1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright (c) 2021, Microsoft Corporation. */ 3 4 #include <linux/debugfs.h> 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include <linux/utsname.h> 8 #include <linux/version.h> 9 #include <linux/msi.h> 10 #include <linux/irqdomain.h> 11 #include <linux/export.h> 12 13 #include <net/mana/mana.h> 14 #include <net/mana/hw_channel.h> 15 16 struct dentry *mana_debugfs_root; 17 18 static u32 mana_gd_r32(struct gdma_context *g, u64 offset) 19 { 20 return readl(g->bar0_va + offset); 21 } 22 23 static u64 mana_gd_r64(struct gdma_context *g, u64 offset) 24 { 25 return readq(g->bar0_va + offset); 26 } 27 28 static void mana_gd_init_pf_regs(struct pci_dev *pdev) 29 { 30 struct gdma_context *gc = pci_get_drvdata(pdev); 31 void __iomem *sriov_base_va; 32 u64 sriov_base_off; 33 34 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF; 35 gc->db_page_base = gc->bar0_va + 36 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 37 38 gc->phys_db_page_base = gc->bar0_pa + 39 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 40 41 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF); 42 43 sriov_base_va = gc->bar0_va + sriov_base_off; 44 gc->shm_base = sriov_base_va + 45 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF); 46 } 47 48 static void mana_gd_init_vf_regs(struct pci_dev *pdev) 49 { 50 struct gdma_context *gc = pci_get_drvdata(pdev); 51 52 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF; 53 54 gc->db_page_base = gc->bar0_va + 55 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 56 57 gc->phys_db_page_base = gc->bar0_pa + 58 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 59 60 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET); 61 } 62 63 static void mana_gd_init_registers(struct pci_dev *pdev) 64 { 65 struct gdma_context *gc = pci_get_drvdata(pdev); 66 67 if (gc->is_pf) 68 mana_gd_init_pf_regs(pdev); 69 else 70 mana_gd_init_vf_regs(pdev); 71 } 72 73 /* Suppress logging when we set timeout to zero */ 74 bool mana_need_log(struct gdma_context *gc, int err) 75 { 76 struct hw_channel_context *hwc; 77 78 if (err != -ETIMEDOUT) 79 return true; 80 81 if (!gc) 82 return true; 83 84 hwc = gc->hwc.driver_data; 85 if (hwc && hwc->hwc_timeout == 0) 86 return false; 87 88 return true; 89 } 90 91 static int mana_gd_query_max_resources(struct pci_dev *pdev) 92 { 93 struct gdma_context *gc = pci_get_drvdata(pdev); 94 struct gdma_query_max_resources_resp resp = {}; 95 struct gdma_general_req req = {}; 96 int err; 97 98 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES, 99 sizeof(req), sizeof(resp)); 100 101 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 102 if (err || resp.hdr.status) { 103 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n", 104 err, resp.hdr.status); 105 return err ? err : -EPROTO; 106 } 107 108 if (!pci_msix_can_alloc_dyn(pdev)) { 109 if (gc->num_msix_usable > resp.max_msix) 110 gc->num_msix_usable = resp.max_msix; 111 } else { 112 /* If dynamic allocation is enabled we have already allocated 113 * hwc msi 114 */ 115 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1); 116 } 117 118 if (gc->num_msix_usable <= 1) 119 return -ENOSPC; 120 121 gc->max_num_queues = num_online_cpus(); 122 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES) 123 gc->max_num_queues = MANA_MAX_NUM_QUEUES; 124 125 if (gc->max_num_queues > resp.max_eq) 126 gc->max_num_queues = resp.max_eq; 127 128 if (gc->max_num_queues > resp.max_cq) 129 gc->max_num_queues = resp.max_cq; 130 131 if (gc->max_num_queues > resp.max_sq) 132 gc->max_num_queues = resp.max_sq; 133 134 if (gc->max_num_queues > resp.max_rq) 135 gc->max_num_queues = resp.max_rq; 136 137 /* The Hardware Channel (HWC) used 1 MSI-X */ 138 if (gc->max_num_queues > gc->num_msix_usable - 1) 139 gc->max_num_queues = gc->num_msix_usable - 1; 140 141 return 0; 142 } 143 144 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val) 145 { 146 struct gdma_context *gc = pci_get_drvdata(pdev); 147 struct gdma_query_hwc_timeout_resp resp = {}; 148 struct gdma_query_hwc_timeout_req req = {}; 149 int err; 150 151 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT, 152 sizeof(req), sizeof(resp)); 153 req.timeout_ms = *timeout_val; 154 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 155 if (err || resp.hdr.status) 156 return err ? err : -EPROTO; 157 158 *timeout_val = resp.timeout_ms; 159 160 return 0; 161 } 162 163 static int mana_gd_detect_devices(struct pci_dev *pdev) 164 { 165 struct gdma_context *gc = pci_get_drvdata(pdev); 166 struct gdma_list_devices_resp resp = {}; 167 struct gdma_general_req req = {}; 168 struct gdma_dev_id dev; 169 int found_dev = 0; 170 u16 dev_type; 171 int err; 172 u32 i; 173 174 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req), 175 sizeof(resp)); 176 177 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 178 if (err || resp.hdr.status) { 179 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err, 180 resp.hdr.status); 181 return err ? err : -EPROTO; 182 } 183 184 for (i = 0; i < GDMA_DEV_LIST_SIZE && 185 found_dev < resp.num_of_devs; i++) { 186 dev = resp.devs[i]; 187 dev_type = dev.type; 188 189 /* Skip empty devices */ 190 if (dev.as_uint32 == 0) 191 continue; 192 193 found_dev++; 194 195 /* HWC is already detected in mana_hwc_create_channel(). */ 196 if (dev_type == GDMA_DEVICE_HWC) 197 continue; 198 199 if (dev_type == GDMA_DEVICE_MANA) { 200 gc->mana.gdma_context = gc; 201 gc->mana.dev_id = dev; 202 } else if (dev_type == GDMA_DEVICE_MANA_IB) { 203 gc->mana_ib.dev_id = dev; 204 gc->mana_ib.gdma_context = gc; 205 } 206 } 207 208 return gc->mana.dev_id.type == 0 ? -ENODEV : 0; 209 } 210 211 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req, 212 u32 resp_len, void *resp) 213 { 214 struct hw_channel_context *hwc = gc->hwc.driver_data; 215 216 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp); 217 } 218 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA"); 219 220 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length, 221 struct gdma_mem_info *gmi) 222 { 223 dma_addr_t dma_handle; 224 void *buf; 225 226 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 227 return -EINVAL; 228 229 gmi->dev = gc->dev; 230 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL); 231 if (!buf) 232 return -ENOMEM; 233 234 gmi->dma_handle = dma_handle; 235 gmi->virt_addr = buf; 236 gmi->length = length; 237 238 return 0; 239 } 240 241 void mana_gd_free_memory(struct gdma_mem_info *gmi) 242 { 243 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr, 244 gmi->dma_handle); 245 } 246 247 static int mana_gd_create_hw_eq(struct gdma_context *gc, 248 struct gdma_queue *queue) 249 { 250 struct gdma_create_queue_resp resp = {}; 251 struct gdma_create_queue_req req = {}; 252 int err; 253 254 if (queue->type != GDMA_EQ) 255 return -EINVAL; 256 257 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE, 258 sizeof(req), sizeof(resp)); 259 260 