xref: /linux/drivers/net/ethernet/micrel/ksz884x.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /**
2  * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3  *
4  * Copyright (c) 2009-2010 Micrel, Inc.
5  * 	Tristram Ha <Tristram.Ha@micrel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 
37 
38 /* DMA Registers */
39 
40 #define KS_DMA_TX_CTRL			0x0000
41 #define DMA_TX_ENABLE			0x00000001
42 #define DMA_TX_CRC_ENABLE		0x00000002
43 #define DMA_TX_PAD_ENABLE		0x00000004
44 #define DMA_TX_LOOPBACK			0x00000100
45 #define DMA_TX_FLOW_ENABLE		0x00000200
46 #define DMA_TX_CSUM_IP			0x00010000
47 #define DMA_TX_CSUM_TCP			0x00020000
48 #define DMA_TX_CSUM_UDP			0x00040000
49 #define DMA_TX_BURST_SIZE		0x3F000000
50 
51 #define KS_DMA_RX_CTRL			0x0004
52 #define DMA_RX_ENABLE			0x00000001
53 #define KS884X_DMA_RX_MULTICAST		0x00000002
54 #define DMA_RX_PROMISCUOUS		0x00000004
55 #define DMA_RX_ERROR			0x00000008
56 #define DMA_RX_UNICAST			0x00000010
57 #define DMA_RX_ALL_MULTICAST		0x00000020
58 #define DMA_RX_BROADCAST		0x00000040
59 #define DMA_RX_FLOW_ENABLE		0x00000200
60 #define DMA_RX_CSUM_IP			0x00010000
61 #define DMA_RX_CSUM_TCP			0x00020000
62 #define DMA_RX_CSUM_UDP			0x00040000
63 #define DMA_RX_BURST_SIZE		0x3F000000
64 
65 #define DMA_BURST_SHIFT			24
66 #define DMA_BURST_DEFAULT		8
67 
68 #define KS_DMA_TX_START			0x0008
69 #define KS_DMA_RX_START			0x000C
70 #define DMA_START			0x00000001
71 
72 #define KS_DMA_TX_ADDR			0x0010
73 #define KS_DMA_RX_ADDR			0x0014
74 
75 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT		2
77 
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET	0x0020
80 #define KS884X_MULTICAST_1_OFFSET	0x0021
81 #define KS884X_MULTICAST_2_OFFSET	0x0022
82 #define KS884x_MULTICAST_3_OFFSET	0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET	0x0024
85 #define KS884X_MULTICAST_5_OFFSET	0x0025
86 #define KS884X_MULTICAST_6_OFFSET	0x0026
87 #define KS884X_MULTICAST_7_OFFSET	0x0027
88 
89 /* Interrupt Registers */
90 
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE	0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS	0x002C
95 
96 #define KS884X_INT_RX_STOPPED		0x02000000
97 #define KS884X_INT_TX_STOPPED		0x04000000
98 #define KS884X_INT_RX_OVERRUN		0x08000000
99 #define KS884X_INT_TX_EMPTY		0x10000000
100 #define KS884X_INT_RX			0x20000000
101 #define KS884X_INT_TX			0x40000000
102 #define KS884X_INT_PHY			0x80000000
103 
104 #define KS884X_INT_RX_MASK		\
105 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK		\
107 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109 
110 /* MAC Additional Station Address */
111 
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO		0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI		0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO		0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI		0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO		0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI		0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO		0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI		0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO		0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI		0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO		0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI		0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO		0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI		0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO		0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI		0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO		0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI		0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO		0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI		0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO		0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI		0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO		0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI		0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO		0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI		0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO		0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI		0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO		0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI		0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO		0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI		0x00FC
176 
177 #define ADD_ADDR_HI_MASK		0x0000FFFF
178 #define ADD_ADDR_ENABLE			0x80000000
179 #define ADD_ADDR_INCR			8
180 
181 /* Miscellaneous Registers */
182 
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET		0x0200
185 #define KS884X_ADDR_1_OFFSET		0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET		0x0202
188 #define KS884X_ADDR_3_OFFSET		0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET		0x0204
191 #define KS884X_ADDR_5_OFFSET		0x0205
192 
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET		0x0210
195 
196 #define BUS_SPEED_125_MHZ		0x0000
197 #define BUS_SPEED_62_5_MHZ		0x0001
198 #define BUS_SPEED_41_66_MHZ		0x0002
199 #define BUS_SPEED_25_MHZ		0x0003
200 
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
203 
204 #define EEPROM_CHIP_SELECT		0x0001
205 #define EEPROM_SERIAL_CLOCK		0x0002
206 #define EEPROM_DATA_OUT			0x0004
207 #define EEPROM_DATA_IN			0x0008
208 #define EEPROM_ACCESS_ENABLE		0x0010
209 
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET		0x0214
212 
213 #define RX_MEM_TEST_FAILED		0x0008
214 #define RX_MEM_TEST_FINISHED		0x0010
215 #define TX_MEM_TEST_FAILED		0x0800
216 #define TX_MEM_TEST_FINISHED		0x1000
217 
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
220 #define GLOBAL_SOFTWARE_RESET		0x0001
221 
222 #define KS8841_POWER_MANAGE_OFFSET	0x0218
223 
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET		0x021A
226 #define KS8841_WOL_MAGIC_ENABLE		0x0080
227 #define KS8841_WOL_FRAME3_ENABLE	0x0008
228 #define KS8841_WOL_FRAME2_ENABLE	0x0004
229 #define KS8841_WOL_FRAME1_ENABLE	0x0002
230 #define KS8841_WOL_FRAME0_ENABLE	0x0001
231 
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
236 
237 /* IACR */
238 #define KS884X_IACR_P			0x04A0
239 #define KS884X_IACR_OFFSET		KS884X_IACR_P
240 
241 /* IADR1 */
242 #define KS884X_IADR1_P			0x04A2
243 #define KS884X_IADR2_P			0x04A4
244 #define KS884X_IADR3_P			0x04A6
245 #define KS884X_IADR4_P			0x04A8
246 #define KS884X_IADR5_P			0x04AA
247 
248 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
250 
251 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
260 
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P			0x04D0
263 #define KS884X_P1MBSR_P			0x04D2
264 #define KS884X_PHY1ILR_P		0x04D4
265 #define KS884X_PHY1IHR_P		0x04D6
266 #define KS884X_P1ANAR_P			0x04D8
267 #define KS884X_P1ANLPR_P		0x04DA
268 
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P			0x04E0
271 #define KS884X_P2MBSR_P			0x04E2
272 #define KS884X_PHY2ILR_P		0x04E4
273 #define KS884X_PHY2IHR_P		0x04E6
274 #define KS884X_P2ANAR_P			0x04E8
275 #define KS884X_P2ANLPR_P		0x04EA
276 
277 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279 
280 #define KS884X_PHY_CTRL_OFFSET		0x00
281 
282 /* Mode Control Register */
283 #define PHY_REG_CTRL			0
284 
285 #define PHY_RESET			0x8000
286 #define PHY_LOOPBACK			0x4000
287 #define PHY_SPEED_100MBIT		0x2000
288 #define PHY_AUTO_NEG_ENABLE		0x1000
289 #define PHY_POWER_DOWN			0x0800
290 #define PHY_MII_DISABLE			0x0400
291 #define PHY_AUTO_NEG_RESTART		0x0200
292 #define PHY_FULL_DUPLEX			0x0100
293 #define PHY_COLLISION_TEST		0x0080
294 #define PHY_HP_MDIX			0x0020
295 #define PHY_FORCE_MDIX			0x0010
296 #define PHY_AUTO_MDIX_DISABLE		0x0008
297 #define PHY_REMOTE_FAULT_DISABLE	0x0004
298 #define PHY_TRANSMIT_DISABLE		0x0002
299 #define PHY_LED_DISABLE			0x0001
300 
301 #define KS884X_PHY_STATUS_OFFSET	0x02
302 
