1 /* 2 * Microchip ENC28J60 ethernet driver (MAC + PHY) 3 * 4 * Copyright (C) 2007 Eurek srl 5 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> 6 * based on enc28j60.c written by David Anders for 2.4 kernel version 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $ 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/fcntl.h> 20 #include <linux/interrupt.h> 21 #include <linux/string.h> 22 #include <linux/errno.h> 23 #include <linux/init.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/ethtool.h> 27 #include <linux/tcp.h> 28 #include <linux/skbuff.h> 29 #include <linux/delay.h> 30 #include <linux/spi/spi.h> 31 #include <linux/of_net.h> 32 33 #include "enc28j60_hw.h" 34 35 #define DRV_NAME "enc28j60" 36 #define DRV_VERSION "1.02" 37 38 #define SPI_OPLEN 1 39 40 #define ENC28J60_MSG_DEFAULT \ 41 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK) 42 43 /* Buffer size required for the largest SPI transfer (i.e., reading a 44 * frame). */ 45 #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN) 46 47 #define TX_TIMEOUT (4 * HZ) 48 49 /* Max TX retries in case of collision as suggested by errata datasheet */ 50 #define MAX_TX_RETRYCOUNT 16 51 52 enum { 53 RXFILTER_NORMAL, 54 RXFILTER_MULTI, 55 RXFILTER_PROMISC 56 }; 57 58 /* Driver local data */ 59 struct enc28j60_net { 60 struct net_device *netdev; 61 struct spi_device *spi; 62 struct mutex lock; 63 struct sk_buff *tx_skb; 64 struct work_struct tx_work; 65 struct work_struct irq_work; 66 struct work_struct setrx_work; 67 struct work_struct restart_work; 68 u8 bank; /* current register bank selected */ 69 u16 next_pk_ptr; /* next packet pointer within FIFO */ 70 u16 max_pk_counter; /* statistics: max packet counter */ 71 u16 tx_retry_count; 72 bool hw_enable; 73 bool full_duplex; 74 int rxfilter; 75 u32 msg_enable; 76 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN]; 77 }; 78 79 /* use ethtool to change the level for any given device */ 80 static struct { 81 u32 msg_enable; 82 } debug = { -1 }; 83 84 /* 85 * SPI read buffer 86 * wait for the SPI transfer and copy received data to destination 87 */ 88 static int 89 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data) 90 { 91 u8 *rx_buf = priv->spi_transfer_buf + 4; 92 u8 *tx_buf = priv->spi_transfer_buf; 93 struct spi_transfer tx = { 94 .tx_buf = tx_buf, 95 .len = SPI_OPLEN, 96 }; 97 struct spi_transfer rx = { 98 .rx_buf = rx_buf, 99 .len = len, 100 }; 101 struct spi_message msg; 102 int ret; 103 104 tx_buf[0] = ENC28J60_READ_BUF_MEM; 105 106 spi_message_init(&msg); 107 spi_message_add_tail(&tx, &msg); 108 spi_message_add_tail(&rx, &msg); 109 110 ret = spi_sync(priv->spi, &msg); 111 if (ret == 0) { 112 memcpy(data, rx_buf, len); 113 ret = msg.status; 114 } 115 if (ret && netif_msg_drv(priv)) 116 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 117 __func__, ret); 118 119 return ret; 120 } 121 122 /* 123 * SPI write buffer 124 */ 125 static int spi_write_buf(struct enc28j60_net *priv, int len, 126 const u8 *data) 127 { 128 int ret; 129 130 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0) 131 ret = -EINVAL; 132 else { 133 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM; 134 memcpy(&priv->spi_transfer_buf[1], data, len); 135 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1); 136 if (ret && netif_msg_drv(priv)) 137 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 138 __func__, ret); 139 } 140 return ret; 141 } 142 143 /* 144 * basic SPI read operation 145 */ 146 static u8 spi_read_op(struct enc28j60_net *priv, u8 op, 147 u8 addr) 148 { 149 u8 tx_buf[2]; 150 u8 rx_buf[4]; 151 u8 val = 0; 152 int ret; 153 int slen = SPI_OPLEN; 154 155 /* do dummy read if needed */ 156 if (addr & SPRD_MASK) 157 slen++; 158 159 tx_buf[0] = op | (addr & ADDR_MASK); 160 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen); 161 if (ret) 162 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 163 __func__, ret); 164 else 165 val = rx_buf[slen - 1]; 166 167 return val; 168 } 169 170 /* 171 * basic SPI write operation 172 */ 173 static int spi_write_op(struct enc28j60_net *priv, u8 op, 174 u8 addr, u8 val) 175 { 176 int ret; 177 178 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK); 179 priv->spi_transfer_buf[1] = val; 180 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2); 181 if (ret && netif_msg_drv(priv)) 182 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 183 __func__, ret); 184 return ret; 185 } 186 187 static void enc28j60_soft_reset(struct enc28j60_net *priv) 188 { 189 if (netif_msg_hw(priv)) 190 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 191 192 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); 193 /* Errata workaround #1, CLKRDY check is unreliable, 194 * delay at least 1 mS instead */ 195 udelay(2000); 196 } 197 198 /* 199 * select the current register bank if necessary 200 */ 201 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr) 202 { 203 u8 b = (addr & BANK_MASK) >> 5; 204 205 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1) 206 * are present in all banks, no need to switch bank 207 */ 208 if (addr >= EIE && addr <= ECON1) 209 return; 210 211 /* Clear or set each bank selection bit as needed */ 212 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) { 213 if (b & ECON1_BSEL0) 214 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 215 ECON1_BSEL0); 216 else 217 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 218 ECON1_BSEL0); 219 } 220 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) { 221 if (b & ECON1_BSEL1) 222 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 223 ECON1_BSEL1); 224 else 225 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 226 ECON1_BSEL1); 227 } 228 priv->bank = b; 229 } 230 231 /* 232 * Register access routines through the SPI bus. 233 * Every register access comes in two flavours: 234 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access 235 * atomically more than one register 236 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access 237 * 238 * Some registers can be accessed through the bit field clear and 239 * bit field set to avoid a read modify write cycle. 