xref: /linux/drivers/net/ethernet/microsoft/mana/gdma_main.c (revision c5fbdf0ba7c1a6ed52dc3650bee73ce00c86cf7f)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright (c) 2021, Microsoft Corporation. */
3 
4 #include <linux/debugfs.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/utsname.h>
8 #include <linux/version.h>
9 #include <linux/msi.h>
10 #include <linux/irqdomain.h>
11 
12 #include <net/mana/mana.h>
13 
14 struct dentry *mana_debugfs_root;
15 
16 static u32 mana_gd_r32(struct gdma_context *g, u64 offset)
17 {
18 	return readl(g->bar0_va + offset);
19 }
20 
21 static u64 mana_gd_r64(struct gdma_context *g, u64 offset)
22 {
23 	return readq(g->bar0_va + offset);
24 }
25 
26 static void mana_gd_init_pf_regs(struct pci_dev *pdev)
27 {
28 	struct gdma_context *gc = pci_get_drvdata(pdev);
29 	void __iomem *sriov_base_va;
30 	u64 sriov_base_off;
31 
32 	gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF;
33 	gc->db_page_base = gc->bar0_va +
34 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
35 
36 	gc->phys_db_page_base = gc->bar0_pa +
37 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
38 
39 	sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF);
40 
41 	sriov_base_va = gc->bar0_va + sriov_base_off;
42 	gc->shm_base = sriov_base_va +
43 			mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF);
44 }
45 
46 static void mana_gd_init_vf_regs(struct pci_dev *pdev)
47 {
48 	struct gdma_context *gc = pci_get_drvdata(pdev);
49 
50 	gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
51 
52 	gc->db_page_base = gc->bar0_va +
53 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
54 
55 	gc->phys_db_page_base = gc->bar0_pa +
56 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
57 
58 	gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET);
59 }
60 
61 static void mana_gd_init_registers(struct pci_dev *pdev)
62 {
63 	struct gdma_context *gc = pci_get_drvdata(pdev);
64 
65 	if (gc->is_pf)
66 		mana_gd_init_pf_regs(pdev);
67 	else
68 		mana_gd_init_vf_regs(pdev);
69 }
70 
71 static int mana_gd_query_max_resources(struct pci_dev *pdev)
72 {
73 	struct gdma_context *gc = pci_get_drvdata(pdev);
74 	struct gdma_query_max_resources_resp resp = {};
75 	struct gdma_general_req req = {};
76 	int err;
77 
78 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
79 			     sizeof(req), sizeof(resp));
80 
81 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
82 	if (err || resp.hdr.status) {
83 		dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n",
84 			err, resp.hdr.status);
85 		return err ? err : -EPROTO;
86 	}
87 
88 	if (!pci_msix_can_alloc_dyn(pdev)) {
89 		if (gc->num_msix_usable > resp.max_msix)
90 			gc->num_msix_usable = resp.max_msix;
91 	} else {
92 		/* If dynamic allocation is enabled we have already allocated
93 		 * hwc msi
94 		 */
95 		gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1);
96 	}
97 
98 	if (gc->num_msix_usable <= 1)
99 		return -ENOSPC;
100 
101 	gc->max_num_queues = num_online_cpus();
102 	if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
103 		gc->max_num_queues = MANA_MAX_NUM_QUEUES;
104 
105 	if (gc->max_num_queues > resp.max_eq)
106 		gc->max_num_queues = resp.max_eq;
107 
108 	if (gc->max_num_queues > resp.max_cq)
109 		gc->max_num_queues = resp.max_cq;
110 
111 	if (gc->max_num_queues > resp.max_sq)
112 		gc->max_num_queues = resp.max_sq;
113 
114 	if (gc->max_num_queues > resp.max_rq)
115 		gc->max_num_queues = resp.max_rq;
116 
117 	/* The Hardware Channel (HWC) used 1 MSI-X */
118 	if (gc->max_num_queues > gc->num_msix_usable - 1)
119 		gc->max_num_queues = gc->num_msix_usable - 1;
120 
121 	return 0;
122 }
123 
124 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val)
125 {
126 	struct gdma_context *gc = pci_get_drvdata(pdev);
127 	struct gdma_query_hwc_timeout_resp resp = {};
128 	struct gdma_query_hwc_timeout_req req = {};
129 	int err;
130 
131 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT,
132 			     sizeof(req), sizeof(resp));
133 	req.timeout_ms = *timeout_val;
134 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
135 	if (err || resp.hdr.status)
136 		return err ? err : -EPROTO;
137 
138 	*timeout_val = resp.timeout_ms;
139 
140 	return 0;
141 }
142 
143 static int mana_gd_detect_devices(struct pci_dev *pdev)
144 {
145 	struct gdma_context *gc = pci_get_drvdata(pdev);
146 	struct gdma_list_devices_resp resp = {};
147 	struct gdma_general_req req = {};
148 	struct gdma_dev_id dev;
149 	int found_dev = 0;
150 	u16 dev_type;
151 	int err;
152 	u32 i;
153 
154 	mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
155 			     sizeof(resp));
156 
157 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
158 	if (err || resp.hdr.status) {
159 		dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err,
160 			resp.hdr.status);
161 		return err ? err : -EPROTO;
162 	}
163 
164 	for (i = 0; i < GDMA_DEV_LIST_SIZE &&
165 	     found_dev < resp.num_of_devs; i++) {
166 		dev = resp.devs[i];
167 		dev_type = dev.type;
168 
169 		/* Skip empty devices */
170 		if (dev.as_uint32 == 0)
171 			continue;
172 
173 		found_dev++;
174 
175 		/* HWC is already detected in mana_hwc_create_channel(). */
176 		if (dev_type == GDMA_DEVICE_HWC)
177 			continue;
178 
179 		if (dev_type == GDMA_DEVICE_MANA) {
180 			gc->mana.gdma_context = gc;
181 			gc->mana.dev_id = dev;
182 		} else if (dev_type == GDMA_DEVICE_MANA_IB) {
183 			gc->mana_ib.dev_id = dev;
184 			gc->mana_ib.gdma_context = gc;
185 		}
186 	}
187 
188 	return gc->mana.dev_id.type == 0 ? -ENODEV : 0;
189 }
190 
191 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req,
192 			 u32 resp_len, void *resp)
193 {
194 	struct hw_channel_context *hwc = gc->hwc.driver_data;
195 
196 	return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
197 }
198 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA");
199 
200 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
201 			 struct gdma_mem_info *gmi)
202 {
203 	dma_addr_t dma_handle;
204 	void *buf;
205 
206 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
207 		return -EINVAL;
208 
209 	gmi->dev = gc->dev;
210 	buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL);
211 	if (!buf)
212 		return -ENOMEM;
213 
214 	gmi->dma_handle = dma_handle;
215 	gmi->virt_addr = buf;
216 	gmi->length = length;
217 
218 	return 0;
219 }
220 
221 void mana_gd_free_memory(struct gdma_mem_info *gmi)
222 {
223 	dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr,
224 			  gmi->dma_handle);
225 }
226 
227 static int mana_gd_create_hw_eq(struct gdma_context *gc,
228 				struct gdma_queue *queue)
229 {
230 	struct gdma_create_queue_resp resp = {};
231 	struct gdma_create_queue_req req = {};
232 	int err;
233 
234 	if (queue->type != GDMA_EQ)
235 		return -EINVAL;
236 
237 	mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
238 			     sizeof(req), sizeof(resp));
239 
240 	req.hdr.dev_id = queue->gdma_dev->dev_id;
241 	req.type = queue->type;
242 	req.pdid = queue->gdma_dev->pdid;
243 	req.doolbell_id = queue->gdma_dev->doorbell;
244 	req.gdma_region = queue->mem_info.dma_region_handle;
245 	req.queue_size = queue->queue_size;
246 	req.log2_throttle_limit = queue->eq.log2_throttle_limit;
247 	req.eq_pci_msix_index = queue->eq.msix_index;
248 
249 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
250 	if (err || resp.hdr.status) {
251 		dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err,
252 			resp.hdr.status);
