xref: /linux/drivers/net/ethernet/microchip/enc28j60.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Microchip ENC28J60 ethernet driver (MAC + PHY)
4  *
5  * Copyright (C) 2007 Eurek srl
6  * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
7  * based on enc28j60.c written by David Anders for 2.4 kernel version
8  *
9  * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/property.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/tcp.h>
24 #include <linux/skbuff.h>
25 #include <linux/delay.h>
26 #include <linux/spi/spi.h>
27 
28 #include "enc28j60_hw.h"
29 
30 #define DRV_NAME	"enc28j60"
31 #define DRV_VERSION	"1.02"
32 
33 #define SPI_OPLEN	1
34 
35 #define ENC28J60_MSG_DEFAULT	\
36 	(NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
37 
38 /* Buffer size required for the largest SPI transfer (i.e., reading a
39  * frame).
40  */
41 #define SPI_TRANSFER_BUF_LEN	(4 + MAX_FRAMELEN)
42 
43 #define TX_TIMEOUT		(4 * HZ)
44 
45 /* Max TX retries in case of collision as suggested by errata datasheet */
46 #define MAX_TX_RETRYCOUNT	16
47 
48 enum {
49 	RXFILTER_NORMAL,
50 	RXFILTER_MULTI,
51 	RXFILTER_PROMISC
52 };
53 
54 /* Driver local data */
55 struct enc28j60_net {
56 	struct net_device *netdev;
57 	struct spi_device *spi;
58 	struct mutex lock;
59 	struct sk_buff *tx_skb;
60 	struct work_struct tx_work;
61 	struct work_struct setrx_work;
62 	struct work_struct restart_work;
63 	u8 bank;		/* current register bank selected */
64 	u16 next_pk_ptr;	/* next packet pointer within FIFO */
65 	u16 max_pk_counter;	/* statistics: max packet counter */
66 	u16 tx_retry_count;
67 	bool hw_enable;
68 	bool full_duplex;
69 	int rxfilter;
70 	u32 msg_enable;
71 	u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
72 };
73 
74 /* use ethtool to change the level for any given device */
75 static struct {
76 	u32 msg_enable;
77 } debug = { -1 };
78 
79 /*
80  * SPI read buffer
81  * Wait for the SPI transfer and copy received data to destination.
82  */
83 static int
84 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
85 {
86 	struct device *dev = &priv->spi->dev;
87 	u8 *rx_buf = priv->spi_transfer_buf + 4;
88 	u8 *tx_buf = priv->spi_transfer_buf;
89 	struct spi_transfer tx = {
90 		.tx_buf = tx_buf,
91 		.len = SPI_OPLEN,
92 	};
93 	struct spi_transfer rx = {
94 		.rx_buf = rx_buf,
95 		.len = len,
96 	};
97 	struct spi_message msg;
98 	int ret;
99 
100 	tx_buf[0] = ENC28J60_READ_BUF_MEM;
101 
102 	spi_message_init(&msg);
103 	spi_message_add_tail(&tx, &msg);
104 	spi_message_add_tail(&rx, &msg);
105 
106 	ret = spi_sync(priv->spi, &msg);
107 	if (ret == 0) {
108 		memcpy(data, rx_buf, len);
109 		ret = msg.status;
110 	}
111 	if (ret && netif_msg_drv(priv))
112 		dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
113 			   __func__, ret);
114 
115 	return ret;
116 }
117 
118 /*
119  * SPI write buffer
120  */
121 static int spi_write_buf(struct enc28j60_net *priv, int len, const u8 *data)
122 {
123 	struct device *dev = &priv->spi->dev;
124 	int ret;
125 
126 	if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
127 		ret = -EINVAL;
128 	else {
129 		priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
130 		memcpy(&priv->spi_transfer_buf[1], data, len);
131 		ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
132 		if (ret && netif_msg_drv(priv))
133 			dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
134 				   __func__, ret);
135 	}
136 	return ret;
137 }
138 
139 /*
140  * basic SPI read operation
141  */
142 static u8 spi_read_op(struct enc28j60_net *priv, u8 op, u8 addr)
143 {
144 	struct device *dev = &priv->spi->dev;
145 	u8 tx_buf[2];
146 	u8 rx_buf[4];
147 	u8 val = 0;
148 	int ret;
149 	int slen = SPI_OPLEN;
150 
151 	/* do dummy read if needed */
152 	if (addr & SPRD_MASK)
153 		slen++;
154 
155 	tx_buf[0] = op | (addr & ADDR_MASK);
156 	ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
157 	if (ret)
158 		dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
159 			   __func__, ret);
160 	else
161 		val = rx_buf[slen - 1];
162 
163 	return val;
164 }
165 
166 /*
167  * basic SPI write operation
168  */
169 static int spi_write_op(struct enc28j60_net *priv, u8 op, u8 addr, u8 val)
170 {
171 	struct device *dev = &priv->spi->dev;
172 	int ret;
173 
174 	priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
175 	priv->spi_transfer_buf[1] = val;
176 	ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
177 	if (ret && netif_msg_drv(priv))
178 		dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n",
179 			   __func__, ret);
180 	return ret;
181 }
182 
183 static void enc28j60_soft_reset(struct enc28j60_net *priv)
184 {
185 	spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
186 	/* Errata workaround #1, CLKRDY check is unreliable,
187 	 * delay at least 1 ms instead */
188 	udelay(2000);
189 }
190 
191 /*
192  * select the current register bank if necessary
193  */
194 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
195 {
196 	u8 b = (addr & BANK_MASK) >> 5;
197 
198 	/* These registers (EIE, EIR, ESTAT, ECON2, ECON1)
199 	 * are present in all banks, no need to switch bank.
200 	 */
201 	if (addr >= EIE && addr <= ECON1)
202 		return;
203 
204 	/* Clear or set each bank selection bit as needed */
205 	if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) {
206 		if (b & ECON1_BSEL0)
207 			spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
208 					ECON1_BSEL0);
209 		else
210 			spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
211 					ECON1_BSEL0);
212 	}
213 	if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) {
214 		if (b & ECON1_BSEL1)
215 			spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
216 					ECON1_BSEL1);
217 		else
218 			spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
219 					ECON1_BSEL1);
220 	}
221 	priv->bank = b;
222 }
223 
224 /*
225  * Register access routines through the SPI bus.
226  * Every register access comes in two flavours:
227  * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
228  *   atomically more than one register
229  * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
230  *
231  * Some registers can be accessed through the bit field clear and
232  * bit field set to avoid a read modify write cycle.