req.hdr.dev_id = queue->gdma_dev->dev_id; 261 req.type = queue->type; 262 req.pdid = queue->gdma_dev->pdid; 263 req.doolbell_id = queue->gdma_dev->doorbell; 264 req.gdma_region = queue->mem_info.dma_region_handle; 265 req.queue_size = queue->queue_size; 266 req.log2_throttle_limit = queue->eq.log2_throttle_limit; 267 req.eq_pci_msix_index = queue->eq.msix_index; 268 269 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 270 if (err || resp.hdr.status) { 271 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err, 272 resp.hdr.status); 273 return err ? err : -EPROTO; 274 } 275 276 queue->id = resp.queue_index; 277 queue->eq.disable_needed = true; 278 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; 279 return 0; 280 } 281 282 static int mana_gd_disable_queue(struct gdma_queue *queue) 283 { 284 struct gdma_context *gc = queue->gdma_dev->gdma_context; 285 struct gdma_disable_queue_req req = {}; 286 struct gdma_general_resp resp = {}; 287 int err; 288 289 WARN_ON(queue->type != GDMA_EQ); 290 291 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE, 292 sizeof(req), sizeof(resp)); 293 294 req.hdr.dev_id = queue->gdma_dev->dev_id; 295 req.type = queue->type; 296 req.queue_index = queue->id; 297 req.alloc_res_id_on_creation = 1; 298 299 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 300 if (err || resp.hdr.status) { 301 if (mana_need_log(gc, err)) 302 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err, 303 resp.hdr.status); 304 return err ? err : -EPROTO; 305 } 306 307 return 0; 308 } 309 310 #define DOORBELL_OFFSET_SQ 0x0 311 #define DOORBELL_OFFSET_RQ 0x400 312 #define DOORBELL_OFFSET_CQ 0x800 313 #define DOORBELL_OFFSET_EQ 0xFF8 314 315 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index, 316 enum gdma_queue_type q_type, u32 qid, 317 u32 tail_ptr, u8 num_req) 318 { 319 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index; 320 union gdma_doorbell_entry e = {}; 321 322 switch (q_type) { 323 case GDMA_EQ: 324 e.eq.id = qid; 325 e.eq.tail_ptr = tail_ptr; 326 e.eq.arm = num_req; 327 328 addr += DOORBELL_OFFSET_EQ; 329 break; 330 331 case GDMA_CQ: 332 e.cq.id = qid; 333 e.cq.tail_ptr = tail_ptr; 334 e.cq.arm = num_req; 335 336 addr += DOORBELL_OFFSET_CQ; 337 break; 338 339 case GDMA_RQ: 340 e.rq.id = qid; 341 e.rq.tail_ptr = tail_ptr; 342 e.rq.wqe_cnt = num_req; 343 344 addr += DOORBELL_OFFSET_RQ; 345 break; 346 347 case GDMA_SQ: 348 e.sq.id = qid; 349 e.sq.tail_ptr = tail_ptr; 350 351 addr += DOORBELL_OFFSET_SQ; 352 break; 353 354 default: 355 WARN_ON(1); 356 return; 357 } 358 359 /* Ensure all writes are done before ring doorbell */ 360 wmb(); 361 362 writeq(e.as_uint64, addr); 363 } 364 365 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue) 366 { 367 /* Hardware Spec specifies that software client should set 0 for 368 * wqe_cnt for Receive Queues. This value is not used in Send Queues. 369 */ 370 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type, 371 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0); 372 } 373 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA"); 374 375 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit) 376 { 377 struct gdma_context *gc = cq->gdma_dev->gdma_context; 378 379 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE; 380 381 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS); 382 383 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id, 384 head, arm_bit); 385 } 386 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA"); 387 388 #define MANA_SERVICE_PERIOD 10 389 390 static void mana_serv_fpga(struct pci_dev *pdev) 391 { 392 struct pci_bus *bus, *parent; 393 394 pci_lock_rescan_remove(); 395 396 bus = pdev->bus; 397 if (!bus) { 398 dev_err(&pdev->dev, "MANA service: no bus\n"); 399 goto out; 400 } 401 402 parent = bus->parent; 403 if (!parent) { 404 dev_err(&pdev->dev, "MANA service: no parent bus\n"); 405 goto out; 406 } 407 408 pci_stop_and_remove_bus_device(bus->self); 409 410 msleep(MANA_SERVICE_PERIOD * 1000); 411 412 pci_rescan_bus(parent); 413 414 out: 415 pci_unlock_rescan_remove(); 416 } 417 418 static void mana_serv_reset(struct pci_dev *pdev) 419 { 420 struct gdma_context *gc = pci_get_drvdata(pdev); 421 struct hw_channel_context *hwc; 422 423 if (!gc) { 424 dev_err(&pdev->dev, "MANA service: no GC\n"); 425 return; 426 } 427 428 hwc = gc->hwc.driver_data; 429 if (!hwc) { 430 dev_err(&pdev->dev, "MANA service: no HWC\n"); 431 goto out; 432 } 433 434 /* HWC is not responding in this case, so don't wait */ 435 hwc->hwc_timeout = 0; 436 437 dev_info(&pdev->dev, "MANA reset cycle start\n"); 438 439 mana_gd_suspend(pdev, PMSG_SUSPEND); 440 441 msleep(MANA_SERVICE_PERIOD * 1000); 442 443 mana_gd_resume(pdev); 444 445 dev_info(&pdev->dev, "MANA reset cycle completed\n"); 446 447 out: 448 gc->in_service = false; 449 } 450 451 struct mana_serv_work { 452 struct work_struct serv_work; 453 struct pci_dev *pdev; 454 enum gdma_eqe_type type; 455 }; 456 457 static void mana_serv_func(struct work_struct *w) 458 { 459 struct mana_serv_work *mns_wk; 460 struct pci_dev *pdev; 461 462 mns_wk = container_of(w, struct mana_serv_work, serv_work); 463 pdev = mns_wk->pdev; 464 465 if (!pdev) 466 goto out; 467 468 switch (mns_wk->type) { 469 case GDMA_EQE_HWC_FPGA_RECONFIG: 470 mana_serv_fpga(pdev); 471 break; 472 473 case GDMA_EQE_HWC_RESET_REQUEST: 474 mana_serv_reset(pdev); 475 break; 476 477 default: 478 dev_err(&pdev->dev, "MANA service: unknown type %d\n", 479 mns_wk->type); 480 break; 481 } 482 483 out: 484 pci_dev_put(pdev); 485 kfree(mns_wk); 486 module_put(THIS_MODULE); 487 } 488 489 static void mana_gd_process_eqe(struct gdma_queue *eq) 490 { 491 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE); 492 struct gdma_context *gc = eq->gdma_dev->gdma_context; 493 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr; 494 struct mana_serv_work *mns_wk; 495 union gdma_eqe_info eqe_info; 496 enum gdma_eqe_type type; 497 struct gdma_event event; 498 struct gdma_queue *cq; 499 struct gdma_eqe *eqe; 500 u32 cq_id; 501 502 eqe = &eq_eqe_ptr[head]; 503 eqe_info.as_uint32 = eqe->eqe_info; 504 type = eqe_info.type; 505 506 switch (type) { 507 case GDMA_EQE_COMPLETION: 508 cq_id = eqe->details[0] & 0xFFFFFF; 509 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs)) 510 break; 511 512 cq = gc->cq_table[cq_id]; 513 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id)) 514 break; 515 516 if (cq->cq.callback) 517 cq->cq.callback(cq->cq.context, cq); 518 519 break; 520 521 case GDMA_EQE_TEST_EVENT: 522 gc->test_event_eq_id = eq->id; 523 complete(&gc->eq_test_event); 524 break; 525 526 case GDMA_EQE_HWC_INIT_EQ_ID_DB: 527 case GDMA_EQE_HWC_INIT_DATA: 528 case GDMA_EQE_HWC_INIT_DONE: 529 case GDMA_EQE_HWC_SOC_SERVICE: 530 case GDMA_EQE_RNIC_QP_FATAL: 531 if (!eq->eq.callback) 532 break; 533 534 event.type = type; 535 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE); 536 eq->eq.callback(eq->eq.context, eq, &event); 537 break; 