253 		return err ? err : -EPROTO;
254 	}
255 
256 	queue->id = resp.queue_index;
257 	queue->eq.disable_needed = true;
258 	queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
259 	return 0;
260 }
261 
262 static int mana_gd_disable_queue(struct gdma_queue *queue)
263 {
264 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
265 	struct gdma_disable_queue_req req = {};
266 	struct gdma_general_resp resp = {};
267 	int err;
268 
269 	WARN_ON(queue->type != GDMA_EQ);
270 
271 	mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
272 			     sizeof(req), sizeof(resp));
273 
274 	req.hdr.dev_id = queue->gdma_dev->dev_id;
275 	req.type = queue->type;
276 	req.queue_index =  queue->id;
277 	req.alloc_res_id_on_creation = 1;
278 
279 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
280 	if (err || resp.hdr.status) {
281 		dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err,
282 			resp.hdr.status);
283 		return err ? err : -EPROTO;
284 	}
285 
286 	return 0;
287 }
288 
289 #define DOORBELL_OFFSET_SQ	0x0
290 #define DOORBELL_OFFSET_RQ	0x400
291 #define DOORBELL_OFFSET_CQ	0x800
292 #define DOORBELL_OFFSET_EQ	0xFF8
293 
294 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index,
295 				  enum gdma_queue_type q_type, u32 qid,
296 				  u32 tail_ptr, u8 num_req)
297 {
298 	void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index;
299 	union gdma_doorbell_entry e = {};
300 
301 	switch (q_type) {
302 	case GDMA_EQ:
303 		e.eq.id = qid;
304 		e.eq.tail_ptr = tail_ptr;
305 		e.eq.arm = num_req;
306 
307 		addr += DOORBELL_OFFSET_EQ;
308 		break;
309 
310 	case GDMA_CQ:
311 		e.cq.id = qid;
312 		e.cq.tail_ptr = tail_ptr;
313 		e.cq.arm = num_req;
314 
315 		addr += DOORBELL_OFFSET_CQ;
316 		break;
317 
318 	case GDMA_RQ:
319 		e.rq.id = qid;
320 		e.rq.tail_ptr = tail_ptr;
321 		e.rq.wqe_cnt = num_req;
322 
323 		addr += DOORBELL_OFFSET_RQ;
324 		break;
325 
326 	case GDMA_SQ:
327 		e.sq.id = qid;
328 		e.sq.tail_ptr = tail_ptr;
329 
330 		addr += DOORBELL_OFFSET_SQ;
331 		break;
332 
333 	default:
334 		WARN_ON(1);
335 		return;
336 	}
337 
338 	/* Ensure all writes are done before ring doorbell */
339 	wmb();
340 
341 	writeq(e.as_uint64, addr);
342 }
343 
344 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
345 {
346 	/* Hardware Spec specifies that software client should set 0 for
347 	 * wqe_cnt for Receive Queues. This value is not used in Send Queues.
348 	 */
349 	mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
350 			      queue->id, queue->head * GDMA_WQE_BU_SIZE, 0);
351 }
352 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA");
353 
354 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit)
355 {
356 	struct gdma_context *gc = cq->gdma_dev->gdma_context;
357 
358 	u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE;
359 
360 	u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
361 
362 	mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
363 			      head, arm_bit);
364 }
365 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA");
366 
367 #define MANA_SERVICE_PERIOD 10
368 
369 struct mana_serv_work {
370 	struct work_struct serv_work;
371 	struct pci_dev *pdev;
372 };
373 
374 static void mana_serv_func(struct work_struct *w)
375 {
376 	struct mana_serv_work *mns_wk;
377 	struct pci_bus *bus, *parent;
378 	struct pci_dev *pdev;
379 
380 	mns_wk = container_of(w, struct mana_serv_work, serv_work);
381 	pdev = mns_wk->pdev;
382 
383 	pci_lock_rescan_remove();
384 
385 	if (!pdev)
386 		goto out;
387 
388 	bus = pdev->bus;
389 	if (!bus) {
390 		dev_err(&pdev->dev, "MANA service: no bus\n");
391 		goto out;
392 	}
393 
394 	parent = bus->parent;
395 	if (!parent) {
396 		dev_err(&pdev->dev, "MANA service: no parent bus\n");
397 		goto out;
398 	}
399 
400 	pci_stop_and_remove_bus_device(bus->self);
401 
402 	msleep(MANA_SERVICE_PERIOD * 1000);
403 
404 	pci_rescan_bus(parent);
405 
406 out:
407 	pci_unlock_rescan_remove();
408 
409 	pci_dev_put(pdev);
410 	kfree(mns_wk);
411 	module_put(THIS_MODULE);
412 }
413 
414 static void mana_gd_process_eqe(struct gdma_queue *eq)
415 {
416 	u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
417 	struct gdma_context *gc = eq->gdma_dev->gdma_context;
418 	struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
419 	struct mana_serv_work *mns_wk;
420 	union gdma_eqe_info eqe_info;
421 	enum gdma_eqe_type type;
422 	struct gdma_event event;
423 	struct gdma_queue *cq;
424 	struct gdma_eqe *eqe;
425 	u32 cq_id;
426 
427 	eqe = &eq_eqe_ptr[head];
428 	eqe_info.as_uint32 = eqe->eqe_info;
429 	type = eqe_info.type;
430 
431 	switch (type) {
432 	case GDMA_EQE_COMPLETION:
433 		cq_id = eqe->details[0] & 0xFFFFFF;
434 		if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs))
435 			break;
436 
437 		cq = gc->cq_table[cq_id];
438 		if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id))
439 			break;
440 
441 		if (cq->cq.callback)
442 			cq->cq.callback(cq->cq.context, cq);
443 
444 		break;
445 
446 	case GDMA_EQE_TEST_EVENT:
447 		gc->test_event_eq_id = eq->id;
448 		complete(&gc->eq_test_event);
449 		break;
450 
451 	case GDMA_EQE_HWC_INIT_EQ_ID_DB:
452 	case GDMA_EQE_HWC_INIT_DATA:
453 	case GDMA_EQE_HWC_INIT_DONE:
454 	case GDMA_EQE_HWC_SOC_SERVICE:
455 	case GDMA_EQE_RNIC_QP_FATAL:
456 		if (!eq->eq.callback)
457 			break;
458 
459 		event.type = type;
460 		memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
461 		eq->eq.callback(eq->eq.context, eq, &event);
462 		break;
463 
464 	case GDMA_EQE_HWC_FPGA_RECONFIG:
465 		dev_info(gc->dev, "Recv MANA service type:%d\n", type);
466 
467 		if (gc->in_service) {
468 			dev_info(gc->dev, "Already in service\n");
469 			break;
470 		}
471 
472 		if (!try_module_get(THIS_MODULE)) {
473 			dev_info(gc->dev, "Module is unloading\n");
474 			break;
475 		}
476 
477 		mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC);
478 		if (!mns_wk) {
479 			module_put(THIS_MODULE);
480 			break;
481 		}
482 
483 		dev_info(gc->dev, "Start MANA service type:%d\n", type);
484 		gc->in_service = true;
485 		mns_wk->pdev = to_pci_dev(gc->dev);
486 		pci_dev_get(mns_wk->pdev);
487 		INIT_WORK(&mns_wk->serv_work, mana_serv_func);
488 		schedule_work(&mns_wk->serv_work);
489 		break;
490 
491 	default:
492 		break;
493 	}
494 }
495 
496 static void mana_gd_process_eq_events(void *arg)
497 {
498 	u32 owner_bits, new_bits, old_bits;
499 	union gdma_eqe_info eqe_info;
500 	struct gdma_eqe *eq_eqe_ptr;
501 	struct gdma_queue *eq = arg;
502 	struct gdma_context *gc;
503 	struct gdma_eqe *eqe;
504 	u32 head, num_eqe;
505 	int i;
506 
507 	gc = eq->gdma_dev->gdma_context;
508 
509 	num_eqe = eq->queue_size / GDMA_EQE_SIZE;
510 	eq_eqe_ptr = eq->queue_mem_ptr;
511 
512 	/* Process up to 5 EQEs at a time, and update the HW head. */
513 	for (i = 0; i < 5; i++) {
514 		eqe = &eq_eqe_ptr[eq->head % num_eqe];
515 		eqe_info.as_uint32 = eqe->eqe_info;
516 		owner_bits = eqe_info.owner_bits;
517 
518 		old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
519 		/* No more entries */
520 		if (owner_bits == old_bits) {
521 			/* return here without ringing the doorbell */
522 			if (i == 0)
523 				return;
524 			break;
525 		}
526 
527 		new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
528 		if (owner_bits != new_bits) {
529 			dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id);
530 			break;
531 		}
532 
533 		/* Per GDMA spec, rmb is necessary after checking owner_bits, before
534 		 * reading eqe.
