xref: /linux/drivers/net/ethernet/natsemi/natsemi.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	void __iomem *ioaddr;
551 	struct napi_struct napi;
552 	/* Media monitoring timer */
553 	struct timer_list timer;
554 	/* Frequently used values: keep some adjacent for cache effect */
555 	struct pci_dev *pci_dev;
556 	struct netdev_desc *rx_head_desc;
557 	/* Producer/consumer ring indices */
558 	unsigned int cur_rx, dirty_rx;
559 	unsigned int cur_tx, dirty_tx;
560 	/* Based on MTU+slack. */
561 	unsigned int rx_buf_sz;
562 	int oom;
563 	/* Interrupt status */
564 	u32 intr_status;
565 	/* Do not touch the nic registers */
566 	int hands_off;
567 	/* Don't pay attention to the reported link state. */
568 	int ignore_phy;
569 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570 	int mii;
571 	int phy_addr_external;
572 	unsigned int full_duplex;
573 	/* Rx filter */
574 	u32 cur_rx_mode;
575 	u32 rx_filter[16];
576 	/* FIFO and PCI burst thresholds */
577 	u32 tx_config, rx_config;
578 	/* original contents of ClkRun register */
579 	u32 SavedClkRun;
580 	/* silicon revision */
581 	u32 srr;
582 	/* expected DSPCFG value */
583 	u16 dspcfg;
584 	int dspcfg_workaround;
585 	/* parms saved in ethtool format */
586 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587 	u8	duplex;		/* Duplex, half or full */
588 	u8	autoneg;	/* Autonegotiation enabled */
589 	/* MII transceiver section */
590 	u16 advertising;
591 	unsigned int iosize;
592 	spinlock_t lock;
593 	u32 msg_enable;
594 	/* EEPROM data */
595 	int eeprom_size;
596 };
597 
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645 static void enable_wol_mode(struct net_device *dev, int enable_intr);
646 static int netdev_close(struct net_device *dev);
647 static int netdev_get_regs(struct net_device *dev, u8 *buf);
648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649 static const struct ethtool_ops ethtool_ops;
650 
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653          struct device_attribute *attr, char *buf); \
654 	 static ssize_t natsemi_set_##_name(struct device *dev, \
655 		struct device_attribute *attr, \
656 	        const char *buf, size_t count); \
657 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658 
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660          device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662          device_remove_file(&_dev->dev, &dev_attr_##_name)
663 
664 NATSEMI_ATTR(dspcfg_workaround);
665 
666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667 				  	      struct device_attribute *attr,
668 					      char *buf)
669 {
670 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
671 
672 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673 }
674 
675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 					     struct device_attribute *attr,
677 					     const char *buf, size_t count)
678 {
679 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 	int new_setting;
681 	unsigned long flags;
682 
683         /* Find out the new setting */
684         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685                 new_setting = 1;
686         else if (!strncmp("off", buf, count - 1) ||
687                  !strncmp("0", buf, count - 1))
688 		new_setting = 0;
689 	else
690                  return count;
691 
692 	spin_lock_irqsave(&np->lock, flags);
693 
694 	np->dspcfg_workaround = new_setting;
695 
696 	spin_unlock_irqrestore(&np->lock, flags);
697 
698 	return count;
699 }
700 
701 static inline void __iomem *ns_ioaddr(struct net_device *dev)
702 {
703 	struct netdev_private *np = netdev_priv(dev);
704 
705 	return np->ioaddr;
706 }
707 
708 static inline void natsemi_irq_enable(struct net_device *dev)
709 {
710 	writel(1, ns_ioaddr(dev) + IntrEnable);
711 	readl(ns_ioaddr(dev) + IntrEnable);
712 }
713 
714 static inline void natsemi_irq_disable(struct net_device *dev)
715 {
716 	writel(0, ns_ioaddr(dev) + IntrEnable);
717 	readl(ns_ioaddr(dev) + IntrEnable);
718 }
719 
720 static void move_int_phy(struct net_device *dev, int addr)
721 {
722 	struct netdev_private *np = netdev_priv(dev);
723 	void __iomem *ioaddr = ns_ioaddr(dev);
724 	int target = 31;
725 
726 	/*
727 	 * The internal phy is visible on the external mii bus. Therefore we must
728 	 * move it away before we can send commands to an external phy.
729 	 * There are two addresses we must avoid:
730 	 * - the address on the external phy that is used for transmission.
731 	 * - the address that we want to access. User space can access phys
732 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
733 	 *   phy that is used for transmission.
734 	 */
735 
736 	if (target == addr)
737 		target--;
738 	if (target == np->phy_addr_external)
739 		target--;
740 	writew(target, ioaddr + PhyCtrl);
741 	readw(ioaddr + PhyCtrl);
742 	udelay(1);
743 }
744 
745 static void natsemi_init_media(struct net_device *dev)
746 {
747 	struct netdev_private *np = netdev_priv(dev);
748 	u32 tmp;
749 
750 	if (np->ignore_phy)
751 		netif_carrier_on(dev);
752 	else
753 		netif_carrier_off(dev);
754 
755 	/* get the initial settings from hardware */
756 	tmp            = mdio_read(dev, MII_BMCR);
757 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
758 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
759 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
760 	np->advertising= mdio_read(dev, MII_ADVERTISE);
761 
762 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
763 	    netif_msg_probe(np)) {
764 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
765 			"10%s %s duplex.\n",
766 			pci_name(np->pci_dev),
767 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
768 			  "enabled, advertise" : "disabled, force",
769 			(np->advertising &
770 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
771 			    "0" : "",
772 			(np->advertising &
773 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
774 			    "full" : "half");
775 	}
776 	if (netif_msg_probe(np))
777 		printk(KERN_INFO
778 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
779 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
780 			np->advertising);
781 
782 }
783 
784 static const struct net_device_ops natsemi_netdev_ops = {
785 	.ndo_open		= netdev_open,
786 	.ndo_stop		= netdev_close,
787 	.ndo_start_xmit		= start_tx,
788 	.ndo_get_stats		= get_stats,
789 	.ndo_set_rx_mode	= set_rx_mode,
790 	.ndo_change_mtu		= natsemi_change_mtu,
791 	.ndo_do_ioctl		= netdev_ioctl,
792 	.ndo_tx_timeout 	= ns_tx_timeout,
793 	.ndo_set_mac_address 	= eth_mac_addr,
794 	.ndo_validate_addr	= eth_validate_addr,
795 #ifdef CONFIG_NET_POLL_CONTROLLER
796 	.ndo_poll_controller	= natsemi_poll_controller,
797 #endif
798 };
799 
800 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
801 {
802 	struct net_device *dev;
803 	struct netdev_private *np;
804 	int i, option, irq, chip_idx = ent->driver_data;
805 	static int find_cnt = -1;
806 	resource_size_t iostart;
807 	unsigned long iosize;
808 	void __iomem *ioaddr;
809 	const int pcibar = 1; /* PCI base address register */
810 	int prev_eedata;
811 	u32 tmp;
812 
813 /* when built into the kernel, we only print version if device is found */
814 #ifndef MODULE
815 	static int printed_version;
816 	if (!printed_version++)
817 		printk(version);
818 #endif
819 
820 	i = pci_enable_device(pdev);
821 	if (i) return i;
822 
823 	/* natsemi has a non-standard PM control register
824 	 * in PCI config space.  Some boards apparently need
825 	 * to be brought to D0 in this manner.
826 	 */
827 	pci_read_config_dword(pdev, PCIPM, &tmp);
828 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
829 		/* D0 state, disable PME assertion */
830 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
831 		pci_write_config_dword(pdev, PCIPM, newtmp);
832 	}
833 
834 	find_cnt++;
835 	iostart = pci_resource_start(pdev, pcibar);
836 	iosize = pci_resource_len(pdev, pcibar);
837 	irq = pdev->irq;
838 
839 	pci_set_master(pdev);
840 
841 	dev = alloc_etherdev(sizeof (struct netdev_private));
842 	if (!dev)
843 		return -ENOMEM;
844 	SET_NETDEV_DEV(dev, &pdev->dev);
845 
846 	i = pci_request_regions(pdev, DRV_NAME);
847 	if (i)
848 		goto err_pci_request_regions;
849 
850 	ioaddr = ioremap(iostart, iosize);
851 	if (!ioaddr) {
852 		i = -ENOMEM;
853 		goto err_ioremap;
854 	}
855 
856 	/* Work around the dropped serial bit. */
857 	prev_eedata = eeprom_read(ioaddr, 6);
858 	for (i = 0; i < 3; i++) {
859 		int eedata = eeprom_read(ioaddr, i + 7);
860 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
861 		dev->dev_addr[i*2+1] = eedata >> 7;
862 		prev_eedata = eedata;
863 	}
864 
865 	/* Store MAC Address in perm_addr */
866 	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
867 
868 	np = netdev_priv(dev);
869 	np->ioaddr = ioaddr;
870 
871 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
872 	np->dev = dev;
873 
874 	np->pci_dev = pdev;
875 	pci_set_drvdata(pdev, dev);
876 	np->iosize = iosize;
877 	spin_lock_init(&np->lock);
878 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
879 	np->hands_off = 0;
880 	np->intr_status = 0;
881 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
882 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
883 		np->ignore_phy = 1;
884 	else
885 		np->ignore_phy = 0;
886 	np->dspcfg_workaround = dspcfg_workaround;
887 
888 	/* Initial port:
889 	 * - If configured to ignore the PHY set up for external.
890 	 * - If the nic was configured to use an external phy and if find_mii
891 	 *   finds a phy: use external port, first phy that replies.
892 	 * - Otherwise: internal port.
893 	 * Note that the phy address for the internal phy doesn't matter:
894 	 * The address would be used to access a phy over the mii bus, but
895 	 * the internal phy is accessed through mapped registers.
896 	 */
897 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
898 		dev->if_port = PORT_MII;
899 	else
900 		dev->if_port = PORT_TP;
901 	/* Reset the chip to erase previous misconfiguration. */
902 	natsemi_reload_eeprom(dev);
903 	natsemi_reset(dev);
904 
905 	if (dev->if_port != PORT_TP) {
906 		np->phy_addr_external = find_mii(dev);
907 		/* If we're ignoring the PHY it doesn't matter if we can't
908 		 * find one. */
909 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
910 			dev->if_port = PORT_TP;
911 			np->phy_addr_external = PHY_ADDR_INTERNAL;
912 		}
913 	} else {
914 		np->phy_addr_external = PHY_ADDR_INTERNAL;
915 	}
916 
917 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
918 	/* The lower four bits are the media type. */
919 	if (option) {
920 		if (option & 0x200)
921 			np->full_duplex = 1;
922 		if (option & 15)
923 			printk(KERN_INFO
924 				"natsemi %s: ignoring user supplied media type %d",
925 				pci_name(np->pci_dev), option & 15);
926 	}
927 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
928 		np->full_duplex = 1;
929 
930 	dev->netdev_ops = &natsemi_netdev_ops;
931 	dev->watchdog_timeo = TX_TIMEOUT;
932 
933 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
934 
935 	if (mtu)
936 		dev->mtu = mtu;
937 
938 	natsemi_init_media(dev);
939 
940 	/* save the silicon revision for later querying */
941 	np->srr = readl(ioaddr + SiliconRev);
942 	if (netif_msg_hw(np))
943 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
944 				pci_name(np->pci_dev), np->srr);
945 
946 	i = register_netdev(dev);
947 	if (i)
948 		goto err_register_netdev;
949 	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
950 	if (i)
951 		goto err_create_file;
952 
953 	if (netif_msg_drv(np)) {
954 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
955 		       "(%s), %pM, IRQ %d",
956 		       dev->name, natsemi_pci_info[chip_idx].name,
957 		       (unsigned long long)iostart, pci_name(np->pci_dev),
958 		       dev->dev_addr, irq);
959 		if (dev->if_port == PORT_TP)
960 			printk(", port TP.\n");
961 		else if (np->ignore_phy)
962 			printk(", port MII, ignoring PHY\n");
963 		else
964 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
965 	}
966 	return 0;
967 
968  err_create_file:
969  	unregister_netdev(dev);
970 
971  err_register_netdev:
972 	iounmap(ioaddr);
973 
974  err_ioremap:
975 	pci_release_regions(pdev);
976 	pci_set_drvdata(pdev, NULL);
977 
978  err_pci_request_regions:
979 	free_netdev(dev);
980 	return i;
981 }
982 
983 
984 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
985    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
986 
987 /* Delay between EEPROM clock transitions.
