1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Microchip Sparx5 Switch driver 3 * 4 * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries. 5 * 6 * The Sparx5 Chip Register Model can be browsed at this location: 7 * https://github.com/microchip-ung/sparx-5_reginfo 8 */ 9 10 #include <linux/types.h> 11 #include <linux/skbuff.h> 12 #include <linux/netdevice.h> 13 #include <linux/interrupt.h> 14 #include <linux/ip.h> 15 #include <linux/dma-mapping.h> 16 17 #include "sparx5_main_regs.h" 18 #include "sparx5_main.h" 19 #include "sparx5_port.h" 20 21 #define FDMA_XTR_CHANNEL 6 22 #define FDMA_INJ_CHANNEL 0 23 24 #define FDMA_DCB_INFO_DATAL(x) ((x) & GENMASK(15, 0)) 25 #define FDMA_DCB_INFO_TOKEN BIT(17) 26 #define FDMA_DCB_INFO_INTR BIT(18) 27 #define FDMA_DCB_INFO_SW(x) (((x) << 24) & GENMASK(31, 24)) 28 29 #define FDMA_DCB_STATUS_BLOCKL(x) ((x) & GENMASK(15, 0)) 30 #define FDMA_DCB_STATUS_SOF BIT(16) 31 #define FDMA_DCB_STATUS_EOF BIT(17) 32 #define FDMA_DCB_STATUS_INTR BIT(18) 33 #define FDMA_DCB_STATUS_DONE BIT(19) 34 #define FDMA_DCB_STATUS_BLOCKO(x) (((x) << 20) & GENMASK(31, 20)) 35 #define FDMA_DCB_INVALID_DATA 0x1 36 37 #define FDMA_XTR_BUFFER_SIZE 2048 38 #define FDMA_WEIGHT 4 39 40 /* Frame DMA DCB format 41 * 42 * +---------------------------+ 43 * | Next Ptr | 44 * +---------------------------+ 45 * | Reserved | Info | 46 * +---------------------------+ 47 * | Data0 Ptr | 48 * +---------------------------+ 49 * | Reserved | Status0 | 50 * +---------------------------+ 51 * | Data1 Ptr | 52 * +---------------------------+ 53 * | Reserved | Status1 | 54 * +---------------------------+ 55 * | Data2 Ptr | 56 * +---------------------------+ 57 * | Reserved | Status2 | 58 * |-------------|-------------| 59 * | | 60 * | | 61 * | | 62 * | | 63 * | | 64 * |---------------------------| 65 * | Data14 Ptr | 66 * +-------------|-------------+ 67 * | Reserved | Status14 | 68 * +-------------|-------------+ 69 */ 70 71 /* For each hardware DB there is an entry in this list and when the HW DB 72 * entry is used, this SW DB entry is moved to the back of the list 73 */ 74 struct sparx5_db { 75 struct list_head list; 76 void *cpu_addr; 77 }; 78 79 static void sparx5_fdma_rx_add_dcb(struct sparx5_rx *rx, 80 struct sparx5_rx_dcb_hw *dcb, 81 u64 nextptr) 82 { 83 int idx = 0; 84 85 /* Reset the status of the DB */ 86 for (idx = 0; idx < FDMA_RX_DCB_MAX_DBS; ++idx) { 87 struct sparx5_db_hw *db = &dcb->db[idx]; 88 89 db->status = FDMA_DCB_STATUS_INTR; 90 } 91 dcb->nextptr = FDMA_DCB_INVALID_DATA; 92 dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE); 93 rx->last_entry->nextptr = nextptr; 94 rx->last_entry = dcb; 95 } 96 97 static void sparx5_fdma_tx_add_dcb(struct sparx5_tx *tx, 98 struct sparx5_tx_dcb_hw *dcb, 99 u64 nextptr) 100 { 101 int idx = 0; 102 103 /* Reset the status of the DB */ 104 for (idx = 0; idx < FDMA_TX_DCB_MAX_DBS; ++idx) { 105 struct sparx5_db_hw *db = &dcb->db[idx]; 106 107 db->status = FDMA_DCB_STATUS_DONE; 108 } 109 dcb->nextptr = FDMA_DCB_INVALID_DATA; 110 dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE); 111 } 112 113 static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx) 114 { 115 /* Write the buffer address in the LLP and LLP1 regs */ 116 spx5_wr(((u64)rx->dma) & GENMASK(31, 0), sparx5, 117 FDMA_DCB_LLP(rx->channel_id)); 118 spx5_wr(((u64)rx->dma) >> 32, sparx5, FDMA_DCB_LLP1(rx->channel_id)); 119 120 /* Set the number of RX DBs to be used, and DB end-of-frame interrupt */ 121 spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_RX_DCB_MAX_DBS) | 122 FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | 123 FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE), 124 sparx5, FDMA_CH_CFG(rx->channel_id)); 125 126 /* Set the RX Watermark to max */ 127 spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM, 