538 539 case GDMA_EQE_HWC_FPGA_RECONFIG: 540 case GDMA_EQE_HWC_RESET_REQUEST: 541 dev_info(gc->dev, "Recv MANA service type:%d\n", type); 542 543 if (gc->in_service) { 544 dev_info(gc->dev, "Already in service\n"); 545 break; 546 } 547 548 if (!try_module_get(THIS_MODULE)) { 549 dev_info(gc->dev, "Module is unloading\n"); 550 break; 551 } 552 553 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC); 554 if (!mns_wk) { 555 module_put(THIS_MODULE); 556 break; 557 } 558 559 dev_info(gc->dev, "Start MANA service type:%d\n", type); 560 gc->in_service = true; 561 mns_wk->pdev = to_pci_dev(gc->dev); 562 mns_wk->type = type; 563 pci_dev_get(mns_wk->pdev); 564 INIT_WORK(&mns_wk->serv_work, mana_serv_func); 565 schedule_work(&mns_wk->serv_work); 566 break; 567 568 default: 569 break; 570 } 571 } 572 573 static void mana_gd_process_eq_events(void *arg) 574 { 575 u32 owner_bits, new_bits, old_bits; 576 union gdma_eqe_info eqe_info; 577 struct gdma_eqe *eq_eqe_ptr; 578 struct gdma_queue *eq = arg; 579 struct gdma_context *gc; 580 struct gdma_eqe *eqe; 581 u32 head, num_eqe; 582 int i; 583 584 gc = eq->gdma_dev->gdma_context; 585 586 num_eqe = eq->queue_size / GDMA_EQE_SIZE; 587 eq_eqe_ptr = eq->queue_mem_ptr; 588 589 /* Process up to 5 EQEs at a time, and update the HW head. */ 590 for (i = 0; i < 5; i++) { 591 eqe = &eq_eqe_ptr[eq->head % num_eqe]; 592 eqe_info.as_uint32 = eqe->eqe_info; 593 owner_bits = eqe_info.owner_bits; 594 595 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK; 596 /* No more entries */ 597 if (owner_bits == old_bits) { 598 /* return here without ringing the doorbell */ 599 if (i == 0) 600 return; 601 break; 602 } 603 604 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK; 605 if (owner_bits != new_bits) { 606 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id); 607 break; 608 } 609 610 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 611 * reading eqe. 612 */ 613 rmb(); 614 615 mana_gd_process_eqe(eq); 616 617 eq->head++; 618 } 619 620 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS); 621 622 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id, 623 head, SET_ARM_BIT); 624 } 625 626 static int mana_gd_register_irq(struct gdma_queue *queue, 627 const struct gdma_queue_spec *spec) 628 { 629 struct gdma_dev *gd = queue->gdma_dev; 630 struct gdma_irq_context *gic; 631 struct gdma_context *gc; 632 unsigned int msi_index; 633 unsigned long flags; 634 struct device *dev; 635 int err = 0; 636 637 gc = gd->gdma_context; 638 dev = gc->dev; 639 msi_index = spec->eq.msix_index; 640 641 if (msi_index >= gc->num_msix_usable) { 642 err = -ENOSPC; 643 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u", 644 err, msi_index, gc->num_msix_usable); 645 646 return err; 647 } 648 649 queue->eq.msix_index = msi_index; 650 gic = xa_load(&gc->irq_contexts, msi_index); 651 if (WARN_ON(!gic)) 652 return -EINVAL; 653 654 spin_lock_irqsave(&gic->lock, flags); 655 list_add_rcu(&queue->entry, &gic->eq_list); 656 spin_unlock_irqrestore(&gic->lock, flags); 657 658 return 0; 659 } 660 661 static void mana_gd_deregister_irq(struct gdma_queue *queue) 662 { 663 struct gdma_dev *gd = queue->gdma_dev; 664 struct gdma_irq_context *gic; 665 struct gdma_context *gc; 666 unsigned int msix_index; 667 unsigned long flags; 668 struct gdma_queue *eq; 669 670 gc = gd->gdma_context; 671 672 /* At most num_online_cpus() + 1 interrupts are used. */ 673 msix_index = queue->eq.msix_index; 674 if (WARN_ON(msix_index >= gc->num_msix_usable)) 675 return; 676 677 gic = xa_load(&gc->irq_contexts, msix_index); 678 if (WARN_ON(!gic)) 679 return; 680 681 spin_lock_irqsave(&gic->lock, flags); 682 list_for_each_entry_rcu(eq, &gic->eq_list, entry) { 683 if (queue == eq) { 684 list_del_rcu(&eq->entry); 685 break; 686 } 687 } 688 spin_unlock_irqrestore(&gic->lock, flags); 689 690 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 691 synchronize_rcu(); 692 } 693 694 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq) 695 { 696 struct gdma_generate_test_event_req req = {}; 697 struct gdma_general_resp resp = {}; 698 struct device *dev = gc->dev; 699 int err; 700 701 mutex_lock(&gc->eq_test_event_mutex); 702 703 init_completion(&gc->eq_test_event); 704 gc->test_event_eq_id = INVALID_QUEUE_ID; 705 706 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE, 707 sizeof(req), sizeof(resp)); 708 709 req.hdr.dev_id = eq->gdma_dev->dev_id; 710 req.queue_index = eq->id; 711 712 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 713 if (err) { 714 if (mana_need_log(gc, err)) 715 dev_err(dev, "test_eq failed: %d\n", err); 716 goto out; 717 } 718 719 err = -EPROTO; 720 721 if (resp.hdr.status) { 722 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status); 723 goto out; 724 } 725 726 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) { 727 dev_err(dev, "test_eq timed out on queue %d\n", eq->id); 728 goto out; 729 } 730 731 if (eq->id != gc->test_event_eq_id) { 732 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n", 733 gc->test_event_eq_id, eq->id); 734 goto out; 735 } 736 737 err = 0; 738 out: 739 mutex_unlock(&gc->eq_test_event_mutex); 740 return err; 741 } 742 743 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets, 744 struct gdma_queue *queue) 745 { 746 int err; 747 748 if (flush_evenets) { 749 err = mana_gd_test_eq(gc, queue); 750 if (err && mana_need_log(gc, err)) 751 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err); 752 } 753 754 mana_gd_deregister_irq(queue); 755 756 if (queue->eq.disable_needed) 757 mana_gd_disable_queue(queue); 758 } 759 760 static int mana_gd_create_eq(struct gdma_dev *gd, 761 const struct gdma_queue_spec *spec, 762 bool create_hwq, struct gdma_queue *queue) 763 { 764 struct gdma_context *gc = gd->gdma_context; 765 struct device *dev = gc->dev; 766 u32 log2_num_entries; 767 int err; 768 769 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 770 queue->id = INVALID_QUEUE_ID; 771 772 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE); 773 774 if (spec->eq.log2_throttle_limit > log2_num_entries) { 775 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n", 776 spec->eq.log2_throttle_limit, log2_num_entries); 777 return -EINVAL; 778 } 779 780 err = mana_gd_register_irq(queue, spec); 781 if (err) { 782 dev_err(dev, "Failed to register irq: %d\n", err); 783 return err; 784 } 785 786 queue->eq.callback = spec->eq.callback; 787 queue->eq.context = spec->eq.context; 788 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 789 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1; 790 791 if (create_hwq) { 792 err = mana_gd_create_hw_eq(gc, queue); 793 if (err) 794 goto out; 795 796 err = mana_gd_test_eq(gc, queue); 797 if (err) 798 goto out; 799 } 800 801 return 0; 802 out: 803 dev_err(dev, "Failed to create EQ: %d\n", err); 804 mana_gd_destroy_eq(gc, false, queue); 805 return err; 806 } 807 808 static void mana_gd_create_cq(const struct gdma_queue_spec *spec, 809 struct gdma_queue *queue) 810 { 811 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE); 812 813 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 814 queue->cq.parent = spec->cq.parent_eq; 815 queue->cq.context = spec->cq.context; 816 queue->cq.callback = spec->cq.callback; 817 } 818 819 static void mana_gd_destroy_cq(struct gdma_context *gc, 820 struct gdma_queue *queue) 821 { 822 u32 id = queue->id; 823 824 if (id >= gc->max_num_cqs) 825 return; 826 827 if (!gc->cq_table[id]) 828 return; 829 830 gc->cq_table[id] = NULL; 831 } 832 833 int mana_gd_create_hwc_queue(struct gdma_dev *gd, 834 const struct gdma_queue_spec *spec, 835 struct gdma_queue **queue_ptr) 836 { 837 struct gdma_context *gc = gd->gdma_context; 838 struct gdma_mem_info *gmi; 839 struct gdma_queue *queue; 840 int err; 841 842 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 843 if (!queue) 844 return -ENOMEM; 845 846 gmi = &queue->mem_info; 847 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 848 if (err) { 849 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 850 spec->type, spec->queue_size, err); 851 goto free_q; 852 } 853 854 queue->head = 0; 855 queue->tail = 0; 856 queue->queue_mem_ptr = gmi->virt_addr; 857 queue->queue_size = spec->queue_size; 858 queue->monitor_avl_buf = spec->monitor_avl_buf; 859 queue->type = spec->type; 860 queue->gdma_dev = gd; 861 862 if (spec->type == GDMA_EQ) 863 err = mana_gd_create_eq(gd, spec, false, queue); 864 else if (spec->type == GDMA_CQ) 865 mana_gd_create_cq(spec, queue); 866 867 if (err) 868 goto out; 869 870 *queue_ptr = queue; 871 return 0; 872 out: 873 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n", 874 spec->type, spec->queue_size, err); 875 mana_gd_free_memory(gmi); 876 free_q: 877 kfree(queue); 878 return err; 879 } 880 881 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle) 882 { 883 struct gdma_destroy_dma_region_req req = {}; 884 struct gdma_general_resp resp = {}; 885 int err; 886 887 if (dma_region_handle == GDMA_INVALID_DMA_REGION) 888 return 0; 889 890 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req), 891 sizeof(resp)); 892 req.dma_region_handle = dma_region_handle; 893 894 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 895 if (err || resp.hdr.status) { 896 if (mana_need_log(gc, err)) 897 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n", 898 err, resp.hdr.status); 899 return -EPROTO; 900 } 901 902 return 0; 903 } 904 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA"); 905 906 static int mana_gd_create_dma_region(struct gdma_dev *gd, 907 struct gdma_mem_info *gmi) 908 { 909 unsigned int num_page = gmi->length / MANA_PAGE_SIZE; 910 struct gdma_create_dma_region_req *req = NULL; 911 struct gdma_create_dma_region_resp resp = {}; 912 struct gdma_context *gc = gd->gdma_context; 913 struct hw_channel_context *hwc; 914 u32 length = gmi->length; 915 size_t req_msg_size; 916 int err; 917 int i; 918 919 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 920 return -EINVAL; 921 922 if (!MANA_PAGE_ALIGNED(gmi->virt_addr)) 923 return -EINVAL; 924 925 hwc = gc->hwc.driver_data; 926 req_msg_size = struct_size(req, page_addr_list, num_page); 927 if (req_msg_size > hwc->max_req_msg_size) 928 return -EINVAL; 929 930 req = kzalloc(req_msg_size, GFP_KERNEL); 931 if (!req) 932 return -ENOMEM; 933 934 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION, 935 req_msg_size, sizeof(resp)); 936 req->length = length; 937 req->offset_in_page = 0; 938 req->gdma_page_type = GDMA_PAGE_TYPE_4K; 939 req->page_count = num_page; 940 req->page_addr_list_len = num_page; 941 942 for (i = 0; i < num_page; i++) 943 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE; 944 945 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp); 946 if (err) 947 goto out; 948 949 if (resp.hdr.status || 950 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) { 951 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n", 952 resp.hdr.status); 953 err = -EPROTO; 954 goto out; 955 } 956 957 gmi->dma_region_handle = resp.dma_region_handle; 958 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n", 959 gmi->dma_region_handle); 960 out: 961 if (err) 962 dev_dbg(gc->dev, 963 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n", 964 length, req->gdma_page_type, resp.hdr.status, err); 965 kfree(req); 966 return err; 967 } 968 969 int mana_gd_create_mana_eq(struct gdma_dev *gd, 970 const struct gdma_queue_spec *spec, 971 struct gdma_queue **queue_ptr) 972 { 973 struct gdma_context *gc = gd->gdma_context; 974 struct gdma_mem_info *gmi; 975 struct gdma_queue *queue; 976 int err; 977 978 if (spec->type != GDMA_EQ) 979 return -EINVAL; 980 981 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 982 if (!queue) 983 return -ENOMEM; 984 985 gmi = &queue->mem_info; 986 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 987 if (err) { 988 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 989 spec->type, spec->queue_size, err); 990 goto free_q; 991 } 992 993 err = mana_gd_create_dma_region(gd, gmi); 994 if (err) 995 goto out; 996 997 queue->head = 0; 998 queue->tail = 0; 999 queue->queue_mem_ptr = gmi->virt_addr; 1000 queue->queue_size = spec->queue_size; 1001 queue->monitor_avl_buf = spec->monitor_avl_buf; 1002 queue->type = spec->type; 1003 queue->gdma_dev = gd; 1004 1005 err = mana_gd_create_eq(gd, spec, true, queue); 1006 if (err) 1007 goto out; 1008 1009 *queue_ptr = queue; 1010 return 0; 1011 out: 1012 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1013 spec->type, spec->queue_size, err); 1014 mana_gd_free_memory(gmi); 1015 free_q: 1016 kfree(queue); 1017 return err; 1018 } 1019 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA"); 1020 1021 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd, 1022 const struct gdma_queue_spec *spec, 1023 struct gdma_queue **queue_ptr) 1024 { 1025 struct gdma_context *gc = gd->gdma_context; 1026 struct gdma_mem_info *gmi; 1027 struct gdma_queue *queue; 1028 int err; 1029 1030 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ && 1031 spec->type != GDMA_RQ) 1032 return -EINVAL; 1033 1034 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1035 if (!queue) 1036 return -ENOMEM; 1037 1038 gmi = &queue->mem_info; 1039 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 1040 if (err) { 1041 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n", 1042 spec->type, spec->queue_size, err); 1043 goto free_q; 1044 } 1045 1046 err = mana_gd_create_dma_region(gd, gmi); 1047 if (err) 1048 goto out; 1049 1050 queue->head = 0; 1051 queue->tail = 0; 1052 queue->queue_mem_ptr = gmi->virt_addr; 1053 queue->queue_size = spec->queue_size; 1054 queue->monitor_avl_buf = spec->monitor_avl_buf; 1055 queue->type = spec->type; 1056 queue->gdma_dev = gd; 1057 1058 if (spec->type == GDMA_CQ) 1059 mana_gd_create_cq(spec, queue); 1060 1061 *queue_ptr = queue; 1062 return 0; 1063 out: 1064 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1065 spec->type, spec->queue_size, err); 