233  */
234 
235 /*
236  * Register bit field Set
237  */
238 static void nolock_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask)
239 {
240 	enc28j60_set_bank(priv, addr);
241 	spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
242 }
243 
244 static void locked_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask)
245 {
246 	mutex_lock(&priv->lock);
247 	nolock_reg_bfset(priv, addr, mask);
248 	mutex_unlock(&priv->lock);
249 }
250 
251 /*
252  * Register bit field Clear
253  */
254 static void nolock_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask)
255 {
256 	enc28j60_set_bank(priv, addr);
257 	spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
258 }
259 
260 static void locked_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask)
261 {
262 	mutex_lock(&priv->lock);
263 	nolock_reg_bfclr(priv, addr, mask);
264 	mutex_unlock(&priv->lock);
265 }
266 
267 /*
268  * Register byte read
269  */
270 static int nolock_regb_read(struct enc28j60_net *priv, u8 address)
271 {
272 	enc28j60_set_bank(priv, address);
273 	return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
274 }
275 
276 static int locked_regb_read(struct enc28j60_net *priv, u8 address)
277 {
278 	int ret;
279 
280 	mutex_lock(&priv->lock);
281 	ret = nolock_regb_read(priv, address);
282 	mutex_unlock(&priv->lock);
283 
284 	return ret;
285 }
286 
287 /*
288  * Register word read
289  */
290 static int nolock_regw_read(struct enc28j60_net *priv, u8 address)
291 {
292 	int rl, rh;
293 
294 	enc28j60_set_bank(priv, address);
295 	rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
296 	rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
297 
298 	return (rh << 8) | rl;
299 }
300 
301 static int locked_regw_read(struct enc28j60_net *priv, u8 address)
302 {
303 	int ret;
304 
305 	mutex_lock(&priv->lock);
306 	ret = nolock_regw_read(priv, address);
307 	mutex_unlock(&priv->lock);
308 
309 	return ret;
310 }
311 
312 /*
313  * Register byte write
314  */
315 static void nolock_regb_write(struct enc28j60_net *priv, u8 address, u8 data)
316 {
317 	enc28j60_set_bank(priv, address);
318 	spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
319 }
320 
321 static void locked_regb_write(struct enc28j60_net *priv, u8 address, u8 data)
322 {
323 	mutex_lock(&priv->lock);
324 	nolock_regb_write(priv, address, data);
325 	mutex_unlock(&priv->lock);
326 }
327 
328 /*
329  * Register word write
330  */
331 static void nolock_regw_write(struct enc28j60_net *priv, u8 address, u16 data)
332 {
333 	enc28j60_set_bank(priv, address);
334 	spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
335 	spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
336 		     (u8) (data >> 8));
337 }
338 
339 static void locked_regw_write(struct enc28j60_net *priv, u8 address, u16 data)
340 {
341 	mutex_lock(&priv->lock);
342 	nolock_regw_write(priv, address, data);
343 	mutex_unlock(&priv->lock);
344 }
345 
346 /*
347  * Buffer memory read
348  * Select the starting address and execute a SPI buffer read.
349  */
350 static void enc28j60_mem_read(struct enc28j60_net *priv, u16 addr, int len,
351 			      u8 *data)
352 {
353 	mutex_lock(&priv->lock);
354 	nolock_regw_write(priv, ERDPTL, addr);
355 #ifdef CONFIG_ENC28J60_WRITEVERIFY
356 	if (netif_msg_drv(priv)) {
357 		struct device *dev = &priv->spi->dev;
358 		u16 reg;
359 
360 		reg = nolock_regw_read(priv, ERDPTL);
361 		if (reg != addr)
362 			dev_printk(KERN_DEBUG, dev,
363 				   "%s() error writing ERDPT (0x%04x - 0x%04x)\n",
364 				   __func__, reg, addr);
365 	}
366 #endif
367 	spi_read_buf(priv, len, data);
368 	mutex_unlock(&priv->lock);
369 }
370 
371 /*
372  * Write packet to enc28j60 TX buffer memory
373  */
374 static void
375 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
376 {
377 	struct device *dev = &priv->spi->dev;
378 
379 	mutex_lock(&priv->lock);
380 	/* Set the write pointer to start of transmit buffer area */
381 	nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
382 #ifdef CONFIG_ENC28J60_WRITEVERIFY
383 	if (netif_msg_drv(priv)) {
384 		u16 reg;
385 		reg = nolock_regw_read(priv, EWRPTL);
386 		if (reg != TXSTART_INIT)
387 			dev_printk(KERN_DEBUG, dev,
388 				   "%s() ERWPT:0x%04x != 0x%04x\n",
389 				   __func__, reg, TXSTART_INIT);
390 	}
391 #endif
392 	/* Set the TXND pointer to correspond to the packet size given */
393 	nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
394 	/* write per-packet control byte */
395 	spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
396 	if (netif_msg_hw(priv))
397 		dev_printk(KERN_DEBUG, dev,
398 			   "%s() after control byte ERWPT:0x%04x\n",
399 			   __func__, nolock_regw_read(priv, EWRPTL));
400 	/* copy the packet into the transmit buffer */
401 	spi_write_buf(priv, len, data);
402 	if (netif_msg_hw(priv))
403 		dev_printk(KERN_DEBUG, dev,
404 			   "%s() after write packet ERWPT:0x%04x, len=%d\n",
405 			   __func__, nolock_regw_read(priv, EWRPTL), len);
406 	mutex_unlock(&priv->lock);
407 }
408 
409 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val)
410 {
411 	struct device *dev = &priv->spi->dev;
412 	unsigned long timeout = jiffies + msecs_to_jiffies(20);
413 
414 	/* 20 msec timeout read */
415 	while ((nolock_regb_read(priv, reg) & mask) != val) {
416 		if (time_after(jiffies, timeout)) {
417 			if (netif_msg_drv(priv))
418 				dev_dbg(dev, "reg %02x ready timeout!\n", reg);
419 			return -ETIMEDOUT;
420 		}
421 		cpu_relax();
422 	}
423 	return 0;
424 }
425 
426 /*
427  * Wait until the PHY operation is complete.
428  */
429 static int wait_phy_ready(struct enc28j60_net *priv)
430 {
431 	return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1;
432 }
433 
434 /*
435  * PHY register read
436  * PHY registers are not accessed directly, but through the MII.
437  */
438 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
439 {
440 	u16 ret;
441 
442 	mutex_lock(&priv->lock);
443 	/* set the PHY register address */
444 	nolock_regb_write(priv, MIREGADR, address);
445 	/* start the register read operation */
446 	nolock_regb_write(priv, MICMD, MICMD_MIIRD);
447 	/* wait until the PHY read completes */
448 	wait_phy_ready(priv);
449 	/* quit reading */
450 	nolock_regb_write(priv, MICMD, 0x00);
451 	/* return the data */
452 	ret = nolock_regw_read(priv, MIRDL);
453 	mutex_unlock(&priv->lock);
454 
455 	return ret;
456 }
457 
458 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
459 {
460 	int ret;
461 
462 	mutex_lock(&priv->lock);
463 	/* set the PHY register address */
464 	nolock_regb_write(priv, MIREGADR, address);
465 	/* write the PHY data */
466 	nolock_regw_write(priv, MIWRL, data);
467 	/* wait until the PHY write completes and return */
468 	ret = wait_phy_ready(priv);
469 	mutex_unlock(&priv->lock);
470 
471 	return ret;
472 }
473 
474 /*
475  * Program the hardware MAC address from dev->dev_addr.
476  */
477 static int enc28j60_set_hw_macaddr(struct net_device *ndev)
478 {
479 	int ret;
480 	struct enc28j60_net *priv = netdev_priv(ndev);
481 	struct device *dev = &priv->spi->dev;
482 
483 	mutex_lock(&priv->lock);
484 	if (!priv->hw_enable) {
485 		if (netif_msg_drv(priv))
486 			dev_info(dev, "%s: Setting MAC address to %pM\n",
487 				 ndev->name, ndev->dev_addr);
488 		/* NOTE: MAC address in ENC28J60 is byte-backward */
489 		nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
490 		nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
491 		nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
492 		nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
493 		nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
494 		nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
495 		ret = 0;
496 	} else {
497 		if (netif_msg_drv(priv))
498 			dev_printk(KERN_DEBUG, dev,
499 				   "%s() Hardware must be disabled to set Mac address\n",
500 				   __func__);
501 		ret = -EBUSY;
502 	}
503 	mutex_unlock(&priv->lock);
504 	return ret;
505 }
506 
507 /*
508  * Store the new hardware address in dev->dev_addr, and update the MAC.
