1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright (c) 2021, Microsoft Corporation. */ 3 4 #include <linux/debugfs.h> 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include <linux/utsname.h> 8 #include <linux/version.h> 9 #include <linux/msi.h> 10 #include <linux/irqdomain.h> 11 12 #include <net/mana/mana.h> 13 14 struct dentry *mana_debugfs_root; 15 16 static u32 mana_gd_r32(struct gdma_context *g, u64 offset) 17 { 18 return readl(g->bar0_va + offset); 19 } 20 21 static u64 mana_gd_r64(struct gdma_context *g, u64 offset) 22 { 23 return readq(g->bar0_va + offset); 24 } 25 26 static void mana_gd_init_pf_regs(struct pci_dev *pdev) 27 { 28 struct gdma_context *gc = pci_get_drvdata(pdev); 29 void __iomem *sriov_base_va; 30 u64 sriov_base_off; 31 32 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF; 33 gc->db_page_base = gc->bar0_va + 34 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 35 36 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF); 37 38 sriov_base_va = gc->bar0_va + sriov_base_off; 39 gc->shm_base = sriov_base_va + 40 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF); 41 } 42 43 static void mana_gd_init_vf_regs(struct pci_dev *pdev) 44 { 45 struct gdma_context *gc = pci_get_drvdata(pdev); 46 47 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF; 48 49 gc->db_page_base = gc->bar0_va + 50 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 51 52 gc->phys_db_page_base = gc->bar0_pa + 53 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 54 55 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET); 56 } 57 58 static void mana_gd_init_registers(struct pci_dev *pdev) 59 { 60 struct gdma_context *gc = pci_get_drvdata(pdev); 61 62 if (gc->is_pf) 63 mana_gd_init_pf_regs(pdev); 64 else 65 mana_gd_init_vf_regs(pdev); 66 } 67 68 static int mana_gd_query_max_resources(struct pci_dev *pdev) 69 { 70 struct gdma_context *gc = pci_get_drvdata(pdev); 71 struct gdma_query_max_resources_resp resp = {}; 72 struct gdma_general_req req = {}; 73 int err; 74 75 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES, 76 sizeof(req), sizeof(resp)); 77 78 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 79 if (err || resp.hdr.status) { 80 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n", 81 err, resp.hdr.status); 82 return err ? err : -EPROTO; 83 } 84 85 if (!pci_msix_can_alloc_dyn(pdev)) { 86 if (gc->num_msix_usable > resp.max_msix) 87 gc->num_msix_usable = resp.max_msix; 88 } else { 89 /* If dynamic allocation is enabled we have already allocated 90 * hwc msi 91 */ 92 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1); 93 } 94 95 if (gc->num_msix_usable <= 1) 96 return -ENOSPC; 97 98 gc->max_num_queues = num_online_cpus(); 99 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES) 100 gc->max_num_queues = MANA_MAX_NUM_QUEUES; 101 102 if (gc->max_num_queues > resp.max_eq) 103 gc->max_num_queues = resp.max_eq; 104 105 if (gc->max_num_queues > resp.max_cq) 106 gc->max_num_queues = resp.max_cq; 107 108 if (gc->max_num_queues > resp.max_sq) 109 gc->max_num_queues = resp.max_sq; 110 111 if (gc->max_num_queues > resp.max_rq) 112 gc->max_num_queues = resp.max_rq; 113 114 /* The Hardware Channel (HWC) used 1 MSI-X */ 115 if (gc->max_num_queues > gc->num_msix_usable - 1) 116 gc->max_num_queues = gc->num_msix_usable - 1; 117 118 return 0; 119 } 120 121 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val) 122 { 123 struct gdma_context *gc = pci_get_drvdata(pdev); 124 struct gdma_query_hwc_timeout_resp resp = {}; 125 struct gdma_query_hwc_timeout_req req = {}; 126 int err; 127 128 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT, 129 sizeof(req), sizeof(resp)); 130 req.timeout_ms = *timeout_val; 131 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 132 if (err || resp.hdr.status) 133 return err ? err : -EPROTO; 134 135 *timeout_val = resp.timeout_ms; 136 137 return 0; 138 } 139 140 static int mana_gd_detect_devices(struct pci_dev *pdev) 141 { 142 struct gdma_context *gc = pci_get_drvdata(pdev); 143 struct gdma_list_devices_resp resp = {}; 144 struct gdma_general_req req = {}; 145 struct gdma_dev_id dev; 146 int found_dev = 0; 147 u16 dev_type; 148 int err; 149 u32 i; 150 151 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req), 152 sizeof(resp)); 153 154 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 155 if (err || resp.hdr.status) { 156 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err, 157 resp.hdr.status); 158 return err ? err : -EPROTO; 159 } 160 161 for (i = 0; i < GDMA_DEV_LIST_SIZE && 162 found_dev < resp.num_of_devs; i++) { 163 dev = resp.devs[i]; 164 dev_type = dev.type; 165 166 /* Skip empty devices */ 167 if (dev.as_uint32 == 0) 168 continue; 169 170 found_dev++; 171 172 /* HWC is already detected in mana_hwc_create_channel(). */ 173 if (dev_type == GDMA_DEVICE_HWC) 174 continue; 175 176 if (dev_type == GDMA_DEVICE_MANA) { 177 gc->mana.gdma_context = gc; 178 gc->mana.dev_id = dev; 179 } else if (dev_type == GDMA_DEVICE_MANA_IB) { 180 gc->mana_ib.dev_id = dev; 181 gc->mana_ib.gdma_context = gc; 182 } 183 } 184 185 return gc->mana.dev_id.type == 0 ? -ENODEV : 0; 186 } 187 188 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req, 189 u32 resp_len, void *resp) 190 { 191 struct hw_channel_context *hwc = gc->hwc.driver_data; 192 193 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp); 194 } 195 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA"); 196 197 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length, 198 struct gdma_mem_info *gmi) 199 { 200 dma_addr_t dma_handle; 201 void *buf; 202 203 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 204 return -EINVAL; 205 206 gmi->dev = gc->dev; 207 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL); 208 if (!buf) 209 return -ENOMEM; 210 211 gmi->dma_handle = dma_handle; 212 gmi->virt_addr = buf; 213 gmi->length = length; 214 215 return 0; 216 } 217 218 void mana_gd_free_memory(struct gdma_mem_info *gmi) 219 { 220 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr, 221 gmi->dma_handle); 222 } 223 224 static int mana_gd_create_hw_eq(struct gdma_context *gc, 225 struct gdma_queue *queue) 226 { 227 struct gdma_create_queue_resp resp = {}; 228 struct gdma_create_queue_req req = {}; 229 int err; 230 231 if (queue->type != GDMA_EQ) 232 return -EINVAL; 233 234 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE, 235 sizeof(req), sizeof(resp)); 236 237 req.hdr.dev_id = queue->gdma_dev->dev_id; 238 req.type = queue->type; 239 req.pdid = queue->gdma_dev->pdid; 240 req.doolbell_id = queue->gdma_dev->doorbell; 241 req.gdma_region = queue->mem_info.dma_region_handle; 242 req.queue_size = queue->queue_size; 243 req.log2_throttle_limit = queue->eq.log2_throttle_limit; 244 req.eq_pci_msix_index = queue->eq.msix_index; 245 246 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 247 if (err || resp.hdr.status) { 248 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err, 249 resp.hdr.status); 250 return err ? err : -EPROTO; 251 } 252 253 queue->id = resp.queue_index; 254 queue->eq.disable_needed = true; 255 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; 256 return 0; 257 } 258 259 static int mana_gd_disable_queue(struct gdma_queue *queue) 260 { 261 struct gdma_context *gc = queue->gdma_dev->gdma_context; 262 struct gdma_disable_queue_req req = {}; 263 struct gdma_general_resp resp = {}; 264 int err; 265 266 WARN_ON(queue->type != GDMA_EQ); 267 268 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE, 269 sizeof(req), sizeof(resp)); 270 271 req.hdr.dev_id = queue->gdma_dev->dev_id; 272 req.type = queue->type; 273 req.queue_index = queue->id; 274 req.alloc_res_id_on_creation = 1; 275 276 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 277 if (err || resp.hdr.status) { 278 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err, 279 resp.hdr.status); 280 return err ? err : -EPROTO; 281 } 282 283 return 0; 284 } 285 286 #define DOORBELL_OFFSET_SQ 0x0 287 #define DOORBELL_OFFSET_RQ 0x400 288 #define DOORBELL_OFFSET_CQ 0x800 289 #define DOORBELL_OFFSET_EQ 0xFF8 290 291 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index, 292 enum gdma_queue_type q_type, u32 qid, 293 u32 tail_ptr, u8 num_req) 294 { 295 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index; 296 union gdma_doorbell_entry e = {}; 297 298 switch (q_type) { 299 case GDMA_EQ: 300 e.eq.id = qid; 301 e.eq.tail_ptr = tail_ptr; 302 e.eq.arm = num_req; 303 304 addr += DOORBELL_OFFSET_EQ; 305 break; 306 307 case GDMA_CQ: 308 e.cq.id = qid; 309 e.cq.tail_ptr = tail_ptr; 310 e.cq.arm = num_req; 311 312 addr += DOORBELL_OFFSET_CQ; 313 break; 314 315 case GDMA_RQ: 316 e.rq.id = qid; 317 e.rq.tail_ptr = tail_ptr; 318 e.rq.wqe_cnt = num_req; 319 320 addr += DOORBELL_OFFSET_RQ; 321 break; 322 323 case GDMA_SQ: 324 e.sq.id = qid; 325 e.sq.tail_ptr = tail_ptr; 326 327 addr += DOORBELL_OFFSET_SQ; 328 break; 329 330 default: 331 WARN_ON(1); 332 return; 333 } 334 335 /* Ensure all writes are done before ring doorbell */ 336 wmb(); 337 338 writeq(e.as_uint64, addr); 339 } 340 341 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue) 342 { 343 /* Hardware Spec specifies that software client should set 0 for 344 * wqe_cnt for Receive Queues. This value is not used in Send Queues. 345 */ 346 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type, 347 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0); 348 } 349 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA"); 350 351 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit) 352 { 353 struct gdma_context *gc = cq->gdma_dev->gdma_context; 354 355 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE; 356 357 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS); 358 359 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id, 360 head, arm_bit); 361 } 362 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA"); 363 364 #define MANA_SERVICE_PERIOD 10 365 366 struct mana_serv_work { 367 struct work_struct serv_work; 368 struct pci_dev *pdev; 369 }; 370 371 static void mana_serv_func(struct work_struct *w) 372 { 373 struct mana_serv_work *mns_wk; 374 struct pci_bus *bus, *parent; 375 struct pci_dev *pdev; 376 377 mns_wk = container_of(w, struct mana_serv_work, serv_work); 378 pdev = mns_wk->pdev; 379 380 pci_lock_rescan_remove(); 381 382 if (!pdev) 383 goto out; 384 385 bus = pdev->bus; 386 if (!bus) { 387 dev_err(&pdev->dev, "MANA service: no bus\n"); 388 goto out; 389 } 390 391 parent = bus->parent; 392 if (!parent) { 393 dev_err(&pdev->dev, "MANA service: no parent bus\n"); 394 goto out; 395 } 396 397 pci_stop_and_remove_bus_device(bus->self); 398 399 msleep(MANA_SERVICE_PERIOD * 1000); 400 401 pci_rescan_bus(parent); 402 403 out: 404 pci_unlock_rescan_remove(); 405 406 pci_dev_put(pdev); 407 kfree(mns_wk); 408 module_put(THIS_MODULE); 409 } 410 411 static void mana_gd_process_eqe(struct gdma_queue *eq) 412 { 413 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE); 414 struct gdma_context *gc = eq->gdma_dev->gdma_context; 415 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr; 416 struct mana_serv_work *mns_wk; 417 union gdma_eqe_info eqe_info; 418 enum gdma_eqe_type type; 419 struct gdma_event event; 420 struct gdma_queue *cq; 421 struct gdma_eqe *eqe; 422 u32 cq_id; 423 424 eqe = &eq_eqe_ptr[head]; 425 eqe_info.as_uint32 = eqe->eqe_info; 426 type = eqe_info.type; 427 428 switch (type) { 429 case GDMA_EQE_COMPLETION: 430 cq_id = eqe->details[0] & 0xFFFFFF; 431 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs)) 432 break; 433 434 cq = gc->cq_table[cq_id]; 435 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id)) 436 break; 437 438 if (cq->cq.callback) 439 cq->cq.callback(cq->cq.context, cq); 440 441 break; 442 443 case GDMA_EQE_TEST_EVENT: 444 gc->test_event_eq_id = eq->id; 445 complete(&gc->eq_test_event); 446 break; 447 448 case GDMA_EQE_HWC_INIT_EQ_ID_DB: 449 case GDMA_EQE_HWC_INIT_DATA: 450 case GDMA_EQE_HWC_INIT_DONE: 451 case GDMA_EQE_HWC_SOC_SERVICE: 452 case GDMA_EQE_RNIC_QP_FATAL: 453 if (!eq->eq.callback) 454 break; 455 456 event.type = type; 457 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE); 458 eq->eq.callback(eq->eq.context, eq, &event); 459 break; 460 461 case GDMA_EQE_HWC_FPGA_RECONFIG: 462 dev_info(gc->dev, "Recv MANA service type:%d\n", type); 463 464 if (gc->in_service) { 465 dev_info(gc->dev, "Already in service\n"); 466 break; 467 } 468 469 if (!try_module_get(THIS_MODULE)) { 470 dev_info(gc->dev, "Module is unloading\n"); 471 break; 472 } 473 474 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC); 475 if (!mns_wk) { 476 module_put(THIS_MODULE); 477 break; 478 } 479 480 dev_info(gc->dev, "Start MANA service type:%d\n", type); 481 gc->in_service = true; 482 mns_wk->pdev = to_pci_dev(gc->dev); 483 pci_dev_get(mns_wk->pdev); 484 INIT_WORK(&mns_wk->serv_work, mana_serv_func); 485 schedule_work(&mns_wk->serv_work); 486 break; 487 488 default: 489 break; 490 } 491 } 492 493 static void mana_gd_process_eq_events(void *arg) 494 { 495 u32 owner_bits, new_bits, old_bits; 496 union gdma_eqe_info eqe_info; 497 struct gdma_eqe *eq_eqe_ptr; 498 struct gdma_queue *eq = arg; 499 struct gdma_context *gc; 500 struct gdma_eqe *eqe; 501 u32 head, num_eqe; 502 int i; 503 504 gc = eq->gdma_dev->gdma_context; 505 506 num_eqe = eq->queue_size / GDMA_EQE_SIZE; 507 eq_eqe_ptr = eq->queue_mem_ptr; 508 509 /* Process up to 5 EQEs at a time, and update the