535 		 */
536 		rmb();
537 
538 		mana_gd_process_eqe(eq);
539 
540 		eq->head++;
541 	}
542 
543 	head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
544 
545 	mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
546 			      head, SET_ARM_BIT);
547 }
548 
549 static int mana_gd_register_irq(struct gdma_queue *queue,
550 				const struct gdma_queue_spec *spec)
551 {
552 	struct gdma_dev *gd = queue->gdma_dev;
553 	struct gdma_irq_context *gic;
554 	struct gdma_context *gc;
555 	unsigned int msi_index;
556 	unsigned long flags;
557 	struct device *dev;
558 	int err = 0;
559 
560 	gc = gd->gdma_context;
561 	dev = gc->dev;
562 	msi_index = spec->eq.msix_index;
563 
564 	if (msi_index >= gc->num_msix_usable) {
565 		err = -ENOSPC;
566 		dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u",
567 			err, msi_index, gc->num_msix_usable);
568 
569 		return err;
570 	}
571 
572 	queue->eq.msix_index = msi_index;
573 	gic = xa_load(&gc->irq_contexts, msi_index);
574 	if (WARN_ON(!gic))
575 		return -EINVAL;
576 
577 	spin_lock_irqsave(&gic->lock, flags);
578 	list_add_rcu(&queue->entry, &gic->eq_list);
579 	spin_unlock_irqrestore(&gic->lock, flags);
580 
581 	return 0;
582 }
583 
584 static void mana_gd_deregiser_irq(struct gdma_queue *queue)
585 {
586 	struct gdma_dev *gd = queue->gdma_dev;
587 	struct gdma_irq_context *gic;
588 	struct gdma_context *gc;
589 	unsigned int msix_index;
590 	unsigned long flags;
591 	struct gdma_queue *eq;
592 
593 	gc = gd->gdma_context;
594 
595 	/* At most num_online_cpus() + 1 interrupts are used. */
596 	msix_index = queue->eq.msix_index;
597 	if (WARN_ON(msix_index >= gc->num_msix_usable))
598 		return;
599 
600 	gic = xa_load(&gc->irq_contexts, msix_index);
601 	if (WARN_ON(!gic))
602 		return;
603 
604 	spin_lock_irqsave(&gic->lock, flags);
605 	list_for_each_entry_rcu(eq, &gic->eq_list, entry) {
606 		if (queue == eq) {
607 			list_del_rcu(&eq->entry);
608 			break;
609 		}
610 	}
611 	spin_unlock_irqrestore(&gic->lock, flags);
612 
613 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
614 	synchronize_rcu();
615 }
616 
617 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
618 {
619 	struct gdma_generate_test_event_req req = {};
620 	struct gdma_general_resp resp = {};
621 	struct device *dev = gc->dev;
622 	int err;
623 
624 	mutex_lock(&gc->eq_test_event_mutex);
625 
626 	init_completion(&gc->eq_test_event);
627 	gc->test_event_eq_id = INVALID_QUEUE_ID;
628 
629 	mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
630 			     sizeof(req), sizeof(resp));
631 
632 	req.hdr.dev_id = eq->gdma_dev->dev_id;
633 	req.queue_index = eq->id;
634 
635 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
636 	if (err) {
637 		dev_err(dev, "test_eq failed: %d\n", err);
638 		goto out;
639 	}
640 
641 	err = -EPROTO;
642 
643 	if (resp.hdr.status) {
644 		dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status);
645 		goto out;
646 	}
647 
648 	if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) {
649 		dev_err(dev, "test_eq timed out on queue %d\n", eq->id);
650 		goto out;
651 	}
652 
653 	if (eq->id != gc->test_event_eq_id) {
654 		dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n",
655 			gc->test_event_eq_id, eq->id);
656 		goto out;
657 	}
658 
659 	err = 0;
660 out:
661 	mutex_unlock(&gc->eq_test_event_mutex);
662 	return err;
663 }
664 
665 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
666 			       struct gdma_queue *queue)
667 {
668 	int err;
669 
670 	if (flush_evenets) {
671 		err = mana_gd_test_eq(gc, queue);
672 		if (err)
673 			dev_warn(gc->dev, "Failed to flush EQ: %d\n", err);
674 	}
675 
676 	mana_gd_deregiser_irq(queue);
677 
678 	if (queue->eq.disable_needed)
679 		mana_gd_disable_queue(queue);
680 }
681 
682 static int mana_gd_create_eq(struct gdma_dev *gd,
683 			     const struct gdma_queue_spec *spec,
684 			     bool create_hwq, struct gdma_queue *queue)
685 {
686 	struct gdma_context *gc = gd->gdma_context;
687 	struct device *dev = gc->dev;
688 	u32 log2_num_entries;
689 	int err;
690 
691 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
692 	queue->id = INVALID_QUEUE_ID;
693 
694 	log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
695 
696 	if (spec->eq.log2_throttle_limit > log2_num_entries) {
697 		dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n",
698 			spec->eq.log2_throttle_limit, log2_num_entries);
699 		return -EINVAL;
700 	}
701 
702 	err = mana_gd_register_irq(queue, spec);
703 	if (err) {
704 		dev_err(dev, "Failed to register irq: %d\n", err);
705 		return err;
706 	}
707 
708 	queue->eq.callback = spec->eq.callback;
709 	queue->eq.context = spec->eq.context;
710 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
711 	queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
712 
713 	if (create_hwq) {
714 		err = mana_gd_create_hw_eq(gc, queue);
715 		if (err)
716 			goto out;
717 
718 		err = mana_gd_test_eq(gc, queue);
719 		if (err)
720 			goto out;
721 	}
722 
723 	return 0;
724 out:
725 	dev_err(dev, "Failed to create EQ: %d\n", err);
726 	mana_gd_destroy_eq(gc, false, queue);
727 	return err;
728 }
729 
730 static void mana_gd_create_cq(const struct gdma_queue_spec *spec,
731 			      struct gdma_queue *queue)
732 {
733 	u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
734 
735 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
736 	queue->cq.parent = spec->cq.parent_eq;
737 	queue->cq.context = spec->cq.context;
738 	queue->cq.callback = spec->cq.callback;
739 }
740 
741 static void mana_gd_destroy_cq(struct gdma_context *gc,
742 			       struct gdma_queue *queue)
743 {
744 	u32 id = queue->id;
745 
746 	if (id >= gc->max_num_cqs)
747 		return;
748 
749 	if (!gc->cq_table[id])
750 		return;
751 
752 	gc->cq_table[id] = NULL;
753 }
754 
755 int mana_gd_create_hwc_queue(struct gdma_dev *gd,
756 			     const struct gdma_queue_spec *spec,
757 			     struct gdma_queue **queue_ptr)
758 {
759 	struct gdma_context *gc = gd->gdma_context;
760 	struct gdma_mem_info *gmi;
761 	struct gdma_queue *queue;
762 	int err;
763 
764 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
765 	if (!queue)
766 		return -ENOMEM;
767 
768 	gmi = &queue->mem_info;
769 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
770 	if (err) {
771 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
772 			spec->type, spec->queue_size, err);
773 		goto free_q;
774 	}
775 
776 	queue->head = 0;
777 	queue->tail = 0;
778 	queue->queue_mem_ptr = gmi->virt_addr;
779 	queue->queue_size = spec->queue_size;
780 	queue->monitor_avl_buf = spec->monitor_avl_buf;
781 	queue->type = spec->type;
782 	queue->gdma_dev = gd;
783 
784 	if (spec->type == GDMA_EQ)
785 		err = mana_gd_create_eq(gd, spec, false, queue);
786 	else if (spec->type == GDMA_CQ)
787 		mana_gd_create_cq(spec, queue);
