xref: /linux/drivers/net/ethernet/microsoft/mana/gdma_main.c (revision cea465a96a294e7bc2537f27a737cfa7c6234b3d)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright (c) 2021, Microsoft Corporation. */
3 
4 #include <linux/debugfs.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/utsname.h>
8 #include <linux/version.h>
9 #include <linux/msi.h>
10 #include <linux/irqdomain.h>
11 
12 #include <net/mana/mana.h>
13 
14 struct dentry *mana_debugfs_root;
15 
16 static u32 mana_gd_r32(struct gdma_context *g, u64 offset)
17 {
18 	return readl(g->bar0_va + offset);
19 }
20 
21 static u64 mana_gd_r64(struct gdma_context *g, u64 offset)
22 {
23 	return readq(g->bar0_va + offset);
24 }
25 
26 static void mana_gd_init_pf_regs(struct pci_dev *pdev)
27 {
28 	struct gdma_context *gc = pci_get_drvdata(pdev);
29 	void __iomem *sriov_base_va;
30 	u64 sriov_base_off;
31 
32 	gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF;
33 	gc->db_page_base = gc->bar0_va +
34 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
35 
36 	sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF);
37 
38 	sriov_base_va = gc->bar0_va + sriov_base_off;
39 	gc->shm_base = sriov_base_va +
40 			mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF);
41 }
42 
43 static void mana_gd_init_vf_regs(struct pci_dev *pdev)
44 {
45 	struct gdma_context *gc = pci_get_drvdata(pdev);
46 
47 	gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
48 
49 	gc->db_page_base = gc->bar0_va +
50 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
51 
52 	gc->phys_db_page_base = gc->bar0_pa +
53 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
54 
55 	gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET);
56 }
57 
58 static void mana_gd_init_registers(struct pci_dev *pdev)
59 {
60 	struct gdma_context *gc = pci_get_drvdata(pdev);
61 
62 	if (gc->is_pf)
63 		mana_gd_init_pf_regs(pdev);
64 	else
65 		mana_gd_init_vf_regs(pdev);
66 }
67 
68 static int mana_gd_query_max_resources(struct pci_dev *pdev)
69 {
70 	struct gdma_context *gc = pci_get_drvdata(pdev);
71 	struct gdma_query_max_resources_resp resp = {};
72 	struct gdma_general_req req = {};
73 	int err;
74 
75 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
76 			     sizeof(req), sizeof(resp));
77 
78 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
79 	if (err || resp.hdr.status) {
80 		dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n",
81 			err, resp.hdr.status);
82 		return err ? err : -EPROTO;
83 	}
84 
85 	if (!pci_msix_can_alloc_dyn(pdev)) {
86 		if (gc->num_msix_usable > resp.max_msix)
87 			gc->num_msix_usable = resp.max_msix;
88 	} else {
89 		/* If dynamic allocation is enabled we have already allocated
90 		 * hwc msi
91 		 */
92 		gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1);
93 	}
94 
95 	if (gc->num_msix_usable <= 1)
96 		return -ENOSPC;
97 
98 	gc->max_num_queues = num_online_cpus();
99 	if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
100 		gc->max_num_queues = MANA_MAX_NUM_QUEUES;
101 
102 	if (gc->max_num_queues > resp.max_eq)
103 		gc->max_num_queues = resp.max_eq;
104 
105 	if (gc->max_num_queues > resp.max_cq)
106 		gc->max_num_queues = resp.max_cq;
107 
108 	if (gc->max_num_queues > resp.max_sq)
109 		gc->max_num_queues = resp.max_sq;
110 
111 	if (gc->max_num_queues > resp.max_rq)
112 		gc->max_num_queues = resp.max_rq;
113 
114 	/* The Hardware Channel (HWC) used 1 MSI-X */
115 	if (gc->max_num_queues > gc->num_msix_usable - 1)
116 		gc->max_num_queues = gc->num_msix_usable - 1;
117 
118 	return 0;
119 }
120 
121 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val)
122 {
123 	struct gdma_context *gc = pci_get_drvdata(pdev);
124 	struct gdma_query_hwc_timeout_resp resp = {};
125 	struct gdma_query_hwc_timeout_req req = {};
126 	int err;
127 
128 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT,
129 			     sizeof(req), sizeof(resp));
130 	req.timeout_ms = *timeout_val;
131 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
132 	if (err || resp.hdr.status)
133 		return err ? err : -EPROTO;
134 
135 	*timeout_val = resp.timeout_ms;
136 
137 	return 0;
138 }
139 
140 static int mana_gd_detect_devices(struct pci_dev *pdev)
141 {
142 	struct gdma_context *gc = pci_get_drvdata(pdev);
143 	struct gdma_list_devices_resp resp = {};
144 	struct gdma_general_req req = {};
145 	struct gdma_dev_id dev;
146 	int found_dev = 0;
147 	u16 dev_type;
148 	int err;
149 	u32 i;
150 
151 	mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
152 			     sizeof(resp));
153 
154 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
155 	if (err || resp.hdr.status) {
156 		dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err,
157 			resp.hdr.status);
158 		return err ? err : -EPROTO;
159 	}
160 
161 	for (i = 0; i < GDMA_DEV_LIST_SIZE &&
162 	     found_dev < resp.num_of_devs; i++) {
163 		dev = resp.devs[i];
164 		dev_type = dev.type;
165 
166 		/* Skip empty devices */
167 		if (dev.as_uint32 == 0)
168 			continue;
169 
170 		found_dev++;
171 
172 		/* HWC is already detected in mana_hwc_create_channel(). */
173 		if (dev_type == GDMA_DEVICE_HWC)
174 			continue;
175 
176 		if (dev_type == GDMA_DEVICE_MANA) {
177 			gc->mana.gdma_context = gc;
178 			gc->mana.dev_id = dev;
179 		} else if (dev_type == GDMA_DEVICE_MANA_IB) {
180 			gc->mana_ib.dev_id = dev;
181 			gc->mana_ib.gdma_context = gc;
182 		}
183 	}
184 
185 	return gc->mana.dev_id.type == 0 ? -ENODEV : 0;
186 }
187 
188 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req,
189 			 u32 resp_len, void *resp)
190 {
191 	struct hw_channel_context *hwc = gc->hwc.driver_data;
192 
193 	return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
194 }
195 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA");
196 
197 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
198 			 struct gdma_mem_info *gmi)
199 {
200 	dma_addr_t dma_handle;
201 	void *buf;
202 
203 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
204 		return -EINVAL;
205 
206 	gmi->dev = gc->dev;
207 	buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL);
208 	if (!buf)
209 		return -ENOMEM;
210 
211 	gmi->dma_handle = dma_handle;
212 	gmi->virt_addr = buf;
213 	gmi->length = length;
214 
215 	return 0;
216 }
217 
218 void mana_gd_free_memory(struct gdma_mem_info *gmi)
219 {
220 	dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr,
221 			  gmi->dma_handle);
222 }
223 
224 static int mana_gd_create_hw_eq(struct gdma_context *gc,
225 				struct gdma_queue *queue)
226 {
227 	struct gdma_create_queue_resp resp = {};
228 	struct gdma_create_queue_req req = {};
229 	int err;
230 
231 	if (queue->type != GDMA_EQ)
232 		return -EINVAL;
233 
234 	mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
235 			     sizeof(req), sizeof(resp));
236 
237 	req.hdr.dev_id = queue->gdma_dev->dev_id;
238 	req.type = queue->type;
239 	req.pdid = queue->gdma_dev->pdid;
240 	req.doolbell_id = queue->gdma_dev->doorbell;
241 	req.gdma_region = queue->mem_info.dma_region_handle;
242 	req.queue_size = queue->queue_size;
243 	req.log2_throttle_limit = queue->eq.log2_throttle_limit;
244 	req.eq_pci_msix_index = queue->eq.msix_index;
245 
246 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
247 	if (err || resp.hdr.status) {
248 		dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err,
249 			resp.hdr.status);
250 		return err ? err : -EPROTO;
251 	}
252 
253 	queue->id = resp.queue_index;