988    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
989    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
990    made udelay() unreliable.
991    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
992    deprecated.
993 */
994 #define eeprom_delay(ee_addr)	readl(ee_addr)
995 
996 #define EE_Write0 (EE_ChipSelect)
997 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
998 
999 /* The EEPROM commands include the alway-set leading bit. */
1000 enum EEPROM_Cmds {
1001 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1002 };
1003 
1004 static int eeprom_read(void __iomem *addr, int location)
1005 {
1006 	int i;
1007 	int retval = 0;
1008 	void __iomem *ee_addr = addr + EECtrl;
1009 	int read_cmd = location | EE_ReadCmd;
1010 
1011 	writel(EE_Write0, ee_addr);
1012 
1013 	/* Shift the read command bits out. */
1014 	for (i = 10; i >= 0; i--) {
1015 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1016 		writel(dataval, ee_addr);
1017 		eeprom_delay(ee_addr);
1018 		writel(dataval | EE_ShiftClk, ee_addr);
1019 		eeprom_delay(ee_addr);
1020 	}
1021 	writel(EE_ChipSelect, ee_addr);
1022 	eeprom_delay(ee_addr);
1023 
1024 	for (i = 0; i < 16; i++) {
1025 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1026 		eeprom_delay(ee_addr);
1027 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1028 		writel(EE_ChipSelect, ee_addr);
1029 		eeprom_delay(ee_addr);
1030 	}
1031 
1032 	/* Terminate the EEPROM access. */
1033 	writel(EE_Write0, ee_addr);
1034 	writel(0, ee_addr);
1035 	return retval;
1036 }
1037 
1038 /* MII transceiver control section.
1039  * The 83815 series has an internal transceiver, and we present the
1040  * internal management registers as if they were MII connected.
1041  * External Phy registers are referenced through the MII interface.
1042  */
1043 
1044 /* clock transitions >= 20ns (25MHz)
1045  * One readl should be good to PCI @ 100MHz
1046  */
1047 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1048 
1049 static int mii_getbit (struct net_device *dev)
1050 {
1051 	int data;
1052 	void __iomem *ioaddr = ns_ioaddr(dev);
1053 
1054 	writel(MII_ShiftClk, ioaddr + EECtrl);
1055 	data = readl(ioaddr + EECtrl);
1056 	writel(0, ioaddr + EECtrl);
1057 	mii_delay(ioaddr);
1058 	return (data & MII_Data)? 1 : 0;
1059 }
1060 
1061 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1062 {
1063 	u32 i;
1064 	void __iomem *ioaddr = ns_ioaddr(dev);
1065 
1066 	for (i = (1 << (len-1)); i; i >>= 1)
1067 	{
1068 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1069 		writel(mdio_val, ioaddr + EECtrl);
1070 		mii_delay(ioaddr);
1071 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1072 		mii_delay(ioaddr);
1073 	}
1074 	writel(0, ioaddr + EECtrl);
1075 	mii_delay(ioaddr);
1076 }
1077 
1078 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1079 {
1080 	u32 cmd;
1081 	int i;
1082 	u32 retval = 0;
1083 
1084 	/* Ensure sync */
1085 	mii_send_bits (dev, 0xffffffff, 32);
1086 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1087 	/* ST,OP = 0110'b for read operation */
1088 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1089 	mii_send_bits (dev, cmd, 14);
1090 	/* Turnaround */
1091 	if (mii_getbit (dev))
1092 		return 0;
1093 	/* Read data */
1094 	for (i = 0; i < 16; i++) {
1095 		retval <<= 1;
1096 		retval |= mii_getbit (dev);
1097 	}
1098 	/* End cycle */
1099 	mii_getbit (dev);
1100 	return retval;
1101 }
1102 
1103 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1104 {
1105 	u32 cmd;
1106 
1107 	/* Ensure sync */
1108 	mii_send_bits (dev, 0xffffffff, 32);
1109 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1110 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1111 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1112 	mii_send_bits (dev, cmd, 32);
1113 	/* End cycle */
1114 	mii_getbit (dev);
1115 }
1116 
1117 static int mdio_read(struct net_device *dev, int reg)
1118 {
1119 	struct netdev_private *np = netdev_priv(dev);
1120 	void __iomem *ioaddr = ns_ioaddr(dev);
1121 
1122 	/* The 83815 series has two ports:
1123 	 * - an internal transceiver
1124 	 * - an external mii bus
1125 	 */
1126 	if (dev->if_port == PORT_TP)
1127 		return readw(ioaddr+BasicControl+(reg<<2));
1128 	else
1129 		return miiport_read(dev, np->phy_addr_external, reg);
1130 }
1131 
1132 static void mdio_write(struct net_device *dev, int reg, u16 data)
1133 {
1134 	struct netdev_private *np = netdev_priv(dev);
1135 	void __iomem *ioaddr = ns_ioaddr(dev);
1136 
1137 	/* The 83815 series has an internal transceiver; handle separately */
1138 	if (dev->if_port == PORT_TP)
1139 		writew(data, ioaddr+BasicControl+(reg<<2));
1140 	else
1141 		miiport_write(dev, np->phy_addr_external, reg, data);
1142 }
1143 
1144 static void init_phy_fixup(struct net_device *dev)
1145 {
1146 	struct netdev_private *np = netdev_priv(dev);
1147 	void __iomem *ioaddr = ns_ioaddr(dev);
1148 	int i;
1149 	u32 cfg;
1150 	u16 tmp;
1151 
1152 	/* restore stuff lost when power was out */
1153 	tmp = mdio_read(dev, MII_BMCR);
1154 	if (np->autoneg == AUTONEG_ENABLE) {
1155 		/* renegotiate if something changed */
1156 		if ((tmp & BMCR_ANENABLE) == 0 ||
1157 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1158 		{
1159 			/* turn on autonegotiation and force negotiation */
1160 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1161 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1162 		}
1163 	} else {
1164 		/* turn off auto negotiation, set speed and duplexity */
1165 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1166 		if (np->speed == SPEED_100)
1167 			tmp |= BMCR_SPEED100;
1168 		if (np->duplex == DUPLEX_FULL)
1169 			tmp |= BMCR_FULLDPLX;
1170 		/*
1171 		 * Note: there is no good way to inform the link partner
1172 		 * that our capabilities changed. The user has to unplug
1173 		 * and replug the network cable after some changes, e.g.
1174 		 * after switching from 10HD, autoneg off to 100 HD,
1175 		 * autoneg off.
1176 		 */
1177 	}
1178 	mdio_write(dev, MII_BMCR, tmp);
1179 	readl(ioaddr + ChipConfig);
1180 	udelay(1);
1181 
1182 	/* find out what phy this is */
1183 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1184 				+ mdio_read(dev, MII_PHYSID2);
1185 
1186 	/* handle external phys here */
1187 	switch (np->mii) {
1188 	case PHYID_AM79C874:
1189 		/* phy specific configuration for fibre/tp operation */
1190 		tmp = mdio_read(dev, MII_MCTRL);
1191 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1192 		if (dev->if_port == PORT_FIBRE)
1193 			tmp |= MII_FX_SEL;
1194 		else
1195 			tmp |= MII_EN_SCRM;
1196 		mdio_write(dev, MII_MCTRL, tmp);
1197 		break;
1198 	default:
1199 		break;
1200 	}
1201 	cfg = readl(ioaddr + ChipConfig);
1202 	if (cfg & CfgExtPhy)
1203 		return;
1204 
1205 	/* On page 78 of the spec, they recommend some settings for "optimum
1206 	   performance" to be done in sequence.  These settings optimize some
1207 	   of the 100Mbit autodetection circuitry.  They say we only want to
1208 	   do this for rev C of the chip, but engineers at NSC (Bradley
1209 	   Kennedy) recommends always setting them.  If you don't, you get
1210 	   errors on some autonegotiations that make the device unusable.
1211 
1212 	   It seems that the DSP needs a few usec to reinitialize after
1213 	   the start of the phy. Just retry writing these values until they
1214 	   stick.
1215 	*/
1216 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1217 
1218 		int dspcfg;
1219 		writew(1, ioaddr + PGSEL);
1220 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1221 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1222 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1223 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1224 		writew(np->dspcfg, ioaddr + DSPCFG);
1225 		writew(SDCFG_VAL, ioaddr + SDCFG);
1226 		writew(0, ioaddr + PGSEL);
1227 		readl(ioaddr + ChipConfig);
1228 		udelay(10);
1229 
1230 		writew(1, ioaddr + PGSEL);
1231 		dspcfg = readw(ioaddr + DSPCFG);
1232 		writew(0, ioaddr + PGSEL);
1233 		if (np->dspcfg == dspcfg)
1234 			break;
1235 	}
1236 
1237 	if (netif_msg_link(np)) {
1238 		if (i==NATSEMI_HW_TIMEOUT) {
1239 			printk(KERN_INFO
1240 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1241 				dev->name, i*10);
1242 		} else {
1243 			printk(KERN_INFO
1244 				"%s: DSPCFG accepted after %d usec.\n",
1245 				dev->name, i*10);
1246 		}
1247 	}
1248 	/*
1249 	 * Enable PHY Specific event based interrupts.  Link state change
1250 	 * and Auto-Negotiation Completion are among the affected.
1251 	 * Read the intr status to clear it (needed for wake events).
1252 	 */
1253 	readw(ioaddr + MIntrStatus);
1254 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1255 }
1256 
1257 static int switch_port_external(struct net_device *dev)
1258 {
1259 	struct netdev_private *np = netdev_priv(dev);
1260 	void __iomem *ioaddr = ns_ioaddr(dev);
1261 	u32 cfg;
1262 
1263 	cfg = readl(ioaddr + ChipConfig);
1264 	if (cfg & CfgExtPhy)
1265 		return 0;
1266 
1267 	if (netif_msg_link(np)) {
1268 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1269 				dev->name);
1270 	}
1271 
1272 	/* 1) switch back to external phy */
1273 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1274 	readl(ioaddr + ChipConfig);
1275 	udelay(1);
1276 
1277 	/* 2) reset the external phy: */
1278 	/* resetting the external PHY has been known to cause a hub supplying
1279 	 * power over Ethernet to kill the power.  We don't want to kill
1280 	 * power to this computer, so we avoid resetting the phy.
1281 	 */
1282 
1283 	/* 3) reinit the phy fixup, it got lost during power down. */
1284 	move_int_phy(dev, np->phy_addr_external);
1285 	init_phy_fixup(dev);
1286 
1287 	return 1;
1288 }
1289 
1290 static int switch_port_internal(struct net_device *dev)
1291 {
1292 	struct netdev_private *np = netdev_priv(dev);
1293 	void __iomem *ioaddr = ns_ioaddr(dev);
1294 	int i;
1295 	u32 cfg;
1296 	u16 bmcr;
1297 
1298 	cfg = readl(ioaddr + ChipConfig);
1299 	if (!(cfg &CfgExtPhy))
1300 		return 0;
1301 
1302 	if (netif_msg_link(np)) {
1303 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1304 				dev->name);
1305 	}
1306 	/* 1) switch back to internal phy: */
1307 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1308 	writel(cfg, ioaddr + ChipConfig);
1309 	readl(ioaddr + ChipConfig);
1310 	udelay(1);
1311 
1312 	/* 2) reset the internal phy: */
1313 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1314 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1315 	readl(ioaddr + ChipConfig);
1316 	udelay(10);
1317 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1318 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1319 		if (!(bmcr & BMCR_RESET))
1320 			break;
1321 		udelay(10);
1322 	}
1323 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1324 		printk(KERN_INFO
1325 			"%s: phy reset did not complete in %d usec.\n",
1326 			dev->name, i*10);
1327 	}
1328 	/* 3) reinit the phy fixup, it got lost during power down. */
1329 	init_phy_fixup(dev);
1330 
1331 	return 1;
1332 }
1333 
1334 /* Scan for a PHY on the external mii bus.
