xref: /linux/drivers/net/ethernet/natsemi/sonic.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sonic.c
4  *
5  * (C) 2005 Finn Thain
6  *
7  * Converted to DMA API, added zero-copy buffer handling, and
8  * (from the mac68k project) introduced dhd's support for 16-bit cards.
9  *
10  * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
11  *
12  * This driver is based on work from Andreas Busse, but most of
13  * the code is rewritten.
14  *
15  * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
16  *
17  *    Core code included by system sonic drivers
18  *
19  * And... partially rewritten again by David Huggins-Daines in order
20  * to cope with screwed up Macintosh NICs that may or may not use
21  * 16-bit DMA.
22  *
23  * (C) 1999 David Huggins-Daines <dhd@debian.org>
24  *
25  */
26 
27 /*
28  * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
29  * National Semiconductors data sheet for the DP83932B Sonic Ethernet
30  * controller, and the files "8390.c" and "skeleton.c" in this directory.
31  *
32  * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
33  * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
34  * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
35  */
36 
37 static unsigned int version_printed;
38 
39 static int sonic_debug = -1;
40 module_param(sonic_debug, int, 0);
41 MODULE_PARM_DESC(sonic_debug, "debug message level");
42 
43 static void sonic_msg_init(struct net_device *dev)
44 {
45 	struct sonic_local *lp = netdev_priv(dev);
46 
47 	lp->msg_enable = netif_msg_init(sonic_debug, 0);
48 
49 	if (version_printed++ == 0)
50 		netif_dbg(lp, drv, dev, "%s", version);
51 }
52 
53 /*
54  * Open/initialize the SONIC controller.
55  *
56  * This routine should set everything up anew at each open, even
57  *  registers that "should" only need to be set once at boot, so that
58  *  there is non-reboot way to recover if something goes wrong.
59  */
60 static int sonic_open(struct net_device *dev)
61 {
62 	struct sonic_local *lp = netdev_priv(dev);
63 	int i;
64 
65 	netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
66 
67 	for (i = 0; i < SONIC_NUM_RRS; i++) {
68 		struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
69 		if (skb == NULL) {
70 			while(i > 0) { /* free any that were allocated successfully */
71 				i--;
72 				dev_kfree_skb(lp->rx_skb[i]);
73 				lp->rx_skb[i] = NULL;
74 			}
75 			printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
76 			       dev->name);
77 			return -ENOMEM;
78 		}
79 		/* align IP header unless DMA requires otherwise */
80 		if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
81 			skb_reserve(skb, 2);
82 		lp->rx_skb[i] = skb;
83 	}
84 
85 	for (i = 0; i < SONIC_NUM_RRS; i++) {
86 		dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
87 		                                  SONIC_RBSIZE, DMA_FROM_DEVICE);
88 		if (dma_mapping_error(lp->device, laddr)) {
89 			while(i > 0) { /* free any that were mapped successfully */
90 				i--;
91 				dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
92 				lp->rx_laddr[i] = (dma_addr_t)0;
93 			}
94 			for (i = 0; i < SONIC_NUM_RRS; i++) {
95 				dev_kfree_skb(lp->rx_skb[i]);
96 				lp->rx_skb[i] = NULL;
97 			}
98 			printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
99 			       dev->name);
100 			return -ENOMEM;
101 		}
102 		lp->rx_laddr[i] = laddr;
103 	}
104 
105 	/*
106 	 * Initialize the SONIC
107 	 */
108 	sonic_init(dev);
109 
110 	netif_start_queue(dev);
111 
112 	netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
113 
114 	return 0;
115 }
116 
117 
118 /*
119  * Close the SONIC device
120  */
121 static int sonic_close(struct net_device *dev)
122 {
123 	struct sonic_local *lp = netdev_priv(dev);
124 	int i;
125 
126 	netif_dbg(lp, ifdown, dev, "%s\n", __func__);
127 
128 	netif_stop_queue(dev);
129 
130 	/*
131 	 * stop the SONIC, disable interrupts
132 	 */
133 	SONIC_WRITE(SONIC_IMR, 0);
134 	SONIC_WRITE(SONIC_ISR, 0x7fff);
135 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
136 
137 	/* unmap and free skbs that haven't been transmitted */
138 	for (i = 0; i < SONIC_NUM_TDS; i++) {
139 		if(lp->tx_laddr[i]) {
140 			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
141 			lp->tx_laddr[i] = (dma_addr_t)0;
142 		}
143 		if(lp->tx_skb[i]) {
144 			dev_kfree_skb(lp->tx_skb[i]);