254 	queue->eq.disable_needed = true;
255 	queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
256 	return 0;
257 }
258 
259 static int mana_gd_disable_queue(struct gdma_queue *queue)
260 {
261 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
262 	struct gdma_disable_queue_req req = {};
263 	struct gdma_general_resp resp = {};
264 	int err;
265 
266 	WARN_ON(queue->type != GDMA_EQ);
267 
268 	mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
269 			     sizeof(req), sizeof(resp));
270 
271 	req.hdr.dev_id = queue->gdma_dev->dev_id;
272 	req.type = queue->type;
273 	req.queue_index =  queue->id;
274 	req.alloc_res_id_on_creation = 1;
275 
276 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
277 	if (err || resp.hdr.status) {
278 		dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err,
279 			resp.hdr.status);
280 		return err ? err : -EPROTO;
281 	}
282 
283 	return 0;
284 }
285 
286 #define DOORBELL_OFFSET_SQ	0x0
287 #define DOORBELL_OFFSET_RQ	0x400
288 #define DOORBELL_OFFSET_CQ	0x800
289 #define DOORBELL_OFFSET_EQ	0xFF8
290 
291 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index,
292 				  enum gdma_queue_type q_type, u32 qid,
293 				  u32 tail_ptr, u8 num_req)
294 {
295 	void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index;
296 	union gdma_doorbell_entry e = {};
297 
298 	switch (q_type) {
299 	case GDMA_EQ:
300 		e.eq.id = qid;
301 		e.eq.tail_ptr = tail_ptr;
302 		e.eq.arm = num_req;
303 
304 		addr += DOORBELL_OFFSET_EQ;
305 		break;
306 
307 	case GDMA_CQ:
308 		e.cq.id = qid;
309 		e.cq.tail_ptr = tail_ptr;
310 		e.cq.arm = num_req;
311 
312 		addr += DOORBELL_OFFSET_CQ;
313 		break;
314 
315 	case GDMA_RQ:
316 		e.rq.id = qid;
317 		e.rq.tail_ptr = tail_ptr;
318 		e.rq.wqe_cnt = num_req;
319 
320 		addr += DOORBELL_OFFSET_RQ;
321 		break;
322 
323 	case GDMA_SQ:
324 		e.sq.id = qid;
325 		e.sq.tail_ptr = tail_ptr;
326 
327 		addr += DOORBELL_OFFSET_SQ;
328 		break;
329 
330 	default:
331 		WARN_ON(1);
332 		return;
333 	}
334 
335 	/* Ensure all writes are done before ring doorbell */
336 	wmb();
337 
338 	writeq(e.as_uint64, addr);
339 }
340 
341 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
342 {
343 	/* Hardware Spec specifies that software client should set 0 for
344 	 * wqe_cnt for Receive Queues. This value is not used in Send Queues.
345 	 */
346 	mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
347 			      queue->id, queue->head * GDMA_WQE_BU_SIZE, 0);
348 }
349 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA");
350 
351 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit)
352 {
353 	struct gdma_context *gc = cq->gdma_dev->gdma_context;
354 
355 	u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE;
356 
357 	u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
358 
359 	mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
360 			      head, arm_bit);
361 }
362 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA");
363 
364 #define MANA_SERVICE_PERIOD 10
365 
366 struct mana_serv_work {
367 	struct work_struct serv_work;
368 	struct pci_dev *pdev;
369 };
370 
371 static void mana_serv_func(struct work_struct *w)
372 {
373 	struct mana_serv_work *mns_wk;
374 	struct pci_bus *bus, *parent;
375 	struct pci_dev *pdev;
376 
377 	mns_wk = container_of(w, struct mana_serv_work, serv_work);
378 	pdev = mns_wk->pdev;
379 
380 	pci_lock_rescan_remove();
381 
382 	if (!pdev)
383 		goto out;
384 
385 	bus = pdev->bus;
386 	if (!bus) {
387 		dev_err(&pdev->dev, "MANA service: no bus\n");
388 		goto out;
389 	}
390 
391 	parent = bus->parent;
392 	if (!parent) {
393 		dev_err(&pdev->dev, "MANA service: no parent bus\n");
394 		goto out;
395 	}
396 
397 	pci_stop_and_remove_bus_device(bus->self);
398 
399 	msleep(MANA_SERVICE_PERIOD * 1000);
400 
401 	pci_rescan_bus(parent);
402 
403 out:
404 	pci_unlock_rescan_remove();
405 
406 	pci_dev_put(pdev);
407 	kfree(mns_wk);
408 	module_put(THIS_MODULE);
409 }
410 
411 static void mana_gd_process_eqe(struct gdma_queue *eq)
412 {
413 	u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
414 	struct gdma_context *gc = eq->gdma_dev->gdma_context;
415 	struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
416 	struct mana_serv_work *mns_wk;
417 	union gdma_eqe_info eqe_info;
418 	enum gdma_eqe_type type;
419 	struct gdma_event event;
420 	struct gdma_queue *cq;
421 	struct gdma_eqe *eqe;
422 	u32 cq_id;
423 
424 	eqe = &eq_eqe_ptr[head];
425 	eqe_info.as_uint32 = eqe->eqe_info;
426 	type = eqe_info.type;
427 
428 	switch (type) {
429 	case GDMA_EQE_COMPLETION:
430 		cq_id = eqe->details[0] & 0xFFFFFF;
431 		if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs))
432 			break;
433 
434 		cq = gc->cq_table[cq_id];
435 		if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id))
436 			break;
437 
438 		if (cq->cq.callback)
439 			cq->cq.callback(cq->cq.context, cq);
440 
441 		break;
442 
443 	case GDMA_EQE_TEST_EVENT:
444 		gc->test_event_eq_id = eq->id;
445 		complete(&gc->eq_test_event);
446 		break;
447 
448 	case GDMA_EQE_HWC_INIT_EQ_ID_DB:
449 	case GDMA_EQE_HWC_INIT_DATA:
450 	case GDMA_EQE_HWC_INIT_DONE:
451 	case GDMA_EQE_HWC_SOC_SERVICE:
452 	case GDMA_EQE_RNIC_QP_FATAL:
453 		if (!eq->eq.callback)
454 			break;
455 
456 		event.type = type;
457 		memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
458 		eq->eq.callback(eq->eq.context, eq, &event);
459 		break;
460 
461 	case GDMA_EQE_HWC_FPGA_RECONFIG:
462 		dev_info(gc->dev, "Recv MANA service type:%d\n", type);
463 
464 		if (gc->in_service) {
465 			dev_info(gc->dev, "Already in service\n");
466 			break;
467 		}
468 
469 		if (!try_module_get(THIS_MODULE)) {
470 			dev_info(gc->dev, "Module is unloading\n");
471 			break;
472 		}
473 
474 		mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC);
475 		if (!mns_wk) {
476 			module_put(THIS_MODULE);
477 			break;
478 		}
479 
480 		dev_info(gc->dev, "Start MANA service type:%d\n", type);
481 		gc->in_service = true;
482 		mns_wk->pdev = to_pci_dev(gc->dev);
483 		pci_dev_get(mns_wk->pdev);
484 		INIT_WORK(&mns_wk->serv_work, mana_serv_func);
485 		schedule_work(&mns_wk->serv_work);
486 		break;
487 
488 	default:
489 		break;
490 	}
491 }
492 
493 static void mana_gd_process_eq_events(void *arg)
494 {
495 	u32 owner_bits, new_bits, old_bits;
496 	union gdma_eqe_info eqe_info;
497 	struct gdma_eqe *eq_eqe_ptr;
498 	struct gdma_queue *eq = arg;
499 	struct gdma_context *gc;
500 	struct gdma_eqe *eqe;
501 	u32 head, num_eqe;
502 	int i;
503 
504 	gc = eq->gdma_dev->gdma_context;
505 
506 	num_eqe = eq->queue_size / GDMA_EQE_SIZE;
507 	eq_eqe_ptr = eq->queue_mem_ptr;
508 
509 	/* Process up to 5 EQEs at a time, and update the HW head. */
510 	for (i = 0; i < 5; i++) {
511 		eqe = &eq_eqe_ptr[eq->head % num_eqe];
512 		eqe_info.as_uint32 = eqe->eqe_info;
513 		owner_bits = eqe_info.owner_bits;
514 
515 		old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
516 		/* No more entries */
517 		if (owner_bits == old_bits) {
518 			/* return here without ringing the doorbell */
519 			if (i == 0)
520 				return;
521 			break;
522 		}
523 
524 		new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
525 		if (owner_bits != new_bits) {
526 			dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id);
527 			break;
528 		}
529 
530 		/* Per GDMA spec, rmb is necessary after checking owner_bits, before
531 		 * reading eqe.
