xref: /linux/drivers/net/ethernet/natsemi/natsemi.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	void __iomem *ioaddr;
551 	struct napi_struct napi;
552 	/* Media monitoring timer */
553 	struct timer_list timer;
554 	/* Frequently used values: keep some adjacent for cache effect */
555 	struct pci_dev *pci_dev;
556 	struct netdev_desc *rx_head_desc;
557 	/* Producer/consumer ring indices */
558 	unsigned int cur_rx, dirty_rx;
559 	unsigned int cur_tx, dirty_tx;
560 	/* Based on MTU+slack. */
561 	unsigned int rx_buf_sz;
562 	int oom;
563 	/* Interrupt status */
564 	u32 intr_status;
565 	/* Do not touch the nic registers */
566 	int hands_off;
567 	/* Don't pay attention to the reported link state. */
568 	int ignore_phy;
569 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570 	int mii;
571 	int phy_addr_external;
572 	unsigned int full_duplex;
573 	/* Rx filter */
574 	u32 cur_rx_mode;
575 	u32 rx_filter[16];
576 	/* FIFO and PCI burst thresholds */
577 	u32 tx_config, rx_config;
578 	/* original contents of ClkRun register */
579 	u32 SavedClkRun;
580 	/* silicon revision */
581 	u32 srr;
582 	/* expected DSPCFG value */
583 	u16 dspcfg;
584 	int dspcfg_workaround;
585 	/* parms saved in ethtool format */
586 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587 	u8	duplex;		/* Duplex, half or full */
588 	u8	autoneg;	/* Autonegotiation enabled */
589 	/* MII transceiver section */
590 	u16 advertising;
591 	unsigned int iosize;
592 	spinlock_t lock;
593 	u32 msg_enable;
594 	/* EEPROM data */
595 	int eeprom_size;
596 };
597 
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645 static void enable_wol_mode(struct net_device *dev, int enable_intr);
646 static int netdev_close(struct net_device *dev);
647 static int netdev_get_regs(struct net_device *dev, u8 *buf);
648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649 static const struct ethtool_ops ethtool_ops;
650 
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653          struct device_attribute *attr, char *buf); \
654 	 static ssize_t natsemi_set_##_name(struct device *dev, \
655 		struct device_attribute *attr, \
656 	        const char *buf, size_t count); \
657 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658 
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660          device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662          device_remove_file(&_dev->dev, &dev_attr_##_name)
663 
664 NATSEMI_ATTR(dspcfg_workaround);
665 
666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667 				  	      struct device_attribute *attr,
668 					      char *buf)
669 {
670 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
671 
672 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673 }
674 
675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 					     struct device_attribute *attr,
677 					     const char *buf, size_t count)
678 {
679 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 	int new_setting;
681 	unsigned long flags;
682 
683         /* Find out the new setting */
684         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685                 new_setting = 1;
686         else if (!strncmp("off", buf, count - 1) ||
687                  !strncmp("0", buf, count - 1))
688 		new_setting = 0;
689 	else
690                  return count;
691 
692 	spin_lock_irqsave(&np->lock, flags);
693 
694 	np->dspcfg_workaround = new_setting;
695 
696 	spin_unlock_irqrestore(&np->lock, flags);
697 
698 	return count;
699 }
700 
701 static inline void __iomem *ns_ioaddr(struct net_device *dev)
702 {
703 	struct netdev_private *np = netdev_priv(dev);
704 
705 	return np->ioaddr;
706 }
707 
708 static inline void natsemi_irq_enable(struct net_device *dev)
709 {
710 	writel(1, ns_ioaddr(dev) + IntrEnable);
711 	readl(ns_ioaddr(dev) + IntrEnable);
712 }
713 
714 static inline void natsemi_irq_disable(struct net_device *dev)
715 {
716 	writel(0, ns_ioaddr(dev) + IntrEnable);
717 	readl(ns_ioaddr(dev) + IntrEnable);
718 }
719 
720 static void move_int_phy(struct net_device *dev, int addr)
721 {
722 	struct netdev_private *np = netdev_priv(dev);
723 	void __iomem *ioaddr = ns_ioaddr(dev);
724 	int target = 31;
725 
726 	/*
727 	 * The internal phy is visible on the external mii bus. Therefore we must
728 	 * move it away before we can send commands to an external phy.
729 	 * There are two addresses we must avoid:
730 	 * - the address on the external phy that is used for transmission.
731 	 * - the address that we want to access. User space can access phys
732 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
733 	 *   phy that is used for transmission.
734 	 */
735 
736 	if (target == addr)
737 		target--;
738 	if (target == np->phy_addr_external)
739 		target--;
740 	writew(target, ioaddr + PhyCtrl);
741 	readw(ioaddr + PhyCtrl);
742 	udelay(1);
743 }
744 
745 static void natsemi_init_media(struct net_device *dev)
746 {
747 	struct netdev_private *np = netdev_priv(dev);
748 	u32 tmp;
749 
750 	if (np->ignore_phy)
751 		netif_carrier_on(dev);
752 	else
753 		netif_carrier_off(dev);
754 
755 	/* get the initial settings from hardware */
756 	tmp            = mdio_read(dev, MII_BMCR);
757 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
758 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
759 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
760 	np->advertising= mdio_read(dev, MII_ADVERTISE);
761 
762 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
763 	    netif_msg_probe(np)) {
764 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
765 			"10%s %s duplex.\n",
766 			pci_name(np->pci_dev),
767 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
768 			  "enabled, advertise" : "disabled, force",
769 			(np->advertising &
770 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
771 			    "0" : "",
772 			(np->advertising &
773 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
774 			    "full" : "half");
775 	}
776 	if (netif_msg_probe(np))
777 		printk(KERN_INFO
778 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
779 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
780 			np->advertising);
781 
782 }
783 
784 static const struct net_device_ops natsemi_netdev_ops = {
785 	.ndo_open		= netdev_open,
786 	.ndo_stop		= netdev_close,
787 	.ndo_start_xmit		= start_tx,
788 	.ndo_get_stats		= get_stats,
789 	.ndo_set_rx_mode	= set_rx_mode,
790 	.ndo_change_mtu		= natsemi_change_mtu,
791 	.ndo_do_ioctl		= netdev_ioctl,
792 	.ndo_tx_timeout 	= ns_tx_timeout,
793 	.ndo_set_mac_address 	= eth_mac_addr,
794 	.ndo_validate_addr	= eth_validate_addr,
795 #ifdef CONFIG_NET_POLL_CONTROLLER
796 	.ndo_poll_controller	= natsemi_poll_controller,
797 #endif
798 };
799 
800 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
801 {
802 	struct net_device *dev;
803 	struct netdev_private *np;
804 	int i, option, irq, chip_idx = ent->driver_data;
805 	static int find_cnt = -1;
806 	resource_size_t iostart;
807 	unsigned long iosize;
808 	void __iomem *ioaddr;
809 	const int pcibar = 1; /* PCI base address register */
810 	int prev_eedata;
811 	u32 tmp;
812 
813 /* when built into the kernel, we only print version if device is found */
814 #ifndef MODULE
815 	static int printed_version;
816 	if (!printed_version++)
817 		printk(version);
818 #endif
819 
820 	i = pci_enable_device(pdev);
821 	if (i) return i;
822 
823 	/* natsemi has a non-standard PM control register
824 	 * in PCI config space.  Some boards apparently need
825 	 * to be brought to D0 in this manner.
826 	 */
827 	pci_read_config_dword(pdev, PCIPM, &tmp);
828 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
829 		/* D0 state, disable PME assertion */
830 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
831 		pci_write_config_dword(pdev, PCIPM, newtmp);
832 	}
833 
834 	find_cnt++;
835 	iostart = pci_resource_start(pdev, pcibar);
836 	iosize = pci_resource_len(pdev, pcibar);
837 	irq = pdev->irq;
838 
839 	pci_set_master(pdev);
840 
841 	dev = alloc_etherdev(sizeof (struct netdev_private));
842 	if (!dev)
843 		return -ENOMEM;
844 	SET_NETDEV_DEV(dev, &pdev->dev);
845 
846 	i = pci_request_regions(pdev, DRV_NAME);
847 	if (i)
848 		goto err_pci_request_regions;
849 
850 	ioaddr = ioremap(iostart, iosize);
851 	if (!ioaddr) {
852 		i = -ENOMEM;
853 		goto err_ioremap;
854 	}
855 
856 	/* Work around the dropped serial bit. */
857 	prev_eedata = eeprom_read(ioaddr, 6);
858 	for (i = 0; i < 3; i++) {
859 		int eedata = eeprom_read(ioaddr, i + 7);
860 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
861 		dev->dev_addr[i*2+1] = eedata >> 7;
862 		prev_eedata = eedata;
863 	}
864 
865 	np = netdev_priv(dev);
866 	np->ioaddr = ioaddr;
867 
868 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
869 	np->dev = dev;
870 
871 	np->pci_dev = pdev;
872 	pci_set_drvdata(pdev, dev);
873 	np->iosize = iosize;
874 	spin_lock_init(&np->lock);
875 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
876 	np->hands_off = 0;
877 	np->intr_status = 0;
878 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
879 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
880 		np->ignore_phy = 1;
881 	else
882 		np->ignore_phy = 0;
883 	np->dspcfg_workaround = dspcfg_workaround;
884 
885 	/* Initial port:
886 	 * - If configured to ignore the PHY set up for external.
887 	 * - If the nic was configured to use an external phy and if find_mii
888 	 *   finds a phy: use external port, first phy that replies.
889 	 * - Otherwise: internal port.
890 	 * Note that the phy address for the internal phy doesn't matter:
891 	 * The address would be used to access a phy over the mii bus, but
892 	 * the internal phy is accessed through mapped registers.
893 	 */
894 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
895 		dev->if_port = PORT_MII;
896 	else
897 		dev->if_port = PORT_TP;
898 	/* Reset the chip to erase previous misconfiguration. */
899 	natsemi_reload_eeprom(dev);
900 	natsemi_reset(dev);
901 
902 	if (dev->if_port != PORT_TP) {
903 		np->phy_addr_external = find_mii(dev);
904 		/* If we're ignoring the PHY it doesn't matter if we can't
905 		 * find one. */
906 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
907 			dev->if_port = PORT_TP;
908 			np->phy_addr_external = PHY_ADDR_INTERNAL;
909 		}
910 	} else {
911 		np->phy_addr_external = PHY_ADDR_INTERNAL;
912 	}
913 
914 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
915 	/* The lower four bits are the media type. */
916 	if (option) {
917 		if (option & 0x200)
918 			np->full_duplex = 1;
919 		if (option & 15)
920 			printk(KERN_INFO
921 				"natsemi %s: ignoring user supplied media type %d",
922 				pci_name(np->pci_dev), option & 15);
923 	}
924 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
925 		np->full_duplex = 1;
926 
927 	dev->netdev_ops = &natsemi_netdev_ops;
928 	dev->watchdog_timeo = TX_TIMEOUT;
929 
930 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
931 
932 	if (mtu)
933 		dev->mtu = mtu;
934 
935 	natsemi_init_media(dev);
936 
937 	/* save the silicon revision for later querying */
938 	np->srr = readl(ioaddr + SiliconRev);
939 	if (netif_msg_hw(np))
940 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
941 				pci_name(np->pci_dev), np->srr);
942 
943 	i = register_netdev(dev);
944 	if (i)
945 		goto err_register_netdev;
946 	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
947 	if (i)
948 		goto err_create_file;
949 
950 	if (netif_msg_drv(np)) {
951 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
952 		       "(%s), %pM, IRQ %d",
953 		       dev->name, natsemi_pci_info[chip_idx].name,
954 		       (unsigned long long)iostart, pci_name(np->pci_dev),
955 		       dev->dev_addr, irq);
956 		if (dev->if_port == PORT_TP)
957 			printk(", port TP.\n");
958 		else if (np->ignore_phy)
959 			printk(", port MII, ignoring PHY\n");
960 		else
961 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
962 	}
963 	return 0;
964 
965  err_create_file:
966  	unregister_netdev(dev);
967 
968  err_register_netdev:
969 	iounmap(ioaddr);
970 
971  err_ioremap:
972 	pci_release_regions(pdev);
973 
974  err_pci_request_regions:
975 	free_netdev(dev);
976 	return i;
977 }
978 
979 
980 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
981    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
982 
983 /* Delay between EEPROM clock transitions.
