xref: /linux/drivers/net/ethernet/microsoft/mana/gdma_main.c (revision 6aac2aa2dfae38b60f22c3dfe4103ceefbe2d761)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright (c) 2021, Microsoft Corporation. */
3 
4 #include <linux/debugfs.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/utsname.h>
8 #include <linux/version.h>
9 #include <linux/msi.h>
10 #include <linux/irqdomain.h>
11 #include <linux/export.h>
12 
13 #include <net/mana/mana.h>
14 #include <net/mana/hw_channel.h>
15 
16 struct dentry *mana_debugfs_root;
17 
18 static u32 mana_gd_r32(struct gdma_context *g, u64 offset)
19 {
20 	return readl(g->bar0_va + offset);
21 }
22 
23 static u64 mana_gd_r64(struct gdma_context *g, u64 offset)
24 {
25 	return readq(g->bar0_va + offset);
26 }
27 
28 static void mana_gd_init_pf_regs(struct pci_dev *pdev)
29 {
30 	struct gdma_context *gc = pci_get_drvdata(pdev);
31 	void __iomem *sriov_base_va;
32 	u64 sriov_base_off;
33 
34 	gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF;
35 	gc->db_page_base = gc->bar0_va +
36 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
37 
38 	gc->phys_db_page_base = gc->bar0_pa +
39 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
40 
41 	sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF);
42 
43 	sriov_base_va = gc->bar0_va + sriov_base_off;
44 	gc->shm_base = sriov_base_va +
45 			mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF);
46 }
47 
48 static void mana_gd_init_vf_regs(struct pci_dev *pdev)
49 {
50 	struct gdma_context *gc = pci_get_drvdata(pdev);
51 
52 	gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
53 
54 	gc->db_page_base = gc->bar0_va +
55 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
56 
57 	gc->phys_db_page_base = gc->bar0_pa +
58 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
59 
60 	gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET);
61 }
62 
63 static void mana_gd_init_registers(struct pci_dev *pdev)
64 {
65 	struct gdma_context *gc = pci_get_drvdata(pdev);
66 
67 	if (gc->is_pf)
68 		mana_gd_init_pf_regs(pdev);
69 	else
70 		mana_gd_init_vf_regs(pdev);
71 }
72 
73 /* Suppress logging when we set timeout to zero */
74 bool mana_need_log(struct gdma_context *gc, int err)
75 {
76 	struct hw_channel_context *hwc;
77 
78 	if (err != -ETIMEDOUT)
79 		return true;
80 
81 	if (!gc)
82 		return true;
83 
84 	hwc = gc->hwc.driver_data;
85 	if (hwc && hwc->hwc_timeout == 0)
86 		return false;
87 
88 	return true;
89 }
90 
91 static int mana_gd_query_max_resources(struct pci_dev *pdev)
92 {
93 	struct gdma_context *gc = pci_get_drvdata(pdev);
94 	struct gdma_query_max_resources_resp resp = {};
95 	struct gdma_general_req req = {};
96 	int err;
97 
98 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
99 			     sizeof(req), sizeof(resp));
100 
101 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
102 	if (err || resp.hdr.status) {
103 		dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n",
104 			err, resp.hdr.status);
105 		return err ? err : -EPROTO;
106 	}
107 
108 	if (!pci_msix_can_alloc_dyn(pdev)) {
109 		if (gc->num_msix_usable > resp.max_msix)
110 			gc->num_msix_usable = resp.max_msix;
111 	} else {
112 		/* If dynamic allocation is enabled we have already allocated
113 		 * hwc msi
114 		 */
115 		gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1);
116 	}
117 
118 	if (gc->num_msix_usable <= 1)
119 		return -ENOSPC;
120 
121 	gc->max_num_queues = num_online_cpus();
122 	if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
123 		gc->max_num_queues = MANA_MAX_NUM_QUEUES;
124 
125 	if (gc->max_num_queues > resp.max_eq)
126 		gc->max_num_queues = resp.max_eq;
127 
128 	if (gc->max_num_queues > resp.max_cq)
129 		gc->max_num_queues = resp.max_cq;
130 
131 	if (gc->max_num_queues > resp.max_sq)
132 		gc->max_num_queues = resp.max_sq;
133 
134 	if (gc->max_num_queues > resp.max_rq)
135 		gc->max_num_queues = resp.max_rq;
136 
137 	/* The Hardware Channel (HWC) used 1 MSI-X */
138 	if (gc->max_num_queues > gc->num_msix_usable - 1)
139 		gc->max_num_queues = gc->num_msix_usable - 1;
140 
141 	return 0;
142 }
143 
144 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val)
145 {
146 	struct gdma_context *gc = pci_get_drvdata(pdev);
147 	struct gdma_query_hwc_timeout_resp resp = {};
148 	struct gdma_query_hwc_timeout_req req = {};
149 	int err;
150 
151 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT,
152 			     sizeof(req), sizeof(resp));
153 	req.timeout_ms = *timeout_val;
154 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
155 	if (err || resp.hdr.status)
156 		return err ? err : -EPROTO;
157 
158 	*timeout_val = resp.timeout_ms;
159 
160 	return 0;
161 }
162 
163 static int mana_gd_detect_devices(struct pci_dev *pdev)
164 {
165 	struct gdma_context *gc = pci_get_drvdata(pdev);
166 	struct gdma_list_devices_resp resp = {};
167 	struct gdma_general_req req = {};
168 	struct gdma_dev_id dev;
169 	int found_dev = 0;
170 	u16 dev_type;
171 	int err;
172 	u32 i;
173 
174 	mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
175 			     sizeof(resp));
176 
177 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
178 	if (err || resp.hdr.status) {
179 		dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err,
180 			resp.hdr.status);
181 		return err ? err : -EPROTO;
182 	}
183 
184 	for (i = 0; i < GDMA_DEV_LIST_SIZE &&
185 	     found_dev < resp.num_of_devs; i++) {
186 		dev = resp.devs[i];
187 		dev_type = dev.type;
188 
189 		/* Skip empty devices */
190 		if (dev.as_uint32 == 0)
191 			continue;
192 
193 		found_dev++;
194 
195 		/* HWC is already detected in mana_hwc_create_channel(). */
196 		if (dev_type == GDMA_DEVICE_HWC)
197 			continue;
198 
199 		if (dev_type == GDMA_DEVICE_MANA) {
200 			gc->mana.gdma_context = gc;
201 			gc->mana.dev_id = dev;
202 		} else if (dev_type == GDMA_DEVICE_MANA_IB) {
203 			gc->mana_ib.dev_id = dev;
204 			gc->mana_ib.gdma_context = gc;
205 		}
206 	}
207 
208 	return gc->mana.dev_id.type == 0 ? -ENODEV : 0;
209 }
210 
211 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req,
212 			 u32 resp_len, void *resp)
213 {
214 	struct hw_channel_context *hwc = gc->hwc.driver_data;
215 
216 	return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
217 }
218 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA");
219 
220 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
221 			 struct gdma_mem_info *gmi)
222 {
223 	dma_addr_t dma_handle;
224 	void *buf;
225 
226 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
227 		return -EINVAL;
228 
229 	gmi->dev = gc->dev;
230 	buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL);
231 	if (!buf)
232 		return -ENOMEM;
233 
234 	gmi->dma_handle = dma_handle;
235 	gmi->virt_addr = buf;
236 	gmi->length = length;
237 
238 	return 0;
239 }
240 
241 void mana_gd_free_memory(struct gdma_mem_info *gmi)
242 {
243 	dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr,
244 			  gmi->dma_handle);
245 }
246 
247 static int mana_gd_create_hw_eq(struct gdma_context *gc,
248 				struct gdma_queue *queue)
249 {