240 */ 241 242 /* 243 * Register bit field Set 244 */ 245 static void nolock_reg_bfset(struct enc28j60_net *priv, 246 u8 addr, u8 mask) 247 { 248 enc28j60_set_bank(priv, addr); 249 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask); 250 } 251 252 static void locked_reg_bfset(struct enc28j60_net *priv, 253 u8 addr, u8 mask) 254 { 255 mutex_lock(&priv->lock); 256 nolock_reg_bfset(priv, addr, mask); 257 mutex_unlock(&priv->lock); 258 } 259 260 /* 261 * Register bit field Clear 262 */ 263 static void nolock_reg_bfclr(struct enc28j60_net *priv, 264 u8 addr, u8 mask) 265 { 266 enc28j60_set_bank(priv, addr); 267 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask); 268 } 269 270 static void locked_reg_bfclr(struct enc28j60_net *priv, 271 u8 addr, u8 mask) 272 { 273 mutex_lock(&priv->lock); 274 nolock_reg_bfclr(priv, addr, mask); 275 mutex_unlock(&priv->lock); 276 } 277 278 /* 279 * Register byte read 280 */ 281 static int nolock_regb_read(struct enc28j60_net *priv, 282 u8 address) 283 { 284 enc28j60_set_bank(priv, address); 285 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 286 } 287 288 static int locked_regb_read(struct enc28j60_net *priv, 289 u8 address) 290 { 291 int ret; 292 293 mutex_lock(&priv->lock); 294 ret = nolock_regb_read(priv, address); 295 mutex_unlock(&priv->lock); 296 297 return ret; 298 } 299 300 /* 301 * Register word read 302 */ 303 static int nolock_regw_read(struct enc28j60_net *priv, 304 u8 address) 305 { 306 int rl, rh; 307 308 enc28j60_set_bank(priv, address); 309 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 310 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1); 311 312 return (rh << 8) | rl; 313 } 314 315 static int locked_regw_read(struct enc28j60_net *priv, 316 u8 address) 317 { 318 int ret; 319 320 mutex_lock(&priv->lock); 321 ret = nolock_regw_read(priv, address); 322 mutex_unlock(&priv->lock); 323 324 return ret; 325 } 326 327 /* 328 * Register byte write 329 */ 330 static void nolock_regb_write(struct enc28j60_net *priv, 331 u8 address, u8 data) 332 { 333 enc28j60_set_bank(priv, address); 334 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data); 335 } 336 337 static void locked_regb_write(struct enc28j60_net *priv, 338 u8 address, u8 data) 339 { 340 mutex_lock(&priv->lock); 341 nolock_regb_write(priv, address, data); 342 mutex_unlock(&priv->lock); 343 } 344 345 /* 346 * Register word write 347 */ 348 static void nolock_regw_write(struct enc28j60_net *priv, 349 u8 address, u16 data) 350 { 351 enc28j60_set_bank(priv, address); 352 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data); 353 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1, 354 (u8) (data >> 8)); 355 } 356 357 static void locked_regw_write(struct enc28j60_net *priv, 358 u8 address, u16 data) 359 { 360 mutex_lock(&priv->lock); 361 nolock_regw_write(priv, address, data); 362 mutex_unlock(&priv->lock); 363 } 364 365 /* 366 * Buffer memory read 367 * Select the starting address and execute a SPI buffer read 368 */ 369 static void enc28j60_mem_read(struct enc28j60_net *priv, 370 u16 addr, int len, u8 *data) 371 { 372 mutex_lock(&priv->lock); 373 nolock_regw_write(priv, ERDPTL, addr); 374 #ifdef CONFIG_ENC28J60_WRITEVERIFY 375 if (netif_msg_drv(priv)) { 376 u16 reg; 377 reg = nolock_regw_read(priv, ERDPTL); 378 if (reg != addr) 379 printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT " 380 "(0x%04x - 0x%04x)\n", __func__, reg, addr); 381 } 382 #endif 383 spi_read_buf(priv, len, data); 384 mutex_unlock(&priv->lock); 385 } 386 387 /* 388 * Write packet to enc28j60 TX buffer memory 389 */ 390 static void 391 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data) 392 { 393 mutex_lock(&priv->lock); 394 /* Set the write pointer to start of transmit buffer area */ 395 nolock_regw_write(priv, EWRPTL, TXSTART_INIT); 396 #ifdef CONFIG_ENC28J60_WRITEVERIFY 397 if (netif_msg_drv(priv)) { 398 u16 reg; 399 reg = nolock_regw_read(priv, EWRPTL); 400 if (reg != TXSTART_INIT) 401 printk(KERN_DEBUG DRV_NAME 402 ": %s() ERWPT:0x%04x != 0x%04x\n", 403 __func__, reg, TXSTART_INIT); 404 } 405 #endif 406 /* Set the TXND pointer to correspond to the packet size given */ 407 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len); 408 /* write per-packet control byte */ 409 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00); 410 if (netif_msg_hw(priv)) 411 printk(KERN_DEBUG DRV_NAME 412 ": %s() after control byte ERWPT:0x%04x\n", 413 __func__, nolock_regw_read(priv, EWRPTL)); 414 /* copy the packet into the transmit buffer */ 415 spi_write_buf(priv, len, data); 416 if (netif_msg_hw(priv)) 417 printk(KERN_DEBUG DRV_NAME 418 ": %s() after write packet ERWPT:0x%04x, len=%d\n", 419 __func__, nolock_regw_read(priv, EWRPTL), len); 420 mutex_unlock(&priv->lock); 421 } 422 423 static unsigned long msec20_to_jiffies; 424 425 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val) 426 { 427 unsigned long timeout = jiffies + msec20_to_jiffies; 428 429 /* 20 msec timeout read */ 430 while ((nolock_regb_read(priv, reg) & mask) != val) { 431 if (time_after(jiffies, timeout)) { 432 if (netif_msg_drv(priv)) 433 dev_dbg(&priv->spi->dev, 434 "reg %02x ready timeout!\n", reg); 435 return -ETIMEDOUT; 436 } 437 cpu_relax(); 438 } 439 return 0; 440 } 441 442 /* 443 * Wait until the PHY operation is complete. 444 */ 445 static int wait_phy_ready(struct enc28j60_net *priv) 446 { 447 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1; 448 } 449 450 /* 451 * PHY register read 452 * PHY registers are not accessed directly, but through the MII 453 */ 454 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address) 455 { 456 u16 ret; 457 458 mutex_lock(&priv->lock); 459 /* set the PHY register address */ 460 nolock_regb_write(priv, MIREGADR, address); 461 /* start the register read operation */ 462 nolock_regb_write(priv, MICMD, MICMD_MIIRD); 463 /* wait until the PHY read completes */ 464 wait_phy_ready(priv); 465 /* quit reading */ 466 nolock_regb_write(priv, MICMD, 0x00); 467 /* return the data */ 468 ret = nolock_regw_read(priv, MIRDL); 469 mutex_unlock(&priv->lock); 470 471 return ret; 472 } 473 474 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data) 475 { 476 int ret; 477 478 mutex_lock(&priv->lock); 479 /* set the PHY register address */ 480 nolock_regb_write(priv, MIREGADR, address); 481 /* write the PHY data */ 482 nolock_regw_write(priv, MIWRL, data); 483 /* wait until the PHY write completes and return */ 484 ret = wait_phy_ready(priv); 485 mutex_unlock(&priv->lock); 