1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright (c) 2021, Microsoft Corporation. */ 3 4 #include <linux/debugfs.h> 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include <linux/utsname.h> 8 #include <linux/version.h> 9 #include <linux/msi.h> 10 #include <linux/irqdomain.h> 11 #include <linux/export.h> 12 13 #include <net/mana/mana.h> 14 #include <net/mana/hw_channel.h> 15 16 struct dentry *mana_debugfs_root; 17 18 static u32 mana_gd_r32(struct gdma_context *g, u64 offset) 19 { 20 return readl(g->bar0_va + offset); 21 } 22 23 static u64 mana_gd_r64(struct gdma_context *g, u64 offset) 24 { 25 return readq(g->bar0_va + offset); 26 } 27 28 static void mana_gd_init_pf_regs(struct pci_dev *pdev) 29 { 30 struct gdma_context *gc = pci_get_drvdata(pdev); 31 void __iomem *sriov_base_va; 32 u64 sriov_base_off; 33 34 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF; 35 gc->db_page_base = gc->bar0_va + 36 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 37 38 gc->phys_db_page_base = gc->bar0_pa + 39 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 40 41 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF); 42 43 sriov_base_va = gc->bar0_va + sriov_base_off; 44 gc->shm_base = sriov_base_va + 45 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF); 46 } 47 48 static void mana_gd_init_vf_regs(struct pci_dev *pdev) 49 { 50 struct gdma_context *gc = pci_get_drvdata(pdev); 51 52 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF; 53 54 gc->db_page_base = gc->bar0_va + 55 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 56 57 gc->phys_db_page_base = gc->bar0_pa + 58 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 59 60 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET); 61 } 62 63 static void mana_gd_init_registers(struct pci_dev *pdev) 64 { 65 struct gdma_context *gc = pci_get_drvdata(pdev); 66 67 if (gc->is_pf) 68 mana_gd_init_pf_regs(pdev); 69 else 70 mana_gd_init_vf_regs(pdev); 71 } 72 73 /* Suppress logging when we set timeout to zero */ 74 bool mana_need_log(struct gdma_context *gc, int err) 75 { 76 struct hw_channel_context *hwc; 77 78 if (err != -ETIMEDOUT) 79 return true; 80 81 if (!gc) 82 return true; 83 84 hwc = gc->hwc.driver_data; 85 if (hwc && hwc->hwc_timeout == 0) 86 return false; 87 88 return true; 89 } 90 91 static int mana_gd_query_max_resources(struct pci_dev *pdev) 92 { 93 struct gdma_context *gc = pci_get_drvdata(pdev); 94 struct gdma_query_max_resources_resp resp = {}; 95 struct gdma_general_req req = {}; 96 int err; 97 98 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES, 99 sizeof(req), sizeof(resp)); 100 101 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 102 if (err || resp.hdr.status) { 103 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n", 104 err, resp.hdr.status); 105 return err ? err : -EPROTO; 106 } 107 108 if (!pci_msix_can_alloc_dyn(pdev)) { 109 if (gc->num_msix_usable > resp.max_msix) 110 gc->num_msix_usable = resp.max_msix; 111 } else { 112 /* If dynamic allocation is enabled we have already allocated 113 * hwc msi 114 */ 115 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1); 116 } 117 118 if (gc->num_msix_usable <= 1) 119 return -ENOSPC; 120 121 gc->max_num_queues = num_online_cpus(); 122 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES) 123 gc->max_num_queues = MANA_MAX_NUM_QUEUES; 124 125 if (gc->max_num_queues > resp.max_eq) 126 gc->max_num_queues = resp.max_eq; 127 128 if (gc->max_num_queues > resp.max_cq) 129 gc->max_num_queues = resp.max_cq; 130 131 if (gc->max_num_queues > resp.max_sq) 132 gc->max_num_queues = resp.max_sq; 133 134 if (gc->max_num_queues > resp.max_rq) 135 gc->max_num_queues = resp.max_rq; 136 137 /* The Hardware Channel (HWC) used 1 MSI-X */ 138 if (gc->max_num_queues > gc->num_msix_usable - 1) 139 gc->max_num_queues = gc->num_msix_usable - 1; 140 141 return 0; 142 } 143 144 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val) 145 { 146 struct gdma_context *gc = pci_get_drvdata(pdev); 147 struct gdma_query_hwc_timeout_resp resp = {}; 148 struct gdma_query_hwc_timeout_req req = {}; 149 int err; 150 151 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT, 152 sizeof(req), sizeof(resp)); 153 req.timeout_ms = *timeout_val; 154 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 155 if (err || resp.hdr.status) 156 return err ? err : -EPROTO; 157 158 *timeout_val = resp.timeout_ms; 159 160 return 0; 161 } 162 163 static int mana_gd_detect_devices(struct pci_dev *pdev) 164 { 165 struct gdma_context *gc = pci_get_drvdata(pdev); 166 struct gdma_list_devices_resp resp = {}; 167 struct gdma_general_req req = {}; 168 struct gdma_dev_id dev; 169 int found_dev = 0; 170 u16 dev_type; 171 int err; 172 u32 i; 173 174 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req), 175 sizeof(resp)); 176 177 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 178 if (err || resp.hdr.status) { 179 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err, 180 resp.hdr.status); 181 return err ? err : -EPROTO; 182 } 183 184 for (i = 0; i < GDMA_DEV_LIST_SIZE && 185 found_dev < resp.num_of_devs; i++) { 186 dev = resp.devs[i]; 187 dev_type = dev.type; 188 189 /* Skip empty devices */ 190 if (dev.as_uint32 == 0) 191 continue; 192 193 found_dev++; 194 195 /* HWC is already detected in mana_hwc_create_channel(). */ 196 if (dev_type == GDMA_DEVICE_HWC) 197 continue; 198 199 if (dev_type == GDMA_DEVICE_MANA) { 200 gc->mana.gdma_context = gc; 201 gc->mana.dev_id = dev; 202 } else if (dev_type == GDMA_DEVICE_MANA_IB) { 203 gc->mana_ib.dev_id = dev; 204 gc->mana_ib.gdma_context = gc; 205 } 206 } 207 208 return gc->mana.dev_id.type == 0 ? -ENODEV : 0; 209 } 210 211 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req, 212 u32 resp_len, void *resp) 213 { 214 struct hw_channel_context *hwc = gc->hwc.driver_data; 215 216 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp); 217 } 218 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA"); 219 220 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length, 221 struct gdma_mem_info *gmi) 222 { 223 dma_addr_t dma_handle; 224 void *buf; 225 226 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 227 return -EINVAL; 228 229 gmi->dev = gc->dev; 230 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL); 231 if (!buf) 232 return -ENOMEM; 233 234 gmi->dma_handle = dma_handle; 235 gmi->virt_addr = buf; 236 gmi->length = length; 237 238 return 0; 239 } 240 241 void mana_gd_free_memory(struct gdma_mem_info *gmi) 242 { 243 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr, 244 gmi->dma_handle); 245 } 246 247 static int mana_gd_create_hw_eq(struct gdma_context *gc, 248 struct gdma_queue *queue) 249 { 250 struct gdma_create_queue_resp resp = {}; 251 struct gdma_create_queue_req req = {}; 252 int err; 253 254 if (queue->type != GDMA_EQ) 255 return -EINVAL; 256 257 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE, 258 sizeof(req), sizeof(resp)); 