250 	struct gdma_create_queue_resp resp = {};
251 	struct gdma_create_queue_req req = {};
252 	int err;
253 
254 	if (queue->type != GDMA_EQ)
255 		return -EINVAL;
256 
257 	mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
258 			     sizeof(req), sizeof(resp));
259 
260 	req.hdr.dev_id = queue->gdma_dev->dev_id;
261 	req.type = queue->type;
262 	req.pdid = queue->gdma_dev->pdid;
263 	req.doolbell_id = queue->gdma_dev->doorbell;
264 	req.gdma_region = queue->mem_info.dma_region_handle;
265 	req.queue_size = queue->queue_size;
266 	req.log2_throttle_limit = queue->eq.log2_throttle_limit;
267 	req.eq_pci_msix_index = queue->eq.msix_index;
268 
269 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
270 	if (err || resp.hdr.status) {
271 		dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err,
272 			resp.hdr.status);
273 		return err ? err : -EPROTO;
274 	}
275 
276 	queue->id = resp.queue_index;
277 	queue->eq.disable_needed = true;
278 	queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
279 	return 0;
280 }
281 
282 static int mana_gd_disable_queue(struct gdma_queue *queue)
283 {
284 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
285 	struct gdma_disable_queue_req req = {};
286 	struct gdma_general_resp resp = {};
287 	int err;
288 
289 	WARN_ON(queue->type != GDMA_EQ);
290 
291 	mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
292 			     sizeof(req), sizeof(resp));
293 
294 	req.hdr.dev_id = queue->gdma_dev->dev_id;
295 	req.type = queue->type;
296 	req.queue_index =  queue->id;
297 	req.alloc_res_id_on_creation = 1;
298 
299 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
300 	if (err || resp.hdr.status) {
301 		if (mana_need_log(gc, err))
302 			dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err,
303 				resp.hdr.status);
304 		return err ? err : -EPROTO;
305 	}
306 
307 	return 0;
308 }
309 
310 #define DOORBELL_OFFSET_SQ	0x0
311 #define DOORBELL_OFFSET_RQ	0x400
312 #define DOORBELL_OFFSET_CQ	0x800
313 #define DOORBELL_OFFSET_EQ	0xFF8
314 
315 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index,
316 				  enum gdma_queue_type q_type, u32 qid,
317 				  u32 tail_ptr, u8 num_req)
318 {
319 	void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index;
320 	union gdma_doorbell_entry e = {};
321 
322 	switch (q_type) {
323 	case GDMA_EQ:
324 		e.eq.id = qid;
325 		e.eq.tail_ptr = tail_ptr;
326 		e.eq.arm = num_req;
327 
328 		addr += DOORBELL_OFFSET_EQ;
329 		break;
330 
331 	case GDMA_CQ:
332 		e.cq.id = qid;
333 		e.cq.tail_ptr = tail_ptr;
334 		e.cq.arm = num_req;
335 
336 		addr += DOORBELL_OFFSET_CQ;
337 		break;
338 
339 	case GDMA_RQ:
340 		e.rq.id = qid;
341 		e.rq.tail_ptr = tail_ptr;
342 		e.rq.wqe_cnt = num_req;
343 
344 		addr += DOORBELL_OFFSET_RQ;
345 		break;
346 
347 	case GDMA_SQ:
348 		e.sq.id = qid;
349 		e.sq.tail_ptr = tail_ptr;
350 
351 		addr += DOORBELL_OFFSET_SQ;
352 		break;
353 
354 	default:
355 		WARN_ON(1);
356 		return;
357 	}
358 
359 	/* Ensure all writes are done before ring doorbell */
360 	wmb();
361 
362 	writeq(e.as_uint64, addr);
363 }
364 
365 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
366 {
367 	/* Hardware Spec specifies that software client should set 0 for
368 	 * wqe_cnt for Receive Queues. This value is not used in Send Queues.
369 	 */
370 	mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
371 			      queue->id, queue->head * GDMA_WQE_BU_SIZE, 0);
372 }
373 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA");
374 
375 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit)
376 {
377 	struct gdma_context *gc = cq->gdma_dev->gdma_context;
378 
379 	u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE;
380 
381 	u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
382 
383 	mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
384 			      head, arm_bit);
385 }
386 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA");
387 
388 #define MANA_SERVICE_PERIOD 10
389 
390 static void mana_serv_fpga(struct pci_dev *pdev)
391 {
392 	struct pci_bus *bus, *parent;
393 
394 	pci_lock_rescan_remove();
395 
396 	bus = pdev->bus;
397 	if (!bus) {
398 		dev_err(&pdev->dev, "MANA service: no bus\n");
399 		goto out;
400 	}
401 
402 	parent = bus->parent;
403 	if (!parent) {
404 		dev_err(&pdev->dev, "MANA service: no parent bus\n");
405 		goto out;
406 	}
407 
408 	pci_stop_and_remove_bus_device(bus->self);
409 
410 	msleep(MANA_SERVICE_PERIOD * 1000);
411 
412 	pci_rescan_bus(parent);
413 
414 out:
415 	pci_unlock_rescan_remove();
416 }
417 
418 static void mana_serv_reset(struct pci_dev *pdev)
419 {
420 	struct gdma_context *gc = pci_get_drvdata(pdev);
421 	struct hw_channel_context *hwc;
422 
423 	if (!gc) {
424 		dev_err(&pdev->dev, "MANA service: no GC\n");
425 		return;
426 	}
427 
428 	hwc = gc->hwc.driver_data;
429 	if (!hwc) {
430 		dev_err(&pdev->dev, "MANA service: no HWC\n");
431 		goto out;
432 	}
433 
434 	/* HWC is not responding in this case, so don't wait */
435 	hwc->hwc_timeout = 0;
436 
437 	dev_info(&pdev->dev, "MANA reset cycle start\n");
438 
439 	mana_gd_suspend(pdev, PMSG_SUSPEND);
440 
441 	msleep(MANA_SERVICE_PERIOD * 1000);
442 
443 	mana_gd_resume(pdev);
444 
445 	dev_info(&pdev->dev, "MANA reset cycle completed\n");
446 
447 out:
448 	gc->in_service = false;
449 }
450 
451 struct mana_serv_work {
452 	struct work_struct serv_work;
453 	struct pci_dev *pdev;
454 	enum gdma_eqe_type type;
455 };
456 
457 static void mana_serv_func(struct work_struct *w)
458 {
459 	struct mana_serv_work *mns_wk;
460 	struct pci_dev *pdev;
461 
462 	mns_wk = container_of(w, struct mana_serv_work, serv_work);
463 	pdev = mns_wk->pdev;
464 
465 	if (!pdev)
466 		goto out;
467 
468 	switch (mns_wk->type) {
469 	case GDMA_EQE_HWC_FPGA_RECONFIG:
470 		mana_serv_fpga(pdev);
471 		break;
472 
473 	case GDMA_EQE_HWC_RESET_REQUEST:
474 		mana_serv_reset(pdev);
475 		break;
476 
477 	default:
478 		dev_err(&pdev->dev, "MANA service: unknown type %d\n",
479 			mns_wk->type);
480 		break;
481 	}
482 
483 out:
484 	pci_dev_put(pdev);
485 	kfree(mns_wk);
486 	module_put(THIS_MODULE);
487 }
488 
489 static void mana_gd_process_eqe(struct gdma_queue *eq)
490 {
491 	u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
492 	struct gdma_context *gc = eq->gdma_dev->gdma_context;
493 	struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
494 	struct mana_serv_work *mns_wk;
495 	union gdma_eqe_info eqe_info;
496 	enum gdma_eqe_type type;
497 	struct gdma_event event;
498 	struct gdma_queue *cq;
499 	struct gdma_eqe *eqe;
500 	u32 cq_id;
501 
502 	eqe = &eq_eqe_ptr[head];
503 	eqe_info.as_uint32 = eqe->eqe_info;
504 	type = eqe_info.type;
505 
506 	switch (type) {
507 	case GDMA_EQE_COMPLETION:
508 		cq_id = eqe->details[0] & 0xFFFFFF;
509 		if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs))
510 			break;
511 
512 		cq = gc->cq_table[cq_id];
513 		if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id))
514 			break;
515 
516 		if (cq->cq.callback)
517 			cq->cq.callback(cq->cq.context, cq);
518 
519 		break;
520 
