1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright (c) 2021, Microsoft Corporation. */ 3 4 #include <linux/debugfs.h> 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include <linux/utsname.h> 8 #include <linux/version.h> 9 #include <linux/msi.h> 10 #include <linux/irqdomain.h> 11 12 #include <net/mana/mana.h> 13 14 struct dentry *mana_debugfs_root; 15 16 static u32 mana_gd_r32(struct gdma_context *g, u64 offset) 17 { 18 return readl(g->bar0_va + offset); 19 } 20 21 static u64 mana_gd_r64(struct gdma_context *g, u64 offset) 22 { 23 return readq(g->bar0_va + offset); 24 } 25 26 static void mana_gd_init_pf_regs(struct pci_dev *pdev) 27 { 28 struct gdma_context *gc = pci_get_drvdata(pdev); 29 void __iomem *sriov_base_va; 30 u64 sriov_base_off; 31 32 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF; 33 gc->db_page_base = gc->bar0_va + 34 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 35 36 gc->phys_db_page_base = gc->bar0_pa + 37 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 38 39 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF); 40 41 sriov_base_va = gc->bar0_va + sriov_base_off; 42 gc->shm_base = sriov_base_va + 43 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF); 44 } 45 46 static void mana_gd_init_vf_regs(struct pci_dev *pdev) 47 { 48 struct gdma_context *gc = pci_get_drvdata(pdev); 49 50 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF; 51 52 gc->db_page_base = gc->bar0_va + 53 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 54 55 gc->phys_db_page_base = gc->bar0_pa + 56 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 57 58 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET); 59 } 60 61 static void mana_gd_init_registers(struct pci_dev *pdev) 62 { 63 struct gdma_context *gc = pci_get_drvdata(pdev); 64 65 if (gc->is_pf) 66 mana_gd_init_pf_regs(pdev); 67 else 68 mana_gd_init_vf_regs(pdev); 69 } 70 71 static int mana_gd_query_max_resources(struct pci_dev *pdev) 72 { 73 struct gdma_context *gc = pci_get_drvdata(pdev); 74 struct gdma_query_max_resources_resp resp = {}; 75 struct gdma_general_req req = {}; 76 int err; 77 78 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES, 79 sizeof(req), sizeof(resp)); 80 81 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 82 if (err || resp.hdr.status) { 83 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n", 84 err, resp.hdr.status); 85 return err ? err : -EPROTO; 86 } 87 88 if (!pci_msix_can_alloc_dyn(pdev)) { 89 if (gc->num_msix_usable > resp.max_msix) 90 gc->num_msix_usable = resp.max_msix; 91 } else { 92 /* If dynamic allocation is enabled we have already allocated 93 * hwc msi 94 */ 95 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1); 96 } 97 98 if (gc->num_msix_usable <= 1) 99 return -ENOSPC; 100 101 gc->max_num_queues = num_online_cpus(); 102 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES) 103 gc->max_num_queues = MANA_MAX_NUM_QUEUES; 104 105 if (gc->max_num_queues > resp.max_eq) 106 gc->max_num_queues = resp.max_eq; 107 108 if (gc->max_num_queues > resp.max_cq) 109 gc->max_num_queues = resp.max_cq; 110 111 if (gc->max_num_queues > resp.max_sq) 112 gc->max_num_queues = resp.max_sq; 113 114 if (gc->max_num_queues > resp.max_rq) 115 gc->max_num_queues = resp.max_rq; 116 117 /* The Hardware Channel (HWC) used 1 MSI-X */ 118 if (gc->max_num_queues > gc->num_msix_usable - 1) 119 gc->max_num_queues = gc->num_msix_usable - 1; 120 121 return 0; 122 } 123 124 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val) 125 { 126 struct gdma_context *gc = pci_get_drvdata(pdev); 127 struct gdma_query_hwc_timeout_resp resp = {}; 128 struct gdma_query_hwc_timeout_req req = {}; 129 int err; 130 131 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT, 132 sizeof(req), sizeof(resp)); 133 req.timeout_ms = *timeout_val; 134 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 135 if (err || resp.hdr.status) 136 return err ? err : -EPROTO; 137 138 *timeout_val = resp.timeout_ms; 139 140 return 0; 141 } 142 143 static int mana_gd_detect_devices(struct pci_dev *pdev) 144 { 145 struct gdma_context *gc = pci_get_drvdata(pdev); 146 struct gdma_list_devices_resp resp = {}; 147 struct gdma_general_req req = {}; 148 struct gdma_dev_id dev; 149 int found_dev = 0; 150 u16 dev_type; 151 int err; 152 u32 i; 153 154 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req), 155 sizeof(resp)); 156 157 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 158 if (err || resp.hdr.status) { 159 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err, 160 resp.hdr.status); 161 return err ? err : -EPROTO; 162 } 163 164 for (i = 0; i < GDMA_DEV_LIST_SIZE && 165 found_dev < resp.num_of_devs; i++) { 166 dev = resp.devs[i]; 167 dev_type = dev.type; 168 169 /* Skip empty devices */ 170 if (dev.as_uint32 == 0) 171 continue; 172 173 found_dev++; 174 175 /* HWC is already detected in mana_hwc_create_channel(). */ 176 if (dev_type == GDMA_DEVICE_HWC) 177 continue; 178 179 if (dev_type == GDMA_DEVICE_MANA) { 180 gc->mana.gdma_context = gc; 181 gc->mana.dev_id = dev; 182 } else if (dev_type == GDMA_DEVICE_MANA_IB) { 183 gc->mana_ib.dev_id = dev; 184 gc->mana_ib.gdma_context = gc; 185 } 186 } 187 188 return gc->mana.dev_id.type == 0 ? -ENODEV : 0; 189 } 190 191 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req, 192 u32 resp_len, void *resp) 193 { 194 struct hw_channel_context *hwc = gc->hwc.driver_data; 195 196 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp); 197 } 198 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA"); 199 200 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length, 201 struct gdma_mem_info *gmi) 202 { 203 dma_addr_t dma_handle; 204 void *buf; 205 206 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 207 return -EINVAL; 208 209 gmi->dev = gc->dev; 210 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL); 211 if (!buf) 212 return -ENOMEM; 213 214 gmi->dma_handle = dma_handle; 215 gmi->virt_addr = buf; 216 gmi->length = length; 217 218 return 0; 219 } 220 221 void mana_gd_free_memory(struct gdma_mem_info *gmi) 222 { 223 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr, 224 gmi->dma_handle); 225 } 226 227 static int mana_gd_create_hw_eq(struct gdma_context *gc, 228 struct gdma_queue *queue) 229 { 230 struct gdma_create_queue_resp resp = {}; 231 struct gdma_create_queue_req req = {}; 232 int err; 233 234 if (queue->type != GDMA_EQ) 235 return -EINVAL; 236 237 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE, 238 sizeof(req), sizeof(resp)); 239 240 req.hdr.dev_id = queue->gdma_dev->dev_id; 241 req.type = queue->type; 242 req.pdid = queue->gdma_dev->pdid; 243 req.doolbell_id = queue->gdma_dev->doorbell; 244 req.gdma_region = queue->mem_info.dma_region_handle; 