128 sparx5, 129 FDMA_XTR_CFG); 130 131 /* Start RX fdma */ 132 spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP, 133 sparx5, FDMA_PORT_CTRL(0)); 134 135 /* Enable RX channel DB interrupt */ 136 spx5_rmw(BIT(rx->channel_id), 137 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, 138 sparx5, FDMA_INTR_DB_ENA); 139 140 /* Activate the RX channel */ 141 spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_ACTIVATE); 142 } 143 144 static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx) 145 { 146 /* Deactivate the RX channel */ 147 spx5_rmw(0, BIT(rx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE, 148 sparx5, FDMA_CH_ACTIVATE); 149 150 /* Disable RX channel DB interrupt */ 151 spx5_rmw(0, BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, 152 sparx5, FDMA_INTR_DB_ENA); 153 154 /* Stop RX fdma */ 155 spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP, 156 sparx5, FDMA_PORT_CTRL(0)); 157 } 158 159 static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx) 160 { 161 /* Write the buffer address in the LLP and LLP1 regs */ 162 spx5_wr(((u64)tx->dma) & GENMASK(31, 0), sparx5, 163 FDMA_DCB_LLP(tx->channel_id)); 164 spx5_wr(((u64)tx->dma) >> 32, sparx5, FDMA_DCB_LLP1(tx->channel_id)); 165 166 /* Set the number of TX DBs to be used, and DB end-of-frame interrupt */ 167 spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_TX_DCB_MAX_DBS) | 168 FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | 169 FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE), 170 sparx5, FDMA_CH_CFG(tx->channel_id)); 171 172 /* Start TX fdma */ 173 spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP, 174 sparx5, FDMA_PORT_CTRL(0)); 175 176 /* Activate the channel */ 177 spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_ACTIVATE); 178 } 179 180 static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx) 181 { 182 /* Disable the channel */ 183 spx5_rmw(0, BIT(tx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE, 184 sparx5, FDMA_CH_ACTIVATE); 185 } 186 187 static void sparx5_fdma_rx_reload(struct sparx5 *sparx5, struct sparx5_rx *rx) 188 { 189 /* Reload the RX channel */ 190 spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_RELOAD); 191 } 192 193 static void sparx5_fdma_tx_reload(struct sparx5 *sparx5, struct sparx5_tx *tx) 194 { 195 /* Reload the TX channel */ 196 spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_RELOAD); 197 } 198 199 static struct sk_buff *sparx5_fdma_rx_alloc_skb(struct sparx5_rx *rx) 200 { 201 return __netdev_alloc_skb(rx->ndev, FDMA_XTR_BUFFER_SIZE, 202 GFP_ATOMIC); 203 } 204 205 static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx) 206 { 207 struct sparx5_db_hw *db_hw; 208 unsigned int packet_size; 209 struct sparx5_port *port; 210 struct sk_buff *new_skb; 211 struct frame_info fi; 212 struct sk_buff *skb; 213 dma_addr_t dma_addr; 214 215 /* Check if the DCB is done */ 216 db_hw = &rx->dcb_entries[rx->dcb_index].db[rx->db_index]; 217 if (unlikely(!(db_hw->status & FDMA_DCB_STATUS_DONE))) 218 return false; 219 skb = rx->skb[rx->dcb_index][rx->db_index]; 220 /* Replace the DB entry with a new SKB */ 221 new_skb = sparx5_fdma_rx_alloc_skb(rx); 222 if (unlikely(!new_skb)) 223 return false; 224 /* Map the new skb data and set the new skb */ 225 dma_addr = virt_to_phys(new_skb->data); 226 rx->skb[rx->dcb_index][rx->db_index] = new_skb; 227 db_hw->dataptr = dma_addr; 228 packet_size = FDMA_DCB_STATUS_BLOCKL(db_hw->status); 229 skb_put(skb, packet_size); 230 /* Now do the normal processing of the skb */ 231 sparx5_ifh_parse((u32 *)skb->data, &fi); 232 /* Map to port netdev */ 233 port = fi.src_port < SPX5_PORTS ? sparx5->ports[fi.src_port] : NULL; 234 if (!port || !port->ndev) { 235 dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port); 236 sparx5_xtr_flush(sparx5, XTR_QUEUE); 237 return false; 238 } 239 skb->dev = port->ndev; 240 skb_pull(skb, IFH_LEN * sizeof(u32)); 241 if (likely(!