145 			lp->tx_skb[i] = NULL;
146 		}
147 	}
148 
149 	/* unmap and free the receive buffers */
150 	for (i = 0; i < SONIC_NUM_RRS; i++) {
151 		if(lp->rx_laddr[i]) {
152 			dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
153 			lp->rx_laddr[i] = (dma_addr_t)0;
154 		}
155 		if(lp->rx_skb[i]) {
156 			dev_kfree_skb(lp->rx_skb[i]);
157 			lp->rx_skb[i] = NULL;
158 		}
159 	}
160 
161 	return 0;
162 }
163 
164 static void sonic_tx_timeout(struct net_device *dev)
165 {
166 	struct sonic_local *lp = netdev_priv(dev);
167 	int i;
168 	/*
169 	 * put the Sonic into software-reset mode and
170 	 * disable all interrupts before releasing DMA buffers
171 	 */
172 	SONIC_WRITE(SONIC_IMR, 0);
173 	SONIC_WRITE(SONIC_ISR, 0x7fff);
174 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
175 	/* We could resend the original skbs. Easier to re-initialise. */
176 	for (i = 0; i < SONIC_NUM_TDS; i++) {
177 		if(lp->tx_laddr[i]) {
178 			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
179 			lp->tx_laddr[i] = (dma_addr_t)0;
180 		}
181 		if(lp->tx_skb[i]) {
182 			dev_kfree_skb(lp->tx_skb[i]);
183 			lp->tx_skb[i] = NULL;
184 		}
185 	}
186 	/* Try to restart the adaptor. */
187 	sonic_init(dev);
188 	lp->stats.tx_errors++;
189 	netif_trans_update(dev); /* prevent tx timeout */
190 	netif_wake_queue(dev);
191 }
192 
193 /*
194  * transmit packet
195  *
196  * Appends new TD during transmission thus avoiding any TX interrupts
197  * until we run out of TDs.
198  * This routine interacts closely with the ISR in that it may,
199  *   set tx_skb[i]
200  *   reset the status flags of the new TD
201  *   set and reset EOL flags
202  *   stop the tx queue
203  * The ISR interacts with this routine in various ways. It may,
204  *   reset tx_skb[i]
205  *   test the EOL and status flags of the TDs
206  *   wake the tx queue
207  * Concurrently with all of this, the SONIC is potentially writing to
208  * the status flags of the TDs.
209  * Until some mutual exclusion is added, this code will not work with SMP. However,
210  * MIPS Jazz machines and m68k Macs were all uni-processor machines.
211  */
212 
213 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
214 {
215 	struct sonic_local *lp = netdev_priv(dev);
216 	dma_addr_t laddr;
217 	int length;
218 	int entry = lp->next_tx;
219 
220 	netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
221 
222 	length = skb->len;
223 	if (length < ETH_ZLEN) {
224 		if (skb_padto(skb, ETH_ZLEN))
225 			return NETDEV_TX_OK;
226 		length = ETH_ZLEN;
227 	}
228 
229 	/*
230 	 * Map the packet data into the logical DMA address space
231 	 */
232 
233 	laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
234 	if (!laddr) {
235 		printk(KERN_ERR "%s: failed to map tx DMA buffer.\n", dev->name);
236 		dev_kfree_skb(skb);
237 		return NETDEV_TX_BUSY;
238 	}
239 
240 	sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
241 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
242 	sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
243 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
244 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
245 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
246 	sonic_tda_put(dev, entry, SONIC_TD_LINK,
247 		sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
248 
249 	/*
250 	 * Must set tx_skb[entry] only after clearing status, and
251 	 * before clearing EOL and before stopping queue
252 	 */
253 	wmb();
254 	lp->tx_len[entry] = length;
255 	lp->tx_laddr[entry] = laddr;
256 	lp->tx_skb[entry] = skb;
257 
258 	wmb();
259 	sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
260 				  sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
261 	lp->eol_tx = entry;
262 
263 	lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
264 	if (lp->tx_skb[lp->next_tx] != NULL) {
265 		/* The ring is full, the ISR has yet to process the next TD. */
266 		netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
267 		netif_stop_queue(dev);
268 		/* after this packet, wait for ISR to free up some TDAs */
269 	} else netif_start_queue(dev);
270 
271 	netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
272 
273 	SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
274 
275 	return NETDEV_TX_OK;
276 }
277 
278 /*
279  * The typical workload of the driver:
280  * Handle the network interface interrupts.