303 /* Mode Status Register */
304 #define PHY_REG_STATUS			1
305 
306 #define PHY_100BT4_CAPABLE		0x8000
307 #define PHY_100BTX_FD_CAPABLE		0x4000
308 #define PHY_100BTX_CAPABLE		0x2000
309 #define PHY_10BT_FD_CAPABLE		0x1000
310 #define PHY_10BT_CAPABLE		0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE	0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
313 #define PHY_REMOTE_FAULT		0x0010
314 #define PHY_AUTO_NEG_CAPABLE		0x0008
315 #define PHY_LINK_STATUS			0x0004
316 #define PHY_JABBER_DETECT		0x0002
317 #define PHY_EXTENDED_CAPABILITY		0x0001
318 
319 #define KS884X_PHY_ID_1_OFFSET		0x04
320 #define KS884X_PHY_ID_2_OFFSET		0x06
321 
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1			2
324 #define PHY_REG_ID_2			3
325 
326 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
327 
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION	4
330 
331 #define PHY_AUTO_NEG_NEXT_PAGE		0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE		0x0400
336 #define PHY_AUTO_NEG_100BT4		0x0200
337 #define PHY_AUTO_NEG_100BTX_FD		0x0100
338 #define PHY_AUTO_NEG_100BTX		0x0080
339 #define PHY_AUTO_NEG_10BT_FD		0x0040
340 #define PHY_AUTO_NEG_10BT		0x0020
341 #define PHY_AUTO_NEG_SELECTOR		0x001F
342 #define PHY_AUTO_NEG_802_3		0x0001
343 
344 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345 
346 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
347 
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY	5
350 
351 #define PHY_REMOTE_NEXT_PAGE		0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE		0x4000
353 #define PHY_REMOTE_REMOTE_FAULT		0x2000
354 #define PHY_REMOTE_SYM_PAUSE		0x0400
355 #define PHY_REMOTE_100BTX_FD		0x0100
356 #define PHY_REMOTE_100BTX		0x0080
357 #define PHY_REMOTE_10BT_FD		0x0040
358 #define PHY_REMOTE_10BT			0x0020
359 
360 /* P1VCT */
361 #define KS884X_P1VCT_P			0x04F0
362 #define KS884X_P1PHYCTRL_P		0x04F2
363 
364 /* P2VCT */
365 #define KS884X_P2VCT_P			0x04F4
366 #define KS884X_P2PHYCTRL_P		0x04F6
367 
368 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
370 
371 #define KS884X_PHY_LINK_MD_OFFSET	0x00
372 
373 #define PHY_START_CABLE_DIAG		0x8000
374 #define PHY_CABLE_DIAG_RESULT		0x6000
375 #define PHY_CABLE_STAT_NORMAL		0x0000
376 #define PHY_CABLE_STAT_OPEN		0x2000
377 #define PHY_CABLE_STAT_SHORT		0x4000
378 #define PHY_CABLE_STAT_FAILED		0x6000
379 #define PHY_CABLE_10M_SHORT		0x1000
380 #define PHY_CABLE_FAULT_COUNTER		0x01FF
381 
382 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
383 
384 #define PHY_STAT_REVERSED_POLARITY	0x0020
385 #define PHY_STAT_MDIX			0x0010
386 #define PHY_FORCE_LINK			0x0008
387 #define PHY_POWER_SAVING_DISABLE	0x0004
388 #define PHY_REMOTE_LOOPBACK		0x0002
389 
390 /* SIDER */
391 #define KS884X_SIDER_P			0x0400
392 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
394 
395 #define REG_FAMILY_ID			0x88
396 
397 #define REG_CHIP_ID_41			0x8810
398 #define REG_CHIP_ID_42			0x8800
399 
400 #define KS884X_CHIP_ID_MASK_41		0xFF10
401 #define KS884X_CHIP_ID_MASK		0xFFF0
402 #define KS884X_CHIP_ID_SHIFT		4
403 #define KS884X_REVISION_MASK		0x000E
404 #define KS884X_REVISION_SHIFT		1
405 #define KS8842_START			0x0001
406 
407 #define CHIP_IP_41_M			0x8810
408 #define CHIP_IP_42_M			0x8800
409 #define CHIP_IP_61_M			0x8890
410 #define CHIP_IP_62_M			0x8880
411 
412 #define CHIP_IP_41_P			0x8850
413 #define CHIP_IP_42_P			0x8840
414 #define CHIP_IP_61_P			0x88D0
415 #define CHIP_IP_62_P			0x88C0
416 
417 /* SGCR1 */
418 #define KS8842_SGCR1_P			0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
420 
421 #define SWITCH_PASS_ALL			0x8000
422 #define SWITCH_TX_FLOW_CTRL		0x2000
423 #define SWITCH_RX_FLOW_CTRL		0x1000
424 #define SWITCH_CHECK_LENGTH		0x0800
425 #define SWITCH_AGING_ENABLE		0x0400
426 #define SWITCH_FAST_AGING		0x0200
427 #define SWITCH_AGGR_BACKOFF		0x0100
428 #define SWITCH_PASS_PAUSE		0x0008
429 #define SWITCH_LINK_AUTO_AGING		0x0001
430 
431 /* SGCR2 */
432 #define KS8842_SGCR2_P			0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
434 
435 #define SWITCH_VLAN_ENABLE		0x8000
436 #define SWITCH_IGMP_SNOOP		0x4000
437 #define IPV6_MLD_SNOOP_ENABLE		0x2000
438 #define IPV6_MLD_SNOOP_OPTION		0x1000
439 #define PRIORITY_SCHEME_SELECT		0x0800
440 #define SWITCH_MIRROR_RX_TX		0x0100
441 #define UNICAST_VLAN_BOUNDARY		0x0080
442 #define MULTICAST_STORM_DISABLE		0x0040
443 #define SWITCH_BACK_PRESSURE		0x0020
444 #define FAIR_FLOW_CTRL			0x0010
445 #define NO_EXC_COLLISION_DROP		0x0008
446 #define SWITCH_HUGE_PACKET		0x0004
447 #define SWITCH_LEGAL_PACKET		0x0002
448 #define SWITCH_BUF_RESERVE		0x0001
449 
450 /* SGCR3 */
451 #define KS8842_SGCR3_P			0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
453 
454 #define BROADCAST_STORM_RATE_LO		0xFF00
455 #define SWITCH_REPEATER			0x0080
456 #define SWITCH_HALF_DUPLEX		0x0040
457 #define SWITCH_FLOW_CTRL		0x0020
458 #define SWITCH_10_MBIT			0x0010
459 #define SWITCH_REPLACE_NULL_VID		0x0008
460 #define BROADCAST_STORM_RATE_HI		0x0007
461 
462 #define BROADCAST_STORM_RATE		0x07FF
463 
464 /* SGCR4 */
465 #define KS8842_SGCR4_P			0x0408
466 
467 /* SGCR5 */
468 #define KS8842_SGCR5_P			0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
470 
471 #define LED_MODE			0x8200
472 #define LED_SPEED_DUPLEX_ACT		0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
474 #define LED_DUPLEX_10_100		0x0200
475 
476 /* SGCR6 */
477 #define KS8842_SGCR6_P			0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
479 
480 #define KS8842_PRIORITY_MASK		3
481 #define KS8842_PRIORITY_SHIFT		2
482 
483 /* SGCR7 */
484 #define KS8842_SGCR7_P			0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
486 
487 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
488 #define SWITCH_UNK_DEF_PORT_3		0x0004
489 #define SWITCH_UNK_DEF_PORT_2		0x0002
490 #define SWITCH_UNK_DEF_PORT_1		0x0001
491 
492 /* MACAR1 */
493 #define KS8842_MACAR1_P			0x0470
494 #define KS8842_MACAR2_P			0x0472
495 #define KS8842_MACAR3_P			0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
502 
503 /* TOSR1 */
504 #define KS8842_TOSR1_P			0x0480
505 #define KS8842_TOSR2_P			0x0482
506 #define KS8842_TOSR3_P			0x0484
507 #define KS8842_TOSR4_P			0x0486
508 #define KS8842_TOSR5_P			0x0488
509 #define KS8842_TOSR6_P			0x048A
510 #define KS8842_TOSR7_P			0x0490
511 #define KS8842_TOSR8_P			0x0492
512 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
518 
519 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
521 
522 /* P1CR1 */
523 #define KS8842_P1CR1_P			0x0500
524 #define KS8842_P1CR2_P			0x0502
525 #define KS8842_P1VIDR_P			0x0504
526 #define KS8842_P1CR3_P			0x0506
527 #define KS8842_P1IRCR_P			0x0508
528 #define KS8842_P1ERCR_P			0x050A
529 #define KS884X_P1SCSLMD_P		0x0510
530 #define KS884X_P1CR4_P			0x0512
531 #define KS884X_P1SR_P			0x0514
532 
533 /* P2CR1 */
534 #define KS8842_P2CR1_P			0x0520
535 #define KS8842_P2CR2_P			0x0522
536 #define KS8842_P2VIDR_P			0x0524
537 #define KS8842_P2CR3_P			0x0526
538 #define KS8842_P2IRCR_P			0x0528
539 #define KS8842_P2ERCR_P			0x052A
540 #define KS884X_P2SCSLMD_P		0x0530
541 #define KS884X_P2CR4_P			0x0532
542 #define KS884X_P2SR_P			0x0534
543 
544 /* P3CR1 */
545 #define KS8842_P3CR1_P			0x0540
546 #define KS8842_P3CR2_P			0x0542
547 #define KS8842_P3VIDR_P			0x0544
548 #define KS8842_P3CR3_P			0x0546
549 #define KS8842_P3IRCR_P			0x0548
550 #define KS8842_P3ERCR_P			0x054A
551 
552 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
555 
556 #define PORT_CTRL_ADDR(port, addr)		\
557 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
558 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559 
560 #define KS8842_PORT_CTRL_1_OFFSET	0x00
561 
562 #define PORT_BROADCAST_STORM		0x0080
563 #define PORT_DIFFSERV_ENABLE		0x0040
564 #define PORT_802_1P_ENABLE		0x0020
565 #define PORT_BASED_PRIORITY_MASK	0x0018
566 #define PORT_BASED_PRIORITY_BASE	0x0003