259 260 req.hdr.dev_id = queue->gdma_dev->dev_id; 261 req.type = queue->type; 262 req.pdid = queue->gdma_dev->pdid; 263 req.doolbell_id = queue->gdma_dev->doorbell; 264 req.gdma_region = queue->mem_info.dma_region_handle; 265 req.queue_size = queue->queue_size; 266 req.log2_throttle_limit = queue->eq.log2_throttle_limit; 267 req.eq_pci_msix_index = queue->eq.msix_index; 268 269 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 270 if (err || resp.hdr.status) { 271 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err, 272 resp.hdr.status); 273 return err ? err : -EPROTO; 274 } 275 276 queue->id = resp.queue_index; 277 queue->eq.disable_needed = true; 278 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; 279 return 0; 280 } 281 282 static int mana_gd_disable_queue(struct gdma_queue *queue) 283 { 284 struct gdma_context *gc = queue->gdma_dev->gdma_context; 285 struct gdma_disable_queue_req req = {}; 286 struct gdma_general_resp resp = {}; 287 int err; 288 289 WARN_ON(queue->type != GDMA_EQ); 290 291 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE, 292 sizeof(req), sizeof(resp)); 293 294 req.hdr.dev_id = queue->gdma_dev->dev_id; 295 req.type = queue->type; 296 req.queue_index = queue->id; 297 req.alloc_res_id_on_creation = 1; 298 299 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 300 if (err || resp.hdr.status) { 301 if (mana_need_log(gc, err)) 302 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err, 303 resp.hdr.status); 304 return err ? err : -EPROTO; 305 } 306 307 return 0; 308 } 309 310 #define DOORBELL_OFFSET_SQ 0x0 311 #define DOORBELL_OFFSET_RQ 0x400 312 #define DOORBELL_OFFSET_CQ 0x800 313 #define DOORBELL_OFFSET_EQ 0xFF8 314 315 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index, 316 enum gdma_queue_type q_type, u32 qid, 317 u32 tail_ptr, u8 num_req) 318 { 319 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index; 320 union gdma_doorbell_entry e = {}; 321 322 switch (q_type) { 323 case GDMA_EQ: 324 e.eq.id = qid; 325 e.eq.tail_ptr = tail_ptr; 326 e.eq.arm = num_req; 327 328 addr += DOORBELL_OFFSET_EQ; 329 break; 330 331 case GDMA_CQ: 332 e.cq.id = qid; 333 e.cq.tail_ptr = tail_ptr; 334 e.cq.arm = num_req; 335 336 addr += DOORBELL_OFFSET_CQ; 337 break; 338 339 case GDMA_RQ: 340 e.rq.id = qid; 341 e.rq.tail_ptr = tail_ptr; 342 e.rq.wqe_cnt = num_req; 343 344 addr += DOORBELL_OFFSET_RQ; 345 break; 346 347 case GDMA_SQ: 348 e.sq.id = qid; 349 e.sq.tail_ptr = tail_ptr; 350 351 addr += DOORBELL_OFFSET_SQ; 352 break; 353 354 default: 355 WARN_ON(1); 356 return; 357 } 358 359 /* Ensure all writes are done before ring doorbell */ 360 wmb(); 361 362 writeq(e.as_uint64, addr); 363 } 364 365 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue) 366 { 367 /* Hardware Spec specifies that software client should set 0 for 368 * wqe_cnt for Receive Queues. This value is not used in Send Queues. 369 */ 370 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type, 371 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0); 372 } 373 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA"); 374 375 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit) 376 { 377 struct gdma_context *gc = cq->gdma_dev->gdma_context; 378 379 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE; 380 381 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS); 382 383 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id, 384 head, arm_bit); 385 } 386 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA"); 387 388 #define MANA_SERVICE_PERIOD 10 389 390 static void mana_serv_fpga(struct pci_dev *pdev) 391 { 392 struct pci_bus *bus, *parent; 393 394 pci_lock_rescan_remove(); 395 396 bus = pdev->bus; 397 if (!bus) { 398 dev_err(&pdev->dev, "MANA service: no bus\n"); 399 goto out; 400 } 401 402 parent = bus->parent; 403 if (!parent) { 404 dev_err(&pdev->dev, "MANA service: no parent bus\n"); 405 goto out; 406 } 407 408 pci_stop_and_remove_bus_device(bus->self); 409 410 msleep(MANA_SERVICE_PERIOD * 1000); 411 412 pci_rescan_bus(parent); 413 414 out: 415 pci_unlock_rescan_remove(); 416 } 417 418 static void mana_serv_reset(struct pci_dev *pdev) 419 { 420 struct gdma_context *gc = pci_get_drvdata(pdev); 421 struct hw_channel_context *hwc; 422 423 if (!gc) { 424 dev_err(&pdev->dev, "MANA service: no GC\n"); 425 return; 426 } 427 428 hwc = gc->hwc.driver_data; 429 if (!hwc) { 430 dev_err(&pdev->dev, "MANA service: no HWC\n"); 431 goto out; 432 } 433 434 /* HWC is not responding in this case, so don't wait */ 435 hwc->hwc_timeout = 0; 436 437 dev_info(&pdev->dev, "MANA reset cycle start\n"); 438 439 mana_gd_suspend(pdev, PMSG_SUSPEND); 440 441 msleep(MANA_SERVICE_PERIOD * 1000); 442 443 mana_gd_resume(pdev); 444 445 dev_info(&pdev->dev, "MANA reset cycle completed\n"); 446 447 out: 448 gc->in_service = false; 449 } 450 451 struct mana_serv_work { 452 struct work_struct serv_work; 453 struct pci_dev *pdev; 454 enum gdma_eqe_type type; 455 }; 456 457 static void mana_serv_func(struct work_struct *w) 458 { 459 struct mana_serv_work *mns_wk; 460 struct pci_dev *pdev; 461 462 mns_wk = container_of(w, struct mana_serv_work, serv_work); 463 pdev = mns_wk->pdev; 464 465 if (!pdev) 466 goto out; 467 468 switch (mns_wk->type) { 469 case GDMA_EQE_HWC_FPGA_RECONFIG: 470 mana_serv_fpga(pdev); 471 break; 472 473 case GDMA_EQE_HWC_RESET_REQUEST: 474 mana_serv_reset(pdev); 475 break; 476 477 default: 478 dev_err(&pdev->dev, "MANA service: unknown type %d\n", 479 mns_wk->type); 480 break; 481 } 482 483 out: 484 pci_dev_put(pdev); 485 kfree(mns_wk); 486 module_put(THIS_MODULE); 487 } 488 489 static void mana_gd_process_eqe(struct gdma_queue *eq) 490 { 491 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE); 492 struct gdma_context *gc = eq->gdma_dev->gdma_context; 493 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr; 494 struct mana_serv_work *mns_wk; 495 union gdma_eqe_info eqe_info; 496 enum gdma_eqe_type type; 497 struct gdma_event event; 498 struct gdma_queue *cq; 499 struct gdma_eqe *eqe; 500 u32 cq_id; 501 502 eqe = &eq_eqe_ptr[head]; 503 eqe_info.as_uint32 = eqe->eqe_info; 504 type = eqe_info.type; 505 506 switch (type) { 507 case GDMA_EQE_COMPLETION: 508 cq_id = eqe->details[0] & 0xFFFFFF; 509 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs)) 510 break; 511 512 cq = gc->cq_table[cq_id]; 513 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id)) 514 break; 515 516 if (cq->cq.callback) 517 cq->cq.callback(cq->cq.context, cq); 518 519 break; 520 521 case GDMA_EQE_TEST_EVENT: 522 gc->test_event_eq_id = eq->id; 523 complete(&gc->eq_test_event); 524 break; 525 526 case GDMA_EQE_HWC_INIT_EQ_ID_DB: 527 case GDMA_EQE_HWC_INIT_DATA: 528 case GDMA_EQE_HWC_INIT_DONE: 529 case GDMA_EQE_HWC_SOC_SERVICE: 530 case GDMA_EQE_RNIC_QP_FATAL: 531 case GDMA_EQE_HWC_SOC_RECONFIG_DATA: 532 if (!eq->eq.callback) 533 break; 534 535 event.type = type; 536 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE); 