984    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
985    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
986    made udelay() unreliable.
987    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
988    deprecated.
989 */
990 #define eeprom_delay(ee_addr)	readl(ee_addr)
991 
992 #define EE_Write0 (EE_ChipSelect)
993 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
994 
995 /* The EEPROM commands include the alway-set leading bit. */
996 enum EEPROM_Cmds {
997 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
998 };
999 
1000 static int eeprom_read(void __iomem *addr, int location)
1001 {
1002 	int i;
1003 	int retval = 0;
1004 	void __iomem *ee_addr = addr + EECtrl;
1005 	int read_cmd = location | EE_ReadCmd;
1006 
1007 	writel(EE_Write0, ee_addr);
1008 
1009 	/* Shift the read command bits out. */
1010 	for (i = 10; i >= 0; i--) {
1011 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1012 		writel(dataval, ee_addr);
1013 		eeprom_delay(ee_addr);
1014 		writel(dataval | EE_ShiftClk, ee_addr);
1015 		eeprom_delay(ee_addr);
1016 	}
1017 	writel(EE_ChipSelect, ee_addr);
1018 	eeprom_delay(ee_addr);
1019 
1020 	for (i = 0; i < 16; i++) {
1021 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1022 		eeprom_delay(ee_addr);
1023 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1024 		writel(EE_ChipSelect, ee_addr);
1025 		eeprom_delay(ee_addr);
1026 	}
1027 
1028 	/* Terminate the EEPROM access. */
1029 	writel(EE_Write0, ee_addr);
1030 	writel(0, ee_addr);
1031 	return retval;
1032 }
1033 
1034 /* MII transceiver control section.
1035  * The 83815 series has an internal transceiver, and we present the
1036  * internal management registers as if they were MII connected.
1037  * External Phy registers are referenced through the MII interface.
1038  */
1039 
1040 /* clock transitions >= 20ns (25MHz)
1041  * One readl should be good to PCI @ 100MHz
1042  */
1043 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1044 
1045 static int mii_getbit (struct net_device *dev)
1046 {
1047 	int data;
1048 	void __iomem *ioaddr = ns_ioaddr(dev);
1049 
1050 	writel(MII_ShiftClk, ioaddr + EECtrl);
1051 	data = readl(ioaddr + EECtrl);
1052 	writel(0, ioaddr + EECtrl);
1053 	mii_delay(ioaddr);
1054 	return (data & MII_Data)? 1 : 0;
1055 }
1056 
1057 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1058 {
1059 	u32 i;
1060 	void __iomem *ioaddr = ns_ioaddr(dev);
1061 
1062 	for (i = (1 << (len-1)); i; i >>= 1)
1063 	{
1064 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1065 		writel(mdio_val, ioaddr + EECtrl);
1066 		mii_delay(ioaddr);
1067 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1068 		mii_delay(ioaddr);
1069 	}
1070 	writel(0, ioaddr + EECtrl);
1071 	mii_delay(ioaddr);
1072 }
1073 
1074 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1075 {
1076 	u32 cmd;
1077 	int i;
1078 	u32 retval = 0;
1079 
1080 	/* Ensure sync */
1081 	mii_send_bits (dev, 0xffffffff, 32);
1082 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1083 	/* ST,OP = 0110'b for read operation */
1084 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1085 	mii_send_bits (dev, cmd, 14);
1086 	/* Turnaround */
1087 	if (mii_getbit (dev))
1088 		return 0;
1089 	/* Read data */
1090 	for (i = 0; i < 16; i++) {
1091 		retval <<= 1;
1092 		retval |= mii_getbit (dev);
1093 	}
1094 	/* End cycle */
1095 	mii_getbit (dev);
1096 	return retval;
1097 }
1098 
1099 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1100 {
1101 	u32 cmd;
1102 
1103 	/* Ensure sync */
1104 	mii_send_bits (dev, 0xffffffff, 32);
1105 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1106 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1107 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1108 	mii_send_bits (dev, cmd, 32);
1109 	/* End cycle */
1110 	mii_getbit (dev);
1111 }
1112 
1113 static int mdio_read(struct net_device *dev, int reg)
1114 {
1115 	struct netdev_private *np = netdev_priv(dev);
1116 	void __iomem *ioaddr = ns_ioaddr(dev);
1117 
1118 	/* The 83815 series has two ports:
1119 	 * - an internal transceiver
1120 	 * - an external mii bus
1121 	 */
1122 	if (dev->if_port == PORT_TP)
1123 		return readw(ioaddr+BasicControl+(reg<<2));
1124 	else
1125 		return miiport_read(dev, np->phy_addr_external, reg);
1126 }
1127 
1128 static void mdio_write(struct net_device *dev, int reg, u16 data)
1129 {
1130 	struct netdev_private *np = netdev_priv(dev);
1131 	void __iomem *ioaddr = ns_ioaddr(dev);
1132 
1133 	/* The 83815 series has an internal transceiver; handle separately */
1134 	if (dev->if_port == PORT_TP)
1135 		writew(data, ioaddr+BasicControl+(reg<<2));
1136 	else
1137 		miiport_write(dev, np->phy_addr_external, reg, data);
1138 }
1139 
1140 static void init_phy_fixup(struct net_device *dev)
1141 {
1142 	struct netdev_private *np = netdev_priv(dev);
1143 	void __iomem *ioaddr = ns_ioaddr(dev);
1144 	int i;
1145 	u32 cfg;
1146 	u16 tmp;
1147 
1148 	/* restore stuff lost when power was out */
1149 	tmp = mdio_read(dev, MII_BMCR);
1150 	if (np->autoneg == AUTONEG_ENABLE) {
1151 		/* renegotiate if something changed */
1152 		if ((tmp & BMCR_ANENABLE) == 0 ||
1153 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1154 		{
1155 			/* turn on autonegotiation and force negotiation */
1156 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1157 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1158 		}
1159 	} else {
1160 		/* turn off auto negotiation, set speed and duplexity */
1161 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1162 		if (np->speed == SPEED_100)
1163 			tmp |= BMCR_SPEED100;
1164 		if (np->duplex == DUPLEX_FULL)
1165 			tmp |= BMCR_FULLDPLX;
1166 		/*
1167 		 * Note: there is no good way to inform the link partner
1168 		 * that our capabilities changed. The user has to unplug
1169 		 * and replug the network cable after some changes, e.g.
1170 		 * after switching from 10HD, autoneg off to 100 HD,
1171 		 * autoneg off.
1172 		 */
1173 	}
1174 	mdio_write(dev, MII_BMCR, tmp);
1175 	readl(ioaddr + ChipConfig);
1176 	udelay(1);
1177 
1178 	/* find out what phy this is */
1179 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1180 				+ mdio_read(dev, MII_PHYSID2);
1181 
1182 	/* handle external phys here */
1183 	switch (np->mii) {
1184 	case PHYID_AM79C874:
1185 		/* phy specific configuration for fibre/tp operation */
1186 		tmp = mdio_read(dev, MII_MCTRL);
1187 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1188 		if (dev->if_port == PORT_FIBRE)
1189 			tmp |= MII_FX_SEL;
1190 		else
1191 			tmp |= MII_EN_SCRM;
1192 		mdio_write(dev, MII_MCTRL, tmp);
1193 		break;
1194 	default:
1195 		break;
1196 	}
1197 	cfg = readl(ioaddr + ChipConfig);
1198 	if (cfg & CfgExtPhy)
1199 		return;
1200 
1201 	/* On page 78 of the spec, they recommend some settings for "optimum
1202 	   performance" to be done in sequence.  These settings optimize some
1203 	   of the 100Mbit autodetection circuitry.  They say we only want to
1204 	   do this for rev C of the chip, but engineers at NSC (Bradley
1205 	   Kennedy) recommends always setting them.  If you don't, you get
1206 	   errors on some autonegotiations that make the device unusable.
1207 
1208 	   It seems that the DSP needs a few usec to reinitialize after
1209 	   the start of the phy. Just retry writing these values until they
1210 	   stick.
1211 	*/
1212 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1213 
1214 		int dspcfg;
1215 		writew(1, ioaddr + PGSEL);
1216 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1217 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1218 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1219 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1220 		writew(np->dspcfg, ioaddr + DSPCFG);
1221 		writew(SDCFG_VAL, ioaddr + SDCFG);
1222 		writew(0, ioaddr + PGSEL);
1223 		readl(ioaddr + ChipConfig);
1224 		udelay(10);
1225 
1226 		writew(1, ioaddr + PGSEL);
1227 		dspcfg = readw(ioaddr + DSPCFG);
1228 		writew(0, ioaddr + PGSEL);
1229 		if (np->dspcfg == dspcfg)
1230 			break;
1231 	}
1232 
1233 	if (netif_msg_link(np)) {
1234 		if (i==NATSEMI_HW_TIMEOUT) {
1235 			printk(KERN_INFO
1236 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1237 				dev->name, i*10);
1238 		} else {
1239 			printk(KERN_INFO
1240 				"%s: DSPCFG accepted after %d usec.\n",
1241 				dev->name, i*10);
1242 		}
1243 	}
1244 	/*
1245 	 * Enable PHY Specific event based interrupts.  Link state change
1246 	 * and Auto-Negotiation Completion are among the affected.
1247 	 * Read the intr status to clear it (needed for wake events).
1248 	 */
1249 	readw(ioaddr + MIntrStatus);
1250 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1251 }
1252 
1253 static int switch_port_external(struct net_device *dev)
1254 {
1255 	struct netdev_private *np = netdev_priv(dev);
1256 	void __iomem *ioaddr = ns_ioaddr(dev);
1257 	u32 cfg;
1258 
1259 	cfg = readl(ioaddr + ChipConfig);
1260 	if (cfg & CfgExtPhy)
1261 		return 0;
1262 
1263 	if (netif_msg_link(np)) {
1264 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1265 				dev->name);
1266 	}
1267 
1268 	/* 1) switch back to external phy */
1269 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1270 	readl(ioaddr + ChipConfig);
1271 	udelay(1);
1272 
1273 	/* 2) reset the external phy: */
1274 	/* resetting the external PHY has been known to cause a hub supplying
1275 	 * power over Ethernet to kill the power.  We don't want to kill
1276 	 * power to this computer, so we avoid resetting the phy.
1277 	 */
1278 
1279 	/* 3) reinit the phy fixup, it got lost during power down. */
1280 	move_int_phy(dev, np->phy_addr_external);
1281 	init_phy_fixup(dev);
1282 
1283 	return 1;
1284 }
1285 
1286 static int switch_port_internal(struct net_device *dev)
1287 {
1288 	struct netdev_private *np = netdev_priv(dev);
1289 	void __iomem *ioaddr = ns_ioaddr(dev);
1290 	int i;
1291 	u32 cfg;
1292 	u16 bmcr;
1293 
1294 	cfg = readl(ioaddr + ChipConfig);
1295 	if (!(cfg &CfgExtPhy))
1296 		return 0;
1297 
1298 	if (netif_msg_link(np)) {
1299 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1300 				dev->name);
1301 	}
1302 	/* 1) switch back to internal phy: */
1303 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1304 	writel(cfg, ioaddr + ChipConfig);
1305 	readl(ioaddr + ChipConfig);
1306 	udelay(1);
1307 
1308 	/* 2) reset the internal phy: */
1309 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1310 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1311 	readl(ioaddr + ChipConfig);
1312 	udelay(10);
1313 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1314 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1315 		if (!(bmcr & BMCR_RESET))
1316 			break;
1317 		udelay(10);
1318 	}
1319 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1320 		printk(KERN_INFO
1321 			"%s: phy reset did not complete in %d usec.\n",
1322 			dev->name, i*10);
1323 	}
1324 	/* 3) reinit the phy fixup, it got lost during power down. */
1325 	init_phy_fixup(dev);
1326 
1327 	return 1;
1328 }
1329 
1330 /* Scan for a PHY on the external mii bus.