509  */
510 static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
511 {
512 	struct sockaddr *address = addr;
513 
514 	if (netif_running(dev))
515 		return -EBUSY;
516 	if (!is_valid_ether_addr(address->sa_data))
517 		return -EADDRNOTAVAIL;
518 
519 	eth_hw_addr_set(dev, address->sa_data);
520 	return enc28j60_set_hw_macaddr(dev);
521 }
522 
523 /*
524  * Debug routine to dump useful register contents
525  */
526 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
527 {
528 	struct device *dev = &priv->spi->dev;
529 
530 	mutex_lock(&priv->lock);
531 	dev_printk(KERN_DEBUG, dev,
532 		   " %s\n"
533 		   "HwRevID: 0x%02x\n"
534 		   "Cntrl: ECON1 ECON2 ESTAT  EIR  EIE\n"
535 		   "       0x%02x  0x%02x  0x%02x  0x%02x  0x%02x\n"
536 		   "MAC  : MACON1 MACON3 MACON4\n"
537 		   "       0x%02x   0x%02x   0x%02x\n"
538 		   "Rx   : ERXST  ERXND  ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
539 		   "       0x%04x 0x%04x 0x%04x  0x%04x  "
540 		   "0x%02x    0x%02x    0x%04x\n"
541 		   "Tx   : ETXST  ETXND  MACLCON1 MACLCON2 MAPHSUP\n"
542 		   "       0x%04x 0x%04x 0x%02x     0x%02x     0x%02x\n",
543 		   msg, nolock_regb_read(priv, EREVID),
544 		   nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
545 		   nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
546 		   nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
547 		   nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
548 		   nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
549 		   nolock_regw_read(priv, ERXWRPTL),
550 		   nolock_regw_read(priv, ERXRDPTL),
551 		   nolock_regb_read(priv, ERXFCON),
552 		   nolock_regb_read(priv, EPKTCNT),
553 		   nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
554 		   nolock_regw_read(priv, ETXNDL),
555 		   nolock_regb_read(priv, MACLCON1),
556 		   nolock_regb_read(priv, MACLCON2),
557 		   nolock_regb_read(priv, MAPHSUP));
558 	mutex_unlock(&priv->lock);
559 }
560 
561 /*
562  * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
563  */
564 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
565 {
566 	u16 erxrdpt;
567 
568 	if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
569 		erxrdpt = end;
570 	else
571 		erxrdpt = next_packet_ptr - 1;
572 
573 	return erxrdpt;
574 }
575 
576 /*
577  * Calculate wrap around when reading beyond the end of the RX buffer
578  */
579 static u16 rx_packet_start(u16 ptr)
580 {
581 	if (ptr + RSV_SIZE > RXEND_INIT)
582 		return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1);
583 	else
584 		return ptr + RSV_SIZE;
585 }
586 
587 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
588 {
589 	struct device *dev = &priv->spi->dev;
590 	u16 erxrdpt;
591 
592 	if (start > 0x1FFF || end > 0x1FFF || start > end) {
593 		if (netif_msg_drv(priv))
594 			dev_err(dev, "%s(%d, %d) RXFIFO bad parameters!\n",
595 				__func__, start, end);
596 		return;
597 	}
598 	/* set receive buffer start + end */
599 	priv->next_pk_ptr = start;
600 	nolock_regw_write(priv, ERXSTL, start);
601 	erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
602 	nolock_regw_write(priv, ERXRDPTL, erxrdpt);
603 	nolock_regw_write(priv, ERXNDL, end);
604 }
605 
606 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
607 {
608 	struct device *dev = &priv->spi->dev;
609 
610 	if (start > 0x1FFF || end > 0x1FFF || start > end) {
611 		if (netif_msg_drv(priv))
612 			dev_err(dev, "%s(%d, %d) TXFIFO bad parameters!\n",
613 				__func__, start, end);
614 		return;
615 	}
616 	/* set transmit buffer start + end */
617 	nolock_regw_write(priv, ETXSTL, start);
618 	nolock_regw_write(priv, ETXNDL, end);
619 }
620 
621 /*
622  * Low power mode shrinks power consumption about 100x, so we'd like
623  * the chip to be in that mode whenever it's inactive. (However, we
624  * can't stay in low power mode during suspend with WOL active.)
625  */
626 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low)
627 {
628 	struct device *dev = &priv->spi->dev;
629 
630 	if (netif_msg_drv(priv))
631 		dev_dbg(dev, "%s power...\n", is_low ? "low" : "high");
632 
633 	mutex_lock(&priv->lock);
634 	if (is_low) {
635 		nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
636 		poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0);
637 		poll_ready(priv, ECON1, ECON1_TXRTS, 0);
638 		/* ECON2_VRPS was set during initialization */
639 		nolock_reg_bfset(priv, ECON2, ECON2_PWRSV);
640 	} else {
641 		nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV);
642 		poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
643 		/* caller sets ECON1_RXEN */
644 	}
645 	mutex_unlock(&priv->lock);
646 }
647 
648 static int enc28j60_hw_init(struct enc28j60_net *priv)
649 {
650 	struct device *dev = &priv->spi->dev;
651 	u8 reg;
652 
653 	if (netif_msg_drv(priv))
654 		dev_printk(KERN_DEBUG, dev, "%s() - %s\n", __func__,
655 			   priv->full_duplex ? "FullDuplex" : "HalfDuplex");
656 
657 	mutex_lock(&priv->lock);
658 	/* first reset the chip */
659 	enc28j60_soft_reset(priv);
660 	/* Clear ECON1 */
661 	spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
662 	priv->bank = 0;
663 	priv->hw_enable = false;
664 	priv->tx_retry_count = 0;
665 	priv->max_pk_counter = 0;
666 	priv->rxfilter = RXFILTER_NORMAL;
667 	/* enable address auto increment and voltage regulator powersave */
668 	nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS);
669 
670 	nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
671 	nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
672 	mutex_unlock(&priv->lock);
673 
674 	/*
675 	 * Check the RevID.
676 	 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
677 	 * damaged.
678 	 */
679 	reg = locked_regb_read(priv, EREVID);
680 	if (netif_msg_drv(priv))
681 		dev_info(dev, "chip RevID: 0x%02x\n", reg);
682 	if (reg == 0x00 || reg == 0xff) {
683 		if (netif_msg_drv(priv))
684 			dev_printk(KERN_DEBUG, dev, "%s() Invalid RevId %d\n",
685 				   __func__, reg);
686 		return 0;
687 	}
688 
689 	/* default filter mode: (unicast OR broadcast) AND crc valid */
690 	locked_regb_write(priv, ERXFCON,
691 			    ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
692 
693 	/* enable MAC receive */
694 	locked_regb_write(priv, MACON1,
695 			    MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
696 	/* enable automatic padding and CRC operations */
697 	if (priv->full_duplex) {
698 		locked_regb_write(priv, MACON3,
699 				    MACON3_PADCFG0 | MACON3_TXCRCEN |
700 				    MACON3_FRMLNEN | MACON3_FULDPX);
701 		/* set inter-frame gap (non-back-to-back) */
702 		locked_regb_write(priv, MAIPGL, 0x12);
703 		/* set inter-frame gap (back-to-back) */
704 		locked_regb_write(priv, MABBIPG, 0x15);
705 	} else {
706 		locked_regb_write(priv, MACON3,
707 				    MACON3_PADCFG0 | MACON3_TXCRCEN |
708 				    MACON3_FRMLNEN);
709 		locked_regb_write(priv, MACON4, 1 << 6);	/* DEFER bit */
710 		/* set inter-frame gap (non-back-to-back) */
711 		locked_regw_write(priv, MAIPGL, 0x0C12);
712 		/* set inter-frame gap (back-to-back) */
713 		locked_regb_write(priv, MABBIPG, 0x12);
714 	}
715 	/*
716 	 * MACLCON1 (default)
717 	 * MACLCON2 (default)
718 	 * Set the maximum packet size which the controller will accept.