245 req.queue_size = queue->queue_size; 246 req.log2_throttle_limit = queue->eq.log2_throttle_limit; 247 req.eq_pci_msix_index = queue->eq.msix_index; 248 249 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 250 if (err || resp.hdr.status) { 251 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err, 252 resp.hdr.status); 253 return err ? err : -EPROTO; 254 } 255 256 queue->id = resp.queue_index; 257 queue->eq.disable_needed = true; 258 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; 259 return 0; 260 } 261 262 static int mana_gd_disable_queue(struct gdma_queue *queue) 263 { 264 struct gdma_context *gc = queue->gdma_dev->gdma_context; 265 struct gdma_disable_queue_req req = {}; 266 struct gdma_general_resp resp = {}; 267 int err; 268 269 WARN_ON(queue->type != GDMA_EQ); 270 271 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE, 272 sizeof(req), sizeof(resp)); 273 274 req.hdr.dev_id = queue->gdma_dev->dev_id; 275 req.type = queue->type; 276 req.queue_index = queue->id; 277 req.alloc_res_id_on_creation = 1; 278 279 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 280 if (err || resp.hdr.status) { 281 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err, 282 resp.hdr.status); 283 return err ? err : -EPROTO; 284 } 285 286 return 0; 287 } 288 289 #define DOORBELL_OFFSET_SQ 0x0 290 #define DOORBELL_OFFSET_RQ 0x400 291 #define DOORBELL_OFFSET_CQ 0x800 292 #define DOORBELL_OFFSET_EQ 0xFF8 293 294 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index, 295 enum gdma_queue_type q_type, u32 qid, 296 u32 tail_ptr, u8 num_req) 297 { 298 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index; 299 union gdma_doorbell_entry e = {}; 300 301 switch (q_type) { 302 case GDMA_EQ: 303 e.eq.id = qid; 304 e.eq.tail_ptr = tail_ptr; 305 e.eq.arm = num_req; 306 307 addr += DOORBELL_OFFSET_EQ; 308 break; 309 310 case GDMA_CQ: 311 e.cq.id = qid; 312 e.cq.tail_ptr = tail_ptr; 313 e.cq.arm = num_req; 314 315 addr += DOORBELL_OFFSET_CQ; 316 break; 317 318 case GDMA_RQ: 319 e.rq.id = qid; 320 e.rq.tail_ptr = tail_ptr; 321 e.rq.wqe_cnt = num_req; 322 323 addr += DOORBELL_OFFSET_RQ; 324 break; 325 326 case GDMA_SQ: 327 e.sq.id = qid; 328 e.sq.tail_ptr = tail_ptr; 329 330 addr += DOORBELL_OFFSET_SQ; 331 break; 332 333 default: 334 WARN_ON(1); 335 return; 336 } 337 338 /* Ensure all writes are done before ring doorbell */ 339 wmb(); 340 341 writeq(e.as_uint64, addr); 342 } 343 344 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue) 345 { 346 /* Hardware Spec specifies that software client should set 0 for 347 * wqe_cnt for Receive Queues. This value is not used in Send Queues. 348 */ 349 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type, 350 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0); 351 } 352 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA"); 353 354 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit) 355 { 356 struct gdma_context *gc = cq->gdma_dev->gdma_context; 357 358 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE; 359 360 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS); 361 362 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id, 363 head, arm_bit); 364 } 365 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA"); 366 367 #define MANA_SERVICE_PERIOD 10 368 369 struct mana_serv_work { 370 struct work_struct serv_work; 371 struct pci_dev *pdev; 372 }; 373 374 static void mana_serv_func(struct work_struct *w) 375 { 376 struct mana_serv_work *mns_wk; 377 struct pci_bus *bus, *parent; 378 struct pci_dev *pdev; 379 380 mns_wk = container_of(w, struct mana_serv_work, serv_work); 381 pdev = mns_wk->pdev; 382 383 pci_lock_rescan_remove(); 384 385 if (!pdev) 386 goto out; 387 388 bus = pdev->bus; 389 if (!bus) { 390 dev_err(&pdev->dev, "MANA service: no bus\n"); 391 goto out; 392 } 393 394 parent = bus->parent; 395 if (!parent) { 396 dev_err(&pdev->dev, "MANA service: no parent bus\n"); 397 goto out; 398 } 399 400 pci_stop_and_remove_bus_device(bus->self); 401 402 msleep(MANA_SERVICE_PERIOD * 1000); 403 404 pci_rescan_bus(parent); 405 406 out: 407 pci_unlock_rescan_remove(); 408 409 pci_dev_put(pdev); 410 kfree(mns_wk); 411 module_put(THIS_MODULE); 412 } 413 414 static void mana_gd_process_eqe(struct gdma_queue *eq) 415 { 416 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE); 417 struct gdma_context *gc = eq->gdma_dev->gdma_context; 418 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr; 419 struct mana_serv_work *mns_wk; 420 union gdma_eqe_info eqe_info; 421 enum gdma_eqe_type type; 422 struct gdma_event event; 423 struct gdma_queue *cq; 424 struct gdma_eqe *eqe; 425 u32 cq_id; 426 427 eqe = &eq_eqe_ptr[head]; 428 eqe_info.as_uint32 = eqe->eqe_info; 429 type = eqe_info.type; 430 431 switch (type) { 432 case GDMA_EQE_COMPLETION: 433 cq_id = eqe->details[0] & 0xFFFFFF; 434 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs)) 435 break; 436 437 cq = gc->cq_table[cq_id]; 438 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id)) 439 break; 440 441 if (cq->cq.callback) 442 cq->cq.callback(cq->cq.context, cq); 443 444 break; 445 446 case GDMA_EQE_TEST_EVENT: 447 gc->test_event_eq_id = eq->id; 448 complete(&gc->eq_test_event); 449 break; 450 451 case GDMA_EQE_HWC_INIT_EQ_ID_DB: 452 case GDMA_EQE_HWC_INIT_DATA: 453 case GDMA_EQE_HWC_INIT_DONE: 454 case GDMA_EQE_HWC_SOC_SERVICE: 455 case GDMA_EQE_RNIC_QP_FATAL: 456 if (!eq->eq.callback) 457 break; 458 459 event.type = type; 460 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE); 461 eq->eq.callback(eq->eq.context, eq, &event); 462 break; 463 464 case GDMA_EQE_HWC_FPGA_RECONFIG: 465 dev_info(gc->dev, "Recv MANA service type:%d\n", type); 466 467 if (gc->in_service) { 468 dev_info(gc->dev, "Already in service\n"); 469 break; 470 } 471 472 if (!try_module_get(THIS_MODULE)) { 473 dev_info(gc->dev, "Module is unloading\n"); 474 break; 475 } 476 477 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC); 478 if (!mns_wk) { 479 module_put(THIS_MODULE); 480 break; 481 } 482 483 dev_info(gc->dev, "Start MANA service type:%d\n", type); 484 gc->in_service = true; 485 mns_wk->pdev = to_pci_dev(gc->dev); 486 pci_dev_get(mns_wk->pdev); 487 INIT_WORK(&mns_wk->serv_work, mana_serv_func); 488 schedule_work(&mns_wk->serv_work); 489 break; 490 491 default: 492 break; 493 } 494 } 495 496 static void mana_gd_process_eq_events(void *arg) 497 { 498 u32 owner_bits, new_bits, old_bits; 499 union gdma_eqe_info eqe_info; 500 struct gdma_eqe *eq_eqe_ptr; 501 struct gdma_queue *eq = arg; 502 struct gdma_context *gc; 503 struct gdma_eqe *eqe; 504 u32 head, num_eqe; 505 int i; 506 507 gc = eq->gdma_dev->gdma_context; 508 509 num_eqe = eq->queue_size / GDMA_EQE_SIZE; 510 eq_eqe_ptr = eq->queue_mem_ptr; 511 512 /* Process up to 5 EQEs at a time, and update the HW head. */ 513 for (i = 0; i < 5; i++) { 514 eqe = &eq_eqe_ptr[eq->head % num_eqe]; 515 eqe_info.as_uint32 = eqe->eqe_info; 516 owner_bits = eqe_info.owner_bits; 517 518 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK; 519 /* No more entries */ 520 if (owner_bits == old_bits) { 521 /* return here without ringing the doorbell */ 522 if (i == 0) 523 return; 524 break; 525 } 526 527 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK; 528 if (owner_bits != new_bits) { 529 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id); 530 break; 531 } 532 533 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 534 * reading eqe. 535 */ 536 rmb(); 537 538 mana_gd_process_eqe(eq); 539 540 eq->head++; 541 } 542 543 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS); 544 545 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id, 546 head, SET_ARM_BIT); 547 } 548 549 static int mana_gd_register_irq(struct gdma_queue *queue, 550 const struct gdma_queue_spec *spec) 551 { 552 struct gdma_dev *gd = queue->gdma_dev; 553 struct gdma_irq_context *gic; 554 struct gdma_context *gc; 555 unsigned int msi_index; 556 unsigned long flags; 557 struct device *dev; 558 int err = 0; 559 560 gc = gd->gdma_context; 561 dev = gc->dev; 562 msi_index = spec->eq.msix_index; 563 564 if (msi_index >= gc->num_msix_usable) { 565 err = -ENOSPC; 566 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u", 567 err, msi_index, gc->num_msix_usable); 568 569 return err; 570 } 571 572 queue->eq.msix_index = msi_index; 573 gic = xa_load(&gc->irq_contexts, msi_index); 574 if (WARN_ON(!gic)) 575 return -EINVAL; 576 577 spin_lock_irqsave(&gic->lock, flags); 578 list_add_rcu(&queue->entry, &gic->eq_list); 579 spin_unlock_irqrestore(&gic->lock, flags); 580 581 return 0; 582 } 583 584 static void mana_gd_deregiser_irq(struct gdma_queue *queue) 585 { 586 struct gdma_dev *gd = queue->gdma_dev; 587 struct gdma_irq_context *gic; 588 struct gdma_context *gc; 589 unsigned int msix_index; 590 unsigned long flags; 591 struct gdma_queue *eq; 592 593 gc = gd->gdma_context; 594 595 /* At most num_online_cpus() + 1 interrupts are used. */ 596 msix_index = queue->eq.msix_index; 597 if (WARN_ON(msix_index >= gc->num_msix_usable)) 598 return; 599 600 gic = xa_load(&gc->irq_contexts, msix_index); 601 if (WARN_ON(!gic)) 602 return; 603 604 spin_lock_irqsave(&gic->lock, flags); 605 list_for_each_entry_rcu(eq, &gic->eq_list, entry) { 606 if (queue == eq) { 607 list_del_rcu(&eq->entry); 608 break; 609 } 610 } 611 spin_unlock_irqrestore(&gic->lock, flags); 612 613 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 614 synchronize_rcu(); 615 } 616 617 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq) 618 { 619 struct gdma_generate_test_event_req req = {}; 620 struct gdma_general_resp resp = {}; 621 struct device *dev = gc->dev; 622 int err; 623 624 mutex_lock(&gc->eq_test_event_mutex); 625 626 init_completion(&gc->eq_test_event); 627 gc->test_event_eq_id = INVALID_QUEUE_ID; 628 629 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE, 630 sizeof(req), sizeof(resp)); 631 632 req.hdr.dev_id = eq->gdma_dev->dev_id; 633 req.queue_index = eq->id; 634 635 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 636 if (err) { 637 dev_err(dev, "test_eq failed: %d\n", err); 638 goto out; 639 } 640 641 err = -EPROTO; 642 643 if (resp.hdr.status) { 644 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status); 645 goto out; 646 } 647 648 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) { 649 dev_err(dev, "test_eq timed out on queue %d\n", eq->id); 650 goto out; 651 } 652 653 if (eq->id != gc->test_event_eq_id) { 654 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n", 655 gc->test_event_eq_id, eq->id); 656 goto out; 657 } 658 659 err = 0; 660 out: 661 mutex_unlock(&gc->eq_test_event_mutex); 662 return err; 663 } 664 665 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets, 666 struct gdma_queue *queue) 667 { 668 int err; 669 670 if (flush_evenets) { 671 err = mana_gd_test_eq(gc, queue); 672 if (err) 673 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err); 674 } 675 676 mana_gd_deregiser_irq(queue); 677 678 if (queue->eq.disable_needed) 679 mana_gd_disable_queue(queue); 680 } 681 682 static int mana_gd_create_eq(struct gdma_dev *gd, 683 const struct gdma_queue_spec *spec, 684 bool create_hwq, struct gdma_queue *queue) 685 { 686 struct gdma_context *gc = gd->gdma_context; 687 struct device *dev = gc->dev; 688 u32 log2_num_entries; 689 int err; 690 691 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 692 queue->id = INVALID_QUEUE_ID; 693 694 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE); 695 696 if (spec->eq.log2_throttle_limit > log2_num_entries) { 697 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n", 698 spec->eq.log2_throttle_limit, log2_num_entries); 699 return -EINVAL; 700 } 701 702 err = mana_gd_register_irq(queue, spec); 703 if (err) { 704 dev_err(dev, "Failed to register irq: %d\n", err); 705 return err; 706 } 707 708 queue->eq.callback = spec->eq.callback; 709 queue->eq.context = spec->eq.context; 710 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 711 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1; 712 713 if (create_hwq) { 714 err = mana_gd_create_hw_eq(gc, queue); 715 if (err) 716 goto out; 717 718 err = mana_gd_test_eq(gc, queue); 719 if (err) 720 goto out; 721 } 722 723 return 0; 724 out: 725 dev_err(dev, "Failed to create EQ: %d\n", err); 726 mana_gd_destroy_eq(gc, false, queue); 727 return err; 728 } 729 730 static void mana_gd_create_cq(const struct gdma_queue_spec *spec, 731 struct gdma_queue *queue) 732 { 733 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE); 734 735 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 736 queue->cq.parent = spec->cq.parent_eq; 737 queue->cq.context = spec->cq.context; 738 queue->cq.callback = spec->cq.callback; 739 } 740 741 static void mana_gd_destroy_cq(struct gdma_context *gc, 742 struct gdma_queue *queue) 743 { 744 u32 id = queue->id; 745 746 if (id >= gc->max_num_cqs) 747 return; 748 749 if (!gc->cq_table[id]) 750 return; 751 752 gc->cq_table[id] = NULL; 753 } 754 755 int mana_gd_create_hwc_queue(struct gdma_dev *gd, 756 const struct gdma_queue_spec *spec, 757 struct gdma_queue **queue_ptr) 758 { 759 struct gdma_context *gc = gd->gdma_context; 760 struct gdma_mem_info *gmi; 761 struct gdma_queue *queue; 762 int err; 763 764 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 765 if (!queue) 766 return -ENOMEM; 767 768 gmi = &queue->mem_info; 769 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 770 if (err) { 771 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 