HW head. */ 510 for (i = 0; i < 5; i++) { 511 eqe = &eq_eqe_ptr[eq->head % num_eqe]; 512 eqe_info.as_uint32 = eqe->eqe_info; 513 owner_bits = eqe_info.owner_bits; 514 515 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK; 516 /* No more entries */ 517 if (owner_bits == old_bits) { 518 /* return here without ringing the doorbell */ 519 if (i == 0) 520 return; 521 break; 522 } 523 524 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK; 525 if (owner_bits != new_bits) { 526 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id); 527 break; 528 } 529 530 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 531 * reading eqe. 532 */ 533 rmb(); 534 535 mana_gd_process_eqe(eq); 536 537 eq->head++; 538 } 539 540 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS); 541 542 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id, 543 head, SET_ARM_BIT); 544 } 545 546 static int mana_gd_register_irq(struct gdma_queue *queue, 547 const struct gdma_queue_spec *spec) 548 { 549 struct gdma_dev *gd = queue->gdma_dev; 550 struct gdma_irq_context *gic; 551 struct gdma_context *gc; 552 unsigned int msi_index; 553 unsigned long flags; 554 struct device *dev; 555 int err = 0; 556 557 gc = gd->gdma_context; 558 dev = gc->dev; 559 msi_index = spec->eq.msix_index; 560 561 if (msi_index >= gc->num_msix_usable) { 562 err = -ENOSPC; 563 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u", 564 err, msi_index, gc->num_msix_usable); 565 566 return err; 567 } 568 569 queue->eq.msix_index = msi_index; 570 gic = xa_load(&gc->irq_contexts, msi_index); 571 if (WARN_ON(!gic)) 572 return -EINVAL; 573 574 spin_lock_irqsave(&gic->lock, flags); 575 list_add_rcu(&queue->entry, &gic->eq_list); 576 spin_unlock_irqrestore(&gic->lock, flags); 577 578 return 0; 579 } 580 581 static void mana_gd_deregiser_irq(struct gdma_queue *queue) 582 { 583 struct gdma_dev *gd = queue->gdma_dev; 584 struct gdma_irq_context *gic; 585 struct gdma_context *gc; 586 unsigned int msix_index; 587 unsigned long flags; 588 struct gdma_queue *eq; 589 590 gc = gd->gdma_context; 591 592 /* At most num_online_cpus() + 1 interrupts are used. */ 593 msix_index = queue->eq.msix_index; 594 if (WARN_ON(msix_index >= gc->num_msix_usable)) 595 return; 596 597 gic = xa_load(&gc->irq_contexts, msix_index); 598 if (WARN_ON(!gic)) 599 return; 600 601 spin_lock_irqsave(&gic->lock, flags); 602 list_for_each_entry_rcu(eq, &gic->eq_list, entry) { 603 if (queue == eq) { 604 list_del_rcu(&eq->entry); 605 break; 606 } 607 } 608 spin_unlock_irqrestore(&gic->lock, flags); 609 610 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 611 synchronize_rcu(); 612 } 613 614 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq) 615 { 616 struct gdma_generate_test_event_req req = {}; 617 struct gdma_general_resp resp = {}; 618 struct device *dev = gc->dev; 619 int err; 620 621 mutex_lock(&gc->eq_test_event_mutex); 622 623 init_completion(&gc->eq_test_event); 624 gc->test_event_eq_id = INVALID_QUEUE_ID; 625 626 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE, 627 sizeof(req), sizeof(resp)); 628 629 req.hdr.dev_id = eq->gdma_dev->dev_id; 630 req.queue_index = eq->id; 631 632 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 633 if (err) { 634 dev_err(dev, "test_eq failed: %d\n", err); 635 goto out; 636 } 637 638 err = -EPROTO; 639 640 if (resp.hdr.status) { 641 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status); 642 goto out; 643 } 644 645 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) { 646 dev_err(dev, "test_eq timed out on queue %d\n", eq->id); 647 goto out; 648 } 649 650 if (eq->id != gc->test_event_eq_id) { 651 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n", 652 gc->test_event_eq_id, eq->id); 653 goto out; 654 } 655 656 err = 0; 657 out: 658 mutex_unlock(&gc->eq_test_event_mutex); 659 return err; 660 } 661 662 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets, 663 struct gdma_queue *queue) 664 { 665 int err; 666 667 if (flush_evenets) { 668 err = mana_gd_test_eq(gc, queue); 669 if (err) 670 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err); 671 } 672 673 mana_gd_deregiser_irq(queue); 674 675 if (queue->eq.disable_needed) 676 mana_gd_disable_queue(queue); 677 } 678 679 static int mana_gd_create_eq(struct gdma_dev *gd, 680 const struct gdma_queue_spec *spec, 681 bool create_hwq, struct gdma_queue *queue) 682 { 683 struct gdma_context *gc = gd->gdma_context; 684 struct device *dev = gc->dev; 685 u32 log2_num_entries; 686 int err; 687 688 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 689 queue->id = INVALID_QUEUE_ID; 690 691 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE); 692 693 if (spec->eq.log2_throttle_limit > log2_num_entries) { 694 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n", 695 spec->eq.log2_throttle_limit, log2_num_entries); 696 return -EINVAL; 697 } 698 699 err = mana_gd_register_irq(queue, spec); 700 if (err) { 701 dev_err(dev, "Failed to register irq: %d\n", err); 702 return err; 703 } 704 705 queue->eq.callback = spec->eq.callback; 706 queue->eq.context = spec->eq.context; 707 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 708 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1; 709 710 if (create_hwq) { 711 err = mana_gd_create_hw_eq(gc, queue); 712 if (err) 713 goto out; 714 715 err = mana_gd_test_eq(gc, queue); 716 if (err) 717 goto out; 718 } 719 720 return 0; 721 out: 722 dev_err(dev, "Failed to create EQ: %d\n", err); 723 mana_gd_destroy_eq(gc, false, queue); 724 return err; 725 } 726 727 static void mana_gd_create_cq(const struct gdma_queue_spec *spec, 728 struct gdma_queue *queue) 729 { 730 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE); 731 732 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 733 queue->cq.parent = spec->cq.parent_eq; 734 queue->cq.context = spec->cq.context; 735 queue->cq.callback = spec->cq.callback; 736 } 737 738 static void mana_gd_destroy_cq(struct gdma_context *gc, 739 struct gdma_queue *queue) 740 { 741 u32 id = queue->id; 742 743 if (id >= gc->max_num_cqs) 744 return; 745 746 if (!gc->cq_table[id]) 747 return; 748 749 gc->cq_table[id] = NULL; 750 } 751 752 int mana_gd_create_hwc_queue(struct gdma_dev *gd, 753 const struct gdma_queue_spec *spec, 754 struct gdma_queue **queue_ptr) 755 { 756 struct gdma_context *gc = gd->gdma_context; 757 struct gdma_mem_info *gmi; 758 struct gdma_queue *queue; 759 int err; 760 761 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 762 if (!queue) 763 return -ENOMEM; 764 765 gmi = &queue->mem_info; 766 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 767 if (err) { 768 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 769 spec->type, spec->queue_size, err); 770 