1335  * There are two tricky points:
1336  * - Do not scan while the internal phy is enabled. The internal phy will
1337  *   crash: e.g. reads from the DSPCFG register will return odd values and
1338  *   the nasty random phy reset code will reset the nic every few seconds.
1339  * - The internal phy must be moved around, an external phy could
1340  *   have the same address as the internal phy.
1341  */
1342 static int find_mii(struct net_device *dev)
1343 {
1344 	struct netdev_private *np = netdev_priv(dev);
1345 	int tmp;
1346 	int i;
1347 	int did_switch;
1348 
1349 	/* Switch to external phy */
1350 	did_switch = switch_port_external(dev);
1351 
1352 	/* Scan the possible phy addresses:
1353 	 *
1354 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1355 	 * supported due to lack of test hardware. User space should
1356 	 * handle it through ethtool.
1357 	 */
1358 	for (i = 1; i <= 31; i++) {
1359 		move_int_phy(dev, i);
1360 		tmp = miiport_read(dev, i, MII_BMSR);
1361 		if (tmp != 0xffff && tmp != 0x0000) {
1362 			/* found something! */
1363 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1364 					+ mdio_read(dev, MII_PHYSID2);
1365 	 		if (netif_msg_probe(np)) {
1366 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1367 						pci_name(np->pci_dev), np->mii, i);
1368 			}
1369 			break;
1370 		}
1371 	}
1372 	/* And switch back to internal phy: */
1373 	if (did_switch)
1374 		switch_port_internal(dev);
1375 	return i;
1376 }
1377 
1378 /* CFG bits [13:16] [18:23] */
1379 #define CFG_RESET_SAVE 0xfde000
1380 /* WCSR bits [0:4] [9:10] */
1381 #define WCSR_RESET_SAVE 0x61f
1382 /* RFCR bits [20] [22] [27:31] */
1383 #define RFCR_RESET_SAVE 0xf8500000
1384 
1385 static void natsemi_reset(struct net_device *dev)
1386 {
1387 	int i;
1388 	u32 cfg;
1389 	u32 wcsr;
1390 	u32 rfcr;
1391 	u16 pmatch[3];
1392 	u16 sopass[3];
1393 	struct netdev_private *np = netdev_priv(dev);
1394 	void __iomem *ioaddr = ns_ioaddr(dev);
1395 
1396 	/*
1397 	 * Resetting the chip causes some registers to be lost.
1398 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1399 	 * we save the state that would have been loaded from EEPROM
1400 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1401 	 * whoever calls this will follow up with init_registers() eventually.
1402 	 */
1403 
1404 	/* CFG */
1405 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1406 	/* WCSR */
1407 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1408 	/* RFCR */
1409 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1410 	/* PMATCH */
1411 	for (i = 0; i < 3; i++) {
1412 		writel(i*2, ioaddr + RxFilterAddr);
1413 		pmatch[i] = readw(ioaddr + RxFilterData);
1414 	}
1415 	/* SOPAS */
1416 	for (i = 0; i < 3; i++) {
1417 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1418 		sopass[i] = readw(ioaddr + RxFilterData);
1419 	}
1420 
1421 	/* now whack the chip */
1422 	writel(ChipReset, ioaddr + ChipCmd);
1423 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1424 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1425 			break;
1426 		udelay(5);
1427 	}
1428 	if (i==NATSEMI_HW_TIMEOUT) {
1429 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1430 			dev->name, i*5);
1431 	} else if (netif_msg_hw(np)) {
1432 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1433 			dev->name, i*5);
1434 	}
1435 
1436 	/* restore CFG */
1437 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1438 	/* turn on external phy if it was selected */
1439 	if (dev->if_port == PORT_TP)
1440 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1441 	else
1442 		cfg |= (CfgExtPhy | CfgPhyDis);
1443 	writel(cfg, ioaddr + ChipConfig);
1444 	/* restore WCSR */
1445 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1446 	writel(wcsr, ioaddr + WOLCmd);
1447 	/* read RFCR */
1448 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1449 	/* restore PMATCH */
1450 	for (i = 0; i < 3; i++) {
1451 		writel(i*2, ioaddr + RxFilterAddr);
1452 		writew(pmatch[i], ioaddr + RxFilterData);
1453 	}
1454 	for (i = 0; i < 3; i++) {
1455 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1456 		writew(sopass[i], ioaddr + RxFilterData);
1457 	}
1458 	/* restore RFCR */
1459 	writel(rfcr, ioaddr + RxFilterAddr);
1460 }
1461 
1462 static void reset_rx(struct net_device *dev)
1463 {
1464 	int i;
1465 	struct netdev_private *np = netdev_priv(dev);
1466 	void __iomem *ioaddr = ns_ioaddr(dev);
1467 
1468 	np->intr_status &= ~RxResetDone;
1469 
1470 	writel(RxReset, ioaddr + ChipCmd);
1471 
1472 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1473 		np->intr_status |= readl(ioaddr + IntrStatus);
1474 		if (np->intr_status & RxResetDone)
1475 			break;
1476 		udelay(15);
1477 	}
1478 	if (i==NATSEMI_HW_TIMEOUT) {
1479 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1480 		       dev->name, i*15);
1481 	} else if (netif_msg_hw(np)) {
1482 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1483 		       dev->name, i*15);
1484 	}
1485 }
1486 
1487 static void natsemi_reload_eeprom(struct net_device *dev)
1488 {
1489 	struct netdev_private *np = netdev_priv(dev);
1490 	void __iomem *ioaddr = ns_ioaddr(dev);
1491 	int i;
1492 
1493 	writel(EepromReload, ioaddr + PCIBusCfg);
1494 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1495 		udelay(50);
1496 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1497 			break;
1498 	}
1499 	if (i==NATSEMI_HW_TIMEOUT) {
1500 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1501 			pci_name(np->pci_dev), i*50);
1502 	} else if (netif_msg_hw(np)) {
1503 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1504 			pci_name(np->pci_dev), i*50);
1505 	}
1506 }
1507 
1508 static void natsemi_stop_rxtx(struct net_device *dev)
1509 {
1510 	void __iomem * ioaddr = ns_ioaddr(dev);
1511 	struct netdev_private *np = netdev_priv(dev);
1512 	int i;
1513 
1514 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1515 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1516 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1517 			break;
1518 		udelay(5);
1519 	}
1520 	if (i==NATSEMI_HW_TIMEOUT) {
1521 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1522 			dev->name, i*5);
1523 	} else if (netif_msg_hw(np)) {
1524 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1525 			dev->name, i*5);
1526 	}
1527 }
1528 
1529 static int netdev_open(struct net_device *dev)
1530 {
1531 	struct netdev_private *np = netdev_priv(dev);
1532 	void __iomem * ioaddr = ns_ioaddr(dev);
1533 	const int irq = np->pci_dev->irq;
1534 	int i;
1535 
1536 	/* Reset the chip, just in case. */
1537 	natsemi_reset(dev);
1538 
1539 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1540 	if (i) return i;
1541 
1542 	if (netif_msg_ifup(np))
1543 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1544 			dev->name, irq);
1545 	i = alloc_ring(dev);
1546 	if (i < 0) {
1547 		free_irq(irq, dev);
1548 		return i;
1549 	}
1550 	napi_enable(&np->napi);
1551 
1552 	init_ring(dev);
1553 	spin_lock_irq(&np->lock);
1554 	init_registers(dev);
1555 	/* now set the MAC address according to dev->dev_addr */
1556 	for (i = 0; i < 3; i++) {
1557 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1558 
1559 		writel(i*2, ioaddr + RxFilterAddr);
1560 		writew(mac, ioaddr + RxFilterData);
1561 	}
1562 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1563 	spin_unlock_irq(&np->lock);
1564 
1565 	netif_start_queue(dev);
1566 
1567 	if (netif_msg_ifup(np))
1568 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1569 			dev->name, (int)readl(ioaddr + ChipCmd));
1570 
1571 	/* Set the timer to check for link beat. */
1572 	init_timer(&np->timer);
1573 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1574 	np->timer.data = (unsigned long)dev;
1575 	np->timer.function = netdev_timer; /* timer handler */
1576 	add_timer(&np->timer);
1577 
1578 	return 0;
1579 }
1580 
1581 static void do_cable_magic(struct net_device *dev)
1582 {
1583 	struct netdev_private *np = netdev_priv(dev);
1584 	void __iomem *ioaddr = ns_ioaddr(dev);
1585 
1586 	if (dev->if_port != PORT_TP)
1587 		return;
1588 
1589 	if (np->srr >= SRR_DP83816_A5)
1590 		return;
1591 
1592 	/*
1593 	 * 100 MBit links with short cables can trip an issue with the chip.
1594 	 * The problem manifests as lots of CRC errors and/or flickering
1595 	 * activity LED while idle.  This process is based on instructions
1596 	 * from engineers at National.
1597 	 */
1598 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1599 		u16 data;
1600 
1601 		writew(1, ioaddr + PGSEL);
1602 		/*
1603 		 * coefficient visibility should already be enabled via
1604 		 * DSPCFG | 0x1000
1605 		 */
1606 		data = readw(ioaddr + TSTDAT) & 0xff;
1607 		/*
1608 		 * the value must be negative, and within certain values
1609 		 * (these values all come from National)
1610 		 */
1611 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1612 			np = netdev_priv(dev);
1613 
1614 			/* the bug has been triggered - fix the coefficient */
1615 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1616 			/* lock the value */
1617 			data = readw(ioaddr + DSPCFG);
1618 			np->dspcfg = data | DSPCFG_LOCK;
1619 			writew(np->dspcfg, ioaddr + DSPCFG);
1620 		}
1621 		writew(0, ioaddr + PGSEL);
1622 	}
1623 }
1624 
1625 static void undo_cable_magic(struct net_device *dev)
1626 {
1627 	u16 data;
1628 	struct netdev_private *np = netdev_priv(dev);
1629 	void __iomem * ioaddr = ns_ioaddr(dev);
1630 
1631 	if (dev->if_port != PORT_TP)
1632 		return;
1633 
1634 	if (np->srr >= SRR_DP83816_A5)
1635 		return;
1636 
1637 	writew(1, ioaddr + PGSEL);
1638 	/* make sure the lock bit is clear */
1639 	data = readw(ioaddr + DSPCFG);
1640 	np->dspcfg = data & ~DSPCFG_LOCK;
1641 	writew(np->dspcfg, ioaddr + DSPCFG);
1642 	writew(0, ioaddr + PGSEL);
1643 }
1644 
1645 static void check_link(struct net_device *dev)
1646 {
1647 	struct netdev_private *np = netdev_priv(dev);
1648 	void __iomem * ioaddr = ns_ioaddr(dev);
1649 	int duplex = np->duplex;
1650 	u16 bmsr;
1651 
1652 	/* If we are ignoring the PHY then don't try reading it. */
1653 	if (np->ignore_phy)
1654 		goto propagate_state;
1655 
1656 	/* The link status field is latched: it remains low after a temporary
1657 	 * link failure until it's read. We need the current link status,
1658 	 * thus read twice.