486 487 return ret; 488 } 489 490 /* 491 * Program the hardware MAC address from dev->dev_addr. 492 */ 493 static int enc28j60_set_hw_macaddr(struct net_device *ndev) 494 { 495 int ret; 496 struct enc28j60_net *priv = netdev_priv(ndev); 497 498 mutex_lock(&priv->lock); 499 if (!priv->hw_enable) { 500 if (netif_msg_drv(priv)) 501 printk(KERN_INFO DRV_NAME 502 ": %s: Setting MAC address to %pM\n", 503 ndev->name, ndev->dev_addr); 504 /* NOTE: MAC address in ENC28J60 is byte-backward */ 505 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]); 506 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]); 507 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]); 508 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]); 509 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]); 510 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]); 511 ret = 0; 512 } else { 513 if (netif_msg_drv(priv)) 514 printk(KERN_DEBUG DRV_NAME 515 ": %s() Hardware must be disabled to set " 516 "Mac address\n", __func__); 517 ret = -EBUSY; 518 } 519 mutex_unlock(&priv->lock); 520 return ret; 521 } 522 523 /* 524 * Store the new hardware address in dev->dev_addr, and update the MAC. 525 */ 526 static int enc28j60_set_mac_address(struct net_device *dev, void *addr) 527 { 528 struct sockaddr *address = addr; 529 530 if (netif_running(dev)) 531 return -EBUSY; 532 if (!is_valid_ether_addr(address->sa_data)) 533 return -EADDRNOTAVAIL; 534 535 memcpy(dev->dev_addr, address->sa_data, dev->addr_len); 536 return enc28j60_set_hw_macaddr(dev); 537 } 538 539 /* 540 * Debug routine to dump useful register contents 541 */ 542 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg) 543 { 544 mutex_lock(&priv->lock); 545 printk(KERN_DEBUG DRV_NAME " %s\n" 546 "HwRevID: 0x%02x\n" 547 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n" 548 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n" 549 "MAC : MACON1 MACON3 MACON4\n" 550 " 0x%02x 0x%02x 0x%02x\n" 551 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n" 552 " 0x%04x 0x%04x 0x%04x 0x%04x " 553 "0x%02x 0x%02x 0x%04x\n" 554 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n" 555 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n", 556 msg, nolock_regb_read(priv, EREVID), 557 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2), 558 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR), 559 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1), 560 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4), 561 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL), 562 nolock_regw_read(priv, ERXWRPTL), 563 nolock_regw_read(priv, ERXRDPTL), 564 nolock_regb_read(priv, ERXFCON), 565 nolock_regb_read(priv, EPKTCNT), 566 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL), 567 nolock_regw_read(priv, ETXNDL), 568 nolock_regb_read(priv, MACLCON1), 569 nolock_regb_read(priv, MACLCON2), 570 nolock_regb_read(priv, MAPHSUP)); 571 mutex_unlock(&priv->lock); 572 } 573 574 /* 575 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet 576 */ 577 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end) 578 { 579 u16 erxrdpt; 580 581 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end)) 582 erxrdpt = end; 583 else 584 erxrdpt = next_packet_ptr - 1; 585 586 return erxrdpt; 587 } 588 589 /* 590 * Calculate wrap around when reading beyond the end of the RX buffer 591 */ 592 static u16 rx_packet_start(u16 ptr) 593 { 594 if (ptr + RSV_SIZE > RXEND_INIT) 595 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1); 596 else 597 return ptr + RSV_SIZE; 598 } 599 600 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 601 { 602 u16 erxrdpt; 603 604 if (start > 0x1FFF || end > 0x1FFF || start > end) { 605 if (netif_msg_drv(priv)) 606 printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO " 607 "bad parameters!\n", __func__, start, end); 608 return; 609 } 610 /* set receive buffer start + end */ 611 priv->next_pk_ptr = start; 612 nolock_regw_write(priv, ERXSTL, start); 613 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end); 614 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 615 nolock_regw_write(priv, ERXNDL, end); 616 } 617 618 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 619 { 620 if (start > 0x1FFF || end > 0x1FFF || start > end) { 621 if (netif_msg_drv(priv)) 622 printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO " 623 "bad parameters!\n", __func__, start, end); 624 return; 625 } 626 /* set transmit buffer start + end */ 627 nolock_regw_write(priv, ETXSTL, start); 628 nolock_regw_write(priv, ETXNDL, end); 629 } 630 631 /* 632 * Low power mode shrinks power consumption about 100x, so we'd like 633 * the chip to be in that mode whenever it's inactive. (However, we 634 * can't stay in lowpower mode during suspend with WOL active.) 635 */ 636 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low) 637 { 638 if (netif_msg_drv(priv)) 639 dev_dbg(&priv->spi->dev, "%s power...\n", 640 is_low ? "low" : "high"); 641 642 mutex_lock(&priv->lock); 643 if (is_low) { 644 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 645 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0); 646 poll_ready(priv, ECON1, ECON1_TXRTS, 0); 647 /* ECON2_VRPS was set during initialization */ 648 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV); 649 } else { 650 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV); 651 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY); 652 /* caller sets ECON1_RXEN */ 653 } 654 mutex_unlock(&priv->lock); 655 } 656 657 static int enc28j60_hw_init(struct enc28j60_net *priv) 658 { 659 u8 reg; 660 661 if (netif_msg_drv(priv)) 662 printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __func__, 663 priv->full_duplex ? "FullDuplex" : "HalfDuplex"); 664 665 mutex_lock(&priv->lock); 666 /* first reset the chip */ 667 enc28j60_soft_reset(priv); 668 /* Clear ECON1 */ 669 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00); 670 priv->bank = 0; 671 priv->hw_enable = false; 672 priv->tx_retry_count = 0; 673 priv->max_pk_counter = 0; 674 priv->rxfilter = RXFILTER_NORMAL; 675 /* enable address auto increment and voltage regulator powersave */ 676 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS); 677 678 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 679 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 680 mutex_unlock(&priv->lock); 681 682 /* 683 * Check the RevID. 