567 #define PORT_BASED_PRIORITY_SHIFT	3
568 #define PORT_BASED_PRIORITY_0		0x0000
569 #define PORT_BASED_PRIORITY_1		0x0008
570 #define PORT_BASED_PRIORITY_2		0x0010
571 #define PORT_BASED_PRIORITY_3		0x0018
572 #define PORT_INSERT_TAG			0x0004
573 #define PORT_REMOVE_TAG			0x0002
574 #define PORT_PRIO_QUEUE_ENABLE		0x0001
575 
576 #define KS8842_PORT_CTRL_2_OFFSET	0x02
577 
578 #define PORT_INGRESS_VLAN_FILTER	0x4000
579 #define PORT_DISCARD_NON_VID		0x2000
580 #define PORT_FORCE_FLOW_CTRL		0x1000
581 #define PORT_BACK_PRESSURE		0x0800
582 #define PORT_TX_ENABLE			0x0400
583 #define PORT_RX_ENABLE			0x0200
584 #define PORT_LEARN_DISABLE		0x0100
585 #define PORT_MIRROR_SNIFFER		0x0080
586 #define PORT_MIRROR_RX			0x0040
587 #define PORT_MIRROR_TX			0x0020
588 #define PORT_USER_PRIORITY_CEILING	0x0008
589 #define PORT_VLAN_MEMBERSHIP		0x0007
590 
591 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
592 
593 #define PORT_DEFAULT_VID		0x0001
594 
595 #define KS8842_PORT_CTRL_3_OFFSET	0x06
596 
597 #define PORT_INGRESS_LIMIT_MODE		0x000C
598 #define PORT_INGRESS_ALL		0x0000
599 #define PORT_INGRESS_UNICAST		0x0004
600 #define PORT_INGRESS_MULTICAST		0x0008
601 #define PORT_INGRESS_BROADCAST		0x000C
602 #define PORT_COUNT_IFG			0x0002
603 #define PORT_COUNT_PREAMBLE		0x0001
604 
605 #define KS8842_PORT_IN_RATE_OFFSET	0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
607 
608 #define PORT_PRIORITY_RATE		0x0F
609 #define PORT_PRIORITY_RATE_SHIFT	4
610 
611 #define KS884X_PORT_LINK_MD		0x10
612 
613 #define PORT_CABLE_10M_SHORT		0x8000
614 #define PORT_CABLE_DIAG_RESULT		0x6000
615 #define PORT_CABLE_STAT_NORMAL		0x0000
616 #define PORT_CABLE_STAT_OPEN		0x2000
617 #define PORT_CABLE_STAT_SHORT		0x4000
618 #define PORT_CABLE_STAT_FAILED		0x6000
619 #define PORT_START_CABLE_DIAG		0x1000
620 #define PORT_FORCE_LINK			0x0800
621 #define PORT_POWER_SAVING_DISABLE	0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
623 #define PORT_CABLE_FAULT_COUNTER	0x01FF
624 
625 #define KS884X_PORT_CTRL_4_OFFSET	0x12
626 
627 #define PORT_LED_OFF			0x8000
628 #define PORT_TX_DISABLE			0x4000
629 #define PORT_AUTO_NEG_RESTART		0x2000
630 #define PORT_REMOTE_FAULT_DISABLE	0x1000
631 #define PORT_POWER_DOWN			0x0800
632 #define PORT_AUTO_MDIX_DISABLE		0x0400
633 #define PORT_FORCE_MDIX			0x0200
634 #define PORT_LOOPBACK			0x0100
635 #define PORT_AUTO_NEG_ENABLE		0x0080
636 #define PORT_FORCE_100_MBIT		0x0040
637 #define PORT_FORCE_FULL_DUPLEX		0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
639 #define PORT_AUTO_NEG_100BTX_FD		0x0008
640 #define PORT_AUTO_NEG_100BTX		0x0004
641 #define PORT_AUTO_NEG_10BT_FD		0x0002
642 #define PORT_AUTO_NEG_10BT		0x0001
643 
644 #define KS884X_PORT_STATUS_OFFSET	0x14
645 
646 #define PORT_HP_MDIX			0x8000
647 #define PORT_REVERSED_POLARITY		0x2000
648 #define PORT_RX_FLOW_CTRL		0x0800
649 #define PORT_TX_FLOW_CTRL		0x1000
650 #define PORT_STATUS_SPEED_100MBIT	0x0400
651 #define PORT_STATUS_FULL_DUPLEX		0x0200
652 #define PORT_REMOTE_FAULT		0x0100
653 #define PORT_MDIX_STATUS		0x0080
654 #define PORT_AUTO_NEG_COMPLETE		0x0040
655 #define PORT_STATUS_LINK_GOOD		0x0020
656 #define PORT_REMOTE_SYM_PAUSE		0x0010
657 #define PORT_REMOTE_100BTX_FD		0x0008
658 #define PORT_REMOTE_100BTX		0x0004
659 #define PORT_REMOTE_10BT_FD		0x0002
660 #define PORT_REMOTE_10BT		0x0001
661 
662 /*
663 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
669 */
670 
671 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
673 #define STATIC_MAC_TABLE_VALID		0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
675 #define STATIC_MAC_TABLE_USE_FID	0x00200000
676 #define STATIC_MAC_TABLE_FID		0x03C00000
677 
678 #define STATIC_MAC_FWD_PORTS_SHIFT	16
679 #define STATIC_MAC_FID_SHIFT		22
680 
681 /*
682 #define VLAN_TABLE_VID			00-00000000-00000FFF
683 #define VLAN_TABLE_FID			00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
685 #define VLAN_TABLE_VALID		00-00000000-00080000
686 */
687 
688 #define VLAN_TABLE_VID			0x00000FFF
689 #define VLAN_TABLE_FID			0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP		0x00070000
691 #define VLAN_TABLE_VALID		0x00080000
692 
693 #define VLAN_TABLE_FID_SHIFT		12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
695 
696 /*
697 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
705 */
706 
707 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
712 
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
717 
718 #define DYNAMIC_MAC_FID_SHIFT		16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
723 
724 /*
725 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID		00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
728 */
729 
730 #define MIB_COUNTER_VALUE		0x3FFFFFFF
731 #define MIB_COUNTER_VALID		0x40000000
732 #define MIB_COUNTER_OVERFLOW		0x80000000
733 
734 #define MIB_PACKET_DROPPED		0x0000FFFF
735 
736 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
738 #define KS_MIB_PACKET_DROPPED_TX	0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
741 #define KS_MIB_PACKET_DROPPED_RX	0x105
742 
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
745 
746 #define MAC_ADDR_LEN			6
747 #define MAC_ADDR_ORDER(i)		(MAC_ADDR_LEN - 1 - (i))
748 
749 #define MAX_ETHERNET_BODY_SIZE		1500
750 #define ETHERNET_HEADER_SIZE		14
751 
752 #define MAX_ETHERNET_PACKET_SIZE	\
753 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
754 
755 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
756 #define MAX_RX_BUF_SIZE			(1912 + 4)
757 
758 #define ADDITIONAL_ENTRIES		16
759 #define MAX_MULTICAST_LIST		32
760 
761 #define HW_MULTICAST_SIZE		8
762 
763 #define HW_TO_DEV_PORT(port)		(port - 1)
764 
765 enum {
766 	media_connected,
767 	media_disconnected
768 };
769 
770 enum {
771 	OID_COUNTER_UNKOWN,
772 
773 	OID_COUNTER_FIRST,
774 
775 	/* total transmit errors */
776 	OID_COUNTER_XMIT_ERROR,
777 
778 	/* total receive errors */
779 	OID_COUNTER_RCV_ERROR,
780 
781 	OID_COUNTER_LAST
782 };
783 
784 /*
785  * Hardware descriptor definitions
786  */
787 
788 #define DESC_ALIGNMENT			16
789 #define BUFFER_ALIGNMENT		8
790 
791 #define NUM_OF_RX_DESC			64
792 #define NUM_OF_TX_DESC			64
793 
794 #define KS_DESC_RX_FRAME_LEN		0x000007FF
795 #define KS_DESC_RX_FRAME_TYPE		0x00008000
796 #define KS_DESC_RX_ERROR_CRC		0x00010000
797 #define KS_DESC_RX_ERROR_RUNT		0x00020000
798 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
799 #define KS_DESC_RX_ERROR_PHY		0x00080000
800 #define KS884X_DESC_RX_PORT_MASK	0x00300000
801 #define KS_DESC_RX_MULTICAST		0x01000000
802 #define KS_DESC_RX_ERROR		0x02000000
803 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
804 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
805 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
806 #define KS_DESC_RX_LAST			0x20000000
807 #define KS_DESC_RX_FIRST		0x40000000
808 #define KS_DESC_RX_ERROR_COND		\
809 	(KS_DESC_RX_ERROR_CRC |		\
810 	KS_DESC_RX_ERROR_RUNT |		\
811 	KS_DESC_RX_ERROR_PHY |		\
812 	KS_DESC_RX_ERROR_TOO_LONG)
813 
814 #define KS_DESC_HW_OWNED		0x80000000
815 
816 #define KS_DESC_BUF_SIZE		0x000007FF
817 #define KS884X_DESC_TX_PORT_MASK	0x00300000
818 #define KS_DESC_END_OF_RING		0x02000000
819 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
820 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
821 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
822 #define KS_DESC_TX_LAST			0x20000000
823 #define KS_DESC_TX_FIRST		0x40000000
824 #define KS_DESC_TX_INTERRUPT		0x80000000
825 
826 #define KS_DESC_PORT_SHIFT		20
827 
828 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
829 
830 #define KS_DESC_TX_MASK			\
831 	(KS_DESC_TX_INTERRUPT |		\
832 	KS_DESC_TX_FIRST |		\
833 	KS_DESC_TX_LAST |		\
834 	KS_DESC_TX_CSUM_GEN_IP |	\
835 	KS_DESC_TX_CSUM_GEN_TCP |	\
836 	KS_DESC_TX_CSUM_GEN_UDP |	\
837 	KS_DESC_BUF_SIZE)
838 
839 struct ksz_desc_rx_stat {
840 #ifdef __BIG_ENDIAN_BITFIELD
