1 #define VERSION "0.23" 2 /* ns83820.c by Benjamin LaHaise with contributions. 3 * 4 * Questions/comments/discussion to linux-ns83820@kvack.org. 5 * 6 * $Revision: 1.34.2.23 $ 7 * 8 * Copyright 2001 Benjamin LaHaise. 9 * Copyright 2001, 2002 Red Hat. 10 * 11 * Mmmm, chocolate vanilla mocha... 12 * 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or 17 * (at your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with this program; if not, write to the Free Software 26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 27 * 28 * 29 * ChangeLog 30 * ========= 31 * 20010414 0.1 - created 32 * 20010622 0.2 - basic rx and tx. 33 * 20010711 0.3 - added duplex and link state detection support. 34 * 20010713 0.4 - zero copy, no hangs. 35 * 0.5 - 64 bit dma support (davem will hate me for this) 36 * - disable jumbo frames to avoid tx hangs 37 * - work around tx deadlocks on my 1.02 card via 38 * fiddling with TXCFG 39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64 40 * 20010816 0.7 - misc cleanups 41 * 20010826 0.8 - fix critical zero copy bugs 42 * 0.9 - internal experiment 43 * 20010827 0.10 - fix ia64 unaligned access. 44 * 20010906 0.11 - accept all packets with checksum errors as 45 * otherwise fragments get lost 46 * - fix >> 32 bugs 47 * 0.12 - add statistics counters 48 * - add allmulti/promisc support 49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups 50 * 20011204 0.13a - optical transceiver support added 51 * by Michael Clark <michael@metaparadigm.com> 52 * 20011205 0.13b - call register_netdev earlier in initialization 53 * suppress duplicate link status messages 54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik 55 * 20011204 0.15 get ppc (big endian) working 56 * 20011218 0.16 various cleanups 57 * 20020310 0.17 speedups 58 * 20020610 0.18 - actually use the pci dma api for highmem 59 * - remove pci latency register fiddling 60 * 0.19 - better bist support 61 * - add ihr and reset_phy parameters 62 * - gmii bus probing 63 * - fix missed txok introduced during performance 64 * tuning 65 * 0.20 - fix stupid RFEN thinko. i am such a smurf. 66 * 20040828 0.21 - add hardware vlan accleration 67 * by Neil Horman <nhorman@redhat.com> 68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen 69 * - removal of dead code from Adrian Bunk 70 * - fix half duplex collision behaviour 71 * Driver Overview 72 * =============== 73 * 74 * This driver was originally written for the National Semiconductor 75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully 76 * this code will turn out to be a) clean, b) correct, and c) fast. 77 * With that in mind, I'm aiming to split the code up as much as 78 * reasonably possible. At present there are X major sections that 79 * break down into a) packet receive, b) packet transmit, c) link 80 * management, d) initialization and configuration. Where possible, 81 * these code paths are designed to run in parallel. 82 * 83 * This driver has been tested and found to work with the following 84 * cards (in no particular order): 85 * 86 * Cameo SOHO-GA2000T SOHO-GA2500T 87 * D-Link DGE-500T 88 * PureData PDP8023Z-TG 89 * SMC SMC9452TX SMC9462TX 90 * Netgear GA621 91 * 92 * Special thanks to SMC for providing hardware to test this driver on. 93 * 94 * Reports of success or failure would be greatly appreciated. 95 */ 96 //#define dprintk printk 97 #define dprintk(x...) do { } while (0) 98 99 #include <linux/module.h> 100 #include <linux/moduleparam.h> 101 #include <linux/types.h> 102 #include <linux/pci.h> 103 #include <linux/dma-mapping.h> 104 #include <linux/netdevice.h> 105 #include <linux/etherdevice.h> 106 #include <linux/delay.h> 107 #include <linux/workqueue.h> 108 #include <linux/init.h> 109 #include <linux/interrupt.h> 110 #include <linux/ip.h> /* for iph */ 111 #include <linux/in.h> /* for IPPROTO_... */ 112 #include <linux/compiler.h> 113 #include <linux/prefetch.h> 114 #include <linux/ethtool.h> 115 #include <linux/sched.h> 116 #include <linux/timer.h> 117 #include <linux/if_vlan.h> 118 #include <linux/rtnetlink.h> 119 #include <linux/jiffies.h> 120 #include <linux/slab.h> 121 122 #include <asm/io.h> 123 #include <asm/uaccess.h> 124 125 #define DRV_NAME "ns83820" 126 127 /* Global parameters. See module_param near the bottom. */ 128 static int ihr = 2; 129 static int reset_phy = 0; 130 static int lnksts = 0; /* CFG_LNKSTS bit polarity */ 131 132 /* Dprintk is used for more interesting debug events */ 133 #undef Dprintk 134 #define Dprintk dprintk 135 136 /* tunables */ 137 #define RX_BUF_SIZE 1500 /* 8192 */ 138 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 139 #define NS83820_VLAN_ACCEL_SUPPORT 140 #endif 141 142 /* Must not exceed ~65000. */ 143 #define NR_RX_DESC 64 144 #define NR_TX_DESC 128 145 146 /* not tunable */ 147 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */ 148 149 #define MIN_TX_DESC_FREE 8 150 151 /* register defines */ 152 #define CFGCS 0x04 153 154 #define CR_TXE 0x00000001 155 #define CR_TXD 0x00000002 156 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE 157 * The Receive engine skips one descriptor and moves 158 * onto the next one!! */ 159 #define CR_RXE 0x00000004 160 #define CR_RXD 0x00000008 161 #define CR_TXR 0x00000010 162 #define CR_RXR 0x00000020 163 #define CR_SWI 0x00000080 164 #define CR_RST 0x00000100 165 166 #define PTSCR_EEBIST_FAIL 0x00000001 167 #define PTSCR_EEBIST_EN 0x00000002 168 #define PTSCR_EELOAD_EN 0x00000004 169 #define PTSCR_RBIST_FAIL 0x000001b8 170 #define PTSCR_RBIST_DONE 0x00000200 171 #define PTSCR_RBIST_EN 0x00000400 172 #define PTSCR_RBIST_RST 0x00002000 173 174 #define MEAR_EEDI 0x00000001 175 #define MEAR_EEDO 0x00000002 176 #define MEAR_EECLK 0x00000004 177 #define MEAR_EESEL 0x00000008 178 #define MEAR_MDIO 0x00000010 179 #define MEAR_MDDIR 0x00000020 180 #define MEAR_MDC 0x00000040 181 182 #define ISR_TXDESC3 0x40000000 183 #define ISR_TXDESC2 0x20000000 184 #define ISR_TXDESC1 0x10000000 185 #define ISR_TXDESC0 0x08000000 186 #define ISR_RXDESC3 0x04000000 187 #define ISR_RXDESC2 0x02000000 188 #define ISR_RXDESC1 0x01000000 189 #define ISR_RXDESC0 0x00800000 190 #define ISR_TXRCMP 0x00400000 191 #define ISR_RXRCMP 0x00200000 192 #define ISR_DPERR 0x00100000 193 #define ISR_SSERR 0x00080000 194 #define ISR_RMABT 0x00040000 195 #define ISR_RTABT 0x00020000 196 #define ISR_RXSOVR 0x00010000 197 #define ISR_HIBINT 0x00008000 198 #define ISR_PHY 0x00004000 199 #define ISR_PME 0x00002000 200 #define ISR_SWI 0x00001000 201 #define ISR_MIB 0x00000800 202 #define ISR_TXURN 0x00000400 203 #define ISR_TXIDLE 0x00000200 204 #define ISR_TXERR 0x00000100 205 #define ISR_TXDESC 0x00000080 206 #define ISR_TXOK 0x00000040 207 #define ISR_RXORN 0x00000020 208 #define ISR_RXIDLE 0x00000010 209 #define ISR_RXEARLY 0x00000008 210 #define ISR_RXERR 0x00000004 211 #define ISR_RXDESC 0x00000002 212 #define ISR_RXOK 0x00000001 213 214 #define TXCFG_CSI 0x80000000 215 #define TXCFG_HBI 0x40000000 216 #define TXCFG_MLB 0x20000000 217 #define TXCFG_ATP 0x10000000 218 #define TXCFG_ECRETRY 0x00800000 219 #define TXCFG_BRST_DIS 0x00080000 220 #define TXCFG_MXDMA1024 0x00000000 221 #define TXCFG_MXDMA512 0x00700000 222 #define TXCFG_MXDMA256 0x00600000 223 #define TXCFG_MXDMA128 0x00500000 224 #define TXCFG_MXDMA64 0x00400000 225 #define TXCFG_MXDMA32 0x00300000 226 #define TXCFG_MXDMA16 0x00200000 227 #define TXCFG_MXDMA8 0x00100000 228 229 #define CFG_LNKSTS 0x80000000 230 #define CFG_SPDSTS 0x60000000 231 #define CFG_SPDSTS1 0x40000000 232 #define CFG_SPDSTS0 0x20000000 233 #define CFG_DUPSTS 0x10000000 234 #define CFG_TBI_EN 0x01000000 235 #define CFG_MODE_1000 0x00400000 236 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy. 237 * Read the Phy response and then configure the MAC accordingly */ 238 #define CFG_AUTO_1000 0x00200000 239 #define CFG_PINT_CTL 0x001c0000 240 #define CFG_PINT_DUPSTS 0x00100000 241 #define CFG_PINT_LNKSTS 0x00080000 242 #define CFG_PINT_SPDSTS 0x00040000 243 #define CFG_TMRTEST 0x00020000 244 #define CFG_MRM_DIS 0x00010000 245 #define CFG_MWI_DIS 0x00008000 246 #define CFG_T64ADDR 0x00004000 247 #define CFG_PCI64_DET 0x00002000 248 #define CFG_DATA64_EN 0x00001000 249 #define CFG_M64ADDR 0x00000800 250 #define CFG_PHY_RST 0x00000400 251 #define CFG_PHY_DIS 0x00000200 252 #define CFG_EXTSTS_EN 0x00000100 253 #define CFG_REQALG 0x00000080 254 #define CFG_SB 0x00000040 255 #define CFG_POW 0x00000020 256 #define CFG_EXD 0x00000010 257 #define CFG_PESEL 0x00000008 258 #define CFG_BROM_DIS 0x00000004 259 #define CFG_EXT_125 0x00000002 260 #define CFG_BEM 0x00000001 261 262 #define EXTSTS_UDPPKT 0x00200000 263 #define