788 
789 	if (err)
790 		goto out;
791 
792 	*queue_ptr = queue;
793 	return 0;
794 out:
795 	dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n",
796 		spec->type, spec->queue_size, err);
797 	mana_gd_free_memory(gmi);
798 free_q:
799 	kfree(queue);
800 	return err;
801 }
802 
803 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle)
804 {
805 	struct gdma_destroy_dma_region_req req = {};
806 	struct gdma_general_resp resp = {};
807 	int err;
808 
809 	if (dma_region_handle == GDMA_INVALID_DMA_REGION)
810 		return 0;
811 
812 	mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
813 			     sizeof(resp));
814 	req.dma_region_handle = dma_region_handle;
815 
816 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
817 	if (err || resp.hdr.status) {
818 		dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n",
819 			err, resp.hdr.status);
820 		return -EPROTO;
821 	}
822 
823 	return 0;
824 }
825 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA");
826 
827 static int mana_gd_create_dma_region(struct gdma_dev *gd,
828 				     struct gdma_mem_info *gmi)
829 {
830 	unsigned int num_page = gmi->length / MANA_PAGE_SIZE;
831 	struct gdma_create_dma_region_req *req = NULL;
832 	struct gdma_create_dma_region_resp resp = {};
833 	struct gdma_context *gc = gd->gdma_context;
834 	struct hw_channel_context *hwc;
835 	u32 length = gmi->length;
836 	size_t req_msg_size;
837 	int err;
838 	int i;
839 
840 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
841 		return -EINVAL;
842 
843 	if (!MANA_PAGE_ALIGNED(gmi->virt_addr))
844 		return -EINVAL;
845 
846 	hwc = gc->hwc.driver_data;
847 	req_msg_size = struct_size(req, page_addr_list, num_page);
848 	if (req_msg_size > hwc->max_req_msg_size)
849 		return -EINVAL;
850 
851 	req = kzalloc(req_msg_size, GFP_KERNEL);
852 	if (!req)
853 		return -ENOMEM;
854 
855 	mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
856 			     req_msg_size, sizeof(resp));
857 	req->length = length;
858 	req->offset_in_page = 0;
859 	req->gdma_page_type = GDMA_PAGE_TYPE_4K;
860 	req->page_count = num_page;
861 	req->page_addr_list_len = num_page;
862 
863 	for (i = 0; i < num_page; i++)
864 		req->page_addr_list[i] = gmi->dma_handle +  i * MANA_PAGE_SIZE;
865 
866 	err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
867 	if (err)
868 		goto out;
869 
870 	if (resp.hdr.status ||
871 	    resp.dma_region_handle == GDMA_INVALID_DMA_REGION) {
872 		dev_err(gc->dev, "Failed to create DMA region: 0x%x\n",
873 			resp.hdr.status);
874 		err = -EPROTO;
875 		goto out;
876 	}
877 
878 	gmi->dma_region_handle = resp.dma_region_handle;
879 	dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n",
880 		gmi->dma_region_handle);
881 out:
882 	if (err)
883 		dev_dbg(gc->dev,
884 			"Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n",
885 			length, req->gdma_page_type, resp.hdr.status, err);
886 	kfree(req);
887 	return err;
888 }
889 
890 int mana_gd_create_mana_eq(struct gdma_dev *gd,
891 			   const struct gdma_queue_spec *spec,
892 			   struct gdma_queue **queue_ptr)
893 {
894 	struct gdma_context *gc = gd->gdma_context;
895 	struct gdma_mem_info *gmi;
896 	struct gdma_queue *queue;
897 	int err;
898 
899 	if (spec->type != GDMA_EQ)
900 		return -EINVAL;
901 
902 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
903 	if (!queue)
904 		return -ENOMEM;
905 
906 	gmi = &queue->mem_info;
907 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
908 	if (err) {
909 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
910 			spec->type, spec->queue_size, err);
911 		goto free_q;
912 	}
913 
914 	err = mana_gd_create_dma_region(gd, gmi);
915 	if (err)
916 		goto out;
917 
918 	queue->head = 0;
919 	queue->tail = 0;
920 	queue->queue_mem_ptr = gmi->virt_addr;
921 	queue->queue_size = spec->queue_size;
922 	queue->monitor_avl_buf = spec->monitor_avl_buf;
923 	queue->type = spec->type;
924 	queue->gdma_dev = gd;
925 
926 	err = mana_gd_create_eq(gd, spec, true, queue);
927 	if (err)
928 		goto out;
929 
930 	*queue_ptr = queue;
931 	return 0;
932 out:
933 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
934 		spec->type, spec->queue_size, err);
935 	mana_gd_free_memory(gmi);
936 free_q:
937 	kfree(queue);
938 	return err;
939 }
940 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA");
941 
942 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
943 			      const struct gdma_queue_spec *spec,
944 			      struct gdma_queue **queue_ptr)
945 {
946 	struct gdma_context *gc = gd->gdma_context;
947 	struct gdma_mem_info *gmi;
948 	struct gdma_queue *queue;
949 	int err;
950 
951 	if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
952 	    spec->type != GDMA_RQ)
953 		return -EINVAL;
954 
955 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
956 	if (!queue)
957 		return -ENOMEM;
958 
959 	gmi = &queue->mem_info;
960 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
961 	if (err) {
962 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n",
963 			spec->type, spec->queue_size, err);
964 		goto free_q;
965 	}
966 
967 	err = mana_gd_create_dma_region(gd, gmi);
968 	if (err)
969 		goto out;
970 
971 	queue->head = 0;
972 	queue->tail = 0;
973 	queue->queue_mem_ptr = gmi->virt_addr;
974 	queue->queue_size = spec->queue_size;
975 	queue->monitor_avl_buf = spec->monitor_avl_buf;
976 	queue->type = spec->type;
977 	queue->gdma_dev = gd;
978 
979 	if (spec->type == GDMA_CQ)
980 		mana_gd_create_cq(spec, queue);
981 
982 	*queue_ptr = queue;
983 	return 0;
984 out:
985 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
986 		spec->type, spec->queue_size, err);
987 	mana_gd_free_memory(gmi);
988 free_q:
989 	kfree(queue);
990 	return err;
991 }
992 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA");
993 
994 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
995 {
996 	struct gdma_mem_info *gmi = &queue->mem_info;
997 
998 	switch (queue->type) {
999 	case GDMA_EQ:
1000 		mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
1001 		break;
1002 
1003 	case GDMA_CQ:
1004 		mana_gd_destroy_cq(gc, queue);
1005 		break;
1006 
1007 	case GDMA_RQ:
1008 		break;
1009 
1010 	case GDMA_SQ:
1011 		break;
1012 
1013 	default:
1014 		dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n",
1015 			queue->type);
1016 		return;
1017 	}
1018 
1019 	mana_gd_destroy_dma_region(gc, gmi->dma_region_handle);
1020 	mana_gd_free_memory(gmi);
1021 	kfree(queue);
1022 }
1023 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA");
1024 
1025 int mana_gd_verify_vf_version(struct pci_dev *pdev)
1026 {
1027 	struct gdma_context *gc = pci_get_drvdata(pdev);
1028 	struct gdma_verify_ver_resp resp = {};
1029 	struct gdma_verify_ver_req req = {};
1030 	struct hw_channel_context *hwc;
1031 	int err;
1032 
1033 	hwc = gc->hwc.driver_data;