537 eq->eq.callback(eq->eq.context, eq, &event); 538 break; 539 540 case GDMA_EQE_HWC_FPGA_RECONFIG: 541 case GDMA_EQE_HWC_RESET_REQUEST: 542 dev_info(gc->dev, "Recv MANA service type:%d\n", type); 543 544 if (gc->in_service) { 545 dev_info(gc->dev, "Already in service\n"); 546 break; 547 } 548 549 if (!try_module_get(THIS_MODULE)) { 550 dev_info(gc->dev, "Module is unloading\n"); 551 break; 552 } 553 554 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC); 555 if (!mns_wk) { 556 module_put(THIS_MODULE); 557 break; 558 } 559 560 dev_info(gc->dev, "Start MANA service type:%d\n", type); 561 gc->in_service = true; 562 mns_wk->pdev = to_pci_dev(gc->dev); 563 mns_wk->type = type; 564 pci_dev_get(mns_wk->pdev); 565 INIT_WORK(&mns_wk->serv_work, mana_serv_func); 566 schedule_work(&mns_wk->serv_work); 567 break; 568 569 default: 570 break; 571 } 572 } 573 574 static void mana_gd_process_eq_events(void *arg) 575 { 576 u32 owner_bits, new_bits, old_bits; 577 union gdma_eqe_info eqe_info; 578 struct gdma_eqe *eq_eqe_ptr; 579 struct gdma_queue *eq = arg; 580 struct gdma_context *gc; 581 struct gdma_eqe *eqe; 582 u32 head, num_eqe; 583 int i; 584 585 gc = eq->gdma_dev->gdma_context; 586 587 num_eqe = eq->queue_size / GDMA_EQE_SIZE; 588 eq_eqe_ptr = eq->queue_mem_ptr; 589 590 /* Process up to 5 EQEs at a time, and update the HW head. */ 591 for (i = 0; i < 5; i++) { 592 eqe = &eq_eqe_ptr[eq->head % num_eqe]; 593 eqe_info.as_uint32 = eqe->eqe_info; 594 owner_bits = eqe_info.owner_bits; 595 596 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK; 597 /* No more entries */ 598 if (owner_bits == old_bits) { 599 /* return here without ringing the doorbell */ 600 if (i == 0) 601 return; 602 break; 603 } 604 605 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK; 606 if (owner_bits != new_bits) { 607 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id); 608 break; 609 } 610 611 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 612 * reading eqe. 613 */ 614 rmb(); 615 616 mana_gd_process_eqe(eq); 617 618 eq->head++; 619 } 620 621 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS); 622 623 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id, 624 head, SET_ARM_BIT); 625 } 626 627 static int mana_gd_register_irq(struct gdma_queue *queue, 628 const struct gdma_queue_spec *spec) 629 { 630 struct gdma_dev *gd = queue->gdma_dev; 631 struct gdma_irq_context *gic; 632 struct gdma_context *gc; 633 unsigned int msi_index; 634 unsigned long flags; 635 struct device *dev; 636 int err = 0; 637 638 gc = gd->gdma_context; 639 dev = gc->dev; 640 msi_index = spec->eq.msix_index; 641 642 if (msi_index >= gc->num_msix_usable) { 643 err = -ENOSPC; 644 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u", 645 err, msi_index, gc->num_msix_usable); 646 647 return err; 648 } 649 650 queue->eq.msix_index = msi_index; 651 gic = xa_load(&gc->irq_contexts, msi_index); 652 if (WARN_ON(!gic)) 653 return -EINVAL; 654 655 spin_lock_irqsave(&gic->lock, flags); 656 list_add_rcu(&queue->entry, &gic->eq_list); 657 spin_unlock_irqrestore(&gic->lock, flags); 658 659 return 0; 660 } 661 662 static void mana_gd_deregister_irq(struct gdma_queue *queue) 663 { 664 struct gdma_dev *gd = queue->gdma_dev; 665 struct gdma_irq_context *gic; 666 struct gdma_context *gc; 667 unsigned int msix_index; 668 unsigned long flags; 669 struct gdma_queue *eq; 670 671 gc = gd->gdma_context; 672 673 /* At most num_online_cpus() + 1 interrupts are used. */ 674 msix_index = queue->eq.msix_index; 675 if (WARN_ON(msix_index >= gc->num_msix_usable)) 676 return; 677 678 gic = xa_load(&gc->irq_contexts, msix_index); 679 if (WARN_ON(!gic)) 680 return; 681 682 spin_lock_irqsave(&gic->lock, flags); 683 list_for_each_entry_rcu(eq, &gic->eq_list, entry) { 684 if (queue == eq) { 685 list_del_rcu(&eq->entry); 686 break; 687 } 688 } 689 spin_unlock_irqrestore(&gic->lock, flags); 690 691 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 692 synchronize_rcu(); 693 } 694 695 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq) 696 { 697 struct gdma_generate_test_event_req req = {}; 698 struct gdma_general_resp resp = {}; 699 struct device *dev = gc->dev; 700 int err; 701 702 mutex_lock(&gc->eq_test_event_mutex); 703 704 init_completion(&gc->eq_test_event); 705 gc->test_event_eq_id = INVALID_QUEUE_ID; 706 707 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE, 708 sizeof(req), sizeof(resp)); 709 710 req.hdr.dev_id = eq->gdma_dev->dev_id; 711 req.queue_index = eq->id; 712 713 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 714 if (err) { 715 if (mana_need_log(gc, err)) 716 dev_err(dev, "test_eq failed: %d\n", err); 717 goto out; 718 } 719 720 err = -EPROTO; 721 722 if (resp.hdr.status) { 723 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status); 724 goto out; 725 } 726 727 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) { 728 dev_err(dev, "test_eq timed out on queue %d\n", eq->id); 729 goto out; 730 } 731 732 if (eq->id != gc->test_event_eq_id) { 733 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n", 734 gc->test_event_eq_id, eq->id); 735 goto out; 736 } 737 738 err = 0; 739 out: 740 mutex_unlock(&gc->eq_test_event_mutex); 741 return err; 742 } 743 744 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets, 745 struct gdma_queue *queue) 746 { 747 int err; 748 749 if (flush_evenets) { 750 err = mana_gd_test_eq(gc, queue); 751 if (err && mana_need_log(gc, err)) 752 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err); 753 } 754 755 mana_gd_deregister_irq(queue); 756 757 if (queue->eq.disable_needed) 758 mana_gd_disable_queue(queue); 759 } 760 761 static int mana_gd_create_eq(struct gdma_dev *gd, 762 const struct gdma_queue_spec *spec, 763 bool create_hwq, struct gdma_queue *queue) 764 { 765 struct gdma_context *gc = gd->gdma_context; 766 struct device *dev = gc->dev; 767 u32 log2_num_entries; 768 int err; 769 770 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 771 queue->id = INVALID_QUEUE_ID; 772 773 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE); 774 775 if (spec->eq.log2_throttle_limit > log2_num_entries) { 776 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n", 777 spec->eq.log2_throttle_limit, log2_num_entries); 778 return -EINVAL; 779 } 780 781 err = mana_gd_register_irq(queue, spec); 782 if (err) { 783 dev_err(dev, "Failed to register irq: %d\n", err); 784 return err; 785 } 786 787 queue->eq.callback = spec->eq.callback; 788 queue->eq.context = spec->eq.context; 789 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 790 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1; 791 792 if (create_hwq) { 793 err = mana_gd_create_hw_eq(gc, queue); 794 if (err) 795 goto out; 796 797 err = mana_gd_test_eq(gc, queue); 798 if (err) 799 goto out; 800 } 801 802 return 0; 803 out: 804 dev_err(dev, "Failed to create EQ: %d\n", err); 805 mana_gd_destroy_eq(gc, false, queue); 806 return err; 807 } 808 809 static void