1331  * There are two tricky points:
1332  * - Do not scan while the internal phy is enabled. The internal phy will
1333  *   crash: e.g. reads from the DSPCFG register will return odd values and
1334  *   the nasty random phy reset code will reset the nic every few seconds.
1335  * - The internal phy must be moved around, an external phy could
1336  *   have the same address as the internal phy.
1337  */
1338 static int find_mii(struct net_device *dev)
1339 {
1340 	struct netdev_private *np = netdev_priv(dev);
1341 	int tmp;
1342 	int i;
1343 	int did_switch;
1344 
1345 	/* Switch to external phy */
1346 	did_switch = switch_port_external(dev);
1347 
1348 	/* Scan the possible phy addresses:
1349 	 *
1350 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1351 	 * supported due to lack of test hardware. User space should
1352 	 * handle it through ethtool.
1353 	 */
1354 	for (i = 1; i <= 31; i++) {
1355 		move_int_phy(dev, i);
1356 		tmp = miiport_read(dev, i, MII_BMSR);
1357 		if (tmp != 0xffff && tmp != 0x0000) {
1358 			/* found something! */
1359 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1360 					+ mdio_read(dev, MII_PHYSID2);
1361 	 		if (netif_msg_probe(np)) {
1362 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1363 						pci_name(np->pci_dev), np->mii, i);
1364 			}
1365 			break;
1366 		}
1367 	}
1368 	/* And switch back to internal phy: */
1369 	if (did_switch)
1370 		switch_port_internal(dev);
1371 	return i;
1372 }
1373 
1374 /* CFG bits [13:16] [18:23] */
1375 #define CFG_RESET_SAVE 0xfde000
1376 /* WCSR bits [0:4] [9:10] */
1377 #define WCSR_RESET_SAVE 0x61f
1378 /* RFCR bits [20] [22] [27:31] */
1379 #define RFCR_RESET_SAVE 0xf8500000
1380 
1381 static void natsemi_reset(struct net_device *dev)
1382 {
1383 	int i;
1384 	u32 cfg;
1385 	u32 wcsr;
1386 	u32 rfcr;
1387 	u16 pmatch[3];
1388 	u16 sopass[3];
1389 	struct netdev_private *np = netdev_priv(dev);
1390 	void __iomem *ioaddr = ns_ioaddr(dev);
1391 
1392 	/*
1393 	 * Resetting the chip causes some registers to be lost.
1394 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1395 	 * we save the state that would have been loaded from EEPROM
1396 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1397 	 * whoever calls this will follow up with init_registers() eventually.
1398 	 */
1399 
1400 	/* CFG */
1401 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1402 	/* WCSR */
1403 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1404 	/* RFCR */
1405 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1406 	/* PMATCH */
1407 	for (i = 0; i < 3; i++) {
1408 		writel(i*2, ioaddr + RxFilterAddr);
1409 		pmatch[i] = readw(ioaddr + RxFilterData);
1410 	}
1411 	/* SOPAS */
1412 	for (i = 0; i < 3; i++) {
1413 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1414 		sopass[i] = readw(ioaddr + RxFilterData);
1415 	}
1416 
1417 	/* now whack the chip */
1418 	writel(ChipReset, ioaddr + ChipCmd);
1419 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1420 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1421 			break;
1422 		udelay(5);
1423 	}
1424 	if (i==NATSEMI_HW_TIMEOUT) {
1425 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1426 			dev->name, i*5);
1427 	} else if (netif_msg_hw(np)) {
1428 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1429 			dev->name, i*5);
1430 	}
1431 
1432 	/* restore CFG */
1433 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1434 	/* turn on external phy if it was selected */
1435 	if (dev->if_port == PORT_TP)
1436 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1437 	else
1438 		cfg |= (CfgExtPhy | CfgPhyDis);
1439 	writel(cfg, ioaddr + ChipConfig);
1440 	/* restore WCSR */
1441 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1442 	writel(wcsr, ioaddr + WOLCmd);
1443 	/* read RFCR */
1444 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1445 	/* restore PMATCH */
1446 	for (i = 0; i < 3; i++) {
1447 		writel(i*2, ioaddr + RxFilterAddr);
1448 		writew(pmatch[i], ioaddr + RxFilterData);
1449 	}
1450 	for (i = 0; i < 3; i++) {
1451 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1452 		writew(sopass[i], ioaddr + RxFilterData);
1453 	}
1454 	/* restore RFCR */
1455 	writel(rfcr, ioaddr + RxFilterAddr);
1456 }
1457 
1458 static void reset_rx(struct net_device *dev)
1459 {
1460 	int i;
1461 	struct netdev_private *np = netdev_priv(dev);
1462 	void __iomem *ioaddr = ns_ioaddr(dev);
1463 
1464 	np->intr_status &= ~RxResetDone;
1465 
1466 	writel(RxReset, ioaddr + ChipCmd);
1467 
1468 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1469 		np->intr_status |= readl(ioaddr + IntrStatus);
1470 		if (np->intr_status & RxResetDone)
1471 			break;
1472 		udelay(15);
1473 	}
1474 	if (i==NATSEMI_HW_TIMEOUT) {
1475 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1476 		       dev->name, i*15);
1477 	} else if (netif_msg_hw(np)) {
1478 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1479 		       dev->name, i*15);
1480 	}
1481 }
1482 
1483 static void natsemi_reload_eeprom(struct net_device *dev)
1484 {
1485 	struct netdev_private *np = netdev_priv(dev);
1486 	void __iomem *ioaddr = ns_ioaddr(dev);
1487 	int i;
1488 
1489 	writel(EepromReload, ioaddr + PCIBusCfg);
1490 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1491 		udelay(50);
1492 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1493 			break;
1494 	}
1495 	if (i==NATSEMI_HW_TIMEOUT) {
1496 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1497 			pci_name(np->pci_dev), i*50);
1498 	} else if (netif_msg_hw(np)) {
1499 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1500 			pci_name(np->pci_dev), i*50);
1501 	}
1502 }
1503 
1504 static void natsemi_stop_rxtx(struct net_device *dev)
1505 {
1506 	void __iomem * ioaddr = ns_ioaddr(dev);
1507 	struct netdev_private *np = netdev_priv(dev);
1508 	int i;
1509 
1510 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1511 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1512 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1513 			break;
1514 		udelay(5);
1515 	}
1516 	if (i==NATSEMI_HW_TIMEOUT) {
1517 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1518 			dev->name, i*5);
1519 	} else if (netif_msg_hw(np)) {
1520 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1521 			dev->name, i*5);
1522 	}
1523 }
1524 
1525 static int netdev_open(struct net_device *dev)
1526 {
1527 	struct netdev_private *np = netdev_priv(dev);
1528 	void __iomem * ioaddr = ns_ioaddr(dev);
1529 	const int irq = np->pci_dev->irq;
1530 	int i;
1531 
1532 	/* Reset the chip, just in case. */
1533 	natsemi_reset(dev);
1534 
1535 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1536 	if (i) return i;
1537 
1538 	if (netif_msg_ifup(np))
1539 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1540 			dev->name, irq);
1541 	i = alloc_ring(dev);
1542 	if (i < 0) {
1543 		free_irq(irq, dev);
1544 		return i;
1545 	}
1546 	napi_enable(&np->napi);
1547 
1548 	init_ring(dev);
1549 	spin_lock_irq(&np->lock);
1550 	init_registers(dev);
1551 	/* now set the MAC address according to dev->dev_addr */
1552 	for (i = 0; i < 3; i++) {
1553 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1554 
1555 		writel(i*2, ioaddr + RxFilterAddr);
1556 		writew(mac, ioaddr + RxFilterData);
1557 	}
1558 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1559 	spin_unlock_irq(&np->lock);
1560 
1561 	netif_start_queue(dev);
1562 
1563 	if (netif_msg_ifup(np))
1564 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1565 			dev->name, (int)readl(ioaddr + ChipCmd));
1566 
1567 	/* Set the timer to check for link beat. */
1568 	init_timer(&np->timer);
1569 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1570 	np->timer.data = (unsigned long)dev;
1571 	np->timer.function = netdev_timer; /* timer handler */
1572 	add_timer(&np->timer);
1573 
1574 	return 0;
1575 }
1576 
1577 static void do_cable_magic(struct net_device *dev)
1578 {
1579 	struct netdev_private *np = netdev_priv(dev);
1580 	void __iomem *ioaddr = ns_ioaddr(dev);
1581 
1582 	if (dev->if_port != PORT_TP)
1583 		return;
1584 
1585 	if (np->srr >= SRR_DP83816_A5)
1586 		return;
1587 
1588 	/*
1589 	 * 100 MBit links with short cables can trip an issue with the chip.
1590 	 * The problem manifests as lots of CRC errors and/or flickering
1591 	 * activity LED while idle.  This process is based on instructions
1592 	 * from engineers at National.
1593 	 */
1594 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1595 		u16 data;
1596 
1597 		writew(1, ioaddr + PGSEL);
1598 		/*
1599 		 * coefficient visibility should already be enabled via
1600 		 * DSPCFG | 0x1000
1601 		 */
1602 		data = readw(ioaddr + TSTDAT) & 0xff;
1603 		/*
1604 		 * the value must be negative, and within certain values
1605 		 * (these values all come from National)
1606 		 */
1607 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1608 			np = netdev_priv(dev);
1609 
1610 			/* the bug has been triggered - fix the coefficient */
1611 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1612 			/* lock the value */
1613 			data = readw(ioaddr + DSPCFG);
1614 			np->dspcfg = data | DSPCFG_LOCK;
1615 			writew(np->dspcfg, ioaddr + DSPCFG);
1616 		}
1617 		writew(0, ioaddr + PGSEL);
1618 	}
1619 }
1620 
1621 static void undo_cable_magic(struct net_device *dev)
1622 {
1623 	u16 data;
1624 	struct netdev_private *np = netdev_priv(dev);
1625 	void __iomem * ioaddr = ns_ioaddr(dev);
1626 
1627 	if (dev->if_port != PORT_TP)
1628 		return;
1629 
1630 	if (np->srr >= SRR_DP83816_A5)
1631 		return;
1632 
1633 	writew(1, ioaddr + PGSEL);
1634 	/* make sure the lock bit is clear */
1635 	data = readw(ioaddr + DSPCFG);
1636 	np->dspcfg = data & ~DSPCFG_LOCK;
1637 	writew(np->dspcfg, ioaddr + DSPCFG);
1638 	writew(0, ioaddr + PGSEL);
1639 }
1640 
1641 static void check_link(struct net_device *dev)
1642 {
1643 	struct netdev_private *np = netdev_priv(dev);
1644 	void __iomem * ioaddr = ns_ioaddr(dev);
1645 	int duplex = np->duplex;
1646 	u16 bmsr;
1647 
1648 	/* If we are ignoring the PHY then don't try reading it. */
1649 	if (np->ignore_phy)
1650 		goto propagate_state;
1651 
1652 	/* The link status field is latched: it remains low after a temporary
1653 	 * link failure until it's read. We need the current link status,
1654 	 * thus read twice.