EXTSTS_TCPPKT 0x00080000 264 #define EXTSTS_IPPKT 0x00020000 265 #define EXTSTS_VPKT 0x00010000 266 #define EXTSTS_VTG_MASK 0x0000ffff 267 268 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0)) 269 270 #define MIBC_MIBS 0x00000008 271 #define MIBC_ACLR 0x00000004 272 #define MIBC_FRZ 0x00000002 273 #define MIBC_WRN 0x00000001 274 275 #define PCR_PSEN (1 << 31) 276 #define PCR_PS_MCAST (1 << 30) 277 #define PCR_PS_DA (1 << 29) 278 #define PCR_STHI_8 (3 << 23) 279 #define PCR_STLO_4 (1 << 23) 280 #define PCR_FFHI_8K (3 << 21) 281 #define PCR_FFLO_4K (1 << 21) 282 #define PCR_PAUSE_CNT 0xFFFE 283 284 #define RXCFG_AEP 0x80000000 285 #define RXCFG_ARP 0x40000000 286 #define RXCFG_STRIPCRC 0x20000000 287 #define RXCFG_RX_FD 0x10000000 288 #define RXCFG_ALP 0x08000000 289 #define RXCFG_AIRL 0x04000000 290 #define RXCFG_MXDMA512 0x00700000 291 #define RXCFG_DRTH 0x0000003e 292 #define RXCFG_DRTH0 0x00000002 293 294 #define RFCR_RFEN 0x80000000 295 #define RFCR_AAB 0x40000000 296 #define RFCR_AAM 0x20000000 297 #define RFCR_AAU 0x10000000 298 #define RFCR_APM 0x08000000 299 #define RFCR_APAT 0x07800000 300 #define RFCR_APAT3 0x04000000 301 #define RFCR_APAT2 0x02000000 302 #define RFCR_APAT1 0x01000000 303 #define RFCR_APAT0 0x00800000 304 #define RFCR_AARP 0x00400000 305 #define RFCR_MHEN 0x00200000 306 #define RFCR_UHEN 0x00100000 307 #define RFCR_ULM 0x00080000 308 309 #define VRCR_RUDPE 0x00000080 310 #define VRCR_RTCPE 0x00000040 311 #define VRCR_RIPE 0x00000020 312 #define VRCR_IPEN 0x00000010 313 #define VRCR_DUTF 0x00000008 314 #define VRCR_DVTF 0x00000004 315 #define VRCR_VTREN 0x00000002 316 #define VRCR_VTDEN 0x00000001 317 318 #define VTCR_PPCHK 0x00000008 319 #define VTCR_GCHK 0x00000004 320 #define VTCR_VPPTI 0x00000002 321 #define VTCR_VGTI 0x00000001 322 323 #define CR 0x00 324 #define CFG 0x04 325 #define MEAR 0x08 326 #define PTSCR 0x0c 327 #define ISR 0x10 328 #define IMR 0x14 329 #define IER 0x18 330 #define IHR 0x1c 331 #define TXDP 0x20 332 #define TXDP_HI 0x24 333 #define TXCFG 0x28 334 #define GPIOR 0x2c 335 #define RXDP 0x30 336 #define RXDP_HI 0x34 337 #define RXCFG 0x38 338 #define PQCR 0x3c 339 #define WCSR 0x40 340 #define PCR 0x44 341 #define RFCR 0x48 342 #define RFDR 0x4c 343 344 #define SRR 0x58 345 346 #define VRCR 0xbc 347 #define VTCR 0xc0 348 #define VDR 0xc4 349 #define CCSR 0xcc 350 351 #define TBICR 0xe0 352 #define TBISR 0xe4 353 #define TANAR 0xe8 354 #define TANLPAR 0xec 355 #define TANER 0xf0 356 #define TESR 0xf4 357 358 #define TBICR_MR_AN_ENABLE 0x00001000 359 #define TBICR_MR_RESTART_AN 0x00000200 360 361 #define TBISR_MR_LINK_STATUS 0x00000020 362 #define TBISR_MR_AN_COMPLETE 0x00000004 363 364 #define TANAR_PS2 0x00000100 365 #define TANAR_PS1 0x00000080 366 #define TANAR_HALF_DUP 0x00000040 367 #define TANAR_FULL_DUP 0x00000020 368 369 #define GPIOR_GP5_OE 0x00000200 370 #define GPIOR_GP4_OE 0x00000100 371 #define GPIOR_GP3_OE 0x00000080 372 #define GPIOR_GP2_OE 0x00000040 373 #define GPIOR_GP1_OE 0x00000020 374 #define GPIOR_GP3_OUT 0x00000004 375 #define GPIOR_GP1_OUT 0x00000001 376 377 #define LINK_AUTONEGOTIATE 0x01 378 #define LINK_DOWN 0x02 379 #define LINK_UP 0x04 380 381 #define HW_ADDR_LEN sizeof(dma_addr_t) 382 #define desc_addr_set(desc, addr) \ 383 do { \ 384 ((desc)[0] = cpu_to_le32(addr)); \ 385 if (HW_ADDR_LEN == 8) \ 386 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \ 387 } while(0) 388 #define desc_addr_get(desc) \ 389 (le32_to_cpu((desc)[0]) | \ 390 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0)) 391 392 #define DESC_LINK 0 393 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4) 394 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4) 395 #define DESC_EXTSTS (DESC_CMDSTS + 4/4) 396 397 #define CMDSTS_OWN 0x80000000 398 #define CMDSTS_MORE 0x40000000 399 #define CMDSTS_INTR 0x20000000 400 #define CMDSTS_ERR 0x10000000 401 #define CMDSTS_OK 0x08000000 402 #define CMDSTS_RUNT 0x00200000 403 #define CMDSTS_LEN_MASK 0x0000ffff 404 405 #define CMDSTS_DEST_MASK 0x01800000 406 #define CMDSTS_DEST_SELF 0x00800000 407 #define CMDSTS_DEST_MULTI 0x01000000 408 409 #define DESC_SIZE 8 /* Should be cache line sized */ 410 411 struct rx_info { 412 spinlock_t lock; 413 int up; 414 unsigned long idle; 415 416 struct sk_buff *skbs[NR_RX_DESC]; 417 418 __le32 *next_rx_desc; 419 u16 next_rx, next_empty; 420 421 __le32 *descs; 422 dma_addr_t phy_descs; 423 }; 424 425 426 struct ns83820 { 427 u8 __iomem *base; 428 429 struct pci_dev *pci_dev; 430 struct net_device *ndev; 431 432 struct rx_info rx_info; 433 struct tasklet_struct rx_tasklet; 434 435 unsigned ihr; 436 struct work_struct tq_refill; 437 438 /* protects everything below. irqsave when using. */ 439 spinlock_t misc_lock; 440 441 u32 CFG_cache; 442 443 u32 MEAR_cache; 444 u32 IMR_cache; 445 446 unsigned linkstate; 447 448 spinlock_t tx_lock; 449 450 u16 tx_done_idx; 451 u16 tx_idx; 452 volatile u16 tx_free_idx; /* idx of free desc chain */ 453 u16 tx_intr_idx; 454 455 atomic_t nr_tx_skbs; 456 struct sk_buff *tx_skbs[NR_TX_DESC]; 457 458 char pad[16] __attribute__((aligned(16))); 459 __le32 *tx_descs; 460 dma_addr_t tx_phy_descs; 461 462 struct timer_list tx_watchdog; 463 }; 464 465 static inline struct ns83820 *PRIV(struct net_device *dev) 466 { 467 return netdev_priv(dev); 468 } 469 470 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR) 471 472 static inline void kick_rx(struct net_device *ndev) 473 { 474 struct ns83820 *dev = PRIV(ndev); 475 dprintk("kick_rx: maybe kicking\n"); 476 if (test_and_clear_bit(0, &dev->rx_info.idle)) { 477 dprintk("actually kicking\n"); 478 writel(dev->rx_info.phy_descs + 479 (4 * DESC_SIZE * dev->rx_info.next_rx), 480 dev->base + RXDP); 481 if (dev->rx_info.next_rx == dev->rx_info.next_empty) 482 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n", 483 ndev->name); 484 __kick_rx(dev); 485 } 486 } 487 488 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC 489 #define start_tx_okay(dev) \ 490 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE) 491 492 /* Packet Receiver 493 * 494 * The hardware supports linked lists of receive descriptors for 495 * which ownership is transferred back and forth by means of an 496 * ownership bit. While the hardware does support the use of a 497 * ring for receive descriptors, we only make use of a chain in 498 * an attempt to reduce bus traffic under heavy load scenarios. 499 * This will also make bugs a bit more obvious. The current code 500 * only makes use of a single rx chain; I hope to implement 501 * priority based rx for version 1.0. Goal: even under overload 502 * conditions, still route realtime traffic with as low jitter as 503 * possible. 504 */ 505 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts) 506 { 507 desc_addr_set(desc + DESC_LINK, link); 508 desc_addr_set(desc + DESC_BUFPTR, buf); 509 desc[DESC_EXTSTS] = cpu_to_le32(extsts); 510 mb(); 511 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); 512 } 513 514 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC) 515 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb) 516 { 517 unsigned next_empty; 518 u32 cmdsts; 519 __le32 *sg; 520 dma_addr_t buf; 521 522 next_empty = dev->rx_info.next_empty; 523 524 /* don't overrun last rx marker */ 525 if (unlikely(nr_rx_empty(dev) <= 2)) { 526 kfree_skb(skb); 527 return 1; 528 } 529 530 #if 0 531 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n", 532 dev->rx_info.next_empty, 533 dev->rx_info.nr_used, 534 dev->rx_info.next_rx 535 ); 536 #endif 537 538 sg = dev->rx_info.descs + (next_empty * DESC_SIZE); 539 BUG_ON(NULL != dev->rx_info.skbs[next_empty]); 540 dev->rx_info.skbs[next_empty] = skb; 541 542 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC; 543 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR; 544 buf = pci_map_single(dev->pci_dev, skb->data, 545 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 546 build_rx_desc(dev, sg, 0, buf, cmdsts, 0); 547 /* update link of previous rx */ 548 if (likely(next_empty != dev->rx_info.next_rx)) 549 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4)); 550 551 return 0; 552 } 553 554 static inline int rx_refill(struct net_device *ndev, gfp_t gfp) 555 { 556 struct ns83820 *dev = PRIV(ndev); 557 unsigned i; 558 unsigned long flags = 0; 559 560 if (unlikely(nr_rx_empty(dev) <= 2)) 561 return 0; 562 563 dprintk("rx_refill(%p)\n", ndev); 564 if (gfp == GFP_ATOMIC) 565 spin_lock_irqsave(&dev->rx_info.lock, flags); 566 for (i=0; i<NR_RX_DESC; i++) { 567 struct sk_buff *skb; 568 long res; 569 570 /* extra 16 bytes for alignment */ 571 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp); 572 if (unlikely(!skb)) 573 break; 574 575 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16)); 576 if (gfp != GFP_ATOMIC) 577 spin_lock_irqsave(&dev->rx_info.lock, flags); 578 res = ns83820_add_rx_skb(dev, skb); 579 if (gfp != GFP_ATOMIC) 580 spin_unlock_irqrestore(&dev->rx_info.lock, flags); 581 if (res) { 582 i = 1; 583 break; 584 } 585 } 586 if (gfp == GFP_ATOMIC) 587 spin_unlock_irqrestore(&dev->rx_info.lock, flags); 588 589 return i ? 