mana_gd_create_cq(const struct gdma_queue_spec *spec, 810 struct gdma_queue *queue) 811 { 812 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE); 813 814 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 815 queue->cq.parent = spec->cq.parent_eq; 816 queue->cq.context = spec->cq.context; 817 queue->cq.callback = spec->cq.callback; 818 } 819 820 static void mana_gd_destroy_cq(struct gdma_context *gc, 821 struct gdma_queue *queue) 822 { 823 u32 id = queue->id; 824 825 if (id >= gc->max_num_cqs) 826 return; 827 828 if (!gc->cq_table[id]) 829 return; 830 831 gc->cq_table[id] = NULL; 832 } 833 834 int mana_gd_create_hwc_queue(struct gdma_dev *gd, 835 const struct gdma_queue_spec *spec, 836 struct gdma_queue **queue_ptr) 837 { 838 struct gdma_context *gc = gd->gdma_context; 839 struct gdma_mem_info *gmi; 840 struct gdma_queue *queue; 841 int err; 842 843 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 844 if (!queue) 845 return -ENOMEM; 846 847 gmi = &queue->mem_info; 848 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 849 if (err) { 850 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 851 spec->type, spec->queue_size, err); 852 goto free_q; 853 } 854 855 queue->head = 0; 856 queue->tail = 0; 857 queue->queue_mem_ptr = gmi->virt_addr; 858 queue->queue_size = spec->queue_size; 859 queue->monitor_avl_buf = spec->monitor_avl_buf; 860 queue->type = spec->type; 861 queue->gdma_dev = gd; 862 863 if (spec->type == GDMA_EQ) 864 err = mana_gd_create_eq(gd, spec, false, queue); 865 else if (spec->type == GDMA_CQ) 866 mana_gd_create_cq(spec, queue); 867 868 if (err) 869 goto out; 870 871 *queue_ptr = queue; 872 return 0; 873 out: 874 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n", 875 spec->type, spec->queue_size, err); 876 mana_gd_free_memory(gmi); 877 free_q: 878 kfree(queue); 879 return err; 880 } 881 882 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle) 883 { 884 struct gdma_destroy_dma_region_req req = {}; 885 struct gdma_general_resp resp = {}; 886 int err; 887 888 if (dma_region_handle == GDMA_INVALID_DMA_REGION) 889 return 0; 890 891 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req), 892 sizeof(resp)); 893 req.dma_region_handle = dma_region_handle; 894 895 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 896 if (err || resp.hdr.status) { 897 if (mana_need_log(gc, err)) 898 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n", 899 err, resp.hdr.status); 900 return -EPROTO; 901 } 902 903 return 0; 904 } 905 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA"); 906 907 static int mana_gd_create_dma_region(struct gdma_dev *gd, 908 struct gdma_mem_info *gmi) 909 { 910 unsigned int num_page = gmi->length / MANA_PAGE_SIZE; 911 struct gdma_create_dma_region_req *req = NULL; 912 struct gdma_create_dma_region_resp resp = {}; 913 struct gdma_context *gc = gd->gdma_context; 914 struct hw_channel_context *hwc; 915 u32 length = gmi->length; 916 size_t req_msg_size; 917 int err; 918 int i; 919 920 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 921 return -EINVAL; 922 923 if (!MANA_PAGE_ALIGNED(gmi->virt_addr)) 924 return -EINVAL; 925 926 hwc = gc->hwc.driver_data; 927 req_msg_size = struct_size(req, page_addr_list, num_page); 928 if (req_msg_size > hwc->max_req_msg_size) 929 return -EINVAL; 930 931 req = kzalloc(req_msg_size, GFP_KERNEL); 932 if (!req) 933 return -ENOMEM; 934 935 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION, 936 req_msg_size, sizeof(resp)); 937 req->length = length; 938 req->offset_in_page = 0; 939 req->gdma_page_type = GDMA_PAGE_TYPE_4K; 940 req->page_count = num_page; 941 req->page_addr_list_len = num_page; 942 943 for (i = 0; i < num_page; i++) 944 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE; 945 946 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp); 947 if (err) 948 goto out; 949 950 if (resp.hdr.status || 951 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) { 952 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n", 953 resp.hdr.status); 954 err = -EPROTO; 955 goto out; 956 } 957 958 gmi->dma_region_handle = resp.dma_region_handle; 959 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n", 960 gmi->dma_region_handle); 961 out: 962 if (err) 963 dev_dbg(gc->dev, 964 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n", 965 length, req->gdma_page_type, resp.hdr.status, err); 966 kfree(req); 967 return err; 968 } 969 970 int mana_gd_create_mana_eq(struct gdma_dev *gd, 971 const struct gdma_queue_spec *spec, 972 struct gdma_queue **queue_ptr) 973 { 974 struct gdma_context *gc = gd->gdma_context; 975 struct gdma_mem_info *gmi; 976 struct gdma_queue *queue; 977 int err; 978 979 if (spec->type != GDMA_EQ) 980 return -EINVAL; 981 982 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 983 if (!queue) 984 return -ENOMEM; 985 986 gmi = &queue->mem_info; 987 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 988 if (err) { 989 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 990 spec->type, spec->queue_size, err); 991 goto free_q; 992 } 993 994 err = mana_gd_create_dma_region(gd, gmi); 995 if (err) 996 goto out; 997 998 queue->head = 0; 999 queue->tail = 0; 1000 queue->queue_mem_ptr = gmi->virt_addr; 1001 queue->queue_size = spec->queue_size; 1002 queue->monitor_avl_buf = spec->monitor_avl_buf; 1003 queue->type = spec->type; 1004 queue->gdma_dev = gd; 1005 1006 err = mana_gd_create_eq(gd, spec, true, queue); 1007 if (err) 1008 goto out; 1009 1010 *queue_ptr = queue; 1011 return 0; 1012 out: 1013 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1014 spec->type, spec->queue_size, err); 1015 mana_gd_free_memory(gmi); 1016 free_q: 1017 kfree(queue); 1018 return err; 1019 } 1020 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA"); 1021 1022 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd, 1023 const struct gdma_queue_spec *spec, 1024 struct gdma_queue **queue_ptr) 1025 { 1026 struct gdma_context *gc = gd->gdma_context; 1027 struct gdma_mem_info *gmi; 1028 struct gdma_queue *queue; 1029 int err; 1030 1031 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ && 1032 spec->type != GDMA_RQ) 1033 return -EINVAL; 1034 1035 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1036 if (!queue) 1037 return -ENOMEM; 1038 1039 gmi = &queue->mem_info; 1040 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 1041 if (err) { 1042 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n", 1043 spec->type, spec->queue_size, err); 1044 goto free_q; 1045 } 1046 1047 err = mana_gd_create_dma_region(gd, gmi); 1048 if (err) 1049 goto out; 1050 1051 queue->head = 0; 1052 queue->tail = 0; 1053 queue->queue_mem_ptr = gmi->virt_addr; 1054 queue->queue_size = spec->queue_size; 1055 queue->monitor_avl_buf = spec->monitor_avl_buf; 1056 queue->type = spec->type; 1057 queue->gdma_dev = gd; 1058 1059 if (spec->type == GDMA_CQ) 1060 mana_gd_create_cq(spec, queue); 1061 1062 *queue_ptr = queue; 1063 return 0; 1064 out: 