1066 mana_gd_free_memory(gmi); 1067 free_q: 1068 kfree(queue); 1069 return err; 1070 } 1071 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA"); 1072 1073 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue) 1074 { 1075 struct gdma_mem_info *gmi = &queue->mem_info; 1076 1077 switch (queue->type) { 1078 case GDMA_EQ: 1079 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue); 1080 break; 1081 1082 case GDMA_CQ: 1083 mana_gd_destroy_cq(gc, queue); 1084 break; 1085 1086 case GDMA_RQ: 1087 break; 1088 1089 case GDMA_SQ: 1090 break; 1091 1092 default: 1093 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n", 1094 queue->type); 1095 return; 1096 } 1097 1098 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle); 1099 mana_gd_free_memory(gmi); 1100 kfree(queue); 1101 } 1102 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA"); 1103 1104 int mana_gd_verify_vf_version(struct pci_dev *pdev) 1105 { 1106 struct gdma_context *gc = pci_get_drvdata(pdev); 1107 struct gdma_verify_ver_resp resp = {}; 1108 struct gdma_verify_ver_req req = {}; 1109 struct hw_channel_context *hwc; 1110 int err; 1111 1112 hwc = gc->hwc.driver_data; 1113 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION, 1114 sizeof(req), sizeof(resp)); 1115 1116 req.protocol_ver_min = GDMA_PROTOCOL_FIRST; 1117 req.protocol_ver_max = GDMA_PROTOCOL_LAST; 1118 1119 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1; 1120 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2; 1121 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3; 1122 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4; 1123 1124 req.drv_ver = 0; /* Unused*/ 1125 req.os_type = 0x10; /* Linux */ 1126 req.os_ver_major = LINUX_VERSION_MAJOR; 1127 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL; 1128 req.os_ver_build = LINUX_VERSION_SUBLEVEL; 1129 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1)); 1130 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2)); 1131 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3)); 1132 1133 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1134 if (err || resp.hdr.status) { 1135 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n", 1136 err, resp.hdr.status); 1137 return err ? err : -EPROTO; 1138 } 1139 gc->pf_cap_flags1 = resp.pf_cap_flags1; 1140 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) { 1141 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout); 1142 if (err) { 1143 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err); 1144 return err; 1145 } 1146 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout); 1147 } 1148 return 0; 1149 } 1150 1151 int mana_gd_register_device(struct gdma_dev *gd) 1152 { 1153 struct gdma_context *gc = gd->gdma_context; 1154 struct gdma_register_device_resp resp = {}; 1155 struct gdma_general_req req = {}; 1156 int err; 1157 1158 gd->pdid = INVALID_PDID; 1159 gd->doorbell = INVALID_DOORBELL; 1160 gd->gpa_mkey = INVALID_MEM_KEY; 1161 1162 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req), 1163 sizeof(resp)); 1164 1165 req.hdr.dev_id = gd->dev_id; 1166 1167 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1168 if (err || resp.hdr.status) { 1169 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n", 1170 err, resp.hdr.status); 1171 return err ? err : -EPROTO; 1172 } 1173 1174 gd->pdid = resp.pdid; 1175 gd->gpa_mkey = resp.gpa_mkey; 1176 gd->doorbell = resp.db_id; 1177 1178 return 0; 1179 } 1180 1181 int mana_gd_deregister_device(struct gdma_dev *gd) 1182 { 1183 struct gdma_context *gc = gd->gdma_context; 1184 struct gdma_general_resp resp = {}; 1185 struct gdma_general_req req = {}; 1186 int err; 1187 1188 if (gd->pdid == INVALID_PDID) 1189 return -EINVAL; 1190 1191 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req), 1192 sizeof(resp)); 1193 1194 req.hdr.dev_id = gd->dev_id; 1195 1196 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1197 if (err || resp.hdr.status) { 1198 if (mana_need_log(gc, err)) 1199 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n", 1200 err, resp.hdr.status); 1201 if (!err) 1202 err = -EPROTO; 1203 } 1204 1205 gd->pdid = INVALID_PDID; 1206 gd->doorbell = INVALID_DOORBELL; 1207 gd->gpa_mkey = INVALID_MEM_KEY; 1208 1209 return err; 1210 } 1211 1212 u32 mana_gd_wq_avail_space(struct gdma_queue *wq) 1213 { 1214 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE; 1215 u32 wq_size = wq->queue_size; 1216 1217 WARN_ON_ONCE(used_space > wq_size); 1218 1219 return wq_size - used_space; 1220 } 1221 1222 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset) 1223 { 1224 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1); 1225 1226 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size); 1227 1228 return wq->queue_mem_ptr + offset; 1229 } 1230 1231 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req, 1232 enum gdma_queue_type q_type, 1233 u32 client_oob_size, u32 sgl_data_size, 1234 u8 *wqe_ptr) 1235 { 1236 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL); 1237 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0); 1238 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr; 1239 u8 *ptr; 1240 1241 memset(header, 0, sizeof(struct gdma_wqe)); 1242 header->num_sge = wqe_req->num_sge; 1243 header->inline_oob_size_div4 = client_oob_size / sizeof(u32); 1244 1245 if (oob_in_sgl) { 1246 WARN_ON_ONCE(wqe_req->num_sge < 2); 1247 1248 header->client_oob_in_sgl = 1; 1249 1250 if (pad_data) 1251 header->last_vbytes = wqe_req->sgl[0].size; 1252 } 1253 1254 if (q_type == GDMA_SQ) 1255 header->client_data_unit = wqe_req->client_data_unit; 1256 1257 /* The size of gdma_wqe + client_oob_size must be less than or equal 1258 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond 1259 * the queue memory buffer boundary. 1260 */ 1261 ptr = wqe_ptr + sizeof(header); 1262 1263 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) { 1264 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size); 1265 1266 if (client_oob_size > wqe_req->inline_oob_size) 1267 memset(ptr + wqe_req->inline_oob_size, 0, 1268 client_oob_size - wqe_req->inline_oob_size); 1269 } 1270 1271 return sizeof(header) + client_oob_size; 1272 } 1273 1274 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr, 1275 const struct gdma_wqe_request *wqe_req) 1276 { 1277 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1278 const u8 *address = (u8 *)wqe_req->sgl; 1279 u8 *base_ptr, *end_ptr; 1280 u32 size_to_end; 1281 1282 base_ptr = wq->queue_mem_ptr; 1283 end_ptr = base_ptr + wq->queue_size; 1284 size_to_end = (u32)(end_ptr - wqe_ptr); 1285 1286 if (size_to_end < sgl_size) { 1287 memcpy(wqe_ptr, address, size_to_end); 1288 1289 wqe_ptr = base_ptr; 1290 address += size_to_end; 1291 sgl_size -= size_to_end; 1292 } 1293 1294 memcpy(wqe_ptr, address, sgl_size); 1295 } 1296 1297 int mana_gd_post_work_request(struct gdma_queue *wq, 1298 const struct gdma_wqe_request *wqe_req, 1299 struct gdma_posted_wqe_info *wqe_info) 1300 { 1301 u32 client_oob_size = wqe_req->inline_oob_size; 1302 struct gdma_context *gc; 1303 u32 sgl_data_size; 1304 u32 max_wqe_size; 1305 u32 wqe_size; 1306 u8 *wqe_ptr; 1307 1308 if (wqe_req->num_sge == 0) 1309 return -EINVAL; 1310 1311 if (wq->type == GDMA_RQ) { 1312 if (client_oob_size != 0) 1313 return -EINVAL; 1314 1315 client_oob_size = INLINE_OOB_SMALL_SIZE; 1316 1317 max_wqe_size = GDMA_MAX_RQE_SIZE; 1318 } else { 1319 if (client_oob_size != INLINE_OOB_SMALL_SIZE && 1320 client_oob_size != INLINE_OOB_LARGE_SIZE) 1321 return -EINVAL; 1322 1323 max_wqe_size = GDMA_MAX_SQE_SIZE; 1324 } 1325 1326 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1327 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size + 1328 sgl_data_size, GDMA_WQE_BU_SIZE); 1329 if (wqe_size > max_wqe_size) 1330 return -EINVAL; 1331 1332 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) { 1333 gc = wq->gdma_dev->gdma_context; 1334 dev_err(gc->dev, "unsuccessful flow control!