1034 	mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
1035 			     sizeof(req), sizeof(resp));
1036 
1037 	req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
1038 	req.protocol_ver_max = GDMA_PROTOCOL_LAST;
1039 
1040 	req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1;
1041 	req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2;
1042 	req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3;
1043 	req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4;
1044 
1045 	req.drv_ver = 0;	/* Unused*/
1046 	req.os_type = 0x10;	/* Linux */
1047 	req.os_ver_major = LINUX_VERSION_MAJOR;
1048 	req.os_ver_minor = LINUX_VERSION_PATCHLEVEL;
1049 	req.os_ver_build = LINUX_VERSION_SUBLEVEL;
1050 	strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1));
1051 	strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2));
1052 	strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3));
1053 
1054 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1055 	if (err || resp.hdr.status) {
1056 		dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n",
1057 			err, resp.hdr.status);
1058 		return err ? err : -EPROTO;
1059 	}
1060 	gc->pf_cap_flags1 = resp.pf_cap_flags1;
1061 	if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) {
1062 		err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout);
1063 		if (err) {
1064 			dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err);
1065 			return err;
1066 		}
1067 		dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout);
1068 	}
1069 	return 0;
1070 }
1071 
1072 int mana_gd_register_device(struct gdma_dev *gd)
1073 {
1074 	struct gdma_context *gc = gd->gdma_context;
1075 	struct gdma_register_device_resp resp = {};
1076 	struct gdma_general_req req = {};
1077 	int err;
1078 
1079 	gd->pdid = INVALID_PDID;
1080 	gd->doorbell = INVALID_DOORBELL;
1081 	gd->gpa_mkey = INVALID_MEM_KEY;
1082 
1083 	mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
1084 			     sizeof(resp));
1085 
1086 	req.hdr.dev_id = gd->dev_id;
1087 
1088 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1089 	if (err || resp.hdr.status) {
1090 		dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n",
1091 			err, resp.hdr.status);
1092 		return err ? err : -EPROTO;
1093 	}
1094 
1095 	gd->pdid = resp.pdid;
1096 	gd->gpa_mkey = resp.gpa_mkey;
1097 	gd->doorbell = resp.db_id;
1098 
1099 	return 0;
1100 }
1101 
1102 int mana_gd_deregister_device(struct gdma_dev *gd)
1103 {
1104 	struct gdma_context *gc = gd->gdma_context;
1105 	struct gdma_general_resp resp = {};
1106 	struct gdma_general_req req = {};
1107 	int err;
1108 
1109 	if (gd->pdid == INVALID_PDID)
1110 		return -EINVAL;
1111 
1112 	mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
1113 			     sizeof(resp));
1114 
1115 	req.hdr.dev_id = gd->dev_id;
1116 
1117 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1118 	if (err || resp.hdr.status) {
1119 		dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n",
1120 			err, resp.hdr.status);
1121 		if (!err)
1122 			err = -EPROTO;
1123 	}
1124 
1125 	gd->pdid = INVALID_PDID;
1126 	gd->doorbell = INVALID_DOORBELL;
1127 	gd->gpa_mkey = INVALID_MEM_KEY;
1128 
1129 	return err;
1130 }
1131 
1132 u32 mana_gd_wq_avail_space(struct gdma_queue *wq)
1133 {
1134 	u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
1135 	u32 wq_size = wq->queue_size;
1136 
1137 	WARN_ON_ONCE(used_space > wq_size);
1138 
1139 	return wq_size - used_space;
1140 }
1141 
1142 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset)
1143 {
1144 	u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
1145 
1146 	WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size);
1147 
1148 	return wq->queue_mem_ptr + offset;
1149 }
1150 
1151 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
1152 				    enum gdma_queue_type q_type,
1153 				    u32 client_oob_size, u32 sgl_data_size,
1154 				    u8 *wqe_ptr)
1155 {
1156 	bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
1157 	bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
1158 	struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
1159 	u8 *ptr;
1160 
1161 	memset(header, 0, sizeof(struct gdma_wqe));
1162 	header->num_sge = wqe_req->num_sge;
1163 	header->inline_oob_size_div4 = client_oob_size / sizeof(u32);
1164 
1165 	if (oob_in_sgl) {
1166 		WARN_ON_ONCE(wqe_req->num_sge < 2);
1167 
1168 		header->client_oob_in_sgl = 1;
1169 
1170 		if (pad_data)
1171 			header->last_vbytes = wqe_req->sgl[0].size;
1172 	}
1173 
1174 	if (q_type == GDMA_SQ)
1175 		header->client_data_unit = wqe_req->client_data_unit;
1176 
1177 	/* The size of gdma_wqe + client_oob_size must be less than or equal
1178 	 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
1179 	 * the queue memory buffer boundary.
1180 	 */
1181 	ptr = wqe_ptr + sizeof(header);
1182 
1183 	if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
1184 		memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
1185 
1186 		if (client_oob_size > wqe_req->inline_oob_size)
1187 			memset(ptr + wqe_req->inline_oob_size, 0,
1188 			       client_oob_size - wqe_req->inline_oob_size);
1189 	}
1190 
1191 	return sizeof(header) + client_oob_size;
1192 }
1193 
1194 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr,
1195 			      const struct gdma_wqe_request *wqe_req)
1196 {
1197 	u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1198 	const u8 *address = (u8 *)wqe_req->sgl;
1199 	u8 *base_ptr, *end_ptr;
1200 	u32 size_to_end;
1201 
1202 	base_ptr = wq->queue_mem_ptr;
1203 	end_ptr = base_ptr + wq->queue_size;
1204 	size_to_end = (u32)(end_ptr - wqe_ptr);
1205 
1206 	if (size_to_end < sgl_size) {
1207 		memcpy(wqe_ptr, address, size_to_end);
1208 
1209 		wqe_ptr = base_ptr;
1210 		address += size_to_end;
1211 		sgl_size -= size_to_end;
1212 	}
1213 
1214 	memcpy(wqe_ptr, address, sgl_size);
1215 }
1216 
1217 int mana_gd_post_work_request(struct gdma_queue *wq,
1218 			      const struct gdma_wqe_request *wqe_req,
1219 			      struct gdma_posted_wqe_info *wqe_info)
1220 {
1221 	u32 client_oob_size = wqe_req->inline_oob_size;
1222 	struct gdma_context *gc;
1223 	u32 sgl_data_size;
1224 	u32 max_wqe_size;
1225 	u32 wqe_size;
1226 	u8 *wqe_ptr;
1227 
1228 	if (wqe_req->num_sge == 0)
1229 		return -EINVAL;
1230 
1231 	if (wq->type == GDMA_RQ) {
1232 		if (client_oob_size != 0)
1233 			return -EINVAL;
1234 
1235 		client_oob_size = INLINE_OOB_SMALL_SIZE;
1236 
1237 		max_wqe_size = GDMA_MAX_RQE_SIZE;
1238 	} else {
1239 		if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
1240 		    client_oob_size != INLINE_OOB_LARGE_SIZE)
1241 			return -EINVAL;
1242 
1243 		max_wqe_size = GDMA_MAX_SQE_SIZE;
1244 	}
1245 
1246 	sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1247 	wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