684 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or 685 * damaged 686 */ 687 reg = locked_regb_read(priv, EREVID); 688 if (netif_msg_drv(priv)) 689 printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg); 690 if (reg == 0x00 || reg == 0xff) { 691 if (netif_msg_drv(priv)) 692 printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n", 693 __func__, reg); 694 return 0; 695 } 696 697 /* default filter mode: (unicast OR broadcast) AND crc valid */ 698 locked_regb_write(priv, ERXFCON, 699 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN); 700 701 /* enable MAC receive */ 702 locked_regb_write(priv, MACON1, 703 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS); 704 /* enable automatic padding and CRC operations */ 705 if (priv->full_duplex) { 706 locked_regb_write(priv, MACON3, 707 MACON3_PADCFG0 | MACON3_TXCRCEN | 708 MACON3_FRMLNEN | MACON3_FULDPX); 709 /* set inter-frame gap (non-back-to-back) */ 710 locked_regb_write(priv, MAIPGL, 0x12); 711 /* set inter-frame gap (back-to-back) */ 712 locked_regb_write(priv, MABBIPG, 0x15); 713 } else { 714 locked_regb_write(priv, MACON3, 715 MACON3_PADCFG0 | MACON3_TXCRCEN | 716 MACON3_FRMLNEN); 717 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */ 718 /* set inter-frame gap (non-back-to-back) */ 719 locked_regw_write(priv, MAIPGL, 0x0C12); 720 /* set inter-frame gap (back-to-back) */ 721 locked_regb_write(priv, MABBIPG, 0x12); 722 } 723 /* 724 * MACLCON1 (default) 725 * MACLCON2 (default) 726 * Set the maximum packet size which the controller will accept 727 */ 728 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN); 729 730 /* Configure LEDs */ 731 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE)) 732 return 0; 733 734 if (priv->full_duplex) { 735 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD)) 736 return 0; 737 if (!enc28j60_phy_write(priv, PHCON2, 0x00)) 738 return 0; 739 } else { 740 if (!enc28j60_phy_write(priv, PHCON1, 0x00)) 741 return 0; 742 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS)) 743 return 0; 744 } 745 if (netif_msg_hw(priv)) 746 enc28j60_dump_regs(priv, "Hw initialized."); 747 748 return 1; 749 } 750 751 static void enc28j60_hw_enable(struct enc28j60_net *priv) 752 { 753 /* enable interrupts */ 754 if (netif_msg_hw(priv)) 755 printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n", 756 __func__); 757 758 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE); 759 760 mutex_lock(&priv->lock); 761 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF | 762 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF); 763 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE | 764 EIE_TXIE | EIE_TXERIE | EIE_RXERIE); 765 766 /* enable receive logic */ 767 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 768 priv->hw_enable = true; 769 mutex_unlock(&priv->lock); 770 } 771 772 static void enc28j60_hw_disable(struct enc28j60_net *priv) 773 { 774 mutex_lock(&priv->lock); 775 /* disable interrutps and packet reception */ 776 nolock_regb_write(priv, EIE, 0x00); 777 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 778 priv->hw_enable = false; 779 mutex_unlock(&priv->lock); 780 } 781 782 static int 783 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex) 784 { 785 struct enc28j60_net *priv = netdev_priv(ndev); 786 int ret = 0; 787 788 if (!priv->hw_enable) { 789 /* link is in low power mode now; duplex setting 790 * will take effect on next enc28j60_hw_init(). 791 */ 792 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) 793 priv->full_duplex = (duplex == DUPLEX_FULL); 794 else { 795 if (netif_msg_link(priv)) 796 dev_warn(&ndev->dev, 797 "unsupported link setting\n"); 798 ret = -EOPNOTSUPP; 799 } 800 } else { 801 if (netif_msg_link(priv)) 802 dev_warn(&ndev->dev, "Warning: hw must be disabled " 803 "to set link mode\n"); 804 ret = -EBUSY; 805 } 806 return ret; 807 } 808 809 /* 810 * Read the Transmit Status Vector 811 */ 812 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE]) 813 { 814 int endptr; 815 816 endptr = locked_regw_read(priv, ETXNDL); 817 if (netif_msg_hw(priv)) 818 printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n", 819 endptr + 1); 820 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv); 821 } 822 823 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg, 824 u8 tsv[TSV_SIZE]) 825 { 826 u16 tmp1, tmp2; 827 828 printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg); 829 tmp1 = tsv[1]; 830 tmp1 <<= 8; 831 tmp1 |= tsv[0]; 832 833 tmp2 = tsv[5]; 834 tmp2 <<= 8; 835 tmp2 |= tsv[4]; 836 837 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d," 838 " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2); 839 printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d," 840 " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE), 841 TSV_GETBIT(tsv, TSV_TXCRCERROR), 842 TSV_GETBIT(tsv, TSV_TXLENCHKERROR), 843 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE)); 844 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, " 845 "PacketDefer: %d, ExDefer: %d\n", 846 TSV_GETBIT(tsv, TSV_TXMULTICAST), 847 TSV_GETBIT(tsv, TSV_TXBROADCAST), 848 TSV_GETBIT(tsv, TSV_TXPACKETDEFER), 849 TSV_GETBIT(tsv, TSV_TXEXDEFER)); 850 printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, " 851 "Giant: %d, Underrun: %d\n", 852 TSV_GETBIT(tsv, TSV_TXEXCOLLISION), 853 TSV_GETBIT(tsv, TSV_TXLATECOLLISION), 854 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN)); 855 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, " 856 "BackPressApp: %d, VLanTagFrame: %d\n", 857 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME), 858 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME), 859 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP), 860 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME)); 861 } 862 863 /* 864 * Receive Status vector 865 */ 866 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg, 867 u16 pk_ptr, int len, u16 sts) 868 { 869 printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n", 870 msg, pk_ptr); 871 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len, 872 RSV_GETBIT(sts, RSV_DRIBBLENIBBLE)); 873 printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d," 874 " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK), 