\n"); 1335 return -ENOSPC; 1336 } 1337 1338 if (wqe_info) 1339 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE; 1340 1341 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head); 1342 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size, 1343 sgl_data_size, wqe_ptr); 1344 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size) 1345 wqe_ptr -= wq->queue_size; 1346 1347 mana_gd_write_sgl(wq, wqe_ptr, wqe_req); 1348 1349 wq->head += wqe_size / GDMA_WQE_BU_SIZE; 1350 1351 return 0; 1352 } 1353 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA"); 1354 1355 int mana_gd_post_and_ring(struct gdma_queue *queue, 1356 const struct gdma_wqe_request *wqe_req, 1357 struct gdma_posted_wqe_info *wqe_info) 1358 { 1359 struct gdma_context *gc = queue->gdma_dev->gdma_context; 1360 int err; 1361 1362 err = mana_gd_post_work_request(queue, wqe_req, wqe_info); 1363 if (err) { 1364 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n", 1365 queue->type, queue->queue_size, err); 1366 return err; 1367 } 1368 1369 mana_gd_wq_ring_doorbell(gc, queue); 1370 1371 return 0; 1372 } 1373 1374 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp) 1375 { 1376 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe); 1377 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr; 1378 u32 owner_bits, new_bits, old_bits; 1379 struct gdma_cqe *cqe; 1380 1381 cqe = &cq_cqe[cq->head % num_cqe]; 1382 owner_bits = cqe->cqe_info.owner_bits; 1383 1384 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK; 1385 /* Return 0 if no more entries. */ 1386 if (owner_bits == old_bits) 1387 return 0; 1388 1389 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK; 1390 /* Return -1 if overflow detected. */ 1391 if (WARN_ON_ONCE(owner_bits != new_bits)) 1392 return -1; 1393 1394 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 1395 * reading completion info 1396 */ 1397 rmb(); 1398 1399 comp->wq_num = cqe->cqe_info.wq_num; 1400 comp->is_sq = cqe->cqe_info.is_sq; 1401 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE); 1402 1403 return 1; 1404 } 1405 1406 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe) 1407 { 1408 int cqe_idx; 1409 int ret; 1410 1411 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) { 1412 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]); 1413 1414 if (ret < 0) { 1415 cq->head -= cqe_idx; 1416 return ret; 1417 } 1418 1419 if (ret == 0) 1420 break; 1421 1422 cq->head++; 1423 } 1424 1425 return cqe_idx; 1426 } 1427 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA"); 1428 1429 static irqreturn_t mana_gd_intr(int irq, void *arg) 1430 { 1431 struct gdma_irq_context *gic = arg; 1432 struct list_head *eq_list = &gic->eq_list; 1433 struct gdma_queue *eq; 1434 1435 rcu_read_lock(); 1436 list_for_each_entry_rcu(eq, eq_list, entry) { 1437 gic->handler(eq); 1438 } 1439 rcu_read_unlock(); 1440 1441 return IRQ_HANDLED; 1442 } 1443 1444 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r) 1445 { 1446 r->map = bitmap_zalloc(res_avail, GFP_KERNEL); 1447 if (!r->map) 1448 return -ENOMEM; 1449 1450 r->size = res_avail; 1451 spin_lock_init(&r->lock); 1452 1453 return 0; 1454 } 1455 1456 void mana_gd_free_res_map(struct gdma_resource *r) 1457 { 1458 bitmap_free(r->map); 1459 r->map = NULL; 1460 r->size = 0; 1461 } 1462 1463 /* 1464 * Spread on CPUs with the following heuristics: 1465 * 1466 * 1. No more than one IRQ per CPU, if possible; 1467 * 2. NUMA locality is the second priority; 1468 * 3. Sibling dislocality is the last priority. 1469 * 1470 * Let's consider this topology: 1471 * 1472 * Node 0 1 1473 * Core 0 1 2 3 1474 * CPU 0 1 2 3 4 5 6 7 1475 * 1476 * The most performant IRQ distribution based on the above topology 1477 * and heuristics may look like this: 1478 * 1479 * IRQ Nodes Cores CPUs 1480 * 0 1 0 0-1 1481 * 1 1 1 2-3 1482 * 2 1 0 0-1 1483 * 3 1 1 2-3 1484 * 4 2 2 4-5 1485 * 5 2 3 6-7 1486 * 6 2 2 4-5 1487 * 7 2 3 6-7 1488 * 1489 * The heuristics is implemented as follows. 1490 * 1491 * The outer for_each() loop resets the 'weight' to the actual number 1492 * of CPUs in the hop. Then inner for_each() loop decrements it by the 1493 * number of sibling groups (cores) while assigning first set of IRQs 1494 * to each group. IRQs 0 and 1 above are distributed this way. 1495 * 1496 * Now, because NUMA locality is more important, we should walk the 1497 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's 1498 * implemented by the medium while() loop. We do like this unless the 1499 * number of IRQs assigned on this hop will not become equal to number 1500 * of CPUs in the hop (weight == 0). Then we switch to the next hop and 1501 * do the same thing. 1502 */ 1503 1504 static int irq_setup(unsigned int *irqs, unsigned int len, int node, 1505 bool skip_first_cpu) 1506 { 1507 const struct cpumask *next, *prev = cpu_none_mask; 1508 cpumask_var_t cpus __free(free_cpumask_var); 1509 int cpu, weight; 1510 1511 if (!alloc_cpumask_var(&cpus, GFP_KERNEL)) 1512 return -ENOMEM; 1513 1514 rcu_read_lock(); 1515 for_each_numa_hop_mask(next, node) { 1516 weight = cpumask_weight_andnot(next, prev); 1517 while (weight > 0) { 1518 cpumask_andnot(cpus, next, prev); 1519 for_each_cpu(cpu, cpus) { 1520 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 1521 --weight; 1522 1523 if (unlikely(skip_first_cpu)) { 1524 skip_first_cpu = false; 1525 continue; 1526 } 1527 1528 if (len-- == 0) 1529 goto done; 1530 1531 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu)); 1532 } 1533 } 1534 prev = next; 1535 } 1536 done: 1537 rcu_read_unlock(); 1538 return 0; 1539 } 1540 1541 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec) 1542 { 1543 struct gdma_context *gc = pci_get_drvdata(pdev); 1544 struct gdma_irq_context *gic; 1545 bool skip_first_cpu = false; 1546 int *irqs, irq, err, i; 1547 1548 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1549 if (!irqs) 1550 return -ENOMEM; 1551 1552 /* 1553 * While processing the next pci irq vector, we start with index 1, 1554 * as