0 : -ENOMEM; 590 } 591 592 static void rx_refill_atomic(struct net_device *ndev) 593 { 594 rx_refill(ndev, GFP_ATOMIC); 595 } 596 597 /* REFILL */ 598 static inline void queue_refill(struct work_struct *work) 599 { 600 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill); 601 struct net_device *ndev = dev->ndev; 602 603 rx_refill(ndev, GFP_KERNEL); 604 if (dev->rx_info.up) 605 kick_rx(ndev); 606 } 607 608 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i) 609 { 610 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0); 611 } 612 613 static void phy_intr(struct net_device *ndev) 614 { 615 struct ns83820 *dev = PRIV(ndev); 616 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" }; 617 u32 cfg, new_cfg; 618 u32 tbisr, tanar, tanlpar; 619 int speed, fullduplex, newlinkstate; 620 621 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 622 623 if (dev->CFG_cache & CFG_TBI_EN) { 624 /* we have an optical transceiver */ 625 tbisr = readl(dev->base + TBISR); 626 tanar = readl(dev->base + TANAR); 627 tanlpar = readl(dev->base + TANLPAR); 628 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n", 629 tbisr, tanar, tanlpar); 630 631 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) && 632 (tanar & TANAR_FULL_DUP)) ) { 633 634 /* both of us are full duplex */ 635 writel(readl(dev->base + TXCFG) 636 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, 637 dev->base + TXCFG); 638 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, 639 dev->base + RXCFG); 640 /* Light up full duplex LED */ 641 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, 642 dev->base + GPIOR); 643 644 } else if (((tanlpar & TANAR_HALF_DUP) && 645 (tanar & TANAR_HALF_DUP)) || 646 ((tanlpar & TANAR_FULL_DUP) && 647 (tanar & TANAR_HALF_DUP)) || 648 ((tanlpar & TANAR_HALF_DUP) && 649 (tanar & TANAR_FULL_DUP))) { 650 651 /* one or both of us are half duplex */ 652 writel((readl(dev->base + TXCFG) 653 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP, 654 dev->base + TXCFG); 655 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD, 656 dev->base + RXCFG); 657 /* Turn off full duplex LED */ 658 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT, 659 dev->base + GPIOR); 660 } 661 662 speed = 4; /* 1000F */ 663 664 } else { 665 /* we have a copper transceiver */ 666 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS); 667 668 if (cfg & CFG_SPDSTS1) 669 new_cfg |= CFG_MODE_1000; 670 else 671 new_cfg &= ~CFG_MODE_1000; 672 673 speed = ((cfg / CFG_SPDSTS0) & 3); 674 fullduplex = (cfg & CFG_DUPSTS); 675 676 if (fullduplex) { 677 new_cfg |= CFG_SB; 678 writel(readl(dev->base + TXCFG) 679 | TXCFG_CSI | TXCFG_HBI, 680 dev->base + TXCFG); 681 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, 682 dev->base + RXCFG); 683 } else { 684 writel(readl(dev->base + TXCFG) 685 & ~(TXCFG_CSI | TXCFG_HBI), 686 dev->base + TXCFG); 687 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD), 688 dev->base + RXCFG); 689 } 690 691 if ((cfg & CFG_LNKSTS) && 692 ((new_cfg ^ dev->CFG_cache) != 0)) { 693 writel(new_cfg, dev->base + CFG); 694 dev->CFG_cache = new_cfg; 695 } 696 697 dev->CFG_cache &= ~CFG_SPDSTS; 698 dev->CFG_cache |= cfg & CFG_SPDSTS; 699 } 700 701 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN; 702 703 if (newlinkstate & LINK_UP && 704 dev->linkstate != newlinkstate) { 705 netif_start_queue(ndev); 706 netif_wake_queue(ndev); 707 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n", 708 ndev->name, 709 speeds[speed], 710 fullduplex ? "full" : "half"); 711 } else if (newlinkstate & LINK_DOWN && 712 dev->linkstate != newlinkstate) { 713 netif_stop_queue(ndev); 714 printk(KERN_INFO "%s: link now down.\n", ndev->name); 715 } 716 717 dev->linkstate = newlinkstate; 718 } 719 720 static int ns83820_setup_rx(struct net_device *ndev) 721 { 722 struct ns83820 *dev = PRIV(ndev); 723 unsigned i; 724 int ret; 725 726 dprintk("ns83820_setup_rx(%p)\n", ndev); 727 728 dev->rx_info.idle = 1; 729 dev->rx_info.next_rx = 0; 730 dev->rx_info.next_rx_desc = dev->rx_info.descs; 731 dev->rx_info.next_empty = 0; 732 733 for (i=0; i<NR_RX_DESC; i++) 734 clear_rx_desc(dev, i); 735 736 writel(0, dev->base + RXDP_HI); 737 writel(dev->rx_info.phy_descs, dev->base + RXDP); 738 739 ret = rx_refill(ndev, GFP_KERNEL); 740 if (!ret) { 741 dprintk("starting receiver\n"); 742 /* prevent the interrupt handler from stomping on us */ 743 spin_lock_irq(&dev->rx_info.lock); 744 745 writel(0x0001, dev->base + CCSR); 746 writel(0, dev->base + RFCR); 747 writel(0x7fc00000, dev->base + RFCR); 748 writel(0xffc00000, dev->base + RFCR); 749 750 dev->rx_info.up = 1; 751 752 phy_intr(ndev); 753 754 /* Okay, let it rip */ 755 spin_lock(&dev->misc_lock); 756 dev->IMR_cache |= ISR_PHY; 757 dev->IMR_cache |= ISR_RXRCMP; 758 //dev->IMR_cache |= ISR_RXERR; 759 //dev->IMR_cache |= ISR_RXOK; 760 dev->IMR_cache |= ISR_RXORN; 761 dev->IMR_cache |= ISR_RXSOVR; 762 dev->IMR_cache |= ISR_RXDESC; 763 dev->IMR_cache |= ISR_RXIDLE; 764 dev->IMR_cache |= ISR_TXDESC; 765 dev->IMR_cache |= ISR_TXIDLE; 766 767 writel(dev->IMR_cache, dev->base + IMR); 768 writel(1, dev->base + IER); 769 spin_unlock(&dev->misc_lock); 770 771 kick_rx(ndev); 772 773 spin_unlock_irq(&dev->rx_info.lock); 774 } 775 return ret; 776 } 777 778 static void ns83820_cleanup_rx(struct ns83820 *dev) 779 { 780 unsigned i; 781 unsigned long flags; 782 783 dprintk("ns83820_cleanup_rx(%p)\n", dev); 784 785 /* disable receive interrupts */ 786 spin_lock_irqsave(&dev->misc_lock, flags); 787 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE); 788 writel(dev->IMR_cache, dev->base + IMR); 789 spin_unlock_irqrestore(&dev->misc_lock, flags); 790 791 /* synchronize with the interrupt handler and kill it */ 792 dev->rx_info.up = 0; 793 synchronize_irq(dev->pci_dev->irq); 794 795 /* touch the pci bus... */ 796 readl(dev->base + IMR); 797 798 /* assumes the transmitter is already disabled and reset */ 799 writel(0, dev->base + RXDP_HI); 800 writel(0, dev->base + RXDP); 801 802 for (i=0; i<NR_RX_DESC; i++) { 803 struct sk_buff *skb = dev->rx_info.skbs[i]; 804 dev->rx_info.skbs[i] = NULL; 805 clear_rx_desc(dev, i); 806 kfree_skb(skb); 807 } 808 } 809 810 static void ns83820_rx_kick(struct net_device *ndev) 811 { 812 struct ns83820 *dev = PRIV(ndev); 813 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ { 814 if (dev->rx_info.up) { 815 rx_refill_atomic(ndev); 816 kick_rx(ndev); 817 } 818 } 819 820 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4) 821 schedule_work(&dev->tq_refill); 822 else 823 kick_rx(ndev); 824 if (dev->rx_info.idle) 825 printk(KERN_DEBUG "%s: BAD\n", ndev->name); 826 } 827 828 /* rx_irq 829 * 830 */ 831 static void rx_irq(struct net_device *ndev) 832 { 833 struct ns83820 *dev = PRIV(ndev); 834 struct rx_info *info = &dev->rx_info; 835 unsigned next_rx; 836 int rx_rc, len; 837 u32 cmdsts; 838 __le32 *desc; 839 unsigned long flags; 840 int nr = 0; 841 842 dprintk("rx_irq(%p)\n", ndev); 843 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n", 844 readl(dev->base + RXDP), 845 (long)(dev->rx_info.phy_descs), 846 (int)dev->rx_info.next_rx, 847 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)), 848 (int)dev->rx_info.next_empty, 849 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty)) 850 ); 851 852 spin_lock_irqsave(&info->lock, flags); 853 if (!info->up) 854 goto out; 855 856 dprintk("walking descs\n"); 857 next_rx = info->next_rx; 858 desc = info->next_rx_desc; 859 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) && 860 (cmdsts != CMDSTS_OWN)) { 861 struct sk_buff *skb; 862 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]); 863 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR); 864 865 dprintk("cmdsts: %08x\n", cmdsts); 866 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK])); 867 dprintk("extsts: %08x\n", extsts); 868 869 skb = info->skbs[next_rx]; 870 info->skbs[next_rx] = NULL; 871 info->next_rx = (next_rx + 1) % NR_RX_DESC; 872 873 mb(); 874 clear_rx_desc(dev, next_rx); 875 876 pci_unmap_single(dev->pci_dev, bufptr, 877 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 878 len = cmdsts & CMDSTS_LEN_MASK; 879 #ifdef NS83820_VLAN_ACCEL_SUPPORT 880 /* NH: As was mentioned