532 		 */
533 		rmb();
534 
535 		mana_gd_process_eqe(eq);
536 
537 		eq->head++;
538 	}
539 
540 	head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
541 
542 	mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
543 			      head, SET_ARM_BIT);
544 }
545 
546 static int mana_gd_register_irq(struct gdma_queue *queue,
547 				const struct gdma_queue_spec *spec)
548 {
549 	struct gdma_dev *gd = queue->gdma_dev;
550 	struct gdma_irq_context *gic;
551 	struct gdma_context *gc;
552 	unsigned int msi_index;
553 	unsigned long flags;
554 	struct device *dev;
555 	int err = 0;
556 
557 	gc = gd->gdma_context;
558 	dev = gc->dev;
559 	msi_index = spec->eq.msix_index;
560 
561 	if (msi_index >= gc->num_msix_usable) {
562 		err = -ENOSPC;
563 		dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u",
564 			err, msi_index, gc->num_msix_usable);
565 
566 		return err;
567 	}
568 
569 	queue->eq.msix_index = msi_index;
570 	gic = xa_load(&gc->irq_contexts, msi_index);
571 	if (WARN_ON(!gic))
572 		return -EINVAL;
573 
574 	spin_lock_irqsave(&gic->lock, flags);
575 	list_add_rcu(&queue->entry, &gic->eq_list);
576 	spin_unlock_irqrestore(&gic->lock, flags);
577 
578 	return 0;
579 }
580 
581 static void mana_gd_deregiser_irq(struct gdma_queue *queue)
582 {
583 	struct gdma_dev *gd = queue->gdma_dev;
584 	struct gdma_irq_context *gic;
585 	struct gdma_context *gc;
586 	unsigned int msix_index;
587 	unsigned long flags;
588 	struct gdma_queue *eq;
589 
590 	gc = gd->gdma_context;
591 
592 	/* At most num_online_cpus() + 1 interrupts are used. */
593 	msix_index = queue->eq.msix_index;
594 	if (WARN_ON(msix_index >= gc->num_msix_usable))
595 		return;
596 
597 	gic = xa_load(&gc->irq_contexts, msix_index);
598 	if (WARN_ON(!gic))
599 		return;
600 
601 	spin_lock_irqsave(&gic->lock, flags);
602 	list_for_each_entry_rcu(eq, &gic->eq_list, entry) {
603 		if (queue == eq) {
604 			list_del_rcu(&eq->entry);
605 			break;
606 		}
607 	}
608 	spin_unlock_irqrestore(&gic->lock, flags);
609 
610 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
611 	synchronize_rcu();
612 }
613 
614 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
615 {
616 	struct gdma_generate_test_event_req req = {};
617 	struct gdma_general_resp resp = {};
618 	struct device *dev = gc->dev;
619 	int err;
620 
621 	mutex_lock(&gc->eq_test_event_mutex);
622 
623 	init_completion(&gc->eq_test_event);
624 	gc->test_event_eq_id = INVALID_QUEUE_ID;
625 
626 	mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
627 			     sizeof(req), sizeof(resp));
628 
629 	req.hdr.dev_id = eq->gdma_dev->dev_id;
630 	req.queue_index = eq->id;
631 
632 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
633 	if (err) {
634 		dev_err(dev, "test_eq failed: %d\n", err);
635 		goto out;
636 	}
637 
638 	err = -EPROTO;
639 
640 	if (resp.hdr.status) {
641 		dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status);
642 		goto out;
643 	}
644 
645 	if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) {
646 		dev_err(dev, "test_eq timed out on queue %d\n", eq->id);
647 		goto out;
648 	}
649 
650 	if (eq->id != gc->test_event_eq_id) {
651 		dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n",
652 			gc->test_event_eq_id, eq->id);
653 		goto out;
654 	}
655 
656 	err = 0;
657 out:
658 	mutex_unlock(&gc->eq_test_event_mutex);
659 	return err;
660 }
661 
662 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
663 			       struct gdma_queue *queue)
664 {
665 	int err;
666 
667 	if (flush_evenets) {
668 		err = mana_gd_test_eq(gc, queue);
669 		if (err)
670 			dev_warn(gc->dev, "Failed to flush EQ: %d\n", err);
671 	}
672 
673 	mana_gd_deregiser_irq(queue);
674 
675 	if (queue->eq.disable_needed)
676 		mana_gd_disable_queue(queue);
677 }
678 
679 static int mana_gd_create_eq(struct gdma_dev *gd,
680 			     const struct gdma_queue_spec *spec,
681 			     bool create_hwq, struct gdma_queue *queue)
682 {
683 	struct gdma_context *gc = gd->gdma_context;
684 	struct device *dev = gc->dev;
685 	u32 log2_num_entries;
686 	int err;
687 
688 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
689 	queue->id = INVALID_QUEUE_ID;
690 
691 	log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
692 
693 	if (spec->eq.log2_throttle_limit > log2_num_entries) {
694 		dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n",
695 			spec->eq.log2_throttle_limit, log2_num_entries);
696 		return -EINVAL;
697 	}
698 
699 	err = mana_gd_register_irq(queue, spec);
700 	if (err) {
701 		dev_err(dev, "Failed to register irq: %d\n", err);
702 		return err;
703 	}
704 
705 	queue->eq.callback = spec->eq.callback;
706 	queue->eq.context = spec->eq.context;
707 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
708 	queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
709 
710 	if (create_hwq) {
711 		err = mana_gd_create_hw_eq(gc, queue);
712 		if (err)
713 			goto out;
714 
715 		err = mana_gd_test_eq(gc, queue);
716 		if (err)
717 			goto out;
718 	}
719 
720 	return 0;
721 out:
722 	dev_err(dev, "Failed to create EQ: %d\n", err);
723 	mana_gd_destroy_eq(gc, false, queue);
724 	return err;
725 }
726 
727 static void mana_gd_create_cq(const struct gdma_queue_spec *spec,
728 			      struct gdma_queue *queue)
729 {
730 	u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
731 
732 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
733 	queue->cq.parent = spec->cq.parent_eq;
734 	queue->cq.context = spec->cq.context;
735 	queue->cq.callback = spec->cq.callback;
736 }
737 
738 static void mana_gd_destroy_cq(struct gdma_context *gc,
739 			       struct gdma_queue *queue)
740 {
741 	u32 id = queue->id;
742 
743 	if (id >= gc->max_num_cqs)
744 		return;
745 
746 	if (!gc->cq_table[id])
747 		return;
748 
749 	gc->cq_table[id] = NULL;
750 }
751 
752 int mana_gd_create_hwc_queue(struct gdma_dev *gd,
753 			     const struct gdma_queue_spec *spec,
754 			     struct gdma_queue **queue_ptr)
755 {
756 	struct gdma_context *gc = gd->gdma_context;
757 	struct gdma_mem_info *gmi;
758 	struct gdma_queue *queue;
759 	int err;
760 
761 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
762 	if (!queue)
763 		return -ENOMEM;
764 
765 	gmi = &queue->mem_info;
766 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
767 	if (err) {
768 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
769 			spec->type, spec->queue_size, err);
770 		goto free_q;
771 	}
772 
773 	queue->head = 0;
774 	queue->tail = 0;
775 	queue->queue_mem_ptr = gmi->virt_addr;
776 	queue->queue_size = spec->queue_size;
777 	queue->monitor_avl_buf = spec->monitor_avl_buf;
778 	queue->type = spec->type;
779 	queue->gdma_dev = gd;
780 
781 	if (spec->type == GDMA_EQ)
782 		err = mana_gd_create_eq(gd, spec, false, queue);
783 	else if (spec->type == GDMA_CQ)
784 		mana_gd_create_cq(spec, queue);