772 spec->type, spec->queue_size, err); 773 goto free_q; 774 } 775 776 queue->head = 0; 777 queue->tail = 0; 778 queue->queue_mem_ptr = gmi->virt_addr; 779 queue->queue_size = spec->queue_size; 780 queue->monitor_avl_buf = spec->monitor_avl_buf; 781 queue->type = spec->type; 782 queue->gdma_dev = gd; 783 784 if (spec->type == GDMA_EQ) 785 err = mana_gd_create_eq(gd, spec, false, queue); 786 else if (spec->type == GDMA_CQ) 787 mana_gd_create_cq(spec, queue); 788 789 if (err) 790 goto out; 791 792 *queue_ptr = queue; 793 return 0; 794 out: 795 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n", 796 spec->type, spec->queue_size, err); 797 mana_gd_free_memory(gmi); 798 free_q: 799 kfree(queue); 800 return err; 801 } 802 803 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle) 804 { 805 struct gdma_destroy_dma_region_req req = {}; 806 struct gdma_general_resp resp = {}; 807 int err; 808 809 if (dma_region_handle == GDMA_INVALID_DMA_REGION) 810 return 0; 811 812 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req), 813 sizeof(resp)); 814 req.dma_region_handle = dma_region_handle; 815 816 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 817 if (err || resp.hdr.status) { 818 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n", 819 err, resp.hdr.status); 820 return -EPROTO; 821 } 822 823 return 0; 824 } 825 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA"); 826 827 static int mana_gd_create_dma_region(struct gdma_dev *gd, 828 struct gdma_mem_info *gmi) 829 { 830 unsigned int num_page = gmi->length / MANA_PAGE_SIZE; 831 struct gdma_create_dma_region_req *req = NULL; 832 struct gdma_create_dma_region_resp resp = {}; 833 struct gdma_context *gc = gd->gdma_context; 834 struct hw_channel_context *hwc; 835 u32 length = gmi->length; 836 size_t req_msg_size; 837 int err; 838 int i; 839 840 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 841 return -EINVAL; 842 843 if (!MANA_PAGE_ALIGNED(gmi->virt_addr)) 844 return -EINVAL; 845 846 hwc = gc->hwc.driver_data; 847 req_msg_size = struct_size(req, page_addr_list, num_page); 848 if (req_msg_size > hwc->max_req_msg_size) 849 return -EINVAL; 850 851 req = kzalloc(req_msg_size, GFP_KERNEL); 852 if (!req) 853 return -ENOMEM; 854 855 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION, 856 req_msg_size, sizeof(resp)); 857 req->length = length; 858 req->offset_in_page = 0; 859 req->gdma_page_type = GDMA_PAGE_TYPE_4K; 860 req->page_count = num_page; 861 req->page_addr_list_len = num_page; 862 863 for (i = 0; i < num_page; i++) 864 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE; 865 866 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp); 867 if (err) 868 goto out; 869 870 if (resp.hdr.status || 871 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) { 872 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n", 873 resp.hdr.status); 874 err = -EPROTO; 875 goto out; 876 } 877 878 gmi->dma_region_handle = resp.dma_region_handle; 879 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n", 880 gmi->dma_region_handle); 881 out: 882 if (err) 883 dev_dbg(gc->dev, 884 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n", 885 length, req->gdma_page_type, resp.hdr.status, err); 886 kfree(req); 887 return err; 888 } 889 890 int mana_gd_create_mana_eq(struct gdma_dev *gd, 891 const struct gdma_queue_spec *spec, 892 struct gdma_queue **queue_ptr) 893 { 894 struct gdma_context *gc = gd->gdma_context; 895 struct gdma_mem_info *gmi; 896 struct gdma_queue *queue; 897 int err; 898 899 if (spec->type != GDMA_EQ) 900 return -EINVAL; 901 902 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 903 if (!queue) 904 return -ENOMEM; 905 906 gmi = &queue->mem_info; 907 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 908 if (err) { 909 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 910 spec->type, spec->queue_size, err); 911 goto free_q; 912 } 913 914 err = mana_gd_create_dma_region(gd, gmi); 915 if (err) 916 goto out; 917 918 queue->head = 0; 919 queue->tail = 0; 920 queue->queue_mem_ptr = gmi->virt_addr; 921 queue->queue_size = spec->queue_size; 922 queue->monitor_avl_buf = spec->monitor_avl_buf; 923 queue->type = spec->type; 924 queue->gdma_dev = gd; 925 926 err = mana_gd_create_eq(gd, spec, true, queue); 927 if (err) 928 goto out; 929 930 *queue_ptr = queue; 931 return 0; 932 out: 933 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 934 spec->type, spec->queue_size, err); 935 mana_gd_free_memory(gmi); 936 free_q: 937 kfree(queue); 938 return err; 939 } 940 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA"); 941 942 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd, 943 const struct gdma_queue_spec *spec, 944 struct gdma_queue **queue_ptr) 945 { 946 struct gdma_context *gc = gd->gdma_context; 947 struct gdma_mem_info *gmi; 948 struct gdma_queue *queue; 949 int err; 950 951 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ && 952 spec->type != GDMA_RQ) 953 return -EINVAL; 954 955 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 956 if (!queue) 957 return -ENOMEM; 958 959 gmi = &queue->mem_info; 960 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 961 if (err) { 962 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n", 963 spec->type, spec->queue_size, err); 964 goto free_q; 965 } 966 967 err = mana_gd_create_dma_region(gd, gmi); 968 if (err) 969 goto out; 970 971 queue->head = 0; 972 queue->tail = 0; 973 queue->queue_mem_ptr = gmi->virt_addr; 974 queue->queue_size = spec->queue_size; 975 queue->monitor_avl_buf = spec->monitor_avl_buf; 976 queue->type = spec->type; 977 queue->gdma_dev = gd; 978 979 if (spec->type == GDMA_CQ) 980 mana_gd_create_cq(spec, queue); 981 982 *queue_ptr = queue; 983 return 0; 984 out: 985 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 986 spec->type, spec->queue_size, err); 987 mana_gd_free_memory(gmi); 988 free_q: 989 kfree(queue); 990 return err; 991 } 992 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA"); 993 994 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue) 995 { 996 struct gdma_mem_info *gmi = &queue->mem_info; 997 998 switch (queue->type) { 999 case GDMA_EQ: 1000 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue); 1001 break; 1002 1003 case GDMA_CQ: 1004 mana_gd_destroy_cq(gc, queue); 1005 break; 1006 1007 case GDMA_RQ: 1008 break; 1009 1010 case GDMA_SQ: 1011 break; 1012 1013 default: 1014 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n", 1015 queue->type); 1016 return; 1017 } 1018 1019 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle); 1020 mana_gd_free_memory(gmi); 1021 kfree(queue); 1022 } 1023 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA"); 1024 1025 int mana_gd_verify_vf_version(struct