521 	case GDMA_EQE_TEST_EVENT:
522 		gc->test_event_eq_id = eq->id;
523 		complete(&gc->eq_test_event);
524 		break;
525 
526 	case GDMA_EQE_HWC_INIT_EQ_ID_DB:
527 	case GDMA_EQE_HWC_INIT_DATA:
528 	case GDMA_EQE_HWC_INIT_DONE:
529 	case GDMA_EQE_HWC_SOC_SERVICE:
530 	case GDMA_EQE_RNIC_QP_FATAL:
531 	case GDMA_EQE_HWC_SOC_RECONFIG_DATA:
532 		if (!eq->eq.callback)
533 			break;
534 
535 		event.type = type;
536 		memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
537 		eq->eq.callback(eq->eq.context, eq, &event);
538 		break;
539 
540 	case GDMA_EQE_HWC_FPGA_RECONFIG:
541 	case GDMA_EQE_HWC_RESET_REQUEST:
542 		dev_info(gc->dev, "Recv MANA service type:%d\n", type);
543 
544 		if (gc->in_service) {
545 			dev_info(gc->dev, "Already in service\n");
546 			break;
547 		}
548 
549 		if (!try_module_get(THIS_MODULE)) {
550 			dev_info(gc->dev, "Module is unloading\n");
551 			break;
552 		}
553 
554 		mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC);
555 		if (!mns_wk) {
556 			module_put(THIS_MODULE);
557 			break;
558 		}
559 
560 		dev_info(gc->dev, "Start MANA service type:%d\n", type);
561 		gc->in_service = true;
562 		mns_wk->pdev = to_pci_dev(gc->dev);
563 		mns_wk->type = type;
564 		pci_dev_get(mns_wk->pdev);
565 		INIT_WORK(&mns_wk->serv_work, mana_serv_func);
566 		schedule_work(&mns_wk->serv_work);
567 		break;
568 
569 	default:
570 		break;
571 	}
572 }
573 
574 static void mana_gd_process_eq_events(void *arg)
575 {
576 	u32 owner_bits, new_bits, old_bits;
577 	union gdma_eqe_info eqe_info;
578 	struct gdma_eqe *eq_eqe_ptr;
579 	struct gdma_queue *eq = arg;
580 	struct gdma_context *gc;
581 	struct gdma_eqe *eqe;
582 	u32 head, num_eqe;
583 	int i;
584 
585 	gc = eq->gdma_dev->gdma_context;
586 
587 	num_eqe = eq->queue_size / GDMA_EQE_SIZE;
588 	eq_eqe_ptr = eq->queue_mem_ptr;
589 
590 	/* Process up to 5 EQEs at a time, and update the HW head. */
591 	for (i = 0; i < 5; i++) {
592 		eqe = &eq_eqe_ptr[eq->head % num_eqe];
593 		eqe_info.as_uint32 = eqe->eqe_info;
594 		owner_bits = eqe_info.owner_bits;
595 
596 		old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
597 		/* No more entries */
598 		if (owner_bits == old_bits) {
599 			/* return here without ringing the doorbell */
600 			if (i == 0)
601 				return;
602 			break;
603 		}
604 
605 		new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
606 		if (owner_bits != new_bits) {
607 			dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id);
608 			break;
609 		}
610 
611 		/* Per GDMA spec, rmb is necessary after checking owner_bits, before
612 		 * reading eqe.
613 		 */
614 		rmb();
615 
616 		mana_gd_process_eqe(eq);
617 
618 		eq->head++;
619 	}
620 
621 	head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
622 
623 	mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
624 			      head, SET_ARM_BIT);
625 }
626 
627 static int mana_gd_register_irq(struct gdma_queue *queue,
628 				const struct gdma_queue_spec *spec)
629 {
630 	struct gdma_dev *gd = queue->gdma_dev;
631 	struct gdma_irq_context *gic;
632 	struct gdma_context *gc;
633 	unsigned int msi_index;
634 	unsigned long flags;
635 	struct device *dev;
636 	int err = 0;
637 
638 	gc = gd->gdma_context;
639 	dev = gc->dev;
640 	msi_index = spec->eq.msix_index;
641 
642 	if (msi_index >= gc->num_msix_usable) {
643 		err = -ENOSPC;
644 		dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u",
645 			err, msi_index, gc->num_msix_usable);
646 
647 		return err;
648 	}
649 
650 	queue->eq.msix_index = msi_index;
651 	gic = xa_load(&gc->irq_contexts, msi_index);
652 	if (WARN_ON(!gic))
653 		return -EINVAL;
654 
655 	spin_lock_irqsave(&gic->lock, flags);
656 	list_add_rcu(&queue->entry, &gic->eq_list);
657 	spin_unlock_irqrestore(&gic->lock, flags);
658 
659 	return 0;
660 }
661 
662 static void mana_gd_deregister_irq(struct gdma_queue *queue)
663 {
664 	struct gdma_dev *gd = queue->gdma_dev;
665 	struct gdma_irq_context *gic;
666 	struct gdma_context *gc;
667 	unsigned int msix_index;
668 	unsigned long flags;
669 	struct gdma_queue *eq;
670 
671 	gc = gd->gdma_context;
672 
673 	/* At most num_online_cpus() + 1 interrupts are used. */
674 	msix_index = queue->eq.msix_index;
675 	if (WARN_ON(msix_index >= gc->num_msix_usable))
676 		return;
677 
678 	gic = xa_load(&gc->irq_contexts, msix_index);
679 	if (WARN_ON(!gic))
680 		return;
681 
682 	spin_lock_irqsave(&gic->lock, flags);
683 	list_for_each_entry_rcu(eq, &gic->eq_list, entry) {
684 		if (queue == eq) {
685 			list_del_rcu(&eq->entry);
686 			break;
687 		}
688 	}
689 	spin_unlock_irqrestore(&gic->lock, flags);
690 
691 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
692 	synchronize_rcu();
693 }
694 
695 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
696 {
697 	struct gdma_generate_test_event_req req = {};
698 	struct gdma_general_resp resp = {};
699 	struct device *dev = gc->dev;
700 	int err;
701 
702 	mutex_lock(&gc->eq_test_event_mutex);
703 
704 	init_completion(&gc->eq_test_event);
705 	gc->test_event_eq_id = INVALID_QUEUE_ID;
706 
707 	mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
708 			     sizeof(req), sizeof(resp));
709 
710 	req.hdr.dev_id = eq->gdma_dev->dev_id;
711 	req.queue_index = eq->id;
712 
713 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
714 	if (err) {
715 		if (mana_need_log(gc, err))
716 			dev_err(dev, "test_eq failed: %d\n", err);
717 		goto out;
718 	}
719 
720 	err = -EPROTO;
721 
722 	if (resp.hdr.status) {
723 		dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status);
724 		goto out;
725 	}
726 
727 	if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) {
728 		dev_err(dev, "test_eq timed out on queue %d\n", eq->id);
729 		goto out;
730 	}
731 
732 	if (eq->id != gc->test_event_eq_id) {
733 		dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n",
734 			gc->test_event_eq_id, eq->id);
735 		goto out;
736 	}
737 
738 	err = 0;
739 out:
740 	mutex_unlock(&gc->eq_test_event_mutex);
741 	return err;
742 }
743 
744 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
745 			       struct gdma_queue *queue)
746 {
747 	int err;
748 
749 	if (flush_evenets) {
750 		err = mana_gd_test_eq(gc, queue);
751 		if (err && mana_need_log(gc, err))
752 			dev_warn(gc->dev, "Failed to flush EQ: %d\n", err);
753 	}
754 
755 	mana_gd_deregister_irq(queue);
756 
757 	if (queue->eq.disable_needed)
758 		mana_gd_disable_queue(queue);
759 }
760 
761 static int mana_gd_create_eq(struct gdma_dev *gd,
762 			     const struct gdma_queue_spec *spec,
763 			     bool create_hwq, struct gdma_queue *queue)
764 {
765 	struct gdma_context *gc = gd->gdma_context;
766 	struct device *dev = gc->dev;
767 	u32 log2_num_entries;
768 	int err;
769 
770 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
771 	queue->id = INVALID_QUEUE_ID;
772 
773 	log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
774 
775 	if (spec->eq.log2_throttle_limit > log2_num_entries) {
776 		dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n",
777 			spec->eq.log2_throttle_limit, log2_num_entries);