below, this chip is kinda 881 * brain dead about vlan tag stripping. Frames 882 * that are 64 bytes with a vlan header appended 883 * like arp frames, or pings, are flagged as Runts 884 * when the tag is stripped and hardware. This 885 * also means that the OK bit in the descriptor 886 * is cleared when the frame comes in so we have 887 * to do a specific length check here to make sure 888 * the frame would have been ok, had we not stripped 889 * the tag. 890 */ 891 if (likely((CMDSTS_OK & cmdsts) || 892 ((cmdsts & CMDSTS_RUNT) && len >= 56))) { 893 #else 894 if (likely(CMDSTS_OK & cmdsts)) { 895 #endif 896 skb_put(skb, len); 897 if (unlikely(!skb)) 898 goto netdev_mangle_me_harder_failed; 899 if (cmdsts & CMDSTS_DEST_MULTI) 900 ndev->stats.multicast++; 901 ndev->stats.rx_packets++; 902 ndev->stats.rx_bytes += len; 903 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) { 904 skb->ip_summed = CHECKSUM_UNNECESSARY; 905 } else { 906 skb_checksum_none_assert(skb); 907 } 908 skb->protocol = eth_type_trans(skb, ndev); 909 #ifdef NS83820_VLAN_ACCEL_SUPPORT 910 if(extsts & EXTSTS_VPKT) { 911 unsigned short tag; 912 913 tag = ntohs(extsts & EXTSTS_VTG_MASK); 914 __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag); 915 } 916 #endif 917 rx_rc = netif_rx(skb); 918 if (NET_RX_DROP == rx_rc) { 919 netdev_mangle_me_harder_failed: 920 ndev->stats.rx_dropped++; 921 } 922 } else { 923 kfree_skb(skb); 924 } 925 926 nr++; 927 next_rx = info->next_rx; 928 desc = info->descs + (DESC_SIZE * next_rx); 929 } 930 info->next_rx = next_rx; 931 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx); 932 933 out: 934 if (0 && !nr) { 935 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts); 936 } 937 938 spin_unlock_irqrestore(&info->lock, flags); 939 } 940 941 static void rx_action(unsigned long _dev) 942 { 943 struct net_device *ndev = (void *)_dev; 944 struct ns83820 *dev = PRIV(ndev); 945 rx_irq(ndev); 946 writel(ihr, dev->base + IHR); 947 948 spin_lock_irq(&dev->misc_lock); 949 dev->IMR_cache |= ISR_RXDESC; 950 writel(dev->IMR_cache, dev->base + IMR); 951 spin_unlock_irq(&dev->misc_lock); 952 953 rx_irq(ndev); 954 ns83820_rx_kick(ndev); 955 } 956 957 /* Packet Transmit code 958 */ 959 static inline void kick_tx(struct ns83820 *dev) 960 { 961 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n", 962 dev, dev->tx_idx, dev->tx_free_idx); 963 writel(CR_TXE, dev->base + CR); 964 } 965 966 /* No spinlock needed on the transmit irq path as the interrupt handler is 967 * serialized. 968 */ 969 static void do_tx_done(struct net_device *ndev) 970 { 971 struct ns83820 *dev = PRIV(ndev); 972 u32 cmdsts, tx_done_idx; 973 __le32 *desc; 974 975 dprintk("do_tx_done(%p)\n", ndev); 976 tx_done_idx = dev->tx_done_idx; 977 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 978 979 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 980 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); 981 while ((tx_done_idx != dev->tx_free_idx) && 982 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) { 983 struct sk_buff *skb; 984 unsigned len; 985 dma_addr_t addr; 986 987 if (cmdsts & CMDSTS_ERR) 988 ndev->stats.tx_errors++; 989 if (cmdsts & CMDSTS_OK) 990 ndev->stats.tx_packets++; 991 if (cmdsts & CMDSTS_OK) 992 ndev->stats.tx_bytes += cmdsts & 0xffff; 993 994 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 995 tx_done_idx, dev->tx_free_idx, cmdsts); 996 skb = dev->tx_skbs[tx_done_idx]; 997 dev->tx_skbs[tx_done_idx] = NULL; 998 dprintk("done(%p)\n", skb); 999 1000 len = cmdsts & CMDSTS_LEN_MASK; 1001 addr = desc_addr_get(desc + DESC_BUFPTR); 1002 if (skb) { 1003 pci_unmap_single(dev->pci_dev, 1004 addr, 1005 len, 1006 PCI_DMA_TODEVICE); 1007 dev_kfree_skb_irq(skb); 1008 atomic_dec(&dev->nr_tx_skbs); 1009 } else 1010 pci_unmap_page(dev->pci_dev, 1011 addr, 1012 len, 1013 PCI_DMA_TODEVICE); 1014 1015 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC; 1016 dev->tx_done_idx = tx_done_idx; 1017 desc[DESC_CMDSTS] = cpu_to_le32(0); 1018 mb(); 1019 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 1020 } 1021 1022 /* Allow network stack to resume queueing packets after we've 1023 * finished transmitting at least 1/4 of the packets in the queue. 1024 */ 1025 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) { 1026 dprintk("start_queue(%p)\n", ndev); 1027 netif_start_queue(ndev); 1028 netif_wake_queue(ndev); 1029 } 1030 } 1031 1032 static void ns83820_cleanup_tx(struct ns83820 *dev) 1033 { 1034 unsigned i; 1035 1036 for (i=0; i<NR_TX_DESC; i++) { 1037 struct sk_buff *skb = dev->tx_skbs[i]; 1038 dev->tx_skbs[i] = NULL; 1039 if (skb) { 1040 __le32 *desc = dev->tx_descs + (i * DESC_SIZE); 1041 pci_unmap_single(dev->pci_dev, 1042 desc_addr_get(desc + DESC_BUFPTR), 1043 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK, 1044 PCI_DMA_TODEVICE); 1045 dev_kfree_skb_irq(skb); 1046 atomic_dec(&dev->nr_tx_skbs); 1047 } 1048 } 1049 1050 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4); 1051 } 1052 1053 /* transmit routine. This code relies on the network layer serializing 1054 * its calls in, but will run happily in parallel with the interrupt 1055 * handler. This code currently has provisions for fragmenting tx buffers 1056 * while trying to track down a bug in either the zero copy code or 1057 * the tx fifo (hence the MAX_FRAG_LEN). 1058 */ 1059 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb, 1060 struct net_device *ndev) 1061 { 1062 struct ns83820 *dev = PRIV(ndev); 1063 u32 free_idx, cmdsts, extsts; 1064 int nr_free, nr_frags; 1065 unsigned tx_done_idx, last_idx; 1066 dma_addr_t buf; 1067 unsigned len; 1068 skb_frag_t *frag; 1069 int stopped = 0; 1070 int do_intr = 0; 1071 volatile __le32 *first_desc; 1072 1073 dprintk("ns83820_hard_start_xmit\n"); 1074 1075 nr_frags = skb_shinfo(skb)->nr_frags; 1076 again: 1077 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) { 1078 netif_stop_queue(ndev); 1079 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) 1080 return NETDEV_TX_BUSY; 1081 netif_start_queue(ndev); 1082 } 1083 1084 last_idx = free_idx = dev->tx_free_idx; 1085 tx_done_idx = dev->tx_done_idx; 1086 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC; 1087 nr_free -= 1; 1088 if (nr_free <= nr_frags) { 1089 dprintk("stop_queue - not enough(%p)\n", ndev); 1090 netif_stop_queue(ndev); 1091 1092 /* Check again: we may have raced with a tx done irq */ 1093 if (dev->tx_done_idx != tx_done_idx) { 1094 dprintk("restart queue(%p)\n", ndev); 1095 netif_start_queue(ndev); 1096 goto again; 1097 } 1098 return NETDEV_TX_BUSY; 1099 } 1100 1101 if (free_idx == dev->tx_intr_idx) { 1102 do_intr = 1; 1103 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC; 1104 } 1105 1106 nr_free -= nr_frags; 1107 if (nr_free < MIN_TX_DESC_FREE) { 1108 dprintk("stop_queue - last entry(%p)\n", ndev); 1109 netif_stop_queue(ndev); 1110 stopped = 1; 1111 } 1112 1113 frag = skb_shinfo(skb)->frags; 1114 if (!nr_frags) 1115 frag = NULL; 1116 extsts = 0; 1117 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1118 extsts |= EXTSTS_IPPKT; 1119 if (IPPROTO_TCP == ip_hdr(skb)->protocol) 1120 extsts |= EXTSTS_TCPPKT; 1121 else if (IPPROTO_UDP == ip_hdr(skb)->protocol) 1122 extsts |= EXTSTS_UDPPKT; 1123 } 1124 1125 #ifdef NS83820_VLAN_ACCEL_SUPPORT 1126 if(vlan_tx_tag_present(skb)) { 1127 /* fetch the vlan tag info out of the 1128 * ancillary data if the vlan code 1129 * is using hw vlan acceleration 1130 */ 1131 short tag = vlan_tx_tag_get(skb); 1132 extsts |= (EXTSTS_VPKT | htons(tag)); 1133 } 1134 #endif 1135 1136 len = skb->len; 1137 if (nr_frags) 1138 len -= skb->data_len; 1139 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE); 1140 1141 first_desc = dev->tx_descs + (free_idx * DESC_SIZE); 1142 1143 for (;;) { 1144 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE); 1145 1146 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len, 1147 (unsigned long long)buf); 1148 last_idx = free_idx; 1149 free_idx = (free_idx + 1) % NR_TX_DESC; 1150 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4)); 1151 desc_addr_set(desc + DESC_BUFPTR, buf); 1152 desc[DESC_EXTSTS] = cpu_to_le32(extsts); 1153 1154 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0); 1155 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN; 1156 cmdsts |= len; 1157 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); 1158 1159 if (!nr_frags) 1160 break; 1161 1162 buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0, 1163 skb_frag_size(frag), DMA_TO_DEVICE); 1164 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n", 1165 (long long)buf, (long) page_to_pfn(frag->page), 1166 frag->page_offset); 1167 len = skb_frag_size(frag); 1168 frag++; 1169 nr_frags--; 1170 } 1171 dprintk("done pkt\n"); 1172 1173 spin_lock_irq(&dev->tx_lock); 1174 dev->tx_skbs[last_idx] = skb; 1175 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN); 1176 dev->tx_free_idx = free_idx; 1177 atomic_inc(&dev->nr_tx_skbs); 1178 spin_unlock_irq(&dev->tx_lock); 1179 1180 kick_tx(dev); 1181 1182 /* Check again: we may have raced with a tx done irq */ 1183 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev)) 1184 netif_start_queue(ndev); 1185 1186 return NETDEV_TX_OK; 1187 } 1188 1189 static void ns83820_update_stats(struct ns83820 *dev) 1190 { 1191 struct net_device *ndev = dev->ndev; 1192 u8 __iomem *base = dev->base; 1193 1194 /* the DP83820 will freeze counters, so we need to read all of them */ 1195 ndev->stats.rx_errors += readl(base + 0x60) & 0xffff; 1196 ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff; 1197 ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff; 1198 ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff; 1199 /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70); 1200 ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff; 1201 ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff; 1202 /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c); 1203 /*ndev->stats.rx_pause_count += */ readl(base + 0x80); 1204 /*ndev->stats.tx_pause_count += */ readl(base + 0x84); 1205 ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff; 1206 } 1207 1208 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev) 1209 { 1210 struct ns83820 *dev = PRIV(ndev); 1211 1212 /* somewhat overkill */ 1213 spin_lock_irq(&dev->misc_lock); 1214 ns83820_update_stats(dev); 1215 spin_unlock_irq(&dev->misc_lock); 1216 1217 return &ndev->stats; 1218 } 1219 1220 /* Let ethtool retrieve info */ 1221 static int ns83820_get_settings(struct net_device *ndev, 1222 struct ethtool_cmd *cmd) 1223 { 1224 struct ns83820 *dev = PRIV(ndev); 1225 u32 cfg, tanar, tbicr; 1226 int fullduplex = 0; 1227 1228 /* 1229 * Here's the list of available ethtool commands from other drivers: 1230 * cmd->advertising = 1231 * ethtool_cmd_speed_set(cmd, ...) 1232 * cmd->duplex = 1233 * cmd->port = 0; 1234 * cmd->phy_address = 1235 * cmd->transceiver = 0; 1236 * cmd->autoneg = 1237 * cmd->maxtxpkt = 0; 1238 * cmd->maxrxpkt = 0; 1239 */ 1240 1241 /* read current configuration */ 1242 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 1243 tanar = readl(dev->base + TANAR); 1244 tbicr = readl(dev->base + TBICR); 1245 1246 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0; 1247 1248 cmd->supported = SUPPORTED_Autoneg; 1249 1250 if (dev->CFG_cache & CFG_TBI_EN) { 1251 /* we have optical interface */ 1252 cmd->supported |= SUPPORTED_1000baseT_Half | 1253 SUPPORTED_1000baseT_Full | 1254 SUPPORTED_FIBRE; 1255 cmd->port = PORT_FIBRE; 1256 } else { 1257 /* we have copper */ 1258 cmd->supported |= SUPPORTED_10baseT_Half | 1259 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | 1260 SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | 1261 SUPPORTED_1000baseT_Full | 1262 SUPPORTED_MII; 1263 cmd->port = PORT_MII; 1264 } 1265 1266 cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF; 1267 switch (cfg / CFG_SPDSTS0 & 3) { 1268 case 2: 1269 ethtool_cmd_speed_set(cmd, SPEED_1000); 1270 break; 1271 case 1: 1272 ethtool_cmd_speed_set(cmd, SPEED_100); 1273 break; 1274 default: 1275 ethtool_cmd_speed_set(cmd, SPEED_10); 1276 break; 1277 } 1278 cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) 1279 ? AUTONEG_ENABLE : AUTONEG_DISABLE; 1280 return 0; 1281 } 1282 1283 /* Let ethool change settings*/ 1284 static int ns83820_set_settings(struct net_device *ndev, 1285 struct ethtool_cmd *cmd) 1286 { 1287 struct ns83820 *dev = PRIV(ndev); 1288 u32 cfg, tanar; 1289 int have_optical = 0; 1290 int fullduplex = 0; 1291 1292 /* read current configuration */ 1293 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 1294 tanar = readl(dev->base + TANAR); 1295 1296 if (dev->CFG_cache & CFG_TBI_EN) { 1297 /* we have optical */ 1298 have_optical = 1; 1299 fullduplex = (tanar & TANAR_FULL_DUP); 1300 1301 } else { 1302 /* we have copper */ 1303 fullduplex = cfg & CFG_DUPSTS; 1304 } 1305 1306 spin_lock_irq(&dev->misc_lock); 1307 spin_lock(&dev->tx_lock); 1308 1309 /* Set duplex */ 1310 if (cmd->duplex != fullduplex) { 1311 if (have_optical) { 1312 /*set full duplex*/ 1313 if (cmd->duplex == DUPLEX_FULL) { 1314 /* force full duplex */ 1315 writel(readl(dev->base + TXCFG) 1316 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, 1317 dev->base + TXCFG); 1318 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, 1319 dev->base + RXCFG); 1320 /* Light up full duplex LED */ 1321 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, 1322 dev->base + GPIOR); 1323 } else { 1324 /*TODO: set half duplex */ 1325 } 1326 1327 } else { 1328 /*we have copper*/ 1329 /* TODO: Set duplex for copper cards */ 1330 } 1331 printk(KERN_INFO "%s: Duplex set via ethtool\n", 1332 ndev->name); 1333 } 1334 1335 /* Set autonegotiation */ 1336 if (1) { 1337 if (cmd->autoneg == AUTONEG_ENABLE) { 1338 /* restart auto negotiation */ 1339 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, 1340 dev->base + TBICR); 1341 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); 1342 dev->linkstate = LINK_AUTONEGOTIATE; 1343 1344 printk(KERN_INFO "%s: autoneg enabled via ethtool\n", 1345 ndev->name); 1346 } else { 1347 /* disable auto negotiation */ 1348 writel(0x00000000, dev->base + TBICR); 1349 } 1350 1351 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name, 1352 cmd->autoneg ? "ENABLED" : "DISABLED"); 1353 } 1354 1355 phy_intr(ndev); 1356 spin_unlock(&dev->tx_lock); 1357 spin_unlock_irq(&dev->misc_lock); 1358 1359 return 0; 1360 } 1361 /* end ethtool get/set support -df */ 1362 1363 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) 1364 { 1365 struct ns83820 *dev = PRIV(ndev); 1366 strlcpy(info->driver, "ns83820", sizeof(info->driver)); 1367 strlcpy(info->version, VERSION, sizeof(info->version)); 1368 strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info)); 1369 } 1370 1371 static u32 ns83820_get_link(struct net_device *ndev) 1372 { 1373 struct ns83820 *dev = PRIV(ndev); 1374 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 1375 return cfg & CFG_LNKSTS ? 1 : 0; 1376 } 1377 1378 static const struct ethtool_ops ops = { 1379 .get_settings = ns83820_get_settings, 1380 .set_settings = ns83820_set_settings, 1381 .get_drvinfo = ns83820_get_drvinfo, 1382 .get_link = ns83820_get_link 1383 }; 1384 1385 static inline void ns83820_disable_interrupts(struct ns83820 *dev) 1386 { 1387 writel(0, dev->base + IMR); 1388 writel(0, dev->base + IER); 1389 readl(dev->base + IER); 1390 } 1391 1392 /* this function is called in irq context from the ISR */ 1393 static void ns83820_mib_isr(struct ns83820 *dev) 1394 { 1395 unsigned long flags; 1396 spin_lock_irqsave(&dev->misc_lock, flags); 1397 ns83820_update_stats(dev); 1398 spin_unlock_irqrestore(&dev->misc_lock, flags); 1399 } 1400 1401 static void ns83820_do_isr(struct net_device *ndev, u32 isr); 1402 static irqreturn_t ns83820_irq(int foo, void *data) 1403 { 1404 struct net_device *ndev = data; 1405 struct ns83820 *dev = PRIV(ndev); 1406 u32 isr; 1407 dprintk("ns83820_irq(%p)\n", ndev); 1408 1409 dev->ihr = 0; 1410 1411 isr = readl(dev->base + ISR); 1412 dprintk("irq: %08x\n", isr); 1413 ns83820_do_isr(ndev, isr); 1414 return IRQ_HANDLED; 1415 } 1416 1417 static void ns83820_do_isr(struct net_device *ndev, u32 isr) 1418 { 1419 struct ns83820 *dev = PRIV(ndev); 1420 unsigned long flags; 1421 1422 #ifdef DEBUG 1423 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC)) 1424 Dprintk("odd isr? 0x%08x\n", isr); 1425 #endif 1426 1427 if (ISR_RXIDLE & isr) { 1428 dev->rx_info.idle = 1; 1429 Dprintk("oh dear, we are idle\n"); 1430 ns83820_rx_kick(ndev); 1431 } 1432 1433 if ((ISR_RXDESC | ISR_RXOK) & isr) { 1434 prefetch(dev->rx_info.next_rx_desc); 1435 1436 spin_lock_irqsave(&dev->misc_lock, flags); 1437 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK); 1438 writel(dev->IMR_cache, dev->base + IMR); 1439 spin_unlock_irqrestore(&dev->misc_lock, flags); 1440 1441 tasklet_schedule(&dev->rx_tasklet); 1442 //rx_irq(ndev); 1443 //writel(4, dev->base + IHR); 1444 } 1445 1446 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr) 1447 ns83820_rx_kick(ndev); 1448 1449 if (unlikely(ISR_RXSOVR & isr)) { 1450 //printk("overrun: rxsovr\n"); 1451 ndev->stats.rx_fifo_errors++; 1452 } 1453 1454 if (unlikely(ISR_RXORN & isr)) { 1455 //printk("overrun: rxorn\n"); 1456 ndev->stats.rx_fifo_errors++; 1457 } 1458 1459 if ((ISR_RXRCMP & isr) && dev->rx_info.up) 1460 writel(CR_RXE, dev->base + CR); 1461 1462 if (ISR_TXIDLE & isr) { 1463 u32 txdp; 1464 txdp = readl(dev->base + TXDP); 1465 dprintk("txdp: %08x\n", txdp); 1466 txdp -= dev->tx_phy_descs; 1467 dev->tx_idx = txdp / (DESC_SIZE * 4); 1468 if (dev->tx_idx >= NR_TX_DESC) { 1469 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name); 1470 dev->tx_idx = 0; 1471 } 1472 /* The may have been a race between a pci originated read 1473 * and the descriptor update from the cpu. Just in case, 1474 * kick the transmitter if the hardware thinks it is on a 1475 * different descriptor than we are. 1476 */ 1477 if (dev->tx_idx != dev->tx_free_idx) 1478 kick_tx(dev); 1479 } 1480 1481 /* Defer tx ring processing until more than a minimum amount of 1482 * work has accumulated 1483 */ 1484 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) { 1485 spin_lock_irqsave(&dev->tx_lock, flags); 1486 do_tx_done(ndev); 1487 spin_unlock_irqrestore(&dev->tx_lock, flags); 1488 1489 /* Disable TxOk if there are no outstanding tx packets. 