1655 	 */
1656 	mdio_read(dev, MII_BMSR);
1657 	bmsr = mdio_read(dev, MII_BMSR);
1658 
1659 	if (!(bmsr & BMSR_LSTATUS)) {
1660 		if (netif_carrier_ok(dev)) {
1661 			if (netif_msg_link(np))
1662 				printk(KERN_NOTICE "%s: link down.\n",
1663 				       dev->name);
1664 			netif_carrier_off(dev);
1665 			undo_cable_magic(dev);
1666 		}
1667 		return;
1668 	}
1669 	if (!netif_carrier_ok(dev)) {
1670 		if (netif_msg_link(np))
1671 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1672 		netif_carrier_on(dev);
1673 		do_cable_magic(dev);
1674 	}
1675 
1676 	duplex = np->full_duplex;
1677 	if (!duplex) {
1678 		if (bmsr & BMSR_ANEGCOMPLETE) {
1679 			int tmp = mii_nway_result(
1680 				np->advertising & mdio_read(dev, MII_LPA));
1681 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1682 				duplex = 1;
1683 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1684 			duplex = 1;
1685 	}
1686 
1687 propagate_state:
1688 	/* if duplex is set then bit 28 must be set, too */
1689 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1690 		if (netif_msg_link(np))
1691 			printk(KERN_INFO
1692 				"%s: Setting %s-duplex based on negotiated "
1693 				"link capability.\n", dev->name,
1694 				duplex ? "full" : "half");
1695 		if (duplex) {
1696 			np->rx_config |= RxAcceptTx;
1697 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1698 		} else {
1699 			np->rx_config &= ~RxAcceptTx;
1700 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1701 		}
1702 		writel(np->tx_config, ioaddr + TxConfig);
1703 		writel(np->rx_config, ioaddr + RxConfig);
1704 	}
1705 }
1706 
1707 static void init_registers(struct net_device *dev)
1708 {
1709 	struct netdev_private *np = netdev_priv(dev);
1710 	void __iomem * ioaddr = ns_ioaddr(dev);
1711 
1712 	init_phy_fixup(dev);
1713 
1714 	/* clear any interrupts that are pending, such as wake events */
1715 	readl(ioaddr + IntrStatus);
1716 
1717 	writel(np->ring_dma, ioaddr + RxRingPtr);
1718 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1719 		ioaddr + TxRingPtr);
1720 
1721 	/* Initialize other registers.
1722 	 * Configure the PCI bus bursts and FIFO thresholds.
1723 	 * Configure for standard, in-spec Ethernet.
1724 	 * Start with half-duplex. check_link will update
1725 	 * to the correct settings.
1726 	 */
1727 
1728 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1729 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1730 	 * MXDMA: 0: up to 256 byte bursts.
1731 	 * 	MXDMA must be <= FLTH
1732 	 * ECRETRY=1
1733 	 * ATP=1
1734 	 */
1735 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1736 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1737 	writel(np->tx_config, ioaddr + TxConfig);
1738 
1739 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1740 	 * MXDMA 0: up to 256 byte bursts
1741 	 */
1742 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1743 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1744 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1745 		np->rx_config |= RxAcceptLong;
1746 
1747 	writel(np->rx_config, ioaddr + RxConfig);
1748 
1749 	/* Disable PME:
1750 	 * The PME bit is initialized from the EEPROM contents.
1751 	 * PCI cards probably have PME disabled, but motherboard
1752 	 * implementations may have PME set to enable WakeOnLan.
1753 	 * With PME set the chip will scan incoming packets but
1754 	 * nothing will be written to memory. */
1755 	np->SavedClkRun = readl(ioaddr + ClkRun);
1756 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1757 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1758 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1759 			dev->name, readl(ioaddr + WOLCmd));
1760 	}
1761 
1762 	check_link(dev);
1763 	__set_rx_mode(dev);
1764 
1765 	/* Enable interrupts by setting the interrupt mask. */
1766 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1767 	natsemi_irq_enable(dev);
1768 
1769 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1770 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1771 }
1772 
1773 /*
1774  * netdev_timer:
1775  * Purpose:
1776  * 1) check for link changes. Usually they are handled by the MII interrupt
1777  *    but it doesn't hurt to check twice.
1778  * 2) check for sudden death of the NIC:
1779  *    It seems that a reference set for this chip went out with incorrect info,
1780  *    and there exist boards that aren't quite right.  An unexpected voltage
1781  *    drop can cause the PHY to get itself in a weird state (basically reset).
1782  *    NOTE: this only seems to affect revC chips.  The user can disable
1783  *    this check via dspcfg_workaround sysfs option.
1784  * 3) check of death of the RX path due to OOM
1785  */
1786 static void netdev_timer(unsigned long data)
1787 {
1788 	struct net_device *dev = (struct net_device *)data;
1789 	struct netdev_private *np = netdev_priv(dev);
1790 	void __iomem * ioaddr = ns_ioaddr(dev);
1791 	int next_tick = NATSEMI_TIMER_FREQ;
1792 	const int irq = np->pci_dev->irq;
1793 
1794 	if (netif_msg_timer(np)) {
1795 		/* DO NOT read the IntrStatus register,
1796 		 * a read clears any pending interrupts.
1797 		 */
1798 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1799 			dev->name);
1800 	}
1801 
1802 	if (dev->if_port == PORT_TP) {
1803 		u16 dspcfg;
1804 
1805 		spin_lock_irq(&np->lock);
1806 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1807 		writew(1, ioaddr+PGSEL);
1808 		dspcfg = readw(ioaddr+DSPCFG);
1809 		writew(0, ioaddr+PGSEL);
1810 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1811 			if (!netif_queue_stopped(dev)) {
1812 				spin_unlock_irq(&np->lock);
1813 				if (netif_msg_drv(np))
1814 					printk(KERN_NOTICE "%s: possible phy reset: "
1815 						"re-initializing\n", dev->name);
1816 				disable_irq(irq);
1817 				spin_lock_irq(&np->lock);
1818 				natsemi_stop_rxtx(dev);
1819 				dump_ring(dev);
1820 				reinit_ring(dev);
1821 				init_registers(dev);
1822 				spin_unlock_irq(&np->lock);
1823 				enable_irq(irq);
1824 			} else {
1825 				/* hurry back */
1826 				next_tick = HZ;
1827 				spin_unlock_irq(&np->lock);
1828 			}
1829 		} else {
1830 			/* init_registers() calls check_link() for the above case */
1831 			check_link(dev);
1832 			spin_unlock_irq(&np->lock);
1833 		}
1834 	} else {
1835 		spin_lock_irq(&np->lock);
1836 		check_link(dev);
1837 		spin_unlock_irq(&np->lock);
1838 	}
1839 	if (np->oom) {
1840 		disable_irq(irq);
1841 		np->oom = 0;
1842 		refill_rx(dev);
1843 		enable_irq(irq);
1844 		if (!np->oom) {
1845 			writel(RxOn, ioaddr + ChipCmd);
1846 		} else {
1847 			next_tick = 1;
1848 		}
1849 	}
1850 
1851 	if (next_tick > 1)
1852 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1853 	else
1854 		mod_timer(&np->timer, jiffies + next_tick);
1855 }
1856 
1857 static void dump_ring(struct net_device *dev)
1858 {
1859 	struct netdev_private *np = netdev_priv(dev);
1860 
1861 	if (netif_msg_pktdata(np)) {
1862 		int i;
1863 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1864 		for (i = 0; i < TX_RING_SIZE; i++) {
1865 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1866 				i, np->tx_ring[i].next_desc,
1867 				np->tx_ring[i].cmd_status,
1868 				np->tx_ring[i].addr);
1869 		}
1870 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1871 		for (i = 0; i < RX_RING_SIZE; i++) {
1872 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1873 				i, np->rx_ring[i].next_desc,
1874 				np->rx_ring[i].cmd_status,
1875 				np->rx_ring[i].addr);
1876 		}
1877 	}
1878 }
1879 
1880 static void ns_tx_timeout(struct net_device *dev)
1881 {
1882 	struct netdev_private *np = netdev_priv(dev);
1883 	void __iomem * ioaddr = ns_ioaddr(dev);
1884 	const int irq = np->pci_dev->irq;
1885 
1886 	disable_irq(irq);
1887 	spin_lock_irq(&np->lock);
1888 	if (!np->hands_off) {
1889 		if (netif_msg_tx_err(np))
1890 			printk(KERN_WARNING
1891 				"%s: Transmit timed out, status %#08x,"
1892 				" resetting...\n",
1893 				dev->name, readl(ioaddr + IntrStatus));
1894 		dump_ring(dev);
1895 
1896 		natsemi_reset(dev);
1897 		reinit_ring(dev);
1898 		init_registers(dev);
1899 	} else {
1900 		printk(KERN_WARNING
1901 			"%s: tx_timeout while in hands_off state?\n",
1902 			dev->name);
1903 	}
1904 	spin_unlock_irq(&np->lock);
1905 	enable_irq(irq);
1906 
1907 	dev->trans_start = jiffies; /* prevent tx timeout */
1908 	dev->stats.tx_errors++;
1909 	netif_wake_queue(dev);
1910 }
1911 
1912 static int alloc_ring(struct net_device *dev)
1913 {
1914 	struct netdev_private *np = netdev_priv(dev);
1915 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1916 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1917 		&np->ring_dma);
1918 	if (!np->rx_ring)
1919 		return -ENOMEM;
1920 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1921 	return 0;
1922 }
1923 
1924 static void refill_rx(struct net_device *dev)
1925 {
1926 	struct netdev_private *np = netdev_priv(dev);
1927 
1928 	/* Refill the Rx ring buffers. */
1929 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1930 		struct sk_buff *skb;
1931 		int entry = np->dirty_rx % RX_RING_SIZE;
1932 		if (np->rx_skbuff[entry] == NULL) {
1933 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1934 			skb = netdev_alloc_skb(dev, buflen);
1935 			np->rx_skbuff[entry] = skb;
1936 			if (skb == NULL)
1937 				break; /* Better luck next round. */
1938 			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1939 				skb->data, buflen, PCI_DMA_FROMDEVICE);
1940 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1941 		}
1942 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1943 	}
1944 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1945 		if (netif_msg_rx_err(np))
1946 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1947 		np->oom = 1;
1948 	}
1949 }
1950 
1951 static void set_bufsize(struct net_device *dev)
1952 {
1953 	struct netdev_private *np = netdev_priv(dev);
1954 	if (dev->mtu <= ETH_DATA_LEN)
1955 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1956 	else
1957 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1958 }
1959 
1960 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1961 static void init_ring(struct net_device *dev)
1962 {
1963 	struct netdev_private *np = netdev_priv(dev);
1964 	int i;
1965 
1966 	/* 1) TX ring */
1967 	np->dirty_tx = np->cur_tx = 0;
1968 	for (i = 0; i < TX_RING_SIZE; i++) {
1969 		np->tx_skbuff[i] = NULL;
1970 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1971 			+sizeof(struct netdev_desc)
1972 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1973 		np->tx_ring[i].cmd_status = 0;
1974 	}
1975 
1976 	/* 2) RX ring */
1977 	np->dirty_rx = 0;
1978 	np->cur_rx = RX_RING_SIZE;
1979 	np->oom = 0;
1980 	set_bufsize(dev);
1981 
1982 	np->rx_head_desc = &np->rx_ring[0];
1983 
1984 	/* Please be careful before changing this loop - at least gcc-2.95.1
1985 	 * miscompiles it otherwise.