778 		return -EINVAL;
779 	}
780 
781 	err = mana_gd_register_irq(queue, spec);
782 	if (err) {
783 		dev_err(dev, "Failed to register irq: %d\n", err);
784 		return err;
785 	}
786 
787 	queue->eq.callback = spec->eq.callback;
788 	queue->eq.context = spec->eq.context;
789 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
790 	queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
791 
792 	if (create_hwq) {
793 		err = mana_gd_create_hw_eq(gc, queue);
794 		if (err)
795 			goto out;
796 
797 		err = mana_gd_test_eq(gc, queue);
798 		if (err)
799 			goto out;
800 	}
801 
802 	return 0;
803 out:
804 	dev_err(dev, "Failed to create EQ: %d\n", err);
805 	mana_gd_destroy_eq(gc, false, queue);
806 	return err;
807 }
808 
809 static void mana_gd_create_cq(const struct gdma_queue_spec *spec,
810 			      struct gdma_queue *queue)
811 {
812 	u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
813 
814 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
815 	queue->cq.parent = spec->cq.parent_eq;
816 	queue->cq.context = spec->cq.context;
817 	queue->cq.callback = spec->cq.callback;
818 }
819 
820 static void mana_gd_destroy_cq(struct gdma_context *gc,
821 			       struct gdma_queue *queue)
822 {
823 	u32 id = queue->id;
824 
825 	if (id >= gc->max_num_cqs)
826 		return;
827 
828 	if (!gc->cq_table[id])
829 		return;
830 
831 	gc->cq_table[id] = NULL;
832 }
833 
834 int mana_gd_create_hwc_queue(struct gdma_dev *gd,
835 			     const struct gdma_queue_spec *spec,
836 			     struct gdma_queue **queue_ptr)
837 {
838 	struct gdma_context *gc = gd->gdma_context;
839 	struct gdma_mem_info *gmi;
840 	struct gdma_queue *queue;
841 	int err;
842 
843 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
844 	if (!queue)
845 		return -ENOMEM;
846 
847 	gmi = &queue->mem_info;
848 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
849 	if (err) {
850 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
851 			spec->type, spec->queue_size, err);
852 		goto free_q;
853 	}
854 
855 	queue->head = 0;
856 	queue->tail = 0;
857 	queue->queue_mem_ptr = gmi->virt_addr;
858 	queue->queue_size = spec->queue_size;
859 	queue->monitor_avl_buf = spec->monitor_avl_buf;
860 	queue->type = spec->type;
861 	queue->gdma_dev = gd;
862 
863 	if (spec->type == GDMA_EQ)
864 		err = mana_gd_create_eq(gd, spec, false, queue);
865 	else if (spec->type == GDMA_CQ)
866 		mana_gd_create_cq(spec, queue);
867 
868 	if (err)
869 		goto out;
870 
871 	*queue_ptr = queue;
872 	return 0;
873 out:
874 	dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n",
875 		spec->type, spec->queue_size, err);
876 	mana_gd_free_memory(gmi);
877 free_q:
878 	kfree(queue);
879 	return err;
880 }
881 
882 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle)
883 {
884 	struct gdma_destroy_dma_region_req req = {};
885 	struct gdma_general_resp resp = {};
886 	int err;
887 
888 	if (dma_region_handle == GDMA_INVALID_DMA_REGION)
889 		return 0;
890 
891 	mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
892 			     sizeof(resp));
893 	req.dma_region_handle = dma_region_handle;
894 
895 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
896 	if (err || resp.hdr.status) {
897 		if (mana_need_log(gc, err))
898 			dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n",
899 				err, resp.hdr.status);
900 		return -EPROTO;
901 	}
902 
903 	return 0;
904 }
905 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA");
906 
907 static int mana_gd_create_dma_region(struct gdma_dev *gd,
908 				     struct gdma_mem_info *gmi)
909 {
910 	unsigned int num_page = gmi->length / MANA_PAGE_SIZE;
911 	struct gdma_create_dma_region_req *req = NULL;
912 	struct gdma_create_dma_region_resp resp = {};
913 	struct gdma_context *gc = gd->gdma_context;
914 	struct hw_channel_context *hwc;
915 	u32 length = gmi->length;
916 	size_t req_msg_size;
917 	int err;
918 	int i;
919 
920 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
921 		return -EINVAL;
922 
923 	if (!MANA_PAGE_ALIGNED(gmi->virt_addr))
924 		return -EINVAL;
925 
926 	hwc = gc->hwc.driver_data;
927 	req_msg_size = struct_size(req, page_addr_list, num_page);
928 	if (req_msg_size > hwc->max_req_msg_size)
929 		return -EINVAL;
930 
931 	req = kzalloc(req_msg_size, GFP_KERNEL);
932 	if (!req)
933 		return -ENOMEM;
934 
935 	mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
936 			     req_msg_size, sizeof(resp));
937 	req->length = length;
938 	req->offset_in_page = 0;
939 	req->gdma_page_type = GDMA_PAGE_TYPE_4K;
940 	req->page_count = num_page;
941 	req->page_addr_list_len = num_page;
942 
943 	for (i = 0; i < num_page; i++)
944 		req->page_addr_list[i] = gmi->dma_handle +  i * MANA_PAGE_SIZE;
945 
946 	err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
947 	if (err)
948 		goto out;
949 
950 	if (resp.hdr.status ||
951 	    resp.dma_region_handle == GDMA_INVALID_DMA_REGION) {
952 		dev_err(gc->dev, "Failed to create DMA region: 0x%x\n",
953 			resp.hdr.status);
954 		err = -EPROTO;
955 		goto out;
956 	}
957 
958 	gmi->dma_region_handle = resp.dma_region_handle;
959 	dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n",
960 		gmi->dma_region_handle);
961 out:
962 	if (err)
963 		dev_dbg(gc->dev,
964 			"Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n",
965 			length, req->gdma_page_type, resp.hdr.status, err);
966 	kfree(req);
967 	return err;
968 }
969 
970 int mana_gd_create_mana_eq(struct gdma_dev *gd,
971 			   const struct gdma_queue_spec *spec,
972 			   struct gdma_queue **queue_ptr)
973 {
974 	struct gdma_context *gc = gd->gdma_context;
975 	struct gdma_mem_info *gmi;
976 	struct gdma_queue *queue;
977 	int err;
978 
979 	if (spec->type != GDMA_EQ)
980 		return -EINVAL;
981 
982 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
983 	if (!queue)
984 		return -ENOMEM;
985 
986 	gmi = &queue->mem_info;
987 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
988 	if (err) {
989 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
990 			spec->type, spec->queue_size, err);
991 		goto free_q;
992 	}
993 
994 	err = mana_gd_create_dma_region(gd, gmi);
995 	if (err)
996 		goto out;
997 
998 	queue->head = 0;
999 	queue->tail = 0;
1000 	queue->queue_mem_ptr = gmi->virt_addr;
1001 	queue->queue_size = spec->queue_size;
1002 	queue->monitor_avl_buf = spec->monitor_avl_buf;
1003 	queue->type = spec->type;
1004 	queue->gdma_dev = gd;
1005 
1006 	err = mana_gd_create_eq(gd, spec, true, queue);
1007 	if (err)
1008 		goto out;
1009 
1010 	*queue_ptr = queue;
1011 	return 0;
1012 out:
1013 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1014 		spec->type, spec->queue_size, err);
1015 	mana_gd_free_memory(gmi);
1016 free_q:
1017 	kfree(queue);
1018 	return err;
1019 }
1020 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA");
1021 
1022 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
1023 			      const struct gdma_queue_spec *spec,
1024 			      struct gdma_queue **queue_ptr)
1025 {
1026 	struct gdma_context *gc = gd->gdma_context;
1027 	struct gdma_mem_info *gmi;
1028 	struct gdma_queue *queue;