1659 	 */
1660 	mdio_read(dev, MII_BMSR);
1661 	bmsr = mdio_read(dev, MII_BMSR);
1662 
1663 	if (!(bmsr & BMSR_LSTATUS)) {
1664 		if (netif_carrier_ok(dev)) {
1665 			if (netif_msg_link(np))
1666 				printk(KERN_NOTICE "%s: link down.\n",
1667 				       dev->name);
1668 			netif_carrier_off(dev);
1669 			undo_cable_magic(dev);
1670 		}
1671 		return;
1672 	}
1673 	if (!netif_carrier_ok(dev)) {
1674 		if (netif_msg_link(np))
1675 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1676 		netif_carrier_on(dev);
1677 		do_cable_magic(dev);
1678 	}
1679 
1680 	duplex = np->full_duplex;
1681 	if (!duplex) {
1682 		if (bmsr & BMSR_ANEGCOMPLETE) {
1683 			int tmp = mii_nway_result(
1684 				np->advertising & mdio_read(dev, MII_LPA));
1685 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1686 				duplex = 1;
1687 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1688 			duplex = 1;
1689 	}
1690 
1691 propagate_state:
1692 	/* if duplex is set then bit 28 must be set, too */
1693 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1694 		if (netif_msg_link(np))
1695 			printk(KERN_INFO
1696 				"%s: Setting %s-duplex based on negotiated "
1697 				"link capability.\n", dev->name,
1698 				duplex ? "full" : "half");
1699 		if (duplex) {
1700 			np->rx_config |= RxAcceptTx;
1701 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1702 		} else {
1703 			np->rx_config &= ~RxAcceptTx;
1704 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1705 		}
1706 		writel(np->tx_config, ioaddr + TxConfig);
1707 		writel(np->rx_config, ioaddr + RxConfig);
1708 	}
1709 }
1710 
1711 static void init_registers(struct net_device *dev)
1712 {
1713 	struct netdev_private *np = netdev_priv(dev);
1714 	void __iomem * ioaddr = ns_ioaddr(dev);
1715 
1716 	init_phy_fixup(dev);
1717 
1718 	/* clear any interrupts that are pending, such as wake events */
1719 	readl(ioaddr + IntrStatus);
1720 
1721 	writel(np->ring_dma, ioaddr + RxRingPtr);
1722 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1723 		ioaddr + TxRingPtr);
1724 
1725 	/* Initialize other registers.
1726 	 * Configure the PCI bus bursts and FIFO thresholds.
1727 	 * Configure for standard, in-spec Ethernet.
1728 	 * Start with half-duplex. check_link will update
1729 	 * to the correct settings.
1730 	 */
1731 
1732 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1733 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1734 	 * MXDMA: 0: up to 256 byte bursts.
1735 	 * 	MXDMA must be <= FLTH
1736 	 * ECRETRY=1
1737 	 * ATP=1
1738 	 */
1739 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1740 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1741 	writel(np->tx_config, ioaddr + TxConfig);
1742 
1743 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1744 	 * MXDMA 0: up to 256 byte bursts
1745 	 */
1746 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1747 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1748 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1749 		np->rx_config |= RxAcceptLong;
1750 
1751 	writel(np->rx_config, ioaddr + RxConfig);
1752 
1753 	/* Disable PME:
1754 	 * The PME bit is initialized from the EEPROM contents.
1755 	 * PCI cards probably have PME disabled, but motherboard
1756 	 * implementations may have PME set to enable WakeOnLan.
1757 	 * With PME set the chip will scan incoming packets but
1758 	 * nothing will be written to memory. */
1759 	np->SavedClkRun = readl(ioaddr + ClkRun);
1760 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1761 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1762 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1763 			dev->name, readl(ioaddr + WOLCmd));
1764 	}
1765 
1766 	check_link(dev);
1767 	__set_rx_mode(dev);
1768 
1769 	/* Enable interrupts by setting the interrupt mask. */
1770 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1771 	natsemi_irq_enable(dev);
1772 
1773 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1774 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1775 }
1776 
1777 /*
1778  * netdev_timer:
1779  * Purpose:
1780  * 1) check for link changes. Usually they are handled by the MII interrupt
1781  *    but it doesn't hurt to check twice.
1782  * 2) check for sudden death of the NIC:
1783  *    It seems that a reference set for this chip went out with incorrect info,
1784  *    and there exist boards that aren't quite right.  An unexpected voltage
1785  *    drop can cause the PHY to get itself in a weird state (basically reset).
1786  *    NOTE: this only seems to affect revC chips.  The user can disable
1787  *    this check via dspcfg_workaround sysfs option.
1788  * 3) check of death of the RX path due to OOM
1789  */
1790 static void netdev_timer(unsigned long data)
1791 {
1792 	struct net_device *dev = (struct net_device *)data;
1793 	struct netdev_private *np = netdev_priv(dev);
1794 	void __iomem * ioaddr = ns_ioaddr(dev);
1795 	int next_tick = NATSEMI_TIMER_FREQ;
1796 	const int irq = np->pci_dev->irq;
1797 
1798 	if (netif_msg_timer(np)) {
1799 		/* DO NOT read the IntrStatus register,
1800 		 * a read clears any pending interrupts.
1801 		 */
1802 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803 			dev->name);
1804 	}
1805 
1806 	if (dev->if_port == PORT_TP) {
1807 		u16 dspcfg;
1808 
1809 		spin_lock_irq(&np->lock);
1810 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1811 		writew(1, ioaddr+PGSEL);
1812 		dspcfg = readw(ioaddr+DSPCFG);
1813 		writew(0, ioaddr+PGSEL);
1814 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815 			if (!netif_queue_stopped(dev)) {
1816 				spin_unlock_irq(&np->lock);
1817 				if (netif_msg_drv(np))
1818 					printk(KERN_NOTICE "%s: possible phy reset: "
1819 						"re-initializing\n", dev->name);
1820 				disable_irq(irq);
1821 				spin_lock_irq(&np->lock);
1822 				natsemi_stop_rxtx(dev);
1823 				dump_ring(dev);
1824 				reinit_ring(dev);
1825 				init_registers(dev);
1826 				spin_unlock_irq(&np->lock);
1827 				enable_irq(irq);
1828 			} else {
1829 				/* hurry back */
1830 				next_tick = HZ;
1831 				spin_unlock_irq(&np->lock);
1832 			}
1833 		} else {
1834 			/* init_registers() calls check_link() for the above case */
1835 			check_link(dev);
1836 			spin_unlock_irq(&np->lock);
1837 		}
1838 	} else {
1839 		spin_lock_irq(&np->lock);
1840 		check_link(dev);
1841 		spin_unlock_irq(&np->lock);
1842 	}
1843 	if (np->oom) {
1844 		disable_irq(irq);
1845 		np->oom = 0;
1846 		refill_rx(dev);
1847 		enable_irq(irq);
1848 		if (!np->oom) {
1849 			writel(RxOn, ioaddr + ChipCmd);
1850 		} else {
1851 			next_tick = 1;
1852 		}
1853 	}
1854 
1855 	if (next_tick > 1)
1856 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857 	else
1858 		mod_timer(&np->timer, jiffies + next_tick);
1859 }
1860 
1861 static void dump_ring(struct net_device *dev)
1862 {
1863 	struct netdev_private *np = netdev_priv(dev);
1864 
1865 	if (netif_msg_pktdata(np)) {
1866 		int i;
1867 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868 		for (i = 0; i < TX_RING_SIZE; i++) {
1869 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870 				i, np->tx_ring[i].next_desc,
1871 				np->tx_ring[i].cmd_status,
1872 				np->tx_ring[i].addr);
1873 		}
1874 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875 		for (i = 0; i < RX_RING_SIZE; i++) {
1876 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877 				i, np->rx_ring[i].next_desc,
1878 				np->rx_ring[i].cmd_status,
1879 				np->rx_ring[i].addr);
1880 		}
1881 	}
1882 }
1883 
1884 static void ns_tx_timeout(struct net_device *dev)
1885 {
1886 	struct netdev_private *np = netdev_priv(dev);
1887 	void __iomem * ioaddr = ns_ioaddr(dev);
1888 	const int irq = np->pci_dev->irq;
1889 
1890 	disable_irq(irq);
1891 	spin_lock_irq(&np->lock);
1892 	if (!np->hands_off) {
1893 		if (netif_msg_tx_err(np))
1894 			printk(KERN_WARNING
1895 				"%s: Transmit timed out, status %#08x,"
1896 				" resetting...\n",
1897 				dev->name, readl(ioaddr + IntrStatus));
1898 		dump_ring(dev);
1899 
1900 		natsemi_reset(dev);
1901 		reinit_ring(dev);
1902 		init_registers(dev);
1903 	} else {
1904 		printk(KERN_WARNING
1905 			"%s: tx_timeout while in hands_off state?\n",
1906 			dev->name);
1907 	}
1908 	spin_unlock_irq(&np->lock);
1909 	enable_irq(irq);
1910 
1911 	dev->trans_start = jiffies; /* prevent tx timeout */
1912 	dev->stats.tx_errors++;
1913 	netif_wake_queue(dev);
1914 }
1915 
1916 static int alloc_ring(struct net_device *dev)
1917 {
1918 	struct netdev_private *np = netdev_priv(dev);
1919 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1920 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1921 		&np->ring_dma);
1922 	if (!np->rx_ring)
1923 		return -ENOMEM;
1924 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1925 	return 0;
1926 }
1927 
1928 static void refill_rx(struct net_device *dev)
1929 {
1930 	struct netdev_private *np = netdev_priv(dev);
1931 
1932 	/* Refill the Rx ring buffers. */
1933 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1934 		struct sk_buff *skb;
1935 		int entry = np->dirty_rx % RX_RING_SIZE;
1936 		if (np->rx_skbuff[entry] == NULL) {
1937 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1938 			skb = netdev_alloc_skb(dev, buflen);
1939 			np->rx_skbuff[entry] = skb;
1940 			if (skb == NULL)
1941 				break; /* Better luck next round. */
1942 			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1943 				skb->data, buflen, PCI_DMA_FROMDEVICE);
1944 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1945 		}
1946 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1947 	}
1948 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1949 		if (netif_msg_rx_err(np))
1950 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1951 		np->oom = 1;
1952 	}
1953 }
1954 
1955 static void set_bufsize(struct net_device *dev)
1956 {
1957 	struct netdev_private *np = netdev_priv(dev);
1958 	if (dev->mtu <= ETH_DATA_LEN)
1959 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1960 	else
1961 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1962 }
1963 
1964 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1965 static void init_ring(struct net_device *dev)
1966 {
1967 	struct netdev_private *np = netdev_priv(dev);
1968 	int i;
1969 
1970 	/* 1) TX ring */
1971 	np->dirty_tx = np->cur_tx = 0;
1972 	for (i = 0; i < TX_RING_SIZE; i++) {
1973 		np->tx_skbuff[i] = NULL;
1974 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1975 			+sizeof(struct netdev_desc)
1976 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1977 		np->tx_ring[i].cmd_status = 0;
1978 	}
1979 
1980 	/* 2) RX ring */
1981 	np->dirty_rx = 0;
1982 	np->cur_rx = RX_RING_SIZE;
1983 	np->oom = 0;
1984 	set_bufsize(dev);
1985 
1986 	np->rx_head_desc = &np->rx_ring[0];
1987 
1988 	/* Please be careful before changing this loop - at least gcc-2.95.1
1989 	 * miscompiles it otherwise.