(skb->dev->features & NETIF_F_RXFCS))) 242 skb_trim(skb, skb->len - ETH_FCS_LEN); 243 244 sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp); 245 skb->protocol = eth_type_trans(skb, skb->dev); 246 /* Everything we see on an interface that is in the HW bridge 247 * has already been forwarded 248 */ 249 if (test_bit(port->portno, sparx5->bridge_mask)) 250 skb->offload_fwd_mark = 1; 251 skb->dev->stats.rx_bytes += skb->len; 252 skb->dev->stats.rx_packets++; 253 rx->packets++; 254 netif_receive_skb(skb); 255 return true; 256 } 257 258 static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight) 259 { 260 struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi); 261 struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx); 262 int counter = 0; 263 264 while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) { 265 struct sparx5_rx_dcb_hw *old_dcb; 266 267 rx->db_index++; 268 counter++; 269 /* Check if the DCB can be reused */ 270 if (rx->db_index != FDMA_RX_DCB_MAX_DBS) 271 continue; 272 /* As the DCB can be reused, just advance the dcb_index 273 * pointer and set the nextptr in the DCB 274 */ 275 rx->db_index = 0; 276 old_dcb = &rx->dcb_entries[rx->dcb_index]; 277 rx->dcb_index++; 278 rx->dcb_index &= FDMA_DCB_MAX - 1; 279 sparx5_fdma_rx_add_dcb(rx, old_dcb, 280 rx->dma + 281 ((unsigned long)old_dcb - 282 (unsigned long)rx->dcb_entries)); 283 } 284 if (counter < weight) { 285 napi_complete_done(&rx->napi, counter); 286 spx5_rmw(BIT(rx->channel_id), 287 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, 288 sparx5, FDMA_INTR_DB_ENA); 289 } 290 if (counter) 291 sparx5_fdma_rx_reload(sparx5, rx); 292 return counter; 293 } 294 295 static struct sparx5_tx_dcb_hw *sparx5_fdma_next_dcb(struct sparx5_tx *tx, 296 struct sparx5_tx_dcb_hw *dcb) 297 { 298 struct sparx5_tx_dcb_hw *next_dcb; 299 300 next_dcb = dcb; 301 next_dcb++; 302 /* Handle wrap-around */ 303 if ((unsigned long)next_dcb >= 304 ((unsigned long)tx->first_entry + FDMA_DCB_MAX * sizeof(*dcb))) 305 next_dcb = tx->first_entry; 306 return next_dcb; 307 } 308 309 int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb) 310 { 311 struct sparx5_tx_dcb_hw *next_dcb_hw; 312 struct sparx5_tx *tx = &sparx5->tx; 313 static bool first_time = true; 314 struct sparx5_db_hw *db_hw; 315 struct sparx5_db *db; 316 317 next_dcb_hw = sparx5_fdma_next_dcb(tx, tx->curr_entry); 318 db_hw = &next_dcb_hw->db[0]; 319 if (!(db_hw->status & FDMA_DCB_STATUS_DONE)) 320 return -EINVAL; 321 db = list_first_entry(&tx->db_list, struct sparx5_db, list); 322 list_move_tail(&db->list, &tx->db_list); 323 next_dcb_hw->nextptr = FDMA_DCB_INVALID_DATA; 324 tx->curr_entry->nextptr = tx->dma + 325 ((unsigned long)next_dcb_hw - 326 (unsigned long)tx->first_entry); 327 tx->curr_entry = next_dcb_hw; 328 memset(db->cpu_addr, 0, FDMA_XTR_BUFFER_SIZE); 329 memcpy(db->cpu_addr, ifh, IFH_LEN * 4); 330 memcpy(db->cpu_addr + IFH_LEN * 4, skb->data, skb->len); 331 db_hw->status = FDMA_DCB_STATUS_SOF | 332 FDMA_DCB_STATUS_EOF | 333 FDMA_DCB_STATUS_BLOCKO(0) | 334 FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4); 335 if (first_time) { 336 sparx5_fdma_tx_activate(sparx5, tx); 337 first_time = false; 338 } else { 339 sparx5_fdma_tx_reload(sparx5, tx); 340 } 341 return NETDEV_TX_OK; 342 } 343 344 static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5) 345 { 346 struct sparx5_rx *rx = &sparx5->rx; 347 struct sparx5_rx_dcb_hw *dcb; 348 int idx, jdx; 349 int size; 350 351 size = sizeof(struct sparx5_rx_dcb_hw) * FDMA_DCB_MAX; 352 size = ALIGN(size, PAGE_SIZE); 353 rx->dcb_entries = devm_kzalloc(sparx5->dev, size, GFP_KERNEL); 354 if (!rx->dcb_entries) 355 return -ENOMEM; 356 rx->dma = virt_to_phys(rx->dcb_entries); 357 rx->last_entry = rx->dcb_entries; 358 rx->db_index = 0; 359 rx->dcb_index = 0; 360 /* Now for each dcb allocate the db */ 361 for (idx = 0; idx < FDMA_DCB_MAX; ++idx) { 362 dcb = &rx->dcb_entries[idx]; 363 dcb->info = 0; 364 /* For each db allocate an skb and map skb data pointer to the DB 365 * dataptr. In this way when the frame is received the skb->data 366 * will contain the frame, so no memcpy is needed 367 */ 368 for (jdx = 0; jdx < FDMA_RX_DCB_MAX_DBS; ++jdx) { 369 struct sparx5_db_hw *db_hw = &dcb->db[jdx]; 370 dma_addr_t dma_addr; 371 struct sk_buff *skb; 372 373 skb = sparx5_fdma_rx_alloc_skb(rx); 374 if (!skb) 375 return -ENOMEM; 376 377 dma_addr = virt_to_phys(skb->data); 378 db_hw->dataptr = dma_addr; 379 db_hw->status = 0; 380 rx->skb[idx][jdx] = skb; 381 } 382 sparx5_fdma_rx_add_dcb(rx, dcb, rx->dma + sizeof(*dcb) * idx); 383 } 384 netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback, 385 FDMA_WEIGHT); 386 napi_enable(&rx->napi); 387 sparx5_fdma_rx_activate(sparx5, rx); 388 return 0; 389 } 390 391 static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5) 392 { 393 struct sparx5_tx *tx = &sparx5->tx; 394 struct sparx5_tx_dcb_hw *dcb; 395 int idx, jdx; 396 int size; 397 398 size = sizeof(struct sparx5_tx_dcb_hw) * FDMA_DCB_MAX; 399 size = ALIGN(size, PAGE_SIZE); 400 tx->curr_entry = devm_kzalloc(sparx5->dev, size, GFP_KERNEL); 401 if (!tx->curr_entry) 402 return -ENOMEM; 403 tx->dma = virt_to_phys(tx->curr_entry); 404 tx->first_entry = tx->curr_entry; 405 INIT_LIST_HEAD(&tx->db_list); 406 /* Now for each dcb allocate the db */ 407 for (idx = 0; idx < FDMA_DCB_MAX; ++idx) { 408 dcb = &tx->curr_entry[idx]; 409 dcb->info = 0; 410 /* TX databuffers must be 16byte aligned */ 411 for (jdx = 0; jdx < FDMA_TX_DCB_MAX_DBS; ++jdx) { 412 struct sparx5_db_hw *db_hw = &dcb->db[jdx]; 413 struct sparx5_db *db; 414 dma_addr_t phys; 415 void *cpu_addr; 416 417 cpu_addr = devm_kzalloc(sparx5->dev, 418 FDMA_XTR_BUFFER_SIZE, 419 GFP_KERNEL); 420 if (!cpu_addr) 421 return -ENOMEM; 422 phys = virt_to_phys(cpu_addr); 423 db_hw->dataptr = phys; 424 db_hw->status = 0; 425 db = devm_kzalloc(sparx5->dev, sizeof(*db), GFP_KERNEL); 426 if (!db) 427 return -ENOMEM; 428 db->cpu_addr = cpu_addr; 429 list_add_tail(&db->list, &tx->db_list); 430 } 431 sparx5_fdma_tx_add_dcb(tx, dcb, tx->dma + sizeof(*dcb) * idx); 432 /* Let the curr_entry to point to the last allocated entry */ 433 if (idx == FDMA_DCB_MAX - 1) 434 tx->curr_entry = dcb; 435 } 436 return 0; 437 } 438 439 static void sparx5_fdma_rx_init(struct sparx5 *sparx5, 440 struct sparx5_rx *rx, int channel) 441 { 442 int idx; 443 444 rx->channel_id = channel; 445 /* Fetch a netdev for SKB and NAPI use, any will do */ 446 for (idx = 0; idx < SPX5_PORTS; ++idx) { 447 struct sparx5_port *port = sparx5->ports[idx]; 448 449 if (port && port->ndev) { 450 rx->ndev = port->ndev; 451 break; 452 } 453 } 454 } 455 456 static void sparx5_fdma_tx_init(struct sparx5 *sparx5, 457 struct sparx5_tx *tx, int channel) 458 { 459 tx->channel_id = channel; 460 } 461 462 irqreturn_t sparx5_fdma_handler(int irq, void *args) 463 { 464 struct sparx5 *sparx5 = args; 465 u32 db = 0, err = 0; 466 467 db = spx5_rd(sparx5, FDMA_INTR_DB); 468 err = spx5_rd(sparx5, FDMA_INTR_ERR); 469 /* Clear interrupt */ 470 if (db) { 471 spx5_wr(0, sparx5, FDMA_INTR_DB_ENA); 472 spx5_wr(db, sparx5, FDMA_INTR_DB); 473 napi_schedule(&sparx5->rx.napi); 474 } 475 if (err) { 476 u32 err_type = spx5_rd(sparx5, FDMA_ERRORS); 477 478 dev_err_ratelimited(sparx5->dev, 479 "ERR: int: %#x, type: %#x\n", 480 err, err_type); 481 spx5_wr(err, sparx5, FDMA_INTR_ERR); 482 spx5_wr(err_type, sparx5, FDMA_ERRORS); 483 } 484 return IRQ_HANDLED; 485 } 486 487 static void sparx5_fdma_injection_mode(struct sparx5 *sparx5) 488 { 489 const