281  */
282 static irqreturn_t sonic_interrupt(int irq, void *dev_id)
283 {
284 	struct net_device *dev = dev_id;
285 	struct sonic_local *lp = netdev_priv(dev);
286 	int status;
287 
288 	if (!(status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT))
289 		return IRQ_NONE;
290 
291 	do {
292 		if (status & SONIC_INT_PKTRX) {
293 			netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
294 			sonic_rx(dev);	/* got packet(s) */
295 			SONIC_WRITE(SONIC_ISR, SONIC_INT_PKTRX); /* clear the interrupt */
296 		}
297 
298 		if (status & SONIC_INT_TXDN) {
299 			int entry = lp->cur_tx;
300 			int td_status;
301 			int freed_some = 0;
302 
303 			/* At this point, cur_tx is the index of a TD that is one of:
304 			 *   unallocated/freed                          (status set   & tx_skb[entry] clear)
305 			 *   allocated and sent                         (status set   & tx_skb[entry] set  )
306 			 *   allocated and not yet sent                 (status clear & tx_skb[entry] set  )
307 			 *   still being allocated by sonic_send_packet (status clear & tx_skb[entry] clear)
308 			 */
309 
310 			netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
311 
312 			while (lp->tx_skb[entry] != NULL) {
313 				if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
314 					break;
315 
316 				if (td_status & 0x0001) {
317 					lp->stats.tx_packets++;
318 					lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
319 				} else {
320 					lp->stats.tx_errors++;
321 					if (td_status & 0x0642)
322 						lp->stats.tx_aborted_errors++;
323 					if (td_status & 0x0180)
324 						lp->stats.tx_carrier_errors++;
325 					if (td_status & 0x0020)
326 						lp->stats.tx_window_errors++;
327 					if (td_status & 0x0004)
328 						lp->stats.tx_fifo_errors++;
329 				}
330 
331 				/* We must free the original skb */
332 				dev_consume_skb_irq(lp->tx_skb[entry]);
333 				lp->tx_skb[entry] = NULL;
334 				/* and unmap DMA buffer */
335 				dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
336 				lp->tx_laddr[entry] = (dma_addr_t)0;
337 				freed_some = 1;
338 
339 				if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
340 					entry = (entry + 1) & SONIC_TDS_MASK;
341 					break;
342 				}
343 				entry = (entry + 1) & SONIC_TDS_MASK;
344 			}
345 
346 			if (freed_some || lp->tx_skb[entry] == NULL)
347 				netif_wake_queue(dev);  /* The ring is no longer full */
348 			lp->cur_tx = entry;
349 			SONIC_WRITE(SONIC_ISR, SONIC_INT_TXDN); /* clear the interrupt */
350 		}
351 
352 		/*
353 		 * check error conditions
354 		 */
355 		if (status & SONIC_INT_RFO) {
356 			netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
357 				  __func__);
358 			lp->stats.rx_fifo_errors++;
359 			SONIC_WRITE(SONIC_ISR, SONIC_INT_RFO); /* clear the interrupt */
360 		}
361 		if (status & SONIC_INT_RDE) {
362 			netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
363 				  __func__);
364 			lp->stats.rx_dropped++;
365 			SONIC_WRITE(SONIC_ISR, SONIC_INT_RDE); /* clear the interrupt */
366 		}
367 		if (status & SONIC_INT_RBAE) {
368 			netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
369 				  __func__);
370 			lp->stats.rx_dropped++;
371 			SONIC_WRITE(SONIC_ISR, SONIC_INT_RBAE); /* clear the interrupt */
372 		}
373 
374 		/* counter overruns; all counters are 16bit wide */
375 		if (status & SONIC_INT_FAE) {
376 			lp->stats.rx_frame_errors += 65536;
377 			SONIC_WRITE(SONIC_ISR, SONIC_INT_FAE); /* clear the interrupt */
378 		}
379 		if (status & SONIC_INT_CRC) {
380 			lp->stats.rx_crc_errors += 65536;