1990 	 */
1991 	/* Initialize all Rx descriptors. */
1992 	for (i = 0; i < RX_RING_SIZE; i++) {
1993 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1994 				+sizeof(struct netdev_desc)
1995 				*((i+1)%RX_RING_SIZE));
1996 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1997 		np->rx_skbuff[i] = NULL;
1998 	}
1999 	refill_rx(dev);
2000 	dump_ring(dev);
2001 }
2002 
2003 static void drain_tx(struct net_device *dev)
2004 {
2005 	struct netdev_private *np = netdev_priv(dev);
2006 	int i;
2007 
2008 	for (i = 0; i < TX_RING_SIZE; i++) {
2009 		if (np->tx_skbuff[i]) {
2010 			pci_unmap_single(np->pci_dev,
2011 				np->tx_dma[i], np->tx_skbuff[i]->len,
2012 				PCI_DMA_TODEVICE);
2013 			dev_kfree_skb(np->tx_skbuff[i]);
2014 			dev->stats.tx_dropped++;
2015 		}
2016 		np->tx_skbuff[i] = NULL;
2017 	}
2018 }
2019 
2020 static void drain_rx(struct net_device *dev)
2021 {
2022 	struct netdev_private *np = netdev_priv(dev);
2023 	unsigned int buflen = np->rx_buf_sz;
2024 	int i;
2025 
2026 	/* Free all the skbuffs in the Rx queue. */
2027 	for (i = 0; i < RX_RING_SIZE; i++) {
2028 		np->rx_ring[i].cmd_status = 0;
2029 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2030 		if (np->rx_skbuff[i]) {
2031 			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2032 				buflen + NATSEMI_PADDING,
2033 				PCI_DMA_FROMDEVICE);
2034 			dev_kfree_skb(np->rx_skbuff[i]);
2035 		}
2036 		np->rx_skbuff[i] = NULL;
2037 	}
2038 }
2039 
2040 static void drain_ring(struct net_device *dev)
2041 {
2042 	drain_rx(dev);
2043 	drain_tx(dev);
2044 }
2045 
2046 static void free_ring(struct net_device *dev)
2047 {
2048 	struct netdev_private *np = netdev_priv(dev);
2049 	pci_free_consistent(np->pci_dev,
2050 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2051 		np->rx_ring, np->ring_dma);
2052 }
2053 
2054 static void reinit_rx(struct net_device *dev)
2055 {
2056 	struct netdev_private *np = netdev_priv(dev);
2057 	int i;
2058 
2059 	/* RX Ring */
2060 	np->dirty_rx = 0;
2061 	np->cur_rx = RX_RING_SIZE;
2062 	np->rx_head_desc = &np->rx_ring[0];
2063 	/* Initialize all Rx descriptors. */
2064 	for (i = 0; i < RX_RING_SIZE; i++)
2065 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2066 
2067 	refill_rx(dev);
2068 }
2069 
2070 static void reinit_ring(struct net_device *dev)
2071 {
2072 	struct netdev_private *np = netdev_priv(dev);
2073 	int i;
2074 
2075 	/* drain TX ring */
2076 	drain_tx(dev);
2077 	np->dirty_tx = np->cur_tx = 0;
2078 	for (i=0;i<TX_RING_SIZE;i++)
2079 		np->tx_ring[i].cmd_status = 0;
2080 
2081 	reinit_rx(dev);
2082 }
2083 
2084 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2085 {
2086 	struct netdev_private *np = netdev_priv(dev);
2087 	void __iomem * ioaddr = ns_ioaddr(dev);
2088 	unsigned entry;
2089 	unsigned long flags;
2090 
2091 	/* Note: Ordering is important here, set the field with the
2092 	   "ownership" bit last, and only then increment cur_tx. */
2093 
2094 	/* Calculate the next Tx descriptor entry. */
2095 	entry = np->cur_tx % TX_RING_SIZE;
2096 
2097 	np->tx_skbuff[entry] = skb;
2098 	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2099 				skb->data,skb->len, PCI_DMA_TODEVICE);
2100 
2101 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2102 
2103 	spin_lock_irqsave(&np->lock, flags);
2104 
2105 	if (!np->hands_off) {
2106 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2107 		/* StrongARM: Explicitly cache flush np->tx_ring and
2108 		 * skb->data,skb->len. */
2109 		wmb();
2110 		np->cur_tx++;
2111 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2112 			netdev_tx_done(dev);
2113 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2114 				netif_stop_queue(dev);
2115 		}
2116 		/* Wake the potentially-idle transmit channel. */
2117 		writel(TxOn, ioaddr + ChipCmd);
2118 	} else {
2119 		dev_kfree_skb_irq(skb);
2120 		dev->stats.tx_dropped++;
2121 	}
2122 	spin_unlock_irqrestore(&np->lock, flags);
2123 
2124 	if (netif_msg_tx_queued(np)) {
2125 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2126 			dev->name, np->cur_tx, entry);
2127 	}
2128 	return NETDEV_TX_OK;
2129 }
2130 
2131 static void netdev_tx_done(struct net_device *dev)
2132 {
2133 	struct netdev_private *np = netdev_priv(dev);
2134 
2135 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2136 		int entry = np->dirty_tx % TX_RING_SIZE;
2137 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2138 			break;
2139 		if (netif_msg_tx_done(np))
2140 			printk(KERN_DEBUG
2141 				"%s: tx frame #%d finished, status %#08x.\n",
2142 					dev->name, np->dirty_tx,
2143 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2144 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2145 			dev->stats.tx_packets++;
2146 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2147 		} else { /* Various Tx errors */
2148 			int tx_status =
2149 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2150 			if (tx_status & (DescTxAbort|DescTxExcColl))
2151 				dev->stats.tx_aborted_errors++;
2152 			if (tx_status & DescTxFIFO)
2153 				dev->stats.tx_fifo_errors++;
2154 			if (tx_status & DescTxCarrier)
2155 				dev->stats.tx_carrier_errors++;
2156 			if (tx_status & DescTxOOWCol)
2157 				dev->stats.tx_window_errors++;
2158 			dev->stats.tx_errors++;
2159 		}
2160 		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2161 					np->tx_skbuff[entry]->len,
2162 					PCI_DMA_TODEVICE);
2163 		/* Free the original skb. */
2164 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2165 		np->tx_skbuff[entry] = NULL;
2166 	}
2167 	if (netif_queue_stopped(dev) &&
2168 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2169 		/* The ring is no longer full, wake queue. */
2170 		netif_wake_queue(dev);
2171 	}
2172 }
2173 
2174 /* The interrupt handler doesn't actually handle interrupts itself, it
2175  * schedules a NAPI poll if there is anything to do. */
2176 static irqreturn_t intr_handler(int irq, void *dev_instance)
2177 {
2178 	struct net_device *dev = dev_instance;
2179 	struct netdev_private *np = netdev_priv(dev);
2180 	void __iomem * ioaddr = ns_ioaddr(dev);
2181 
2182 	/* Reading IntrStatus automatically acknowledges so don't do
2183 	 * that while interrupts are disabled, (for example, while a
2184 	 * poll is scheduled).  */
2185 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2186 		return IRQ_NONE;
2187 
2188 	np->intr_status = readl(ioaddr + IntrStatus);
2189 
2190 	if (!np->intr_status)
2191 		return IRQ_NONE;
2192 
2193 	if (netif_msg_intr(np))
2194 		printk(KERN_DEBUG
2195 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2196 		       dev->name, np->intr_status,
2197 		       readl(ioaddr + IntrMask));
2198 
2199 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2200 
2201 	if (napi_schedule_prep(&np->napi)) {
2202 		/* Disable interrupts and register for poll */
2203 		natsemi_irq_disable(dev);
2204 		__napi_schedule(&np->napi);
2205 	} else
2206 		printk(KERN_WARNING
2207 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2208 		       dev->name, np->intr_status,
2209 		       readl(ioaddr + IntrMask));
2210 
2211 	return IRQ_HANDLED;
2212 }
2213 
2214 /* This is the NAPI poll routine.  As well as the standard RX handling
2215  * it also handles all other interrupts that the chip might raise.
2216  */
2217 static int natsemi_poll(struct napi_struct *napi, int budget)
2218 {
2219 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2220 	struct net_device *dev = np->dev;
2221 	void __iomem * ioaddr = ns_ioaddr(dev);
2222 	int work_done = 0;
2223 
2224 	do {
2225 		if (netif_msg_intr(np))
2226 			printk(KERN_DEBUG
2227 			       "%s: Poll, status %#08x, mask %#08x.\n",
2228 			       dev->name, np->intr_status,
2229 			       readl(ioaddr + IntrMask));
2230 
2231 		/* netdev_rx() may read IntrStatus again if the RX state
2232 		 * machine falls over so do it first. */
2233 		if (np->intr_status &
2234 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2235 		     IntrRxErr | IntrRxOverrun)) {
2236 			netdev_rx(dev, &work_done, budget);
2237 		}
2238 
2239 		if (np->intr_status &
2240 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2241 			spin_lock(&np->lock);
2242 			netdev_tx_done(dev);
2243 			spin_unlock(&np->lock);
2244 		}
2245 
2246 		/* Abnormal error summary/uncommon events handlers. */
2247 		if (np->intr_status & IntrAbnormalSummary)
2248 			netdev_error(dev, np->intr_status);
2249 
2250 		if (work_done >= budget)
2251 			return work_done;
2252 
2253 		np->intr_status = readl(ioaddr + IntrStatus);
2254 	} while (np->intr_status);
2255 
2256 	napi_complete(napi);
2257 
2258 	/* Reenable interrupts providing nothing is trying to shut
2259 	 * the chip down. */
2260 	spin_lock(&np->lock);
2261 	if (!np->hands_off)
2262 		natsemi_irq_enable(dev);
2263 	spin_unlock(&np->lock);
2264 
2265 	return work_done;
2266 }
2267 
2268 /* This routine is logically part of the interrupt handler, but separated
2269    for clarity and better register allocation. */
2270 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2271 {
2272 	struct netdev_private *np = netdev_priv(dev);
2273 	int entry = np->cur_rx % RX_RING_SIZE;
2274 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2275 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2276 	unsigned int buflen = np->rx_buf_sz;
2277 	void __iomem * ioaddr = ns_ioaddr(dev);
2278 
2279 	/* If the driver owns the next entry it's a new packet. Send it up. */
2280 	while (desc_status < 0) { /* e.g. & DescOwn */
2281 		int pkt_len;
2282 		if (netif_msg_rx_status(np))
2283 			printk(KERN_DEBUG
2284 				"  netdev_rx() entry %d status was %#08x.\n",
2285 				entry, desc_status);
2286 		if (--boguscnt < 0)
2287 			break;
2288 
2289 		if (*work_done >= work_to_do)
2290 			break;
2291 
2292 		(*work_done)++;
2293 
2294 		pkt_len = (desc_status & DescSizeMask) - 4;
2295 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2296 			if (desc_status & DescMore) {
2297 				unsigned long flags;
2298 
2299 				if (netif_msg_rx_err(np))
2300 					printk(KERN_WARNING
2301 						"%s: Oversized(?) Ethernet "
2302 						"frame spanned multiple "
2303 						"buffers, entry %#08x "
2304 						"status %#08x.\n", dev->name,
2305 						np->cur_rx, desc_status);
2306 				dev->stats.rx_length_errors++;
2307 
2308 				/* The RX state machine has probably
2309 				 * locked up beneath us.  Follow the
2310 				 * reset procedure documented in
2311 				 * AN-1287. */
2312 
2313 				spin_lock_irqsave(&np->lock, flags);
2314 				reset_rx(dev);
2315 				reinit_rx(dev);
2316 				writel(np->ring_dma, ioaddr + RxRingPtr);
2317 				check_link(dev);
2318 				spin_unlock_irqrestore(&np->lock, flags);
2319 
2320 				/* We'll enable RX on exit from this
2321 				 * function. */
2322 				break;
2323 
2324 			} else {
2325 				/* There was an error. */
2326 				dev->stats.rx_errors++;
2327 				if (desc_status & (DescRxAbort|DescRxOver))
2328 					dev->stats.rx_over_errors++;
2329 				if (desc_status & (DescRxLong|DescRxRunt))
2330 					dev->stats.rx_length_errors++;
2331 				if (desc_status & (DescRxInvalid|DescRxAlign))
2332 					dev->stats.rx_frame_errors++;
2333 				if (desc_status & DescRxCRC)
2334 					dev->stats.rx_crc_errors++;
2335 			}
2336 		} else if (pkt_len > np->rx_buf_sz) {
2337 			/* if this is the tail of a double buffer
2338 			 * packet, we've already counted the error
2339 			 * on the first part.  Ignore the second half.