IRQ vector at index 0 is already processed for HWC. 1555 * However, the population of irqs array starts with index 0, to be 1556 * further used in irq_setup() 1557 */ 1558 for (i = 1; i <= nvec; i++) { 1559 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1560 if (!gic) { 1561 err = -ENOMEM; 1562 goto free_irq; 1563 } 1564 gic->handler = mana_gd_process_eq_events; 1565 INIT_LIST_HEAD(&gic->eq_list); 1566 spin_lock_init(&gic->lock); 1567 1568 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1569 i - 1, pci_name(pdev)); 1570 1571 /* one pci vector is already allocated for HWC */ 1572 irqs[i - 1] = pci_irq_vector(pdev, i); 1573 if (irqs[i - 1] < 0) { 1574 err = irqs[i - 1]; 1575 goto free_current_gic; 1576 } 1577 1578 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic); 1579 if (err) 1580 goto free_current_gic; 1581 1582 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1583 } 1584 1585 /* 1586 * When calling irq_setup() for dynamically added IRQs, if number of 1587 * CPUs is more than or equal to allocated MSI-X, we need to skip the 1588 * first CPU sibling group since they are already affinitized to HWC IRQ 1589 */ 1590 cpus_read_lock(); 1591 if (gc->num_msix_usable <= num_online_cpus()) 1592 skip_first_cpu = true; 1593 1594 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu); 1595 if (err) { 1596 cpus_read_unlock(); 1597 goto free_irq; 1598 } 1599 1600 cpus_read_unlock(); 1601 kfree(irqs); 1602 return 0; 1603 1604 free_current_gic: 1605 kfree(gic); 1606 free_irq: 1607 for (i -= 1; i > 0; i--) { 1608 irq = pci_irq_vector(pdev, i); 1609 gic = xa_load(&gc->irq_contexts, i); 1610 if (WARN_ON(!gic)) 1611 continue; 1612 1613 irq_update_affinity_hint(irq, NULL); 1614 free_irq(irq, gic); 1615 xa_erase(&gc->irq_contexts, i); 1616 kfree(gic); 1617 } 1618 kfree(irqs); 1619 return err; 1620 } 1621 1622 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec) 1623 { 1624 struct gdma_context *gc = pci_get_drvdata(pdev); 1625 struct gdma_irq_context *gic; 1626 int *irqs, *start_irqs, irq; 1627 unsigned int cpu; 1628 int err, i; 1629 1630 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1631 if (!irqs) 1632 return -ENOMEM; 1633 1634 start_irqs = irqs; 1635 1636 for (i = 0; i < nvec; i++) { 1637 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1638 if (!gic) { 1639 err = -ENOMEM; 1640 goto free_irq; 1641 } 1642 1643 gic->handler = mana_gd_process_eq_events; 1644 INIT_LIST_HEAD(&gic->eq_list); 1645 spin_lock_init(&gic->lock); 1646 1647 if (!i) 1648 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s", 1649 pci_name(pdev)); 1650 else 1651 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1652 i - 1, pci_name(pdev)); 1653 1654 irqs[i] = pci_irq_vector(pdev, i); 1655 if (irqs[i] < 0) { 1656 err = irqs[i]; 1657 goto free_current_gic; 1658 } 1659 1660 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic); 1661 if (err) 1662 goto free_current_gic; 1663 1664 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1665 } 1666 1667 /* If number of IRQ is one extra than number of online CPUs, 1668 * then we need to assign IRQ0 (hwc irq) and IRQ1 to 1669 * same CPU. 1670 * Else we will use different CPUs for IRQ0 and IRQ1. 1671 * Also we are using cpumask_local_spread instead of 1672 * cpumask_first for the node, because the node can be 1673 * mem only. 1674 */ 1675 cpus_read_lock(); 1676 if (nvec > num_online_cpus()) { 1677 cpu = cpumask_local_spread(0, gc->numa_node); 1678 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu)); 1679 irqs++; 1680 nvec -= 1; 1681 } 1682 1683 err = irq_setup(irqs, nvec, gc->numa_node, false); 1684 if (err) { 1685 cpus_read_unlock(); 1686 goto free_irq; 1687 } 1688 1689 cpus_read_unlock(); 1690 kfree(start_irqs); 1691 return 0; 1692 1693 free_current_gic: 1694 kfree(gic); 1695 free_irq: 1696 for (i -= 1; i >= 0; i--) { 1697 irq = pci_irq_vector(pdev, i); 1698 gic = xa_load(&gc->irq_contexts, i); 1699 if (WARN_ON(!gic)) 1700 continue; 1701 1702 irq_update_affinity_hint(irq, NULL); 1703 free_irq(irq, gic); 1704 xa_erase(&gc->irq_contexts, i); 1705 kfree(gic); 1706 } 1707 1708 kfree(start_irqs); 1709 return err; 1710 } 1711 1712 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev) 1713 { 1714 struct gdma_context *gc = pci_get_drvdata(pdev); 1715 unsigned int max_irqs, min_irqs; 1716 int nvec, err; 1717 1718 if (pci_msix_can_alloc_dyn(pdev)) { 1719 max_irqs = 1; 1720 min_irqs = 1; 1721 } else { 1722 /* Need 1 interrupt for HWC */ 1723 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1; 1724 min_irqs = 2; 1725 } 1726 1727 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX); 1728 if (nvec < 0) 1729 return nvec; 1730 1731 err = mana_gd_setup_irqs(pdev, nvec); 1732 if (err) { 1733 pci_free_irq_vectors(pdev); 1734 return err; 1735 } 1736 1737 gc->num_msix_usable = nvec; 1738 gc->max_num_msix = nvec; 1739 1740 return 0; 1741 } 1742 1743 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev) 1744 { 1745 struct gdma_context *gc = pci_get_drvdata(pdev); 1746 struct msi_map irq_map; 1747 int max_irqs, i, err; 1748 1749 if (!pci_msix_can_alloc_dyn(pdev)) 1750 /* remain irqs are already allocated with HWC IRQ */ 1751 return 0; 1752 1753 /* allocate only remaining IRQs*/ 1754 max_irqs = gc->num_msix_usable - 1; 1755 1756 for (i = 1; i <= max_irqs; i++) { 1757 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL); 1758 if (!irq_map.virq) { 1759 err = irq_map.index; 1760 /* caller will handle cleaning up all allocated 1761 * irqs, after HWC is destroyed 1762 */ 1763 return err; 1764 } 1765 } 1766 1767 err = mana_gd_setup_dyn_irqs(pdev, max_irqs); 1768 if (err) 1769 return err; 1770 1771 gc->max_num_msix = gc->max_num_msix + max_irqs; 1772 1773 return 0; 1774 } 1775 1776 static void mana_gd_remove_irqs(struct pci_dev *pdev) 1777 { 1778 struct gdma_context *gc = pci_get_drvdata(pdev); 1779 struct gdma_irq_context *gic; 1780 int irq, i; 1781 1782 if (gc->max_num_msix < 1) 1783 return; 1784 1785 for (i = 0; i < gc->max_num_msix; i++) { 1786 irq = pci_irq_vector(pdev, i); 1787 if (irq < 0) 1788 continue; 1789 1790 gic = xa_load(&gc->irq_contexts, i); 1791 if (WARN_ON(!gic)) 1792 continue; 1793 1794 /* Need to clear the hint before free_irq */ 1795 irq_update_affinity_hint(irq, NULL); 1796 free_irq(irq, gic); 1797 xa_erase(&gc->irq_contexts, i); 1798 kfree(gic); 1799 } 1800 1801 pci_free_irq_vectors(pdev); 1802 1803 gc->max_num_msix = 0; 1804 gc->num_msix_usable = 0; 1805 } 1806 1807 static int mana_gd_setup(struct pci_dev *pdev) 1808 { 1809 struct gdma_context *gc = pci_get_drvdata(pdev); 1810 int err; 1811 1812 mana_gd_init_registers(pdev); 1813 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base); 1814 1815 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0); 1816 if (!gc->service_wq) 1817 return -ENOMEM; 1818 1819 err = mana_gd_setup_hwc_irqs(pdev); 1820 if (err) { 1821 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n", 1822 err); 1823 goto free_workqueue; 1824 } 1825 