381 			SONIC_WRITE(SONIC_ISR, SONIC_INT_CRC); /* clear the interrupt */
382 		}
383 		if (status & SONIC_INT_MP) {
384 			lp->stats.rx_missed_errors += 65536;
385 			SONIC_WRITE(SONIC_ISR, SONIC_INT_MP); /* clear the interrupt */
386 		}
387 
388 		/* transmit error */
389 		if (status & SONIC_INT_TXER) {
390 			if (SONIC_READ(SONIC_TCR) & SONIC_TCR_FU)
391 				netif_dbg(lp, tx_err, dev, "%s: tx fifo underrun\n",
392 					  __func__);
393 			SONIC_WRITE(SONIC_ISR, SONIC_INT_TXER); /* clear the interrupt */
394 		}
395 
396 		/* bus retry */
397 		if (status & SONIC_INT_BR) {
398 			printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
399 				dev->name);
400 			/* ... to help debug DMA problems causing endless interrupts. */
401 			/* Bounce the eth interface to turn on the interrupt again. */
402 			SONIC_WRITE(SONIC_IMR, 0);
403 			SONIC_WRITE(SONIC_ISR, SONIC_INT_BR); /* clear the interrupt */
404 		}
405 
406 		/* load CAM done */
407 		if (status & SONIC_INT_LCD)
408 			SONIC_WRITE(SONIC_ISR, SONIC_INT_LCD); /* clear the interrupt */
409 	} while((status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT));
410 	return IRQ_HANDLED;
411 }
412 
413 /*
414  * We have a good packet(s), pass it/them up the network stack.
415  */
416 static void sonic_rx(struct net_device *dev)
417 {
418 	struct sonic_local *lp = netdev_priv(dev);
419 	int status;
420 	int entry = lp->cur_rx;
421 
422 	while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
423 		struct sk_buff *used_skb;
424 		struct sk_buff *new_skb;
425 		dma_addr_t new_laddr;
426 		u16 bufadr_l;
427 		u16 bufadr_h;
428 		int pkt_len;
429 
430 		status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
431 		if (status & SONIC_RCR_PRX) {
432 			/* Malloc up new buffer. */
433 			new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
434 			if (new_skb == NULL) {
435 				lp->stats.rx_dropped++;
436 				break;
437 			}
438 			/* provide 16 byte IP header alignment unless DMA requires otherwise */
439 			if(SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
440 				skb_reserve(new_skb, 2);
441 
442 			new_laddr = dma_map_single(lp->device, skb_put(new_skb, SONIC_RBSIZE),
443 		                               SONIC_RBSIZE, DMA_FROM_DEVICE);
444 			if (!new_laddr) {
445 				dev_kfree_skb(new_skb);
446 				printk(KERN_ERR "%s: Failed to map rx buffer, dropping packet.\n", dev->name);
447 				lp->stats.rx_dropped++;
448 				break;
449 			}
450 
451 			/* now we have a new skb to replace it, pass the used one up the stack */
452 			dma_unmap_single(lp->device, lp->rx_laddr[entry], SONIC_RBSIZE, DMA_FROM_DEVICE);
453 			used_skb = lp->rx_skb[entry];
454 			pkt_len = sonic_rda_get(dev, entry, SONIC_RD_PKTLEN);
455 			skb_trim(used_skb, pkt_len);
456 			used_skb->protocol = eth_type_trans(used_skb, dev);
457 			netif_rx(used_skb);
458 			lp->stats.rx_packets++;
459 			lp->stats.rx_bytes += pkt_len;
460 
461 			/* and insert the new skb */
462 			lp->rx_laddr[entry] = new_laddr;
463 			lp->rx_skb[entry] = new_skb;
464 
465 			bufadr_l = (unsigned long)new_laddr & 0xffff;
466 			bufadr_h = (unsigned long)new_laddr >> 16;
467 			sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, bufadr_l);
468 			sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, bufadr_h);
469 		} else {
470 			/* This should only happen, if we enable accepting broken packets. */
471 			lp->stats.rx_errors++;
472 			if (status & SONIC_RCR_FAER)
473 				lp->stats.rx_frame_errors++;
474 			if (status & SONIC_RCR_CRCR)
475 				lp->stats.rx_crc_errors++;
476 		}
477 		if (status & SONIC_RCR_LPKT) {