pci_dev *pdev) 1026 { 1027 struct gdma_context *gc = pci_get_drvdata(pdev); 1028 struct gdma_verify_ver_resp resp = {}; 1029 struct gdma_verify_ver_req req = {}; 1030 struct hw_channel_context *hwc; 1031 int err; 1032 1033 hwc = gc->hwc.driver_data; 1034 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION, 1035 sizeof(req), sizeof(resp)); 1036 1037 req.protocol_ver_min = GDMA_PROTOCOL_FIRST; 1038 req.protocol_ver_max = GDMA_PROTOCOL_LAST; 1039 1040 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1; 1041 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2; 1042 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3; 1043 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4; 1044 1045 req.drv_ver = 0; /* Unused*/ 1046 req.os_type = 0x10; /* Linux */ 1047 req.os_ver_major = LINUX_VERSION_MAJOR; 1048 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL; 1049 req.os_ver_build = LINUX_VERSION_SUBLEVEL; 1050 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1)); 1051 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2)); 1052 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3)); 1053 1054 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1055 if (err || resp.hdr.status) { 1056 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n", 1057 err, resp.hdr.status); 1058 return err ? err : -EPROTO; 1059 } 1060 gc->pf_cap_flags1 = resp.pf_cap_flags1; 1061 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) { 1062 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout); 1063 if (err) { 1064 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err); 1065 return err; 1066 } 1067 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout); 1068 } 1069 return 0; 1070 } 1071 1072 int mana_gd_register_device(struct gdma_dev *gd) 1073 { 1074 struct gdma_context *gc = gd->gdma_context; 1075 struct gdma_register_device_resp resp = {}; 1076 struct gdma_general_req req = {}; 1077 int err; 1078 1079 gd->pdid = INVALID_PDID; 1080 gd->doorbell = INVALID_DOORBELL; 1081 gd->gpa_mkey = INVALID_MEM_KEY; 1082 1083 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req), 1084 sizeof(resp)); 1085 1086 req.hdr.dev_id = gd->dev_id; 1087 1088 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1089 if (err || resp.hdr.status) { 1090 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n", 1091 err, resp.hdr.status); 1092 return err ? err : -EPROTO; 1093 } 1094 1095 gd->pdid = resp.pdid; 1096 gd->gpa_mkey = resp.gpa_mkey; 1097 gd->doorbell = resp.db_id; 1098 1099 return 0; 1100 } 1101 1102 int mana_gd_deregister_device(struct gdma_dev *gd) 1103 { 1104 struct gdma_context *gc = gd->gdma_context; 1105 struct gdma_general_resp resp = {}; 1106 struct gdma_general_req req = {}; 1107 int err; 1108 1109 if (gd->pdid == INVALID_PDID) 1110 return -EINVAL; 1111 1112 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req), 1113 sizeof(resp)); 1114 1115 req.hdr.dev_id = gd->dev_id; 1116 1117 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1118 if (err || resp.hdr.status) { 1119 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n", 1120 err, resp.hdr.status); 1121 if (!err) 1122 err = -EPROTO; 1123 } 1124 1125 gd->pdid = INVALID_PDID; 1126 gd->doorbell = INVALID_DOORBELL; 1127 gd->gpa_mkey = INVALID_MEM_KEY; 1128 1129 return err; 1130 } 1131 1132 u32 mana_gd_wq_avail_space(struct gdma_queue *wq) 1133 { 1134 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE; 1135 u32 wq_size = wq->queue_size; 1136 1137 WARN_ON_ONCE(used_space > wq_size); 1138 1139 return wq_size - used_space; 1140 } 1141 1142 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset) 1143 { 1144 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1); 1145 1146 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size); 1147 1148 return wq->queue_mem_ptr + offset; 1149 } 1150 1151 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req, 1152 enum gdma_queue_type q_type, 1153 u32 client_oob_size, u32 sgl_data_size, 1154 u8 *wqe_ptr) 1155 { 1156 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL); 1157 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0); 1158 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr; 1159 u8 *ptr; 1160 1161 memset(header, 0, sizeof(struct gdma_wqe)); 1162 header->num_sge = wqe_req->num_sge; 1163 header->inline_oob_size_div4 = client_oob_size / sizeof(u32); 1164 1165 if (oob_in_sgl) { 1166 WARN_ON_ONCE(wqe_req->num_sge < 2); 1167 1168 header->client_oob_in_sgl = 1; 1169 1170 if (pad_data) 1171 header->last_vbytes = wqe_req->sgl[0].size; 1172 } 1173 1174 if (q_type == GDMA_SQ) 1175 header->client_data_unit = wqe_req->client_data_unit; 1176 1177 /* The size of gdma_wqe + client_oob_size must be less than or equal 1178 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond 1179 * the queue memory buffer boundary. 1180 */ 1181 ptr = wqe_ptr + sizeof(header); 1182 1183 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) { 1184 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size); 1185 1186 if (client_oob_size > wqe_req->inline_oob_size) 1187 memset(ptr + wqe_req->inline_oob_size, 0, 1188 client_oob_size - wqe_req->inline_oob_size); 1189 } 1190 1191 return sizeof(header) + client_oob_size; 1192 } 1193 1194 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr, 1195 const struct gdma_wqe_request *wqe_req) 1196 { 1197 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1198 const u8 *address = (u8 *)wqe_req->sgl; 1199 u8 *base_ptr, *end_ptr; 1200 u32 size_to_end; 1201 1202 base_ptr = wq->queue_mem_ptr; 1203 end_ptr = base_ptr + wq->queue_size; 1204 size_to_end = (u32)(end_ptr - wqe_ptr); 1205 1206 if (size_to_end < sgl_size) { 1207 memcpy(wqe_ptr, address, size_to_end); 1208 1209 wqe_ptr = base_ptr; 1210 address += size_to_end; 1211 sgl_size -= size_to_end; 1212 } 1213 1214 memcpy(wqe_ptr, address, sgl_size); 1215 } 1216 1217 int mana_gd_post_work_request(struct gdma_queue *wq, 1218 const struct gdma_wqe_request *wqe_req, 1219 struct gdma_posted_wqe_info *wqe_info) 1220 { 1221 u32 client_oob_size = wqe_req->inline_oob_size; 1222 struct gdma_context *gc; 1223 u32 sgl_data_size; 1224 u32 max_wqe_size; 1225 u32 wqe_size; 1226 u8 *wqe_ptr; 1227 1228 if (wqe_req->num_sge == 0) 1229 return -EINVAL; 1230 1231 if (wq->type == GDMA_RQ) { 1232 if (client_oob_size != 0) 1233 return -EINVAL; 1234 1235 client_oob_size = INLINE_OOB_SMALL_SIZE; 1236 1237 max_wqe_size = GDMA_MAX_RQE_SIZE; 1238 } else { 1239 if (client_oob_size != INLINE_OOB_SMALL_SIZE && 1240 client_oob_size != INLINE_OOB_LARGE_SIZE) 1241 return -EINVAL; 1242 1243 max_wqe_size = GDMA_MAX_SQE_SIZE; 1244 } 1245 1246 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1247 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size + 1248 sgl_data_size, GDMA_WQE_BU_SIZE); 1249 if (wqe_size > max_wqe_size) 1250 return -EINVAL; 1251 1252 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) { 1253 gc = wq->gdma_dev->gdma_context; 1254 dev_err(gc->dev, "unsuccessful flow control!