xref: /linux/drivers/net/ethernet/natsemi/sonic.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sonic.c
4  *
5  * (C) 2005 Finn Thain
6  *
7  * Converted to DMA API, added zero-copy buffer handling, and
8  * (from the mac68k project) introduced dhd's support for 16-bit cards.
9  *
10  * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
11  *
12  * This driver is based on work from Andreas Busse, but most of
13  * the code is rewritten.
14  *
15  * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
16  *
17  *    Core code included by system sonic drivers
18  *
19  * And... partially rewritten again by David Huggins-Daines in order
20  * to cope with screwed up Macintosh NICs that may or may not use
21  * 16-bit DMA.
22  *
23  * (C) 1999 David Huggins-Daines <dhd@debian.org>
24  *
25  */
26 
27 /*
28  * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
29  * National Semiconductors data sheet for the DP83932B Sonic Ethernet
30  * controller, and the files "8390.c" and "skeleton.c" in this directory.
31  *
32  * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
33  * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
34  * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
35  */
36 
37 static unsigned int version_printed;
38 
39 static int sonic_debug = -1;
40 module_param(sonic_debug, int, 0);
41 MODULE_PARM_DESC(sonic_debug, "debug message level");
42 
43 static void sonic_msg_init(struct net_device *dev)
44 {
45 	struct sonic_local *lp = netdev_priv(dev);
46 
47 	lp->msg_enable = netif_msg_init(sonic_debug, 0);
48 
49 	if (version_printed++ == 0)
50 		netif_dbg(lp, drv, dev, "%s", version);
51 }
52 
53 static int sonic_alloc_descriptors(struct net_device *dev)
54 {
55 	struct sonic_local *lp = netdev_priv(dev);
56 
57 	/* Allocate a chunk of memory for the descriptors. Note that this
58 	 * must not cross a 64K boundary. It is smaller than one page which
59 	 * means that page alignment is a sufficient condition.
60 	 */
61 	lp->descriptors =
62 		dma_alloc_coherent(lp->device,
63 				   SIZEOF_SONIC_DESC *
64 				   SONIC_BUS_SCALE(lp->dma_bitmode),
65 				   &lp->descriptors_laddr, GFP_KERNEL);
66 
67 	if (!lp->descriptors)
68 		return -ENOMEM;
69 
70 	lp->cda = lp->descriptors;
71 	lp->tda = lp->cda + SIZEOF_SONIC_CDA *
72 			    SONIC_BUS_SCALE(lp->dma_bitmode);
73 	lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
74 			    SONIC_BUS_SCALE(lp->dma_bitmode);
75 	lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
76 			    SONIC_BUS_SCALE(lp->dma_bitmode);
77 
78 	lp->cda_laddr = lp->descriptors_laddr;
79 	lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
80 					SONIC_BUS_SCALE(lp->dma_bitmode);
81 	lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
82 					SONIC_BUS_SCALE(lp->dma_bitmode);
83 	lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
84 					SONIC_BUS_SCALE(lp->dma_bitmode);
85 
86 	return 0;
87 }
88 
89 /*
90  * Open/initialize the SONIC controller.
91  *
92  * This routine should set everything up anew at each open, even
93  *  registers that "should" only need to be set once at boot, so that
94  *  there is non-reboot way to recover if something goes wrong.