goto free_q; 771 } 772 773 queue->head = 0; 774 queue->tail = 0; 775 queue->queue_mem_ptr = gmi->virt_addr; 776 queue->queue_size = spec->queue_size; 777 queue->monitor_avl_buf = spec->monitor_avl_buf; 778 queue->type = spec->type; 779 queue->gdma_dev = gd; 780 781 if (spec->type == GDMA_EQ) 782 err = mana_gd_create_eq(gd, spec, false, queue); 783 else if (spec->type == GDMA_CQ) 784 mana_gd_create_cq(spec, queue); 785 786 if (err) 787 goto out; 788 789 *queue_ptr = queue; 790 return 0; 791 out: 792 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n", 793 spec->type, spec->queue_size, err); 794 mana_gd_free_memory(gmi); 795 free_q: 796 kfree(queue); 797 return err; 798 } 799 800 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle) 801 { 802 struct gdma_destroy_dma_region_req req = {}; 803 struct gdma_general_resp resp = {}; 804 int err; 805 806 if (dma_region_handle == GDMA_INVALID_DMA_REGION) 807 return 0; 808 809 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req), 810 sizeof(resp)); 811 req.dma_region_handle = dma_region_handle; 812 813 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 814 if (err || resp.hdr.status) { 815 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n", 816 err, resp.hdr.status); 817 return -EPROTO; 818 } 819 820 return 0; 821 } 822 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA"); 823 824 static int mana_gd_create_dma_region(struct gdma_dev *gd, 825 struct gdma_mem_info *gmi) 826 { 827 unsigned int num_page = gmi->length / MANA_PAGE_SIZE; 828 struct gdma_create_dma_region_req *req = NULL; 829 struct gdma_create_dma_region_resp resp = {}; 830 struct gdma_context *gc = gd->gdma_context; 831 struct hw_channel_context *hwc; 832 u32 length = gmi->length; 833 size_t req_msg_size; 834 int err; 835 int i; 836 837 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 838 return -EINVAL; 839 840 if (!MANA_PAGE_ALIGNED(gmi->virt_addr)) 841 return -EINVAL; 842 843 hwc = gc->hwc.driver_data; 844 req_msg_size = struct_size(req, page_addr_list, num_page); 845 if (req_msg_size > hwc->max_req_msg_size) 846 return -EINVAL; 847 848 req = kzalloc(req_msg_size, GFP_KERNEL); 849 if (!req) 850 return -ENOMEM; 851 852 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION, 853 req_msg_size, sizeof(resp)); 854 req->length = length; 855 req->offset_in_page = 0; 856 req->gdma_page_type = GDMA_PAGE_TYPE_4K; 857 req->page_count = num_page; 858 req->page_addr_list_len = num_page; 859 860 for (i = 0; i < num_page; i++) 861 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE; 862 863 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp); 864 if (err) 865 goto out; 866 867 if (resp.hdr.status || 868 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) { 869 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n", 870 resp.hdr.status); 871 err = -EPROTO; 872 goto out; 873 } 874 875 gmi->dma_region_handle = resp.dma_region_handle; 876 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n", 877 gmi->dma_region_handle); 878 out: 879 if (err) 880 dev_dbg(gc->dev, 881 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n", 882 length, req->gdma_page_type, resp.hdr.status, err); 883 kfree(req); 884 return err; 885 } 886 887 int mana_gd_create_mana_eq(struct gdma_dev *gd, 888 const struct gdma_queue_spec *spec, 889 struct gdma_queue **queue_ptr) 890 { 891 struct gdma_context *gc = gd->gdma_context; 892 struct gdma_mem_info *gmi; 893 struct gdma_queue *queue; 894 int err; 895 896 if (spec->type != GDMA_EQ) 897 return -EINVAL; 898 899 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 900 if (!queue) 901 return -ENOMEM; 902 903 gmi = &queue->mem_info; 904 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 905 if (err) { 906 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 907 spec->type, spec->queue_size, err); 908 goto free_q; 909 } 910 911 err = mana_gd_create_dma_region(gd, gmi); 912 if (err) 913 goto out; 914 915 queue->head = 0; 916 queue->tail = 0; 917 queue->queue_mem_ptr = gmi->virt_addr; 918 queue->queue_size = spec->queue_size; 919 queue->monitor_avl_buf = spec->monitor_avl_buf; 920 queue->type = spec->type; 921 queue->gdma_dev = gd; 922 923 err = mana_gd_create_eq(gd, spec, true, queue); 924 if (err) 925 goto out; 926 927 *queue_ptr = queue; 928 return 0; 929 out: 930 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 931 spec->type, spec->queue_size, err); 932 mana_gd_free_memory(gmi); 933 free_q: 934 kfree(queue); 935 return err; 936 } 937 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA"); 938 939 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd, 940 const struct gdma_queue_spec *spec, 941 struct gdma_queue **queue_ptr) 942 { 943 struct gdma_context *gc = gd->gdma_context; 944 struct gdma_mem_info *gmi; 945 struct gdma_queue *queue; 946 int err; 947 948 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ && 949 spec->type != GDMA_RQ) 950 return -EINVAL; 951 952 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 953 if (!queue) 954 return -ENOMEM; 955 956 gmi = &queue->mem_info; 957 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 958 if (err) { 959 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n", 960 spec->type, spec->queue_size, err); 961 goto free_q; 962 } 963 964 err = mana_gd_create_dma_region(gd, gmi); 965 if (err) 966 goto out; 967 968 queue->head = 0; 969 queue->tail = 0; 970 queue->queue_mem_ptr = gmi->virt_addr; 971 queue->queue_size = spec->queue_size; 972 queue->monitor_avl_buf = spec->monitor_avl_buf; 973 queue->type = spec->type; 974 queue->gdma_dev = gd; 975 976 if (spec->type == GDMA_CQ) 977 mana_gd_create_cq(spec, queue); 978 979 *queue_ptr = queue; 980 return 0; 981 out: 982 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 983 spec->type, spec->queue_size, err); 984 mana_gd_free_memory(gmi); 985 free_q: 986 kfree(queue); 987 return err; 988 } 989 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA"); 990 991 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue) 992 { 993 struct gdma_mem_info *gmi = &queue->mem_info; 994 995 switch (queue->type) { 996 case GDMA_EQ: 997 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue); 998 break; 999 1000 case GDMA_CQ: 1001 mana_gd_destroy_cq(gc, queue); 1002 break; 1003 1004 case GDMA_RQ: 1005 break; 1006 1007 case GDMA_SQ: 1008 break; 1009 1010 default: 1011 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n", 1012 queue->type); 1013 return; 1014 } 1015 1016 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle); 1017 mana_gd_free_memory(gmi); 1018 kfree(queue); 1019 } 1020 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA"); 1021 1022 int mana_gd_verify_vf_version(struct pci_dev *pdev) 1023 { 1024 struct gdma_context *gc = pci_get_drvdata(pdev); 1025 struct gdma_verify_ver_resp resp = {}; 1026 struct gdma_verify_ver_req req = {}; 1027 struct hw_channel_context *hwc; 1028 int err; 1029 1030 hwc = gc->hwc.driver_data; 1031 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION, 1032 sizeof(req), sizeof(resp)); 1033 1034 req.protocol_ver_min = GDMA_PROTOCOL_FIRST; 1035 req.protocol_ver_max = GDMA_PROTOCOL_LAST; 1036 1037 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1; 1038 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2; 1039 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3; 1040 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4; 1041 1042 req.drv_ver = 0; /* Unused*/ 1043 req.os_type = 0x10; /* Linux */ 1044 req.os_ver_major = LINUX_VERSION_MAJOR; 1045 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL; 1046 req.os_ver_build = LINUX_VERSION_SUBLEVEL; 1047 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1)); 1048 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2)); 1049 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3)); 1050 1051 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1052 if (err || resp.hdr.status) { 1053 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n", 1054 err, resp.hdr.status); 1055 return err ? err : -EPROTO; 1056 } 1057 gc->pf_cap_flags1 = resp.pf_cap_flags1; 1058 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) { 1059 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout); 1060 if (err) { 1061 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err); 1062 return err; 1063 } 1064 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout); 1065 } 1066 return 0; 1067 } 1068 1069 int mana_gd_register_device(struct gdma_dev *gd) 1070 { 1071 struct gdma_context *gc = gd->gdma_context; 1072 struct gdma_register_device_resp resp = {}; 1073 struct gdma_general_req req = {}; 1074 int err; 1075 1076 gd->pdid = INVALID_PDID; 1077 gd->doorbell = INVALID_DOORBELL; 1078 gd->gpa_mkey = INVALID_MEM_KEY; 1079 1080 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req), 1081 sizeof(resp)); 1082 1083 req.hdr.dev_id = gd->dev_id; 1084 1085 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1086 if (err || resp.hdr.status) { 1087 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n", 1088 err, resp.hdr.status); 1089 return err ? err : -EPROTO; 1090 } 1091 1092 gd->pdid = resp.pdid; 1093 gd->gpa_mkey = resp.gpa_mkey; 1094 gd->doorbell = resp.db_id; 1095 1096 return 0; 1097 } 1098 1099 int mana_gd_deregister_device(struct gdma_dev *gd) 1100 { 1101 struct gdma_context *gc = gd->gdma_context; 1102 struct gdma_general_resp resp = {}; 1103 struct gdma_general_req req = {}; 1104 int err; 1105 1106 if (gd->pdid == INVALID_PDID) 1107 return -EINVAL; 1108 1109 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req), 1110 sizeof(resp)); 1111 1112 req.hdr.dev_id = gd->dev_id; 1113 1114 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1115 if (err || resp.hdr.status) { 1116 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n", 1117 err, resp.hdr.status); 1118 if (!err) 1119 err = -EPROTO; 1120 } 1121 1122 gd->pdid = INVALID_PDID; 1123 gd->doorbell = INVALID_DOORBELL; 1124 gd->gpa_mkey = INVALID_MEM_KEY; 1125 1126 return err; 1127 } 1128 1129 u32 mana_gd_wq_avail_space(struct gdma_queue *wq) 1130 { 1131 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE; 1132 u32 wq_size = wq->queue_size; 1133 1134 WARN_ON_ONCE(used_space > wq_size); 1135 1136 return wq_size - used_space; 1137 } 1138 1139 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset) 1140 { 1141 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1); 1142 1143 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size); 1144 1145 return wq->queue_mem_ptr + offset; 1146 } 1147 1148 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req, 1149 enum gdma_queue_type q_type, 1150 u32 client_oob_size, u32 sgl_data_size, 1151 u8 *wqe_ptr) 1152 { 1153 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL); 1154 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0); 1155 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr; 1156 u8 *ptr; 1157 1158 memset(header, 0, sizeof(struct gdma_wqe)); 1159 header->num_sge = wqe_req->num_sge; 1160 header->inline_oob_size_div4 = client_oob_size / sizeof(u32); 1161 1162 if (oob_in_sgl) { 1163 WARN_ON_ONCE(wqe_req->num_sge < 2); 1164 1165 header->client_oob_in_sgl = 1; 1166 1167 if (pad_data) 1168 header->last_vbytes = wqe_req->sgl[0].size; 1169 } 1170 1171 if (q_type == GDMA_SQ) 1172 header->client_data_unit = wqe_req->client_data_unit; 1173 1174 /* The size of gdma_wqe + client_oob_size must be less than or equal 1175 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond 1176 * the queue memory buffer boundary. 1177 */ 1178 ptr = wqe_ptr + sizeof(header); 1179 1180 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) { 1181 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size); 1182 1183 if (client_oob_size > wqe_req->inline_oob_size) 1184 memset(ptr + wqe_req->inline_oob_size, 0, 1185 client_oob_size - wqe_req->inline_oob_size); 1186 } 1187 1188 return sizeof(header) + client_oob_size; 1189 } 1190 1191 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr, 1192 const struct gdma_wqe_request *wqe_req) 1193 { 1194 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1195 const u8 *address = (u8 *)wqe_req->sgl; 1196 u8 *base_ptr, *end_ptr; 1197 u32 size_to_end; 1198 1199 base_ptr = wq->queue_mem_ptr; 1200 end_ptr = base_ptr + wq->queue_size; 1201 size_to_end = (u32)(end_ptr - wqe_ptr); 1202 1203 if (size_to_end < sgl_size) { 1204 memcpy(wqe_ptr, address, size_to_end); 1205 1206 wqe_ptr = base_ptr; 1207 address += size_to_end; 1208 sgl_size -= size_to_end; 1209 } 1210 1211 memcpy(wqe_ptr, address, sgl_size); 1212 } 1213 1214 int mana_gd_post_work_request(struct gdma_queue *wq, 1215 const struct gdma_wqe_request *wqe_req, 1216 struct gdma_posted_wqe_info *wqe_info) 1217 { 1218 u32 client_oob_size = wqe_req->inline_oob_size; 1219 struct gdma_context *gc; 1220 u32 sgl_data_size; 1221 u32 max_wqe_size; 1222 u32 wqe_size; 1223 u8 *wqe_ptr; 1224 1225 if (wqe_req->num_sge == 0) 1226 return -EINVAL; 1227 1228 if (wq->type == GDMA_RQ) { 1229 if (client_oob_size != 0) 1230 return -EINVAL; 1231 1232 client_oob_size = INLINE_OOB_SMALL_SIZE; 1233 1234 max_wqe_size = GDMA_MAX_RQE_SIZE; 1235 } else { 1236 if (client_oob_size != INLINE_OOB_SMALL_SIZE && 1237 client_oob_size != INLINE_OOB_LARGE_SIZE) 1238 return -EINVAL; 1239 1240 max_wqe_size = GDMA_MAX_SQE_SIZE; 1241 } 1242 1243 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1244 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size + 1245 sgl_data_size, GDMA_WQE_BU_SIZE); 1246 if (wqe_size > max_wqe_size) 1247 return -EINVAL; 1248 1249 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) { 1250 gc = wq->gdma_dev->gdma_context; 1251 dev_err(gc->dev, "unsuccessful flow control!