785 
786 	if (err)
787 		goto out;
788 
789 	*queue_ptr = queue;
790 	return 0;
791 out:
792 	dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n",
793 		spec->type, spec->queue_size, err);
794 	mana_gd_free_memory(gmi);
795 free_q:
796 	kfree(queue);
797 	return err;
798 }
799 
800 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle)
801 {
802 	struct gdma_destroy_dma_region_req req = {};
803 	struct gdma_general_resp resp = {};
804 	int err;
805 
806 	if (dma_region_handle == GDMA_INVALID_DMA_REGION)
807 		return 0;
808 
809 	mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
810 			     sizeof(resp));
811 	req.dma_region_handle = dma_region_handle;
812 
813 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
814 	if (err || resp.hdr.status) {
815 		dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n",
816 			err, resp.hdr.status);
817 		return -EPROTO;
818 	}
819 
820 	return 0;
821 }
822 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA");
823 
824 static int mana_gd_create_dma_region(struct gdma_dev *gd,
825 				     struct gdma_mem_info *gmi)
826 {
827 	unsigned int num_page = gmi->length / MANA_PAGE_SIZE;
828 	struct gdma_create_dma_region_req *req = NULL;
829 	struct gdma_create_dma_region_resp resp = {};
830 	struct gdma_context *gc = gd->gdma_context;
831 	struct hw_channel_context *hwc;
832 	u32 length = gmi->length;
833 	size_t req_msg_size;
834 	int err;
835 	int i;
836 
837 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
838 		return -EINVAL;
839 
840 	if (!MANA_PAGE_ALIGNED(gmi->virt_addr))
841 		return -EINVAL;
842 
843 	hwc = gc->hwc.driver_data;
844 	req_msg_size = struct_size(req, page_addr_list, num_page);
845 	if (req_msg_size > hwc->max_req_msg_size)
846 		return -EINVAL;
847 
848 	req = kzalloc(req_msg_size, GFP_KERNEL);
849 	if (!req)
850 		return -ENOMEM;
851 
852 	mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
853 			     req_msg_size, sizeof(resp));
854 	req->length = length;
855 	req->offset_in_page = 0;
856 	req->gdma_page_type = GDMA_PAGE_TYPE_4K;
857 	req->page_count = num_page;
858 	req->page_addr_list_len = num_page;
859 
860 	for (i = 0; i < num_page; i++)
861 		req->page_addr_list[i] = gmi->dma_handle +  i * MANA_PAGE_SIZE;
862 
863 	err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
864 	if (err)
865 		goto out;
866 
867 	if (resp.hdr.status ||
868 	    resp.dma_region_handle == GDMA_INVALID_DMA_REGION) {
869 		dev_err(gc->dev, "Failed to create DMA region: 0x%x\n",
870 			resp.hdr.status);
871 		err = -EPROTO;
872 		goto out;
873 	}
874 
875 	gmi->dma_region_handle = resp.dma_region_handle;
876 	dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n",
877 		gmi->dma_region_handle);
878 out:
879 	if (err)
880 		dev_dbg(gc->dev,
881 			"Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n",
882 			length, req->gdma_page_type, resp.hdr.status, err);
883 	kfree(req);
884 	return err;
885 }
886 
887 int mana_gd_create_mana_eq(struct gdma_dev *gd,
888 			   const struct gdma_queue_spec *spec,
889 			   struct gdma_queue **queue_ptr)
890 {
891 	struct gdma_context *gc = gd->gdma_context;
892 	struct gdma_mem_info *gmi;
893 	struct gdma_queue *queue;
894 	int err;
895 
896 	if (spec->type != GDMA_EQ)
897 		return -EINVAL;
898 
899 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
900 	if (!queue)
901 		return -ENOMEM;
902 
903 	gmi = &queue->mem_info;
904 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
905 	if (err) {
906 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
907 			spec->type, spec->queue_size, err);
908 		goto free_q;
909 	}
910 
911 	err = mana_gd_create_dma_region(gd, gmi);
912 	if (err)
913 		goto out;
914 
915 	queue->head = 0;
916 	queue->tail = 0;
917 	queue->queue_mem_ptr = gmi->virt_addr;
918 	queue->queue_size = spec->queue_size;
919 	queue->monitor_avl_buf = spec->monitor_avl_buf;
920 	queue->type = spec->type;
921 	queue->gdma_dev = gd;
922 
923 	err = mana_gd_create_eq(gd, spec, true, queue);
924 	if (err)
925 		goto out;
926 
927 	*queue_ptr = queue;
928 	return 0;
929 out:
930 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
931 		spec->type, spec->queue_size, err);
932 	mana_gd_free_memory(gmi);
933 free_q:
934 	kfree(queue);
935 	return err;
936 }
937 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA");
938 
939 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
940 			      const struct gdma_queue_spec *spec,
941 			      struct gdma_queue **queue_ptr)
942 {
943 	struct gdma_context *gc = gd->gdma_context;
944 	struct gdma_mem_info *gmi;
945 	struct gdma_queue *queue;
946 	int err;
947 
948 	if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
949 	    spec->type != GDMA_RQ)
950 		return -EINVAL;
951 
952 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
953 	if (!queue)
954 		return -ENOMEM;
955 
956 	gmi = &queue->mem_info;
957 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
958 	if (err) {
959 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n",
960 			spec->type, spec->queue_size, err);
961 		goto free_q;
962 	}
963 
964 	err = mana_gd_create_dma_region(gd, gmi);
965 	if (err)
966 		goto out;
967 
968 	queue->head = 0;
969 	queue->tail = 0;
970 	queue->queue_mem_ptr = gmi->virt_addr;
971 	queue->queue_size = spec->queue_size;
972 	queue->monitor_avl_buf = spec->monitor_avl_buf;
973 	queue->type = spec->type;
974 	queue->gdma_dev = gd;
975 
976 	if (spec->type == GDMA_CQ)
977 		mana_gd_create_cq(spec, queue);
978 
979 	*queue_ptr = queue;
980 	return 0;
981 out:
982 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
983 		spec->type, spec->queue_size, err);
984 	mana_gd_free_memory(gmi);
985 free_q:
986 	kfree(queue);
987 	return err;
988 }
989 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA");
990 
991 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
992 {
993 	struct gdma_mem_info *gmi = &queue->mem_info;
994 
995 	switch (queue->type) {
996 	case GDMA_EQ:
997 		mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
998 		break;
999 
1000 	case GDMA_CQ:
1001 		mana_gd_destroy_cq(gc, queue);
1002 		break;
1003 
1004 	case GDMA_RQ:
1005 		break;
1006 
1007 	case GDMA_SQ:
1008 		break;
1009 
1010 	default:
1011 		dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n",
1012 			queue->type);
1013 		return;
1014 	}
1015 
1016 	mana_gd_destroy_dma_region(gc, gmi->dma_region_handle);
1017 	mana_gd_free_memory(gmi);
1018 	kfree(queue);
1019 }
1020 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA");
1021 
1022 int mana_gd_verify_vf_version(struct pci_dev *pdev)
1023 {
1024 	struct gdma_context *gc = pci_get_drvdata(pdev);
1025 	struct gdma_verify_ver_resp resp = {};
1026 	struct gdma_verify_ver_req req = {};
1027 	struct hw_channel_context *hwc;
1028 	int err;
1029 
1030 	hwc = gc->hwc.driver_data;