875 RSV_GETBIT(sts, RSV_CRCERROR), 876 RSV_GETBIT(sts, RSV_LENCHECKERR), 877 RSV_GETBIT(sts, RSV_LENOUTOFRANGE)); 878 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, " 879 "LongDropEvent: %d, CarrierEvent: %d\n", 880 RSV_GETBIT(sts, RSV_RXMULTICAST), 881 RSV_GETBIT(sts, RSV_RXBROADCAST), 882 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV), 883 RSV_GETBIT(sts, RSV_CARRIEREV)); 884 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d," 885 " UnknownOp: %d, VLanTagFrame: %d\n", 886 RSV_GETBIT(sts, RSV_RXCONTROLFRAME), 887 RSV_GETBIT(sts, RSV_RXPAUSEFRAME), 888 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE), 889 RSV_GETBIT(sts, RSV_RXTYPEVLAN)); 890 } 891 892 static void dump_packet(const char *msg, int len, const char *data) 893 { 894 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len); 895 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1, 896 data, len, true); 897 } 898 899 /* 900 * Hardware receive function. 901 * Read the buffer memory, update the FIFO pointer to free the buffer, 902 * check the status vector and decrement the packet counter. 903 */ 904 static void enc28j60_hw_rx(struct net_device *ndev) 905 { 906 struct enc28j60_net *priv = netdev_priv(ndev); 907 struct sk_buff *skb = NULL; 908 u16 erxrdpt, next_packet, rxstat; 909 u8 rsv[RSV_SIZE]; 910 int len; 911 912 if (netif_msg_rx_status(priv)) 913 printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n", 914 priv->next_pk_ptr); 915 916 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) { 917 if (netif_msg_rx_err(priv)) 918 dev_err(&ndev->dev, 919 "%s() Invalid packet address!! 0x%04x\n", 920 __func__, priv->next_pk_ptr); 921 /* packet address corrupted: reset RX logic */ 922 mutex_lock(&priv->lock); 923 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 924 nolock_reg_bfset(priv, ECON1, ECON1_RXRST); 925 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST); 926 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 927 nolock_reg_bfclr(priv, EIR, EIR_RXERIF); 928 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 929 mutex_unlock(&priv->lock); 930 ndev->stats.rx_errors++; 931 return; 932 } 933 /* Read next packet pointer and rx status vector */ 934 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv); 935 936 next_packet = rsv[1]; 937 next_packet <<= 8; 938 next_packet |= rsv[0]; 939 940 len = rsv[3]; 941 len <<= 8; 942 len |= rsv[2]; 943 944 rxstat = rsv[5]; 945 rxstat <<= 8; 946 rxstat |= rsv[4]; 947 948 if (netif_msg_rx_status(priv)) 949 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat); 950 951 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) { 952 if (netif_msg_rx_err(priv)) 953 dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat); 954 ndev->stats.rx_errors++; 955 if (RSV_GETBIT(rxstat, RSV_CRCERROR)) 956 ndev->stats.rx_crc_errors++; 957 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR)) 958 ndev->stats.rx_frame_errors++; 959 if (len > MAX_FRAMELEN) 960 ndev->stats.rx_over_errors++; 961 } else { 962 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN); 963 if (!skb) { 964 if (netif_msg_rx_err(priv)) 965 dev_err(&ndev->dev, 966 "out of memory for Rx'd frame\n"); 967 ndev->stats.rx_dropped++; 968 } else { 969 skb_reserve(skb, NET_IP_ALIGN); 970 /* copy the packet from the receive buffer */ 971 enc28j60_mem_read(priv, 972 rx_packet_start(priv->next_pk_ptr), 973 len, skb_put(skb, len)); 974 if (netif_msg_pktdata(priv)) 975 dump_packet(__func__, skb->len, skb->data); 976 skb->protocol = eth_type_trans(skb, ndev); 977 /* update statistics */ 978 ndev->stats.rx_packets++; 979 ndev->stats.rx_bytes += len; 980 netif_rx_ni(skb); 981 } 982 } 983 /* 984 * Move the RX read pointer to the start of the next 985 * received packet. 986 * This frees the memory we just read out 987 */ 988 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT); 989 if (netif_msg_hw(priv)) 990 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n", 991 __func__, erxrdpt); 992 993 mutex_lock(&priv->lock); 994 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 995 #ifdef CONFIG_ENC28J60_WRITEVERIFY 996 if (netif_msg_drv(priv)) { 997 u16 reg; 998 reg = nolock_regw_read(priv, ERXRDPTL); 999 if (reg != erxrdpt) 1000 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify " 1001 "error (0x%04x - 0x%04x)\n", __func__, 1002 reg, erxrdpt); 1003 } 1004 #endif 1005 priv->next_pk_ptr = next_packet; 1006 /* we are done with this packet, decrement the packet counter */ 1007 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC); 1008 mutex_unlock(&priv->lock); 1009 } 1010 1011 /* 1012 * Calculate free space in RxFIFO 1013 */ 1014 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv) 1015 { 1016 int epkcnt, erxst, erxnd, erxwr, erxrd; 1017 int free_space; 1018 1019 mutex_lock(&priv->lock); 1020 epkcnt = nolock_regb_read(priv, EPKTCNT); 1021 if (epkcnt >= 255) 1022 free_space = -1; 1023 else { 1024 erxst = nolock_regw_read(priv, ERXSTL); 1025 erxnd = nolock_regw_read(priv, ERXNDL); 1026 erxwr = nolock_regw_read(priv, ERXWRPTL); 1027 erxrd = nolock_regw_read(priv, ERXRDPTL); 1028 1029 if (erxwr > erxrd) 1030 free_space = (erxnd - erxst) - (erxwr - erxrd); 1031 else if (erxwr == erxrd) 1032 free_space = (erxnd - erxst); 1033 else 1034 free_space = erxrd - erxwr - 1; 1035 } 1036 mutex_unlock(&priv->lock); 1037 if (netif_msg_rx_status(priv)) 1038 printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n", 1039 __func__, free_space); 1040 return free_space; 1041 } 1042 1043 /* 1044 * Access the PHY to determine link status 1045 */ 1046 static void enc28j60_check_link_status(struct net_device *ndev) 1047 { 1048 struct enc28j60_net *priv = netdev_priv(ndev); 1049 u16 reg; 1050 int duplex; 1051 1052 reg = enc28j60_phy_read(priv, PHSTAT2); 1053 if (netif_msg_hw(priv)) 1054 printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, " 1055 "PHSTAT2: %04x\n", __func__, 1056 enc28j60_phy_read(priv, PHSTAT1), reg); 1057 duplex = reg & PHSTAT2_DPXSTAT; 1058 1059 if (reg & PHSTAT2_LSTAT) { 1060 netif_carrier_on(ndev); 1061 if (netif_msg_ifup(priv)) 1062 dev_info(&ndev->dev, "link up - %s\n", 1063 duplex ? "Full duplex" : "Half duplex"); 1064 } else { 1065 if (netif_msg_ifdown(priv)) 1066 dev_info(&ndev->dev, "link down\n"); 1067 netif_carrier_off(ndev); 1068 } 1069 } 1070 1071 static void enc28j60_tx_clear(struct net_device *ndev, bool err) 1072 { 1073 struct enc28j60_net *priv = netdev_priv(ndev); 1074 1075 if (err) 1076 ndev->stats.tx_errors++; 1077 else 1078 ndev->stats.tx_packets++; 1079 1080 if (priv->tx_skb) { 1081 if (!err) 1082 ndev->stats.tx_bytes += priv->tx_skb->len; 1083 dev_kfree_skb(priv->tx_skb); 1084 priv->tx_skb = NULL; 1085 } 1086 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1087 netif_wake_queue(ndev); 1088 } 1089 1090 /* 1091 * RX handler 1092 * ignore PKTIF because is unreliable! (look at the errata datasheet) 1093 * check EPKTCNT is the suggested workaround. 