1029 	int err;
1030 
1031 	if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
1032 	    spec->type != GDMA_RQ)
1033 		return -EINVAL;
1034 
1035 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1036 	if (!queue)
1037 		return -ENOMEM;
1038 
1039 	gmi = &queue->mem_info;
1040 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
1041 	if (err) {
1042 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n",
1043 			spec->type, spec->queue_size, err);
1044 		goto free_q;
1045 	}
1046 
1047 	err = mana_gd_create_dma_region(gd, gmi);
1048 	if (err)
1049 		goto out;
1050 
1051 	queue->head = 0;
1052 	queue->tail = 0;
1053 	queue->queue_mem_ptr = gmi->virt_addr;
1054 	queue->queue_size = spec->queue_size;
1055 	queue->monitor_avl_buf = spec->monitor_avl_buf;
1056 	queue->type = spec->type;
1057 	queue->gdma_dev = gd;
1058 
1059 	if (spec->type == GDMA_CQ)
1060 		mana_gd_create_cq(spec, queue);
1061 
1062 	*queue_ptr = queue;
1063 	return 0;
1064 out:
1065 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1066 		spec->type, spec->queue_size, err);
1067 	mana_gd_free_memory(gmi);
1068 free_q:
1069 	kfree(queue);
1070 	return err;
1071 }
1072 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA");
1073 
1074 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
1075 {
1076 	struct gdma_mem_info *gmi = &queue->mem_info;
1077 
1078 	switch (queue->type) {
1079 	case GDMA_EQ:
1080 		mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
1081 		break;
1082 
1083 	case GDMA_CQ:
1084 		mana_gd_destroy_cq(gc, queue);
1085 		break;
1086 
1087 	case GDMA_RQ:
1088 		break;
1089 
1090 	case GDMA_SQ:
1091 		break;
1092 
1093 	default:
1094 		dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n",
1095 			queue->type);
1096 		return;
1097 	}
1098 
1099 	mana_gd_destroy_dma_region(gc, gmi->dma_region_handle);
1100 	mana_gd_free_memory(gmi);
1101 	kfree(queue);
1102 }
1103 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA");
1104 
1105 int mana_gd_verify_vf_version(struct pci_dev *pdev)
1106 {
1107 	struct gdma_context *gc = pci_get_drvdata(pdev);
1108 	struct gdma_verify_ver_resp resp = {};
1109 	struct gdma_verify_ver_req req = {};
1110 	struct hw_channel_context *hwc;
1111 	int err;
1112 
1113 	hwc = gc->hwc.driver_data;
1114 	mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
1115 			     sizeof(req), sizeof(resp));
1116 
1117 	req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
1118 	req.protocol_ver_max = GDMA_PROTOCOL_LAST;
1119 
1120 	req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1;
1121 	req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2;
1122 	req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3;
1123 	req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4;
1124 
1125 	req.drv_ver = 0;	/* Unused*/
1126 	req.os_type = 0x10;	/* Linux */
1127 	req.os_ver_major = LINUX_VERSION_MAJOR;
1128 	req.os_ver_minor = LINUX_VERSION_PATCHLEVEL;
1129 	req.os_ver_build = LINUX_VERSION_SUBLEVEL;
1130 	strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1));
1131 	strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2));
1132 	strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3));
1133 
1134 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1135 	if (err || resp.hdr.status) {
1136 		dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n",
1137 			err, resp.hdr.status);
1138 		return err ? err : -EPROTO;
1139 	}
1140 	gc->pf_cap_flags1 = resp.pf_cap_flags1;
1141 	if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) {
1142 		err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout);
1143 		if (err) {
1144 			dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err);
1145 			return err;
1146 		}
1147 		dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout);
1148 	}
1149 	return 0;
1150 }
1151 
1152 int mana_gd_register_device(struct gdma_dev *gd)
1153 {
1154 	struct gdma_context *gc = gd->gdma_context;
1155 	struct gdma_register_device_resp resp = {};
1156 	struct gdma_general_req req = {};
1157 	int err;
1158 
1159 	gd->pdid = INVALID_PDID;
1160 	gd->doorbell = INVALID_DOORBELL;
1161 	gd->gpa_mkey = INVALID_MEM_KEY;
1162 
1163 	mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
1164 			     sizeof(resp));
1165 
1166 	req.hdr.dev_id = gd->dev_id;
1167 
1168 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1169 	if (err || resp.hdr.status) {
1170 		dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n",
1171 			err, resp.hdr.status);
1172 		return err ? err : -EPROTO;
1173 	}
1174 
1175 	gd->pdid = resp.pdid;
1176 	gd->gpa_mkey = resp.gpa_mkey;
1177 	gd->doorbell = resp.db_id;
1178 
1179 	return 0;
1180 }
1181 
1182 int mana_gd_deregister_device(struct gdma_dev *gd)
1183 {
1184 	struct gdma_context *gc = gd->gdma_context;
1185 	struct gdma_general_resp resp = {};
1186 	struct gdma_general_req req = {};
1187 	int err;
1188 
1189 	if (gd->pdid == INVALID_PDID)
1190 		return -EINVAL;
1191 
1192 	mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
1193 			     sizeof(resp));
1194 
1195 	req.hdr.dev_id = gd->dev_id;
1196 
1197 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1198 	if (err || resp.hdr.status) {
1199 		if (mana_need_log(gc, err))
1200 			dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n",
1201 				err, resp.hdr.status);
1202 		if (!err)
1203 			err = -EPROTO;
1204 	}
1205 
1206 	gd->pdid = INVALID_PDID;
1207 	gd->doorbell = INVALID_DOORBELL;
1208 	gd->gpa_mkey = INVALID_MEM_KEY;
1209 
1210 	return err;
1211 }
1212 
1213 u32 mana_gd_wq_avail_space(struct gdma_queue *wq)
1214 {
1215 	u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
1216 	u32 wq_size = wq->queue_size;
1217 
1218 	WARN_ON_ONCE(used_space > wq_size);
1219 
1220 	return wq_size - used_space;
1221 }
1222 
1223 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset)
1224 {
1225 	u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
1226 
1227 	WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size);
1228 
1229 	return wq->queue_mem_ptr + offset;
1230 }
1231 
1232 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
1233 				    enum gdma_queue_type q_type,
1234 				    u32 client_oob_size, u32 sgl_data_size,
1235 				    u8 *wqe_ptr)
1236 {
1237 	bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
1238 	bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
1239 	struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
1240 	u8 *ptr;
1241 
1242 	memset(header, 0, sizeof(struct gdma_wqe));
1243 	header->num_sge = wqe_req->num_sge;
1244 	header->inline_oob_size_div4 = client_oob_size / sizeof(u32);
1245 
1246 	if (oob_in_sgl) {
1247 		WARN_ON_ONCE(wqe_req->num_sge < 2);
1248 
1249 		header->client_oob_in_sgl = 1;
1250 
1251 		if (pad_data)
1252 			header->last_vbytes = wqe_req->sgl[0].size;
1253 	}
1254 
1255 	if (q_type == GDMA_SQ)
1256 		header->client_data_unit = wqe_req->client_data_unit;
1257 
1258 	/* The size of gdma_wqe + client_oob_size must be less than or equal
1259 	 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
1260 	 * the queue memory buffer boundary.