1248 			 sgl_data_size, GDMA_WQE_BU_SIZE);
1249 	if (wqe_size > max_wqe_size)
1250 		return -EINVAL;
1251 
1252 	if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) {
1253 		gc = wq->gdma_dev->gdma_context;
1254 		dev_err(gc->dev, "unsuccessful flow control!\n");
1255 		return -ENOSPC;
1256 	}
1257 
1258 	if (wqe_info)
1259 		wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
1260 
1261 	wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
1262 	wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
1263 					    sgl_data_size, wqe_ptr);
1264 	if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size)
1265 		wqe_ptr -= wq->queue_size;
1266 
1267 	mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
1268 
1269 	wq->head += wqe_size / GDMA_WQE_BU_SIZE;
1270 
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA");
1274 
1275 int mana_gd_post_and_ring(struct gdma_queue *queue,
1276 			  const struct gdma_wqe_request *wqe_req,
1277 			  struct gdma_posted_wqe_info *wqe_info)
1278 {
1279 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
1280 	int err;
1281 
1282 	err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
1283 	if (err) {
1284 		dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n",
1285 			queue->type, queue->queue_size, err);
1286 		return err;
1287 	}
1288 
1289 	mana_gd_wq_ring_doorbell(gc, queue);
1290 
1291 	return 0;
1292 }
1293 
1294 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
1295 {
1296 	unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
1297 	struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
1298 	u32 owner_bits, new_bits, old_bits;
1299 	struct gdma_cqe *cqe;
1300 
1301 	cqe = &cq_cqe[cq->head % num_cqe];
1302 	owner_bits = cqe->cqe_info.owner_bits;
1303 
1304 	old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
1305 	/* Return 0 if no more entries. */
1306 	if (owner_bits == old_bits)
1307 		return 0;
1308 
1309 	new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
1310 	/* Return -1 if overflow detected. */
1311 	if (WARN_ON_ONCE(owner_bits != new_bits))
1312 		return -1;
1313 
1314 	/* Per GDMA spec, rmb is necessary after checking owner_bits, before
1315 	 * reading completion info
1316 	 */
1317 	rmb();
1318 
1319 	comp->wq_num = cqe->cqe_info.wq_num;
1320 	comp->is_sq = cqe->cqe_info.is_sq;
1321 	memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
1322 
1323 	return 1;
1324 }
1325 
1326 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
1327 {
1328 	int cqe_idx;
1329 	int ret;
1330 
1331 	for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
1332 		ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
1333 
1334 		if (ret < 0) {
1335 			cq->head -= cqe_idx;
1336 			return ret;
1337 		}
1338 
1339 		if (ret == 0)
1340 			break;
1341 
1342 		cq->head++;
1343 	}
1344 
1345 	return cqe_idx;
1346 }
1347 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA");
1348 
1349 static irqreturn_t mana_gd_intr(int irq, void *arg)
1350 {
1351 	struct gdma_irq_context *gic = arg;
1352 	struct list_head *eq_list = &gic->eq_list;
1353 	struct gdma_queue *eq;
1354 
1355 	rcu_read_lock();
1356 	list_for_each_entry_rcu(eq, eq_list, entry) {
1357 		gic->handler(eq);
1358 	}
1359 	rcu_read_unlock();
1360 
1361 	return IRQ_HANDLED;
1362 }
1363 
1364 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r)
1365 {
1366 	r->map = bitmap_zalloc(res_avail, GFP_KERNEL);
1367 	if (!r->map)
1368 		return -ENOMEM;
1369 
1370 	r->size = res_avail;
1371 	spin_lock_init(&r->lock);
1372 
1373 	return 0;
1374 }
1375 
1376 void mana_gd_free_res_map(struct gdma_resource *r)
1377 {
1378 	bitmap_free(r->map);
1379 	r->map = NULL;
1380 	r->size = 0;
1381 }
1382 
1383 /*
1384  * Spread on CPUs with the following heuristics:
1385  *
1386  * 1. No more than one IRQ per CPU, if possible;
1387  * 2. NUMA locality is the second priority;
1388  * 3. Sibling dislocality is the last priority.
1389  *
1390  * Let's consider this topology:
1391  *
1392  * Node            0               1
1393  * Core        0       1       2       3
1394  * CPU       0   1   2   3   4   5   6   7
1395  *
1396  * The most performant IRQ distribution based on the above topology
1397  * and heuristics may look like this:
1398  *
1399  * IRQ     Nodes   Cores   CPUs
1400  * 0       1       0       0-1
1401  * 1       1       1       2-3
1402  * 2       1       0       0-1
1403  * 3       1       1       2-3
1404  * 4       2       2       4-5
1405  * 5       2       3       6-7
1406  * 6       2       2       4-5
1407  * 7       2       3       6-7
1408  *
1409  * The heuristics is implemented as follows.
1410  *
1411  * The outer for_each() loop resets the 'weight' to the actual number
1412  * of CPUs in the hop. Then inner for_each() loop decrements it by the
1413  * number of sibling groups (cores) while assigning first set of IRQs
1414  * to each group. IRQs 0 and 1 above are distributed this way.
1415  *
1416  * Now, because NUMA locality is more important, we should walk the
1417  * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's
1418  * implemented by the medium while() loop. We do like this unless the
1419  * number of IRQs assigned on this hop will not become equal to number
1420  * of CPUs in the hop (weight == 0). Then we switch to the next hop and
1421  * do the same thing.
1422  */
1423 
1424 static int irq_setup(unsigned int *irqs, unsigned int len, int node,
1425 		     bool skip_first_cpu)
1426 {
1427 	const struct cpumask *next, *prev = cpu_none_mask;
1428 	cpumask_var_t cpus __free(free_cpumask_var);
1429 	int cpu, weight;
1430 
1431 	if (!alloc_cpumask_var(&cpus, GFP_KERNEL))
1432 		return -ENOMEM;
1433 
1434 	rcu_read_lock();
1435 	for_each_numa_hop_mask(next, node) {
1436 		weight = cpumask_weight_andnot(next, prev);
1437 		while (weight > 0) {
1438 			cpumask_andnot(cpus, next, prev);
1439 			for_each_cpu(cpu, cpus) {
1440 				cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
1441 				--weight;
1442 
1443 				if (unlikely(skip_first_cpu)) {
1444 					skip_first_cpu = false;
1445 					continue;
1446 				}
1447 
1448 				if (len-- == 0)
1449 					goto done;
1450 
1451 				irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu));
1452 			}
1453 		}
1454 		prev = next;
1455 	}
1456 done:
1457 	rcu_read_unlock();
1458 	return 0;
1459 }
1460 
1461 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec)
1462 {
1463 	struct gdma_context *gc = pci_get_drvdata(pdev);
1464 	struct gdma_irq_context *gic;
1465 	bool skip_first_cpu = false;
1466 	int *irqs, irq, err, i;
1467 
1468 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1469 	if (!irqs)
1470 		return -ENOMEM;
1471 
1472 	/*
1473 	 * While processing the next pci irq vector, we start with index 1,
1474 	 * as IRQ vector at index 0 is already processed for HWC.