95  */
96 static int sonic_open(struct net_device *dev)
97 {
98 	struct sonic_local *lp = netdev_priv(dev);
99 	int i;
100 
101 	netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
102 
103 	spin_lock_init(&lp->lock);
104 
105 	for (i = 0; i < SONIC_NUM_RRS; i++) {
106 		struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
107 		if (skb == NULL) {
108 			while(i > 0) { /* free any that were allocated successfully */
109 				i--;
110 				dev_kfree_skb(lp->rx_skb[i]);
111 				lp->rx_skb[i] = NULL;
112 			}
113 			printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
114 			       dev->name);
115 			return -ENOMEM;
116 		}
117 		/* align IP header unless DMA requires otherwise */
118 		if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
119 			skb_reserve(skb, 2);
120 		lp->rx_skb[i] = skb;
121 	}
122 
123 	for (i = 0; i < SONIC_NUM_RRS; i++) {
124 		dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
125 		                                  SONIC_RBSIZE, DMA_FROM_DEVICE);
126 		if (dma_mapping_error(lp->device, laddr)) {
127 			while(i > 0) { /* free any that were mapped successfully */
128 				i--;
129 				dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
130 				lp->rx_laddr[i] = (dma_addr_t)0;
131 			}
132 			for (i = 0; i < SONIC_NUM_RRS; i++) {
133 				dev_kfree_skb(lp->rx_skb[i]);
134 				lp->rx_skb[i] = NULL;
135 			}
136 			printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
137 			       dev->name);
138 			return -ENOMEM;
139 		}
140 		lp->rx_laddr[i] = laddr;
141 	}
142 
143 	/*
144 	 * Initialize the SONIC
145 	 */
146 	sonic_init(dev, true);
147 
148 	netif_start_queue(dev);
149 
150 	netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
151 
152 	return 0;
153 }
154 
155 /* Wait for the SONIC to become idle. */
156 static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep)
157 {
158 	struct sonic_local * __maybe_unused lp = netdev_priv(dev);
159 	int i;
160 	u16 bits;
161 
162 	for (i = 0; i < 1000; ++i) {
163 		bits = SONIC_READ(SONIC_CMD) & mask;
164 		if (!bits)
165 			return;
166 		if (!may_sleep)
167 			udelay(20);
168 		else
169 			usleep_range(100, 200);
170 	}
171 	WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
172 }
173 
174 /*
175  * Close the SONIC device
176  */
177 static int sonic_close(struct net_device *dev)
178 {
179 	struct sonic_local *lp = netdev_priv(dev);
180 	int i;
181 
182 	netif_dbg(lp, ifdown, dev, "%s\n", __func__);
183 
184 	netif_stop_queue(dev);
185 
186 	/*
187 	 * stop the SONIC, disable interrupts
188 	 */
189 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
190 	sonic_quiesce(dev, SONIC_CR_ALL, true);
191 
192 	SONIC_WRITE(SONIC_IMR, 0);
193 	SONIC_WRITE(SONIC_ISR, 0x7fff);
194 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
195 
196 	/* unmap and free skbs that haven't been transmitted */
197 	for (i = 0; i < SONIC_NUM_TDS; i++) {
198 		if(lp->tx_laddr[i]) {
199 			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
200 			lp->tx_laddr[i] = (dma_addr_t)0;
201 		}
202 		if(lp->tx_skb[i]) {
203 			dev_kfree_skb(lp->tx_skb[i]);
204 			lp->tx_skb[i] = NULL;
205 		}
206 	}
207 
208 	/* unmap and free the receive buffers */
209 	for (i = 0; i < SONIC_NUM_RRS; i++) {
210 		if(lp->rx_laddr[i]) {
211 			dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
212 			lp->rx_laddr[i] = (dma_addr_t)0;
213 		}
214 		if(lp->rx_skb[i]) {
215 			dev_kfree_skb(lp->rx_skb[i]);
216 			lp->rx_skb[i] = NULL;
217 		}
218 	}
219 
220 	return 0;
221 }
222 
223 static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
224 {
225 	struct sonic_local *lp = netdev_priv(dev);
226 	int i;
227 	/*
228 	 * put the Sonic into software-reset mode and
229 	 * disable all interrupts before releasing DMA buffers
230 	 */
231 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
232 	sonic_quiesce(dev, SONIC_CR_ALL, false);
233 
234 	SONIC_WRITE(SONIC_IMR, 0);
235 	SONIC_WRITE(SONIC_ISR, 0x7fff);
236 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
237 	/* We could resend the original skbs. Easier to re-initialise. */
238 	for (i = 0; i < SONIC_NUM_TDS; i++) {
239 		if(lp->tx_laddr[i]) {
240 			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
241 			lp->tx_laddr[i] = (dma_addr_t)0;
242 		}
243 		if(lp->tx_skb[i]) {
244 			dev_kfree_skb(lp->tx_skb[i]);
245 			lp->tx_skb[i] = NULL;
246 		}
247 	}
248 	/* Try to restart the adaptor. */
249 	sonic_init(dev, false);
250 	lp->stats.tx_errors++;
251 	netif_trans_update(dev); /* prevent tx timeout */
252 	netif_wake_queue(dev);
253 }
254 
255 /*
256  * transmit packet
257  *
258  * Appends new TD during transmission thus avoiding any TX interrupts
259  * until we run out of TDs.