\n"); 1255 return -ENOSPC; 1256 } 1257 1258 if (wqe_info) 1259 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE; 1260 1261 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head); 1262 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size, 1263 sgl_data_size, wqe_ptr); 1264 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size) 1265 wqe_ptr -= wq->queue_size; 1266 1267 mana_gd_write_sgl(wq, wqe_ptr, wqe_req); 1268 1269 wq->head += wqe_size / GDMA_WQE_BU_SIZE; 1270 1271 return 0; 1272 } 1273 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA"); 1274 1275 int mana_gd_post_and_ring(struct gdma_queue *queue, 1276 const struct gdma_wqe_request *wqe_req, 1277 struct gdma_posted_wqe_info *wqe_info) 1278 { 1279 struct gdma_context *gc = queue->gdma_dev->gdma_context; 1280 int err; 1281 1282 err = mana_gd_post_work_request(queue, wqe_req, wqe_info); 1283 if (err) { 1284 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n", 1285 queue->type, queue->queue_size, err); 1286 return err; 1287 } 1288 1289 mana_gd_wq_ring_doorbell(gc, queue); 1290 1291 return 0; 1292 } 1293 1294 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp) 1295 { 1296 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe); 1297 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr; 1298 u32 owner_bits, new_bits, old_bits; 1299 struct gdma_cqe *cqe; 1300 1301 cqe = &cq_cqe[cq->head % num_cqe]; 1302 owner_bits = cqe->cqe_info.owner_bits; 1303 1304 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK; 1305 /* Return 0 if no more entries. */ 1306 if (owner_bits == old_bits) 1307 return 0; 1308 1309 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK; 1310 /* Return -1 if overflow detected. */ 1311 if (WARN_ON_ONCE(owner_bits != new_bits)) 1312 return -1; 1313 1314 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 1315 * reading completion info 1316 */ 1317 rmb(); 1318 1319 comp->wq_num = cqe->cqe_info.wq_num; 1320 comp->is_sq = cqe->cqe_info.is_sq; 1321 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE); 1322 1323 return 1; 1324 } 1325 1326 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe) 1327 { 1328 int cqe_idx; 1329 int ret; 1330 1331 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) { 1332 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]); 1333 1334 if (ret < 0) { 1335 cq->head -= cqe_idx; 1336 return ret; 1337 } 1338 1339 if (ret == 0) 1340 break; 1341 1342 cq->head++; 1343 } 1344 1345 return cqe_idx; 1346 } 1347 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA"); 1348 1349 static irqreturn_t mana_gd_intr(int irq, void *arg) 1350 { 1351 struct gdma_irq_context *gic = arg; 1352 struct list_head *eq_list = &gic->eq_list; 1353 struct gdma_queue *eq; 1354 1355 rcu_read_lock(); 1356 list_for_each_entry_rcu(eq, eq_list, entry) { 1357 gic->handler(eq); 1358 } 1359 rcu_read_unlock(); 1360 1361 return IRQ_HANDLED; 1362 } 1363 1364 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r) 1365 { 1366 r->map = bitmap_zalloc(res_avail, GFP_KERNEL); 1367 if (!r->map) 1368 return -ENOMEM; 1369 1370 r->size = res_avail; 1371 spin_lock_init(&r->lock); 1372 1373 return 0; 1374 } 1375 1376 void mana_gd_free_res_map(struct gdma_resource *r) 1377 { 1378 bitmap_free(r->map); 1379 r->map = NULL; 1380 r->size = 0; 1381 } 1382 1383 /* 1384 * Spread on CPUs with the following heuristics: 1385 * 1386 * 1. No more than one IRQ per CPU, if possible; 1387 * 2. NUMA locality is the second priority; 1388 * 3. Sibling dislocality is the last priority. 1389 * 1390 * Let's consider this topology: 1391 * 1392 * Node 0 1 1393 * Core 0 1 2 3 1394 * CPU 0 1 2 3 4 5 6 7 1395 * 1396 * The most performant IRQ distribution based on the above topology 1397 * and heuristics may look like this: 1398 * 1399 * IRQ Nodes Cores CPUs 1400 * 0 1 0 0-1 1401 * 1 1 1 2-3 1402 * 2 1 0 0-1 1403 * 3 1 1 2-3 1404 * 4 2 2 4-5 1405 * 5 2 3 6-7 1406 * 6 2 2 4-5 1407 * 7 2 3 6-7 1408 * 1409 * The heuristics is implemented as follows. 1410 * 1411 * The outer for_each() loop resets the 'weight' to the actual number 1412 * of CPUs in the hop. Then inner for_each() loop decrements it by the 1413 * number of sibling groups (cores) while assigning first set of IRQs 1414 * to each group. IRQs 0 and 1 above are distributed this way. 1415 * 1416 * Now, because NUMA locality is more important, we should walk the 1417 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's 1418 * implemented by the medium while() loop. We do like this unless the 1419 * number of IRQs assigned on this hop will not become equal to number 1420 * of CPUs in the hop (weight == 0). Then we switch to the next hop and 1421 * do the same thing. 1422 */ 1423 1424 static int irq_setup(unsigned int *irqs, unsigned int len, int node, 1425 bool skip_first_cpu) 1426 { 1427 const struct cpumask *next, *prev = cpu_none_mask; 1428 cpumask_var_t cpus __free(free_cpumask_var); 1429 int cpu, weight; 1430 1431 if (!alloc_cpumask_var(&cpus, GFP_KERNEL)) 1432 return -ENOMEM; 1433 1434 rcu_read_lock(); 1435 for_each_numa_hop_mask(next, node) { 1436 weight = cpumask_weight_andnot(next, prev); 1437 while (weight > 0) { 1438 cpumask_andnot(cpus, next, prev); 1439 for_each_cpu(cpu, cpus) { 1440 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 1441 --weight; 1442 1443 if (unlikely(skip_first_cpu)) { 1444 skip_first_cpu = false; 1445 continue; 1446 } 1447 1448 if (len-- == 0) 1449 goto done; 1450 1451 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu)); 1452 } 1453 } 1454 prev = next; 1455 } 1456 done: 1457 rcu_read_unlock(); 1458 return 0; 1459 } 1460 1461 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec) 1462 { 1463 struct gdma_context *gc = pci_get_drvdata(pdev); 1464 struct gdma_irq_context *gic; 1465 bool skip_first_cpu = false; 1466 int *irqs, irq, err, i; 1467 1468 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1469 if (!irqs) 1470 return -ENOMEM; 1471 1472 /* 1473 * While processing the next pci irq vector, we start with index 1, 1474 * as IRQ vector at index 0 is already processed for HWC. 1475 * However, the population of irqs array starts with index 0, to be 1476 * further used in irq_setup() 1477 */ 1478 for (i = 1; i <= nvec; i++) { 1479 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1480 if (!gic) { 1481 err = -ENOMEM; 1482 goto free_irq; 1483 } 1484 gic->handler = mana_gd_process_eq_events; 1485 INIT_LIST_HEAD(&gic->eq_list); 1486 spin_lock_init(&gic->lock); 1487 1488 