1065 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1066 spec->type, spec->queue_size, err); 1067 mana_gd_free_memory(gmi); 1068 free_q: 1069 kfree(queue); 1070 return err; 1071 } 1072 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA"); 1073 1074 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue) 1075 { 1076 struct gdma_mem_info *gmi = &queue->mem_info; 1077 1078 switch (queue->type) { 1079 case GDMA_EQ: 1080 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue); 1081 break; 1082 1083 case GDMA_CQ: 1084 mana_gd_destroy_cq(gc, queue); 1085 break; 1086 1087 case GDMA_RQ: 1088 break; 1089 1090 case GDMA_SQ: 1091 break; 1092 1093 default: 1094 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n", 1095 queue->type); 1096 return; 1097 } 1098 1099 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle); 1100 mana_gd_free_memory(gmi); 1101 kfree(queue); 1102 } 1103 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA"); 1104 1105 int mana_gd_verify_vf_version(struct pci_dev *pdev) 1106 { 1107 struct gdma_context *gc = pci_get_drvdata(pdev); 1108 struct gdma_verify_ver_resp resp = {}; 1109 struct gdma_verify_ver_req req = {}; 1110 struct hw_channel_context *hwc; 1111 int err; 1112 1113 hwc = gc->hwc.driver_data; 1114 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION, 1115 sizeof(req), sizeof(resp)); 1116 1117 req.protocol_ver_min = GDMA_PROTOCOL_FIRST; 1118 req.protocol_ver_max = GDMA_PROTOCOL_LAST; 1119 1120 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1; 1121 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2; 1122 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3; 1123 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4; 1124 1125 req.drv_ver = 0; /* Unused*/ 1126 req.os_type = 0x10; /* Linux */ 1127 req.os_ver_major = LINUX_VERSION_MAJOR; 1128 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL; 1129 req.os_ver_build = LINUX_VERSION_SUBLEVEL; 1130 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1)); 1131 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2)); 1132 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3)); 1133 1134 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1135 if (err || resp.hdr.status) { 1136 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n", 1137 err, resp.hdr.status); 1138 return err ? err : -EPROTO; 1139 } 1140 gc->pf_cap_flags1 = resp.pf_cap_flags1; 1141 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) { 1142 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout); 1143 if (err) { 1144 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err); 1145 return err; 1146 } 1147 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout); 1148 } 1149 return 0; 1150 } 1151 1152 int mana_gd_register_device(struct gdma_dev *gd) 1153 { 1154 struct gdma_context *gc = gd->gdma_context; 1155 struct gdma_register_device_resp resp = {}; 1156 struct gdma_general_req req = {}; 1157 int err; 1158 1159 gd->pdid = INVALID_PDID; 1160 gd->doorbell = INVALID_DOORBELL; 1161 gd->gpa_mkey = INVALID_MEM_KEY; 1162 1163 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req), 1164 sizeof(resp)); 1165 1166 req.hdr.dev_id = gd->dev_id; 1167 1168 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1169 if (err || resp.hdr.status) { 1170 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n", 1171 err, resp.hdr.status); 1172 return err ? err : -EPROTO; 1173 } 1174 1175 gd->pdid = resp.pdid; 1176 gd->gpa_mkey = resp.gpa_mkey; 1177 gd->doorbell = resp.db_id; 1178 1179 return 0; 1180 } 1181 1182 int mana_gd_deregister_device(struct gdma_dev *gd) 1183 { 1184 struct gdma_context *gc = gd->gdma_context; 1185 struct gdma_general_resp resp = {}; 1186 struct gdma_general_req req = {}; 1187 int err; 1188 1189 if (gd->pdid == INVALID_PDID) 1190 return -EINVAL; 1191 1192 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req), 1193 sizeof(resp)); 1194 1195 req.hdr.dev_id = gd->dev_id; 1196 1197 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1198 if (err || resp.hdr.status) { 1199 if (mana_need_log(gc, err)) 1200 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n", 1201 err, resp.hdr.status); 1202 if (!err) 1203 err = -EPROTO; 1204 } 1205 1206 gd->pdid = INVALID_PDID; 1207 gd->doorbell = INVALID_DOORBELL; 1208 gd->gpa_mkey = INVALID_MEM_KEY; 1209 1210 return err; 1211 } 1212 1213 u32 mana_gd_wq_avail_space(struct gdma_queue *wq) 1214 { 1215 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE; 1216 u32 wq_size = wq->queue_size; 1217 1218 WARN_ON_ONCE(used_space > wq_size); 1219 1220 return wq_size - used_space; 1221 } 1222 1223 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset) 1224 { 1225 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1); 1226 1227 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size); 1228 1229 return wq->queue_mem_ptr + offset; 1230 } 1231 1232 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req, 1233 enum gdma_queue_type q_type, 1234 u32 client_oob_size, u32 sgl_data_size, 1235 u8 *wqe_ptr) 1236 { 1237 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL); 1238 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0); 1239 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr; 1240 u8 *ptr; 1241 1242 memset(header, 0, sizeof(struct gdma_wqe)); 1243 header->num_sge = wqe_req->num_sge; 1244 header->inline_oob_size_div4 = client_oob_size / sizeof(u32); 1245 1246 if (oob_in_sgl) { 1247 WARN_ON_ONCE(wqe_req->num_sge < 2); 1248 1249 header->client_oob_in_sgl = 1; 1250 1251 if (pad_data) 1252 header->last_vbytes = wqe_req->sgl[0].size; 1253 } 1254 1255 if (q_type == GDMA_SQ) 1256 header->client_data_unit = wqe_req->client_data_unit; 1257 1258 /* The size of gdma_wqe + client_oob_size must be less than or equal 1259 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond 1260 * the queue memory buffer boundary. 1261 */ 1262 ptr = wqe_ptr + sizeof(header); 1263 1264 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) { 1265 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size); 1266 1267 if (client_oob_size > wqe_req->inline_oob_size) 1268 memset(ptr + wqe_req->inline_oob_size, 0, 1269 client_oob_size - wqe_req->inline_oob_size); 1270 } 1271 1272 return sizeof(header) + client_oob_size; 1273 } 1274 1275 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr, 1276 const struct gdma_wqe_request *wqe_req) 1277 { 1278 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1279 const u8 *address = (u8 *)wqe_req->sgl; 1280 u8 *base_ptr, *end_ptr; 1281 u32 size_to_end; 1282 1283 base_ptr = wq->queue_mem_ptr; 1284 end_ptr = base_ptr + wq->queue_size; 1285 size_to_end = (u32)(end_ptr - wqe_ptr); 1286 1287 if (size_to_end < sgl_size) { 1288 memcpy(wqe_ptr, address, size_to_end); 1289 1290 wqe_ptr = base_ptr; 1291 address += size_to_end; 1292 sgl_size -= size_to_end; 1293 } 1294 1295 memcpy(wqe_ptr, address, sgl_size); 1296 } 1297 1298 int mana_gd_post_work_request(struct gdma_queue *wq, 1299 const