260  * This routine interacts closely with the ISR in that it may,
261  *   set tx_skb[i]
262  *   reset the status flags of the new TD
263  *   set and reset EOL flags
264  *   stop the tx queue
265  * The ISR interacts with this routine in various ways. It may,
266  *   reset tx_skb[i]
267  *   test the EOL and status flags of the TDs
268  *   wake the tx queue
269  * Concurrently with all of this, the SONIC is potentially writing to
270  * the status flags of the TDs.
271  */
272 
273 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
274 {
275 	struct sonic_local *lp = netdev_priv(dev);
276 	dma_addr_t laddr;
277 	int length;
278 	int entry;
279 	unsigned long flags;
280 
281 	netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
282 
283 	length = skb->len;
284 	if (length < ETH_ZLEN) {
285 		if (skb_padto(skb, ETH_ZLEN))
286 			return NETDEV_TX_OK;
287 		length = ETH_ZLEN;
288 	}
289 
290 	/*
291 	 * Map the packet data into the logical DMA address space
292 	 */
293 
294 	laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
295 	if (!laddr) {
296 		pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
297 		dev_kfree_skb_any(skb);
298 		return NETDEV_TX_OK;
299 	}
300 
301 	spin_lock_irqsave(&lp->lock, flags);
302 
303 	entry = (lp->eol_tx + 1) & SONIC_TDS_MASK;
304 
305 	sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
306 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
307 	sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
308 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
309 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
310 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
311 	sonic_tda_put(dev, entry, SONIC_TD_LINK,
312 		sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
313 
314 	sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL &
315 		      sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK));
316 
317 	netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
318 
319 	SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
320 
321 	lp->tx_len[entry] = length;
322 	lp->tx_laddr[entry] = laddr;
323 	lp->tx_skb[entry] = skb;
324 
325 	lp->eol_tx = entry;
326 
327 	entry = (entry + 1) & SONIC_TDS_MASK;
328 	if (lp->tx_skb[entry]) {
329 		/* The ring is full, the ISR has yet to process the next TD. */
330 		netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
331 		netif_stop_queue(dev);
332 		/* after this packet, wait for ISR to free up some TDAs */
333 	}
334 
335 	spin_unlock_irqrestore(&lp->lock, flags);
336 
337 	return NETDEV_TX_OK;
338 }
339 
340 /*
341  * The typical workload of the driver:
342  * Handle the network interface interrupts.
343  */
344 static irqreturn_t sonic_interrupt(int irq, void *dev_id)
345 {
346 	struct net_device *dev = dev_id;
347 	struct sonic_local *lp = netdev_priv(dev);
348 	int status;
349 	unsigned long flags;
350 
351 	/* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
352 	 * with sonic_send_packet() so that the two functions can share state.
353 	 * Secondly, it makes sonic_interrupt() re-entrant, as that is required
354 	 * by macsonic which must use two IRQs with different priority levels.
355 	 */
356 	spin_lock_irqsave(&lp->lock, flags);
357 
358 	status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
359 	if (!status) {
360 		spin_unlock_irqrestore(&lp->lock, flags);
361 
362 		return IRQ_NONE;
363 	}
364 
365 	do {
366 		SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
367 
368 		if (status & SONIC_INT_PKTRX) {
369 			netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
370 			sonic_rx(dev);	/* got packet(s) */
371 		}
372 
373 		if (status & SONIC_INT_TXDN) {
374 			int entry = lp->cur_tx;
375 			int td_status;
376 			int freed_some = 0;
377 
378 			/* The state of a Transmit Descriptor may be inferred
379 			 * from { tx_skb[entry], td_status } as follows.