841 	u32 hw_owned:1;
842 	u32 first_desc:1;
843 	u32 last_desc:1;
844 	u32 csum_err_ip:1;
845 	u32 csum_err_tcp:1;
846 	u32 csum_err_udp:1;
847 	u32 error:1;
848 	u32 multicast:1;
849 	u32 src_port:4;
850 	u32 err_phy:1;
851 	u32 err_too_long:1;
852 	u32 err_runt:1;
853 	u32 err_crc:1;
854 	u32 frame_type:1;
855 	u32 reserved1:4;
856 	u32 frame_len:11;
857 #else
858 	u32 frame_len:11;
859 	u32 reserved1:4;
860 	u32 frame_type:1;
861 	u32 err_crc:1;
862 	u32 err_runt:1;
863 	u32 err_too_long:1;
864 	u32 err_phy:1;
865 	u32 src_port:4;
866 	u32 multicast:1;
867 	u32 error:1;
868 	u32 csum_err_udp:1;
869 	u32 csum_err_tcp:1;
870 	u32 csum_err_ip:1;
871 	u32 last_desc:1;
872 	u32 first_desc:1;
873 	u32 hw_owned:1;
874 #endif
875 };
876 
877 struct ksz_desc_tx_stat {
878 #ifdef __BIG_ENDIAN_BITFIELD
879 	u32 hw_owned:1;
880 	u32 reserved1:31;
881 #else
882 	u32 reserved1:31;
883 	u32 hw_owned:1;
884 #endif
885 };
886 
887 struct ksz_desc_rx_buf {
888 #ifdef __BIG_ENDIAN_BITFIELD
889 	u32 reserved4:6;
890 	u32 end_of_ring:1;
891 	u32 reserved3:14;
892 	u32 buf_size:11;
893 #else
894 	u32 buf_size:11;
895 	u32 reserved3:14;
896 	u32 end_of_ring:1;
897 	u32 reserved4:6;
898 #endif
899 };
900 
901 struct ksz_desc_tx_buf {
902 #ifdef __BIG_ENDIAN_BITFIELD
903 	u32 intr:1;
904 	u32 first_seg:1;
905 	u32 last_seg:1;
906 	u32 csum_gen_ip:1;
907 	u32 csum_gen_tcp:1;
908 	u32 csum_gen_udp:1;
909 	u32 end_of_ring:1;
910 	u32 reserved4:1;
911 	u32 dest_port:4;
912 	u32 reserved3:9;
913 	u32 buf_size:11;
914 #else
915 	u32 buf_size:11;
916 	u32 reserved3:9;
917 	u32 dest_port:4;
918 	u32 reserved4:1;
919 	u32 end_of_ring:1;
920 	u32 csum_gen_udp:1;
921 	u32 csum_gen_tcp:1;
922 	u32 csum_gen_ip:1;
923 	u32 last_seg:1;
924 	u32 first_seg:1;
925 	u32 intr:1;
926 #endif
927 };
928 
929 union desc_stat {
930 	struct ksz_desc_rx_stat rx;
931 	struct ksz_desc_tx_stat tx;
932 	u32 data;
933 };
934 
935 union desc_buf {
936 	struct ksz_desc_rx_buf rx;
937 	struct ksz_desc_tx_buf tx;
938 	u32 data;
939 };
940 
941 /**
942  * struct ksz_hw_desc - Hardware descriptor data structure
943  * @ctrl:	Descriptor control value.
944  * @buf:	Descriptor buffer value.
945  * @addr:	Physical address of memory buffer.
946  * @next:	Pointer to next hardware descriptor.
947  */
948 struct ksz_hw_desc {
949 	union desc_stat ctrl;
950 	union desc_buf buf;
951 	u32 addr;
952 	u32 next;
953 };
954 
955 /**
956  * struct ksz_sw_desc - Software descriptor data structure
957  * @ctrl:	Descriptor control value.
958  * @buf:	Descriptor buffer value.
959  * @buf_size:	Current buffers size value in hardware descriptor.
960  */
961 struct ksz_sw_desc {
962 	union desc_stat ctrl;
963 	union desc_buf buf;
964 	u32 buf_size;
965 };
966 
967 /**
968  * struct ksz_dma_buf - OS dependent DMA buffer data structure
969  * @skb:	Associated socket buffer.
970  * @dma:	Associated physical DMA address.
971  * len:		Actual len used.
972  */
973 struct ksz_dma_buf {
974 	struct sk_buff *skb;
975 	dma_addr_t dma;
976 	int len;
977 };
978 
979 /**
980  * struct ksz_desc - Descriptor structure
981  * @phw:	Hardware descriptor pointer to uncached physical memory.
982  * @sw:		Cached memory to hold hardware descriptor values for
983  * 		manipulation.
984  * @dma_buf:	Operating system dependent data structure to hold physical
985  * 		memory buffer allocation information.
986  */
987 struct ksz_desc {
988 	struct ksz_hw_desc *phw;
989 	struct ksz_sw_desc sw;
990 	struct ksz_dma_buf dma_buf;
991 };
992 
993 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
994 
995 /**
996  * struct ksz_desc_info - Descriptor information data structure
997  * @ring:	First descriptor in the ring.
998  * @cur:	Current descriptor being manipulated.
999  * @ring_virt:	First hardware descriptor in the ring.
1000  * @ring_phys:	The physical address of the first descriptor of the ring.
1001  * @size:	Size of hardware descriptor.
1002  * @alloc:	Number of descriptors allocated.
1003  * @avail:	Number of descriptors available for use.
1004  * @last:	Index for last descriptor released to hardware.
1005  * @next:	Index for next descriptor available for use.
1006  * @mask:	Mask for index wrapping.
1007  */
1008 struct ksz_desc_info {
1009 	struct ksz_desc *ring;
1010 	struct ksz_desc *cur;
1011 	struct ksz_hw_desc *ring_virt;
1012 	u32 ring_phys;
1013 	int size;
1014 	int alloc;
1015 	int avail;
1016 	int last;
1017 	int next;
1018 	int mask;
1019 };
1020 
1021 /*
1022  * KSZ8842 switch definitions
1023  */
1024 
1025 enum {
1026 	TABLE_STATIC_MAC = 0,
1027 	TABLE_VLAN,
1028 	TABLE_DYNAMIC_MAC,
1029 	TABLE_MIB
1030 };
1031 
1032 #define LEARNED_MAC_TABLE_ENTRIES	1024
1033 #define STATIC_MAC_TABLE_ENTRIES	8
1034 
1035 /**
1036  * struct ksz_mac_table - Static MAC table data structure
1037  * @mac_addr:	MAC address to filter.
1038  * @vid:	VID value.
1039  * @fid:	FID value.
1040  * @ports:	Port membership.
1041  * @override:	Override setting.
1042  * @use_fid:	FID use setting.
1043  * @valid:	Valid setting indicating the entry is being used.
1044  */
1045 struct ksz_mac_table {
1046 	u8 mac_addr[MAC_ADDR_LEN];
1047 	u16 vid;
1048 	u8 fid;
1049 	u8 ports;
1050 	u8 override:1;
1051 	u8 use_fid:1;
1052 	u8 valid:1;
1053 };
1054 
1055 #define VLAN_TABLE_ENTRIES		16
1056 
1057 /**
1058  * struct ksz_vlan_table - VLAN table data structure
1059  * @vid:	VID value.
1060  * @fid:	FID value.
1061  * @member:	Port membership.
1062  */
1063 struct ksz_vlan_table {
1064 	u16 vid;
1065 	u8 fid;
1066 	u8 member;
1067 };
1068 
1069 #define DIFFSERV_ENTRIES		64
1070 #define PRIO_802_1P_ENTRIES		8
1071 #define PRIO_QUEUES			4
1072 
1073 #define SWITCH_PORT_NUM			2
1074 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1075 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1076 #define PORT_MASK			7
1077 
1078 #define MAIN_PORT			0
1079 #define OTHER_PORT			1
1080 #define HOST_PORT			SWITCH_PORT_NUM
1081 
1082 #define PORT_COUNTER_NUM		0x20
1083 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1084 
1085 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1086 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1087 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1088 #define MIB_COUNTER_RX_FRAGMENT		0x03
1089 #define MIB_COUNTER_RX_OVERSIZE		0x04
1090 #define MIB_COUNTER_RX_JABBER		0x05
1091 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1092 #define MIB_COUNTER_RX_CRC_ERR		0x07
1093 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1094 #define MIB_COUNTER_RX_CTRL_8808	0x09
1095 #define MIB_COUNTER_RX_PAUSE		0x0A
1096 #define MIB_COUNTER_RX_BROADCAST	0x0B
1097 #define MIB_COUNTER_RX_MULTICAST	0x0C
1098 #define MIB_COUNTER_RX_UNICAST		0x0D
1099 #define MIB_COUNTER_RX_OCTET_64		0x0E
1100 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1101 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1102 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1103 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1104 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1105 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1106 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1107 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1108 #define MIB_COUNTER_TX_PAUSE		0x17
1109 #define MIB_COUNTER_TX_BROADCAST	0x18
1110 #define MIB_COUNTER_TX_MULTICAST	0x19
1111 #define MIB_COUNTER_TX_UNICAST		0x1A
1112 #define MIB_COUNTER_TX_DEFERRED		0x1B
1113 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1114 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1115 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1116 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1117 
1118 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1119 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1120 
1121 /**
1122  * struct ksz_port_mib - Port MIB data structure
1123  * @cnt_ptr:	Current pointer to MIB counter index.