1826 err = mana_hwc_create_channel(gc); 1827 if (err) 1828 goto remove_irq; 1829 1830 err = mana_gd_verify_vf_version(pdev); 1831 if (err) 1832 goto destroy_hwc; 1833 1834 err = mana_gd_query_max_resources(pdev); 1835 if (err) 1836 goto destroy_hwc; 1837 1838 err = mana_gd_setup_remaining_irqs(pdev); 1839 if (err) { 1840 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err); 1841 goto destroy_hwc; 1842 } 1843 1844 err = mana_gd_detect_devices(pdev); 1845 if (err) 1846 goto destroy_hwc; 1847 1848 dev_dbg(&pdev->dev, "mana gdma setup successful\n"); 1849 return 0; 1850 1851 destroy_hwc: 1852 mana_hwc_destroy_channel(gc); 1853 remove_irq: 1854 mana_gd_remove_irqs(pdev); 1855 free_workqueue: 1856 destroy_workqueue(gc->service_wq); 1857 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err); 1858 return err; 1859 } 1860 1861 static void mana_gd_cleanup(struct pci_dev *pdev) 1862 { 1863 struct gdma_context *gc = pci_get_drvdata(pdev); 1864 1865 mana_hwc_destroy_channel(gc); 1866 1867 mana_gd_remove_irqs(pdev); 1868 1869 destroy_workqueue(gc->service_wq); 1870 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n"); 1871 } 1872 1873 static bool mana_is_pf(unsigned short dev_id) 1874 { 1875 return dev_id == MANA_PF_DEVICE_ID; 1876 } 1877 1878 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1879 { 1880 struct gdma_context *gc; 1881 void __iomem *bar0_va; 1882 int bar = 0; 1883 int err; 1884 1885 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */ 1886 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE); 1887 1888 err = pci_enable_device(pdev); 1889 if (err) { 1890 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err); 1891 return -ENXIO; 1892 } 1893 1894 pci_set_master(pdev); 1895 1896 err = pci_request_regions(pdev, "mana"); 1897 if (err) 1898 goto disable_dev; 1899 1900 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1901 if (err) { 1902 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err); 1903 goto release_region; 1904 } 1905 dma_set_max_seg_size(&pdev->dev, UINT_MAX); 1906 1907 err = -ENOMEM; 1908 gc = vzalloc(sizeof(*gc)); 1909 if (!gc) 1910 goto release_region; 1911 1912 mutex_init(&gc->eq_test_event_mutex); 1913 pci_set_drvdata(pdev, gc); 1914 gc->bar0_pa = pci_resource_start(pdev, 0); 1915 1916 bar0_va = pci_iomap(pdev, bar, 0); 1917 if (!bar0_va) 1918 goto free_gc; 1919 1920 gc->numa_node = dev_to_node(&pdev->dev); 1921 gc->is_pf = mana_is_pf(pdev->device); 1922 gc->bar0_va = bar0_va; 1923 gc->dev = &pdev->dev; 1924 xa_init(&gc->irq_contexts); 1925 1926 if (gc->is_pf) 1927 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root); 1928 else 1929 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot), 1930 mana_debugfs_root); 1931 1932 err = mana_gd_setup(pdev); 1933 if (err) 1934 goto unmap_bar; 1935 1936 err = mana_probe(&gc->mana, false); 1937 if (err) 1938 goto cleanup_gd; 1939 1940 err = mana_rdma_probe(&gc->mana_ib); 1941 if (err) 1942 goto cleanup_mana; 1943 1944 return 0; 1945 1946 cleanup_mana: 1947 mana_remove(&gc->mana, false); 1948 cleanup_gd: 1949 mana_gd_cleanup(pdev); 1950 unmap_bar: 1951 /* 1952 * at this point we know that the other debugfs child dir/files 1953 * are either not yet created or are already cleaned up. 1954 * The pci debugfs folder clean-up now, will only be cleaning up 1955 * adapter-MTU file and apc->mana_pci_debugfs folder. 1956 */ 1957 debugfs_remove_recursive(gc->mana_pci_debugfs); 1958 gc->mana_pci_debugfs = NULL; 1959 xa_destroy(&gc->irq_contexts); 1960 pci_iounmap(pdev, bar0_va); 1961 free_gc: 1962 pci_set_drvdata(pdev, NULL); 1963 vfree(gc); 1964 release_region: 1965 pci_release_regions(pdev); 1966 disable_dev: 1967 pci_disable_device(pdev); 1968 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err); 1969 return err; 1970 } 1971 1972 static void mana_gd_remove(struct pci_dev *pdev) 1973 { 1974 struct gdma_context *gc = pci_get_drvdata(pdev); 1975 1976 mana_rdma_remove(&gc->mana_ib); 1977 mana_remove(&gc->mana, false); 1978 1979 mana_gd_cleanup(pdev); 1980 1981 debugfs_remove_recursive(gc->mana_pci_debugfs); 1982 1983 gc->mana_pci_debugfs = NULL; 1984 1985 xa_destroy(&gc->irq_contexts); 1986 1987 pci_iounmap(pdev, gc->bar0_va); 1988 1989 vfree(gc); 1990 1991 pci_release_regions(pdev); 1992 pci_disable_device(pdev); 1993 1994 dev_dbg(&pdev->dev, "mana gdma remove successful\n"); 1995 } 1996 1997 /* The 'state' parameter is not used. */ 1998 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state) 1999 { 2000 struct gdma_context *gc = pci_get_drvdata(pdev); 2001 2002 mana_rdma_remove(&gc->mana_ib); 2003 mana_remove(&gc->mana, true); 2004 2005 mana_gd_cleanup(pdev); 2006 2007 return 0; 2008 } 2009 2010 /* In case the NIC hardware stops working, the suspend and resume callbacks will 2011 * fail -- if this happens, it's safer to just report an error than try to undo 2012 * what has been done. 2013 */ 2014 int mana_gd_resume(struct pci_dev *pdev) 2015 { 2016 struct gdma_context *gc = pci_get_drvdata(pdev); 2017 int err; 2018 2019 err = mana_gd_setup(pdev); 2020 if (err) 2021 return err; 2022 2023 err = mana_probe(&gc->mana, true); 2024 if (err) 2025 return err; 2026 2027 err = mana_rdma_probe(&gc->mana_ib); 2028 if (err) 2029 return err; 2030 2031 return 0; 2032 } 2033 2034 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */ 2035 static void mana_gd_shutdown(struct pci_dev *pdev) 2036 { 2037 struct gdma_context *gc = pci_get_drvdata(pdev); 2038 2039 dev_info(&pdev->dev, "Shutdown was called\n"); 2040 2041 mana_rdma_remove(&gc->mana_ib); 2042 mana_remove(&gc->mana, true); 2043 2044 mana_gd_cleanup(pdev); 2045 2046 debugfs_remove_recursive(gc->mana_pci_debugfs); 2047 2048 gc->mana_pci_debugfs = NULL; 2049 2050 pci_disable_device(pdev); 2051 } 2052 2053 static const struct pci_device_id mana_id_table[] = { 2054 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) }, 2055 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) }, 2056 { } 2057 }; 2058 2059 static struct pci_driver mana_driver = { 2060 .name = "mana", 2061 .id_table = mana_id_table, 2062 .probe = mana_gd_probe, 2063 .remove = mana_gd_remove, 2064 .suspend = mana_gd_suspend, 2065 .resume = mana_gd_resume, 2066 .shutdown = mana_gd_shutdown, 2067 }; 2068 2069 static int __init mana_driver_init(void) 2070 { 2071 int err; 2072 2073 mana_debugfs_root = debugfs_create_dir("mana", NULL); 2074 2075 err = pci_register_driver(&mana_driver); 2076 if (err) { 2077 debugfs_remove(mana_debugfs_root); 2078 mana_debugfs_root = NULL; 2079 } 2080 2081 return err; 2082 } 2083 2084 static void __exit mana_driver_exit(void) 2085 { 2086 pci_unregister_driver(&mana_driver); 2087 2088 debugfs_remove(mana_debugfs_root); 2089 2090 mana_debugfs_root = NULL; 2091 } 2092 2093 module_init(mana_driver_init); 2094 module_exit(mana_driver_exit); 2095 2096 MODULE_DEVICE_TABLE(pci, mana_id_table); 2097 2098 MODULE_LICENSE("Dual BSD/GPL"); 2099 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver"); 2100