478 			/*
479 			 * this was the last packet out of the current receive buffer
480 			 * give the buffer back to the SONIC
481 			 */
482 			lp->cur_rwp += SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode);
483 			if (lp->cur_rwp >= lp->rra_end) lp->cur_rwp = lp->rra_laddr & 0xffff;
484 			SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
485 			if (SONIC_READ(SONIC_ISR) & SONIC_INT_RBE) {
486 				netif_dbg(lp, rx_err, dev, "%s: rx buffer exhausted\n",
487 					  __func__);
488 				SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); /* clear the flag */
489 			}
490 		} else
491 			printk(KERN_ERR "%s: rx desc without RCR_LPKT. Shouldn't happen !?\n",
492 			     dev->name);
493 		/*
494 		 * give back the descriptor
495 		 */
496 		sonic_rda_put(dev, entry, SONIC_RD_LINK,
497 			sonic_rda_get(dev, entry, SONIC_RD_LINK) | SONIC_EOL);
498 		sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
499 		sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK,
500 			sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK) & ~SONIC_EOL);
501 		lp->eol_rx = entry;
502 		lp->cur_rx = entry = (entry + 1) & SONIC_RDS_MASK;
503 	}
504 	/*
505 	 * If any worth-while packets have been received, netif_rx()
506 	 * has done a mark_bh(NET_BH) for us and will work on them
507 	 * when we get to the bottom-half routine.
508 	 */
509 }
510 
511 
512 /*
513  * Get the current statistics.
514  * This may be called with the device open or closed.
515  */
516 static struct net_device_stats *sonic_get_stats(struct net_device *dev)
517 {
518 	struct sonic_local *lp = netdev_priv(dev);
519 
520 	/* read the tally counter from the SONIC and reset them */
521 	lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
522 	SONIC_WRITE(SONIC_CRCT, 0xffff);
523 	lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
524 	SONIC_WRITE(SONIC_FAET, 0xffff);
525 	lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
526 	SONIC_WRITE(SONIC_MPT, 0xffff);
527 
528 	return &lp->stats;
529 }
530 
531 
532 /*
533  * Set or clear the multicast filter for this adaptor.
534  */
535 static void sonic_multicast_list(struct net_device *dev)
536 {
537 	struct sonic_local *lp = netdev_priv(dev);
538 	unsigned int rcr;
539 	struct netdev_hw_addr *ha;
540 	unsigned char *addr;
541 	int i;
542 
543 	rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
544 	rcr |= SONIC_RCR_BRD;	/* accept broadcast packets */
545 
546 	if (dev->flags & IFF_PROMISC) {	/* set promiscuous mode */
547 		rcr |= SONIC_RCR_PRO;
548 	} else {
549 		if ((dev->flags & IFF_ALLMULTI) ||
550 		    (netdev_mc_count(dev) > 15)) {
551 			rcr |= SONIC_RCR_AMC;
552 		} else {
553 			netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
554 				  netdev_mc_count(dev));
555 			sonic_set_cam_enable(dev, 1);  /* always enable our own address */
556 			i = 1;
557 			netdev_for_each_mc_addr(ha, dev) {
558 				addr = ha->addr;
559 				sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
560 				sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
561 				sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
562 				sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
563 				i++;
564 			}
565 			SONIC_WRITE(SONIC_CDC, 16);
566 			/* issue Load CAM command */
567 			SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
568 			SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
569 		}
570 	}
571 
572 	netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
573 
574 	SONIC_WRITE(SONIC_RCR, rcr);
575 }
576 
577 
578 /*
579  * Initialize the SONIC ethernet controller.