1986 	 */
1987 	/* Initialize all Rx descriptors. */
1988 	for (i = 0; i < RX_RING_SIZE; i++) {
1989 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1990 				+sizeof(struct netdev_desc)
1991 				*((i+1)%RX_RING_SIZE));
1992 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1993 		np->rx_skbuff[i] = NULL;
1994 	}
1995 	refill_rx(dev);
1996 	dump_ring(dev);
1997 }
1998 
1999 static void drain_tx(struct net_device *dev)
2000 {
2001 	struct netdev_private *np = netdev_priv(dev);
2002 	int i;
2003 
2004 	for (i = 0; i < TX_RING_SIZE; i++) {
2005 		if (np->tx_skbuff[i]) {
2006 			pci_unmap_single(np->pci_dev,
2007 				np->tx_dma[i], np->tx_skbuff[i]->len,
2008 				PCI_DMA_TODEVICE);
2009 			dev_kfree_skb(np->tx_skbuff[i]);
2010 			dev->stats.tx_dropped++;
2011 		}
2012 		np->tx_skbuff[i] = NULL;
2013 	}
2014 }
2015 
2016 static void drain_rx(struct net_device *dev)
2017 {
2018 	struct netdev_private *np = netdev_priv(dev);
2019 	unsigned int buflen = np->rx_buf_sz;
2020 	int i;
2021 
2022 	/* Free all the skbuffs in the Rx queue. */
2023 	for (i = 0; i < RX_RING_SIZE; i++) {
2024 		np->rx_ring[i].cmd_status = 0;
2025 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2026 		if (np->rx_skbuff[i]) {
2027 			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2028 				buflen + NATSEMI_PADDING,
2029 				PCI_DMA_FROMDEVICE);
2030 			dev_kfree_skb(np->rx_skbuff[i]);
2031 		}
2032 		np->rx_skbuff[i] = NULL;
2033 	}
2034 }
2035 
2036 static void drain_ring(struct net_device *dev)
2037 {
2038 	drain_rx(dev);
2039 	drain_tx(dev);
2040 }
2041 
2042 static void free_ring(struct net_device *dev)
2043 {
2044 	struct netdev_private *np = netdev_priv(dev);
2045 	pci_free_consistent(np->pci_dev,
2046 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2047 		np->rx_ring, np->ring_dma);
2048 }
2049 
2050 static void reinit_rx(struct net_device *dev)
2051 {
2052 	struct netdev_private *np = netdev_priv(dev);
2053 	int i;
2054 
2055 	/* RX Ring */
2056 	np->dirty_rx = 0;
2057 	np->cur_rx = RX_RING_SIZE;
2058 	np->rx_head_desc = &np->rx_ring[0];
2059 	/* Initialize all Rx descriptors. */
2060 	for (i = 0; i < RX_RING_SIZE; i++)
2061 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2062 
2063 	refill_rx(dev);
2064 }
2065 
2066 static void reinit_ring(struct net_device *dev)
2067 {
2068 	struct netdev_private *np = netdev_priv(dev);
2069 	int i;
2070 
2071 	/* drain TX ring */
2072 	drain_tx(dev);
2073 	np->dirty_tx = np->cur_tx = 0;
2074 	for (i=0;i<TX_RING_SIZE;i++)
2075 		np->tx_ring[i].cmd_status = 0;
2076 
2077 	reinit_rx(dev);
2078 }
2079 
2080 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2081 {
2082 	struct netdev_private *np = netdev_priv(dev);
2083 	void __iomem * ioaddr = ns_ioaddr(dev);
2084 	unsigned entry;
2085 	unsigned long flags;
2086 
2087 	/* Note: Ordering is important here, set the field with the
2088 	   "ownership" bit last, and only then increment cur_tx. */
2089 
2090 	/* Calculate the next Tx descriptor entry. */
2091 	entry = np->cur_tx % TX_RING_SIZE;
2092 
2093 	np->tx_skbuff[entry] = skb;
2094 	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2095 				skb->data,skb->len, PCI_DMA_TODEVICE);
2096 
2097 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2098 
2099 	spin_lock_irqsave(&np->lock, flags);
2100 
2101 	if (!np->hands_off) {
2102 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2103 		/* StrongARM: Explicitly cache flush np->tx_ring and
2104 		 * skb->data,skb->len. */
2105 		wmb();
2106 		np->cur_tx++;
2107 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2108 			netdev_tx_done(dev);
2109 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2110 				netif_stop_queue(dev);
2111 		}
2112 		/* Wake the potentially-idle transmit channel. */
2113 		writel(TxOn, ioaddr + ChipCmd);
2114 	} else {
2115 		dev_kfree_skb_irq(skb);
2116 		dev->stats.tx_dropped++;
2117 	}
2118 	spin_unlock_irqrestore(&np->lock, flags);
2119 
2120 	if (netif_msg_tx_queued(np)) {
2121 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2122 			dev->name, np->cur_tx, entry);
2123 	}
2124 	return NETDEV_TX_OK;
2125 }
2126 
2127 static void netdev_tx_done(struct net_device *dev)
2128 {
2129 	struct netdev_private *np = netdev_priv(dev);
2130 
2131 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2132 		int entry = np->dirty_tx % TX_RING_SIZE;
2133 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2134 			break;
2135 		if (netif_msg_tx_done(np))
2136 			printk(KERN_DEBUG
2137 				"%s: tx frame #%d finished, status %#08x.\n",
2138 					dev->name, np->dirty_tx,
2139 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2140 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2141 			dev->stats.tx_packets++;
2142 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2143 		} else { /* Various Tx errors */
2144 			int tx_status =
2145 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2146 			if (tx_status & (DescTxAbort|DescTxExcColl))
2147 				dev->stats.tx_aborted_errors++;
2148 			if (tx_status & DescTxFIFO)
2149 				dev->stats.tx_fifo_errors++;
2150 			if (tx_status & DescTxCarrier)
2151 				dev->stats.tx_carrier_errors++;
2152 			if (tx_status & DescTxOOWCol)
2153 				dev->stats.tx_window_errors++;
2154 			dev->stats.tx_errors++;
2155 		}
2156 		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2157 					np->tx_skbuff[entry]->len,
2158 					PCI_DMA_TODEVICE);
2159 		/* Free the original skb. */
2160 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2161 		np->tx_skbuff[entry] = NULL;
2162 	}
2163 	if (netif_queue_stopped(dev) &&
2164 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2165 		/* The ring is no longer full, wake queue. */
2166 		netif_wake_queue(dev);
2167 	}
2168 }
2169 
2170 /* The interrupt handler doesn't actually handle interrupts itself, it
2171  * schedules a NAPI poll if there is anything to do. */
2172 static irqreturn_t intr_handler(int irq, void *dev_instance)
2173 {
2174 	struct net_device *dev = dev_instance;
2175 	struct netdev_private *np = netdev_priv(dev);
2176 	void __iomem * ioaddr = ns_ioaddr(dev);
2177 
2178 	/* Reading IntrStatus automatically acknowledges so don't do
2179 	 * that while interrupts are disabled, (for example, while a
2180 	 * poll is scheduled).  */
2181 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2182 		return IRQ_NONE;
2183 
2184 	np->intr_status = readl(ioaddr + IntrStatus);
2185 
2186 	if (!np->intr_status)
2187 		return IRQ_NONE;
2188 
2189 	if (netif_msg_intr(np))
2190 		printk(KERN_DEBUG
2191 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2192 		       dev->name, np->intr_status,
2193 		       readl(ioaddr + IntrMask));
2194 
2195 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2196 
2197 	if (napi_schedule_prep(&np->napi)) {
2198 		/* Disable interrupts and register for poll */
2199 		natsemi_irq_disable(dev);
2200 		__napi_schedule(&np->napi);
2201 	} else
2202 		printk(KERN_WARNING
2203 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2204 		       dev->name, np->intr_status,
2205 		       readl(ioaddr + IntrMask));
2206 
2207 	return IRQ_HANDLED;
2208 }
2209 
2210 /* This is the NAPI poll routine.  As well as the standard RX handling
2211  * it also handles all other interrupts that the chip might raise.
2212  */
2213 static int natsemi_poll(struct napi_struct *napi, int budget)
2214 {
2215 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2216 	struct net_device *dev = np->dev;
2217 	void __iomem * ioaddr = ns_ioaddr(dev);
2218 	int work_done = 0;
2219 
2220 	do {
2221 		if (netif_msg_intr(np))
2222 			printk(KERN_DEBUG
2223 			       "%s: Poll, status %#08x, mask %#08x.\n",
2224 			       dev->name, np->intr_status,
2225 			       readl(ioaddr + IntrMask));
2226 
2227 		/* netdev_rx() may read IntrStatus again if the RX state
2228 		 * machine falls over so do it first. */
2229 		if (np->intr_status &
2230 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2231 		     IntrRxErr | IntrRxOverrun)) {
2232 			netdev_rx(dev, &work_done, budget);
2233 		}
2234 
2235 		if (np->intr_status &
2236 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2237 			spin_lock(&np->lock);
2238 			netdev_tx_done(dev);
2239 			spin_unlock(&np->lock);
2240 		}
2241 
2242 		/* Abnormal error summary/uncommon events handlers. */
2243 		if (np->intr_status & IntrAbnormalSummary)
2244 			netdev_error(dev, np->intr_status);
2245 
2246 		if (work_done >= budget)
2247 			return work_done;
2248 
2249 		np->intr_status = readl(ioaddr + IntrStatus);
2250 	} while (np->intr_status);
2251 
2252 	napi_complete(napi);
2253 
2254 	/* Reenable interrupts providing nothing is trying to shut
2255 	 * the chip down. */
2256 	spin_lock(&np->lock);
2257 	if (!np->hands_off)
2258 		natsemi_irq_enable(dev);
2259 	spin_unlock(&np->lock);
2260 
2261 	return work_done;
2262 }
2263 
2264 /* This routine is logically part of the interrupt handler, but separated
2265    for clarity and better register allocation. */
2266 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2267 {
2268 	struct netdev_private *np = netdev_priv(dev);
2269 	int entry = np->cur_rx % RX_RING_SIZE;
2270 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2271 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2272 	unsigned int buflen = np->rx_buf_sz;
2273 	void __iomem * ioaddr = ns_ioaddr(dev);
2274 
2275 	/* If the driver owns the next entry it's a new packet. Send it up. */
2276 	while (desc_status < 0) { /* e.g. & DescOwn */
2277 		int pkt_len;
2278 		if (netif_msg_rx_status(np))
2279 			printk(KERN_DEBUG
2280 				"  netdev_rx() entry %d status was %#08x.\n",
2281 				entry, desc_status);
2282 		if (--boguscnt < 0)
2283 			break;
2284 
2285 		if (*work_done >= work_to_do)
2286 			break;
2287 
2288 		(*work_done)++;
2289 
2290 		pkt_len = (desc_status & DescSizeMask) - 4;
2291 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2292 			if (desc_status & DescMore) {
2293 				unsigned long flags;
2294 
2295 				if (netif_msg_rx_err(np))
2296 					printk(KERN_WARNING
2297 						"%s: Oversized(?) Ethernet "
2298 						"frame spanned multiple "
2299 						"buffers, entry %#08x "
2300 						"status %#08x.\n", dev->name,
2301 						np->cur_rx, desc_status);
2302 				dev->stats.rx_length_errors++;
2303 
2304 				/* The RX state machine has probably
2305 				 * locked up beneath us.  Follow the
2306 				 * reset procedure documented in
2307 				 * AN-1287. */
2308 
2309 				spin_lock_irqsave(&np->lock, flags);
2310 				reset_rx(dev);
2311 				reinit_rx(dev);
2312 				writel(np->ring_dma, ioaddr + RxRingPtr);
2313 				check_link(dev);
2314 				spin_unlock_irqrestore(&np->lock, flags);
2315 
2316 				/* We'll enable RX on exit from this
2317 				 * function. */
2318 				break;
2319 
2320 			} else {
2321 				/* There was an error. */
2322 				dev->stats.rx_errors++;
2323 				if (desc_status & (DescRxAbort|DescRxOver))
2324 					dev->stats.rx_over_errors++;
2325 				if (desc_status & (DescRxLong|DescRxRunt))
2326 					dev->stats.rx_length_errors++;
2327 				if (desc_status & (DescRxInvalid|DescRxAlign))
2328 					dev->stats.rx_frame_errors++;
2329 				if (desc_status & DescRxCRC)
2330 					dev->stats.rx_crc_errors++;
2331 			}
2332 		} else if (pkt_len > np->rx_buf_sz) {
2333 			/* if this is the tail of a double buffer
2334 			 * packet, we've already counted the error
2335 			 * on the first part.  Ignore the second half.