1094 * We don't need to clear interrupt flag, automatically done when 1095 * enc28j60_hw_rx() decrements the packet counter. 1096 * Returns how many packet processed. 1097 */ 1098 static int enc28j60_rx_interrupt(struct net_device *ndev) 1099 { 1100 struct enc28j60_net *priv = netdev_priv(ndev); 1101 int pk_counter, ret; 1102 1103 pk_counter = locked_regb_read(priv, EPKTCNT); 1104 if (pk_counter && netif_msg_intr(priv)) 1105 printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter); 1106 if (pk_counter > priv->max_pk_counter) { 1107 /* update statistics */ 1108 priv->max_pk_counter = pk_counter; 1109 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1) 1110 printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n", 1111 priv->max_pk_counter); 1112 } 1113 ret = pk_counter; 1114 while (pk_counter-- > 0) 1115 enc28j60_hw_rx(ndev); 1116 1117 return ret; 1118 } 1119 1120 static void enc28j60_irq_work_handler(struct work_struct *work) 1121 { 1122 struct enc28j60_net *priv = 1123 container_of(work, struct enc28j60_net, irq_work); 1124 struct net_device *ndev = priv->netdev; 1125 int intflags, loop; 1126 1127 if (netif_msg_intr(priv)) 1128 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1129 /* disable further interrupts */ 1130 locked_reg_bfclr(priv, EIE, EIE_INTIE); 1131 1132 do { 1133 loop = 0; 1134 intflags = locked_regb_read(priv, EIR); 1135 /* DMA interrupt handler (not currently used) */ 1136 if ((intflags & EIR_DMAIF) != 0) { 1137 loop++; 1138 if (netif_msg_intr(priv)) 1139 printk(KERN_DEBUG DRV_NAME 1140 ": intDMA(%d)\n", loop); 1141 locked_reg_bfclr(priv, EIR, EIR_DMAIF); 1142 } 1143 /* LINK changed handler */ 1144 if ((intflags & EIR_LINKIF) != 0) { 1145 loop++; 1146 if (netif_msg_intr(priv)) 1147 printk(KERN_DEBUG DRV_NAME 1148 ": intLINK(%d)\n", loop); 1149 enc28j60_check_link_status(ndev); 1150 /* read PHIR to clear the flag */ 1151 enc28j60_phy_read(priv, PHIR); 1152 } 1153 /* TX complete handler */ 1154 if (((intflags & EIR_TXIF) != 0) && 1155 ((intflags & EIR_TXERIF) == 0)) { 1156 bool err = false; 1157 loop++; 1158 if (netif_msg_intr(priv)) 1159 printk(KERN_DEBUG DRV_NAME 1160 ": intTX(%d)\n", loop); 1161 priv->tx_retry_count = 0; 1162 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) { 1163 if (netif_msg_tx_err(priv)) 1164 dev_err(&ndev->dev, 1165 "Tx Error (aborted)\n"); 1166 err = true; 1167 } 1168 if (netif_msg_tx_done(priv)) { 1169 u8 tsv[TSV_SIZE]; 1170 enc28j60_read_tsv(priv, tsv); 1171 enc28j60_dump_tsv(priv, "Tx Done", tsv); 1172 } 1173 enc28j60_tx_clear(ndev, err); 1174 locked_reg_bfclr(priv, EIR, EIR_TXIF); 1175 } 1176 /* TX Error handler */ 1177 if ((intflags & EIR_TXERIF) != 0) { 1178 u8 tsv[TSV_SIZE]; 1179 1180 loop++; 1181 if (netif_msg_intr(priv)) 1182 printk(KERN_DEBUG DRV_NAME 1183 ": intTXErr(%d)\n", loop); 1184 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1185 enc28j60_read_tsv(priv, tsv); 1186 if (netif_msg_tx_err(priv)) 1187 enc28j60_dump_tsv(priv, "Tx Error", tsv); 1188 /* Reset TX logic */ 1189 mutex_lock(&priv->lock); 1190 nolock_reg_bfset(priv, ECON1, ECON1_TXRST); 1191 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST); 1192 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 1193 mutex_unlock(&priv->lock); 1194 /* Transmit Late collision check for retransmit */ 1195 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) { 1196 if (netif_msg_tx_err(priv)) 1197 printk(KERN_DEBUG DRV_NAME 1198 ": LateCollision TXErr (%d)\n", 1199 priv->tx_retry_count); 1200 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT) 1201 locked_reg_bfset(priv, ECON1, 1202 ECON1_TXRTS); 1203 else 1204 enc28j60_tx_clear(ndev, true); 1205 } else 1206 enc28j60_tx_clear(ndev, true); 1207 locked_reg_bfclr(priv, EIR, EIR_TXERIF | EIR_TXIF); 1208 } 1209 /* RX Error handler */ 1210 if ((intflags & EIR_RXERIF) != 0) { 1211 loop++; 1212 if (netif_msg_intr(priv)) 1213 printk(KERN_DEBUG DRV_NAME 1214 ": intRXErr(%d)\n", loop); 1215 /* Check free FIFO space to flag RX overrun */ 1216 if (enc28j60_get_free_rxfifo(priv) <= 0) { 1217 if (netif_msg_rx_err(priv)) 1218 printk(KERN_DEBUG DRV_NAME 1219 ": RX Overrun\n"); 1220 ndev->stats.rx_dropped++; 1221 } 1222 locked_reg_bfclr(priv, EIR, EIR_RXERIF); 1223 } 1224 /* RX handler */ 1225 if (enc28j60_rx_interrupt(ndev)) 1226 loop++; 1227 } while (loop); 1228 1229 /* re-enable interrupts */ 1230 locked_reg_bfset(priv, EIE, EIE_INTIE); 1231 if (netif_msg_intr(priv)) 1232 printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __func__); 1233 } 1234 1235 /* 1236 * Hardware transmit function. 1237 * Fill the buffer memory and send the contents of the transmit buffer 1238 * onto the network 1239 */ 1240 static void enc28j60_hw_tx(struct enc28j60_net *priv) 1241 { 1242 BUG_ON(!priv->tx_skb); 1243 1244 if (netif_msg_tx_queued(priv)) 1245 printk(KERN_DEBUG DRV_NAME 1246 ": Tx Packet Len:%d\n", priv->tx_skb->len); 1247 1248 if (netif_msg_pktdata(priv)) 1249 dump_packet(__func__, 1250 priv->tx_skb->len, priv->tx_skb->data); 1251 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data); 1252 1253 #ifdef CONFIG_ENC28J60_WRITEVERIFY 1254 /* readback and verify written data */ 1255 if (netif_msg_drv(priv)) { 1256 int test_len, k; 1257 u8 test_buf[64]; /* limit the test to the first 64 bytes */ 1258 int okflag; 1259 1260 test_len = priv->tx_skb->len; 1261 if (test_len > sizeof(test_buf)) 1262 test_len = sizeof(test_buf); 1263 1264 /* + 1 to skip control byte */ 1265 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf); 1266 okflag = 1; 1267 for (k = 0; k < test_len; k++) { 1268 if (priv->tx_skb->data[k] != test_buf[k]) { 1269 printk(KERN_DEBUG DRV_NAME 1270 ": Error, %d location differ: " 1271 "0x%02x-0x%02x\n", k, 1272 priv->tx_skb->data[k], test_buf[k]); 1273 okflag = 0; 1274 } 1275 } 1276 if (!okflag) 1277 printk(KERN_DEBUG DRV_NAME ": Tx write buffer, " 1278 "verify ERROR!