1124  * @link_down:	Indication the link has just gone down.
1125  * @state:	Connection status of the port.
1126  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1127  * @counter:	64-bit MIB counter value.
1128  * @dropped:	Temporary buffer to remember last read packet dropped values.
1129  *
1130  * MIB counters needs to be read periodically so that counters do not get
1131  * overflowed and give incorrect values.  A right balance is needed to
1132  * satisfy this condition and not waste too much CPU time.
1133  *
1134  * It is pointless to read MIB counters when the port is disconnected.  The
1135  * @state provides the connection status so that MIB counters are read only
1136  * when the port is connected.  The @link_down indicates the port is just
1137  * disconnected so that all MIB counters are read one last time to update the
1138  * information.
1139  */
1140 struct ksz_port_mib {
1141 	u8 cnt_ptr;
1142 	u8 link_down;
1143 	u8 state;
1144 	u8 mib_start;
1145 
1146 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1147 	u32 dropped[2];
1148 };
1149 
1150 /**
1151  * struct ksz_port_cfg - Port configuration data structure
1152  * @vid:	VID value.
1153  * @member:	Port membership.
1154  * @port_prio:	Port priority.
1155  * @rx_rate:	Receive priority rate.
1156  * @tx_rate:	Transmit priority rate.
1157  * @stp_state:	Current Spanning Tree Protocol state.
1158  */
1159 struct ksz_port_cfg {
1160 	u16 vid;
1161 	u8 member;
1162 	u8 port_prio;
1163 	u32 rx_rate[PRIO_QUEUES];
1164 	u32 tx_rate[PRIO_QUEUES];
1165 	int stp_state;
1166 };
1167 
1168 /**
1169  * struct ksz_switch - KSZ8842 switch data structure
1170  * @mac_table:	MAC table entries information.
1171  * @vlan_table:	VLAN table entries information.
1172  * @port_cfg:	Port configuration information.
1173  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1174  * 		(bit7 ~ bit2) field.
1175  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1176  * 		Tag priority field.
1177  * @br_addr:	Bridge address.  Used for STP.
1178  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1179  * @broad_per:	Broadcast storm percentage.
1180  * @member:	Current port membership.  Used for STP.
1181  */
1182 struct ksz_switch {
1183 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1184 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1185 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1186 
1187 	u8 diffserv[DIFFSERV_ENTRIES];
1188 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1189 
1190 	u8 br_addr[MAC_ADDR_LEN];
1191 	u8 other_addr[MAC_ADDR_LEN];
1192 
1193 	u8 broad_per;
1194 	u8 member;
1195 };
1196 
1197 #define TX_RATE_UNIT			10000
1198 
1199 /**
1200  * struct ksz_port_info - Port information data structure
1201  * @state:	Connection status of the port.
1202  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1203  * @duplex:	Duplex mode.
1204  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1205  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1206  * @port_id:	Port index to access actual hardware register.
1207  * @pdev:	Pointer to OS dependent network device.
1208  */
1209 struct ksz_port_info {
1210 	uint state;
1211 	uint tx_rate;
1212 	u8 duplex;
1213 	u8 advertised;
1214 	u8 partner;
1215 	u8 port_id;
1216 	void *pdev;
1217 };
1218 
1219 #define MAX_TX_HELD_SIZE		52000
1220 
1221 /* Hardware features and bug fixes. */
1222 #define LINK_INT_WORKING		(1 << 0)
1223 #define SMALL_PACKET_TX_BUG		(1 << 1)
1224 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1225 #define RX_HUGE_FRAME			(1 << 4)
1226 #define STP_SUPPORT			(1 << 8)
1227 
1228 /* Software overrides. */
1229 #define PAUSE_FLOW_CTRL			(1 << 0)
1230 #define FAST_AGING			(1 << 1)
1231 
1232 /**
1233  * struct ksz_hw - KSZ884X hardware data structure
1234  * @io:			Virtual address assigned.
1235  * @ksz_switch:		Pointer to KSZ8842 switch.
1236  * @port_info:		Port information.
1237  * @port_mib:		Port MIB information.
1238  * @dev_count:		Number of network devices this hardware supports.
1239  * @dst_ports:		Destination ports in switch for transmission.
1240  * @id:			Hardware ID.  Used for display only.
1241  * @mib_cnt:		Number of MIB counters this hardware has.
1242  * @mib_port_cnt:	Number of ports with MIB counters.
1243  * @tx_cfg:		Cached transmit control settings.
1244  * @rx_cfg:		Cached receive control settings.
1245  * @intr_mask:		Current interrupt mask.
1246  * @intr_set:		Current interrup set.
1247  * @intr_blocked:	Interrupt blocked.
1248  * @rx_desc_info:	Receive descriptor information.
1249  * @tx_desc_info:	Transmit descriptor information.
1250  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1251  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1252  * @tx_size:		Transmit data size.  Used for TX optimization.
1253  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1254  * @perm_addr:		Permanent MAC address.
1255  * @override_addr:	Overrided MAC address.
1256  * @address:		Additional MAC address entries.
1257  * @addr_list_size:	Additional MAC address list size.
1258  * @mac_override:	Indication of MAC address overrided.
1259  * @promiscuous:	Counter to keep track of promiscuous mode set.
1260  * @all_multi:		Counter to keep track of all multicast mode set.
1261  * @multi_list:		Multicast address entries.
1262  * @multi_bits:		Cached multicast hash table settings.
1263  * @multi_list_size:	Multicast address list size.
1264  * @enabled:		Indication of hardware enabled.
1265  * @rx_stop:		Indication of receive process stop.
1266  * @features:		Hardware features to enable.
1267  * @overrides:		Hardware features to override.
1268  * @parent:		Pointer to parent, network device private structure.
1269  */
1270 struct ksz_hw {
1271 	void __iomem *io;
1272 
1273 	struct ksz_switch *ksz_switch;
1274 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1275 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1276 	int dev_count;
1277 	int dst_ports;
1278 	int id;
1279 	int mib_cnt;
1280 	int mib_port_cnt;
1281 
1282 	u32 tx_cfg;
1283 	u32 rx_cfg;
1284 	u32 intr_mask;
1285 	u32 intr_set;
1286 	uint intr_blocked;
1287 
1288 	struct ksz_desc_info rx_desc_info;
1289 	struct ksz_desc_info tx_desc_info;
1290 
1291 	int tx_int_cnt;
1292 	int tx_int_mask;
1293 	int tx_size;
1294 
1295 	u8 perm_addr[MAC_ADDR_LEN];
1296 	u8 override_addr[MAC_ADDR_LEN];
1297 	u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1298 	u8 addr_list_size;
1299 	u8 mac_override;
1300 	u8 promiscuous;
1301 	u8 all_multi;
1302 	u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1303 	u8 multi_bits[HW_MULTICAST_SIZE];
1304 	u8 multi_list_size;
1305 
1306 	u8 enabled;
1307 	u8 rx_stop;
1308 	u8 reserved2[1];
1309 
1310 	uint features;
1311 	uint overrides;
1312 
1313 	void *parent;
1314 };
1315 
1316 enum {
1317 	PHY_NO_FLOW_CTRL,
1318 	PHY_FLOW_CTRL,
1319 	PHY_TX_ONLY,
1320 	PHY_RX_ONLY
1321 };
1322 
1323 /**
1324  * struct ksz_port - Virtual port data structure
1325  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1326  * 			duplex, and 0 for auto, which normally results in full
1327  * 			duplex.
1328  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1329  * 			0 for auto, which normally results in 100 Mbit.
1330  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1331  * 			force.
1332  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1333  * 			control, and PHY_FLOW_CTRL for flow control.
1334  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1335  * 			Mbit PHY.
1336  * @first_port:		Index of first port this port supports.
1337  * @mib_port_cnt:	Number of ports with MIB counters.
1338  * @port_cnt:		Number of ports this port supports.
1339  * @counter:		Port statistics counter.
1340  * @hw:			Pointer to hardware structure.
1341  * @linked:		Pointer to port information linked to this port.
1342  */
1343 struct ksz_port {
1344 	u8 duplex;
1345 	u8 speed;
1346 	u8 force_link;
1347 	u8 flow_ctrl;
1348 
1349 	int first_port;
1350 	int mib_port_cnt;
1351 	int port_cnt;
1352 	u64 counter[OID_COUNTER_LAST];
1353 
1354 	struct ksz_hw *hw;
1355 	struct ksz_port_info *linked;
1356 };
1357 
1358 /**
1359  * struct ksz_timer_info - Timer information data structure
1360  * @timer:	Kernel timer.