2340 			 */
2341 		} else {
2342 			struct sk_buff *skb;
2343 			/* Omit CRC size. */
2344 			/* Check if the packet is long enough to accept
2345 			 * without copying to a minimally-sized skbuff. */
2346 			if (pkt_len < rx_copybreak &&
2347 			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2348 				/* 16 byte align the IP header */
2349 				skb_reserve(skb, RX_OFFSET);
2350 				pci_dma_sync_single_for_cpu(np->pci_dev,
2351 					np->rx_dma[entry],
2352 					buflen,
2353 					PCI_DMA_FROMDEVICE);
2354 				skb_copy_to_linear_data(skb,
2355 					np->rx_skbuff[entry]->data, pkt_len);
2356 				skb_put(skb, pkt_len);
2357 				pci_dma_sync_single_for_device(np->pci_dev,
2358 					np->rx_dma[entry],
2359 					buflen,
2360 					PCI_DMA_FROMDEVICE);
2361 			} else {
2362 				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2363 						 buflen + NATSEMI_PADDING,
2364 						 PCI_DMA_FROMDEVICE);
2365 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2366 				np->rx_skbuff[entry] = NULL;
2367 			}
2368 			skb->protocol = eth_type_trans(skb, dev);
2369 			netif_receive_skb(skb);
2370 			dev->stats.rx_packets++;
2371 			dev->stats.rx_bytes += pkt_len;
2372 		}
2373 		entry = (++np->cur_rx) % RX_RING_SIZE;
2374 		np->rx_head_desc = &np->rx_ring[entry];
2375 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2376 	}
2377 	refill_rx(dev);
2378 
2379 	/* Restart Rx engine if stopped. */
2380 	if (np->oom)
2381 		mod_timer(&np->timer, jiffies + 1);
2382 	else
2383 		writel(RxOn, ioaddr + ChipCmd);
2384 }
2385 
2386 static void netdev_error(struct net_device *dev, int intr_status)
2387 {
2388 	struct netdev_private *np = netdev_priv(dev);
2389 	void __iomem * ioaddr = ns_ioaddr(dev);
2390 
2391 	spin_lock(&np->lock);
2392 	if (intr_status & LinkChange) {
2393 		u16 lpa = mdio_read(dev, MII_LPA);
2394 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2395 		    netif_msg_link(np)) {
2396 			printk(KERN_INFO
2397 				"%s: Autonegotiation advertising"
2398 				" %#04x  partner %#04x.\n", dev->name,
2399 				np->advertising, lpa);
2400 		}
2401 
2402 		/* read MII int status to clear the flag */
2403 		readw(ioaddr + MIntrStatus);
2404 		check_link(dev);
2405 	}
2406 	if (intr_status & StatsMax) {
2407 		__get_stats(dev);
2408 	}
2409 	if (intr_status & IntrTxUnderrun) {
2410 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2411 			np->tx_config += TX_DRTH_VAL_INC;
2412 			if (netif_msg_tx_err(np))
2413 				printk(KERN_NOTICE
2414 					"%s: increased tx threshold, txcfg %#08x.\n",
2415 					dev->name, np->tx_config);
2416 		} else {
2417 			if (netif_msg_tx_err(np))
2418 				printk(KERN_NOTICE
2419 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2420 					dev->name, np->tx_config);
2421 		}
2422 		writel(np->tx_config, ioaddr + TxConfig);
2423 	}
2424 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2425 		int wol_status = readl(ioaddr + WOLCmd);
2426 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2427 			dev->name, wol_status);
2428 	}
2429 	if (intr_status & RxStatusFIFOOver) {
2430 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2431 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2432 				dev->name);
2433 		}
2434 		dev->stats.rx_fifo_errors++;
2435 		dev->stats.rx_errors++;
2436 	}
2437 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2438 	if (intr_status & IntrPCIErr) {
2439 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2440 			intr_status & IntrPCIErr);
2441 		dev->stats.tx_fifo_errors++;
2442 		dev->stats.tx_errors++;
2443 		dev->stats.rx_fifo_errors++;
2444 		dev->stats.rx_errors++;
2445 	}
2446 	spin_unlock(&np->lock);
2447 }
2448 
2449 static void __get_stats(struct net_device *dev)
2450 {
2451 	void __iomem * ioaddr = ns_ioaddr(dev);
2452 
2453 	/* The chip only need report frame silently dropped. */
2454 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2455 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2456 }
2457 
2458 static struct net_device_stats *get_stats(struct net_device *dev)
2459 {
2460 	struct netdev_private *np = netdev_priv(dev);
2461 
2462 	/* The chip only need report frame silently dropped. */
2463 	spin_lock_irq(&np->lock);
2464 	if (netif_running(dev) && !np->hands_off)
2465 		__get_stats(dev);
2466 	spin_unlock_irq(&np->lock);
2467 
2468 	return &dev->stats;
2469 }
2470 
2471 #ifdef CONFIG_NET_POLL_CONTROLLER
2472 static void natsemi_poll_controller(struct net_device *dev)
2473 {
2474 	struct netdev_private *np = netdev_priv(dev);
2475 	const int irq = np->pci_dev->irq;
2476 
2477 	disable_irq(irq);
2478 	intr_handler(irq, dev);
2479 	enable_irq(irq);
2480 }
2481 #endif
2482 
2483 #define HASH_TABLE	0x200
2484 static void __set_rx_mode(struct net_device *dev)
2485 {
2486 	void __iomem * ioaddr = ns_ioaddr(dev);
2487 	struct netdev_private *np = netdev_priv(dev);
2488 	u8 mc_filter[64]; /* Multicast hash filter */
2489 	u32 rx_mode;
2490 
2491 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2492 		rx_mode = RxFilterEnable | AcceptBroadcast
2493 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2494 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2495 		   (dev->flags & IFF_ALLMULTI)) {
2496 		rx_mode = RxFilterEnable | AcceptBroadcast
2497 			| AcceptAllMulticast | AcceptMyPhys;
2498 	} else {
2499 		struct netdev_hw_addr *ha;
2500 		int i;
2501 
2502 		memset(mc_filter, 0, sizeof(mc_filter));
2503 		netdev_for_each_mc_addr(ha, dev) {
2504 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2505 			mc_filter[b/8] |= (1 << (b & 0x07));
2506 		}
2507 		rx_mode = RxFilterEnable | AcceptBroadcast
2508 			| AcceptMulticast | AcceptMyPhys;
2509 		for (i = 0; i < 64; i += 2) {
2510 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2511 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2512 			       ioaddr + RxFilterData);
2513 		}
2514 	}
2515 	writel(rx_mode, ioaddr + RxFilterAddr);
2516 	np->cur_rx_mode = rx_mode;
2517 }
2518 
2519 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2520 {
2521 	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2522 		return -EINVAL;
2523 
2524 	dev->mtu = new_mtu;
2525 
2526 	/* synchronized against open : rtnl_lock() held by caller */
2527 	if (netif_running(dev)) {
2528 		struct netdev_private *np = netdev_priv(dev);
2529 		void __iomem * ioaddr = ns_ioaddr(dev);
2530 		const int irq = np->pci_dev->irq;
2531 
2532 		disable_irq(irq);
2533 		spin_lock(&np->lock);
2534 		/* stop engines */
2535 		natsemi_stop_rxtx(dev);
2536 		/* drain rx queue */
2537 		drain_rx(dev);
2538 		/* change buffers */
2539 		set_bufsize(dev);
2540 		reinit_rx(dev);
2541 		writel(np->ring_dma, ioaddr + RxRingPtr);
2542 		/* restart engines */
2543 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2544 		spin_unlock(&np->lock);
2545 		enable_irq(irq);
2546 	}
2547 	return 0;
2548 }
2549 
2550 static void set_rx_mode(struct net_device *dev)
2551 {
2552 	struct netdev_private *np = netdev_priv(dev);
2553 	spin_lock_irq(&np->lock);
2554 	if (!np->hands_off)
2555 		__set_rx_mode(dev);
2556 	spin_unlock_irq(&np->lock);
2557 }
2558 
2559 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2560 {
2561 	struct netdev_private *np = netdev_priv(dev);
2562 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2563 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2564 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2565 }
2566 
2567 static int get_regs_len(struct net_device *dev)
2568 {
2569 	return NATSEMI_REGS_SIZE;
2570 }
2571 
2572 static int get_eeprom_len(struct net_device *dev)
2573 {
2574 	struct netdev_private *np = netdev_priv(dev);
2575 	return np->eeprom_size;
2576 }
2577 
2578 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2579 {
2580 	struct netdev_private *np = netdev_priv(dev);
2581 	spin_lock_irq(&np->lock);
2582 	netdev_get_ecmd(dev, ecmd);
2583 	spin_unlock_irq(&np->lock);
2584 	return 0;
2585 }
2586 
2587 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2588 {
2589 	struct netdev_private *np = netdev_priv(dev);
2590 	int res;
2591 	spin_lock_irq(&np->lock);
2592 	res = netdev_set_ecmd(dev, ecmd);
2593 	spin_unlock_irq(&np->lock);
2594 	return res;
2595 }
2596 
2597 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2598 {
2599 	struct netdev_private *np = netdev_priv(dev);
2600 	spin_lock_irq(&np->lock);
2601 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2602 	netdev_get_sopass(dev, wol->sopass);
2603 	spin_unlock_irq(&np->lock);
2604 }
2605 
2606 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2607 {
2608 	struct netdev_private *np = netdev_priv(dev);
2609 	int res;
2610 	spin_lock_irq(&np->lock);
2611 	netdev_set_wol(dev, wol->wolopts);
2612 	res = netdev_set_sopass(dev, wol->sopass);
2613 	spin_unlock_irq(&np->lock);
2614 	return res;
2615 }
2616 
2617 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2618 {
2619 	struct netdev_private *np = netdev_priv(dev);
2620 	regs->version = NATSEMI_REGS_VER;
2621 	spin_lock_irq(&np->lock);
2622 	netdev_get_regs(dev, buf);
2623 	spin_unlock_irq(&np->lock);
2624 }
2625 
2626 static u32 get_msglevel(struct net_device *dev)
2627 {
2628 	struct netdev_private *np = netdev_priv(dev);
2629 	return np->msg_enable;
2630 }
2631 
2632 static void set_msglevel(struct net_device *dev, u32 val)
2633 {
2634 	struct netdev_private *np = netdev_priv(dev);
2635 	np->msg_enable = val;
2636 }
2637 
2638 static int nway_reset(struct net_device *dev)
2639 {
2640 	int tmp;
2641 	int r = -EINVAL;
2642 	/* if autoneg is off, it's an error */
2643 	tmp = mdio_read(dev, MII_BMCR);
2644 	if (tmp & BMCR_ANENABLE) {
2645 		tmp |= (BMCR_ANRESTART);
2646 		mdio_write(dev, MII_BMCR, tmp);
2647 		r = 0;
2648 	}
2649 	return r;
2650 }
2651 
2652 static u32 get_link(struct net_device *dev)
2653 {
2654 	/* LSTATUS is latched low until a read - so read twice */
2655 	mdio_read(dev, MII_BMSR);
2656 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2657 }
2658 
2659 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2660 {
2661 	struct netdev_private *np = netdev_priv(dev);
2662 	u8 *eebuf;
2663 	int res;
2664 
2665 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2666 	if (!eebuf)
2667 		return -ENOMEM;
2668 
2669 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2670 	spin_lock_irq(&np->lock);
2671 	res = netdev_get_eeprom(dev, eebuf);
2672 	spin_unlock_irq(&np->lock);
2673 	if (!res)
2674 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2675 	kfree(eebuf);
2676 	return res;
2677 }
2678 
2679 static const struct ethtool_ops ethtool_ops = {
2680 	.get_drvinfo = get_drvinfo,
2681 	.get_regs_len = get_regs_len,
2682 	.get_eeprom_len = get_eeprom_len,
2683 	.get_settings = get_settings,
2684 	.set_settings = set_settings,
2685 	.get_wol = get_wol,
2686 	.set_wol = set_wol,
2687 	.get_regs = get_regs,
2688 	.get_msglevel = get_msglevel,
2689 	.set_msglevel = set_msglevel,
2690 	.nway_reset = nway_reset,
2691 	.get_link = get_link,
2692 	.get_eeprom = get_eeprom,
2693 };
2694 
2695 static int netdev_set_wol(struct net_device *dev, u32 newval)
2696 {
2697 	struct netdev_private *np = netdev_priv(dev);
2698 	void __iomem * ioaddr = ns_ioaddr(dev);
2699 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2700 
2701 	/* translate to bitmasks this chip understands */
2702 	if (newval & WAKE_PHY)
2703 		data |= WakePhy;
2704 	if (newval & WAKE_UCAST)
2705 		data |= WakeUnicast;
2706 	if (newval & WAKE_MCAST)
2707 		data |= WakeMulticast;
2708 	if (newval & WAKE_BCAST)
2709 		data |= WakeBroadcast;
2710 	if (newval & WAKE_ARP)
2711 		data |= WakeArp;
2712 	if (newval & WAKE_MAGIC)
2713 		data |= WakeMagic;
2714 	if (np->srr >= SRR_DP83815_D) {
2715 		if (newval & WAKE_MAGICSECURE) {
2716 			data |= WakeMagicSecure;