2336 			 */
2337 		} else {
2338 			struct sk_buff *skb;
2339 			/* Omit CRC size. */
2340 			/* Check if the packet is long enough to accept
2341 			 * without copying to a minimally-sized skbuff. */
2342 			if (pkt_len < rx_copybreak &&
2343 			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2344 				/* 16 byte align the IP header */
2345 				skb_reserve(skb, RX_OFFSET);
2346 				pci_dma_sync_single_for_cpu(np->pci_dev,
2347 					np->rx_dma[entry],
2348 					buflen,
2349 					PCI_DMA_FROMDEVICE);
2350 				skb_copy_to_linear_data(skb,
2351 					np->rx_skbuff[entry]->data, pkt_len);
2352 				skb_put(skb, pkt_len);
2353 				pci_dma_sync_single_for_device(np->pci_dev,
2354 					np->rx_dma[entry],
2355 					buflen,
2356 					PCI_DMA_FROMDEVICE);
2357 			} else {
2358 				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2359 						 buflen + NATSEMI_PADDING,
2360 						 PCI_DMA_FROMDEVICE);
2361 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2362 				np->rx_skbuff[entry] = NULL;
2363 			}
2364 			skb->protocol = eth_type_trans(skb, dev);
2365 			netif_receive_skb(skb);
2366 			dev->stats.rx_packets++;
2367 			dev->stats.rx_bytes += pkt_len;
2368 		}
2369 		entry = (++np->cur_rx) % RX_RING_SIZE;
2370 		np->rx_head_desc = &np->rx_ring[entry];
2371 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2372 	}
2373 	refill_rx(dev);
2374 
2375 	/* Restart Rx engine if stopped. */
2376 	if (np->oom)
2377 		mod_timer(&np->timer, jiffies + 1);
2378 	else
2379 		writel(RxOn, ioaddr + ChipCmd);
2380 }
2381 
2382 static void netdev_error(struct net_device *dev, int intr_status)
2383 {
2384 	struct netdev_private *np = netdev_priv(dev);
2385 	void __iomem * ioaddr = ns_ioaddr(dev);
2386 
2387 	spin_lock(&np->lock);
2388 	if (intr_status & LinkChange) {
2389 		u16 lpa = mdio_read(dev, MII_LPA);
2390 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2391 		    netif_msg_link(np)) {
2392 			printk(KERN_INFO
2393 				"%s: Autonegotiation advertising"
2394 				" %#04x  partner %#04x.\n", dev->name,
2395 				np->advertising, lpa);
2396 		}
2397 
2398 		/* read MII int status to clear the flag */
2399 		readw(ioaddr + MIntrStatus);
2400 		check_link(dev);
2401 	}
2402 	if (intr_status & StatsMax) {
2403 		__get_stats(dev);
2404 	}
2405 	if (intr_status & IntrTxUnderrun) {
2406 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2407 			np->tx_config += TX_DRTH_VAL_INC;
2408 			if (netif_msg_tx_err(np))
2409 				printk(KERN_NOTICE
2410 					"%s: increased tx threshold, txcfg %#08x.\n",
2411 					dev->name, np->tx_config);
2412 		} else {
2413 			if (netif_msg_tx_err(np))
2414 				printk(KERN_NOTICE
2415 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2416 					dev->name, np->tx_config);
2417 		}
2418 		writel(np->tx_config, ioaddr + TxConfig);
2419 	}
2420 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2421 		int wol_status = readl(ioaddr + WOLCmd);
2422 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2423 			dev->name, wol_status);
2424 	}
2425 	if (intr_status & RxStatusFIFOOver) {
2426 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2427 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2428 				dev->name);
2429 		}
2430 		dev->stats.rx_fifo_errors++;
2431 		dev->stats.rx_errors++;
2432 	}
2433 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2434 	if (intr_status & IntrPCIErr) {
2435 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2436 			intr_status & IntrPCIErr);
2437 		dev->stats.tx_fifo_errors++;
2438 		dev->stats.tx_errors++;
2439 		dev->stats.rx_fifo_errors++;
2440 		dev->stats.rx_errors++;
2441 	}
2442 	spin_unlock(&np->lock);
2443 }
2444 
2445 static void __get_stats(struct net_device *dev)
2446 {
2447 	void __iomem * ioaddr = ns_ioaddr(dev);
2448 
2449 	/* The chip only need report frame silently dropped. */
2450 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2451 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2452 }
2453 
2454 static struct net_device_stats *get_stats(struct net_device *dev)
2455 {
2456 	struct netdev_private *np = netdev_priv(dev);
2457 
2458 	/* The chip only need report frame silently dropped. */
2459 	spin_lock_irq(&np->lock);
2460 	if (netif_running(dev) && !np->hands_off)
2461 		__get_stats(dev);
2462 	spin_unlock_irq(&np->lock);
2463 
2464 	return &dev->stats;
2465 }
2466 
2467 #ifdef CONFIG_NET_POLL_CONTROLLER
2468 static void natsemi_poll_controller(struct net_device *dev)
2469 {
2470 	struct netdev_private *np = netdev_priv(dev);
2471 	const int irq = np->pci_dev->irq;
2472 
2473 	disable_irq(irq);
2474 	intr_handler(irq, dev);
2475 	enable_irq(irq);
2476 }
2477 #endif
2478 
2479 #define HASH_TABLE	0x200
2480 static void __set_rx_mode(struct net_device *dev)
2481 {
2482 	void __iomem * ioaddr = ns_ioaddr(dev);
2483 	struct netdev_private *np = netdev_priv(dev);
2484 	u8 mc_filter[64]; /* Multicast hash filter */
2485 	u32 rx_mode;
2486 
2487 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2488 		rx_mode = RxFilterEnable | AcceptBroadcast
2489 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2490 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2491 		   (dev->flags & IFF_ALLMULTI)) {
2492 		rx_mode = RxFilterEnable | AcceptBroadcast
2493 			| AcceptAllMulticast | AcceptMyPhys;
2494 	} else {
2495 		struct netdev_hw_addr *ha;
2496 		int i;
2497 
2498 		memset(mc_filter, 0, sizeof(mc_filter));
2499 		netdev_for_each_mc_addr(ha, dev) {
2500 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2501 			mc_filter[b/8] |= (1 << (b & 0x07));
2502 		}
2503 		rx_mode = RxFilterEnable | AcceptBroadcast
2504 			| AcceptMulticast | AcceptMyPhys;
2505 		for (i = 0; i < 64; i += 2) {
2506 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2507 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2508 			       ioaddr + RxFilterData);
2509 		}
2510 	}
2511 	writel(rx_mode, ioaddr + RxFilterAddr);
2512 	np->cur_rx_mode = rx_mode;
2513 }
2514 
2515 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2516 {
2517 	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2518 		return -EINVAL;
2519 
2520 	dev->mtu = new_mtu;
2521 
2522 	/* synchronized against open : rtnl_lock() held by caller */
2523 	if (netif_running(dev)) {
2524 		struct netdev_private *np = netdev_priv(dev);
2525 		void __iomem * ioaddr = ns_ioaddr(dev);
2526 		const int irq = np->pci_dev->irq;
2527 
2528 		disable_irq(irq);
2529 		spin_lock(&np->lock);
2530 		/* stop engines */
2531 		natsemi_stop_rxtx(dev);
2532 		/* drain rx queue */
2533 		drain_rx(dev);
2534 		/* change buffers */
2535 		set_bufsize(dev);
2536 		reinit_rx(dev);
2537 		writel(np->ring_dma, ioaddr + RxRingPtr);
2538 		/* restart engines */
2539 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2540 		spin_unlock(&np->lock);
2541 		enable_irq(irq);
2542 	}
2543 	return 0;
2544 }
2545 
2546 static void set_rx_mode(struct net_device *dev)
2547 {
2548 	struct netdev_private *np = netdev_priv(dev);
2549 	spin_lock_irq(&np->lock);
2550 	if (!np->hands_off)
2551 		__set_rx_mode(dev);
2552 	spin_unlock_irq(&np->lock);
2553 }
2554 
2555 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556 {
2557 	struct netdev_private *np = netdev_priv(dev);
2558 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2559 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2560 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2561 }
2562 
2563 static int get_regs_len(struct net_device *dev)
2564 {
2565 	return NATSEMI_REGS_SIZE;
2566 }
2567 
2568 static int get_eeprom_len(struct net_device *dev)
2569 {
2570 	struct netdev_private *np = netdev_priv(dev);
2571 	return np->eeprom_size;
2572 }
2573 
2574 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575 {
2576 	struct netdev_private *np = netdev_priv(dev);
2577 	spin_lock_irq(&np->lock);
2578 	netdev_get_ecmd(dev, ecmd);
2579 	spin_unlock_irq(&np->lock);
2580 	return 0;
2581 }
2582 
2583 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584 {
2585 	struct netdev_private *np = netdev_priv(dev);
2586 	int res;
2587 	spin_lock_irq(&np->lock);
2588 	res = netdev_set_ecmd(dev, ecmd);
2589 	spin_unlock_irq(&np->lock);
2590 	return res;
2591 }
2592 
2593 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594 {
2595 	struct netdev_private *np = netdev_priv(dev);
2596 	spin_lock_irq(&np->lock);
2597 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2598 	netdev_get_sopass(dev, wol->sopass);
2599 	spin_unlock_irq(&np->lock);
2600 }
2601 
2602 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603 {
2604 	struct netdev_private *np = netdev_priv(dev);
2605 	int res;
2606 	spin_lock_irq(&np->lock);
2607 	netdev_set_wol(dev, wol->wolopts);
2608 	res = netdev_set_sopass(dev, wol->sopass);
2609 	spin_unlock_irq(&np->lock);
2610 	return res;
2611 }
2612 
2613 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614 {
2615 	struct netdev_private *np = netdev_priv(dev);
2616 	regs->version = NATSEMI_REGS_VER;
2617 	spin_lock_irq(&np->lock);
2618 	netdev_get_regs(dev, buf);
2619 	spin_unlock_irq(&np->lock);
2620 }
2621 
2622 static u32 get_msglevel(struct net_device *dev)
2623 {
2624 	struct netdev_private *np = netdev_priv(dev);
2625 	return np->msg_enable;
2626 }
2627 
2628 static void set_msglevel(struct net_device *dev, u32 val)
2629 {
2630 	struct netdev_private *np = netdev_priv(dev);
2631 	np->msg_enable = val;
2632 }
2633 
2634 static int nway_reset(struct net_device *dev)
2635 {
2636 	int tmp;
2637 	int r = -EINVAL;
2638 	/* if autoneg is off, it's an error */
2639 	tmp = mdio_read(dev, MII_BMCR);
2640 	if (tmp & BMCR_ANENABLE) {
2641 		tmp |= (BMCR_ANRESTART);
2642 		mdio_write(dev, MII_BMCR, tmp);
2643 		r = 0;
2644 	}
2645 	return r;
2646 }
2647 
2648 static u32 get_link(struct net_device *dev)
2649 {
2650 	/* LSTATUS is latched low until a read - so read twice */
2651 	mdio_read(dev, MII_BMSR);
2652 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2653 }
2654 
2655 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656 {
2657 	struct netdev_private *np = netdev_priv(dev);
2658 	u8 *eebuf;
2659 	int res;
2660 
2661 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2662 	if (!eebuf)
2663 		return -ENOMEM;
2664 
2665 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2666 	spin_lock_irq(&np->lock);
2667 	res = netdev_get_eeprom(dev, eebuf);
2668 	spin_unlock_irq(&np->lock);
2669 	if (!res)
2670 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2671 	kfree(eebuf);
2672 	return res;
2673 }
2674 
2675 static const struct ethtool_ops ethtool_ops = {
2676 	.get_drvinfo = get_drvinfo,
2677 	.get_regs_len = get_regs_len,
2678 	.get_eeprom_len = get_eeprom_len,
2679 	.get_settings = get_settings,
2680 	.set_settings = set_settings,
2681 	.get_wol = get_wol,
2682 	.set_wol = set_wol,
2683 	.get_regs = get_regs,
2684 	.get_msglevel = get_msglevel,
2685 	.set_msglevel = set_msglevel,
2686 	.nway_reset = nway_reset,
2687 	.get_link = get_link,
2688 	.get_eeprom = get_eeprom,
2689 };
2690 
2691 static int netdev_set_wol(struct net_device *dev, u32 newval)
2692 {
2693 	struct netdev_private *np = netdev_priv(dev);
2694 	void __iomem * ioaddr = ns_ioaddr(dev);
2695 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696 
2697 	/* translate to bitmasks this chip understands */
2698 	if (newval & WAKE_PHY)
2699 		data |= WakePhy;
2700 	if (newval & WAKE_UCAST)
2701 		data |= WakeUnicast;
2702 	if (newval & WAKE_MCAST)
2703 		data |= WakeMulticast;
2704 	if (newval & WAKE_BCAST)
2705 		data |= WakeBroadcast;
2706 	if (newval & WAKE_ARP)
2707 		data |= WakeArp;
2708 	if (newval & WAKE_MAGIC)
2709 		data |= WakeMagic;
2710 	if (np->srr >= SRR_DP83815_D) {
2711 		if (newval & WAKE_MAGICSECURE) {
2712 			data |= WakeMagicSecure;
2713 		}
2714 	}