719 	 */
720 	locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
721 
722 	/* Configure LEDs */
723 	if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
724 		return 0;
725 
726 	if (priv->full_duplex) {
727 		if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
728 			return 0;
729 		if (!enc28j60_phy_write(priv, PHCON2, 0x00))
730 			return 0;
731 	} else {
732 		if (!enc28j60_phy_write(priv, PHCON1, 0x00))
733 			return 0;
734 		if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
735 			return 0;
736 	}
737 	if (netif_msg_hw(priv))
738 		enc28j60_dump_regs(priv, "Hw initialized.");
739 
740 	return 1;
741 }
742 
743 static void enc28j60_hw_enable(struct enc28j60_net *priv)
744 {
745 	struct device *dev = &priv->spi->dev;
746 
747 	/* enable interrupts */
748 	if (netif_msg_hw(priv))
749 		dev_printk(KERN_DEBUG, dev, "%s() enabling interrupts.\n",
750 			   __func__);
751 
752 	enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
753 
754 	mutex_lock(&priv->lock);
755 	nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
756 			 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
757 	nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
758 			  EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
759 
760 	/* enable receive logic */
761 	nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
762 	priv->hw_enable = true;
763 	mutex_unlock(&priv->lock);
764 }
765 
766 static void enc28j60_hw_disable(struct enc28j60_net *priv)
767 {
768 	mutex_lock(&priv->lock);
769 	/* disable interrupts and packet reception */
770 	nolock_regb_write(priv, EIE, 0x00);
771 	nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
772 	priv->hw_enable = false;
773 	mutex_unlock(&priv->lock);
774 }
775 
776 static int
777 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
778 {
779 	struct enc28j60_net *priv = netdev_priv(ndev);
780 	int ret = 0;
781 
782 	if (!priv->hw_enable) {
783 		/* link is in low power mode now; duplex setting
784 		 * will take effect on next enc28j60_hw_init().
785 		 */
786 		if (autoneg == AUTONEG_DISABLE && speed == SPEED_10)
787 			priv->full_duplex = (duplex == DUPLEX_FULL);
788 		else {
789 			if (netif_msg_link(priv))
790 				netdev_warn(ndev, "unsupported link setting\n");
791 			ret = -EOPNOTSUPP;
792 		}
793 	} else {
794 		if (netif_msg_link(priv))
795 			netdev_warn(ndev, "Warning: hw must be disabled to set link mode\n");
796 		ret = -EBUSY;
797 	}
798 	return ret;
799 }
800 
801 /*
802  * Read the Transmit Status Vector
803  */
804 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
805 {
806 	struct device *dev = &priv->spi->dev;
807 	int endptr;
808 
809 	endptr = locked_regw_read(priv, ETXNDL);
810 	if (netif_msg_hw(priv))
811 		dev_printk(KERN_DEBUG, dev, "reading TSV at addr:0x%04x\n",
812 			   endptr + 1);
813 	enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv);
814 }
815 
816 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
817 			      u8 tsv[TSV_SIZE])
818 {
819 	struct device *dev = &priv->spi->dev;
820 	u16 tmp1, tmp2;
821 
822 	dev_printk(KERN_DEBUG, dev, "%s - TSV:\n", msg);
823 	tmp1 = tsv[1];
824 	tmp1 <<= 8;
825 	tmp1 |= tsv[0];
826 
827 	tmp2 = tsv[5];
828 	tmp2 <<= 8;
829 	tmp2 |= tsv[4];
830 
831 	dev_printk(KERN_DEBUG, dev,
832 		   "ByteCount: %d, CollisionCount: %d, TotByteOnWire: %d\n",
833 		   tmp1, tsv[2] & 0x0f, tmp2);
834 	dev_printk(KERN_DEBUG, dev,
835 		   "TxDone: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n",
836 		   TSV_GETBIT(tsv, TSV_TXDONE),
837 		   TSV_GETBIT(tsv, TSV_TXCRCERROR),
838 		   TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
839 		   TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
840 	dev_printk(KERN_DEBUG, dev,
841 		   "Multicast: %d, Broadcast: %d, PacketDefer: %d, ExDefer: %d\n",
842 		   TSV_GETBIT(tsv, TSV_TXMULTICAST),
843 		   TSV_GETBIT(tsv, TSV_TXBROADCAST),
844 		   TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
845 		   TSV_GETBIT(tsv, TSV_TXEXDEFER));
846 	dev_printk(KERN_DEBUG, dev,
847 		   "ExCollision: %d, LateCollision: %d, Giant: %d, Underrun: %d\n",
848 		   TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
849 		   TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
850 		   TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
851 	dev_printk(KERN_DEBUG, dev,
852 		   "ControlFrame: %d, PauseFrame: %d, BackPressApp: %d, VLanTagFrame: %d\n",
853 		   TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
854 		   TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
855 		   TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
856 		   TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
857 }
858 
859 /*
860  * Receive Status vector
861  */
862 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
863 			      u16 pk_ptr, int len, u16 sts)
864 {
865 	struct device *dev = &priv->spi->dev;
866 
867 	dev_printk(KERN_DEBUG, dev, "%s - NextPk: 0x%04x - RSV:\n", msg, pk_ptr);
868 	dev_printk(KERN_DEBUG, dev, "ByteCount: %d, DribbleNibble: %d\n",
869 		   len, RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
870 	dev_printk(KERN_DEBUG, dev,
871 		   "RxOK: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n",
872 		   RSV_GETBIT(sts, RSV_RXOK),
873 		   RSV_GETBIT(sts, RSV_CRCERROR),
874 		   RSV_GETBIT(sts, RSV_LENCHECKERR),
875 		   RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
876 	dev_printk(KERN_DEBUG, dev,
877 		   "Multicast: %d, Broadcast: %d, LongDropEvent: %d, CarrierEvent: %d\n",
878 		   RSV_GETBIT(sts, RSV_RXMULTICAST),
879 		   RSV_GETBIT(sts, RSV_RXBROADCAST),
880 		   RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
881 		   RSV_GETBIT(sts, RSV_CARRIEREV));
882 	dev_printk(KERN_DEBUG, dev,
883 		   "ControlFrame: %d, PauseFrame: %d, UnknownOp: %d, VLanTagFrame: %d\n",
884 		   RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
885 		   RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
886 		   RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
887 		   RSV_GETBIT(sts, RSV_RXTYPEVLAN));
888 }
889 
890 static void dump_packet(const char *msg, int len, const char *data)
891 {
892 	printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
893 	print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
894 			data, len, true);
895 }
896 
897 /*
898  * Hardware receive function.
899  * Read the buffer memory, update the FIFO pointer to free the buffer,
900  * check the status vector and decrement the packet counter.