1361  * @cnt:	Running timer counter.
1362  * @max:	Number of times to run timer; -1 for infinity.
1363  * @period:	Timer period in jiffies.
1364  */
1365 struct ksz_timer_info {
1366 	struct timer_list timer;
1367 	int cnt;
1368 	int max;
1369 	int period;
1370 };
1371 
1372 /**
1373  * struct ksz_shared_mem - OS dependent shared memory data structure
1374  * @dma_addr:	Physical DMA address allocated.
1375  * @alloc_size:	Allocation size.
1376  * @phys:	Actual physical address used.
1377  * @alloc_virt:	Virtual address allocated.
1378  * @virt:	Actual virtual address used.
1379  */
1380 struct ksz_shared_mem {
1381 	dma_addr_t dma_addr;
1382 	uint alloc_size;
1383 	uint phys;
1384 	u8 *alloc_virt;
1385 	u8 *virt;
1386 };
1387 
1388 /**
1389  * struct ksz_counter_info - OS dependent counter information data structure
1390  * @counter:	Wait queue to wakeup after counters are read.
1391  * @time:	Next time in jiffies to read counter.
1392  * @read:	Indication of counters read in full or not.
1393  */
1394 struct ksz_counter_info {
1395 	wait_queue_head_t counter;
1396 	unsigned long time;
1397 	int read;
1398 };
1399 
1400 /**
1401  * struct dev_info - Network device information data structure
1402  * @dev:		Pointer to network device.
1403  * @pdev:		Pointer to PCI device.
1404  * @hw:			Hardware structure.
1405  * @desc_pool:		Physical memory used for descriptor pool.
1406  * @hwlock:		Spinlock to prevent hardware from accessing.
1407  * @lock:		Mutex lock to prevent device from accessing.
1408  * @dev_rcv:		Receive process function used.
1409  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1410  * @skb_index:		Buffer index for receiving fragments.
1411  * @skb_len:		Buffer length for receiving fragments.
1412  * @mib_read:		Workqueue to read MIB counters.
1413  * @mib_timer_info:	Timer to read MIB counters.
1414  * @counter:		Used for MIB reading.
1415  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1416  * 			the maximum is MAX_RX_BUF_SIZE.
1417  * @opened:		Counter to keep track of device open.
1418  * @rx_tasklet:		Receive processing tasklet.
1419  * @tx_tasklet:		Transmit processing tasklet.
1420  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1421  * @wol_support:	Wake-on-LAN support used by ethtool.
1422  * @pme_wait:		Used for KSZ8841 power management.
1423  */
1424 struct dev_info {
1425 	struct net_device *dev;
1426 	struct pci_dev *pdev;
1427 
1428 	struct ksz_hw hw;
1429 	struct ksz_shared_mem desc_pool;
1430 
1431 	spinlock_t hwlock;
1432 	struct mutex lock;
1433 
1434 	int (*dev_rcv)(struct dev_info *);
1435 
1436 	struct sk_buff *last_skb;
1437 	int skb_index;
1438 	int skb_len;
1439 
1440 	struct work_struct mib_read;
1441 	struct ksz_timer_info mib_timer_info;
1442 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1443 
1444 	int mtu;
1445 	int opened;
1446 
1447 	struct tasklet_struct rx_tasklet;
1448 	struct tasklet_struct tx_tasklet;
1449 
1450 	int wol_enable;
1451 	int wol_support;
1452 	unsigned long pme_wait;
1453 };
1454 
1455 /**
1456  * struct dev_priv - Network device private data structure
1457  * @adapter:		Adapter device information.
1458  * @port:		Port information.
1459  * @monitor_time_info:	Timer to monitor ports.
1460  * @proc_sem:		Semaphore for proc accessing.
1461  * @id:			Device ID.
1462  * @mii_if:		MII interface information.
1463  * @advertising:	Temporary variable to store advertised settings.
1464  * @msg_enable:		The message flags controlling driver output.
1465  * @media_state:	The connection status of the device.
1466  * @multicast:		The all multicast state of the device.
1467  * @promiscuous:	The promiscuous state of the device.
1468  */
1469 struct dev_priv {
1470 	struct dev_info *adapter;
1471 	struct ksz_port port;
1472 	struct ksz_timer_info monitor_timer_info;
1473 
1474 	struct semaphore proc_sem;
1475 	int id;
1476 
1477 	struct mii_if_info mii_if;
1478 	u32 advertising;
1479 
1480 	u32 msg_enable;
1481 	int media_state;
1482 	int multicast;
1483 	int promiscuous;
1484 };
1485 
1486 #define DRV_NAME		"KSZ884X PCI"
1487 #define DEVICE_NAME		"KSZ884x PCI"
1488 #define DRV_VERSION		"1.0.0"
1489 #define DRV_RELDATE		"Feb 8, 2010"
1490 
1491 static char version[] __devinitdata =
1492 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1493 
1494 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1495 
1496 /*
1497  * Interrupt processing primary routines
1498  */
1499 
1500 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1501 {
1502 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1503 }
1504 
1505 static inline void hw_dis_intr(struct ksz_hw *hw)
1506 {
1507 	hw->intr_blocked = hw->intr_mask;
1508 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1509 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1510 }
1511 
1512 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1513 {
1514 	hw->intr_set = interrupt;
1515 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1516 }
1517 
1518 static inline void hw_ena_intr(struct ksz_hw *hw)
1519 {
1520 	hw->intr_blocked = 0;
1521 	hw_set_intr(hw, hw->intr_mask);
1522 }
1523 
1524 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1525 {
1526 	hw->intr_mask &= ~(bit);
1527 }
1528 
1529 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1530 {
1531 	u32 read_intr;
1532 
1533 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1534 	hw->intr_set = read_intr & ~interrupt;
1535 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1536 	hw_dis_intr_bit(hw, interrupt);
1537 }
1538 
1539 /**
1540  * hw_turn_on_intr - turn on specified interrupts
1541  * @hw: 	The hardware instance.
1542  * @bit:	The interrupt bits to be on.
1543  *
1544  * This routine turns on the specified interrupts in the interrupt mask so that
1545  * those interrupts will be enabled.
1546  */
1547 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1548 {
1549 	hw->intr_mask |= bit;
1550 
1551 	if (!hw->intr_blocked)
1552 		hw_set_intr(hw, hw->intr_mask);
1553 }
1554 
1555 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1556 {
1557 	u32 read_intr;
1558 
1559 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1560 	hw->intr_set = read_intr | interrupt;
1561 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1562 }
1563 
1564 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1565 {
1566 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1567 	*status = *status & hw->intr_set;
1568 }
1569 
1570 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1571 {
1572 	if (interrupt)
1573 		hw_ena_intr(hw);
1574 }
1575 
1576 /**
1577  * hw_block_intr - block hardware interrupts
1578  *
1579  * This function blocks all interrupts of the hardware and returns the current
1580  * interrupt enable mask so that interrupts can be restored later.
1581  *
1582  * Return the current interrupt enable mask.
1583  */
1584 static uint hw_block_intr(struct ksz_hw *hw)
1585 {
1586 	uint interrupt = 0;
1587 
1588 	if (!hw->intr_blocked) {
1589 		hw_dis_intr(hw);
1590 		interrupt = hw->intr_blocked;
1591 	}
1592 	return interrupt;
1593 }
1594 
1595 /*
1596  * Hardware descriptor routines
1597  */
1598 
1599 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1600 {
1601 	status.rx.hw_owned = 0;
1602 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1603 }
1604 
1605 static inline void release_desc(struct ksz_desc *desc)
1606 {
1607 	desc->sw.ctrl.tx.hw_owned = 1;
1608 	if (desc->sw.buf_size != desc->sw.buf.data) {
1609 		desc->sw.buf_size = desc->sw.buf.data;
1610 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1611 	}
1612 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1613 }
1614 
1615 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1616 {
1617 	*desc = &info->ring[info->last];
1618 	info->last++;
1619 	info->last &= info->mask;
1620 	info->avail--;
1621 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1622 }
1623 
1624 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1625 {
1626 	desc->phw->addr = cpu_to_le32(addr);
1627 }
1628 
1629 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1630 {
1631 	desc->sw.buf.rx.buf_size = len;
1632 }
1633 
1634 static inline void get_tx_pkt(struct ksz_desc_info *info,
1635 	struct ksz_desc **desc)
1636 {
1637 	*desc = &info->ring[info->next];
1638 	info->next++;
1639 	info->next &= info->mask;
1640 	info->avail--;
1641 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1642 }
1643 
1644 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1645 {
1646 	desc->phw->addr = cpu_to_le32(addr);
1647 }
1648 
1649 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1650 {
1651 	desc->sw.buf.tx.buf_size = len;
1652 }
1653 
1654 /* Switch functions */
1655 
1656 #define TABLE_READ			0x10
1657 #define TABLE_SEL_SHIFT			2
1658 
1659 #define HW_DELAY(hw, reg)			\
1660 	do {					\
1661 		u16 dummy;			\
1662 		dummy = readw(hw->io + reg);	\
1663 	} while (0)
1664 
1665 /**
1666  * sw_r_table - read 4 bytes of data from switch table
1667  * @hw:		The hardware instance.
1668  * @table:	The table selector.
1669  * @addr:	The address of the table entry.
1670  * @data:	Buffer to store the read data.