1031 	mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
1032 			     sizeof(req), sizeof(resp));
1033 
1034 	req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
1035 	req.protocol_ver_max = GDMA_PROTOCOL_LAST;
1036 
1037 	req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1;
1038 	req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2;
1039 	req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3;
1040 	req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4;
1041 
1042 	req.drv_ver = 0;	/* Unused*/
1043 	req.os_type = 0x10;	/* Linux */
1044 	req.os_ver_major = LINUX_VERSION_MAJOR;
1045 	req.os_ver_minor = LINUX_VERSION_PATCHLEVEL;
1046 	req.os_ver_build = LINUX_VERSION_SUBLEVEL;
1047 	strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1));
1048 	strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2));
1049 	strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3));
1050 
1051 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1052 	if (err || resp.hdr.status) {
1053 		dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n",
1054 			err, resp.hdr.status);
1055 		return err ? err : -EPROTO;
1056 	}
1057 	gc->pf_cap_flags1 = resp.pf_cap_flags1;
1058 	if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) {
1059 		err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout);
1060 		if (err) {
1061 			dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err);
1062 			return err;
1063 		}
1064 		dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout);
1065 	}
1066 	return 0;
1067 }
1068 
1069 int mana_gd_register_device(struct gdma_dev *gd)
1070 {
1071 	struct gdma_context *gc = gd->gdma_context;
1072 	struct gdma_register_device_resp resp = {};
1073 	struct gdma_general_req req = {};
1074 	int err;
1075 
1076 	gd->pdid = INVALID_PDID;
1077 	gd->doorbell = INVALID_DOORBELL;
1078 	gd->gpa_mkey = INVALID_MEM_KEY;
1079 
1080 	mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
1081 			     sizeof(resp));
1082 
1083 	req.hdr.dev_id = gd->dev_id;
1084 
1085 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1086 	if (err || resp.hdr.status) {
1087 		dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n",
1088 			err, resp.hdr.status);
1089 		return err ? err : -EPROTO;
1090 	}
1091 
1092 	gd->pdid = resp.pdid;
1093 	gd->gpa_mkey = resp.gpa_mkey;
1094 	gd->doorbell = resp.db_id;
1095 
1096 	return 0;
1097 }
1098 
1099 int mana_gd_deregister_device(struct gdma_dev *gd)
1100 {
1101 	struct gdma_context *gc = gd->gdma_context;
1102 	struct gdma_general_resp resp = {};
1103 	struct gdma_general_req req = {};
1104 	int err;
1105 
1106 	if (gd->pdid == INVALID_PDID)
1107 		return -EINVAL;
1108 
1109 	mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
1110 			     sizeof(resp));
1111 
1112 	req.hdr.dev_id = gd->dev_id;
1113 
1114 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1115 	if (err || resp.hdr.status) {
1116 		dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n",
1117 			err, resp.hdr.status);
1118 		if (!err)
1119 			err = -EPROTO;
1120 	}
1121 
1122 	gd->pdid = INVALID_PDID;
1123 	gd->doorbell = INVALID_DOORBELL;
1124 	gd->gpa_mkey = INVALID_MEM_KEY;
1125 
1126 	return err;
1127 }
1128 
1129 u32 mana_gd_wq_avail_space(struct gdma_queue *wq)
1130 {
1131 	u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
1132 	u32 wq_size = wq->queue_size;
1133 
1134 	WARN_ON_ONCE(used_space > wq_size);
1135 
1136 	return wq_size - used_space;
1137 }
1138 
1139 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset)
1140 {
1141 	u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
1142 
1143 	WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size);
1144 
1145 	return wq->queue_mem_ptr + offset;
1146 }
1147 
1148 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
1149 				    enum gdma_queue_type q_type,
1150 				    u32 client_oob_size, u32 sgl_data_size,
1151 				    u8 *wqe_ptr)
1152 {
1153 	bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
1154 	bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
1155 	struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
1156 	u8 *ptr;
1157 
1158 	memset(header, 0, sizeof(struct gdma_wqe));
1159 	header->num_sge = wqe_req->num_sge;
1160 	header->inline_oob_size_div4 = client_oob_size / sizeof(u32);
1161 
1162 	if (oob_in_sgl) {
1163 		WARN_ON_ONCE(wqe_req->num_sge < 2);
1164 
1165 		header->client_oob_in_sgl = 1;
1166 
1167 		if (pad_data)
1168 			header->last_vbytes = wqe_req->sgl[0].size;
1169 	}
1170 
1171 	if (q_type == GDMA_SQ)
1172 		header->client_data_unit = wqe_req->client_data_unit;
1173 
1174 	/* The size of gdma_wqe + client_oob_size must be less than or equal
1175 	 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
1176 	 * the queue memory buffer boundary.
1177 	 */
1178 	ptr = wqe_ptr + sizeof(header);
1179 
1180 	if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
1181 		memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
1182 
1183 		if (client_oob_size > wqe_req->inline_oob_size)
1184 			memset(ptr + wqe_req->inline_oob_size, 0,
1185 			       client_oob_size - wqe_req->inline_oob_size);
1186 	}
1187 
1188 	return sizeof(header) + client_oob_size;
1189 }
1190 
1191 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr,
1192 			      const struct gdma_wqe_request *wqe_req)
1193 {
1194 	u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1195 	const u8 *address = (u8 *)wqe_req->sgl;
1196 	u8 *base_ptr, *end_ptr;
1197 	u32 size_to_end;
1198 
1199 	base_ptr = wq->queue_mem_ptr;
1200 	end_ptr = base_ptr + wq->queue_size;
1201 	size_to_end = (u32)(end_ptr - wqe_ptr);
1202 
1203 	if (size_to_end < sgl_size) {
1204 		memcpy(wqe_ptr, address, size_to_end);
1205 
1206 		wqe_ptr = base_ptr;
1207 		address += size_to_end;
1208 		sgl_size -= size_to_end;
1209 	}
1210 
1211 	memcpy(wqe_ptr, address, sgl_size);
1212 }
1213 
1214 int mana_gd_post_work_request(struct gdma_queue *wq,
1215 			      const struct gdma_wqe_request *wqe_req,
1216 			      struct gdma_posted_wqe_info *wqe_info)
1217 {
1218 	u32 client_oob_size = wqe_req->inline_oob_size;
1219 	struct gdma_context *gc;
1220 	u32 sgl_data_size;
1221 	u32 max_wqe_size;
1222 	u32 wqe_size;
1223 	u8 *wqe_ptr;
1224 
1225 	if (wqe_req->num_sge == 0)
1226 		return -EINVAL;
1227 
1228 	if (wq->type == GDMA_RQ) {
1229 		if (client_oob_size != 0)
1230 			return -EINVAL;
1231 
1232 		client_oob_size = INLINE_OOB_SMALL_SIZE;
1233 
1234 		max_wqe_size = GDMA_MAX_RQE_SIZE;
1235 	} else {
1236 		if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
1237 		    client_oob_size != INLINE_OOB_LARGE_SIZE)
1238 			return -EINVAL;
1239 
1240 		max_wqe_size = GDMA_MAX_SQE_SIZE;
1241 	}
1242 
1243 	sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1244 	wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