380 			 * { clear, clear } => the TD has never been used
381 			 * { set,   clear } => the TD was handed to SONIC
382 			 * { set,   set   } => the TD was handed back
383 			 * { clear, set   } => the TD is available for re-use
384 			 */
385 
386 			netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
387 
388 			while (lp->tx_skb[entry] != NULL) {
389 				if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
390 					break;
391 
392 				if (td_status & SONIC_TCR_PTX) {
393 					lp->stats.tx_packets++;
394 					lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
395 				} else {
396 					if (td_status & (SONIC_TCR_EXD |
397 					    SONIC_TCR_EXC | SONIC_TCR_BCM))
398 						lp->stats.tx_aborted_errors++;
399 					if (td_status &
400 					    (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
401 						lp->stats.tx_carrier_errors++;
402 					if (td_status & SONIC_TCR_OWC)
403 						lp->stats.tx_window_errors++;
404 					if (td_status & SONIC_TCR_FU)
405 						lp->stats.tx_fifo_errors++;
406 				}
407 
408 				/* We must free the original skb */
409 				dev_consume_skb_irq(lp->tx_skb[entry]);
410 				lp->tx_skb[entry] = NULL;
411 				/* and unmap DMA buffer */
412 				dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
413 				lp->tx_laddr[entry] = (dma_addr_t)0;
414 				freed_some = 1;
415 
416 				if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
417 					entry = (entry + 1) & SONIC_TDS_MASK;
418 					break;
419 				}
420 				entry = (entry + 1) & SONIC_TDS_MASK;
421 			}
422 
423 			if (freed_some || lp->tx_skb[entry] == NULL)
424 				netif_wake_queue(dev);  /* The ring is no longer full */
425 			lp->cur_tx = entry;
426 		}
427 
428 		/*
429 		 * check error conditions
430 		 */
431 		if (status & SONIC_INT_RFO) {
432 			netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
433 				  __func__);
434 		}
435 		if (status & SONIC_INT_RDE) {
436 			netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
437 				  __func__);
438 		}
439 		if (status & SONIC_INT_RBAE) {
440 			netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
441 				  __func__);
442 		}
443 
444 		/* counter overruns; all counters are 16bit wide */
445 		if (status & SONIC_INT_FAE)
446 			lp->stats.rx_frame_errors += 65536;
447 		if (status & SONIC_INT_CRC)
448 			lp->stats.rx_crc_errors += 65536;
449 		if (status & SONIC_INT_MP)
450 			lp->stats.rx_missed_errors += 65536;
451 
452 		/* transmit error */
453 		if (status & SONIC_INT_TXER) {
454 			u16 tcr = SONIC_READ(SONIC_TCR);
455 
456 			netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
457 				  __func__, tcr);
458 
459 			if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
460 				   SONIC_TCR_FU | SONIC_TCR_BCM)) {
461 				/* Aborted transmission. Try again. */
462 				netif_stop_queue(dev);
463 				SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
464 			}
465 		}
466 
467 		/* bus retry */
468 		if (status & SONIC_INT_BR) {
469 			printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
470 				dev->name);
471 			/* ... to help debug DMA problems causing endless interrupts. */
472 			/* Bounce the eth interface to turn on the interrupt again. */
473 			SONIC_WRITE(SONIC_IMR, 0);
474 		}
475 
476 		status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
477 	} while (status);
478 
479 	spin_unlock_irqrestore(&lp->lock, flags);
480 
481 	return IRQ_HANDLED;
482 }
483 
484 /* Return the array index corresponding to a given Receive Buffer pointer. */
485 static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
486 			   unsigned int last)
487 {
488 	unsigned int i = last;
489 
490 	do {
491 		i = (i + 1) & SONIC_RRS_MASK;
492 		if (addr == lp->rx_laddr[i])
493 			return i;
494 	} while (i != last);
495 
496 	return -ENOENT;
497 }
498 
499 /* Allocate and map a new skb to be used as a receive buffer. */
500 static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
501 			   struct sk_buff **new_skb, dma_addr_t *new_addr)
502 {
503 	*new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
504 	if (!*new_skb)
505 		return false;
506 
507 	if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
508 		skb_reserve(*new_skb, 2);
509 
510 	*new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
511 				   SONIC_RBSIZE, DMA_FROM_DEVICE);
512 	if (!*new_addr) {
513 		dev_kfree_skb(*new_skb);
514 		*new_skb = NULL;
515 		return false;
516 	}
517 
518 	return true;
519 }
520 
521 /* Place a new receive resource in the Receive Resource Area and update RWP. */
522 static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
523 			     dma_addr_t old_addr, dma_addr_t new_addr)
524 {
525 	unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
526 	unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
527 	u32 buf;
528 
529 	/* The resources in the range [RRP, RWP) belong to the SONIC. This loop
530 	 * scans the other resources in the RRA, those in the range [RWP, RRP).
531 	 */
532 	do {
533 		buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
534 		      sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
535 
536 		if (buf == old_addr)
537 			break;
538 
539 		entry = (entry + 1) & SONIC_RRS_MASK;
540 	} while (entry != end);
541 
542 	WARN_ONCE(buf != old_addr, "failed to find resource!\n");
543 
544 	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
545 	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
546 
547 	entry = (entry + 1) & SONIC_RRS_MASK;
548 
549 	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
550 }
551 
552 /*
553  * We have a good packet(s), pass it/them up the network stack.