1261 	 */
1262 	ptr = wqe_ptr + sizeof(header);
1263 
1264 	if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
1265 		memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
1266 
1267 		if (client_oob_size > wqe_req->inline_oob_size)
1268 			memset(ptr + wqe_req->inline_oob_size, 0,
1269 			       client_oob_size - wqe_req->inline_oob_size);
1270 	}
1271 
1272 	return sizeof(header) + client_oob_size;
1273 }
1274 
1275 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr,
1276 			      const struct gdma_wqe_request *wqe_req)
1277 {
1278 	u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1279 	const u8 *address = (u8 *)wqe_req->sgl;
1280 	u8 *base_ptr, *end_ptr;
1281 	u32 size_to_end;
1282 
1283 	base_ptr = wq->queue_mem_ptr;
1284 	end_ptr = base_ptr + wq->queue_size;
1285 	size_to_end = (u32)(end_ptr - wqe_ptr);
1286 
1287 	if (size_to_end < sgl_size) {
1288 		memcpy(wqe_ptr, address, size_to_end);
1289 
1290 		wqe_ptr = base_ptr;
1291 		address += size_to_end;
1292 		sgl_size -= size_to_end;
1293 	}
1294 
1295 	memcpy(wqe_ptr, address, sgl_size);
1296 }
1297 
1298 int mana_gd_post_work_request(struct gdma_queue *wq,
1299 			      const struct gdma_wqe_request *wqe_req,
1300 			      struct gdma_posted_wqe_info *wqe_info)
1301 {
1302 	u32 client_oob_size = wqe_req->inline_oob_size;
1303 	u32 sgl_data_size;
1304 	u32 max_wqe_size;
1305 	u32 wqe_size;
1306 	u8 *wqe_ptr;
1307 
1308 	if (wqe_req->num_sge == 0)
1309 		return -EINVAL;
1310 
1311 	if (wq->type == GDMA_RQ) {
1312 		if (client_oob_size != 0)
1313 			return -EINVAL;
1314 
1315 		client_oob_size = INLINE_OOB_SMALL_SIZE;
1316 
1317 		max_wqe_size = GDMA_MAX_RQE_SIZE;
1318 	} else {
1319 		if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
1320 		    client_oob_size != INLINE_OOB_LARGE_SIZE)
1321 			return -EINVAL;
1322 
1323 		max_wqe_size = GDMA_MAX_SQE_SIZE;
1324 	}
1325 
1326 	sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1327 	wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
1328 			 sgl_data_size, GDMA_WQE_BU_SIZE);
1329 	if (wqe_size > max_wqe_size)
1330 		return -EINVAL;
1331 
1332 	if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq))
1333 		return -ENOSPC;
1334 
1335 	if (wqe_info)
1336 		wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
1337 
1338 	wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
1339 	wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
1340 					    sgl_data_size, wqe_ptr);
1341 	if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size)
1342 		wqe_ptr -= wq->queue_size;
1343 
1344 	mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
1345 
1346 	wq->head += wqe_size / GDMA_WQE_BU_SIZE;
1347 
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA");
1351 
1352 int mana_gd_post_and_ring(struct gdma_queue *queue,
1353 			  const struct gdma_wqe_request *wqe_req,
1354 			  struct gdma_posted_wqe_info *wqe_info)
1355 {
1356 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
1357 	int err;
1358 
1359 	err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
1360 	if (err) {
1361 		dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n",
1362 			queue->type, queue->queue_size, err);
1363 		return err;
1364 	}
1365 
1366 	mana_gd_wq_ring_doorbell(gc, queue);
1367 
1368 	return 0;
1369 }
1370 
1371 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
1372 {
1373 	unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
1374 	struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
1375 	u32 owner_bits, new_bits, old_bits;
1376 	struct gdma_cqe *cqe;
1377 
1378 	cqe = &cq_cqe[cq->head % num_cqe];
1379 	owner_bits = cqe->cqe_info.owner_bits;
1380 
1381 	old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
1382 	/* Return 0 if no more entries. */
1383 	if (owner_bits == old_bits)
1384 		return 0;
1385 
1386 	new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
1387 	/* Return -1 if overflow detected. */
1388 	if (WARN_ON_ONCE(owner_bits != new_bits))
1389 		return -1;
1390 
1391 	/* Per GDMA spec, rmb is necessary after checking owner_bits, before
1392 	 * reading completion info
1393 	 */
1394 	rmb();
1395 
1396 	comp->wq_num = cqe->cqe_info.wq_num;
1397 	comp->is_sq = cqe->cqe_info.is_sq;
1398 	memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
1399 
1400 	return 1;
1401 }
1402 
1403 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
1404 {
1405 	int cqe_idx;
1406 	int ret;
1407 
1408 	for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
1409 		ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
1410 
1411 		if (ret < 0) {
1412 			cq->head -= cqe_idx;
1413 			return ret;
1414 		}
1415 
1416 		if (ret == 0)
1417 			break;
1418 
1419 		cq->head++;
1420 	}
1421 
1422 	return cqe_idx;
1423 }
1424 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA");
1425 
1426 static irqreturn_t mana_gd_intr(int irq, void *arg)
1427 {
1428 	struct gdma_irq_context *gic = arg;
1429 	struct list_head *eq_list = &gic->eq_list;
1430 	struct gdma_queue *eq;
1431 
1432 	rcu_read_lock();
1433 	list_for_each_entry_rcu(eq, eq_list, entry) {
1434 		gic->handler(eq);
1435 	}
1436 	rcu_read_unlock();
1437 
1438 	return IRQ_HANDLED;
1439 }
1440 
1441 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r)
1442 {
1443 	r->map = bitmap_zalloc(res_avail, GFP_KERNEL);
1444 	if (!r->map)
1445 		return -ENOMEM;
1446 
1447 	r->size = res_avail;
1448 	spin_lock_init(&r->lock);
1449 
1450 	return 0;
1451 }
1452 
1453 void mana_gd_free_res_map(struct gdma_resource *r)
1454 {
1455 	bitmap_free(r->map);
1456 	r->map = NULL;
1457 	r->size = 0;
1458 }
1459 
1460 /*
1461  * Spread on CPUs with the following heuristics:
1462  *
1463  * 1. No more than one IRQ per CPU, if possible;
1464  * 2. NUMA locality is the second priority;
1465  * 3. Sibling dislocality is the last priority.
1466  *
1467  * Let's consider this topology:
1468  *
1469  * Node            0               1
1470  * Core        0       1       2       3
1471  * CPU       0   1   2   3   4   5   6   7
1472  *
1473  * The most performant IRQ distribution based on the above topology
1474  * and heuristics may look like this:
1475  *
1476  * IRQ     Nodes   Cores   CPUs
1477  * 0       1       0       0-1
1478  * 1       1       1       2-3
1479  * 2       1       0       0-1
1480  * 3       1       1       2-3
1481  * 4       2       2       4-5
1482  * 5       2       3       6-7
1483  * 6       2       2       4-5
1484  * 7       2       3       6-7
1485  *
1486  * The heuristics is implemented as follows.
1487  *
1488  * The outer for_each() loop resets the 'weight' to the actual number
1489  * of CPUs in the hop. Then inner for_each() loop decrements it by the
1490  * number of sibling groups (cores) while assigning first set of IRQs
1491  * to each group. IRQs 0 and 1 above are distributed this way.
1492  *
1493  * Now, because NUMA locality is more important, we should walk the
1494  * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's
1495  * implemented by the medium while() loop. We do like this unless the
1496  * number of IRQs assigned on this hop will not become equal to number
1497  * of CPUs in the hop (weight == 0). Then we switch to the next hop and
1498  * do the same thing.
1499  */
1500 
1501 static int irq_setup(unsigned int *irqs, unsigned int len, int node,
1502 		     bool skip_first_cpu)
1503 {
1504 	const struct cpumask *next, *prev = cpu_none_mask;
1505 	cpumask_var_t cpus __free(free_cpumask_var);
1506 	int cpu, weight;
1507 
1508 	if (!alloc_cpumask_var(&cpus, GFP_KERNEL))
1509 		return -ENOMEM;
1510 
1511 	rcu_read_lock();
1512 	for_each_numa_hop_mask(next, node) {
1513 		weight = cpumask_weight_andnot(next, prev);
1514 		while (weight > 0) {
1515 			cpumask_andnot(cpus, next, prev);
1516 			for_each_cpu(cpu, cpus) {
1517 				cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
1518 				--weight;
1519 
1520 				if (unlikely(skip_first_cpu)) {
1521 					skip_first_cpu = false;
1522 					continue;
1523 				}
1524 
1525 				if (len-- == 0)
1526 					goto done;
1527 
1528 				irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu));
1529 			}
1530 		}
1531 		prev = next;
1532 	}
1533 done:
1534 	rcu_read_unlock();
1535 	return 0;
1536 }
1537 
1538 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec)
1539 {
1540 	struct gdma_context *gc = pci_get_drvdata(pdev);
1541 	struct gdma_irq_context *gic;
1542 	bool skip_first_cpu = false;
1543 	int *irqs, irq, err, i;
1544 
1545 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1546 	if (!irqs)
1547 		return -ENOMEM;
1548 
1549 	/*
1550 	 * While processing the next pci irq vector, we start with index 1,
1551 	 * as IRQ vector at index 0 is already processed for HWC.