901  */
902 static void enc28j60_hw_rx(struct net_device *ndev)
903 {
904 	struct enc28j60_net *priv = netdev_priv(ndev);
905 	struct device *dev = &priv->spi->dev;
906 	struct sk_buff *skb = NULL;
907 	u16 erxrdpt, next_packet, rxstat;
908 	u8 rsv[RSV_SIZE];
909 	int len;
910 
911 	if (netif_msg_rx_status(priv))
912 		netdev_printk(KERN_DEBUG, ndev, "RX pk_addr:0x%04x\n",
913 			      priv->next_pk_ptr);
914 
915 	if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
916 		if (netif_msg_rx_err(priv))
917 			netdev_err(ndev, "%s() Invalid packet address!! 0x%04x\n",
918 				   __func__, priv->next_pk_ptr);
919 		/* packet address corrupted: reset RX logic */
920 		mutex_lock(&priv->lock);
921 		nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
922 		nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
923 		nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
924 		nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
925 		nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
926 		nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
927 		mutex_unlock(&priv->lock);
928 		ndev->stats.rx_errors++;
929 		return;
930 	}
931 	/* Read next packet pointer and rx status vector */
932 	enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
933 
934 	next_packet = rsv[1];
935 	next_packet <<= 8;
936 	next_packet |= rsv[0];
937 
938 	len = rsv[3];
939 	len <<= 8;
940 	len |= rsv[2];
941 
942 	rxstat = rsv[5];
943 	rxstat <<= 8;
944 	rxstat |= rsv[4];
945 
946 	if (netif_msg_rx_status(priv))
947 		enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat);
948 
949 	if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) {
950 		if (netif_msg_rx_err(priv))
951 			netdev_err(ndev, "Rx Error (%04x)\n", rxstat);
952 		ndev->stats.rx_errors++;
953 		if (RSV_GETBIT(rxstat, RSV_CRCERROR))
954 			ndev->stats.rx_crc_errors++;
955 		if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
956 			ndev->stats.rx_frame_errors++;
957 		if (len > MAX_FRAMELEN)
958 			ndev->stats.rx_over_errors++;
959 	} else {
960 		skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN);
961 		if (!skb) {
962 			if (netif_msg_rx_err(priv))
963 				netdev_err(ndev, "out of memory for Rx'd frame\n");
964 			ndev->stats.rx_dropped++;
965 		} else {
966 			skb_reserve(skb, NET_IP_ALIGN);
967 			/* copy the packet from the receive buffer */
968 			enc28j60_mem_read(priv,
969 				rx_packet_start(priv->next_pk_ptr),
970 				len, skb_put(skb, len));
971 			if (netif_msg_pktdata(priv))
972 				dump_packet(__func__, skb->len, skb->data);
973 			skb->protocol = eth_type_trans(skb, ndev);
974 			/* update statistics */
975 			ndev->stats.rx_packets++;
976 			ndev->stats.rx_bytes += len;
977 			netif_rx(skb);
978 		}
979 	}
980 	/*
981 	 * Move the RX read pointer to the start of the next
982 	 * received packet.
983 	 * This frees the memory we just read out.
984 	 */
985 	erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
986 	if (netif_msg_hw(priv))
987 		dev_printk(KERN_DEBUG, dev, "%s() ERXRDPT:0x%04x\n",
988 			   __func__, erxrdpt);
989 
990 	mutex_lock(&priv->lock);
991 	nolock_regw_write(priv, ERXRDPTL, erxrdpt);
992 #ifdef CONFIG_ENC28J60_WRITEVERIFY
993 	if (netif_msg_drv(priv)) {
994 		u16 reg;
995 		reg = nolock_regw_read(priv, ERXRDPTL);
996 		if (reg != erxrdpt)
997 			dev_printk(KERN_DEBUG, dev,
998 				   "%s() ERXRDPT verify error (0x%04x - 0x%04x)\n",
999 				   __func__, reg, erxrdpt);
1000 	}
1001 #endif
1002 	priv->next_pk_ptr = next_packet;
1003 	/* we are done with this packet, decrement the packet counter */
1004 	nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
1005 	mutex_unlock(&priv->lock);
1006 }
1007 
1008 /*
1009  * Calculate free space in RxFIFO
1010  */
1011 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
1012 {
1013 	struct net_device *ndev = priv->netdev;
1014 	int epkcnt, erxst, erxnd, erxwr, erxrd;
1015 	int free_space;
1016 
1017 	mutex_lock(&priv->lock);
1018 	epkcnt = nolock_regb_read(priv, EPKTCNT);
1019 	if (epkcnt >= 255)
1020 		free_space = -1;
1021 	else {
1022 		erxst = nolock_regw_read(priv, ERXSTL);
1023 		erxnd = nolock_regw_read(priv, ERXNDL);
1024 		erxwr = nolock_regw_read(priv, ERXWRPTL);
1025 		erxrd = nolock_regw_read(priv, ERXRDPTL);
1026 
1027 		if (erxwr > erxrd)
1028 			free_space = (erxnd - erxst) - (erxwr - erxrd);
1029 		else if (erxwr == erxrd)
1030 			free_space = (erxnd - erxst);
1031 		else
1032 			free_space = erxrd - erxwr - 1;
1033 	}
1034 	mutex_unlock(&priv->lock);
1035 	if (netif_msg_rx_status(priv))
1036 		netdev_printk(KERN_DEBUG, ndev, "%s() free_space = %d\n",
1037 			      __func__, free_space);
1038 	return free_space;
1039 }
1040 
1041 /*
1042  * Access the PHY to determine link status
1043  */
1044 static void enc28j60_check_link_status(struct net_device *ndev)
1045 {
1046 	struct enc28j60_net *priv = netdev_priv(ndev);
1047 	struct device *dev = &priv->spi->dev;
1048 	u16 reg;
1049 	int duplex;
1050 
1051 	reg = enc28j60_phy_read(priv, PHSTAT2);
1052 	if (netif_msg_hw(priv))
1053 		dev_printk(KERN_DEBUG, dev,
1054 			   "%s() PHSTAT1: %04x, PHSTAT2: %04x\n", __func__,
1055 			   enc28j60_phy_read(priv, PHSTAT1), reg);
1056 	duplex = reg & PHSTAT2_DPXSTAT;
1057 
1058 	if (reg & PHSTAT2_LSTAT) {
1059 		netif_carrier_on(ndev);
1060 		if (netif_msg_ifup(priv))
1061 			netdev_info(ndev, "link up - %s\n",
1062 				    duplex ? "Full duplex" : "Half duplex");
1063 	} else {
1064 		if (netif_msg_ifdown(priv))
1065 			netdev_info(ndev, "link down\n");
1066 		netif_carrier_off(ndev);
1067 	}
1068 }
1069 
1070 static void enc28j60_tx_clear(struct net_device *ndev, bool err)
1071 {
1072 	struct enc28j60_net *priv = netdev_priv(ndev);
1073 
1074 	if (err)
1075 		ndev->stats.tx_errors++;
1076 	else
1077 		ndev->stats.tx_packets++;
1078 
1079 	if (priv->tx_skb) {
1080 		if (!err)
1081 			ndev->stats.tx_bytes += priv->tx_skb->len;
1082 		dev_kfree_skb(priv->tx_skb);
1083 		priv->tx_skb = NULL;
1084 	}
1085 	locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1086 	netif_wake_queue(ndev);
1087 }
1088 
1089 /*
1090  * RX handler
1091  * Ignore PKTIF because is unreliable! (Look at the errata datasheet)
1092  * Check EPKTCNT is the suggested workaround.
