}
8626 	}
8627 
8628 	netif_device_attach(netdev);
8629 	netif_tx_wake_all_queues(netdev);
8630 }
8631