\n"); 1252 return -ENOSPC; 1253 } 1254 1255 if (wqe_info) 1256 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE; 1257 1258 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head); 1259 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size, 1260 sgl_data_size, wqe_ptr); 1261 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size) 1262 wqe_ptr -= wq->queue_size; 1263 1264 mana_gd_write_sgl(wq, wqe_ptr, wqe_req); 1265 1266 wq->head += wqe_size / GDMA_WQE_BU_SIZE; 1267 1268 return 0; 1269 } 1270 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA"); 1271 1272 int mana_gd_post_and_ring(struct gdma_queue *queue, 1273 const struct gdma_wqe_request *wqe_req, 1274 struct gdma_posted_wqe_info *wqe_info) 1275 { 1276 struct gdma_context *gc = queue->gdma_dev->gdma_context; 1277 int err; 1278 1279 err = mana_gd_post_work_request(queue, wqe_req, wqe_info); 1280 if (err) { 1281 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n", 1282 queue->type, queue->queue_size, err); 1283 return err; 1284 } 1285 1286 mana_gd_wq_ring_doorbell(gc, queue); 1287 1288 return 0; 1289 } 1290 1291 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp) 1292 { 1293 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe); 1294 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr; 1295 u32 owner_bits, new_bits, old_bits; 1296 struct gdma_cqe *cqe; 1297 1298 cqe = &cq_cqe[cq->head % num_cqe]; 1299 owner_bits = cqe->cqe_info.owner_bits; 1300 1301 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK; 1302 /* Return 0 if no more entries. */ 1303 if (owner_bits == old_bits) 1304 return 0; 1305 1306 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK; 1307 /* Return -1 if overflow detected. */ 1308 if (WARN_ON_ONCE(owner_bits != new_bits)) 1309 return -1; 1310 1311 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 1312 * reading completion info 1313 */ 1314 rmb(); 1315 1316 comp->wq_num = cqe->cqe_info.wq_num; 1317 comp->is_sq = cqe->cqe_info.is_sq; 1318 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE); 1319 1320 return 1; 1321 } 1322 1323 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe) 1324 { 1325 int cqe_idx; 1326 int ret; 1327 1328 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) { 1329 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]); 1330 1331 if (ret < 0) { 1332 cq->head -= cqe_idx; 1333 return ret; 1334 } 1335 1336 if (ret == 0) 1337 break; 1338 1339 cq->head++; 1340 } 1341 1342 return cqe_idx; 1343 } 1344 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA"); 1345 1346 static irqreturn_t mana_gd_intr(int irq, void *arg) 1347 { 1348 struct gdma_irq_context *gic = arg; 1349 struct list_head *eq_list = &gic->eq_list; 1350 struct gdma_queue *eq; 1351 1352 rcu_read_lock(); 1353 list_for_each_entry_rcu(eq, eq_list, entry) { 1354 gic->handler(eq); 1355 } 1356 rcu_read_unlock(); 1357 1358 return IRQ_HANDLED; 1359 } 1360 1361 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r) 1362 { 1363 r->map = bitmap_zalloc(res_avail, GFP_KERNEL); 1364 if (!r->map) 1365 return -ENOMEM; 1366 1367 r->size = res_avail; 1368 spin_lock_init(&r->lock); 1369 1370 return 0; 1371 } 1372 1373 void mana_gd_free_res_map(struct gdma_resource *r) 1374 { 1375 bitmap_free(r->map); 1376 r->map = NULL; 1377 r->size = 0; 1378 } 1379 1380 /* 1381 * Spread on CPUs with the following heuristics: 1382 * 1383 * 1. No more than one IRQ per CPU, if possible; 1384 * 2. NUMA locality is the second priority; 1385 * 3. Sibling dislocality is the last priority. 1386 * 1387 * Let's consider this topology: 1388 * 1389 * Node 0 1 1390 * Core 0 1 2 3 1391 * CPU 0 1 2 3 4 5 6 7 1392 * 1393 * The most performant IRQ distribution based on the above topology 1394 * and heuristics may look like this: 1395 * 1396 * IRQ Nodes Cores CPUs 1397 * 0 1 0 0-1 1398 * 1 1 1 2-3 1399 * 2 1 0 0-1 1400 * 3 1 1 2-3 1401 * 4 2 2 4-5 1402 * 5 2 3 6-7 1403 * 6 2 2 4-5 1404 * 7 2 3 6-7 1405 * 1406 * The heuristics is implemented as follows. 1407 * 1408 * The outer for_each() loop resets the 'weight' to the actual number 1409 * of CPUs in the hop. Then inner for_each() loop decrements it by the 1410 * number of sibling groups (cores) while assigning first set of IRQs 1411 * to each group. IRQs 0 and 1 above are distributed this way. 1412 * 1413 * Now, because NUMA locality is more important, we should walk the 1414 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's 1415 * implemented by the medium while() loop. We do like this unless the 1416 * number of IRQs assigned on this hop will not become equal to number 1417 * of CPUs in the hop (weight == 0). Then we switch to the next hop and 1418 * do the same thing. 1419 */ 1420 1421 static int irq_setup(unsigned int *irqs, unsigned int len, int node, 1422 bool skip_first_cpu) 1423 { 1424 const struct cpumask *next, *prev = cpu_none_mask; 1425 cpumask_var_t cpus __free(free_cpumask_var); 1426 int cpu, weight; 1427 1428 if (!alloc_cpumask_var(&cpus, GFP_KERNEL)) 1429 return -ENOMEM; 1430 1431 rcu_read_lock(); 1432 for_each_numa_hop_mask(next, node) { 1433 weight = cpumask_weight_andnot(next, prev); 1434 while (weight > 0) { 1435 cpumask_andnot(cpus, next, prev); 1436 for_each_cpu(cpu, cpus) { 1437 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 1438 --weight; 1439 1440 if (unlikely(skip_first_cpu)) { 1441 skip_first_cpu = false; 1442 continue; 1443 } 1444 1445 if (len-- == 0) 1446 goto done; 1447 1448 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu)); 1449 } 1450 } 1451 prev = next; 1452 } 1453 done: 1454 rcu_read_unlock(); 1455 return 0; 1456 } 1457 1458 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec) 1459 { 1460 struct gdma_context *gc = pci_get_drvdata(pdev); 1461 struct gdma_irq_context *gic; 1462 bool skip_first_cpu = false; 1463 int *irqs, irq, err, i; 1464 1465 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1466 if (!irqs) 1467 return -ENOMEM; 1468 1469 /* 1470 * While processing the next pci irq vector, we start with index 1, 1471 * as IRQ vector at index 0 is already processed for HWC. 1472 * However, the population of irqs array starts with index 0, to be 1473 * further used in irq_setup() 1474 */ 1475 for (i = 1; i <= nvec; i++) { 1476 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1477 if (!gic) { 1478 err = -ENOMEM; 1479 goto free_irq; 1480 } 1481 gic->handler = mana_gd_process_eq_events; 1482 INIT_LIST_HEAD(&gic->eq_list); 1483 spin_lock_init(&gic->lock); 1484 1485 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1486 