1093  * We don't need to clear interrupt flag, automatically done when
1094  * enc28j60_hw_rx() decrements the packet counter.
1095  * Returns how many packet processed.
1096  */
1097 static int enc28j60_rx_interrupt(struct net_device *ndev)
1098 {
1099 	struct enc28j60_net *priv = netdev_priv(ndev);
1100 	int pk_counter, ret;
1101 
1102 	pk_counter = locked_regb_read(priv, EPKTCNT);
1103 	if (pk_counter && netif_msg_intr(priv))
1104 		netdev_printk(KERN_DEBUG, ndev, "intRX, pk_cnt: %d\n",
1105 			      pk_counter);
1106 	if (pk_counter > priv->max_pk_counter) {
1107 		/* update statistics */
1108 		priv->max_pk_counter = pk_counter;
1109 		if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
1110 			netdev_printk(KERN_DEBUG, ndev, "RX max_pk_cnt: %d\n",
1111 				      priv->max_pk_counter);
1112 	}
1113 	ret = pk_counter;
1114 	while (pk_counter-- > 0)
1115 		enc28j60_hw_rx(ndev);
1116 
1117 	return ret;
1118 }
1119 
1120 static irqreturn_t enc28j60_irq(int irq, void *dev_id)
1121 {
1122 	struct enc28j60_net *priv = dev_id;
1123 	struct net_device *ndev = priv->netdev;
1124 	int intflags, loop;
1125 
1126 	/* disable further interrupts */
1127 	locked_reg_bfclr(priv, EIE, EIE_INTIE);
1128 
1129 	do {
1130 		loop = 0;
1131 		intflags = locked_regb_read(priv, EIR);
1132 		/* DMA interrupt handler (not currently used) */
1133 		if ((intflags & EIR_DMAIF) != 0) {
1134 			loop++;
1135 			if (netif_msg_intr(priv))
1136 				netdev_printk(KERN_DEBUG, ndev, "intDMA(%d)\n",
1137 					      loop);
1138 			locked_reg_bfclr(priv, EIR, EIR_DMAIF);
1139 		}
1140 		/* LINK changed handler */
1141 		if ((intflags & EIR_LINKIF) != 0) {
1142 			loop++;
1143 			if (netif_msg_intr(priv))
1144 				netdev_printk(KERN_DEBUG, ndev, "intLINK(%d)\n",
1145 					      loop);
1146 			enc28j60_check_link_status(ndev);
1147 			/* read PHIR to clear the flag */
1148 			enc28j60_phy_read(priv, PHIR);
1149 		}
1150 		/* TX complete handler */
1151 		if (((intflags & EIR_TXIF) != 0) &&
1152 		    ((intflags & EIR_TXERIF) == 0)) {
1153 			bool err = false;
1154 			loop++;
1155 			if (netif_msg_intr(priv))
1156 				netdev_printk(KERN_DEBUG, ndev, "intTX(%d)\n",
1157 					      loop);
1158 			priv->tx_retry_count = 0;
1159 			if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
1160 				if (netif_msg_tx_err(priv))
1161 					netdev_err(ndev, "Tx Error (aborted)\n");
1162 				err = true;
1163 			}
1164 			if (netif_msg_tx_done(priv)) {
1165 				u8 tsv[TSV_SIZE];
1166 				enc28j60_read_tsv(priv, tsv);
1167 				enc28j60_dump_tsv(priv, "Tx Done", tsv);
1168 			}
1169 			enc28j60_tx_clear(ndev, err);
1170 			locked_reg_bfclr(priv, EIR, EIR_TXIF);
1171 		}
1172 		/* TX Error handler */
1173 		if ((intflags & EIR_TXERIF) != 0) {
1174 			u8 tsv[TSV_SIZE];
1175 
1176 			loop++;
1177 			if (netif_msg_intr(priv))
1178 				netdev_printk(KERN_DEBUG, ndev, "intTXErr(%d)\n",
1179 					      loop);
1180 			locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1181 			enc28j60_read_tsv(priv, tsv);
1182 			if (netif_msg_tx_err(priv))
1183 				enc28j60_dump_tsv(priv, "Tx Error", tsv);
1184 			/* Reset TX logic */
1185 			mutex_lock(&priv->lock);
1186 			nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
1187 			nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
1188 			nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
1189 			mutex_unlock(&priv->lock);
1190 			/* Transmit Late collision check for retransmit */
1191 			if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
1192 				if (netif_msg_tx_err(priv))
1193 					netdev_printk(KERN_DEBUG, ndev,
1194 						      "LateCollision TXErr (%d)\n",
1195 						      priv->tx_retry_count);
1196 				if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
1197 					locked_reg_bfset(priv, ECON1,
1198 							   ECON1_TXRTS);
1199 				else
1200 					enc28j60_tx_clear(ndev, true);
1201 			} else
1202 				enc28j60_tx_clear(ndev, true);
1203 			locked_reg_bfclr(priv, EIR, EIR_TXERIF | EIR_TXIF);
1204 		}
1205 		/* RX Error handler */
1206 		if ((intflags & EIR_RXERIF) != 0) {
1207 			loop++;
1208 			if (netif_msg_intr(priv))
1209 				netdev_printk(KERN_DEBUG, ndev, "intRXErr(%d)\n",
1210 					      loop);
1211 			/* Check free FIFO space to flag RX overrun */
1212 			if (enc28j60_get_free_rxfifo(priv) <= 0) {
1213 				if (netif_msg_rx_err(priv))
1214 					netdev_printk(KERN_DEBUG, ndev, "RX Overrun\n");
1215 				ndev->stats.rx_dropped++;
1216 			}
1217 			locked_reg_bfclr(priv, EIR, EIR_RXERIF);
1218 		}
1219 		/* RX handler */
1220 		if (enc28j60_rx_interrupt(ndev))
1221 			loop++;
1222 	} while (loop);
1223 
1224 	/* re-enable interrupts */
1225 	locked_reg_bfset(priv, EIE, EIE_INTIE);
1226 
1227 	return IRQ_HANDLED;
1228 }
1229 
1230 /*
1231  * Hardware transmit function.
1232  * Fill the buffer memory and send the contents of the transmit buffer
1233  * onto the network
1234  */
1235 static void enc28j60_hw_tx(struct enc28j60_net *priv)
1236 {
1237 	struct net_device *ndev = priv->netdev;
1238 
1239 	BUG_ON(!priv->tx_skb);
1240 
1241 	if (netif_msg_tx_queued(priv))
1242 		netdev_printk(KERN_DEBUG, ndev, "Tx Packet Len:%d\n",
1243 			      priv->tx_skb->len);
1244 
1245 	if (netif_msg_pktdata(priv))
1246 		dump_packet(__func__,
1247 			    priv->tx_skb->len, priv->tx_skb->data);
1248 	enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
1249 
1250 #ifdef CONFIG_ENC28J60_WRITEVERIFY
1251 	/* readback and verify written data */
1252 	if (netif_msg_drv(priv)) {
1253 		struct device *dev = &priv->spi->dev;
1254 		int test_len, k;
1255 		u8 test_buf[64]; /* limit the test to the first 64 bytes */
1256 		int okflag;
1257 
1258 		test_len = priv->tx_skb->len;
1259 		if (test_len > sizeof(test_buf))
1260 			test_len = sizeof(test_buf);
1261 
1262 		/* + 1 to skip control byte */
1263 		enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
1264 		okflag = 1;
1265 		for (k = 0; k < test_len; k++) {
1266 			if (priv->tx_skb->data[k] != test_buf[k]) {
1267 				dev_printk(KERN_DEBUG, dev,
1268 					   "Error, %d location differ: 0x%02x-0x%02x\n",
1269 					   k, priv->tx_skb->data[k], test_buf[k]);
1270 				okflag = 0;
1271 			}
1272 		}
1273 		if (!okflag)
1274 			dev_printk(KERN_DEBUG, dev, "Tx write buffer, verify ERROR!\n");
1275 	}
1276 #endif
1277 	/* set TX request flag */
1278 	locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
1279 }
1280 
1281 static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb,
1282 					struct net_device *dev)
1283 {
1284 	struct enc28j60_net *priv = netdev_priv(dev);
1285 
1286 	/* If some error occurs while trying to transmit this
1287 	 * packet, you should return '1' from this function.