2715 
2716 	writel(data, ioaddr + WOLCmd);
2717 
2718 	return 0;
2719 }
2720 
2721 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722 {
2723 	struct netdev_private *np = netdev_priv(dev);
2724 	void __iomem * ioaddr = ns_ioaddr(dev);
2725 	u32 regval = readl(ioaddr + WOLCmd);
2726 
2727 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2728 			| WAKE_ARP | WAKE_MAGIC);
2729 
2730 	if (np->srr >= SRR_DP83815_D) {
2731 		/* SOPASS works on revD and higher */
2732 		*supported |= WAKE_MAGICSECURE;
2733 	}
2734 	*cur = 0;
2735 
2736 	/* translate from chip bitmasks */
2737 	if (regval & WakePhy)
2738 		*cur |= WAKE_PHY;
2739 	if (regval & WakeUnicast)
2740 		*cur |= WAKE_UCAST;
2741 	if (regval & WakeMulticast)
2742 		*cur |= WAKE_MCAST;
2743 	if (regval & WakeBroadcast)
2744 		*cur |= WAKE_BCAST;
2745 	if (regval & WakeArp)
2746 		*cur |= WAKE_ARP;
2747 	if (regval & WakeMagic)
2748 		*cur |= WAKE_MAGIC;
2749 	if (regval & WakeMagicSecure) {
2750 		/* this can be on in revC, but it's broken */
2751 		*cur |= WAKE_MAGICSECURE;
2752 	}
2753 
2754 	return 0;
2755 }
2756 
2757 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758 {
2759 	struct netdev_private *np = netdev_priv(dev);
2760 	void __iomem * ioaddr = ns_ioaddr(dev);
2761 	u16 *sval = (u16 *)newval;
2762 	u32 addr;
2763 
2764 	if (np->srr < SRR_DP83815_D) {
2765 		return 0;
2766 	}
2767 
2768 	/* enable writing to these registers by disabling the RX filter */
2769 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2770 	addr &= ~RxFilterEnable;
2771 	writel(addr, ioaddr + RxFilterAddr);
2772 
2773 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2774 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2775 	writew(sval[0], ioaddr + RxFilterData);
2776 
2777 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2778 	writew(sval[1], ioaddr + RxFilterData);
2779 
2780 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2781 	writew(sval[2], ioaddr + RxFilterData);
2782 
2783 	/* re-enable the RX filter */
2784 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785 
2786 	return 0;
2787 }
2788 
2789 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790 {
2791 	struct netdev_private *np = netdev_priv(dev);
2792 	void __iomem * ioaddr = ns_ioaddr(dev);
2793 	u16 *sval = (u16 *)data;
2794 	u32 addr;
2795 
2796 	if (np->srr < SRR_DP83815_D) {
2797 		sval[0] = sval[1] = sval[2] = 0;
2798 		return 0;
2799 	}
2800 
2801 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2802 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803 
2804 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2805 	sval[0] = readw(ioaddr + RxFilterData);
2806 
2807 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2808 	sval[1] = readw(ioaddr + RxFilterData);
2809 
2810 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2811 	sval[2] = readw(ioaddr + RxFilterData);
2812 
2813 	writel(addr, ioaddr + RxFilterAddr);
2814 
2815 	return 0;
2816 }
2817 
2818 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819 {
2820 	struct netdev_private *np = netdev_priv(dev);
2821 	u32 tmp;
2822 
2823 	ecmd->port        = dev->if_port;
2824 	ethtool_cmd_speed_set(ecmd, np->speed);
2825 	ecmd->duplex      = np->duplex;
2826 	ecmd->autoneg     = np->autoneg;
2827 	ecmd->advertising = 0;
2828 	if (np->advertising & ADVERTISE_10HALF)
2829 		ecmd->advertising |= ADVERTISED_10baseT_Half;
2830 	if (np->advertising & ADVERTISE_10FULL)
2831 		ecmd->advertising |= ADVERTISED_10baseT_Full;
2832 	if (np->advertising & ADVERTISE_100HALF)
2833 		ecmd->advertising |= ADVERTISED_100baseT_Half;
2834 	if (np->advertising & ADVERTISE_100FULL)
2835 		ecmd->advertising |= ADVERTISED_100baseT_Full;
2836 	ecmd->supported   = (SUPPORTED_Autoneg |
2837 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2838 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2839 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2840 	ecmd->phy_address = np->phy_addr_external;
2841 	/*
2842 	 * We intentionally report the phy address of the external
2843 	 * phy, even if the internal phy is used. This is necessary
2844 	 * to work around a deficiency of the ethtool interface:
2845 	 * It's only possible to query the settings of the active
2846 	 * port. Therefore
2847 	 * # ethtool -s ethX port mii
2848 	 * actually sends an ioctl to switch to port mii with the
2849 	 * settings that are used for the current active port.
2850 	 * If we would report a different phy address in this
2851 	 * command, then
2852 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2853 	 * would unintentionally change the phy address.
2854 	 *
2855 	 * Fortunately the phy address doesn't matter with the
2856 	 * internal phy...
2857 	 */
2858 
2859 	/* set information based on active port type */
2860 	switch (ecmd->port) {
2861 	default:
2862 	case PORT_TP:
2863 		ecmd->advertising |= ADVERTISED_TP;
2864 		ecmd->transceiver = XCVR_INTERNAL;
2865 		break;
2866 	case PORT_MII:
2867 		ecmd->advertising |= ADVERTISED_MII;
2868 		ecmd->transceiver = XCVR_EXTERNAL;
2869 		break;
2870 	case PORT_FIBRE:
2871 		ecmd->advertising |= ADVERTISED_FIBRE;
2872 		ecmd->transceiver = XCVR_EXTERNAL;
2873 		break;
2874 	}
2875 
2876 	/* if autonegotiation is on, try to return the active speed/duplex */
2877 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2878 		ecmd->advertising |= ADVERTISED_Autoneg;
2879 		tmp = mii_nway_result(
2880 			np->advertising & mdio_read(dev, MII_LPA));
2881 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2882 			ethtool_cmd_speed_set(ecmd, SPEED_100);
2883 		else
2884 			ethtool_cmd_speed_set(ecmd, SPEED_10);
2885 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2886 			ecmd->duplex = DUPLEX_FULL;
2887 		else
2888 			ecmd->duplex = DUPLEX_HALF;
2889 	}
2890 
2891 	/* ignore maxtxpkt, maxrxpkt for now */
2892 
2893 	return 0;
2894 }
2895 
2896 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897 {
2898 	struct netdev_private *np = netdev_priv(dev);
2899 
2900 	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2901 		return -EINVAL;
2902 	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2903 		return -EINVAL;
2904 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2905 		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2906 					  ADVERTISED_10baseT_Full |
2907 					  ADVERTISED_100baseT_Half |
2908 					  ADVERTISED_100baseT_Full)) == 0) {
2909 			return -EINVAL;
2910 		}
2911 	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2912 		u32 speed = ethtool_cmd_speed(ecmd);
2913 		if (speed != SPEED_10 && speed != SPEED_100)
2914 			return -EINVAL;
2915 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2916 			return -EINVAL;
2917 	} else {
2918 		return -EINVAL;
2919 	}
2920 
2921 	/*
2922 	 * If we're ignoring the PHY then autoneg and the internal
2923 	 * transceiver are really not going to work so don't let the
2924 	 * user select them.
2925 	 */
2926 	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2927 			       ecmd->port == PORT_TP))
2928 		return -EINVAL;
2929 
2930 	/*
2931 	 * maxtxpkt, maxrxpkt: ignored for now.
2932 	 *
2933 	 * transceiver:
2934 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2935 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2936 	 * selects based on ecmd->port.
2937 	 *
2938 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2939 	 * phys that are connected to the mii bus. It's used to apply fibre
2940 	 * specific updates.
2941 	 */
2942 
2943 	/* WHEW! now lets bang some bits */
2944 
2945 	/* save the parms */
2946 	dev->if_port          = ecmd->port;
2947 	np->autoneg           = ecmd->autoneg;
2948 	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2949 	if (np->autoneg == AUTONEG_ENABLE) {
2950 		/* advertise only what has been requested */
2951 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2952 		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2953 			np->advertising |= ADVERTISE_10HALF;
2954 		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2955 			np->advertising |= ADVERTISE_10FULL;
2956 		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2957 			np->advertising |= ADVERTISE_100HALF;
2958 		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2959 			np->advertising |= ADVERTISE_100FULL;
2960 	} else {
2961 		np->speed  = ethtool_cmd_speed(ecmd);
2962 		np->duplex = ecmd->duplex;
2963 		/* user overriding the initial full duplex parm? */
2964 		if (np->duplex == DUPLEX_HALF)
2965 			np->full_duplex = 0;
2966 	}
2967 
2968 	/* get the right phy enabled */
2969 	if (ecmd->port == PORT_TP)
2970 		switch_port_internal(dev);
2971 	else
2972 		switch_port_external(dev);
2973 
2974 	/* set parms and see how this affected our link status */
2975 	init_phy_fixup(dev);
2976 	check_link(dev);
2977 	return 0;
2978 }
2979 
2980 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2981 {
2982 	int i;
2983 	int j;
2984 	u32 rfcr;
2985 	u32 *rbuf = (u32 *)buf;
2986 	void __iomem * ioaddr = ns_ioaddr(dev);
2987 
2988 	/* read non-mii page 0 of registers */
2989 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2990 		rbuf[i] = readl(ioaddr + i*4);
2991 	}
2992 
2993 	/* read current mii registers */
2994 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2995 		rbuf[i] = mdio_read(dev, i & 0x1f);
2996 
2997 	/* read only the 'magic' registers from page 1 */
2998 	writew(1, ioaddr + PGSEL);
2999 	rbuf[i++] = readw(ioaddr + PMDCSR);
3000 	rbuf[i++] = readw(ioaddr + TSTDAT);
3001 	rbuf[i++] = readw(ioaddr + DSPCFG);
3002 	rbuf[i++] = readw(ioaddr + SDCFG);
3003 	writew(0, ioaddr + PGSEL);
3004 
3005 	/* read RFCR indexed registers */
3006 	rfcr = readl(ioaddr + RxFilterAddr);
3007 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3008 		writel(j*2, ioaddr + RxFilterAddr);
3009 		rbuf[i++] = readw(ioaddr + RxFilterData);
3010 	}
3011 	writel(rfcr, ioaddr + RxFilterAddr);
3012 
3013 	/* the interrupt status is clear-on-read - see if we missed any */
3014 	if (rbuf[4] & rbuf[5]) {
3015 		printk(KERN_WARNING
3016 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3017 			dev->name, rbuf[4] & rbuf[5]);
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3024 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3025 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3026 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3027 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3028 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3029 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3030 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3031 
3032 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3033 {
3034 	int i;
3035 	u16 *ebuf = (u16 *)buf;
3036 	void __iomem * ioaddr = ns_ioaddr(dev);
3037 	struct netdev_private *np = netdev_priv(dev);
3038 
3039 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3040 	for (i = 0; i < np->eeprom_size/2; i++) {
3041 		ebuf[i] = eeprom_read(ioaddr, i);
3042 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3043 		 * reads it back "sanely". So we swap it back here in order to
3044 		 * present it to userland as it is stored. */
3045 		ebuf[i] = SWAP_BITS(ebuf[i]);
3046 	}
3047 	return 0;
3048 }
3049 
3050 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3051 {
3052 	struct mii_ioctl_data *data = if_mii(rq);
3053 	struct netdev_private *np = netdev_priv(dev);
3054 
3055 	switch(cmd) {
3056 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3057 		data->phy_id = np->phy_addr_external;
3058 		/* Fall Through */
3059 
3060 	case SIOCGMIIREG:		/* Read MII PHY register. */
3061 		/* The phy_id is not enough to uniquely identify
3062 		 * the intended target. Therefore the command is sent to
3063 		 * the given mii on the current port.