1245 			 sgl_data_size, GDMA_WQE_BU_SIZE);
1246 	if (wqe_size > max_wqe_size)
1247 		return -EINVAL;
1248 
1249 	if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) {
1250 		gc = wq->gdma_dev->gdma_context;
1251 		dev_err(gc->dev, "unsuccessful flow control!\n");
1252 		return -ENOSPC;
1253 	}
1254 
1255 	if (wqe_info)
1256 		wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
1257 
1258 	wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
1259 	wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
1260 					    sgl_data_size, wqe_ptr);
1261 	if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size)
1262 		wqe_ptr -= wq->queue_size;
1263 
1264 	mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
1265 
1266 	wq->head += wqe_size / GDMA_WQE_BU_SIZE;
1267 
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA");
1271 
1272 int mana_gd_post_and_ring(struct gdma_queue *queue,
1273 			  const struct gdma_wqe_request *wqe_req,
1274 			  struct gdma_posted_wqe_info *wqe_info)
1275 {
1276 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
1277 	int err;
1278 
1279 	err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
1280 	if (err) {
1281 		dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n",
1282 			queue->type, queue->queue_size, err);
1283 		return err;
1284 	}
1285 
1286 	mana_gd_wq_ring_doorbell(gc, queue);
1287 
1288 	return 0;
1289 }
1290 
1291 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
1292 {
1293 	unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
1294 	struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
1295 	u32 owner_bits, new_bits, old_bits;
1296 	struct gdma_cqe *cqe;
1297 
1298 	cqe = &cq_cqe[cq->head % num_cqe];
1299 	owner_bits = cqe->cqe_info.owner_bits;
1300 
1301 	old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
1302 	/* Return 0 if no more entries. */
1303 	if (owner_bits == old_bits)
1304 		return 0;
1305 
1306 	new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
1307 	/* Return -1 if overflow detected. */
1308 	if (WARN_ON_ONCE(owner_bits != new_bits))
1309 		return -1;
1310 
1311 	/* Per GDMA spec, rmb is necessary after checking owner_bits, before
1312 	 * reading completion info
1313 	 */
1314 	rmb();
1315 
1316 	comp->wq_num = cqe->cqe_info.wq_num;
1317 	comp->is_sq = cqe->cqe_info.is_sq;
1318 	memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
1319 
1320 	return 1;
1321 }
1322 
1323 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
1324 {
1325 	int cqe_idx;
1326 	int ret;
1327 
1328 	for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
1329 		ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
1330 
1331 		if (ret < 0) {
1332 			cq->head -= cqe_idx;
1333 			return ret;
1334 		}
1335 
1336 		if (ret == 0)
1337 			break;
1338 
1339 		cq->head++;
1340 	}
1341 
1342 	return cqe_idx;
1343 }
1344 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA");
1345 
1346 static irqreturn_t mana_gd_intr(int irq, void *arg)
1347 {
1348 	struct gdma_irq_context *gic = arg;
1349 	struct list_head *eq_list = &gic->eq_list;
1350 	struct gdma_queue *eq;
1351 
1352 	rcu_read_lock();
1353 	list_for_each_entry_rcu(eq, eq_list, entry) {
1354 		gic->handler(eq);
1355 	}
1356 	rcu_read_unlock();
1357 
1358 	return IRQ_HANDLED;
1359 }
1360 
1361 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r)
1362 {
1363 	r->map = bitmap_zalloc(res_avail, GFP_KERNEL);
1364 	if (!r->map)
1365 		return -ENOMEM;
1366 
1367 	r->size = res_avail;
1368 	spin_lock_init(&r->lock);
1369 
1370 	return 0;
1371 }
1372 
1373 void mana_gd_free_res_map(struct gdma_resource *r)
1374 {
1375 	bitmap_free(r->map);
1376 	r->map = NULL;
1377 	r->size = 0;
1378 }
1379 
1380 /*
1381  * Spread on CPUs with the following heuristics:
1382  *
1383  * 1. No more than one IRQ per CPU, if possible;
1384  * 2. NUMA locality is the second priority;
1385  * 3. Sibling dislocality is the last priority.
1386  *
1387  * Let's consider this topology:
1388  *
1389  * Node            0               1
1390  * Core        0       1       2       3
1391  * CPU       0   1   2   3   4   5   6   7
1392  *
1393  * The most performant IRQ distribution based on the above topology
1394  * and heuristics may look like this:
1395  *
1396  * IRQ     Nodes   Cores   CPUs
1397  * 0       1       0       0-1
1398  * 1       1       1       2-3
1399  * 2       1       0       0-1
1400  * 3       1       1       2-3
1401  * 4       2       2       4-5
1402  * 5       2       3       6-7
1403  * 6       2       2       4-5
1404  * 7       2       3       6-7
1405  *
1406  * The heuristics is implemented as follows.
1407  *
1408  * The outer for_each() loop resets the 'weight' to the actual number
1409  * of CPUs in the hop. Then inner for_each() loop decrements it by the
1410  * number of sibling groups (cores) while assigning first set of IRQs
1411  * to each group. IRQs 0 and 1 above are distributed this way.
1412  *
1413  * Now, because NUMA locality is more important, we should walk the
1414  * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's
1415  * implemented by the medium while() loop. We do like this unless the
1416  * number of IRQs assigned on this hop will not become equal to number
1417  * of CPUs in the hop (weight == 0). Then we switch to the next hop and
1418  * do the same thing.
1419  */
1420 
1421 static int irq_setup(unsigned int *irqs, unsigned int len, int node,
1422 		     bool skip_first_cpu)
1423 {
1424 	const struct cpumask *next, *prev = cpu_none_mask;
1425 	cpumask_var_t cpus __free(free_cpumask_var);
1426 	int cpu, weight;
1427 
1428 	if (!alloc_cpumask_var(&cpus, GFP_KERNEL))
1429 		return -ENOMEM;
1430 
1431 	rcu_read_lock();
1432 	for_each_numa_hop_mask(next, node) {
1433 		weight = cpumask_weight_andnot(next, prev);
1434 		while (weight > 0) {
1435 			cpumask_andnot(cpus, next, prev);
1436 			for_each_cpu(cpu, cpus) {
1437 				cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
1438 				--weight;
1439 
1440 				if (unlikely(skip_first_cpu)) {
1441 					skip_first_cpu = false;
1442 					continue;
1443 				}
1444 
1445 				if (len-- == 0)
1446 					goto done;
1447 
1448 				irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu));
1449 			}
1450 		}
1451 		prev = next;
1452 	}
1453 done:
1454 	rcu_read_unlock();
1455 	return 0;
1456 }
1457 
1458 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec)
1459 {
1460 	struct gdma_context *gc = pci_get_drvdata(pdev);
1461 	struct gdma_irq_context *gic;
1462 	bool skip_first_cpu = false;
1463 	int *irqs, irq, err, i;
1464 
1465 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1466 	if (!irqs)
1467 		return -ENOMEM;
1468 
1469 	/*
1470 	 * While processing the next pci irq vector, we start with index 1,
1471 	 * as IRQ vector at index 0 is already processed for HWC.