i - 1, pci_name(pdev)); 1487 1488 /* one pci vector is already allocated for HWC */ 1489 irqs[i - 1] = pci_irq_vector(pdev, i); 1490 if (irqs[i - 1] < 0) { 1491 err = irqs[i - 1]; 1492 goto free_current_gic; 1493 } 1494 1495 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic); 1496 if (err) 1497 goto free_current_gic; 1498 1499 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1500 } 1501 1502 /* 1503 * When calling irq_setup() for dynamically added IRQs, if number of 1504 * CPUs is more than or equal to allocated MSI-X, we need to skip the 1505 * first CPU sibling group since they are already affinitized to HWC IRQ 1506 */ 1507 cpus_read_lock(); 1508 if (gc->num_msix_usable <= num_online_cpus()) 1509 skip_first_cpu = true; 1510 1511 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu); 1512 if (err) { 1513 cpus_read_unlock(); 1514 goto free_irq; 1515 } 1516 1517 cpus_read_unlock(); 1518 kfree(irqs); 1519 return 0; 1520 1521 free_current_gic: 1522 kfree(gic); 1523 free_irq: 1524 for (i -= 1; i > 0; i--) { 1525 irq = pci_irq_vector(pdev, i); 1526 gic = xa_load(&gc->irq_contexts, i); 1527 if (WARN_ON(!gic)) 1528 continue; 1529 1530 irq_update_affinity_hint(irq, NULL); 1531 free_irq(irq, gic); 1532 xa_erase(&gc->irq_contexts, i); 1533 kfree(gic); 1534 } 1535 kfree(irqs); 1536 return err; 1537 } 1538 1539 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec) 1540 { 1541 struct gdma_context *gc = pci_get_drvdata(pdev); 1542 struct gdma_irq_context *gic; 1543 int *irqs, *start_irqs, irq; 1544 unsigned int cpu; 1545 int err, i; 1546 1547 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1548 if (!irqs) 1549 return -ENOMEM; 1550 1551 start_irqs = irqs; 1552 1553 for (i = 0; i < nvec; i++) { 1554 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1555 if (!gic) { 1556 err = -ENOMEM; 1557 goto free_irq; 1558 } 1559 1560 gic->handler = mana_gd_process_eq_events; 1561 INIT_LIST_HEAD(&gic->eq_list); 1562 spin_lock_init(&gic->lock); 1563 1564 if (!i) 1565 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s", 1566 pci_name(pdev)); 1567 else 1568 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1569 i - 1, pci_name(pdev)); 1570 1571 irqs[i] = pci_irq_vector(pdev, i); 1572 if (irqs[i] < 0) { 1573 err = irqs[i]; 1574 goto free_current_gic; 1575 } 1576 1577 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic); 1578 if (err) 1579 goto free_current_gic; 1580 1581 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1582 } 1583 1584 /* If number of IRQ is one extra than number of online CPUs, 1585 * then we need to assign IRQ0 (hwc irq) and IRQ1 to 1586 * same CPU. 1587 * Else we will use different CPUs for IRQ0 and IRQ1. 1588 * Also we are using cpumask_local_spread instead of 1589 * cpumask_first for the node, because the node can be 1590 * mem only. 1591 */ 1592 cpus_read_lock(); 1593 if (nvec > num_online_cpus()) { 1594 cpu = cpumask_local_spread(0, gc->numa_node); 1595 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu)); 1596 irqs++; 1597 nvec -= 1; 1598 } 1599 1600 err = irq_setup(irqs, nvec, gc->numa_node, false); 1601 if (err) { 1602 cpus_read_unlock(); 1603 goto free_irq; 1604 } 1605 1606 cpus_read_unlock(); 1607 kfree(start_irqs); 1608 return 0; 1609 1610 free_current_gic: 1611 kfree(gic); 1612 free_irq: 1613 for (i -= 1; i >= 0; i--) { 1614 irq = pci_irq_vector(pdev, i); 1615 gic = xa_load(&gc->irq_contexts, i); 1616 if (WARN_ON(!gic)) 1617 continue; 1618 1619 irq_update_affinity_hint(irq, NULL); 1620 free_irq(irq, gic); 1621 xa_erase(&gc->irq_contexts, i); 1622 kfree(gic); 1623 } 1624 1625 kfree(start_irqs); 1626 return err; 1627 } 1628 1629 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev) 1630 { 1631 struct gdma_context *gc = pci_get_drvdata(pdev); 1632 unsigned int max_irqs, min_irqs; 1633 int nvec, err; 1634 1635 if (pci_msix_can_alloc_dyn(pdev)) { 1636 max_irqs = 1; 1637 min_irqs = 1; 1638 } else { 1639 /* Need 1 interrupt for HWC */ 1640 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1; 1641 min_irqs = 2; 1642 } 1643 1644 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX); 1645 if (nvec < 0) 1646 return nvec; 1647 1648 err = mana_gd_setup_irqs(pdev, nvec); 1649 if (err) { 1650 pci_free_irq_vectors(pdev); 1651 return err; 1652 } 1653 1654 gc->num_msix_usable = nvec; 1655 gc->max_num_msix = nvec; 1656 1657 return 0; 1658 } 1659 1660 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev) 1661 { 1662 struct gdma_context *gc = pci_get_drvdata(pdev); 1663 struct msi_map irq_map; 1664 int max_irqs, i, err; 1665 1666 if (!pci_msix_can_alloc_dyn(pdev)) 1667 /* remain irqs are already allocated with HWC IRQ */ 1668 return 0; 1669 1670 /* allocate only remaining IRQs*/ 1671 max_irqs = gc->num_msix_usable - 1; 1672 1673 for (i = 1; i <= max_irqs; i++) { 1674 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL); 1675 if (!irq_map.virq) { 1676 err = irq_map.index; 1677 /* caller will handle cleaning up all allocated 1678 * irqs, after HWC is destroyed 1679 */ 1680 return err; 1681 } 1682 } 1683 1684 err = mana_gd_setup_dyn_irqs(pdev, max_irqs); 1685 if (err) 1686 return err; 1687 1688 gc->max_num_msix = gc->max_num_msix + max_irqs; 1689 1690 return 0; 1691 } 1692 1693 static void mana_gd_remove_irqs(struct pci_dev *pdev) 1694 { 1695 struct gdma_context *gc = pci_get_drvdata(pdev); 1696 struct gdma_irq_context *gic; 1697 int irq, i; 1698 1699 if (gc->max_num_msix < 1) 1700 return; 1701 1702 for (i = 0; i < gc->max_num_msix; i++) { 1703 irq = pci_irq_vector(pdev, i); 1704 if (irq < 0) 1705 continue; 1706 1707 gic = xa_load(&gc->irq_contexts, i); 1708 if (WARN_ON(!gic)) 1709 continue; 1710 1711 /* Need to clear the hint before free_irq */ 1712 irq_update_affinity_hint(irq, NULL); 1713 free_irq(irq, gic); 1714 xa_erase(&gc->irq_contexts, i); 1715 kfree(gic); 1716 } 1717 1718 pci_free_irq_vectors(pdev); 1719 1720 gc->max_num_msix = 0; 1721 gc->num_msix_usable = 0; 1722 } 1723 1724 static int mana_gd_setup(struct pci_dev *pdev) 1725 { 1726 struct gdma_context *gc = pci_get_drvdata(pdev); 1727 int err; 1728 1729 mana_gd_init_registers(pdev); 1730 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base); 1731 1732 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0); 1733 if (!gc->service_wq) 1734 return -ENOMEM; 1735 1736 err = mana_gd_setup_hwc_irqs(pdev); 1737 if (err) { 1738 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n", 1739 err); 1740 goto free_workqueue; 1741 } 1742 1743 err = mana_hwc_create_channel(gc); 1744 if (err) 1745 goto remove_irq; 1746 1747 err = mana_gd_verify_vf_version(pdev); 1748 if (err) 1749 goto destroy_hwc; 1750 1751 err = mana_gd_query_max_resources(pdev); 1752 if (err) 1753 goto destroy_hwc; 1754 1755 