1490 */ 1491 if ((dev->tx_done_idx == dev->tx_free_idx) && 1492 (dev->IMR_cache & ISR_TXOK)) { 1493 spin_lock_irqsave(&dev->misc_lock, flags); 1494 dev->IMR_cache &= ~ISR_TXOK; 1495 writel(dev->IMR_cache, dev->base + IMR); 1496 spin_unlock_irqrestore(&dev->misc_lock, flags); 1497 } 1498 } 1499 1500 /* The TxIdle interrupt can come in before the transmit has 1501 * completed. Normally we reap packets off of the combination 1502 * of TxDesc and TxIdle and leave TxOk disabled (since it 1503 * occurs on every packet), but when no further irqs of this 1504 * nature are expected, we must enable TxOk. 1505 */ 1506 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) { 1507 spin_lock_irqsave(&dev->misc_lock, flags); 1508 dev->IMR_cache |= ISR_TXOK; 1509 writel(dev->IMR_cache, dev->base + IMR); 1510 spin_unlock_irqrestore(&dev->misc_lock, flags); 1511 } 1512 1513 /* MIB interrupt: one of the statistics counters is about to overflow */ 1514 if (unlikely(ISR_MIB & isr)) 1515 ns83820_mib_isr(dev); 1516 1517 /* PHY: Link up/down/negotiation state change */ 1518 if (unlikely(ISR_PHY & isr)) 1519 phy_intr(ndev); 1520 1521 #if 0 /* Still working on the interrupt mitigation strategy */ 1522 if (dev->ihr) 1523 writel(dev->ihr, dev->base + IHR); 1524 #endif 1525 } 1526 1527 static void ns83820_do_reset(struct ns83820 *dev, u32 which) 1528 { 1529 Dprintk("resetting chip...\n"); 1530 writel(which, dev->base + CR); 1531 do { 1532 schedule(); 1533 } while (readl(dev->base + CR) & which); 1534 Dprintk("okay!\n"); 1535 } 1536 1537 static int ns83820_stop(struct net_device *ndev) 1538 { 1539 struct ns83820 *dev = PRIV(ndev); 1540 1541 /* FIXME: protect against interrupt handler? */ 1542 del_timer_sync(&dev->tx_watchdog); 1543 1544 ns83820_disable_interrupts(dev); 1545 1546 dev->rx_info.up = 0; 1547 synchronize_irq(dev->pci_dev->irq); 1548 1549 ns83820_do_reset(dev, CR_RST); 1550 1551 synchronize_irq(dev->pci_dev->irq); 1552 1553 spin_lock_irq(&dev->misc_lock); 1554 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK); 1555 spin_unlock_irq(&dev->misc_lock); 1556 1557 ns83820_cleanup_rx(dev); 1558 ns83820_cleanup_tx(dev); 1559 1560 return 0; 1561 } 1562 1563 static void ns83820_tx_timeout(struct net_device *ndev) 1564 { 1565 struct ns83820 *dev = PRIV(ndev); 1566 u32 tx_done_idx; 1567 __le32 *desc; 1568 unsigned long flags; 1569 1570 spin_lock_irqsave(&dev->tx_lock, flags); 1571 1572 tx_done_idx = dev->tx_done_idx; 1573 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 1574 1575 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 1576 ndev->name, 1577 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); 1578 1579 #if defined(DEBUG) 1580 { 1581 u32 isr; 1582 isr = readl(dev->base + ISR); 1583 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache); 1584 ns83820_do_isr(ndev, isr); 1585 } 1586 #endif 1587 1588 do_tx_done(ndev); 1589 1590 tx_done_idx = dev->tx_done_idx; 1591 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 1592 1593 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 1594 ndev->name, 1595 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); 1596 1597 spin_unlock_irqrestore(&dev->tx_lock, flags); 1598 } 1599 1600 static void ns83820_tx_watch(unsigned long data) 1601 { 1602 struct net_device *ndev = (void *)data; 1603 struct ns83820 *dev = PRIV(ndev); 1604 1605 #if defined(DEBUG) 1606 printk("ns83820_tx_watch: %u %u %d\n", 1607 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs) 1608 ); 1609 #endif 1610 1611 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) && 1612 dev->tx_done_idx != dev->tx_free_idx) { 1613 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n", 1614 ndev->name, 1615 dev->tx_done_idx, dev->tx_free_idx, 1616 atomic_read(&dev->nr_tx_skbs)); 1617 ns83820_tx_timeout(ndev); 1618 } 1619 1620 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); 1621 } 1622 1623 static int ns83820_open(struct net_device *ndev) 1624 { 1625 struct ns83820 *dev = PRIV(ndev); 1626 unsigned i; 1627 u32 desc; 1628 int ret; 1629 1630 dprintk("ns83820_open\n"); 1631 1632 writel(0, dev->base + PQCR); 1633 1634 ret = ns83820_setup_rx(ndev); 1635 if (ret) 1636 goto failed; 1637 1638 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE); 1639 for (i=0; i<NR_TX_DESC; i++) { 1640 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK] 1641 = cpu_to_le32( 1642 dev->tx_phy_descs 1643 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4); 1644 } 1645 1646 dev->tx_idx = 0; 1647 dev->tx_done_idx = 0; 1648 desc = dev->tx_phy_descs; 1649 writel(0, dev->base + TXDP_HI); 1650 writel(desc, dev->base + TXDP); 1651 1652 init_timer(&dev->tx_watchdog); 1653 dev->tx_watchdog.data = (unsigned long)ndev; 1654 dev->tx_watchdog.function = ns83820_tx_watch; 1655 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); 1656 1657 netif_start_queue(ndev); /* FIXME: wait for phy to come up */ 1658 1659 return 0; 1660 1661 failed: 1662 ns83820_stop(ndev); 1663 return ret; 1664 } 1665 1666 static void ns83820_getmac(struct ns83820 *dev, u8 *mac) 1667 { 1668 unsigned i; 1669 for (i=0; i<3; i++) { 1670 u32 data; 1671 1672 /* Read from the perfect match memory: this is loaded by 1673 * the chip from the EEPROM via the EELOAD self test. 1674 */ 1675 writel(i*2, dev->base + RFCR); 1676 data = readl(dev->base + RFDR); 1677 1678 *mac++ = data; 1679 *mac++ = data >> 8; 1680 } 1681 } 1682 1683 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu) 1684 { 1685 if (new_mtu > RX_BUF_SIZE) 1686 return -EINVAL; 1687 ndev->mtu = new_mtu; 1688 return 0; 1689 } 1690 1691 static void ns83820_set_multicast(struct net_device *ndev) 1692 { 1693 struct ns83820 *dev = PRIV(ndev); 1694 u8 __iomem *rfcr = dev->base + RFCR; 1695 u32 and_mask = 0xffffffff; 1696 u32 or_mask = 0; 1697 u32 val; 1698 1699 if (ndev->flags & IFF_PROMISC) 1700 or_mask |= RFCR_AAU | RFCR_AAM; 1701 else 1702 and_mask &= ~(RFCR_AAU | RFCR_AAM); 1703 1704 if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev)) 1705 or_mask |= RFCR_AAM; 1706 else 1707 and_mask &= ~RFCR_AAM; 1708 1709 spin_lock_irq(&dev->misc_lock); 1710 val = (readl(rfcr) & and_mask) | or_mask; 1711 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */ 1712 writel(val & ~RFCR_RFEN, rfcr); 1713 writel(val, rfcr); 1714 spin_unlock_irq(&dev->misc_lock); 1715 } 1716 1717 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail) 1718 { 1719 struct ns83820 *dev = PRIV(ndev); 1720 int timed_out = 0; 1721 unsigned long start; 1722 u32 status; 1723 int loops = 0; 1724 1725 dprintk("%s: start %s\n", ndev->name, name); 1726 1727 start = jiffies; 1728 1729 writel(enable, dev->base + PTSCR); 1730 for (;;) { 1731 loops++; 1732 status = readl(dev->base + PTSCR); 1733 if (!