1472 	 * However, the population of irqs array starts with index 0, to be
1473 	 * further used in irq_setup()
1474 	 */
1475 	for (i = 1; i <= nvec; i++) {
1476 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1477 		if (!gic) {
1478 			err = -ENOMEM;
1479 			goto free_irq;
1480 		}
1481 		gic->handler = mana_gd_process_eq_events;
1482 		INIT_LIST_HEAD(&gic->eq_list);
1483 		spin_lock_init(&gic->lock);
1484 
1485 		snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1486 			 i - 1, pci_name(pdev));
1487 
1488 		/* one pci vector is already allocated for HWC */
1489 		irqs[i - 1] = pci_irq_vector(pdev, i);
1490 		if (irqs[i - 1] < 0) {
1491 			err = irqs[i - 1];
1492 			goto free_current_gic;
1493 		}
1494 
1495 		err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic);
1496 		if (err)
1497 			goto free_current_gic;
1498 
1499 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1500 	}
1501 
1502 	/*
1503 	 * When calling irq_setup() for dynamically added IRQs, if number of
1504 	 * CPUs is more than or equal to allocated MSI-X, we need to skip the
1505 	 * first CPU sibling group since they are already affinitized to HWC IRQ
1506 	 */
1507 	cpus_read_lock();
1508 	if (gc->num_msix_usable <= num_online_cpus())
1509 		skip_first_cpu = true;
1510 
1511 	err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu);
1512 	if (err) {
1513 		cpus_read_unlock();
1514 		goto free_irq;
1515 	}
1516 
1517 	cpus_read_unlock();
1518 	kfree(irqs);
1519 	return 0;
1520 
1521 free_current_gic:
1522 	kfree(gic);
1523 free_irq:
1524 	for (i -= 1; i > 0; i--) {
1525 		irq = pci_irq_vector(pdev, i);
1526 		gic = xa_load(&gc->irq_contexts, i);
1527 		if (WARN_ON(!gic))
1528 			continue;
1529 
1530 		irq_update_affinity_hint(irq, NULL);
1531 		free_irq(irq, gic);
1532 		xa_erase(&gc->irq_contexts, i);
1533 		kfree(gic);
1534 	}
1535 	kfree(irqs);
1536 	return err;
1537 }
1538 
1539 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec)
1540 {
1541 	struct gdma_context *gc = pci_get_drvdata(pdev);
1542 	struct gdma_irq_context *gic;
1543 	int *irqs, *start_irqs, irq;
1544 	unsigned int cpu;
1545 	int err, i;
1546 
1547 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1548 	if (!irqs)
1549 		return -ENOMEM;
1550 
1551 	start_irqs = irqs;
1552 
1553 	for (i = 0; i < nvec; i++) {
1554 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1555 		if (!gic) {
1556 			err = -ENOMEM;
1557 			goto free_irq;
1558 		}
1559 
1560 		gic->handler = mana_gd_process_eq_events;
1561 		INIT_LIST_HEAD(&gic->eq_list);
1562 		spin_lock_init(&gic->lock);
1563 
1564 		if (!i)
1565 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s",
1566 				 pci_name(pdev));
1567 		else
1568 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1569 				 i - 1, pci_name(pdev));
1570 
1571 		irqs[i] = pci_irq_vector(pdev, i);
1572 		if (irqs[i] < 0) {
1573 			err = irqs[i];
1574 			goto free_current_gic;
1575 		}
1576 
1577 		err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic);
1578 		if (err)
1579 			goto free_current_gic;
1580 
1581 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1582 	}
1583 
1584 	/* If number of IRQ is one extra than number of online CPUs,
1585 	 * then we need to assign IRQ0 (hwc irq) and IRQ1 to
1586 	 * same CPU.
1587 	 * Else we will use different CPUs for IRQ0 and IRQ1.
1588 	 * Also we are using cpumask_local_spread instead of
1589 	 * cpumask_first for the node, because the node can be
1590 	 * mem only.
1591 	 */
1592 	cpus_read_lock();
1593 	if (nvec > num_online_cpus()) {
1594 		cpu = cpumask_local_spread(0, gc->numa_node);
1595 		irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu));
1596 		irqs++;
1597 		nvec -= 1;
1598 	}
1599 
1600 	err = irq_setup(irqs, nvec, gc->numa_node, false);
1601 	if (err) {
1602 		cpus_read_unlock();
1603 		goto free_irq;
1604 	}
1605 
1606 	cpus_read_unlock();
1607 	kfree(start_irqs);
1608 	return 0;
1609 
1610 free_current_gic:
1611 	kfree(gic);
1612 free_irq:
1613 	for (i -= 1; i >= 0; i--) {
1614 		irq = pci_irq_vector(pdev, i);
1615 		gic = xa_load(&gc->irq_contexts, i);
1616 		if (WARN_ON(!gic))
1617 			continue;
1618 
1619 		irq_update_affinity_hint(irq, NULL);
1620 		free_irq(irq, gic);
1621 		xa_erase(&gc->irq_contexts, i);
1622 		kfree(gic);
1623 	}
1624 
1625 	kfree(start_irqs);
1626 	return err;
1627 }
1628 
1629 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev)
1630 {
1631 	struct gdma_context *gc = pci_get_drvdata(pdev);
1632 	unsigned int max_irqs, min_irqs;
1633 	int nvec, err;
1634 
1635 	if (pci_msix_can_alloc_dyn(pdev)) {
1636 		max_irqs = 1;
1637 		min_irqs = 1;
1638 	} else {
1639 		/* Need 1 interrupt for HWC */
1640 		max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1;
1641 		min_irqs = 2;
1642 	}
1643 
1644 	nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX);
1645 	if (nvec < 0)
1646 		return nvec;
1647 
1648 	err = mana_gd_setup_irqs(pdev, nvec);
1649 	if (err) {
1650 		pci_free_irq_vectors(pdev);
1651 		return err;
1652 	}
1653 
1654 	gc->num_msix_usable = nvec;
1655 	gc->max_num_msix = nvec;
1656 
1657 	return 0;
1658 }
1659 
1660 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev)
1661 {
1662 	struct gdma_context *gc = pci_get_drvdata(pdev);
1663 	struct msi_map irq_map;
1664 	int max_irqs, i, err;
1665 
1666 	if (!pci_msix_can_alloc_dyn(pdev))
1667 		/* remain irqs are already allocated with HWC IRQ */
1668 		return 0;
1669 
1670 	/* allocate only remaining IRQs*/
1671 	max_irqs = gc->num_msix_usable - 1;
1672 
1673 	for (i = 1; i <= max_irqs; i++) {
1674 		irq_map = pci_msix_alloc_irq_at(pdev, i, NULL);
1675 		if (!irq_map.virq) {
1676 			err = irq_map.index;
1677 			/* caller will handle cleaning up all allocated
1678 			 * irqs, after HWC is destroyed
1679 			 */
1680 			return err;
1681 		}
1682 	}
1683 
1684 	err = mana_gd_setup_dyn_irqs(pdev, max_irqs);
1685 	if (err)
1686 		return err;
1687 
1688 	gc->max_num_msix = gc->max_num_msix + max_irqs;
1689 
1690 	return 0;
1691 }
1692 
1693 static void mana_gd_remove_irqs(struct pci_dev *pdev)
1694 {
1695 	struct gdma_context *gc = pci_get_drvdata(pdev);
1696 	struct gdma_irq_context *gic;
1697 	int irq, i;
1698 
1699 	if (gc->max_num_msix < 1)
1700 		return;
1701 
1702 	for (i = 0; i < gc->max_num_msix; i++) {
1703 		irq = pci_irq_vector(pdev, i);
1704 		if (irq < 0)
1705 			continue;
1706 
1707 		gic = xa_load(&gc->irq_contexts, i);
1708 		if (WARN_ON(!gic))
1709 			continue;
1710 
1711 		/* Need to clear the hint before free_irq */
1712 		irq_update_affinity_hint(irq, NULL);
1713 		free_irq(irq, gic);
1714 		xa_erase(&gc->irq_contexts, i);
1715 		kfree(gic);
1716 	}
1717 
1718 	pci_free_irq_vectors(pdev);
1719 
1720 	gc->max_num_msix = 0;
1721 	gc->num_msix_usable = 0;
1722 }
1723 
1724 static int mana_gd_setup(struct pci_dev *pdev)
1725 {
1726 	struct gdma_context *gc = pci_get_drvdata(pdev);
1727 	int err;
1728 
1729 	mana_gd_init_registers(pdev);
1730 	mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
1731 
1732 	gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0);
1733 	if (!gc->service_wq)
1734 		return -ENOMEM;
1735 
1736 	err = mana_gd_setup_hwc_irqs(pdev);
1737 	if (err) {
1738 		dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n",
1739 			err);
1740 		goto free_workqueue;