int byte_swap = 1; 490 int portno; 491 int urgency; 492 493 /* Change mode to fdma extraction and injection */ 494 spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) | 495 QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) | 496 QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap), 497 sparx5, QS_XTR_GRP_CFG(XTR_QUEUE)); 498 spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) | 499 QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap), 500 sparx5, QS_INJ_GRP_CFG(INJ_QUEUE)); 501 502 /* CPU ports capture setup */ 503 for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) { 504 /* ASM CPU port: No preamble, IFH, enable padding */ 505 spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) | 506 ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) | 507 ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */ 508 sparx5, ASM_PORT_CFG(portno)); 509 510 /* Reset WM cnt to unclog queued frames */ 511 spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1), 512 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR, 513 sparx5, 514 DSM_DEV_TX_STOP_WM_CFG(portno)); 515 516 /* Set Disassembler Stop Watermark level */ 517 spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100), 518 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM, 519 sparx5, 520 DSM_DEV_TX_STOP_WM_CFG(portno)); 521 522 /* Enable port in queue system */ 523 urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500); 524 spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) | 525 QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency), 526 QFWD_SWITCH_PORT_MODE_PORT_ENA | 527 QFWD_SWITCH_PORT_MODE_FWD_URGENCY, 528 sparx5, 529 QFWD_SWITCH_PORT_MODE(portno)); 530 531 /* Disable Disassembler buffer underrun watchdog 532 * to avoid truncated packets in XTR 533 */ 534 spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1), 535 DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS, 536 sparx5, 537 DSM_BUF_CFG(portno)); 538 539 /* Disabling frame aging */ 540 spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1), 541 HSCH_PORT_MODE_AGE_DIS, 542 sparx5, 543 HSCH_PORT_MODE(portno)); 544 } 545 } 546 547 int sparx5_fdma_start(struct sparx5 *sparx5) 548 { 549 int err; 550 551 /* Reset FDMA state */ 552 spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL); 553 spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL); 554 555 /* Force ACP caching but disable read/write allocation */ 556 spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) | 557 CPU_PROC_CTRL_ACP_AWCACHE_SET(0) | 558 CPU_PROC_CTRL_ACP_ARCACHE_SET(0), 559 CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA | 560 CPU_PROC_CTRL_ACP_AWCACHE | 561 CPU_PROC_CTRL_ACP_ARCACHE, 562 sparx5, CPU_PROC_CTRL); 563 564 sparx5_fdma_injection_mode(sparx5); 565 sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL); 566 sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL); 567 err = sparx5_fdma_rx_alloc(sparx5); 568 if (err) { 569 dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err); 570 return err; 571 } 572 err = sparx5_fdma_tx_alloc(sparx5); 573 if (err) { 574 dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err); 575 return err; 576 } 577 return err; 578 } 579 580 static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5) 581 { 582 return spx5_rd(sparx5, FDMA_PORT_CTRL(0)); 583 } 584 585 int sparx5_fdma_stop(struct sparx5 *sparx5) 586 { 587 u32 val; 588 589 napi_disable(&sparx5->rx.napi); 590 /* Stop the fdma and channel interrupts */ 591 sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx); 592 sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx); 593 /* Wait for the RX channel to stop */ 594 read_poll_timeout(sparx5_fdma_port_ctrl, val, 595 FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0, 596 500, 10000, 0, sparx5); 597 return 0; 598 } 599