1671  *
1672  * This routine reads 4 bytes of data from the table of the switch.
1673  * Hardware interrupts are disabled to minimize corruption of read data.
1674  */
1675 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1676 {
1677 	u16 ctrl_addr;
1678 	uint interrupt;
1679 
1680 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1681 
1682 	interrupt = hw_block_intr(hw);
1683 
1684 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1685 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1686 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1687 
1688 	hw_restore_intr(hw, interrupt);
1689 }
1690 
1691 /**
1692  * sw_w_table_64 - write 8 bytes of data to the switch table
1693  * @hw:		The hardware instance.
1694  * @table:	The table selector.
1695  * @addr:	The address of the table entry.
1696  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1697  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1698  *
1699  * This routine writes 8 bytes of data to the table of the switch.
1700  * Hardware interrupts are disabled to minimize corruption of written data.
1701  */
1702 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1703 	u32 data_lo)
1704 {
1705 	u16 ctrl_addr;
1706 	uint interrupt;
1707 
1708 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1709 
1710 	interrupt = hw_block_intr(hw);
1711 
1712 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1713 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1714 
1715 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1716 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1717 
1718 	hw_restore_intr(hw, interrupt);
1719 }
1720 
1721 /**
1722  * sw_w_sta_mac_table - write to the static MAC table
1723  * @hw: 	The hardware instance.
1724  * @addr:	The address of the table entry.
1725  * @mac_addr:	The MAC address.
1726  * @ports:	The port members.
1727  * @override:	The flag to override the port receive/transmit settings.
1728  * @valid:	The flag to indicate entry is valid.
1729  * @use_fid:	The flag to indicate the FID is valid.
1730  * @fid:	The FID value.
1731  *
1732  * This routine writes an entry of the static MAC table of the switch.  It
1733  * calls sw_w_table_64() to write the data.
1734  */
1735 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1736 	u8 ports, int override, int valid, int use_fid, u8 fid)
1737 {
1738 	u32 data_hi;
1739 	u32 data_lo;
1740 
1741 	data_lo = ((u32) mac_addr[2] << 24) |
1742 		((u32) mac_addr[3] << 16) |
1743 		((u32) mac_addr[4] << 8) | mac_addr[5];
1744 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1745 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1746 
1747 	if (override)
1748 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1749 	if (use_fid) {
1750 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1751 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1752 	}
1753 	if (valid)
1754 		data_hi |= STATIC_MAC_TABLE_VALID;
1755 
1756 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1757 }
1758 
1759 /**
1760  * sw_r_vlan_table - read from the VLAN table
1761  * @hw: 	The hardware instance.
1762  * @addr:	The address of the table entry.
1763  * @vid:	Buffer to store the VID.
1764  * @fid:	Buffer to store the VID.
1765  * @member:	Buffer to store the port membership.
1766  *
1767  * This function reads an entry of the VLAN table of the switch.  It calls
1768  * sw_r_table() to get the data.
1769  *
1770  * Return 0 if the entry is valid; otherwise -1.
1771  */
1772 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1773 	u8 *member)
1774 {
1775 	u32 data;
1776 
1777 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1778 	if (data & VLAN_TABLE_VALID) {
1779 		*vid = (u16)(data & VLAN_TABLE_VID);
1780 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1781 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1782 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1783 		return 0;
1784 	}
1785 	return -1;
1786 }
1787 
1788 /**
1789  * port_r_mib_cnt - read MIB counter
1790  * @hw: 	The hardware instance.
1791  * @port:	The port index.
1792  * @addr:	The address of the counter.
1793  * @cnt:	Buffer to store the counter.
1794  *
1795  * This routine reads a MIB counter of the port.
1796  * Hardware interrupts are disabled to minimize corruption of read data.
1797  */
1798 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1799 {
1800 	u32 data;
1801 	u16 ctrl_addr;
1802 	uint interrupt;
1803 	int timeout;
1804 
1805 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1806 
1807 	interrupt = hw_block_intr(hw);
1808 
1809 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1810 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1811 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1812 
1813 	for (timeout = 100; timeout > 0; timeout--) {
1814 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1815 
1816 		if (data & MIB_COUNTER_VALID) {
1817 			if (data & MIB_COUNTER_OVERFLOW)
1818 				*cnt += MIB_COUNTER_VALUE + 1;
1819 			*cnt += data & MIB_COUNTER_VALUE;
1820 			break;
1821 		}
1822 	}
1823 
1824 	hw_restore_intr(hw, interrupt);
1825 }
1826 
1827 /**
1828  * port_r_mib_pkt - read dropped packet counts
1829  * @hw: 	The hardware instance.
1830  * @port:	The port index.
1831  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1832  *
1833  * This routine reads the dropped packet counts of the port.
1834  * Hardware interrupts are disabled to minimize corruption of read data.
1835  */
1836 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1837 {
1838 	u32 cur;
1839 	u32 data;
1840 	u16 ctrl_addr;
1841 	uint interrupt;
1842 	int index;
1843 
1844 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1845 	do {
1846 		interrupt = hw_block_intr(hw);
1847 
1848 		ctrl_addr = (u16) index;
1849 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1850 			<< 8);
1851 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1852 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1853 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1854 
1855 		hw_restore_intr(hw, interrupt);
1856 
1857 		data &= MIB_PACKET_DROPPED;
1858 		cur = *last;
1859 		if (data != cur) {
1860 			*last = data;
1861 			if (data < cur)
1862 				data += MIB_PACKET_DROPPED + 1;
1863 			data -= cur;
1864 			*cnt += data;
1865 		}
1866 		++last;
1867 		++cnt;
1868 		index -= KS_MIB_PACKET_DROPPED_TX -
1869 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1870 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1871 }
1872 
1873 /**
1874  * port_r_cnt - read MIB counters periodically
1875  * @hw: 	The hardware instance.
1876  * @port:	The port index.
1877  *
1878  * This routine is used to read the counters of the port periodically to avoid
1879  * counter overflow.  The hardware should be acquired first before calling this
1880  * routine.
1881  *
1882  * Return non-zero when not all counters not read.
1883  */
1884 static int port_r_cnt(struct ksz_hw *hw, int port)
1885 {
1886 	struct ksz_port_mib *mib = &hw->port_mib[port];
1887 
1888 	if (mib->mib_start < PORT_COUNTER_NUM)
1889 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1890 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1891 				&mib->counter[mib->cnt_ptr]);
1892 			++mib->cnt_ptr;
1893 		}
1894 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1895 		port_r_mib_pkt(hw, port, mib->dropped,
1896 			&mib->counter[PORT_COUNTER_NUM]);
1897 	mib->cnt_ptr = 0;
1898 	return 0;
1899 }
1900 
1901 /**
1902  * port_init_cnt - initialize MIB counter values
1903  * @hw: 	The hardware instance.
1904  * @port:	The port index.
1905  *
1906  * This routine is used to initialize all counters to zero if the hardware
1907  * cannot do it after reset.
1908  */
1909 static void port_init_cnt(struct ksz_hw *hw, int port)
1910 {
1911 	struct ksz_port_mib *mib = &hw->port_mib[port];
1912 
1913 	mib->cnt_ptr = 0;
1914 	if (mib->mib_start < PORT_COUNTER_NUM)
1915 		do {
1916 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1917 				&mib->counter[mib->cnt_ptr]);
1918 			++mib->cnt_ptr;
1919 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1920 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1921 		port_r_mib_pkt(hw, port, mib->dropped,
1922 			&mib->counter[PORT_COUNTER_NUM]);
1923 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1924 	mib->cnt_ptr = 0;
1925 }
1926 
1927 /*
1928  * Port functions
1929  */
1930 
1931 /**
1932  * port_chk - check port register bits
1933  * @hw: 	The hardware instance.
1934  * @port:	The port index.
1935  * @offset:	The offset of the port register.
1936  * @bits:	The data bits to check.
1937  *
1938  * This function checks whether the specified bits of the port register are set
1939  * or not.
1940  *
1941  * Return 0 if the bits are not set.
1942  */
1943 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1944 {
1945 	u32 addr;
1946 	u16 data;
1947 
1948 	PORT_CTRL_ADDR(port, addr);
1949 	addr += offset;
1950 	data = readw(hw->io + addr);
1951 	return (data & bits) == bits;
1952 }
1953 
1954 /**
1955  * port_cfg - set port register bits
1956  * @hw: 	The hardware instance.
1957  * @port:	The port index.
1958  * @offset:	The offset of the port register.
1959  * @bits:	The data bits to set.
1960  * @set:	The flag indicating whether the bits are to be set or not.
1961  *
1962  * This routine sets or resets the specified bits of the port register.
1963  */
1964 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1965 	int set)
1966 {
1967 	u32 addr;
1968 	u16 data;
1969 
1970 	PORT_CTRL_ADDR(port, addr);
1971 	addr += offset;
1972 	data = readw(hw->io + addr);
1973 	if (set)
1974 		data |= bits;
1975 	else
1976 		data &= ~bits;
1977 	writew(data, hw->io + addr);
1978 }
1979 
1980 /**
1981  * port_chk_shift - check port bit
1982  * @hw: 	The hardware instance.
1983  * @port:	The port index.
1984  * @offset:	The offset of the register.
1985  * @shift:	Number of bits to shift.