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1489 i - 1, pci_name(pdev)); 1490 1491 /* one pci vector is already allocated for HWC */ 1492 irqs[i - 1] = pci_irq_vector(pdev, i); 1493 if (irqs[i - 1] < 0) { 1494 err = irqs[i - 1]; 1495 goto free_current_gic; 1496 } 1497 1498 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic); 1499 if (err) 1500 goto free_current_gic; 1501 1502 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1503 } 1504 1505 /* 1506 * When calling irq_setup() for dynamically added IRQs, if number of 1507 * CPUs is more than or equal to allocated MSI-X, we need to skip the 1508 * first CPU sibling group since they are already affinitized to HWC IRQ 1509 */ 1510 cpus_read_lock(); 1511 if (gc->num_msix_usable <= num_online_cpus()) 1512 skip_first_cpu = true; 1513 1514 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu); 1515 if (err) { 1516 cpus_read_unlock(); 1517 goto free_irq; 1518 } 1519 1520 cpus_read_unlock(); 1521 kfree(irqs); 1522 return 0; 1523 1524 free_current_gic: 1525 kfree(gic); 1526 free_irq: 1527 for (i -= 1; i > 0; i--) { 1528 irq = pci_irq_vector(pdev, i); 1529 gic = xa_load(&gc->irq_contexts, i); 1530 if (WARN_ON(!gic)) 1531 continue; 1532 1533 irq_update_affinity_hint(irq, NULL); 1534 free_irq(irq, gic); 1535 xa_erase(&gc->irq_contexts, i); 1536 kfree(gic); 1537 } 1538 kfree(irqs); 1539 return err; 1540 } 1541 1542 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec) 1543 { 1544 struct gdma_context *gc = pci_get_drvdata(pdev); 1545 struct gdma_irq_context *gic; 1546 int *irqs, *start_irqs, irq; 1547 unsigned int cpu; 1548 int err, i; 1549 1550 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1551 if (!irqs) 1552 return -ENOMEM; 1553 1554 start_irqs = irqs; 1555 1556 for (i = 0; i < nvec; i++) { 1557 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1558 if (!gic) { 1559 err = -ENOMEM; 1560 goto free_irq; 1561 } 1562 1563 gic->handler = mana_gd_process_eq_events; 1564 INIT_LIST_HEAD(&gic->eq_list); 1565 spin_lock_init(&gic->lock); 1566 1567 if (!i) 1568 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s", 1569 pci_name(pdev)); 1570 else 1571 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1572 i - 1, pci_name(pdev)); 1573 1574 irqs[i] = pci_irq_vector(pdev, i); 1575 if (irqs[i] < 0) { 1576 err = irqs[i]; 1577 goto free_current_gic; 1578 } 1579 1580 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic); 1581 if (err) 1582 goto free_current_gic; 1583 1584 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1585 } 1586 1587 /* If number of IRQ is one extra than number of online CPUs, 1588 * then we need to assign IRQ0 (hwc irq) and IRQ1 to 1589 * same CPU. 1590 * Else we will use different CPUs for IRQ0 and IRQ1. 1591 * Also we are using cpumask_local_spread instead of 1592 * cpumask_first for the node, because the node can be 1593 * mem only. 1594 */ 1595 cpus_read_lock(); 1596 if (nvec > num_online_cpus()) { 1597 cpu = cpumask_local_spread(0, gc->numa_node); 1598 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu)); 1599 irqs++; 1600 nvec -= 1; 1601 } 1602 1603 err = irq_setup(irqs, nvec, gc->numa_node, false); 1604 if (err) { 1605 cpus_read_unlock(); 1606 goto free_irq; 1607 } 1608 1609 cpus_read_unlock(); 1610 kfree(start_irqs); 1611 return 0; 1612 1613 free_current_gic: 1614 kfree(gic); 1615 free_irq: 1616 for (i -= 1; i >= 0; i--) { 1617 irq = pci_irq_vector(pdev, i); 1618 gic = xa_load(&gc->irq_contexts, i); 1619 if (WARN_ON(!gic)) 1620 continue; 1621 1622 irq_update_affinity_hint(irq, NULL); 1623 free_irq(irq, gic); 1624 xa_erase(&gc->irq_contexts, i); 1625 kfree(gic); 1626 } 1627 1628 kfree(start_irqs); 1629 return err; 1630 } 1631 1632 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev) 1633 { 1634 struct gdma_context *gc = pci_get_drvdata(pdev); 1635 unsigned int max_irqs, min_irqs; 1636 int nvec, err; 1637 1638 if (pci_msix_can_alloc_dyn(pdev)) { 1639 max_irqs = 1; 1640 min_irqs = 1; 1641 } else { 1642 /* Need 1 interrupt for HWC */ 1643 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1; 1644 min_irqs = 2; 1645 } 1646 1647 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX); 1648 if (nvec < 0) 1649 return nvec; 1650 1651 err = mana_gd_setup_irqs(pdev, nvec); 1652 if (err) { 1653 pci_free_irq_vectors(pdev); 1654 return err; 1655 } 1656 1657 gc->num_msix_usable = nvec; 1658 gc->max_num_msix = nvec; 1659 1660 return 0; 1661 } 1662 1663 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev) 1664 { 1665 struct gdma_context *gc = pci_get_drvdata(pdev); 1666 struct msi_map irq_map; 1667 int max_irqs, i, err; 1668 1669 if (!pci_msix_can_alloc_dyn(pdev)) 1670 /* remain irqs are already allocated with HWC IRQ */ 1671 return 0; 1672 1673 /* allocate only remaining IRQs*/ 1674 max_irqs = gc->num_msix_usable - 1; 1675 1676 for (i = 1; i <= max_irqs; i++) { 1677 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL); 1678 if (!irq_map.virq) { 1679 err = irq_map.index; 1680 /* caller will handle cleaning up all allocated 1681 * irqs, after HWC is destroyed 1682 */ 1683 return err; 1684 } 1685 } 1686 1687 err = mana_gd_setup_dyn_irqs(pdev, max_irqs); 1688 if (err) 1689 return err; 1690 1691 gc->max_num_msix = gc->max_num_msix + max_irqs; 1692 1693 return 0; 1694 } 1695 1696 static void mana_gd_remove_irqs(struct pci_dev *pdev) 1697 { 1698 struct gdma_context *gc = pci_get_drvdata(pdev); 1699 struct gdma_irq_context *gic; 1700 int irq, i; 1701 1702 if (gc->max_num_msix < 1) 1703 return; 1704 1705 for (i = 0; i < gc->max_num_msix; i++) { 1706 irq = pci_irq_vector(pdev, i); 1707 if (irq < 0) 1708 continue; 1709 1710 gic = xa_load(&gc->irq_contexts, i); 1711 if (WARN_ON(!gic)) 1712 continue; 1713 1714 /* Need to clear the hint before free_irq */ 1715 irq_update_affinity_hint(irq, NULL); 1716 free_irq(irq, gic); 1717 xa_erase(&gc->irq_contexts, i); 1718 kfree(gic); 1719 } 1720 1721 pci_free_irq_vectors(pdev); 1722 1723 gc->max_num_msix = 0; 1724 gc->num_msix_usable = 0; 1725 } 1726 1727 static int mana_gd_setup(struct pci_dev *pdev) 1728 { 1729 struct gdma_context *gc = pci_get_drvdata(pdev); 1730 int err; 1731 1732 mana_gd_init_registers(pdev); 1733 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base); 1734 1735 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0); 1736 if (!gc->service_wq) 1737 return -ENOMEM; 1738 1739 err = mana_gd_setup_hwc_irqs(pdev); 1740 if (err) { 1741 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n", 1742 err); 1743 goto free_workqueue; 1744 } 1745 1746 err = mana_hwc_create_channel(gc); 1747 if (err) 1748 goto remove_irq; 1749 1750 err = mana_gd_verify_vf_version(pdev); 1751 if (err) 1752 goto destroy_hwc; 1753 1754 err = mana_gd_query_max_resources(pdev); 1755 if (err) 1756 goto destroy_hwc; 