1288 	 * In such a case you _may not_ do anything to the
1289 	 * SKB, it is still owned by the network queueing
1290 	 * layer when an error is returned. This means you
1291 	 * may not modify any SKB fields, you may not free
1292 	 * the SKB, etc.
1293 	 */
1294 	netif_stop_queue(dev);
1295 
1296 	/* Remember the skb for deferred processing */
1297 	priv->tx_skb = skb;
1298 	schedule_work(&priv->tx_work);
1299 
1300 	return NETDEV_TX_OK;
1301 }
1302 
1303 static void enc28j60_tx_work_handler(struct work_struct *work)
1304 {
1305 	struct enc28j60_net *priv =
1306 		container_of(work, struct enc28j60_net, tx_work);
1307 
1308 	/* actual delivery of data */
1309 	enc28j60_hw_tx(priv);
1310 }
1311 
1312 static void enc28j60_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1313 {
1314 	struct enc28j60_net *priv = netdev_priv(ndev);
1315 
1316 	if (netif_msg_timer(priv))
1317 		netdev_err(ndev, "tx timeout\n");
1318 
1319 	ndev->stats.tx_errors++;
1320 	/* can't restart safely under softirq */
1321 	schedule_work(&priv->restart_work);
1322 }
1323 
1324 /*
1325  * Open/initialize the board. This is called (in the current kernel)
1326  * sometime after booting when the 'ifconfig' program is run.
1327  *
1328  * This routine should set everything up anew at each open, even
1329  * registers that "should" only need to be set once at boot, so that
1330  * there is non-reboot way to recover if something goes wrong.
1331  */
1332 static int enc28j60_net_open(struct net_device *dev)
1333 {
1334 	struct enc28j60_net *priv = netdev_priv(dev);
1335 
1336 	if (!is_valid_ether_addr(dev->dev_addr)) {
1337 		if (netif_msg_ifup(priv))
1338 			netdev_err(dev, "invalid MAC address %pM\n", dev->dev_addr);
1339 		return -EADDRNOTAVAIL;
1340 	}
1341 	/* Reset the hardware here (and take it out of low power mode) */
1342 	enc28j60_lowpower(priv, false);
1343 	enc28j60_hw_disable(priv);
1344 	if (!enc28j60_hw_init(priv)) {
1345 		if (netif_msg_ifup(priv))
1346 			netdev_err(dev, "hw_reset() failed\n");
1347 		return -EINVAL;
1348 	}
1349 	/* Update the MAC address (in case user has changed it) */
1350 	enc28j60_set_hw_macaddr(dev);
1351 	/* Enable interrupts */
1352 	enc28j60_hw_enable(priv);
1353 	/* check link status */
1354 	enc28j60_check_link_status(dev);
1355 	/* We are now ready to accept transmit requests from
1356 	 * the queueing layer of the networking.
1357 	 */
1358 	netif_start_queue(dev);
1359 
1360 	return 0;
1361 }
1362 
1363 /* The inverse routine to net_open(). */
1364 static int enc28j60_net_close(struct net_device *dev)
1365 {
1366 	struct enc28j60_net *priv = netdev_priv(dev);
1367 
1368 	enc28j60_hw_disable(priv);
1369 	enc28j60_lowpower(priv, true);
1370 	netif_stop_queue(dev);
1371 
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Set or clear the multicast filter for this adapter
1377  * num_addrs == -1	Promiscuous mode, receive all packets
1378  * num_addrs == 0	Normal mode, filter out multicast packets
1379  * num_addrs > 0	Multicast mode, receive normal and MC packets
1380  */
1381 static void enc28j60_set_multicast_list(struct net_device *dev)
1382 {
1383 	struct enc28j60_net *priv = netdev_priv(dev);
1384 	int oldfilter = priv->rxfilter;
1385 
1386 	if (dev->flags & IFF_PROMISC) {
1387 		if (netif_msg_link(priv))
1388 			netdev_info(dev, "promiscuous mode\n");
1389 		priv->rxfilter = RXFILTER_PROMISC;
1390 	} else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) {
1391 		if (netif_msg_link(priv))
1392 			netdev_info(dev, "%smulticast mode\n",
1393 				    (dev->flags & IFF_ALLMULTI) ? "all-" : "");
1394 		priv->rxfilter = RXFILTER_MULTI;
1395 	} else {
1396 		if (netif_msg_link(priv))
1397 			netdev_info(dev, "normal mode\n");
1398 		priv->rxfilter = RXFILTER_NORMAL;
1399 	}
1400 
1401 	if (oldfilter != priv->rxfilter)
1402 		schedule_work(&priv->setrx_work);
1403 }
1404 
1405 static void enc28j60_setrx_work_handler(struct work_struct *work)
1406 {
1407 	struct enc28j60_net *priv =
1408 		container_of(work, struct enc28j60_net, setrx_work);
1409 	struct device *dev = &priv->spi->dev;
1410 
1411 	if (priv->rxfilter == RXFILTER_PROMISC) {
1412 		if (netif_msg_drv(priv))
1413 			dev_printk(KERN_DEBUG, dev, "promiscuous mode\n");
1414 		locked_regb_write(priv, ERXFCON, 0x00);
1415 	} else if (priv->rxfilter == RXFILTER_MULTI) {
1416 		if (netif_msg_drv(priv))
1417 			dev_printk(KERN_DEBUG, dev, "multicast mode\n");
1418 		locked_regb_write(priv, ERXFCON,
1419 					ERXFCON_UCEN | ERXFCON_CRCEN |
1420 					ERXFCON_BCEN | ERXFCON_MCEN);
1421 	} else {
1422 		if (netif_msg_drv(priv))
1423 			dev_printk(KERN_DEBUG, dev, "normal mode\n");
1424 		locked_regb_write(priv, ERXFCON,
1425 					ERXFCON_UCEN | ERXFCON_CRCEN |
1426 					ERXFCON_BCEN);
1427 	}
1428 }
1429 
1430 static void enc28j60_restart_work_handler(struct work_struct *work)
1431 {
1432 	struct enc28j60_net *priv =
1433 			container_of(work, struct enc28j60_net, restart_work);
1434 	struct net_device *ndev = priv->netdev;
1435 	int ret;
1436 
1437 	rtnl_lock();
1438 	if (netif_running(ndev)) {
1439 		enc28j60_net_close(ndev);
1440 		ret = enc28j60_net_open(ndev);
1441 		if (unlikely(ret)) {
1442 			netdev_info(ndev, "could not restart %d\n", ret);
1443 			dev_close(ndev);
1444 		}
1445 	}
1446 	rtnl_unlock();
1447 }
1448 
1449 /* ......................... ETHTOOL SUPPORT ........................... */
1450 
1451 static void
1452 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1453 {
1454 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1455 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1456 	strscpy(info->bus_info,