2717 		}
2718 	}
2719 
2720 	writel(data, ioaddr + WOLCmd);
2721 
2722 	return 0;
2723 }
2724 
2725 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2726 {
2727 	struct netdev_private *np = netdev_priv(dev);
2728 	void __iomem * ioaddr = ns_ioaddr(dev);
2729 	u32 regval = readl(ioaddr + WOLCmd);
2730 
2731 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2732 			| WAKE_ARP | WAKE_MAGIC);
2733 
2734 	if (np->srr >= SRR_DP83815_D) {
2735 		/* SOPASS works on revD and higher */
2736 		*supported |= WAKE_MAGICSECURE;
2737 	}
2738 	*cur = 0;
2739 
2740 	/* translate from chip bitmasks */
2741 	if (regval & WakePhy)
2742 		*cur |= WAKE_PHY;
2743 	if (regval & WakeUnicast)
2744 		*cur |= WAKE_UCAST;
2745 	if (regval & WakeMulticast)
2746 		*cur |= WAKE_MCAST;
2747 	if (regval & WakeBroadcast)
2748 		*cur |= WAKE_BCAST;
2749 	if (regval & WakeArp)
2750 		*cur |= WAKE_ARP;
2751 	if (regval & WakeMagic)
2752 		*cur |= WAKE_MAGIC;
2753 	if (regval & WakeMagicSecure) {
2754 		/* this can be on in revC, but it's broken */
2755 		*cur |= WAKE_MAGICSECURE;
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2762 {
2763 	struct netdev_private *np = netdev_priv(dev);
2764 	void __iomem * ioaddr = ns_ioaddr(dev);
2765 	u16 *sval = (u16 *)newval;
2766 	u32 addr;
2767 
2768 	if (np->srr < SRR_DP83815_D) {
2769 		return 0;
2770 	}
2771 
2772 	/* enable writing to these registers by disabling the RX filter */
2773 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2774 	addr &= ~RxFilterEnable;
2775 	writel(addr, ioaddr + RxFilterAddr);
2776 
2777 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2778 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2779 	writew(sval[0], ioaddr + RxFilterData);
2780 
2781 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2782 	writew(sval[1], ioaddr + RxFilterData);
2783 
2784 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2785 	writew(sval[2], ioaddr + RxFilterData);
2786 
2787 	/* re-enable the RX filter */
2788 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2789 
2790 	return 0;
2791 }
2792 
2793 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2794 {
2795 	struct netdev_private *np = netdev_priv(dev);
2796 	void __iomem * ioaddr = ns_ioaddr(dev);
2797 	u16 *sval = (u16 *)data;
2798 	u32 addr;
2799 
2800 	if (np->srr < SRR_DP83815_D) {
2801 		sval[0] = sval[1] = sval[2] = 0;
2802 		return 0;
2803 	}
2804 
2805 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2806 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2807 
2808 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2809 	sval[0] = readw(ioaddr + RxFilterData);
2810 
2811 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2812 	sval[1] = readw(ioaddr + RxFilterData);
2813 
2814 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2815 	sval[2] = readw(ioaddr + RxFilterData);
2816 
2817 	writel(addr, ioaddr + RxFilterAddr);
2818 
2819 	return 0;
2820 }
2821 
2822 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2823 {
2824 	struct netdev_private *np = netdev_priv(dev);
2825 	u32 tmp;
2826 
2827 	ecmd->port        = dev->if_port;
2828 	ethtool_cmd_speed_set(ecmd, np->speed);
2829 	ecmd->duplex      = np->duplex;
2830 	ecmd->autoneg     = np->autoneg;
2831 	ecmd->advertising = 0;
2832 	if (np->advertising & ADVERTISE_10HALF)
2833 		ecmd->advertising |= ADVERTISED_10baseT_Half;
2834 	if (np->advertising & ADVERTISE_10FULL)
2835 		ecmd->advertising |= ADVERTISED_10baseT_Full;
2836 	if (np->advertising & ADVERTISE_100HALF)
2837 		ecmd->advertising |= ADVERTISED_100baseT_Half;
2838 	if (np->advertising & ADVERTISE_100FULL)
2839 		ecmd->advertising |= ADVERTISED_100baseT_Full;
2840 	ecmd->supported   = (SUPPORTED_Autoneg |
2841 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2842 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2843 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2844 	ecmd->phy_address = np->phy_addr_external;
2845 	/*
2846 	 * We intentionally report the phy address of the external
2847 	 * phy, even if the internal phy is used. This is necessary
2848 	 * to work around a deficiency of the ethtool interface:
2849 	 * It's only possible to query the settings of the active
2850 	 * port. Therefore
2851 	 * # ethtool -s ethX port mii
2852 	 * actually sends an ioctl to switch to port mii with the
2853 	 * settings that are used for the current active port.
2854 	 * If we would report a different phy address in this
2855 	 * command, then
2856 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2857 	 * would unintentionally change the phy address.
2858 	 *
2859 	 * Fortunately the phy address doesn't matter with the
2860 	 * internal phy...
2861 	 */
2862 
2863 	/* set information based on active port type */
2864 	switch (ecmd->port) {
2865 	default:
2866 	case PORT_TP:
2867 		ecmd->advertising |= ADVERTISED_TP;
2868 		ecmd->transceiver = XCVR_INTERNAL;
2869 		break;
2870 	case PORT_MII:
2871 		ecmd->advertising |= ADVERTISED_MII;
2872 		ecmd->transceiver = XCVR_EXTERNAL;
2873 		break;
2874 	case PORT_FIBRE:
2875 		ecmd->advertising |= ADVERTISED_FIBRE;
2876 		ecmd->transceiver = XCVR_EXTERNAL;
2877 		break;
2878 	}
2879 
2880 	/* if autonegotiation is on, try to return the active speed/duplex */
2881 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2882 		ecmd->advertising |= ADVERTISED_Autoneg;
2883 		tmp = mii_nway_result(
2884 			np->advertising & mdio_read(dev, MII_LPA));
2885 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2886 			ethtool_cmd_speed_set(ecmd, SPEED_100);
2887 		else
2888 			ethtool_cmd_speed_set(ecmd, SPEED_10);
2889 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2890 			ecmd->duplex = DUPLEX_FULL;
2891 		else
2892 			ecmd->duplex = DUPLEX_HALF;
2893 	}
2894 
2895 	/* ignore maxtxpkt, maxrxpkt for now */
2896 
2897 	return 0;
2898 }
2899 
2900 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2901 {
2902 	struct netdev_private *np = netdev_priv(dev);
2903 
2904 	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2905 		return -EINVAL;
2906 	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2907 		return -EINVAL;
2908 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2909 		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2910 					  ADVERTISED_10baseT_Full |
2911 					  ADVERTISED_100baseT_Half |
2912 					  ADVERTISED_100baseT_Full)) == 0) {
2913 			return -EINVAL;
2914 		}
2915 	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2916 		u32 speed = ethtool_cmd_speed(ecmd);
2917 		if (speed != SPEED_10 && speed != SPEED_100)
2918 			return -EINVAL;
2919 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2920 			return -EINVAL;
2921 	} else {
2922 		return -EINVAL;
2923 	}
2924 
2925 	/*
2926 	 * If we're ignoring the PHY then autoneg and the internal
2927 	 * transceiver are really not going to work so don't let the
2928 	 * user select them.
2929 	 */
2930 	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2931 			       ecmd->port == PORT_TP))
2932 		return -EINVAL;
2933 
2934 	/*
2935 	 * maxtxpkt, maxrxpkt: ignored for now.
2936 	 *
2937 	 * transceiver:
2938 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2939 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2940 	 * selects based on ecmd->port.
2941 	 *
2942 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2943 	 * phys that are connected to the mii bus. It's used to apply fibre
2944 	 * specific updates.
2945 	 */
2946 
2947 	/* WHEW! now lets bang some bits */
2948 
2949 	/* save the parms */
2950 	dev->if_port          = ecmd->port;
2951 	np->autoneg           = ecmd->autoneg;
2952 	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2953 	if (np->autoneg == AUTONEG_ENABLE) {
2954 		/* advertise only what has been requested */
2955 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2956 		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2957 			np->advertising |= ADVERTISE_10HALF;
2958 		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2959 			np->advertising |= ADVERTISE_10FULL;
2960 		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2961 			np->advertising |= ADVERTISE_100HALF;
2962 		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2963 			np->advertising |= ADVERTISE_100FULL;
2964 	} else {
2965 		np->speed  = ethtool_cmd_speed(ecmd);
2966 		np->duplex = ecmd->duplex;
2967 		/* user overriding the initial full duplex parm? */
2968 		if (np->duplex == DUPLEX_HALF)
2969 			np->full_duplex = 0;
2970 	}
2971 
2972 	/* get the right phy enabled */
2973 	if (ecmd->port == PORT_TP)
2974 		switch_port_internal(dev);
2975 	else
2976 		switch_port_external(dev);
2977 
2978 	/* set parms and see how this affected our link status */
2979 	init_phy_fixup(dev);
2980 	check_link(dev);
2981 	return 0;
2982 }
2983 
2984 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2985 {
2986 	int i;
2987 	int j;
2988 	u32 rfcr;
2989 	u32 *rbuf = (u32 *)buf;
2990 	void __iomem * ioaddr = ns_ioaddr(dev);
2991 
2992 	/* read non-mii page 0 of registers */
2993 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2994 		rbuf[i] = readl(ioaddr + i*4);
2995 	}
2996 
2997 	/* read current mii registers */
2998 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2999 		rbuf[i] = mdio_read(dev, i & 0x1f);
3000 
3001 	/* read only the 'magic' registers from page 1 */
3002 	writew(1, ioaddr + PGSEL);
3003 	rbuf[i++] = readw(ioaddr + PMDCSR);
3004 	rbuf[i++] = readw(ioaddr + TSTDAT);
3005 	rbuf[i++] = readw(ioaddr + DSPCFG);
3006 	rbuf[i++] = readw(ioaddr + SDCFG);
3007 	writew(0, ioaddr + PGSEL);
3008 
3009 	/* read RFCR indexed registers */
3010 	rfcr = readl(ioaddr + RxFilterAddr);
3011 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3012 		writel(j*2, ioaddr + RxFilterAddr);
3013 		rbuf[i++] = readw(ioaddr + RxFilterData);
3014 	}
3015 	writel(rfcr, ioaddr + RxFilterAddr);
3016 
3017 	/* the interrupt status is clear-on-read - see if we missed any */
3018 	if (rbuf[4] & rbuf[5]) {
3019 		printk(KERN_WARNING
3020 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3021 			dev->name, rbuf[4] & rbuf[5]);
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3028 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3029 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3030 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3031 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3032 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3033 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3034 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3035 
3036 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3037 {
3038 	int i;
3039 	u16 *ebuf = (u16 *)buf;
3040 	void __iomem * ioaddr = ns_ioaddr(dev);
3041 	struct netdev_private *np = netdev_priv(dev);
3042 
3043 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3044 	for (i = 0; i < np->eeprom_size/2; i++) {
3045 		ebuf[i] = eeprom_read(ioaddr, i);
3046 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3047 		 * reads it back "sanely". So we swap it back here in order to
3048 		 * present it to userland as it is stored. */
3049 		ebuf[i] = SWAP_BITS(ebuf[i]);
3050 	}
3051 	return 0;
3052 }
3053 
3054 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3055 {
3056 	struct mii_ioctl_data *data = if_mii(rq);
3057 	struct netdev_private *np = netdev_priv(dev);
3058 
3059 	switch(cmd) {
3060 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3061 		data->phy_id = np->phy_addr_external;
3062 		/* Fall Through */
3063 
3064 	case SIOCGMIIREG:		/* Read MII PHY register. */
3065 		/* The phy_id is not enough to uniquely identify
3066 		 * the intended target. Therefore the command is sent to
3067 		 * the given mii on the current port.