1757 1758 err = mana_gd_setup_remaining_irqs(pdev); 1759 if (err) { 1760 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err); 1761 goto destroy_hwc; 1762 } 1763 1764 err = mana_gd_detect_devices(pdev); 1765 if (err) 1766 goto destroy_hwc; 1767 1768 dev_dbg(&pdev->dev, "mana gdma setup successful\n"); 1769 return 0; 1770 1771 destroy_hwc: 1772 mana_hwc_destroy_channel(gc); 1773 remove_irq: 1774 mana_gd_remove_irqs(pdev); 1775 free_workqueue: 1776 destroy_workqueue(gc->service_wq); 1777 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err); 1778 return err; 1779 } 1780 1781 static void mana_gd_cleanup(struct pci_dev *pdev) 1782 { 1783 struct gdma_context *gc = pci_get_drvdata(pdev); 1784 1785 mana_hwc_destroy_channel(gc); 1786 1787 mana_gd_remove_irqs(pdev); 1788 1789 destroy_workqueue(gc->service_wq); 1790 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n"); 1791 } 1792 1793 static bool mana_is_pf(unsigned short dev_id) 1794 { 1795 return dev_id == MANA_PF_DEVICE_ID; 1796 } 1797 1798 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1799 { 1800 struct gdma_context *gc; 1801 void __iomem *bar0_va; 1802 int bar = 0; 1803 int err; 1804 1805 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */ 1806 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE); 1807 1808 err = pci_enable_device(pdev); 1809 if (err) { 1810 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err); 1811 return -ENXIO; 1812 } 1813 1814 pci_set_master(pdev); 1815 1816 err = pci_request_regions(pdev, "mana"); 1817 if (err) 1818 goto disable_dev; 1819 1820 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1821 if (err) { 1822 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err); 1823 goto release_region; 1824 } 1825 dma_set_max_seg_size(&pdev->dev, UINT_MAX); 1826 1827 err = -ENOMEM; 1828 gc = vzalloc(sizeof(*gc)); 1829 if (!gc) 1830 goto release_region; 1831 1832 mutex_init(&gc->eq_test_event_mutex); 1833 pci_set_drvdata(pdev, gc); 1834 gc->bar0_pa = pci_resource_start(pdev, 0); 1835 1836 bar0_va = pci_iomap(pdev, bar, 0); 1837 if (!bar0_va) 1838 goto free_gc; 1839 1840 gc->numa_node = dev_to_node(&pdev->dev); 1841 gc->is_pf = mana_is_pf(pdev->device); 1842 gc->bar0_va = bar0_va; 1843 gc->dev = &pdev->dev; 1844 xa_init(&gc->irq_contexts); 1845 1846 if (gc->is_pf) 1847 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root); 1848 else 1849 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot), 1850 mana_debugfs_root); 1851 1852 err = mana_gd_setup(pdev); 1853 if (err) 1854 goto unmap_bar; 1855 1856 err = mana_probe(&gc->mana, false); 1857 if (err) 1858 goto cleanup_gd; 1859 1860 err = mana_rdma_probe(&gc->mana_ib); 1861 if (err) 1862 goto cleanup_mana; 1863 1864 return 0; 1865 1866 cleanup_mana: 1867 mana_remove(&gc->mana, false); 1868 cleanup_gd: 1869 mana_gd_cleanup(pdev); 1870 unmap_bar: 1871 /* 1872 * at this point we know that the other debugfs child dir/files 1873 * are either not yet created or are already cleaned up. 1874 * The pci debugfs folder clean-up now, will only be cleaning up 1875 * adapter-MTU file and apc->mana_pci_debugfs folder. 1876 */ 1877 debugfs_remove_recursive(gc->mana_pci_debugfs); 1878 gc->mana_pci_debugfs = NULL; 1879 xa_destroy(&gc->irq_contexts); 1880 pci_iounmap(pdev, bar0_va); 1881 free_gc: 1882 pci_set_drvdata(pdev, NULL); 1883 vfree(gc); 1884 release_region: 1885 pci_release_regions(pdev); 1886 disable_dev: 1887 pci_disable_device(pdev); 1888 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err); 1889 return err; 1890 } 1891 1892 static void mana_gd_remove(struct pci_dev *pdev) 1893 { 1894 struct gdma_context *gc = pci_get_drvdata(pdev); 1895 1896 mana_rdma_remove(&gc->mana_ib); 1897 mana_remove(&gc->mana, false); 1898 1899 mana_gd_cleanup(pdev); 1900 1901 debugfs_remove_recursive(gc->mana_pci_debugfs); 1902 1903 gc->mana_pci_debugfs = NULL; 1904 1905 xa_destroy(&gc->irq_contexts); 1906 1907 pci_iounmap(pdev, gc->bar0_va); 1908 1909 vfree(gc); 1910 1911 pci_release_regions(pdev); 1912 pci_disable_device(pdev); 1913 1914 dev_dbg(&pdev->dev, "mana gdma remove successful\n"); 1915 } 1916 1917 /* The 'state' parameter is not used. */ 1918 static int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state) 1919 { 1920 struct gdma_context *gc = pci_get_drvdata(pdev); 1921 1922 mana_rdma_remove(&gc->mana_ib); 1923 mana_remove(&gc->mana, true); 1924 1925 mana_gd_cleanup(pdev); 1926 1927 return 0; 1928 } 1929 1930 /* In case the NIC hardware stops working, the suspend and resume callbacks will 1931 * fail -- if this happens, it's safer to just report an error than try to undo 1932 * what has been done. 1933 */ 1934 static int mana_gd_resume(struct pci_dev *pdev) 1935 { 1936 struct gdma_context *gc = pci_get_drvdata(pdev); 1937 int err; 1938 1939 err = mana_gd_setup(pdev); 1940 if (err) 1941 return err; 1942 1943 err = mana_probe(&gc->mana, true); 1944 if (err) 1945 return err; 1946 1947 err = mana_rdma_probe(&gc->mana_ib); 1948 if (err) 1949 return err; 1950 1951 return 0; 1952 } 1953 1954 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */ 1955 static void mana_gd_shutdown(struct pci_dev *pdev) 1956 { 1957 struct gdma_context *gc = pci_get_drvdata(pdev); 1958 1959 dev_info(&pdev->dev, "Shutdown was called\n"); 1960 1961 mana_rdma_remove(&gc->mana_ib); 1962 mana_remove(&gc->mana, true); 1963 1964 mana_gd_cleanup(pdev); 1965 1966 debugfs_remove_recursive(gc->mana_pci_debugfs); 1967 1968 gc->mana_pci_debugfs = NULL; 1969 1970 pci_disable_device(pdev); 1971 } 1972 1973 static const struct pci_device_id mana_id_table[] = { 1974 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) }, 1975 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) }, 1976 { } 1977 }; 1978 1979 static struct pci_driver mana_driver = { 1980 .name = "mana", 1981 .id_table = mana_id_table, 1982 .probe = mana_gd_probe, 1983 .remove = mana_gd_remove, 1984 .suspend = mana_gd_suspend, 1985 .resume = mana_gd_resume, 1986 .shutdown = mana_gd_shutdown, 1987 }; 1988 1989 static int __init mana_driver_init(void) 1990 { 1991 int err; 1992 1993 mana_debugfs_root = debugfs_create_dir("mana", NULL); 1994 1995 err = pci_register_driver(&mana_driver); 1996 if (err) { 1997 debugfs_remove(mana_debugfs_root); 1998 mana_debugfs_root = NULL; 1999 } 2000 2001 return err; 2002 } 2003 2004 static void __exit mana_driver_exit(void) 2005 { 2006 pci_unregister_driver(&mana_driver); 2007 2008 debugfs_remove(mana_debugfs_root); 2009 2010 mana_debugfs_root = NULL; 2011 } 2012 2013 module_init(mana_driver_init); 2014 module_exit(mana_driver_exit); 2015 2016 MODULE_DEVICE_TABLE(pci, mana_id_table); 2017 2018 MODULE_LICENSE("Dual BSD/GPL"); 2019 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver"); 2020