\n"); 1279 } 1280 #endif 1281 /* set TX request flag */ 1282 locked_reg_bfset(priv, ECON1, ECON1_TXRTS); 1283 } 1284 1285 static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb, 1286 struct net_device *dev) 1287 { 1288 struct enc28j60_net *priv = netdev_priv(dev); 1289 1290 if (netif_msg_tx_queued(priv)) 1291 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1292 1293 /* If some error occurs while trying to transmit this 1294 * packet, you should return '1' from this function. 1295 * In such a case you _may not_ do anything to the 1296 * SKB, it is still owned by the network queueing 1297 * layer when an error is returned. This means you 1298 * may not modify any SKB fields, you may not free 1299 * the SKB, etc. 1300 */ 1301 netif_stop_queue(dev); 1302 1303 /* Remember the skb for deferred processing */ 1304 priv->tx_skb = skb; 1305 schedule_work(&priv->tx_work); 1306 1307 return NETDEV_TX_OK; 1308 } 1309 1310 static void enc28j60_tx_work_handler(struct work_struct *work) 1311 { 1312 struct enc28j60_net *priv = 1313 container_of(work, struct enc28j60_net, tx_work); 1314 1315 /* actual delivery of data */ 1316 enc28j60_hw_tx(priv); 1317 } 1318 1319 static irqreturn_t enc28j60_irq(int irq, void *dev_id) 1320 { 1321 struct enc28j60_net *priv = dev_id; 1322 1323 /* 1324 * Can't do anything in interrupt context because we need to 1325 * block (spi_sync() is blocking) so fire of the interrupt 1326 * handling workqueue. 1327 * Remember that we access enc28j60 registers through SPI bus 1328 * via spi_sync() call. 1329 */ 1330 schedule_work(&priv->irq_work); 1331 1332 return IRQ_HANDLED; 1333 } 1334 1335 static void enc28j60_tx_timeout(struct net_device *ndev) 1336 { 1337 struct enc28j60_net *priv = netdev_priv(ndev); 1338 1339 if (netif_msg_timer(priv)) 1340 dev_err(&ndev->dev, DRV_NAME " tx timeout\n"); 1341 1342 ndev->stats.tx_errors++; 1343 /* can't restart safely under softirq */ 1344 schedule_work(&priv->restart_work); 1345 } 1346 1347 /* 1348 * Open/initialize the board. This is called (in the current kernel) 1349 * sometime after booting when the 'ifconfig' program is run. 1350 * 1351 * This routine should set everything up anew at each open, even 1352 * registers that "should" only need to be set once at boot, so that 1353 * there is non-reboot way to recover if something goes wrong. 1354 */ 1355 static int enc28j60_net_open(struct net_device *dev) 1356 { 1357 struct enc28j60_net *priv = netdev_priv(dev); 1358 1359 if (netif_msg_drv(priv)) 1360 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1361 1362 if (!is_valid_ether_addr(dev->dev_addr)) { 1363 if (netif_msg_ifup(priv)) 1364 dev_err(&dev->dev, "invalid MAC address %pM\n", 1365 dev->dev_addr); 1366 return -EADDRNOTAVAIL; 1367 } 1368 /* Reset the hardware here (and take it out of low power mode) */ 1369 enc28j60_lowpower(priv, false); 1370 enc28j60_hw_disable(priv); 1371 if (!enc28j60_hw_init(priv)) { 1372 if (netif_msg_ifup(priv)) 1373 dev_err(&dev->dev, "hw_reset() failed\n"); 1374 return -EINVAL; 1375 } 1376 /* Update the MAC address (in case user has changed it) */ 1377 enc28j60_set_hw_macaddr(dev); 1378 /* Enable interrupts */ 1379 enc28j60_hw_enable(priv); 1380 /* check link status */ 1381 enc28j60_check_link_status(dev); 1382 /* We are now ready to accept transmit requests from 1383 * the queueing layer of the networking. 1384 */ 1385 netif_start_queue(dev); 1386 1387 return 0; 1388 } 1389 1390 /* The inverse routine to net_open(). */ 1391 static int enc28j60_net_close(struct net_device *dev) 1392 { 1393 struct enc28j60_net *priv = netdev_priv(dev); 1394 1395 if (netif_msg_drv(priv)) 1396 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1397 1398 enc28j60_hw_disable(priv); 1399 enc28j60_lowpower(priv, true); 1400 netif_stop_queue(dev); 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * Set or clear the multicast filter for this adapter 1407 * num_addrs == -1 Promiscuous mode, receive all packets 1408 * num_addrs == 0 Normal mode, filter out multicast packets 1409 * num_addrs > 0 Multicast mode, receive normal and MC packets 1410 */ 1411 static void enc28j60_set_multicast_list(struct net_device *dev) 1412 { 1413 struct enc28j60_net *priv = netdev_priv(dev); 1414 int oldfilter = priv->rxfilter; 1415 1416 if (dev->flags & IFF_PROMISC) { 1417 if (netif_msg_link(priv)) 1418 dev_info(&dev->dev, "promiscuous mode\n"); 1419 priv->rxfilter = RXFILTER_PROMISC; 1420 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) { 1421 if (netif_msg_link(priv)) 1422 dev_info(&dev->dev, "%smulticast mode\n", 1423 (dev->flags & IFF_ALLMULTI) ? "all-" : ""); 1424 priv->rxfilter = RXFILTER_MULTI; 1425 } else { 1426 if (netif_msg_link(priv)) 1427 dev_info(&dev->dev, "normal mode\n"); 1428 priv->rxfilter = RXFILTER_NORMAL; 1429 } 1430 1431 if (oldfilter != priv->rxfilter) 1432 schedule_work(&priv->setrx_work); 1433 } 1434 1435 static void enc28j60_setrx_work_handler(struct work_struct *work) 1436 { 1437 struct enc28j60_net *priv = 1438 container_of(work, struct enc28j60_net, setrx_work); 1439 1440 if (priv->rxfilter == RXFILTER_PROMISC) { 1441 if (netif_msg_drv(priv)) 1442 printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n"); 1443 locked_regb_write(priv, ERXFCON, 0x00); 1444 } else if (priv->rxfilter == RXFILTER_MULTI) { 1445 if (netif_msg_drv(priv)) 1446 printk(KERN_DEBUG DRV_NAME ": multicast mode\n"); 1447 locked_regb_write(priv, ERXFCON, 1448 ERXFCON_UCEN | ERXFCON_CRCEN | 1449 ERXFCON_BCEN | ERXFCON_MCEN); 1450 } else { 1451 if (netif_msg_drv(priv)) 1452 printk(KERN_DEBUG DRV_NAME ": normal mode\n"); 1453 locked_regb_write(priv, ERXFCON, 1454 ERXFCON_UCEN | ERXFCON_CRCEN | 1455 ERXFCON_BCEN); 1456 } 1457 } 1458 1459 static void enc28j60_restart_work_handler(struct work_struct *work) 1460 { 1461 struct enc28j60_net *priv = 1462 container_of(work, struct enc28j60_net, restart_work); 1463 struct net_device *ndev = priv->netdev; 1464 int ret; 1465 1466 rtnl_lock(); 1467 if (netif_running(ndev)) { 1468 enc28j60_net_close(ndev); 1469 ret = enc28j60_net_open(ndev); 1470 if (unlikely(ret)) { 1471 dev_info(&ndev->dev, " could not restart %d\n", ret); 1472 dev_close(ndev); 1473 } 1474 } 1475 