(status & enable)) 1734 break; 1735 if (status & done) 1736 break; 1737 if (status & fail) 1738 break; 1739 if (time_after_eq(jiffies, start + HZ)) { 1740 timed_out = 1; 1741 break; 1742 } 1743 schedule_timeout_uninterruptible(1); 1744 } 1745 1746 if (status & fail) 1747 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n", 1748 ndev->name, name, status, fail); 1749 else if (timed_out) 1750 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n", 1751 ndev->name, name, status); 1752 1753 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops); 1754 } 1755 1756 #ifdef PHY_CODE_IS_FINISHED 1757 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit) 1758 { 1759 /* drive MDC low */ 1760 dev->MEAR_cache &= ~MEAR_MDC; 1761 writel(dev->MEAR_cache, dev->base + MEAR); 1762 readl(dev->base + MEAR); 1763 1764 /* enable output, set bit */ 1765 dev->MEAR_cache |= MEAR_MDDIR; 1766 if (bit) 1767 dev->MEAR_cache |= MEAR_MDIO; 1768 else 1769 dev->MEAR_cache &= ~MEAR_MDIO; 1770 1771 /* set the output bit */ 1772 writel(dev->MEAR_cache, dev->base + MEAR); 1773 readl(dev->base + MEAR); 1774 1775 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ 1776 udelay(1); 1777 1778 /* drive MDC high causing the data bit to be latched */ 1779 dev->MEAR_cache |= MEAR_MDC; 1780 writel(dev->MEAR_cache, dev->base + MEAR); 1781 readl(dev->base + MEAR); 1782 1783 /* Wait again... */ 1784 udelay(1); 1785 } 1786 1787 static int ns83820_mii_read_bit(struct ns83820 *dev) 1788 { 1789 int bit; 1790 1791 /* drive MDC low, disable output */ 1792 dev->MEAR_cache &= ~MEAR_MDC; 1793 dev->MEAR_cache &= ~MEAR_MDDIR; 1794 writel(dev->MEAR_cache, dev->base + MEAR); 1795 readl(dev->base + MEAR); 1796 1797 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ 1798 udelay(1); 1799 1800 /* drive MDC high causing the data bit to be latched */ 1801 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0; 1802 dev->MEAR_cache |= MEAR_MDC; 1803 writel(dev->MEAR_cache, dev->base + MEAR); 1804 1805 /* Wait again... */ 1806 udelay(1); 1807 1808 return bit; 1809 } 1810 1811 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg) 1812 { 1813 unsigned data = 0; 1814 int i; 1815 1816 /* read some garbage so that we eventually sync up */ 1817 for (i=0; i<64; i++) 1818 ns83820_mii_read_bit(dev); 1819 1820 ns83820_mii_write_bit(dev, 0); /* start */ 1821 ns83820_mii_write_bit(dev, 1); 1822 ns83820_mii_write_bit(dev, 1); /* opcode read */ 1823 ns83820_mii_write_bit(dev, 0); 1824 1825 /* write out the phy address: 5 bits, msb first */ 1826 for (i=0; i<5; i++) 1827 ns83820_mii_write_bit(dev, phy & (0x10 >> i)); 1828 1829 /* write out the register address, 5 bits, msb first */ 1830 for (i=0; i<5; i++) 1831 ns83820_mii_write_bit(dev, reg & (0x10 >> i)); 1832 1833 ns83820_mii_read_bit(dev); /* turn around cycles */ 1834 ns83820_mii_read_bit(dev); 1835 1836 /* read in the register data, 16 bits msb first */ 1837 for (i=0; i<16; i++) { 1838 data <<= 1; 1839 data |= ns83820_mii_read_bit(dev); 1840 } 1841 1842 return data; 1843 } 1844 1845 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data) 1846 { 1847 int i; 1848 1849 /* read some garbage so that we eventually sync up */ 1850 for (i=0; i<64; i++) 1851 ns83820_mii_read_bit(dev); 1852 1853 ns83820_mii_write_bit(dev, 0); /* start */ 1854 ns83820_mii_write_bit(dev, 1); 1855 ns83820_mii_write_bit(dev, 0); /* opcode read */ 1856 ns83820_mii_write_bit(dev, 1); 1857 1858 /* write out the phy address: 5 bits, msb first */ 1859 for (i=0; i<5; i++) 1860 ns83820_mii_write_bit(dev, phy & (0x10 >> i)); 1861 1862 /* write out the register address, 5 bits, msb first */ 1863 for (i=0; i<5; i++) 1864 ns83820_mii_write_bit(dev, reg & (0x10 >> i)); 1865 1866 ns83820_mii_read_bit(dev); /* turn around cycles */ 1867 ns83820_mii_read_bit(dev); 1868 1869 /* read in the register data, 16 bits msb first */ 1870 for (i=0; i<16; i++) 1871 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1); 1872 1873 return data; 1874 } 1875 1876 static void ns83820_probe_phy(struct net_device *ndev) 1877 { 1878 struct ns83820 *dev = PRIV(ndev); 1879 static int first; 1880 int i; 1881 #define MII_PHYIDR1 0x02 1882 #define MII_PHYIDR2 0x03 1883 1884 #if 0 1885 if (!first) { 1886 unsigned tmp; 1887 ns83820_mii_read_reg(dev, 1, 0x09); 1888 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e); 1889 1890 tmp = ns83820_mii_read_reg(dev, 1, 0x00); 1891 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000); 1892 udelay(1300); 1893 ns83820_mii_read_reg(dev, 1, 0x09); 1894 } 1895 #endif 1896 first = 1; 1897 1898 for (i=1; i<2; i++) { 1899 int j; 1900 unsigned a, b; 1901 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1); 1902 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2); 1903 1904 //printk("%s: phy %d: 0x%04x 0x%04x\n", 1905 // ndev->name, i, a, b); 1906 1907 for (j=0; j<0x16; j+=4) { 1908 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n", 1909 ndev->name, j, 1910 ns83820_mii_read_reg(dev, i, 0 + j), 1911 ns83820_mii_read_reg(dev, i, 1 + j), 1912 ns83820_mii_read_reg(dev, i, 2 + j), 1913 ns83820_mii_read_reg(dev, i, 3 + j) 1914 ); 1915 } 1916 } 1917 { 1918 unsigned a, b; 1919 /* read firmware version: memory addr is 0x8402 and 0x8403 */ 1920 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); 1921 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); 1922 a = ns83820_mii_read_reg(dev, 1, 0x1d); 1923 1924 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); 1925 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); 1926 b = ns83820_mii_read_reg(dev, 1, 0x1d); 1927 dprintk("version: 0x%04x 0x%04x\n", a, b); 1928 } 1929 } 1930 #endif 1931 1932 static const struct net_device_ops netdev_ops = { 1933 .ndo_open = ns83820_open, 1934 .ndo_stop = ns83820_stop, 1935 .ndo_start_xmit = ns83820_hard_start_xmit, 1936 .ndo_get_stats = ns83820_get_stats, 1937 .ndo_change_mtu = ns83820_change_mtu, 1938 .ndo_set_rx_mode = ns83820_set_multicast, 1939 .ndo_validate_addr = eth_validate_addr, 1940 .ndo_set_mac_address = eth_mac_addr, 1941 .ndo_tx_timeout = ns83820_tx_timeout, 1942 }; 1943 1944 static int ns83820_init_one(struct pci_dev *pci_dev, 1945 const struct pci_device_id *id) 1946 { 1947 struct net_device *ndev; 1948 struct ns83820 *dev; 1949 long addr; 1950 int err; 1951 int using_dac = 0; 1952 1953 /* See if we can set the dma mask early on; failure is fatal. */ 1954 if (sizeof(dma_addr_t) == 8 && 1955 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) { 1956 using_dac = 1; 1957 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) { 1958 using_dac = 0; 1959 } else { 1960 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n"); 1961 return -ENODEV; 1962 } 1963 1964 ndev = alloc_etherdev(sizeof(struct ns83820)); 1965 err = -ENOMEM; 1966 if (!ndev) 1967 goto out; 1968 1969 dev = PRIV(ndev); 1970 dev->ndev = ndev; 1971 1972 spin_lock_init(&dev->rx_info.lock); 1973 spin_lock_init(&dev->tx_lock); 1974 spin_lock_init(&dev->misc_lock); 1975 dev->pci_dev = pci_dev; 1976 1977 SET_NETDEV_DEV(ndev, &pci_dev->dev); 1978 1979 INIT_WORK(&dev->tq_refill, queue_refill); 1980 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev); 1981 1982 err = pci_enable_device(pci_dev); 1983 if (err) { 1984 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err); 1985 goto out_free; 1986 } 1987 1988 pci_set_master(pci_dev); 1989 addr = pci_resource_start(pci_dev, 1); 1990 dev->base = ioremap_nocache(addr, PAGE_SIZE); 1991 dev->tx_descs = pci_alloc_consistent(pci_dev, 1992 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs); 1993 dev->rx_info.descs = pci_alloc_consistent(pci_dev, 1994 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs); 1995 err = -ENOMEM; 1996 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs) 1997 goto out_disable; 1998 1999 dprintk("%p: %08lx %p: %08lx\n", 2000 dev->tx_descs, (long)dev->tx_phy_descs, 2001 dev->rx_info.descs, (long)dev->rx_info.phy_descs); 2002 2003 ns83820_disable_interrupts(dev); 2004 2005 dev->IMR_cache = 0; 2006 2007 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED, 2008 DRV_NAME, ndev); 2009 if (err) { 2010 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n", 2011 pci_dev->irq, err); 2012 goto out_disable; 2013 } 2014 2015 /* 2016 * FIXME: we are holding rtnl_lock() over obscenely long area only 2017 * because some of the setup code uses dev->name. It's Wrong(tm) - 2018 * we should be using driver-specific names for all that stuff. 2019 * For now that will do, but we really need to come back and kill 2020 * most of the dev_alloc_name() users later. 2021 */ 2022 rtnl_lock(); 2023 err = dev_alloc_name(ndev, ndev->name); 2024 if (err < 0) { 2025 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err); 2026 goto out_free_irq; 2027 } 2028 2029 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n", 2030 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)), 2031 pci_dev->subsystem_vendor, pci_dev->subsystem_device); 2032 2033 ndev->netdev_ops = &netdev_ops; 2034 SET_ETHTOOL_OPS(ndev, &ops); 2035 ndev->watchdog_timeo = 5 * HZ; 2036 pci_set_drvdata(pci_dev, ndev); 2037 2038 ns83820_do_reset(dev, CR_RST); 2039 2040 /* Must reset the ram bist before running it */ 2041 writel(PTSCR_RBIST_RST, dev->base + PTSCR); 2042 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN, 2043 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL); 2044 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0, 2045 PTSCR_EEBIST_FAIL); 2046 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0); 2047 2048 /* I love config registers */ 2049 dev->CFG_cache = readl(dev->base + CFG); 2050 2051 if ((dev->CFG_cache & CFG_PCI64_DET)) { 2052 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n", 2053 ndev->name); 2054 /*dev->CFG_cache |= CFG_DATA64_EN;*/ 2055 if (!