1475 	 * However, the population of irqs array starts with index 0, to be
1476 	 * further used in irq_setup()
1477 	 */
1478 	for (i = 1; i <= nvec; i++) {
1479 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1480 		if (!gic) {
1481 			err = -ENOMEM;
1482 			goto free_irq;
1483 		}
1484 		gic->handler = mana_gd_process_eq_events;
1485 		INIT_LIST_HEAD(&gic->eq_list);
1486 		spin_lock_init(&gic->lock);
1487 
1488 		snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1489 			 i - 1, pci_name(pdev));
1490 
1491 		/* one pci vector is already allocated for HWC */
1492 		irqs[i - 1] = pci_irq_vector(pdev, i);
1493 		if (irqs[i - 1] < 0) {
1494 			err = irqs[i - 1];
1495 			goto free_current_gic;
1496 		}
1497 
1498 		err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic);
1499 		if (err)
1500 			goto free_current_gic;
1501 
1502 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1503 	}
1504 
1505 	/*
1506 	 * When calling irq_setup() for dynamically added IRQs, if number of
1507 	 * CPUs is more than or equal to allocated MSI-X, we need to skip the
1508 	 * first CPU sibling group since they are already affinitized to HWC IRQ
1509 	 */
1510 	cpus_read_lock();
1511 	if (gc->num_msix_usable <= num_online_cpus())
1512 		skip_first_cpu = true;
1513 
1514 	err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu);
1515 	if (err) {
1516 		cpus_read_unlock();
1517 		goto free_irq;
1518 	}
1519 
1520 	cpus_read_unlock();
1521 	kfree(irqs);
1522 	return 0;
1523 
1524 free_current_gic:
1525 	kfree(gic);
1526 free_irq:
1527 	for (i -= 1; i > 0; i--) {
1528 		irq = pci_irq_vector(pdev, i);
1529 		gic = xa_load(&gc->irq_contexts, i);
1530 		if (WARN_ON(!gic))
1531 			continue;
1532 
1533 		irq_update_affinity_hint(irq, NULL);
1534 		free_irq(irq, gic);
1535 		xa_erase(&gc->irq_contexts, i);
1536 		kfree(gic);
1537 	}
1538 	kfree(irqs);
1539 	return err;
1540 }
1541 
1542 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec)
1543 {
1544 	struct gdma_context *gc = pci_get_drvdata(pdev);
1545 	struct gdma_irq_context *gic;
1546 	int *irqs, *start_irqs, irq;
1547 	unsigned int cpu;
1548 	int err, i;
1549 
1550 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1551 	if (!irqs)
1552 		return -ENOMEM;
1553 
1554 	start_irqs = irqs;
1555 
1556 	for (i = 0; i < nvec; i++) {
1557 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1558 		if (!gic) {
1559 			err = -ENOMEM;
1560 			goto free_irq;
1561 		}
1562 
1563 		gic->handler = mana_gd_process_eq_events;
1564 		INIT_LIST_HEAD(&gic->eq_list);
1565 		spin_lock_init(&gic->lock);
1566 
1567 		if (!i)
1568 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s",
1569 				 pci_name(pdev));
1570 		else
1571 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1572 				 i - 1, pci_name(pdev));
1573 
1574 		irqs[i] = pci_irq_vector(pdev, i);
1575 		if (irqs[i] < 0) {
1576 			err = irqs[i];
1577 			goto free_current_gic;
1578 		}
1579 
1580 		err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic);
1581 		if (err)
1582 			goto free_current_gic;
1583 
1584 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1585 	}
1586 
1587 	/* If number of IRQ is one extra than number of online CPUs,
1588 	 * then we need to assign IRQ0 (hwc irq) and IRQ1 to
1589 	 * same CPU.
1590 	 * Else we will use different CPUs for IRQ0 and IRQ1.
1591 	 * Also we are using cpumask_local_spread instead of
1592 	 * cpumask_first for the node, because the node can be
1593 	 * mem only.
1594 	 */
1595 	cpus_read_lock();
1596 	if (nvec > num_online_cpus()) {
1597 		cpu = cpumask_local_spread(0, gc->numa_node);
1598 		irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu));
1599 		irqs++;
1600 		nvec -= 1;
1601 	}
1602 
1603 	err = irq_setup(irqs, nvec, gc->numa_node, false);
1604 	if (err) {
1605 		cpus_read_unlock();
1606 		goto free_irq;
1607 	}
1608 
1609 	cpus_read_unlock();
1610 	kfree(start_irqs);
1611 	return 0;
1612 
1613 free_current_gic:
1614 	kfree(gic);
1615 free_irq:
1616 	for (i -= 1; i >= 0; i--) {
1617 		irq = pci_irq_vector(pdev, i);
1618 		gic = xa_load(&gc->irq_contexts, i);
1619 		if (WARN_ON(!gic))
1620 			continue;
1621 
1622 		irq_update_affinity_hint(irq, NULL);
1623 		free_irq(irq, gic);
1624 		xa_erase(&gc->irq_contexts, i);
1625 		kfree(gic);
1626 	}
1627 
1628 	kfree(start_irqs);
1629 	return err;
1630 }
1631 
1632 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev)
1633 {
1634 	struct gdma_context *gc = pci_get_drvdata(pdev);
1635 	unsigned int max_irqs, min_irqs;
1636 	int nvec, err;
1637 
1638 	if (pci_msix_can_alloc_dyn(pdev)) {
1639 		max_irqs = 1;
1640 		min_irqs = 1;
1641 	} else {
1642 		/* Need 1 interrupt for HWC */
1643 		max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1;
1644 		min_irqs = 2;
1645 	}
1646 
1647 	nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX);
1648 	if (nvec < 0)
1649 		return nvec;
1650 
1651 	err = mana_gd_setup_irqs(pdev, nvec);
1652 	if (err) {
1653 		pci_free_irq_vectors(pdev);
1654 		return err;
1655 	}
1656 
1657 	gc->num_msix_usable = nvec;
1658 	gc->max_num_msix = nvec;
1659 
1660 	return 0;
1661 }
1662 
1663 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev)
1664 {
1665 	struct gdma_context *gc = pci_get_drvdata(pdev);
1666 	struct msi_map irq_map;
1667 	int max_irqs, i, err;
1668 
1669 	if (!pci_msix_can_alloc_dyn(pdev))
1670 		/* remain irqs are already allocated with HWC IRQ */
1671 		return 0;
1672 
1673 	/* allocate only remaining IRQs*/
1674 	max_irqs = gc->num_msix_usable - 1;
1675 
1676 	for (i = 1; i <= max_irqs; i++) {
1677 		irq_map = pci_msix_alloc_irq_at(pdev, i, NULL);
1678 		if (!irq_map.virq) {
1679 			err = irq_map.index;
1680 			/* caller will handle cleaning up all allocated
1681 			 * irqs, after HWC is destroyed
1682 			 */
1683 			return err;
1684 		}
1685 	}
1686 
1687 	err = mana_gd_setup_dyn_irqs(pdev, max_irqs);
1688 	if (err)
1689 		return err;
1690 
1691 	gc->max_num_msix = gc->max_num_msix + max_irqs;
1692 
1693 	return 0;
1694 }
1695 
1696 static void mana_gd_remove_irqs(struct pci_dev *pdev)
1697 {
1698 	struct gdma_context *gc = pci_get_drvdata(pdev);
1699 	struct gdma_irq_context *gic;
1700 	int irq, i;
1701 
1702 	if (gc->max_num_msix < 1)
1703 		return;
1704 
1705 	for (i = 0; i < gc->max_num_msix; i++) {
1706 		irq = pci_irq_vector(pdev, i);
1707 		if (irq < 0)
1708 			continue;
1709 
1710 		gic = xa_load(&gc->irq_contexts, i);
1711 		if (WARN_ON(!gic))
1712 			continue;
1713 
1714 		/* Need to clear the hint before free_irq */
1715 		irq_update_affinity_hint(irq, NULL);
1716 		free_irq(irq, gic);
1717 		xa_erase(&gc->irq_contexts, i);
1718 		kfree(gic);
1719 	}
1720 
1721 	pci_free_irq_vectors(pdev);
1722 
1723 	gc->max_num_msix = 0;
1724 	gc->num_msix_usable = 0;
1725 }
1726 
1727 static int mana_gd_setup(struct pci_dev *pdev)
1728 {
1729 	struct gdma_context *gc = pci_get_drvdata(pdev);
1730 	int err;
1731 
1732 	mana_gd_init_registers(pdev);
1733 	mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
1734 
1735 	gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0);
1736 	if (!gc->service_wq)
1737 		return -ENOMEM;
1738 
1739 	err = mana_gd_setup_hwc_irqs(pdev);
1740 	if (err) {
1741 		dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n",
1742 			err);
1743 		goto free_workqueue;