580  */
581 static int sonic_init(struct net_device *dev)
582 {
583 	unsigned int cmd;
584 	struct sonic_local *lp = netdev_priv(dev);
585 	int i;
586 
587 	/*
588 	 * put the Sonic into software-reset mode and
589 	 * disable all interrupts
590 	 */
591 	SONIC_WRITE(SONIC_IMR, 0);
592 	SONIC_WRITE(SONIC_ISR, 0x7fff);
593 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
594 
595 	/*
596 	 * clear software reset flag, disable receiver, clear and
597 	 * enable interrupts, then completely initialize the SONIC
598 	 */
599 	SONIC_WRITE(SONIC_CMD, 0);
600 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
601 
602 	/*
603 	 * initialize the receive resource area
604 	 */
605 	netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
606 		  __func__);
607 
608 	for (i = 0; i < SONIC_NUM_RRS; i++) {
609 		u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
610 		u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
611 		sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
612 		sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
613 		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
614 		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
615 	}
616 
617 	/* initialize all RRA registers */
618 	lp->rra_end = (lp->rra_laddr + SONIC_NUM_RRS * SIZEOF_SONIC_RR *
619 					SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
620 	lp->cur_rwp = (lp->rra_laddr + (SONIC_NUM_RRS - 1) * SIZEOF_SONIC_RR *
621 					SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
622 
623 	SONIC_WRITE(SONIC_RSA, lp->rra_laddr & 0xffff);
624 	SONIC_WRITE(SONIC_REA, lp->rra_end);
625 	SONIC_WRITE(SONIC_RRP, lp->rra_laddr & 0xffff);
626 	SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
627 	SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
628 	SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
629 
630 	/* load the resource pointers */
631 	netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
632 
633 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
634 	i = 0;
635 	while (i++ < 100) {
636 		if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA)
637 			break;
638 	}
639 
640 	netif_dbg(lp, ifup, dev, "%s: status=%x, i=%d\n", __func__,
641 		  SONIC_READ(SONIC_CMD), i);
642 
643 	/*
644 	 * Initialize the receive descriptors so that they
645 	 * become a circular linked list, ie. let the last
646 	 * descriptor point to the first again.
647 	 */
648 	netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
649 		  __func__);
650 
651 	for (i=0; i<SONIC_NUM_RDS; i++) {
652 		sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
653 		sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
654 		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
655 		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
656 		sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
657 		sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
658 		sonic_rda_put(dev, i, SONIC_RD_LINK,
659 			lp->rda_laddr +
660 			((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
661 	}
662 	/* fix last descriptor */
663 	sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
664 		(lp->rda_laddr & 0xffff) | SONIC_EOL);
665 	lp->eol_rx = SONIC_NUM_RDS - 1;
666 	lp->cur_rx = 0;
667 	SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
668 	SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
669 
670 	/*
671 	 * initialize transmit descriptors
672 	 */
673 	netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
674 		  __func__);
675 
676 	for (i = 0; i < SONIC_NUM_TDS; i++) {
677 		sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
678 		sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
679 		sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
680 		sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
681 		sonic_tda_put(dev, i, SONIC_TD_LINK,
682 			(lp->tda_laddr & 0xffff) +
683 			(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
684 		lp->tx_skb[i] = NULL;
685 	}
686 	/* fix last descriptor */
687 	sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
688 		(lp->tda_laddr & 0xffff));
689 
690 	SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
691 	SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
692 	lp->cur_tx = lp->next_tx = 0;
693 	lp->eol_tx = SONIC_NUM_TDS - 1;
694 
695 	/*
696 	 * put our own address to CAM desc[0]
697 	 */
698 	sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
699 	sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
700 	sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
701 	sonic_set_cam_enable(dev, 1);
702 
703 	for (i = 0; i < 16; i++)
704 		sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
705 
706 	/*
707 	 * initialize CAM registers
708 	 */
709 	SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
710 	SONIC_WRITE(SONIC_CDC, 16);
711 
712 	/*
713 	 * load the CAM
714 	 */
715 	SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
716 
717 	i = 0;
718 	while (i++ < 100) {
719 		if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD)
720 			break;
721 	}
722 	netif_dbg(lp, ifup, dev, "%s: CMD=%x, ISR=%x, i=%d\n", __func__,
723 		  SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR), i);
724 
725 	/*
726 	 * enable receiver, disable loopback
727 	 * and enable all interrupts
728 	 */
729 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP);
730 	SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
731 	SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
732 	SONIC_WRITE(SONIC_ISR, 0x7fff);
733 	SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
734 
735 	cmd = SONIC_READ(SONIC_CMD);
736 	if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0)
737 		printk(KERN_ERR "sonic_init: failed, status=%x\n", cmd);
738 
739 	netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
740 		  SONIC_READ(SONIC_CMD));
741 
742 	return 0;
743 }
744 
745 MODULE_LICENSE("GPL");
746