struct gdma_wqe_request *wqe_req, 1300 struct gdma_posted_wqe_info *wqe_info) 1301 { 1302 u32 client_oob_size = wqe_req->inline_oob_size; 1303 u32 sgl_data_size; 1304 u32 max_wqe_size; 1305 u32 wqe_size; 1306 u8 *wqe_ptr; 1307 1308 if (wqe_req->num_sge == 0) 1309 return -EINVAL; 1310 1311 if (wq->type == GDMA_RQ) { 1312 if (client_oob_size != 0) 1313 return -EINVAL; 1314 1315 client_oob_size = INLINE_OOB_SMALL_SIZE; 1316 1317 max_wqe_size = GDMA_MAX_RQE_SIZE; 1318 } else { 1319 if (client_oob_size != INLINE_OOB_SMALL_SIZE && 1320 client_oob_size != INLINE_OOB_LARGE_SIZE) 1321 return -EINVAL; 1322 1323 max_wqe_size = GDMA_MAX_SQE_SIZE; 1324 } 1325 1326 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1327 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size + 1328 sgl_data_size, GDMA_WQE_BU_SIZE); 1329 if (wqe_size > max_wqe_size) 1330 return -EINVAL; 1331 1332 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) 1333 return -ENOSPC; 1334 1335 if (wqe_info) 1336 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE; 1337 1338 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head); 1339 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size, 1340 sgl_data_size, wqe_ptr); 1341 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size) 1342 wqe_ptr -= wq->queue_size; 1343 1344 mana_gd_write_sgl(wq, wqe_ptr, wqe_req); 1345 1346 wq->head += wqe_size / GDMA_WQE_BU_SIZE; 1347 1348 return 0; 1349 } 1350 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA"); 1351 1352 int mana_gd_post_and_ring(struct gdma_queue *queue, 1353 const struct gdma_wqe_request *wqe_req, 1354 struct gdma_posted_wqe_info *wqe_info) 1355 { 1356 struct gdma_context *gc = queue->gdma_dev->gdma_context; 1357 int err; 1358 1359 err = mana_gd_post_work_request(queue, wqe_req, wqe_info); 1360 if (err) { 1361 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n", 1362 queue->type, queue->queue_size, err); 1363 return err; 1364 } 1365 1366 mana_gd_wq_ring_doorbell(gc, queue); 1367 1368 return 0; 1369 } 1370 1371 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp) 1372 { 1373 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe); 1374 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr; 1375 u32 owner_bits, new_bits, old_bits; 1376 struct gdma_cqe *cqe; 1377 1378 cqe = &cq_cqe[cq->head % num_cqe]; 1379 owner_bits = cqe->cqe_info.owner_bits; 1380 1381 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK; 1382 /* Return 0 if no more entries. */ 1383 if (owner_bits == old_bits) 1384 return 0; 1385 1386 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK; 1387 /* Return -1 if overflow detected. */ 1388 if (WARN_ON_ONCE(owner_bits != new_bits)) 1389 return -1; 1390 1391 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 1392 * reading completion info 1393 */ 1394 rmb(); 1395 1396 comp->wq_num = cqe->cqe_info.wq_num; 1397 comp->is_sq = cqe->cqe_info.is_sq; 1398 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE); 1399 1400 return 1; 1401 } 1402 1403 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe) 1404 { 1405 int cqe_idx; 1406 int ret; 1407 1408 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) { 1409 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]); 1410 1411 if (ret < 0) { 1412 cq->head -= cqe_idx; 1413 return ret; 1414 } 1415 1416 if (ret == 0) 1417 break; 1418 1419 cq->head++; 1420 } 1421 1422 return cqe_idx; 1423 } 1424 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA"); 1425 1426 static irqreturn_t mana_gd_intr(int irq, void *arg) 1427 { 1428 struct gdma_irq_context *gic = arg; 1429 struct list_head *eq_list = &gic->eq_list; 1430 struct gdma_queue *eq; 1431 1432 rcu_read_lock(); 1433 list_for_each_entry_rcu(eq, eq_list, entry) { 1434 gic->handler(eq); 1435 } 1436 rcu_read_unlock(); 1437 1438 return IRQ_HANDLED; 1439 } 1440 1441 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r) 1442 { 1443 r->map = bitmap_zalloc(res_avail, GFP_KERNEL); 1444 if (!r->map) 1445 return -ENOMEM; 1446 1447 r->size = res_avail; 1448 spin_lock_init(&r->lock); 1449 1450 return 0; 1451 } 1452 1453 void mana_gd_free_res_map(struct gdma_resource *r) 1454 { 1455 bitmap_free(r->map); 1456 r->map = NULL; 1457 r->size = 0; 1458 } 1459 1460 /* 1461 * Spread on CPUs with the following heuristics: 1462 * 1463 * 1. No more than one IRQ per CPU, if possible; 1464 * 2. NUMA locality is the second priority; 1465 * 3. Sibling dislocality is the last priority. 1466 * 1467 * Let's consider this topology: 1468 * 1469 * Node 0 1 1470 * Core 0 1 2 3 1471 * CPU 0 1 2 3 4 5 6 7 1472 * 1473 * The most performant IRQ distribution based on the above topology 1474 * and heuristics may look like this: 1475 * 1476 * IRQ Nodes Cores CPUs 1477 * 0 1 0 0-1 1478 * 1 1 1 2-3 1479 * 2 1 0 0-1 1480 * 3 1 1 2-3 1481 * 4 2 2 4-5 1482 * 5 2 3 6-7 1483 * 6 2 2 4-5 1484 * 7 2 3 6-7 1485 * 1486 * The heuristics is implemented as follows. 1487 * 1488 * The outer for_each() loop resets the 'weight' to the actual number 1489 * of CPUs in the hop. Then inner for_each() loop decrements it by the 1490 * number of sibling groups (cores) while assigning first set of IRQs 1491 * to each group. IRQs 0 and 1 above are distributed this way. 1492 * 1493 * Now, because NUMA locality is more important, we should walk the 1494 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's 1495 * implemented by the medium while() loop. We do like this unless the 1496 * number of IRQs assigned on this hop will not become equal to number 1497 * of CPUs in the hop (weight == 0). Then we switch to the next hop and 1498 * do the same thing. 1499 */ 1500 1501 static int irq_setup(unsigned int *irqs, unsigned int len, int node, 1502 bool skip_first_cpu) 1503 { 1504 const struct cpumask *next, *prev = cpu_none_mask; 1505 cpumask_var_t cpus __free(free_cpumask_var); 1506 int cpu, weight; 1507 1508 if (!alloc_cpumask_var(&cpus, GFP_KERNEL)) 1509 return -ENOMEM; 1510 1511 rcu_read_lock(); 1512 for_each_numa_hop_mask(next, node) { 1513 weight = cpumask_weight_andnot(next, prev); 1514 while (weight > 0) { 1515 cpumask_andnot(cpus, next, prev); 1516 for_each_cpu(cpu, cpus) { 1517 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 1518 --weight; 1519 1520 if (unlikely(skip_first_cpu)) { 1521 skip_first_cpu = false; 1522 continue; 1523 } 1524 1525 if (len-- == 0) 1526 goto done; 1527 1528 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu)); 1529 } 1530 } 1531 prev = next; 1532 } 1533 done: 1534 rcu_read_unlock(); 1535 return 0; 1536 } 1537 1538 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec) 1539 { 1540 struct gdma_context *gc = pci_get_drvdata(pdev); 1541 struct gdma_irq_context *gic; 1542 bool skip_first_cpu = false; 1543 int *irqs, irq, err, i; 1544 1545 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1546 if (!irqs) 1547 return -ENOMEM; 1548 1549 /* 1550 * While processing the next pci irq vector, we start with index 1, 1551 * as IRQ vector at index 0 