rtnl_unlock(); 1476 } 1477 1478 /* ......................... ETHTOOL SUPPORT ........................... */ 1479 1480 static void 1481 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1482 { 1483 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1484 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1485 strlcpy(info->bus_info, 1486 dev_name(dev->dev.parent), sizeof(info->bus_info)); 1487 } 1488 1489 static int 1490 enc28j60_get_link_ksettings(struct net_device *dev, 1491 struct ethtool_link_ksettings *cmd) 1492 { 1493 struct enc28j60_net *priv = netdev_priv(dev); 1494 1495 ethtool_link_ksettings_zero_link_mode(cmd, supported); 1496 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Half); 1497 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Full); 1498 ethtool_link_ksettings_add_link_mode(cmd, supported, TP); 1499 1500 cmd->base.speed = SPEED_10; 1501 cmd->base.duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1502 cmd->base.port = PORT_TP; 1503 cmd->base.autoneg = AUTONEG_DISABLE; 1504 1505 return 0; 1506 } 1507 1508 static int 1509 enc28j60_set_link_ksettings(struct net_device *dev, 1510 const struct ethtool_link_ksettings *cmd) 1511 { 1512 return enc28j60_setlink(dev, cmd->base.autoneg, 1513 cmd->base.speed, cmd->base.duplex); 1514 } 1515 1516 static u32 enc28j60_get_msglevel(struct net_device *dev) 1517 { 1518 struct enc28j60_net *priv = netdev_priv(dev); 1519 return priv->msg_enable; 1520 } 1521 1522 static void enc28j60_set_msglevel(struct net_device *dev, u32 val) 1523 { 1524 struct enc28j60_net *priv = netdev_priv(dev); 1525 priv->msg_enable = val; 1526 } 1527 1528 static const struct ethtool_ops enc28j60_ethtool_ops = { 1529 .get_drvinfo = enc28j60_get_drvinfo, 1530 .get_msglevel = enc28j60_get_msglevel, 1531 .set_msglevel = enc28j60_set_msglevel, 1532 .get_link_ksettings = enc28j60_get_link_ksettings, 1533 .set_link_ksettings = enc28j60_set_link_ksettings, 1534 }; 1535 1536 static int enc28j60_chipset_init(struct net_device *dev) 1537 { 1538 struct enc28j60_net *priv = netdev_priv(dev); 1539 1540 return enc28j60_hw_init(priv); 1541 } 1542 1543 static const struct net_device_ops enc28j60_netdev_ops = { 1544 .ndo_open = enc28j60_net_open, 1545 .ndo_stop = enc28j60_net_close, 1546 .ndo_start_xmit = enc28j60_send_packet, 1547 .ndo_set_rx_mode = enc28j60_set_multicast_list, 1548 .ndo_set_mac_address = enc28j60_set_mac_address, 1549 .ndo_tx_timeout = enc28j60_tx_timeout, 1550 .ndo_validate_addr = eth_validate_addr, 1551 }; 1552 1553 static int enc28j60_probe(struct spi_device *spi) 1554 { 1555 struct net_device *dev; 1556 struct enc28j60_net *priv; 1557 const void *macaddr; 1558 int ret = 0; 1559 1560 if (netif_msg_drv(&debug)) 1561 dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n", 1562 DRV_VERSION); 1563 1564 dev = alloc_etherdev(sizeof(struct enc28j60_net)); 1565 if (!dev) { 1566 ret = -ENOMEM; 1567 goto error_alloc; 1568 } 1569 priv = netdev_priv(dev); 1570 1571 priv->netdev = dev; /* priv to netdev reference */ 1572 priv->spi = spi; /* priv to spi reference */ 1573 priv->msg_enable = netif_msg_init(debug.msg_enable, 1574 ENC28J60_MSG_DEFAULT); 1575 mutex_init(&priv->lock); 1576 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler); 1577 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler); 1578 INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler); 1579 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler); 1580 spi_set_drvdata(spi, priv); /* spi to priv reference */ 1581 SET_NETDEV_DEV(dev, &spi->dev); 1582 1583 if (!enc28j60_chipset_init(dev)) { 1584 if (netif_msg_probe(priv)) 1585 dev_info(&spi->dev, DRV_NAME " chip not found\n"); 1586 ret = -EIO; 1587 goto error_irq; 1588 } 1589 1590 macaddr = of_get_mac_address(spi->dev.of_node); 1591 if (macaddr) 1592 ether_addr_copy(dev->dev_addr, macaddr); 1593 else 1594 eth_hw_addr_random(dev); 1595 enc28j60_set_hw_macaddr(dev); 1596 1597 /* Board setup must set the relevant edge trigger type; 1598 * level triggers won't currently work. 1599 */ 1600 ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv); 1601 if (ret < 0) { 1602 if (netif_msg_probe(priv)) 1603 dev_err(&spi->dev, DRV_NAME ": request irq %d failed " 1604 "(ret = %d)\n", spi->irq, ret); 1605 goto error_irq; 1606 } 1607 1608 dev->if_port = IF_PORT_10BASET; 1609 dev->irq = spi->irq; 1610 dev->netdev_ops = &enc28j60_netdev_ops; 1611 dev->watchdog_timeo = TX_TIMEOUT; 1612 dev->ethtool_ops = &enc28j60_ethtool_ops; 1613 1614 enc28j60_lowpower(priv, true); 1615 1616 ret = register_netdev(dev); 1617 if (ret) { 1618 if (netif_msg_probe(priv)) 1619 dev_err(&spi->dev, "register netdev " DRV_NAME 1620 " failed (ret = %d)\n", ret); 1621 goto error_register; 1622 } 1623 dev_info(&dev->dev, DRV_NAME " driver registered\n"); 1624 1625 return 0; 1626 1627 error_register: 1628 free_irq(spi->irq, priv); 1629 error_irq: 1630 free_netdev(dev); 1631 error_alloc: 1632 return ret; 1633 } 1634 1635 static int enc28j60_remove(struct spi_device *spi) 1636 { 1637 struct enc28j60_net *priv = spi_get_drvdata(spi); 1638 1639 if (netif_msg_drv(priv)) 1640 printk(KERN_DEBUG DRV_NAME ": remove\n"); 1641 1642 unregister_netdev(priv->netdev); 1643 free_irq(spi->irq, priv); 1644 free_netdev(priv->netdev); 1645 1646 return 0; 1647 } 1648 1649 static const struct of_device_id enc28j60_dt_ids[] = { 1650 { .compatible = "microchip,enc28j60" }, 1651 { /* sentinel */ } 1652 }; 1653 MODULE_DEVICE_TABLE(of, enc28j60_dt_ids); 1654 1655 static struct spi_driver enc28j60_driver = { 1656 .driver = { 1657 .name = DRV_NAME, 1658 .of_match_table = enc28j60_dt_ids, 1659 }, 1660 .probe = enc28j60_probe, 1661 .remove = enc28j60_remove, 1662 }; 1663 1664 static int __init enc28j60_init(void) 1665 { 1666 msec20_to_jiffies = msecs_to_jiffies(20); 1667 1668 return spi_register_driver(&enc28j60_driver); 1669 } 1670 1671 module_init(enc28j60_init); 1672 1673 static void __exit enc28j60_exit(void) 1674 { 1675 spi_unregister_driver(&enc28j60_driver); 1676 } 1677 1678 module_exit(enc28j60_exit); 1679 1680 MODULE_DESCRIPTION(DRV_NAME " ethernet driver"); 1681 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>"); 1682 MODULE_LICENSE("GPL"); 1683 module_param_named(debug, debug.msg_enable, int, 0); 1684 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)"); 1685 MODULE_ALIAS("spi:" DRV_NAME); 1686