1552 	 * However, the population of irqs array starts with index 0, to be
1553 	 * further used in irq_setup()
1554 	 */
1555 	for (i = 1; i <= nvec; i++) {
1556 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1557 		if (!gic) {
1558 			err = -ENOMEM;
1559 			goto free_irq;
1560 		}
1561 		gic->handler = mana_gd_process_eq_events;
1562 		INIT_LIST_HEAD(&gic->eq_list);
1563 		spin_lock_init(&gic->lock);
1564 
1565 		snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1566 			 i - 1, pci_name(pdev));
1567 
1568 		/* one pci vector is already allocated for HWC */
1569 		irqs[i - 1] = pci_irq_vector(pdev, i);
1570 		if (irqs[i - 1] < 0) {
1571 			err = irqs[i - 1];
1572 			goto free_current_gic;
1573 		}
1574 
1575 		err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic);
1576 		if (err)
1577 			goto free_current_gic;
1578 
1579 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1580 	}
1581 
1582 	/*
1583 	 * When calling irq_setup() for dynamically added IRQs, if number of
1584 	 * CPUs is more than or equal to allocated MSI-X, we need to skip the
1585 	 * first CPU sibling group since they are already affinitized to HWC IRQ
1586 	 */
1587 	cpus_read_lock();
1588 	if (gc->num_msix_usable <= num_online_cpus())
1589 		skip_first_cpu = true;
1590 
1591 	err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu);
1592 	if (err) {
1593 		cpus_read_unlock();
1594 		goto free_irq;
1595 	}
1596 
1597 	cpus_read_unlock();
1598 	kfree(irqs);
1599 	return 0;
1600 
1601 free_current_gic:
1602 	kfree(gic);
1603 free_irq:
1604 	for (i -= 1; i > 0; i--) {
1605 		irq = pci_irq_vector(pdev, i);
1606 		gic = xa_load(&gc->irq_contexts, i);
1607 		if (WARN_ON(!gic))
1608 			continue;
1609 
1610 		irq_update_affinity_hint(irq, NULL);
1611 		free_irq(irq, gic);
1612 		xa_erase(&gc->irq_contexts, i);
1613 		kfree(gic);
1614 	}
1615 	kfree(irqs);
1616 	return err;
1617 }
1618 
1619 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec)
1620 {
1621 	struct gdma_context *gc = pci_get_drvdata(pdev);
1622 	struct gdma_irq_context *gic;
1623 	int *irqs, *start_irqs, irq;
1624 	unsigned int cpu;
1625 	int err, i;
1626 
1627 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1628 	if (!irqs)
1629 		return -ENOMEM;
1630 
1631 	start_irqs = irqs;
1632 
1633 	for (i = 0; i < nvec; i++) {
1634 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1635 		if (!gic) {
1636 			err = -ENOMEM;
1637 			goto free_irq;
1638 		}
1639 
1640 		gic->handler = mana_gd_process_eq_events;
1641 		INIT_LIST_HEAD(&gic->eq_list);
1642 		spin_lock_init(&gic->lock);
1643 
1644 		if (!i)
1645 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s",
1646 				 pci_name(pdev));
1647 		else
1648 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1649 				 i - 1, pci_name(pdev));
1650 
1651 		irqs[i] = pci_irq_vector(pdev, i);
1652 		if (irqs[i] < 0) {
1653 			err = irqs[i];
1654 			goto free_current_gic;
1655 		}
1656 
1657 		err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic);
1658 		if (err)
1659 			goto free_current_gic;
1660 
1661 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1662 	}
1663 
1664 	/* If number of IRQ is one extra than number of online CPUs,
1665 	 * then we need to assign IRQ0 (hwc irq) and IRQ1 to
1666 	 * same CPU.
1667 	 * Else we will use different CPUs for IRQ0 and IRQ1.
1668 	 * Also we are using cpumask_local_spread instead of
1669 	 * cpumask_first for the node, because the node can be
1670 	 * mem only.
1671 	 */
1672 	cpus_read_lock();
1673 	if (nvec > num_online_cpus()) {
1674 		cpu = cpumask_local_spread(0, gc->numa_node);
1675 		irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu));
1676 		irqs++;
1677 		nvec -= 1;
1678 	}
1679 
1680 	err = irq_setup(irqs, nvec, gc->numa_node, false);
1681 	if (err) {
1682 		cpus_read_unlock();
1683 		goto free_irq;
1684 	}
1685 
1686 	cpus_read_unlock();
1687 	kfree(start_irqs);
1688 	return 0;
1689 
1690 free_current_gic:
1691 	kfree(gic);
1692 free_irq:
1693 	for (i -= 1; i >= 0; i--) {
1694 		irq = pci_irq_vector(pdev, i);
1695 		gic = xa_load(&gc->irq_contexts, i);
1696 		if (WARN_ON(!gic))
1697 			continue;
1698 
1699 		irq_update_affinity_hint(irq, NULL);
1700 		free_irq(irq, gic);
1701 		xa_erase(&gc->irq_contexts, i);
1702 		kfree(gic);
1703 	}
1704 
1705 	kfree(start_irqs);
1706 	return err;
1707 }
1708 
1709 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev)
1710 {
1711 	struct gdma_context *gc = pci_get_drvdata(pdev);
1712 	unsigned int max_irqs, min_irqs;
1713 	int nvec, err;
1714 
1715 	if (pci_msix_can_alloc_dyn(pdev)) {
1716 		max_irqs = 1;
1717 		min_irqs = 1;
1718 	} else {
1719 		/* Need 1 interrupt for HWC */
1720 		max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1;
1721 		min_irqs = 2;
1722 	}
1723 
1724 	nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX);
1725 	if (nvec < 0)
1726 		return nvec;
1727 
1728 	err = mana_gd_setup_irqs(pdev, nvec);
1729 	if (err) {
1730 		pci_free_irq_vectors(pdev);
1731 		return err;
1732 	}
1733 
1734 	gc->num_msix_usable = nvec;
1735 	gc->max_num_msix = nvec;
1736 
1737 	return 0;
1738 }
1739 
1740 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev)
1741 {
1742 	struct gdma_context *gc = pci_get_drvdata(pdev);
1743 	struct msi_map irq_map;
1744 	int max_irqs, i, err;
1745 
1746 	if (!pci_msix_can_alloc_dyn(pdev))
1747 		/* remain irqs are already allocated with HWC IRQ */
1748 		return 0;
1749 
1750 	/* allocate only remaining IRQs*/
1751 	max_irqs = gc->num_msix_usable - 1;
1752 
1753 	for (i = 1; i <= max_irqs; i++) {
1754 		irq_map = pci_msix_alloc_irq_at(pdev, i, NULL);
1755 		if (!irq_map.virq) {
1756 			err = irq_map.index;
1757 			/* caller will handle cleaning up all allocated
1758 			 * irqs, after HWC is destroyed
1759 			 */
1760 			return err;
1761 		}
1762 	}
1763 
1764 	err = mana_gd_setup_dyn_irqs(pdev, max_irqs);
1765 	if (err)
1766 		return err;
1767 
1768 	gc->max_num_msix = gc->max_num_msix + max_irqs;
1769 
1770 	return 0;
1771 }
1772 
1773 static void mana_gd_remove_irqs(struct pci_dev *pdev)
1774 {
1775 	struct gdma_context *gc = pci_get_drvdata(pdev);
1776 	struct gdma_irq_context *gic;
1777 	int irq, i;
1778 
1779 	if (gc->max_num_msix < 1)
1780 		return;
1781 
1782 	for (i = 0; i < gc->max_num_msix; i++) {
1783 		irq = pci_irq_vector(pdev, i);
1784 		if (irq < 0)
1785 			continue;
1786 
1787 		gic = xa_load(&gc->irq_contexts, i);
1788 		if (WARN_ON(!gic))
1789 			continue;
1790 
1791 		/* Need to clear the hint before free_irq */
1792 		irq_update_affinity_hint(irq, NULL);
1793 		free_irq(irq, gic);
1794 		xa_erase(&gc->irq_contexts, i);
1795 		kfree(gic);
1796 	}
1797 
1798 	pci_free_irq_vectors(pdev);
1799 
1800 	gc->max_num_msix = 0;
1801 	gc->num_msix_usable = 0;
1802 }
1803 
1804 static int mana_gd_setup(struct pci_dev *pdev)
1805 {
1806 	struct gdma_context *gc = pci_get_drvdata(pdev);
1807 	int err;
1808 
1809 	mana_gd_init_registers(pdev);
1810 	mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
1811 
1812 	gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0);
1813 	if (!gc->service_wq)
1814 		return -ENOMEM;
1815 
1816 	err = mana_gd_setup_hwc_irqs(pdev);
1817 	if (err) {
1818 		dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n",
1819 			err);