is already processed for HWC. 1552 * However, the population of irqs array starts with index 0, to be 1553 * further used in irq_setup() 1554 */ 1555 for (i = 1; i <= nvec; i++) { 1556 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1557 if (!gic) { 1558 err = -ENOMEM; 1559 goto free_irq; 1560 } 1561 gic->handler = mana_gd_process_eq_events; 1562 INIT_LIST_HEAD(&gic->eq_list); 1563 spin_lock_init(&gic->lock); 1564 1565 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1566 i - 1, pci_name(pdev)); 1567 1568 /* one pci vector is already allocated for HWC */ 1569 irqs[i - 1] = pci_irq_vector(pdev, i); 1570 if (irqs[i - 1] < 0) { 1571 err = irqs[i - 1]; 1572 goto free_current_gic; 1573 } 1574 1575 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic); 1576 if (err) 1577 goto free_current_gic; 1578 1579 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1580 } 1581 1582 /* 1583 * When calling irq_setup() for dynamically added IRQs, if number of 1584 * CPUs is more than or equal to allocated MSI-X, we need to skip the 1585 * first CPU sibling group since they are already affinitized to HWC IRQ 1586 */ 1587 cpus_read_lock(); 1588 if (gc->num_msix_usable <= num_online_cpus()) 1589 skip_first_cpu = true; 1590 1591 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu); 1592 if (err) { 1593 cpus_read_unlock(); 1594 goto free_irq; 1595 } 1596 1597 cpus_read_unlock(); 1598 kfree(irqs); 1599 return 0; 1600 1601 free_current_gic: 1602 kfree(gic); 1603 free_irq: 1604 for (i -= 1; i > 0; i--) { 1605 irq = pci_irq_vector(pdev, i); 1606 gic = xa_load(&gc->irq_contexts, i); 1607 if (WARN_ON(!gic)) 1608 continue; 1609 1610 irq_update_affinity_hint(irq, NULL); 1611 free_irq(irq, gic); 1612 xa_erase(&gc->irq_contexts, i); 1613 kfree(gic); 1614 } 1615 kfree(irqs); 1616 return err; 1617 } 1618 1619 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec) 1620 { 1621 struct gdma_context *gc = pci_get_drvdata(pdev); 1622 struct gdma_irq_context *gic; 1623 int *irqs, *start_irqs, irq; 1624 unsigned int cpu; 1625 int err, i; 1626 1627 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1628 if (!irqs) 1629 return -ENOMEM; 1630 1631 start_irqs = irqs; 1632 1633 for (i = 0; i < nvec; i++) { 1634 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1635 if (!gic) { 1636 err = -ENOMEM; 1637 goto free_irq; 1638 } 1639 1640 gic->handler = mana_gd_process_eq_events; 1641 INIT_LIST_HEAD(&gic->eq_list); 1642 spin_lock_init(&gic->lock); 1643 1644 if (!i) 1645 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s", 1646 pci_name(pdev)); 1647 else 1648 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1649 i - 1, pci_name(pdev)); 1650 1651 irqs[i] = pci_irq_vector(pdev, i); 1652 if (irqs[i] < 0) { 1653 err = irqs[i]; 1654 goto free_current_gic; 1655 } 1656 1657 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic); 1658 if (err) 1659 goto free_current_gic; 1660 1661 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1662 } 1663 1664 /* If number of IRQ is one extra than number of online CPUs, 1665 * then we need to assign IRQ0 (hwc irq) and IRQ1 to 1666 * same CPU. 1667 * Else we will use different CPUs for IRQ0 and IRQ1. 1668 * Also we are using cpumask_local_spread instead of 1669 * cpumask_first for the node, because the node can be 1670 * mem only. 1671 */ 1672 cpus_read_lock(); 1673 if (nvec > num_online_cpus()) { 1674 cpu = cpumask_local_spread(0, gc->numa_node); 1675 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu)); 1676 irqs++; 1677 nvec -= 1; 1678 } 1679 1680 err = irq_setup(irqs, nvec, gc->numa_node, false); 1681 if (err) { 1682 cpus_read_unlock(); 1683 goto free_irq; 1684 } 1685 1686 cpus_read_unlock(); 1687 kfree(start_irqs); 1688 return 0; 1689 1690 free_current_gic: 1691 kfree(gic); 1692 free_irq: 1693 for (i -= 1; i >= 0; i--) { 1694 irq = pci_irq_vector(pdev, i); 1695 gic = xa_load(&gc->irq_contexts, i); 1696 if (WARN_ON(!gic)) 1697 continue; 1698 1699 irq_update_affinity_hint(irq, NULL); 1700 free_irq(irq, gic); 1701 xa_erase(&gc->irq_contexts, i); 1702 kfree(gic); 1703 } 1704 1705 kfree(start_irqs); 1706 return err; 1707 } 1708 1709 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev) 1710 { 1711 struct gdma_context *gc = pci_get_drvdata(pdev); 1712 unsigned int max_irqs, min_irqs; 1713 int nvec, err; 1714 1715 if (pci_msix_can_alloc_dyn(pdev)) { 1716 max_irqs = 1; 1717 min_irqs = 1; 1718 } else { 1719 /* Need 1 interrupt for HWC */ 1720 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1; 1721 min_irqs = 2; 1722 } 1723 1724 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX); 1725 if (nvec < 0) 1726 return nvec; 1727 1728 err = mana_gd_setup_irqs(pdev, nvec); 1729 if (err) { 1730 pci_free_irq_vectors(pdev); 1731 return err; 1732 } 1733 1734 gc->num_msix_usable = nvec; 1735 gc->max_num_msix = nvec; 1736 1737 return 0; 1738 } 1739 1740 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev) 1741 { 1742 struct gdma_context *gc = pci_get_drvdata(pdev); 1743 struct msi_map irq_map; 1744 int max_irqs, i, err; 1745 1746 if (!pci_msix_can_alloc_dyn(pdev)) 1747 /* remain irqs are already allocated with HWC IRQ */ 1748 return 0; 1749 1750 /* allocate only remaining IRQs*/ 1751 max_irqs = gc->num_msix_usable - 1; 1752 1753 for (i = 1; i <= max_irqs; i++) { 1754 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL); 1755 if (!irq_map.virq) { 1756 err = irq_map.index; 1757 /* caller will handle cleaning up all allocated 1758 * irqs, after HWC is destroyed 1759 */ 1760 return err; 1761 } 1762 } 1763 1764 err = mana_gd_setup_dyn_irqs(pdev, max_irqs); 1765 if (err) 1766 return err; 1767 1768 gc->max_num_msix = gc->max_num_msix + max_irqs; 1769 1770 return 0; 1771 } 1772 1773 static void mana_gd_remove_irqs(struct pci_dev *pdev) 1774 { 1775 struct gdma_context *gc = pci_get_drvdata(pdev); 1776 struct gdma_irq_context *gic; 1777 int irq, i; 1778 1779 if (gc->max_num_msix < 1) 1780 return; 1781 1782 for (i = 0; i < gc->max_num_msix; i++) { 1783 irq = pci_irq_vector(pdev, i); 1784 if (irq < 0) 1785 continue; 1786 1787 gic = xa_load(&gc->irq_contexts, i); 1788 if (WARN_ON(!gic)) 1789 continue; 1790 1791 /* Need to clear the hint before free_irq */ 1792 irq_update_affinity_hint(irq, NULL); 1793 free_irq(irq, gic); 1794 xa_erase(&gc->irq_contexts, i); 1795 kfree(gic); 1796 } 1797 1798 pci_free_irq_vectors(pdev); 1799 1800 gc->max_num_msix = 0; 1801 gc->num_msix_usable = 0; 1802 } 1803 1804 static int mana_gd_setup(struct pci_dev *pdev) 1805 { 1806 struct gdma_context *gc = pci_get_drvdata(pdev); 1807 int err; 1808 1809 mana_gd_init_registers(pdev); 1810 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base); 1811 1812 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0); 1813 if (!gc->service_wq) 1814 return -ENOMEM; 1815 1816 err = mana_gd_setup_hwc_irqs(pdev); 1817 if (err) { 1818 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n", 1819 err); 1820 goto free_workqueue; 1821 } 1822 1823 err = mana_hwc_create_channel(gc); 1824 if (err) 1825 goto remove_irq; 1826 1827 err = mana_gd_verify_vf_version(pdev); 1828 if (err) 1829 goto destroy_hwc; 1830 1831 err = mana_gd_query_max_resources(pdev); 1832 if (err) 1833 goto destroy_hwc; 1834 1835 err = mana_gd_setup_remaining_irqs(pdev); 1836 if (err) { 1837 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err); 1838 goto destroy_hwc; 1839 } 1840 1841 err = mana_gd_detect_devices(pdev); 1842 if (err) 1843 goto destroy_hwc; 1844 1845 dev_dbg(&pdev->dev, "mana gdma setup successful\n"); 1846 return 0; 1847 1848 destroy_hwc: 1849 mana_hwc_destroy_channel(gc); 1850 remove_irq: 1851 mana_gd_remove_irqs(pdev); 1852 free_workqueue: 1853 destroy_workqueue(gc->service_wq); 1854 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err); 1855 return err; 1856 } 1857 1858 static void mana_gd_cleanup(struct pci_dev *pdev) 1859 { 1860 struct gdma_context *gc = pci_get_drvdata(pdev); 1861 1862 mana_hwc_destroy_channel(gc); 1863 1864 mana_gd_remove_irqs(pdev); 1865 1866 destroy_workqueue(gc->service_wq); 1867 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n"); 1868 } 1869 1870 static bool mana_is_pf(unsigned short dev_id) 1871 { 1872 return dev_id == MANA_PF_DEVICE_ID; 1873 } 1874 1875 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1876 { 1877 struct gdma_context *gc; 1878 void __iomem *bar0_va; 1879 int bar = 0; 1880 int err; 1881 1882 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */ 1883 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE); 1884 1885 err = pci_enable_device(pdev); 1886 if (err) { 1887 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err); 1888 return -ENXIO; 1889 } 1890 1891 pci_set_master(pdev); 1892 1893 err = pci_request_regions(pdev, "mana"); 1894 if (err) 1895 goto disable_dev; 1896 1897 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1898 if (err) { 1899 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err); 1900 goto release_region; 1901 } 1902 dma_set_max_seg_size(&pdev->dev, UINT_MAX); 1903 1904 err = -ENOMEM; 1905 gc = vzalloc(sizeof(*gc)); 1906 if (!gc) 1907 goto release_region; 1908 1909 mutex_init(&gc->eq_test_event_mutex); 1910 pci_set_drvdata(pdev, gc); 1911 gc->bar0_pa = pci_resource_start(pdev, 0); 1912 1913 bar0_va = pci_iomap(pdev, bar, 0); 1914 if (!bar0_va) 1915 goto free_gc; 1916 1917 gc->numa_node = dev_to_node(&pdev->dev); 1918 gc->is_pf = mana_is_pf(pdev->device); 1919 gc->bar0_va = bar0_va; 1920 gc->dev = &pdev->dev; 1921 xa_init(&gc->irq_contexts); 1922 1923 if (gc->is_pf) 1924 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root); 1925 else 1926 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot), 1927 mana_debugfs_root); 1928 1929 err = mana_gd_setup(pdev); 1930 if (err) 1931 goto unmap_bar; 1932 1933 err = mana_probe(&gc->mana, false); 1934 if (err) 1935 goto cleanup_gd; 1936 1937 err = mana_rdma_probe(&gc->mana_ib); 1938 if (err) 1939 goto cleanup_mana; 1940 1941 return 0; 1942 1943 cleanup_mana: 1944 mana_remove(&gc->mana, false); 1945 cleanup_gd: 1946 mana_gd_cleanup(pdev); 1947 unmap_bar: 1948 /* 1949 * at this point we know that the other debugfs child dir/files 1950 * are either not yet created or are already cleaned up. 1951 * The pci debugfs folder clean-up now, will only be cleaning up 1952 * adapter-MTU file and apc->mana_pci_debugfs folder. 1953 */ 1954 debugfs_remove_recursive(gc->mana_pci_debugfs); 1955 gc->mana_pci_debugfs = NULL; 1956 xa_destroy(&gc->irq_contexts); 1957 pci_iounmap(pdev, bar0_va); 1958 free_gc: 1959 pci_set_drvdata(pdev, NULL); 1960 vfree(gc); 1961 release_region: 1962 pci_release_regions(pdev); 1963 disable_dev: 1964 pci_disable_device(pdev); 1965 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err); 1966 return err; 1967 } 1968 1969 static void mana_gd_remove(struct pci_dev *pdev) 1970 { 1971 struct gdma_context *gc = pci_get_drvdata(pdev); 1972 1973 mana_rdma_remove(&gc->mana_ib); 1974 mana_remove(&gc->mana, false); 1975 1976 mana_gd_cleanup(pdev); 1977 1978 debugfs_remove_recursive(gc->mana_pci_debugfs); 1979 1980 gc->mana_pci_debugfs = NULL; 1981 1982 xa_destroy(&gc->irq_contexts); 1983 1984 pci_iounmap(pdev, gc->bar0_va); 1985 1986 vfree(gc); 1987 1988 pci_release_regions(pdev); 1989 pci_disable_device(pdev); 1990 1991 dev_dbg(&pdev->dev, "mana gdma remove successful\n"); 1992 } 1993 1994 /* The 'state' parameter is not used. */ 1995 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state) 1996 { 1997 struct gdma_context *gc = pci_get_drvdata(pdev); 1998 1999 mana_rdma_remove(&gc->mana_ib); 2000 mana_remove(&gc->mana, true); 2001 2002 mana_gd_cleanup(pdev); 2003 2004 return 0; 2005 } 2006 2007 /* In case the NIC hardware stops working, the suspend and resume callbacks will 2008 * fail -- if this happens, it's safer to just report an error than try to undo 2009 * what has been done. 2010 */ 2011 int mana_gd_resume(struct pci_dev *pdev) 2012 { 2013 struct gdma_context *gc = pci_get_drvdata(pdev); 2014 int err; 2015 2016 err = mana_gd_setup(pdev); 2017 if (err) 2018 return err; 2019 2020 err = mana_probe(&gc->mana, true); 2021 if (err) 2022 return err; 2023 2024 err = mana_rdma_probe(&gc->mana_ib); 2025 if (err) 2026 return err; 2027 2028 return 0; 2029 } 2030 2031 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */ 2032 static void mana_gd_shutdown(struct pci_dev *pdev) 2033 { 2034 struct gdma_context *gc = pci_get_drvdata(pdev); 2035 2036 dev_info(&pdev->dev, "Shutdown was called\n"); 2037 2038 mana_rdma_remove(&gc->mana_ib); 2039 mana_remove(&gc->mana, true); 2040 2041 mana_gd_cleanup(pdev); 2042 2043 debugfs_remove_recursive(gc->mana_pci_debugfs); 2044 2045 gc->mana_pci_debugfs = NULL; 2046 2047 pci_disable_device(pdev); 2048 } 2049 2050 static const struct pci_device_id mana_id_table[] = { 2051 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) }, 2052 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) }, 2053 { } 2054 }; 2055 2056 static struct pci_driver mana_driver = { 2057 .name = "mana", 2058 .id_table = mana_id_table, 2059 .probe = mana_gd_probe, 2060 .remove = mana_gd_remove, 2061 .suspend = mana_gd_suspend, 2062 .resume = mana_gd_resume, 2063 .shutdown = mana_gd_shutdown, 2064 }; 2065 2066 static int __init mana_driver_init(void) 2067 { 2068 int err; 2069 2070 mana_debugfs_root = debugfs_create_dir("mana", NULL); 2071 2072 err = pci_register_driver(&mana_driver); 2073 if (err) { 2074 debugfs_remove(mana_debugfs_root); 2075 mana_debugfs_root = NULL; 2076 } 2077 2078 return err; 2079 } 2080 2081 static void __exit mana_driver_exit(void) 2082 { 2083 pci_unregister_driver(&mana_driver); 2084 2085 debugfs_remove(mana_debugfs_root); 2086 2087 mana_debugfs_root = NULL; 2088 } 2089 2090 module_init(mana_driver_init); 2091 module_exit(mana_driver_exit); 2092 2093 MODULE_DEVICE_TABLE(pci, mana_id_table); 2094 2095 MODULE_LICENSE("Dual BSD/GPL"); 2096 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver"); 2097