err = mana_gd_setup_remaining_irqs(pdev); 1756 if (err) { 1757 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err); 1758 goto destroy_hwc; 1759 } 1760 1761 err = mana_gd_detect_devices(pdev); 1762 if (err) 1763 goto destroy_hwc; 1764 1765 dev_dbg(&pdev->dev, "mana gdma setup successful\n"); 1766 return 0; 1767 1768 destroy_hwc: 1769 mana_hwc_destroy_channel(gc); 1770 remove_irq: 1771 mana_gd_remove_irqs(pdev); 1772 free_workqueue: 1773 destroy_workqueue(gc->service_wq); 1774 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err); 1775 return err; 1776 } 1777 1778 static void mana_gd_cleanup(struct pci_dev *pdev) 1779 { 1780 struct gdma_context *gc = pci_get_drvdata(pdev); 1781 1782 mana_hwc_destroy_channel(gc); 1783 1784 mana_gd_remove_irqs(pdev); 1785 1786 destroy_workqueue(gc->service_wq); 1787 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n"); 1788 } 1789 1790 static bool mana_is_pf(unsigned short dev_id) 1791 { 1792 return dev_id == MANA_PF_DEVICE_ID; 1793 } 1794 1795 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1796 { 1797 struct gdma_context *gc; 1798 void __iomem *bar0_va; 1799 int bar = 0; 1800 int err; 1801 1802 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */ 1803 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE); 1804 1805 err = pci_enable_device(pdev); 1806 if (err) { 1807 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err); 1808 return -ENXIO; 1809 } 1810 1811 pci_set_master(pdev); 1812 1813 err = pci_request_regions(pdev, "mana"); 1814 if (err) 1815 goto disable_dev; 1816 1817 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1818 if (err) { 1819 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err); 1820 goto release_region; 1821 } 1822 dma_set_max_seg_size(&pdev->dev, UINT_MAX); 1823 1824 err = -ENOMEM; 1825 gc = vzalloc(sizeof(*gc)); 1826 if (!gc) 1827 goto release_region; 1828 1829 mutex_init(&gc->eq_test_event_mutex); 1830 pci_set_drvdata(pdev, gc); 1831 gc->bar0_pa = pci_resource_start(pdev, 0); 1832 1833 bar0_va = pci_iomap(pdev, bar, 0); 1834 if (!bar0_va) 1835 goto free_gc; 1836 1837 gc->numa_node = dev_to_node(&pdev->dev); 1838 gc->is_pf = mana_is_pf(pdev->device); 1839 gc->bar0_va = bar0_va; 1840 gc->dev = &pdev->dev; 1841 xa_init(&gc->irq_contexts); 1842 1843 if (gc->is_pf) 1844 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root); 1845 else 1846 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot), 1847 mana_debugfs_root); 1848 1849 err = mana_gd_setup(pdev); 1850 if (err) 1851 goto unmap_bar; 1852 1853 err = mana_probe(&gc->mana, false); 1854 if (err) 1855 goto cleanup_gd; 1856 1857 err = mana_rdma_probe(&gc->mana_ib); 1858 if (err) 1859 goto cleanup_mana; 1860 1861 return 0; 1862 1863 cleanup_mana: 1864 mana_remove(&gc->mana, false); 1865 cleanup_gd: 1866 mana_gd_cleanup(pdev); 1867 unmap_bar: 1868 /* 1869 * at this point we know that the other debugfs child dir/files 1870 * are either not yet created or are already cleaned up. 1871 * The pci debugfs folder clean-up now, will only be cleaning up 1872 * adapter-MTU file and apc->mana_pci_debugfs folder. 1873 */ 1874 debugfs_remove_recursive(gc->mana_pci_debugfs); 1875 gc->mana_pci_debugfs = NULL; 1876 xa_destroy(&gc->irq_contexts); 1877 pci_iounmap(pdev, bar0_va); 1878 free_gc: 1879 pci_set_drvdata(pdev, NULL); 1880 vfree(gc); 1881 release_region: 1882 pci_release_regions(pdev); 1883 disable_dev: 1884 pci_disable_device(pdev); 1885 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err); 1886 return err; 1887 } 1888 1889 static void mana_gd_remove(struct pci_dev *pdev) 1890 { 1891 struct gdma_context *gc = pci_get_drvdata(pdev); 1892 1893 mana_rdma_remove(&gc->mana_ib); 1894 mana_remove(&gc->mana, false); 1895 1896 mana_gd_cleanup(pdev); 1897 1898 debugfs_remove_recursive(gc->mana_pci_debugfs); 1899 1900 gc->mana_pci_debugfs = NULL; 1901 1902 xa_destroy(&gc->irq_contexts); 1903 1904 pci_iounmap(pdev, gc->bar0_va); 1905 1906 vfree(gc); 1907 1908 pci_release_regions(pdev); 1909 pci_disable_device(pdev); 1910 1911 dev_dbg(&pdev->dev, "mana gdma remove successful\n"); 1912 } 1913 1914 /* The 'state' parameter is not used. */ 1915 static int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state) 1916 { 1917 struct gdma_context *gc = pci_get_drvdata(pdev); 1918 1919 mana_rdma_remove(&gc->mana_ib); 1920 mana_remove(&gc->mana, true); 1921 1922 mana_gd_cleanup(pdev); 1923 1924 return 0; 1925 } 1926 1927 /* In case the NIC hardware stops working, the suspend and resume callbacks will 1928 * fail -- if this happens, it's safer to just report an error than try to undo 1929 * what has been done. 1930 */ 1931 static int mana_gd_resume(struct pci_dev *pdev) 1932 { 1933 struct gdma_context *gc = pci_get_drvdata(pdev); 1934 int err; 1935 1936 err = mana_gd_setup(pdev); 1937 if (err) 1938 return err; 1939 1940 err = mana_probe(&gc->mana, true); 1941 if (err) 1942 return err; 1943 1944 err = mana_rdma_probe(&gc->mana_ib); 1945 if (err) 1946 return err; 1947 1948 return 0; 1949 } 1950 1951 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */ 1952 static void mana_gd_shutdown(struct pci_dev *pdev) 1953 { 1954 struct gdma_context *gc = pci_get_drvdata(pdev); 1955 1956 dev_info(&pdev->dev, "Shutdown was called\n"); 1957 1958 mana_rdma_remove(&gc->mana_ib); 1959 mana_remove(&gc->mana, true); 1960 1961 mana_gd_cleanup(pdev); 1962 1963 debugfs_remove_recursive(gc->mana_pci_debugfs); 1964 1965 gc->mana_pci_debugfs = NULL; 1966 1967 pci_disable_device(pdev); 1968 } 1969 1970 static const struct pci_device_id mana_id_table[] = { 1971 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) }, 1972 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) }, 1973 { } 1974 }; 1975 1976 static struct pci_driver mana_driver = { 1977 .name = "mana", 1978 .id_table = mana_id_table, 1979 .probe = mana_gd_probe, 1980 .remove = mana_gd_remove, 1981 .suspend = mana_gd_suspend, 1982 .resume = mana_gd_resume, 1983 .shutdown = mana_gd_shutdown, 1984 }; 1985 1986 static int __init mana_driver_init(void) 1987 { 1988 int err; 1989 1990 mana_debugfs_root = debugfs_create_dir("mana", NULL); 1991 1992 err = pci_register_driver(&mana_driver); 1993 if (err) { 1994 debugfs_remove(mana_debugfs_root); 1995 mana_debugfs_root = NULL; 1996 } 1997 1998 return err; 1999 } 2000 2001 static void __exit mana_driver_exit(void) 2002 { 2003 pci_unregister_driver(&mana_driver); 2004 2005 debugfs_remove(mana_debugfs_root); 2006 2007 mana_debugfs_root = NULL; 2008 } 2009 2010 module_init(mana_driver_init); 2011 module_exit(mana_driver_exit); 2012 2013 MODULE_DEVICE_TABLE(pci, mana_id_table); 2014 2015 MODULE_LICENSE("Dual BSD/GPL"); 2016 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver"); 2017