(dev->CFG_cache & CFG_DATA64_EN)) 2056 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n", 2057 ndev->name); 2058 } else 2059 dev->CFG_cache &= ~(CFG_DATA64_EN); 2060 2061 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS | 2062 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 | 2063 CFG_M64ADDR); 2064 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS | 2065 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL; 2066 dev->CFG_cache |= CFG_REQALG; 2067 dev->CFG_cache |= CFG_POW; 2068 dev->CFG_cache |= CFG_TMRTEST; 2069 2070 /* When compiled with 64 bit addressing, we must always enable 2071 * the 64 bit descriptor format. 2072 */ 2073 if (sizeof(dma_addr_t) == 8) 2074 dev->CFG_cache |= CFG_M64ADDR; 2075 if (using_dac) 2076 dev->CFG_cache |= CFG_T64ADDR; 2077 2078 /* Big endian mode does not seem to do what the docs suggest */ 2079 dev->CFG_cache &= ~CFG_BEM; 2080 2081 /* setup optical transceiver if we have one */ 2082 if (dev->CFG_cache & CFG_TBI_EN) { 2083 printk(KERN_INFO "%s: enabling optical transceiver\n", 2084 ndev->name); 2085 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR); 2086 2087 /* setup auto negotiation feature advertisement */ 2088 writel(readl(dev->base + TANAR) 2089 | TANAR_HALF_DUP | TANAR_FULL_DUP, 2090 dev->base + TANAR); 2091 2092 /* start auto negotiation */ 2093 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, 2094 dev->base + TBICR); 2095 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); 2096 dev->linkstate = LINK_AUTONEGOTIATE; 2097 2098 dev->CFG_cache |= CFG_MODE_1000; 2099 } 2100 2101 writel(dev->CFG_cache, dev->base + CFG); 2102 dprintk("CFG: %08x\n", dev->CFG_cache); 2103 2104 if (reset_phy) { 2105 printk(KERN_INFO "%s: resetting phy\n", ndev->name); 2106 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG); 2107 msleep(10); 2108 writel(dev->CFG_cache, dev->base + CFG); 2109 } 2110 2111 #if 0 /* Huh? This sets the PCI latency register. Should be done via 2112 * the PCI layer. FIXME. 2113 */ 2114 if (readl(dev->base + SRR)) 2115 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c); 2116 #endif 2117 2118 /* Note! The DMA burst size interacts with packet 2119 * transmission, such that the largest packet that 2120 * can be transmitted is 8192 - FLTH - burst size. 2121 * If only the transmit fifo was larger... 2122 */ 2123 /* Ramit : 1024 DMA is not a good idea, it ends up banging 2124 * some DELL and COMPAQ SMP systems */ 2125 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512 2126 | ((1600 / 32) * 0x100), 2127 dev->base + TXCFG); 2128 2129 /* Flush the interrupt holdoff timer */ 2130 writel(0x000, dev->base + IHR); 2131 writel(0x100, dev->base + IHR); 2132 writel(0x000, dev->base + IHR); 2133 2134 /* Set Rx to full duplex, don't accept runt, errored, long or length 2135 * range errored packets. Use 512 byte DMA. 2136 */ 2137 /* Ramit : 1024 DMA is not a good idea, it ends up banging 2138 * some DELL and COMPAQ SMP systems 2139 * Turn on ALP, only we are accpeting Jumbo Packets */ 2140 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD 2141 | RXCFG_STRIPCRC 2142 //| RXCFG_ALP 2143 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG); 2144 2145 /* Disable priority queueing */ 2146 writel(0, dev->base + PQCR); 2147 2148 /* Enable IP checksum validation and detetion of VLAN headers. 2149 * Note: do not set the reject options as at least the 0x102 2150 * revision of the chip does not properly accept IP fragments 2151 * at least for UDP. 2152 */ 2153 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since 2154 * the MAC it calculates the packetsize AFTER stripping the VLAN 2155 * header, and if a VLAN Tagged packet of 64 bytes is received (like 2156 * a ping with a VLAN header) then the card, strips the 4 byte VLAN 2157 * tag and then checks the packet size, so if RXCFG_ARP is not enabled, 2158 * it discrards it!. These guys...... 2159 * also turn on tag stripping if hardware acceleration is enabled 2160 */ 2161 #ifdef NS83820_VLAN_ACCEL_SUPPORT 2162 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN) 2163 #else 2164 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN) 2165 #endif 2166 writel(VRCR_INIT_VALUE, dev->base + VRCR); 2167 2168 /* Enable per-packet TCP/UDP/IP checksumming 2169 * and per packet vlan tag insertion if 2170 * vlan hardware acceleration is enabled 2171 */ 2172 #ifdef NS83820_VLAN_ACCEL_SUPPORT 2173 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI) 2174 #else 2175 #define VTCR_INIT_VALUE VTCR_PPCHK 2176 #endif 2177 writel(VTCR_INIT_VALUE, dev->base + VTCR); 2178 2179 /* Ramit : Enable async and sync pause frames */ 2180 /* writel(0, dev->base + PCR); */ 2181 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K | 2182 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT), 2183 dev->base + PCR); 2184 2185 /* Disable Wake On Lan */ 2186 writel(0, dev->base + WCSR); 2187 2188 ns83820_getmac(dev, ndev->dev_addr); 2189 2190 /* Yes, we support dumb IP checksum on transmit */ 2191 ndev->features |= NETIF_F_SG; 2192 ndev->features |= NETIF_F_IP_CSUM; 2193 2194 #ifdef NS83820_VLAN_ACCEL_SUPPORT 2195 /* We also support hardware vlan acceleration */ 2196 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2197 #endif 2198 2199 if (using_dac) { 2200 printk(KERN_INFO "%s: using 64 bit addressing.\n", 2201 ndev->name); 2202 ndev->features |= NETIF_F_HIGHDMA; 2203 } 2204 2205 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n", 2206 ndev->name, 2207 (unsigned)readl(dev->base + SRR) >> 8, 2208 (unsigned)readl(dev->base + SRR) & 0xff, 2209 ndev->dev_addr, addr, pci_dev->irq, 2210 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg" 2211 ); 2212 2213 #ifdef PHY_CODE_IS_FINISHED 2214 ns83820_probe_phy(ndev); 2215 #endif 2216 2217 err = register_netdevice(ndev); 2218 if (err) { 2219 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err); 2220 goto out_cleanup; 2221 } 2222 rtnl_unlock(); 2223 2224 return 0; 2225 2226 out_cleanup: 2227 ns83820_disable_interrupts(dev); /* paranoia */ 2228 out_free_irq: 2229 rtnl_unlock(); 2230 free_irq(pci_dev->irq, ndev); 2231 out_disable: 2232 if (dev->base) 2233 iounmap(dev->base); 2234 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs); 2235 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs); 2236 pci_disable_device(pci_dev); 2237 out_free: 2238 free_netdev(ndev); 2239 pci_set_drvdata(pci_dev, NULL); 2240 out: 2241 return err; 2242 } 2243 2244 static void ns83820_remove_one(struct pci_dev *pci_dev) 2245 { 2246 struct net_device *ndev = pci_get_drvdata(pci_dev); 2247 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */ 2248 2249 if (!ndev) /* paranoia */ 2250 return; 2251 2252 ns83820_disable_interrupts(dev); /* paranoia */ 2253 2254 unregister_netdev(ndev); 2255 free_irq(dev->pci_dev->irq, ndev); 2256 iounmap(dev->base); 2257 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC, 2258 dev->tx_descs, dev->tx_phy_descs); 2259 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC, 2260 dev->rx_info.descs, dev->rx_info.phy_descs); 2261 pci_disable_device(dev->pci_dev); 2262 free_netdev(ndev); 2263 pci_set_drvdata(pci_dev, NULL); 2264 } 2265 2266 static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = { 2267 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, }, 2268 { 0, }, 2269 }; 2270 2271 static struct pci_driver driver = { 2272 .name = "ns83820", 2273 .id_table = ns83820_pci_tbl, 2274 .probe = ns83820_init_one, 2275 .remove = ns83820_remove_one, 2276 #if 0 /* FIXME: implement */ 2277 .suspend = , 2278 .resume = , 2279 #endif 2280 }; 2281 2282 2283 static int __init ns83820_init(void) 2284 { 2285 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n"); 2286 return pci_register_driver(&driver); 2287 } 2288 2289 static void __exit ns83820_exit(void) 2290 { 2291 pci_unregister_driver(&driver); 2292 } 2293 2294 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>"); 2295 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver"); 2296 MODULE_LICENSE("GPL"); 2297 2298 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl); 2299 2300 module_param(lnksts, int, 0); 2301 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit"); 2302 2303 module_param(ihr, int, 0); 2304 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)"); 2305 2306 module_param(reset_phy, int, 0); 2307 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup"); 2308 2309 module_init(ns83820_init); 2310 module_exit(ns83820_exit); 2311