1457 		dev_name(dev->dev.parent), sizeof(info->bus_info));
1458 }
1459 
1460 static int
1461 enc28j60_get_link_ksettings(struct net_device *dev,
1462 			    struct ethtool_link_ksettings *cmd)
1463 {
1464 	struct enc28j60_net *priv = netdev_priv(dev);
1465 
1466 	ethtool_link_ksettings_zero_link_mode(cmd, supported);
1467 	ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Half);
1468 	ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Full);
1469 	ethtool_link_ksettings_add_link_mode(cmd, supported, TP);
1470 
1471 	cmd->base.speed = SPEED_10;
1472 	cmd->base.duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1473 	cmd->base.port	= PORT_TP;
1474 	cmd->base.autoneg = AUTONEG_DISABLE;
1475 
1476 	return 0;
1477 }
1478 
1479 static int
1480 enc28j60_set_link_ksettings(struct net_device *dev,
1481 			    const struct ethtool_link_ksettings *cmd)
1482 {
1483 	return enc28j60_setlink(dev, cmd->base.autoneg,
1484 				cmd->base.speed, cmd->base.duplex);
1485 }
1486 
1487 static u32 enc28j60_get_msglevel(struct net_device *dev)
1488 {
1489 	struct enc28j60_net *priv = netdev_priv(dev);
1490 	return priv->msg_enable;
1491 }
1492 
1493 static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
1494 {
1495 	struct enc28j60_net *priv = netdev_priv(dev);
1496 	priv->msg_enable = val;
1497 }
1498 
1499 static const struct ethtool_ops enc28j60_ethtool_ops = {
1500 	.get_drvinfo	= enc28j60_get_drvinfo,
1501 	.get_msglevel	= enc28j60_get_msglevel,
1502 	.set_msglevel	= enc28j60_set_msglevel,
1503 	.get_link_ksettings = enc28j60_get_link_ksettings,
1504 	.set_link_ksettings = enc28j60_set_link_ksettings,
1505 };
1506 
1507 static int enc28j60_chipset_init(struct net_device *dev)
1508 {
1509 	struct enc28j60_net *priv = netdev_priv(dev);
1510 
1511 	return enc28j60_hw_init(priv);
1512 }
1513 
1514 static const struct net_device_ops enc28j60_netdev_ops = {
1515 	.ndo_open		= enc28j60_net_open,
1516 	.ndo_stop		= enc28j60_net_close,
1517 	.ndo_start_xmit		= enc28j60_send_packet,
1518 	.ndo_set_rx_mode	= enc28j60_set_multicast_list,
1519 	.ndo_set_mac_address	= enc28j60_set_mac_address,
1520 	.ndo_tx_timeout		= enc28j60_tx_timeout,
1521 	.ndo_validate_addr	= eth_validate_addr,
1522 };
1523 
1524 static int enc28j60_probe(struct spi_device *spi)
1525 {
1526 	struct net_device *dev;
1527 	struct enc28j60_net *priv;
1528 	int ret = 0;
1529 
1530 	if (netif_msg_drv(&debug))
1531 		dev_info(&spi->dev, "Ethernet driver %s loaded\n", DRV_VERSION);
1532 
1533 	dev = alloc_etherdev(sizeof(struct enc28j60_net));
1534 	if (!dev) {
1535 		ret = -ENOMEM;
1536 		goto error_alloc;
1537 	}
1538 	priv = netdev_priv(dev);
1539 
1540 	priv->netdev = dev;	/* priv to netdev reference */
1541 	priv->spi = spi;	/* priv to spi reference */
1542 	priv->msg_enable = netif_msg_init(debug.msg_enable, ENC28J60_MSG_DEFAULT);
1543 	mutex_init(&priv->lock);
1544 	INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
1545 	INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
1546 	INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
1547 	spi_set_drvdata(spi, priv);	/* spi to priv reference */
1548 	SET_NETDEV_DEV(dev, &spi->dev);
1549 
1550 	if (!enc28j60_chipset_init(dev)) {
1551 		if (netif_msg_probe(priv))
1552 			dev_info(&spi->dev, "chip not found\n");
1553 		ret = -EIO;
1554 		goto error_irq;
1555 	}
1556 
1557 	if (device_get_ethdev_address(&spi->dev, dev))
1558 		eth_hw_addr_random(dev);
1559 	enc28j60_set_hw_macaddr(dev);
1560 
1561 	/* Board setup must set the relevant edge trigger type;
1562 	 * level triggers won't currently work.
1563 	 */
1564 	ret = request_threaded_irq(spi->irq, NULL, enc28j60_irq, IRQF_ONESHOT,
1565 				   DRV_NAME, priv);
1566 	if (ret < 0) {
1567 		if (netif_msg_probe(priv))
1568 			dev_err(&spi->dev, "request irq %d failed (ret = %d)\n",
1569 				spi->irq, ret);
1570 		goto error_irq;
1571 	}
1572 
1573 	dev->if_port = IF_PORT_10BASET;
1574 	dev->irq = spi->irq;
1575 	dev->netdev_ops = &enc28j60_netdev_ops;
1576 	dev->watchdog_timeo = TX_TIMEOUT;
1577 	dev->ethtool_ops = &enc28j60_ethtool_ops;
1578 
1579 	enc28j60_lowpower(priv, true);
1580 
1581 	ret = register_netdev(dev);
1582 	if (ret) {
1583 		if (netif_msg_probe(priv))
1584 			dev_err(&spi->dev, "register netdev failed (ret = %d)\n",
1585 				ret);
1586 		goto error_register;
1587 	}
1588 
1589 	return 0;
1590 
1591 error_register:
1592 	free_irq(spi->irq, priv);
1593 error_irq:
1594 	free_netdev(dev);
1595 error_alloc:
1596 	return ret;
1597 }
1598 
1599 static void enc28j60_remove(struct spi_device *spi)
1600 {
1601 	struct enc28j60_net *priv = spi_get_drvdata(spi);
1602 
1603 	unregister_netdev(priv->netdev);
1604 	free_irq(spi->irq, priv);
1605 	free_netdev(priv->netdev);
1606 }
1607 
1608 static const struct of_device_id enc28j60_dt_ids[] = {
1609 	{ .compatible = "microchip,enc28j60" },
1610 	{ /* sentinel */ }
1611 };
1612 MODULE_DEVICE_TABLE(of, enc28j60_dt_ids);
1613 
1614 static struct spi_driver enc28j60_driver = {
1615 	.driver = {
1616 		.name = DRV_NAME,
1617 		.of_match_table = enc28j60_dt_ids,
1618 	 },
1619 	.probe = enc28j60_probe,
1620 	.remove = enc28j60_remove,
1621 };
1622 module_spi_driver(enc28j60_driver);
1623 
1624 MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
1625 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
1626 MODULE_LICENSE("GPL");
1627 module_param_named(debug, debug.msg_enable, int, 0);
1628 MODULE_PARM_DESC(debug, "Debug verbosity level in amount of bits set (0=none, ..., 31=all)");
1629 MODULE_ALIAS("spi:" DRV_NAME);
1630