3068 		 */
3069 		if (dev->if_port == PORT_TP) {
3070 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3071 				data->val_out = mdio_read(dev,
3072 							data->reg_num & 0x1f);
3073 			else
3074 				data->val_out = 0;
3075 		} else {
3076 			move_int_phy(dev, data->phy_id & 0x1f);
3077 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3078 							data->reg_num & 0x1f);
3079 		}
3080 		return 0;
3081 
3082 	case SIOCSMIIREG:		/* Write MII PHY register. */
3083 		if (dev->if_port == PORT_TP) {
3084 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3085  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3086 					np->advertising = data->val_in;
3087 				mdio_write(dev, data->reg_num & 0x1f,
3088 							data->val_in);
3089 			}
3090 		} else {
3091 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3092  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3093 					np->advertising = data->val_in;
3094 			}
3095 			move_int_phy(dev, data->phy_id & 0x1f);
3096 			miiport_write(dev, data->phy_id & 0x1f,
3097 						data->reg_num & 0x1f,
3098 						data->val_in);
3099 		}
3100 		return 0;
3101 	default:
3102 		return -EOPNOTSUPP;
3103 	}
3104 }
3105 
3106 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3107 {
3108 	void __iomem * ioaddr = ns_ioaddr(dev);
3109 	struct netdev_private *np = netdev_priv(dev);
3110 
3111 	if (netif_msg_wol(np))
3112 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3113 			dev->name);
3114 
3115 	/* For WOL we must restart the rx process in silent mode.
3116 	 * Write NULL to the RxRingPtr. Only possible if
3117 	 * rx process is stopped
3118 	 */
3119 	writel(0, ioaddr + RxRingPtr);
3120 
3121 	/* read WoL status to clear */
3122 	readl(ioaddr + WOLCmd);
3123 
3124 	/* PME on, clear status */
3125 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3126 
3127 	/* and restart the rx process */
3128 	writel(RxOn, ioaddr + ChipCmd);
3129 
3130 	if (enable_intr) {
3131 		/* enable the WOL interrupt.
3132 		 * Could be used to send a netlink message.
3133 		 */
3134 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3135 		natsemi_irq_enable(dev);
3136 	}
3137 }
3138 
3139 static int netdev_close(struct net_device *dev)
3140 {
3141 	void __iomem * ioaddr = ns_ioaddr(dev);
3142 	struct netdev_private *np = netdev_priv(dev);
3143 	const int irq = np->pci_dev->irq;
3144 
3145 	if (netif_msg_ifdown(np))
3146 		printk(KERN_DEBUG
3147 			"%s: Shutting down ethercard, status was %#04x.\n",
3148 			dev->name, (int)readl(ioaddr + ChipCmd));
3149 	if (netif_msg_pktdata(np))
3150 		printk(KERN_DEBUG
3151 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3152 			dev->name, np->cur_tx, np->dirty_tx,
3153 			np->cur_rx, np->dirty_rx);
3154 
3155 	napi_disable(&np->napi);
3156 
3157 	/*
3158 	 * FIXME: what if someone tries to close a device
3159 	 * that is suspended?
3160 	 * Should we reenable the nic to switch to
3161 	 * the final WOL settings?
3162 	 */
3163 
3164 	del_timer_sync(&np->timer);
3165 	disable_irq(irq);
3166 	spin_lock_irq(&np->lock);
3167 	natsemi_irq_disable(dev);
3168 	np->hands_off = 1;
3169 	spin_unlock_irq(&np->lock);
3170 	enable_irq(irq);
3171 
3172 	free_irq(irq, dev);
3173 
3174 	/* Interrupt disabled, interrupt handler released,
3175 	 * queue stopped, timer deleted, rtnl_lock held
3176 	 * All async codepaths that access the driver are disabled.
3177 	 */
3178 	spin_lock_irq(&np->lock);
3179 	np->hands_off = 0;
3180 	readl(ioaddr + IntrMask);
3181 	readw(ioaddr + MIntrStatus);
3182 
3183 	/* Freeze Stats */
3184 	writel(StatsFreeze, ioaddr + StatsCtrl);
3185 
3186 	/* Stop the chip's Tx and Rx processes. */
3187 	natsemi_stop_rxtx(dev);
3188 
3189 	__get_stats(dev);
3190 	spin_unlock_irq(&np->lock);
3191 
3192 	/* clear the carrier last - an interrupt could reenable it otherwise */
3193 	netif_carrier_off(dev);
3194 	netif_stop_queue(dev);
3195 
3196 	dump_ring(dev);
3197 	drain_ring(dev);
3198 	free_ring(dev);
3199 
3200 	{
3201 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3202 		if (wol) {
3203 			/* restart the NIC in WOL mode.
3204 			 * The nic must be stopped for this.
3205 			 */
3206 			enable_wol_mode(dev, 0);
3207 		} else {
3208 			/* Restore PME enable bit unmolested */
3209 			writel(np->SavedClkRun, ioaddr + ClkRun);
3210 		}
3211 	}
3212 	return 0;
3213 }
3214 
3215 
3216 static void natsemi_remove1(struct pci_dev *pdev)
3217 {
3218 	struct net_device *dev = pci_get_drvdata(pdev);
3219 	void __iomem * ioaddr = ns_ioaddr(dev);
3220 
3221 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3222 	unregister_netdev (dev);
3223 	pci_release_regions (pdev);
3224 	iounmap(ioaddr);
3225 	free_netdev (dev);
3226 	pci_set_drvdata(pdev, NULL);
3227 }
3228 
3229 #ifdef CONFIG_PM
3230 
3231 /*
3232  * The ns83815 chip doesn't have explicit RxStop bits.
3233  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3234  * of the nic, thus this function must be very careful:
3235  *
3236  * suspend/resume synchronization:
3237  * entry points:
3238  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3239  *   start_tx, ns_tx_timeout
3240  *
3241  * No function accesses the hardware without checking np->hands_off.
3242  *	the check occurs under spin_lock_irq(&np->lock);
3243  * exceptions:
3244  *	* netdev_ioctl: noncritical access.
3245  *	* netdev_open: cannot happen due to the device_detach
3246  *	* netdev_close: doesn't hurt.
3247  *	* netdev_timer: timer stopped by natsemi_suspend.
3248  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3249  *		disable_irq() to enforce synchronization.
3250  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3251  *              sets hands_off, disables interrupts and then waits with
3252  *              napi_disable().
3253  *
3254  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3255  */
3256 
3257 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3258 {
3259 	struct net_device *dev = pci_get_drvdata (pdev);
3260 	struct netdev_private *np = netdev_priv(dev);
3261 	void __iomem * ioaddr = ns_ioaddr(dev);
3262 
3263 	rtnl_lock();
3264 	if (netif_running (dev)) {
3265 		const int irq = np->pci_dev->irq;
3266 
3267 		del_timer_sync(&np->timer);
3268 
3269 		disable_irq(irq);
3270 		spin_lock_irq(&np->lock);
3271 
3272 		natsemi_irq_disable(dev);
3273 		np->hands_off = 1;
3274 		natsemi_stop_rxtx(dev);
3275 		netif_stop_queue(dev);
3276 
3277 		spin_unlock_irq(&np->lock);
3278 		enable_irq(irq);
3279 
3280 		napi_disable(&np->napi);
3281 
3282 		/* Update the error counts. */
3283 		__get_stats(dev);
3284 
3285 		/* pci_power_off(pdev, -1); */
3286 		drain_ring(dev);
3287 		{
3288 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3289 			/* Restore PME enable bit */
3290 			if (wol) {
3291 				/* restart the NIC in WOL mode.
3292 				 * The nic must be stopped for this.
3293 				 * FIXME: use the WOL interrupt
3294 				 */
3295 				enable_wol_mode(dev, 0);
3296 			} else {
3297 				/* Restore PME enable bit unmolested */
3298 				writel(np->SavedClkRun, ioaddr + ClkRun);
3299 			}
3300 		}
3301 	}
3302 	netif_device_detach(dev);
3303 	rtnl_unlock();
3304 	return 0;
3305 }
3306 
3307 
3308 static int natsemi_resume (struct pci_dev *pdev)
3309 {
3310 	struct net_device *dev = pci_get_drvdata (pdev);
3311 	struct netdev_private *np = netdev_priv(dev);
3312 	int ret = 0;
3313 
3314 	rtnl_lock();
3315 	if (netif_device_present(dev))
3316 		goto out;
3317 	if (netif_running(dev)) {
3318 		const int irq = np->pci_dev->irq;
3319 
3320 		BUG_ON(!np->hands_off);
3321 		ret = pci_enable_device(pdev);
3322 		if (ret < 0) {
3323 			dev_err(&pdev->dev,
3324 				"pci_enable_device() failed: %d\n", ret);
3325 			goto out;
3326 		}
3327 	/*	pci_power_on(pdev); */
3328 
3329 		napi_enable(&np->napi);
3330 
3331 		natsemi_reset(dev);
3332 		init_ring(dev);
3333 		disable_irq(irq);
3334 		spin_lock_irq(&np->lock);
3335 		np->hands_off = 0;
3336 		init_registers(dev);
3337 		netif_device_attach(dev);
3338 		spin_unlock_irq(&np->lock);
3339 		enable_irq(irq);
3340 
3341 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3342 	}
3343 	netif_device_attach(dev);
3344 out:
3345 	rtnl_unlock();
3346 	return ret;
3347 }
3348 
3349 #endif /* CONFIG_PM */
3350 
3351 static struct pci_driver natsemi_driver = {
3352 	.name		= DRV_NAME,
3353 	.id_table	= natsemi_pci_tbl,
3354 	.probe		= natsemi_probe1,
3355 	.remove		= natsemi_remove1,
3356 #ifdef CONFIG_PM
3357 	.suspend	= natsemi_suspend,
3358 	.resume		= natsemi_resume,
3359 #endif
3360 };
3361 
3362 static int __init natsemi_init_mod (void)
3363 {
3364 /* when a module, this is printed whether or not devices are found in probe */
3365 #ifdef MODULE
3366 	printk(version);
3367 #endif
3368 
3369 	return pci_register_driver(&natsemi_driver);
3370 }
3371 
3372 static void __exit natsemi_exit_mod (void)
3373 {
3374 	pci_unregister_driver (&natsemi_driver);
3375 }
3376 
3377 module_init(natsemi_init_mod);
3378 module_exit(natsemi_exit_mod);
3379 
3380