3064 		 */
3065 		if (dev->if_port == PORT_TP) {
3066 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3067 				data->val_out = mdio_read(dev,
3068 							data->reg_num & 0x1f);
3069 			else
3070 				data->val_out = 0;
3071 		} else {
3072 			move_int_phy(dev, data->phy_id & 0x1f);
3073 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3074 							data->reg_num & 0x1f);
3075 		}
3076 		return 0;
3077 
3078 	case SIOCSMIIREG:		/* Write MII PHY register. */
3079 		if (dev->if_port == PORT_TP) {
3080 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3081  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3082 					np->advertising = data->val_in;
3083 				mdio_write(dev, data->reg_num & 0x1f,
3084 							data->val_in);
3085 			}
3086 		} else {
3087 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3088  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3089 					np->advertising = data->val_in;
3090 			}
3091 			move_int_phy(dev, data->phy_id & 0x1f);
3092 			miiport_write(dev, data->phy_id & 0x1f,
3093 						data->reg_num & 0x1f,
3094 						data->val_in);
3095 		}
3096 		return 0;
3097 	default:
3098 		return -EOPNOTSUPP;
3099 	}
3100 }
3101 
3102 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3103 {
3104 	void __iomem * ioaddr = ns_ioaddr(dev);
3105 	struct netdev_private *np = netdev_priv(dev);
3106 
3107 	if (netif_msg_wol(np))
3108 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3109 			dev->name);
3110 
3111 	/* For WOL we must restart the rx process in silent mode.
3112 	 * Write NULL to the RxRingPtr. Only possible if
3113 	 * rx process is stopped
3114 	 */
3115 	writel(0, ioaddr + RxRingPtr);
3116 
3117 	/* read WoL status to clear */
3118 	readl(ioaddr + WOLCmd);
3119 
3120 	/* PME on, clear status */
3121 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3122 
3123 	/* and restart the rx process */
3124 	writel(RxOn, ioaddr + ChipCmd);
3125 
3126 	if (enable_intr) {
3127 		/* enable the WOL interrupt.
3128 		 * Could be used to send a netlink message.
3129 		 */
3130 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3131 		natsemi_irq_enable(dev);
3132 	}
3133 }
3134 
3135 static int netdev_close(struct net_device *dev)
3136 {
3137 	void __iomem * ioaddr = ns_ioaddr(dev);
3138 	struct netdev_private *np = netdev_priv(dev);
3139 	const int irq = np->pci_dev->irq;
3140 
3141 	if (netif_msg_ifdown(np))
3142 		printk(KERN_DEBUG
3143 			"%s: Shutting down ethercard, status was %#04x.\n",
3144 			dev->name, (int)readl(ioaddr + ChipCmd));
3145 	if (netif_msg_pktdata(np))
3146 		printk(KERN_DEBUG
3147 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3148 			dev->name, np->cur_tx, np->dirty_tx,
3149 			np->cur_rx, np->dirty_rx);
3150 
3151 	napi_disable(&np->napi);
3152 
3153 	/*
3154 	 * FIXME: what if someone tries to close a device
3155 	 * that is suspended?
3156 	 * Should we reenable the nic to switch to
3157 	 * the final WOL settings?
3158 	 */
3159 
3160 	del_timer_sync(&np->timer);
3161 	disable_irq(irq);
3162 	spin_lock_irq(&np->lock);
3163 	natsemi_irq_disable(dev);
3164 	np->hands_off = 1;
3165 	spin_unlock_irq(&np->lock);
3166 	enable_irq(irq);
3167 
3168 	free_irq(irq, dev);
3169 
3170 	/* Interrupt disabled, interrupt handler released,
3171 	 * queue stopped, timer deleted, rtnl_lock held
3172 	 * All async codepaths that access the driver are disabled.
3173 	 */
3174 	spin_lock_irq(&np->lock);
3175 	np->hands_off = 0;
3176 	readl(ioaddr + IntrMask);
3177 	readw(ioaddr + MIntrStatus);
3178 
3179 	/* Freeze Stats */
3180 	writel(StatsFreeze, ioaddr + StatsCtrl);
3181 
3182 	/* Stop the chip's Tx and Rx processes. */
3183 	natsemi_stop_rxtx(dev);
3184 
3185 	__get_stats(dev);
3186 	spin_unlock_irq(&np->lock);
3187 
3188 	/* clear the carrier last - an interrupt could reenable it otherwise */
3189 	netif_carrier_off(dev);
3190 	netif_stop_queue(dev);
3191 
3192 	dump_ring(dev);
3193 	drain_ring(dev);
3194 	free_ring(dev);
3195 
3196 	{
3197 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3198 		if (wol) {
3199 			/* restart the NIC in WOL mode.
3200 			 * The nic must be stopped for this.
3201 			 */
3202 			enable_wol_mode(dev, 0);
3203 		} else {
3204 			/* Restore PME enable bit unmolested */
3205 			writel(np->SavedClkRun, ioaddr + ClkRun);
3206 		}
3207 	}
3208 	return 0;
3209 }
3210 
3211 
3212 static void natsemi_remove1(struct pci_dev *pdev)
3213 {
3214 	struct net_device *dev = pci_get_drvdata(pdev);
3215 	void __iomem * ioaddr = ns_ioaddr(dev);
3216 
3217 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3218 	unregister_netdev (dev);
3219 	pci_release_regions (pdev);
3220 	iounmap(ioaddr);
3221 	free_netdev (dev);
3222 }
3223 
3224 #ifdef CONFIG_PM
3225 
3226 /*
3227  * The ns83815 chip doesn't have explicit RxStop bits.
3228  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3229  * of the nic, thus this function must be very careful:
3230  *
3231  * suspend/resume synchronization:
3232  * entry points:
3233  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3234  *   start_tx, ns_tx_timeout
3235  *
3236  * No function accesses the hardware without checking np->hands_off.
3237  *	the check occurs under spin_lock_irq(&np->lock);
3238  * exceptions:
3239  *	* netdev_ioctl: noncritical access.
3240  *	* netdev_open: cannot happen due to the device_detach
3241  *	* netdev_close: doesn't hurt.
3242  *	* netdev_timer: timer stopped by natsemi_suspend.
3243  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3244  *		disable_irq() to enforce synchronization.
3245  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3246  *              sets hands_off, disables interrupts and then waits with
3247  *              napi_disable().
3248  *
3249  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3250  */
3251 
3252 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3253 {
3254 	struct net_device *dev = pci_get_drvdata (pdev);
3255 	struct netdev_private *np = netdev_priv(dev);
3256 	void __iomem * ioaddr = ns_ioaddr(dev);
3257 
3258 	rtnl_lock();
3259 	if (netif_running (dev)) {
3260 		const int irq = np->pci_dev->irq;
3261 
3262 		del_timer_sync(&np->timer);
3263 
3264 		disable_irq(irq);
3265 		spin_lock_irq(&np->lock);
3266 
3267 		natsemi_irq_disable(dev);
3268 		np->hands_off = 1;
3269 		natsemi_stop_rxtx(dev);
3270 		netif_stop_queue(dev);
3271 
3272 		spin_unlock_irq(&np->lock);
3273 		enable_irq(irq);
3274 
3275 		napi_disable(&np->napi);
3276 
3277 		/* Update the error counts. */
3278 		__get_stats(dev);
3279 
3280 		/* pci_power_off(pdev, -1); */
3281 		drain_ring(dev);
3282 		{
3283 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3284 			/* Restore PME enable bit */
3285 			if (wol) {
3286 				/* restart the NIC in WOL mode.
3287 				 * The nic must be stopped for this.
3288 				 * FIXME: use the WOL interrupt
3289 				 */
3290 				enable_wol_mode(dev, 0);
3291 			} else {
3292 				/* Restore PME enable bit unmolested */
3293 				writel(np->SavedClkRun, ioaddr + ClkRun);
3294 			}
3295 		}
3296 	}
3297 	netif_device_detach(dev);
3298 	rtnl_unlock();
3299 	return 0;
3300 }
3301 
3302 
3303 static int natsemi_resume (struct pci_dev *pdev)
3304 {
3305 	struct net_device *dev = pci_get_drvdata (pdev);
3306 	struct netdev_private *np = netdev_priv(dev);
3307 	int ret = 0;
3308 
3309 	rtnl_lock();
3310 	if (netif_device_present(dev))
3311 		goto out;
3312 	if (netif_running(dev)) {
3313 		const int irq = np->pci_dev->irq;
3314 
3315 		BUG_ON(!np->hands_off);
3316 		ret = pci_enable_device(pdev);
3317 		if (ret < 0) {
3318 			dev_err(&pdev->dev,
3319 				"pci_enable_device() failed: %d\n", ret);
3320 			goto out;
3321 		}
3322 	/*	pci_power_on(pdev); */
3323 
3324 		napi_enable(&np->napi);
3325 
3326 		natsemi_reset(dev);
3327 		init_ring(dev);
3328 		disable_irq(irq);
3329 		spin_lock_irq(&np->lock);
3330 		np->hands_off = 0;
3331 		init_registers(dev);
3332 		netif_device_attach(dev);
3333 		spin_unlock_irq(&np->lock);
3334 		enable_irq(irq);
3335 
3336 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3337 	}
3338 	netif_device_attach(dev);
3339 out:
3340 	rtnl_unlock();
3341 	return ret;
3342 }
3343 
3344 #endif /* CONFIG_PM */
3345 
3346 static struct pci_driver natsemi_driver = {
3347 	.name		= DRV_NAME,
3348 	.id_table	= natsemi_pci_tbl,
3349 	.probe		= natsemi_probe1,
3350 	.remove		= natsemi_remove1,
3351 #ifdef CONFIG_PM
3352 	.suspend	= natsemi_suspend,
3353 	.resume		= natsemi_resume,
3354 #endif
3355 };
3356 
3357 static int __init natsemi_init_mod (void)
3358 {
3359 /* when a module, this is printed whether or not devices are found in probe */
3360 #ifdef MODULE
3361 	printk(version);
3362 #endif
3363 
3364 	return pci_register_driver(&natsemi_driver);
3365 }
3366 
3367 static void __exit natsemi_exit_mod (void)
3368 {
3369 	pci_unregister_driver (&natsemi_driver);
3370 }
3371 
3372 module_init(natsemi_init_mod);
3373 module_exit(natsemi_exit_mod);
3374 
3375