554  */
555 static void sonic_rx(struct net_device *dev)
556 {
557 	struct sonic_local *lp = netdev_priv(dev);
558 	int entry = lp->cur_rx;
559 	int prev_entry = lp->eol_rx;
560 	bool rbe = false;
561 
562 	while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
563 		u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
564 
565 		/* If the RD has LPKT set, the chip has finished with the RB */
566 		if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
567 			struct sk_buff *new_skb;
568 			dma_addr_t new_laddr;
569 			u32 addr = (sonic_rda_get(dev, entry,
570 						  SONIC_RD_PKTPTR_H) << 16) |
571 				   sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
572 			int i = index_from_addr(lp, addr, entry);
573 
574 			if (i < 0) {
575 				WARN_ONCE(1, "failed to find buffer!\n");
576 				break;
577 			}
578 
579 			if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
580 				struct sk_buff *used_skb = lp->rx_skb[i];
581 				int pkt_len;
582 
583 				/* Pass the used buffer up the stack */
584 				dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
585 						 DMA_FROM_DEVICE);
586 
587 				pkt_len = sonic_rda_get(dev, entry,
588 							SONIC_RD_PKTLEN);
589 				skb_trim(used_skb, pkt_len);
590 				used_skb->protocol = eth_type_trans(used_skb,
591 								    dev);
592 				netif_rx(used_skb);
593 				lp->stats.rx_packets++;
594 				lp->stats.rx_bytes += pkt_len;
595 
596 				lp->rx_skb[i] = new_skb;
597 				lp->rx_laddr[i] = new_laddr;
598 			} else {
599 				/* Failed to obtain a new buffer so re-use it */
600 				new_laddr = addr;
601 				lp->stats.rx_dropped++;
602 			}
603 			/* If RBE is already asserted when RWP advances then
604 			 * it's safe to clear RBE after processing this packet.
605 			 */
606 			rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
607 			sonic_update_rra(dev, lp, addr, new_laddr);
608 		}
609 		/*
610 		 * give back the descriptor
611 		 */
612 		sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
613 		sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
614 
615 		prev_entry = entry;
616 		entry = (entry + 1) & SONIC_RDS_MASK;
617 	}
618 
619 	lp->cur_rx = entry;
620 
621 	if (prev_entry != lp->eol_rx) {
622 		/* Advance the EOL flag to put descriptors back into service */
623 		sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
624 			      sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
625 		sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
626 			      sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
627 		lp->eol_rx = prev_entry;
628 	}
629 
630 	if (rbe)
631 		SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
632 }
633 
634 
635 /*
636  * Get the current statistics.
637  * This may be called with the device open or closed.
638  */
639 static struct net_device_stats *sonic_get_stats(struct net_device *dev)
640 {
641 	struct sonic_local *lp = netdev_priv(dev);
642 
643 	/* read the tally counter from the SONIC and reset them */
644 	lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
645 	SONIC_WRITE(SONIC_CRCT, 0xffff);
646 	lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
647 	SONIC_WRITE(SONIC_FAET, 0xffff);
648 	lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
649 	SONIC_WRITE(SONIC_MPT, 0xffff);
650 
651 	return &lp->stats;
652 }
653 
654 
655 /*
656  * Set or clear the multicast filter for this adaptor.
657  */
658 static void sonic_multicast_list(struct net_device *dev)
659 {
660 	struct sonic_local *lp = netdev_priv(dev);
661 	unsigned int rcr;
662 	struct netdev_hw_addr *ha;
663 	unsigned char *addr;
664 	int i;
665 
666 	rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
667 	rcr |= SONIC_RCR_BRD;	/* accept broadcast packets */
668 
669 	if (dev->flags & IFF_PROMISC) {	/* set promiscuous mode */
670 		rcr |= SONIC_RCR_PRO;
671 	} else {
672 		if ((dev->flags & IFF_ALLMULTI) ||
673 		    (netdev_mc_count(dev) > 15)) {
674 			rcr |= SONIC_RCR_AMC;
675 		} else {
676 			unsigned long flags;
677 
678 			netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
679 				  netdev_mc_count(dev));
680 			sonic_set_cam_enable(dev, 1);  /* always enable our own address */
681 			i = 1;
682 			netdev_for_each_mc_addr(ha, dev) {
683 				addr = ha->addr;
684 				sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
685 				sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
686 				sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
687 				sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
688 				i++;
689 			}
690 			SONIC_WRITE(SONIC_CDC, 16);
691 			SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
692 
693 			/* LCAM and TXP commands can't be used simultaneously */
694 			spin_lock_irqsave(&lp->lock, flags);
695 			sonic_quiesce(dev, SONIC_CR_TXP, false);
696 			SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
697 			sonic_quiesce(dev, SONIC_CR_LCAM, false);
698 			spin_unlock_irqrestore(&lp->lock, flags);
699 		}
700 	}
701 
702 	netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
703 
704 	SONIC_WRITE(SONIC_RCR, rcr);
705 }
706 
707 
708 /*
709  * Initialize the SONIC ethernet controller.