1741 	}
1742 
1743 	err = mana_hwc_create_channel(gc);
1744 	if (err)
1745 		goto remove_irq;
1746 
1747 	err = mana_gd_verify_vf_version(pdev);
1748 	if (err)
1749 		goto destroy_hwc;
1750 
1751 	err = mana_gd_query_max_resources(pdev);
1752 	if (err)
1753 		goto destroy_hwc;
1754 
1755 	err = mana_gd_setup_remaining_irqs(pdev);
1756 	if (err) {
1757 		dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err);
1758 		goto destroy_hwc;
1759 	}
1760 
1761 	err = mana_gd_detect_devices(pdev);
1762 	if (err)
1763 		goto destroy_hwc;
1764 
1765 	dev_dbg(&pdev->dev, "mana gdma setup successful\n");
1766 	return 0;
1767 
1768 destroy_hwc:
1769 	mana_hwc_destroy_channel(gc);
1770 remove_irq:
1771 	mana_gd_remove_irqs(pdev);
1772 free_workqueue:
1773 	destroy_workqueue(gc->service_wq);
1774 	dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err);
1775 	return err;
1776 }
1777 
1778 static void mana_gd_cleanup(struct pci_dev *pdev)
1779 {
1780 	struct gdma_context *gc = pci_get_drvdata(pdev);
1781 
1782 	mana_hwc_destroy_channel(gc);
1783 
1784 	mana_gd_remove_irqs(pdev);
1785 
1786 	destroy_workqueue(gc->service_wq);
1787 	dev_dbg(&pdev->dev, "mana gdma cleanup successful\n");
1788 }
1789 
1790 static bool mana_is_pf(unsigned short dev_id)
1791 {
1792 	return dev_id == MANA_PF_DEVICE_ID;
1793 }
1794 
1795 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1796 {
1797 	struct gdma_context *gc;
1798 	void __iomem *bar0_va;
1799 	int bar = 0;
1800 	int err;
1801 
1802 	/* Each port has 2 CQs, each CQ has at most 1 EQE at a time */
1803 	BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE);
1804 
1805 	err = pci_enable_device(pdev);
1806 	if (err) {
1807 		dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err);
1808 		return -ENXIO;
1809 	}
1810 
1811 	pci_set_master(pdev);
1812 
1813 	err = pci_request_regions(pdev, "mana");
1814 	if (err)
1815 		goto disable_dev;
1816 
1817 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1818 	if (err) {
1819 		dev_err(&pdev->dev, "DMA set mask failed: %d\n", err);
1820 		goto release_region;
1821 	}
1822 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1823 
1824 	err = -ENOMEM;
1825 	gc = vzalloc(sizeof(*gc));
1826 	if (!gc)
1827 		goto release_region;
1828 
1829 	mutex_init(&gc->eq_test_event_mutex);
1830 	pci_set_drvdata(pdev, gc);
1831 	gc->bar0_pa = pci_resource_start(pdev, 0);
1832 
1833 	bar0_va = pci_iomap(pdev, bar, 0);
1834 	if (!bar0_va)
1835 		goto free_gc;
1836 
1837 	gc->numa_node = dev_to_node(&pdev->dev);
1838 	gc->is_pf = mana_is_pf(pdev->device);
1839 	gc->bar0_va = bar0_va;
1840 	gc->dev = &pdev->dev;
1841 	xa_init(&gc->irq_contexts);
1842 
1843 	if (gc->is_pf)
1844 		gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root);
1845 	else
1846 		gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot),
1847 							  mana_debugfs_root);
1848 
1849 	err = mana_gd_setup(pdev);
1850 	if (err)
1851 		goto unmap_bar;
1852 
1853 	err = mana_probe(&gc->mana, false);
1854 	if (err)
1855 		goto cleanup_gd;
1856 
1857 	err = mana_rdma_probe(&gc->mana_ib);
1858 	if (err)
1859 		goto cleanup_mana;
1860 
1861 	return 0;
1862 
1863 cleanup_mana:
1864 	mana_remove(&gc->mana, false);
1865 cleanup_gd:
1866 	mana_gd_cleanup(pdev);
1867 unmap_bar:
1868 	/*
1869 	 * at this point we know that the other debugfs child dir/files
1870 	 * are either not yet created or are already cleaned up.
1871 	 * The pci debugfs folder clean-up now, will only be cleaning up
1872 	 * adapter-MTU file and apc->mana_pci_debugfs folder.
1873 	 */
1874 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1875 	gc->mana_pci_debugfs = NULL;
1876 	xa_destroy(&gc->irq_contexts);
1877 	pci_iounmap(pdev, bar0_va);
1878 free_gc:
1879 	pci_set_drvdata(pdev, NULL);
1880 	vfree(gc);
1881 release_region:
1882 	pci_release_regions(pdev);
1883 disable_dev:
1884 	pci_disable_device(pdev);
1885 	dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err);
1886 	return err;
1887 }
1888 
1889 static void mana_gd_remove(struct pci_dev *pdev)
1890 {
1891 	struct gdma_context *gc = pci_get_drvdata(pdev);
1892 
1893 	mana_rdma_remove(&gc->mana_ib);
1894 	mana_remove(&gc->mana, false);
1895 
1896 	mana_gd_cleanup(pdev);
1897 
1898 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1899 
1900 	gc->mana_pci_debugfs = NULL;
1901 
1902 	xa_destroy(&gc->irq_contexts);
1903 
1904 	pci_iounmap(pdev, gc->bar0_va);
1905 
1906 	vfree(gc);
1907 
1908 	pci_release_regions(pdev);
1909 	pci_disable_device(pdev);
1910 
1911 	dev_dbg(&pdev->dev, "mana gdma remove successful\n");
1912 }
1913 
1914 /* The 'state' parameter is not used. */
1915 static int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state)
1916 {
1917 	struct gdma_context *gc = pci_get_drvdata(pdev);
1918 
1919 	mana_rdma_remove(&gc->mana_ib);
1920 	mana_remove(&gc->mana, true);
1921 
1922 	mana_gd_cleanup(pdev);
1923 
1924 	return 0;
1925 }
1926 
1927 /* In case the NIC hardware stops working, the suspend and resume callbacks will
1928  * fail -- if this happens, it's safer to just report an error than try to undo
1929  * what has been done.
1930  */
1931 static int mana_gd_resume(struct pci_dev *pdev)
1932 {
1933 	struct gdma_context *gc = pci_get_drvdata(pdev);
1934 	int err;
1935 
1936 	err = mana_gd_setup(pdev);
1937 	if (err)
1938 		return err;
1939 
1940 	err = mana_probe(&gc->mana, true);
1941 	if (err)
1942 		return err;
1943 
1944 	err = mana_rdma_probe(&gc->mana_ib);
1945 	if (err)
1946 		return err;
1947 
1948 	return 0;
1949 }
1950 
1951 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */
1952 static void mana_gd_shutdown(struct pci_dev *pdev)
1953 {
1954 	struct gdma_context *gc = pci_get_drvdata(pdev);
1955 
1956 	dev_info(&pdev->dev, "Shutdown was called\n");
1957 
1958 	mana_rdma_remove(&gc->mana_ib);
1959 	mana_remove(&gc->mana, true);
1960 
1961 	mana_gd_cleanup(pdev);
1962 
1963 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1964 
1965 	gc->mana_pci_debugfs = NULL;
1966 
1967 	pci_disable_device(pdev);
1968 }
1969 
1970 static const struct pci_device_id mana_id_table[] = {
1971 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) },
1972 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) },
1973 	{ }
1974 };
1975 
1976 static struct pci_driver mana_driver = {
1977 	.name		= "mana",
1978 	.id_table	= mana_id_table,
1979 	.probe		= mana_gd_probe,
1980 	.remove		= mana_gd_remove,
1981 	.suspend	= mana_gd_suspend,
1982 	.resume		= mana_gd_resume,
1983 	.shutdown	= mana_gd_shutdown,
1984 };
1985 
1986 static int __init mana_driver_init(void)
1987 {
1988 	int err;
1989 
1990 	mana_debugfs_root = debugfs_create_dir("mana", NULL);
1991 
1992 	err = pci_register_driver(&mana_driver);
1993 	if (err) {
1994 		debugfs_remove(mana_debugfs_root);
1995 		mana_debugfs_root = NULL;
1996 	}
1997 
1998 	return err;
1999 }
2000 
2001 static void __exit mana_driver_exit(void)
2002 {
2003 	pci_unregister_driver(&mana_driver);
2004 
2005 	debugfs_remove(mana_debugfs_root);
2006 
2007 	mana_debugfs_root = NULL;
2008 }
2009 
2010 module_init(mana_driver_init);
2011 module_exit(mana_driver_exit);
2012 
2013 MODULE_DEVICE_TABLE(pci, mana_id_table);
2014 
2015 MODULE_LICENSE("Dual BSD/GPL");
2016 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver");
2017