1820 		goto free_workqueue;
1821 	}
1822 
1823 	err = mana_hwc_create_channel(gc);
1824 	if (err)
1825 		goto remove_irq;
1826 
1827 	err = mana_gd_verify_vf_version(pdev);
1828 	if (err)
1829 		goto destroy_hwc;
1830 
1831 	err = mana_gd_query_max_resources(pdev);
1832 	if (err)
1833 		goto destroy_hwc;
1834 
1835 	err = mana_gd_setup_remaining_irqs(pdev);
1836 	if (err) {
1837 		dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err);
1838 		goto destroy_hwc;
1839 	}
1840 
1841 	err = mana_gd_detect_devices(pdev);
1842 	if (err)
1843 		goto destroy_hwc;
1844 
1845 	dev_dbg(&pdev->dev, "mana gdma setup successful\n");
1846 	return 0;
1847 
1848 destroy_hwc:
1849 	mana_hwc_destroy_channel(gc);
1850 remove_irq:
1851 	mana_gd_remove_irqs(pdev);
1852 free_workqueue:
1853 	destroy_workqueue(gc->service_wq);
1854 	dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err);
1855 	return err;
1856 }
1857 
1858 static void mana_gd_cleanup(struct pci_dev *pdev)
1859 {
1860 	struct gdma_context *gc = pci_get_drvdata(pdev);
1861 
1862 	mana_hwc_destroy_channel(gc);
1863 
1864 	mana_gd_remove_irqs(pdev);
1865 
1866 	destroy_workqueue(gc->service_wq);
1867 	dev_dbg(&pdev->dev, "mana gdma cleanup successful\n");
1868 }
1869 
1870 static bool mana_is_pf(unsigned short dev_id)
1871 {
1872 	return dev_id == MANA_PF_DEVICE_ID;
1873 }
1874 
1875 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1876 {
1877 	struct gdma_context *gc;
1878 	void __iomem *bar0_va;
1879 	int bar = 0;
1880 	int err;
1881 
1882 	/* Each port has 2 CQs, each CQ has at most 1 EQE at a time */
1883 	BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE);
1884 
1885 	err = pci_enable_device(pdev);
1886 	if (err) {
1887 		dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err);
1888 		return -ENXIO;
1889 	}
1890 
1891 	pci_set_master(pdev);
1892 
1893 	err = pci_request_regions(pdev, "mana");
1894 	if (err)
1895 		goto disable_dev;
1896 
1897 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1898 	if (err) {
1899 		dev_err(&pdev->dev, "DMA set mask failed: %d\n", err);
1900 		goto release_region;
1901 	}
1902 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1903 
1904 	err = -ENOMEM;
1905 	gc = vzalloc(sizeof(*gc));
1906 	if (!gc)
1907 		goto release_region;
1908 
1909 	mutex_init(&gc->eq_test_event_mutex);
1910 	pci_set_drvdata(pdev, gc);
1911 	gc->bar0_pa = pci_resource_start(pdev, 0);
1912 
1913 	bar0_va = pci_iomap(pdev, bar, 0);
1914 	if (!bar0_va)
1915 		goto free_gc;
1916 
1917 	gc->numa_node = dev_to_node(&pdev->dev);
1918 	gc->is_pf = mana_is_pf(pdev->device);
1919 	gc->bar0_va = bar0_va;
1920 	gc->dev = &pdev->dev;
1921 	xa_init(&gc->irq_contexts);
1922 
1923 	if (gc->is_pf)
1924 		gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root);
1925 	else
1926 		gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot),
1927 							  mana_debugfs_root);
1928 
1929 	err = mana_gd_setup(pdev);
1930 	if (err)
1931 		goto unmap_bar;
1932 
1933 	err = mana_probe(&gc->mana, false);
1934 	if (err)
1935 		goto cleanup_gd;
1936 
1937 	err = mana_rdma_probe(&gc->mana_ib);
1938 	if (err)
1939 		goto cleanup_mana;
1940 
1941 	return 0;
1942 
1943 cleanup_mana:
1944 	mana_remove(&gc->mana, false);
1945 cleanup_gd:
1946 	mana_gd_cleanup(pdev);
1947 unmap_bar:
1948 	/*
1949 	 * at this point we know that the other debugfs child dir/files
1950 	 * are either not yet created or are already cleaned up.
1951 	 * The pci debugfs folder clean-up now, will only be cleaning up
1952 	 * adapter-MTU file and apc->mana_pci_debugfs folder.
1953 	 */
1954 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1955 	gc->mana_pci_debugfs = NULL;
1956 	xa_destroy(&gc->irq_contexts);
1957 	pci_iounmap(pdev, bar0_va);
1958 free_gc:
1959 	pci_set_drvdata(pdev, NULL);
1960 	vfree(gc);
1961 release_region:
1962 	pci_release_regions(pdev);
1963 disable_dev:
1964 	pci_disable_device(pdev);
1965 	dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err);
1966 	return err;
1967 }
1968 
1969 static void mana_gd_remove(struct pci_dev *pdev)
1970 {
1971 	struct gdma_context *gc = pci_get_drvdata(pdev);
1972 
1973 	mana_rdma_remove(&gc->mana_ib);
1974 	mana_remove(&gc->mana, false);
1975 
1976 	mana_gd_cleanup(pdev);
1977 
1978 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1979 
1980 	gc->mana_pci_debugfs = NULL;
1981 
1982 	xa_destroy(&gc->irq_contexts);
1983 
1984 	pci_iounmap(pdev, gc->bar0_va);
1985 
1986 	vfree(gc);
1987 
1988 	pci_release_regions(pdev);
1989 	pci_disable_device(pdev);
1990 
1991 	dev_dbg(&pdev->dev, "mana gdma remove successful\n");
1992 }
1993 
1994 /* The 'state' parameter is not used. */
1995 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state)
1996 {
1997 	struct gdma_context *gc = pci_get_drvdata(pdev);
1998 
1999 	mana_rdma_remove(&gc->mana_ib);
2000 	mana_remove(&gc->mana, true);
2001 
2002 	mana_gd_cleanup(pdev);
2003 
2004 	return 0;
2005 }
2006 
2007 /* In case the NIC hardware stops working, the suspend and resume callbacks will
2008  * fail -- if this happens, it's safer to just report an error than try to undo
2009  * what has been done.
2010  */
2011 int mana_gd_resume(struct pci_dev *pdev)
2012 {
2013 	struct gdma_context *gc = pci_get_drvdata(pdev);
2014 	int err;
2015 
2016 	err = mana_gd_setup(pdev);
2017 	if (err)
2018 		return err;
2019 
2020 	err = mana_probe(&gc->mana, true);
2021 	if (err)
2022 		return err;
2023 
2024 	err = mana_rdma_probe(&gc->mana_ib);
2025 	if (err)
2026 		return err;
2027 
2028 	return 0;
2029 }
2030 
2031 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */
2032 static void mana_gd_shutdown(struct pci_dev *pdev)
2033 {
2034 	struct gdma_context *gc = pci_get_drvdata(pdev);
2035 
2036 	dev_info(&pdev->dev, "Shutdown was called\n");
2037 
2038 	mana_rdma_remove(&gc->mana_ib);
2039 	mana_remove(&gc->mana, true);
2040 
2041 	mana_gd_cleanup(pdev);
2042 
2043 	debugfs_remove_recursive(gc->mana_pci_debugfs);
2044 
2045 	gc->mana_pci_debugfs = NULL;
2046 
2047 	pci_disable_device(pdev);
2048 }
2049 
2050 static const struct pci_device_id mana_id_table[] = {
2051 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) },
2052 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) },
2053 	{ }
2054 };
2055 
2056 static struct pci_driver mana_driver = {
2057 	.name		= "mana",
2058 	.id_table	= mana_id_table,
2059 	.probe		= mana_gd_probe,
2060 	.remove		= mana_gd_remove,
2061 	.suspend	= mana_gd_suspend,
2062 	.resume		= mana_gd_resume,
2063 	.shutdown	= mana_gd_shutdown,
2064 };
2065 
2066 static int __init mana_driver_init(void)
2067 {
2068 	int err;
2069 
2070 	mana_debugfs_root = debugfs_create_dir("mana", NULL);
2071 
2072 	err = pci_register_driver(&mana_driver);
2073 	if (err) {
2074 		debugfs_remove(mana_debugfs_root);
2075 		mana_debugfs_root = NULL;
2076 	}
2077 
2078 	return err;
2079 }
2080 
2081 static void __exit mana_driver_exit(void)
2082 {
2083 	pci_unregister_driver(&mana_driver);
2084 
2085 	debugfs_remove(mana_debugfs_root);
2086 
2087 	mana_debugfs_root = NULL;
2088 }
2089 
2090 module_init(mana_driver_init);
2091 module_exit(mana_driver_exit);
2092 
2093 MODULE_DEVICE_TABLE(pci, mana_id_table);
2094 
2095 MODULE_LICENSE("Dual BSD/GPL");
2096 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver");
2097