710  */
711 static int sonic_init(struct net_device *dev, bool may_sleep)
712 {
713 	struct sonic_local *lp = netdev_priv(dev);
714 	int i;
715 
716 	/*
717 	 * put the Sonic into software-reset mode and
718 	 * disable all interrupts
719 	 */
720 	SONIC_WRITE(SONIC_IMR, 0);
721 	SONIC_WRITE(SONIC_ISR, 0x7fff);
722 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
723 
724 	/* While in reset mode, clear CAM Enable register */
725 	SONIC_WRITE(SONIC_CE, 0);
726 
727 	/*
728 	 * clear software reset flag, disable receiver, clear and
729 	 * enable interrupts, then completely initialize the SONIC
730 	 */
731 	SONIC_WRITE(SONIC_CMD, 0);
732 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
733 	sonic_quiesce(dev, SONIC_CR_ALL, may_sleep);
734 
735 	/*
736 	 * initialize the receive resource area
737 	 */
738 	netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
739 		  __func__);
740 
741 	for (i = 0; i < SONIC_NUM_RRS; i++) {
742 		u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
743 		u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
744 		sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
745 		sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
746 		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
747 		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
748 	}
749 
750 	/* initialize all RRA registers */
751 	SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
752 	SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
753 	SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
754 	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
755 	SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
756 	SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
757 
758 	/* load the resource pointers */
759 	netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
760 
761 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
762 	sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep);
763 
764 	/*
765 	 * Initialize the receive descriptors so that they
766 	 * become a circular linked list, ie. let the last
767 	 * descriptor point to the first again.
768 	 */
769 	netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
770 		  __func__);
771 
772 	for (i=0; i<SONIC_NUM_RDS; i++) {
773 		sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
774 		sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
775 		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
776 		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
777 		sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
778 		sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
779 		sonic_rda_put(dev, i, SONIC_RD_LINK,
780 			lp->rda_laddr +
781 			((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
782 	}
783 	/* fix last descriptor */
784 	sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
785 		(lp->rda_laddr & 0xffff) | SONIC_EOL);
786 	lp->eol_rx = SONIC_NUM_RDS - 1;
787 	lp->cur_rx = 0;
788 	SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
789 	SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
790 
791 	/*
792 	 * initialize transmit descriptors
793 	 */
794 	netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
795 		  __func__);
796 
797 	for (i = 0; i < SONIC_NUM_TDS; i++) {
798 		sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
799 		sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
800 		sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
801 		sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
802 		sonic_tda_put(dev, i, SONIC_TD_LINK,
803 			(lp->tda_laddr & 0xffff) +
804 			(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
805 		lp->tx_skb[i] = NULL;
806 	}
807 	/* fix last descriptor */
808 	sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
809 		(lp->tda_laddr & 0xffff));
810 
811 	SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
812 	SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
813 	lp->cur_tx = 0;
814 	lp->eol_tx = SONIC_NUM_TDS - 1;
815 
816 	/*
817 	 * put our own address to CAM desc[0]
818 	 */
819 	sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
820 	sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
821 	sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
822 	sonic_set_cam_enable(dev, 1);
823 
824 	for (i = 0; i < 16; i++)
825 		sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
826 
827 	/*
828 	 * initialize CAM registers
829 	 */
830 	SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
831 	SONIC_WRITE(SONIC_CDC, 16);
832 
833 	/*
834 	 * load the CAM
835 	 */
836 	SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
837 	sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep);
838 
839 	/*
840 	 * enable receiver, disable loopback
841 	 * and enable all interrupts
842 	 */
843 	SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
844 	SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
845 	SONIC_WRITE(SONIC_ISR, 0x7fff);
846 	SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
847 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
848 
849 	netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
850 		  SONIC_READ(SONIC_CMD));
851 
852 	return 0;
853 }
854 
855 MODULE_LICENSE("GPL");
856