1744 	}
1745 
1746 	err = mana_hwc_create_channel(gc);
1747 	if (err)
1748 		goto remove_irq;
1749 
1750 	err = mana_gd_verify_vf_version(pdev);
1751 	if (err)
1752 		goto destroy_hwc;
1753 
1754 	err = mana_gd_query_max_resources(pdev);
1755 	if (err)
1756 		goto destroy_hwc;
1757 
1758 	err = mana_gd_setup_remaining_irqs(pdev);
1759 	if (err) {
1760 		dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err);
1761 		goto destroy_hwc;
1762 	}
1763 
1764 	err = mana_gd_detect_devices(pdev);
1765 	if (err)
1766 		goto destroy_hwc;
1767 
1768 	dev_dbg(&pdev->dev, "mana gdma setup successful\n");
1769 	return 0;
1770 
1771 destroy_hwc:
1772 	mana_hwc_destroy_channel(gc);
1773 remove_irq:
1774 	mana_gd_remove_irqs(pdev);
1775 free_workqueue:
1776 	destroy_workqueue(gc->service_wq);
1777 	dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err);
1778 	return err;
1779 }
1780 
1781 static void mana_gd_cleanup(struct pci_dev *pdev)
1782 {
1783 	struct gdma_context *gc = pci_get_drvdata(pdev);
1784 
1785 	mana_hwc_destroy_channel(gc);
1786 
1787 	mana_gd_remove_irqs(pdev);
1788 
1789 	destroy_workqueue(gc->service_wq);
1790 	dev_dbg(&pdev->dev, "mana gdma cleanup successful\n");
1791 }
1792 
1793 static bool mana_is_pf(unsigned short dev_id)
1794 {
1795 	return dev_id == MANA_PF_DEVICE_ID;
1796 }
1797 
1798 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1799 {
1800 	struct gdma_context *gc;
1801 	void __iomem *bar0_va;
1802 	int bar = 0;
1803 	int err;
1804 
1805 	/* Each port has 2 CQs, each CQ has at most 1 EQE at a time */
1806 	BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE);
1807 
1808 	err = pci_enable_device(pdev);
1809 	if (err) {
1810 		dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err);
1811 		return -ENXIO;
1812 	}
1813 
1814 	pci_set_master(pdev);
1815 
1816 	err = pci_request_regions(pdev, "mana");
1817 	if (err)
1818 		goto disable_dev;
1819 
1820 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1821 	if (err) {
1822 		dev_err(&pdev->dev, "DMA set mask failed: %d\n", err);
1823 		goto release_region;
1824 	}
1825 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1826 
1827 	err = -ENOMEM;
1828 	gc = vzalloc(sizeof(*gc));
1829 	if (!gc)
1830 		goto release_region;
1831 
1832 	mutex_init(&gc->eq_test_event_mutex);
1833 	pci_set_drvdata(pdev, gc);
1834 	gc->bar0_pa = pci_resource_start(pdev, 0);
1835 
1836 	bar0_va = pci_iomap(pdev, bar, 0);
1837 	if (!bar0_va)
1838 		goto free_gc;
1839 
1840 	gc->numa_node = dev_to_node(&pdev->dev);
1841 	gc->is_pf = mana_is_pf(pdev->device);
1842 	gc->bar0_va = bar0_va;
1843 	gc->dev = &pdev->dev;
1844 	xa_init(&gc->irq_contexts);
1845 
1846 	if (gc->is_pf)
1847 		gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root);
1848 	else
1849 		gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot),
1850 							  mana_debugfs_root);
1851 
1852 	err = mana_gd_setup(pdev);
1853 	if (err)
1854 		goto unmap_bar;
1855 
1856 	err = mana_probe(&gc->mana, false);
1857 	if (err)
1858 		goto cleanup_gd;
1859 
1860 	err = mana_rdma_probe(&gc->mana_ib);
1861 	if (err)
1862 		goto cleanup_mana;
1863 
1864 	return 0;
1865 
1866 cleanup_mana:
1867 	mana_remove(&gc->mana, false);
1868 cleanup_gd:
1869 	mana_gd_cleanup(pdev);
1870 unmap_bar:
1871 	/*
1872 	 * at this point we know that the other debugfs child dir/files
1873 	 * are either not yet created or are already cleaned up.
1874 	 * The pci debugfs folder clean-up now, will only be cleaning up
1875 	 * adapter-MTU file and apc->mana_pci_debugfs folder.
1876 	 */
1877 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1878 	gc->mana_pci_debugfs = NULL;
1879 	xa_destroy(&gc->irq_contexts);
1880 	pci_iounmap(pdev, bar0_va);
1881 free_gc:
1882 	pci_set_drvdata(pdev, NULL);
1883 	vfree(gc);
1884 release_region:
1885 	pci_release_regions(pdev);
1886 disable_dev:
1887 	pci_disable_device(pdev);
1888 	dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err);
1889 	return err;
1890 }
1891 
1892 static void mana_gd_remove(struct pci_dev *pdev)
1893 {
1894 	struct gdma_context *gc = pci_get_drvdata(pdev);
1895 
1896 	mana_rdma_remove(&gc->mana_ib);
1897 	mana_remove(&gc->mana, false);
1898 
1899 	mana_gd_cleanup(pdev);
1900 
1901 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1902 
1903 	gc->mana_pci_debugfs = NULL;
1904 
1905 	xa_destroy(&gc->irq_contexts);
1906 
1907 	pci_iounmap(pdev, gc->bar0_va);
1908 
1909 	vfree(gc);
1910 
1911 	pci_release_regions(pdev);
1912 	pci_disable_device(pdev);
1913 
1914 	dev_dbg(&pdev->dev, "mana gdma remove successful\n");
1915 }
1916 
1917 /* The 'state' parameter is not used. */
1918 static int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state)
1919 {
1920 	struct gdma_context *gc = pci_get_drvdata(pdev);
1921 
1922 	mana_rdma_remove(&gc->mana_ib);
1923 	mana_remove(&gc->mana, true);
1924 
1925 	mana_gd_cleanup(pdev);
1926 
1927 	return 0;
1928 }
1929 
1930 /* In case the NIC hardware stops working, the suspend and resume callbacks will
1931  * fail -- if this happens, it's safer to just report an error than try to undo
1932  * what has been done.
1933  */
1934 static int mana_gd_resume(struct pci_dev *pdev)
1935 {
1936 	struct gdma_context *gc = pci_get_drvdata(pdev);
1937 	int err;
1938 
1939 	err = mana_gd_setup(pdev);
1940 	if (err)
1941 		return err;
1942 
1943 	err = mana_probe(&gc->mana, true);
1944 	if (err)
1945 		return err;
1946 
1947 	err = mana_rdma_probe(&gc->mana_ib);
1948 	if (err)
1949 		return err;
1950 
1951 	return 0;
1952 }
1953 
1954 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */
1955 static void mana_gd_shutdown(struct pci_dev *pdev)
1956 {
1957 	struct gdma_context *gc = pci_get_drvdata(pdev);
1958 
1959 	dev_info(&pdev->dev, "Shutdown was called\n");
1960 
1961 	mana_rdma_remove(&gc->mana_ib);
1962 	mana_remove(&gc->mana, true);
1963 
1964 	mana_gd_cleanup(pdev);
1965 
1966 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1967 
1968 	gc->mana_pci_debugfs = NULL;
1969 
1970 	pci_disable_device(pdev);
1971 }
1972 
1973 static const struct pci_device_id mana_id_table[] = {
1974 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) },
1975 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) },
1976 	{ }
1977 };
1978 
1979 static struct pci_driver mana_driver = {
1980 	.name		= "mana",
1981 	.id_table	= mana_id_table,
1982 	.probe		= mana_gd_probe,
1983 	.remove		= mana_gd_remove,
1984 	.suspend	= mana_gd_suspend,
1985 	.resume		= mana_gd_resume,
1986 	.shutdown	= mana_gd_shutdown,
1987 };
1988 
1989 static int __init mana_driver_init(void)
1990 {
1991 	int err;
1992 
1993 	mana_debugfs_root = debugfs_create_dir("mana", NULL);
1994 
1995 	err = pci_register_driver(&mana_driver);
1996 	if (err) {
1997 		debugfs_remove(mana_debugfs_root);
1998 		mana_debugfs_root = NULL;
1999 	}
2000 
2001 	return err;
2002 }
2003 
2004 static void __exit mana_driver_exit(void)
2005 {
2006 	pci_unregister_driver(&mana_driver);
2007 
2008 	debugfs_remove(mana_debugfs_root);
2009 
2010 	mana_debugfs_root = NULL;
2011 }
2012 
2013 module_init(mana_driver_init);
2014 module_exit(mana_driver_exit);
2015 
2016 MODULE_DEVICE_TABLE(pci, mana_id_table);
2017 
2018 MODULE_LICENSE("Dual BSD/GPL");
2019 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver");
2020