1986  *
1987  * This function checks whether the specified port is set in the register or
1988  * not.
1989  *
1990  * Return 0 if the port is not set.
1991  */
1992 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1993 {
1994 	u16 data;
1995 	u16 bit = 1 << port;
1996 
1997 	data = readw(hw->io + addr);
1998 	data >>= shift;
1999 	return (data & bit) == bit;
2000 }
2001 
2002 /**
2003  * port_cfg_shift - set port bit
2004  * @hw: 	The hardware instance.
2005  * @port:	The port index.
2006  * @offset:	The offset of the register.
2007  * @shift:	Number of bits to shift.
2008  * @set:	The flag indicating whether the port is to be set or not.
2009  *
2010  * This routine sets or resets the specified port in the register.
2011  */
2012 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2013 	int set)
2014 {
2015 	u16 data;
2016 	u16 bits = 1 << port;
2017 
2018 	data = readw(hw->io + addr);
2019 	bits <<= shift;
2020 	if (set)
2021 		data |= bits;
2022 	else
2023 		data &= ~bits;
2024 	writew(data, hw->io + addr);
2025 }
2026 
2027 /**
2028  * port_r8 - read byte from port register
2029  * @hw: 	The hardware instance.
2030  * @port:	The port index.
2031  * @offset:	The offset of the port register.
2032  * @data:	Buffer to store the data.
2033  *
2034  * This routine reads a byte from the port register.
2035  */
2036 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2037 {
2038 	u32 addr;
2039 
2040 	PORT_CTRL_ADDR(port, addr);
2041 	addr += offset;
2042 	*data = readb(hw->io + addr);
2043 }
2044 
2045 /**
2046  * port_r16 - read word from port register.
2047  * @hw: 	The hardware instance.
2048  * @port:	The port index.
2049  * @offset:	The offset of the port register.
2050  * @data:	Buffer to store the data.
2051  *
2052  * This routine reads a word from the port register.
2053  */
2054 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2055 {
2056 	u32 addr;
2057 
2058 	PORT_CTRL_ADDR(port, addr);
2059 	addr += offset;
2060 	*data = readw(hw->io + addr);
2061 }
2062 
2063 /**
2064  * port_w16 - write word to port register.
2065  * @hw: 	The hardware instance.
2066  * @port:	The port index.
2067  * @offset:	The offset of the port register.
2068  * @data:	Data to write.
2069  *
2070  * This routine writes a word to the port register.
2071  */
2072 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2073 {
2074 	u32 addr;
2075 
2076 	PORT_CTRL_ADDR(port, addr);
2077 	addr += offset;
2078 	writew(data, hw->io + addr);
2079 }
2080 
2081 /**
2082  * sw_chk - check switch register bits
2083  * @hw: 	The hardware instance.
2084  * @addr:	The address of the switch register.
2085  * @bits:	The data bits to check.
2086  *
2087  * This function checks whether the specified bits of the switch register are
2088  * set or not.
2089  *
2090  * Return 0 if the bits are not set.
2091  */
2092 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2093 {
2094 	u16 data;
2095 
2096 	data = readw(hw->io + addr);
2097 	return (data & bits) == bits;
2098 }
2099 
2100 /**
2101  * sw_cfg - set switch register bits
2102  * @hw: 	The hardware instance.
2103  * @addr:	The address of the switch register.
2104  * @bits:	The data bits to set.
2105  * @set:	The flag indicating whether the bits are to be set or not.
2106  *
2107  * This function sets or resets the specified bits of the switch register.
2108  */
2109 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2110 {
2111 	u16 data;
2112 
2113 	data = readw(hw->io + addr);
2114 	if (set)
2115 		data |= bits;
2116 	else
2117 		data &= ~bits;
2118 	writew(data, hw->io + addr);
2119 }
2120 
2121 /* Bandwidth */
2122 
2123 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2124 {
2125 	port_cfg(hw, p,
2126 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2127 }
2128 
2129 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2130 {
2131 	return port_chk(hw, p,
2132 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2133 }
2134 
2135 /* Driver set switch broadcast storm protection at 10% rate. */
2136 #define BROADCAST_STORM_PROTECTION_RATE	10
2137 
2138 /* 148,800 frames * 67 ms / 100 */
2139 #define BROADCAST_STORM_VALUE		9969
2140 
2141 /**
2142  * sw_cfg_broad_storm - configure broadcast storm threshold
2143  * @hw: 	The hardware instance.
2144  * @percent:	Broadcast storm threshold in percent of transmit rate.
2145  *
2146  * This routine configures the broadcast storm threshold of the switch.
2147  */
2148 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2149 {
2150 	u16 data;
2151 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2152 
2153 	if (value > BROADCAST_STORM_RATE)
2154 		value = BROADCAST_STORM_RATE;
2155 
2156 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2157 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2158 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2159 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2160 }
2161 
2162 /**
2163  * sw_get_board_storm - get broadcast storm threshold
2164  * @hw: 	The hardware instance.
2165  * @percent:	Buffer to store the broadcast storm threshold percentage.
2166  *
2167  * This routine retrieves the broadcast storm threshold of the switch.
2168  */
2169 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2170 {
2171 	int num;
2172 	u16 data;
2173 
2174 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2175 	num = (data & BROADCAST_STORM_RATE_HI);
2176 	num <<= 8;
2177 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2178 	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2179 	*percent = (u8) num;
2180 }
2181 
2182 /**
2183  * sw_dis_broad_storm - disable broadstorm
2184  * @hw: 	The hardware instance.
2185  * @port:	The port index.
2186  *
2187  * This routine disables the broadcast storm limit function of the switch.
2188  */
2189 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2190 {
2191 	port_cfg_broad_storm(hw, port, 0);
2192 }
2193 
2194 /**
2195  * sw_ena_broad_storm - enable broadcast storm
2196  * @hw: 	The hardware instance.
2197  * @port:	The port index.
2198  *
2199  * This routine enables the broadcast storm limit function of the switch.
2200  */
2201 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2202 {
2203 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2204 	port_cfg_broad_storm(hw, port, 1);
2205 }
2206 
2207 /**
2208  * sw_init_broad_storm - initialize broadcast storm
2209  * @hw: 	The hardware instance.
2210  *
2211  * This routine initializes the broadcast storm limit function of the switch.
2212  */
2213 static void sw_init_broad_storm(struct ksz_hw *hw)
2214 {
2215 	int port;
2216 
2217 	hw->ksz_switch->broad_per = 1;
2218 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2219 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2220 		sw_dis_broad_storm(hw, port);
2221 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2222 }
2223 
2224 /**
2225  * hw_cfg_broad_storm - configure broadcast storm
2226  * @hw: 	The hardware instance.
2227  * @percent:	Broadcast storm threshold in percent of transmit rate.
2228  *
2229  * This routine configures the broadcast storm threshold of the switch.
2230  * It is called by user functions.  The hardware should be acquired first.
2231  */
2232 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2233 {
2234 	if (percent > 100)
2235 		percent = 100;
2236 
2237 	sw_cfg_broad_storm(hw, percent);
2238 	sw_get_broad_storm(hw, &percent);
2239 	hw->ksz_switch->broad_per = percent;
2240 }
2241 
2242 /**
2243  * sw_dis_prio_rate - disable switch priority rate
2244  * @hw: 	The hardware instance.
2245  * @port:	The port index.
2246  *
2247  * This routine disables the priority rate function of the switch.
2248  */
2249 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2250 {
2251 	u32 addr;
2252 
2253 	PORT_CTRL_ADDR(port, addr);
2254 	addr += KS8842_PORT_IN_RATE_OFFSET;
2255 	writel(0, hw->io + addr);
2256 }
2257 
2258 /**
2259  * sw_init_prio_rate - initialize switch prioirty rate
2260  * @hw: 	The hardware instance.
2261  *
2262  * This routine initializes the priority rate function of the switch.
2263  */
2264 static void sw_init_prio_rate(struct ksz_hw *hw)
2265 {
2266 	int port;
2267 	int prio;
2268 	struct ksz_switch *sw = hw->ksz_switch;
2269 
2270 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2271 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2272 			sw->port_cfg[port].rx_rate[prio] =
2273 			sw->port_cfg[port].tx_rate[prio] = 0;
2274 		}
2275 		sw_dis_prio_rate(hw, port);
2276 	}
2277 }
2278 
2279 /* Communication */
2280 
2281 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2282 {
2283 	port_cfg(hw, p,
2284 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2285 }
2286 
2287 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2288 {
2289 	port_cfg(hw, p,
2290 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2291 }
2292 
2293 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2294 {
2295 	return port_chk(hw, p,
2296 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2297 }
2298 
2299 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2300 {
2301 	return port_chk(hw, p,
2302 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2303 }
2304 
2305 /* Spanning Tree */
2306 
2307 static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2308 {
2309 	port_cfg(hw, p,
2310 		KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2311 }
2312 
2313 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2314 {
2315 	port_cfg(hw, p,
2316 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2317 }
2318 
2319 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2320 {
2321 	port_cfg(hw, p,
2322 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2323 }
2324 
2325 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2326 {
2327 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2328 }
2329 
2330 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2331 {
2332 	if (!(hw->overrides & FAST_AGING)) {
2333 		sw_cfg_fast_aging(hw, 1);
2334 		mdelay(1);
2335 		sw_cfg_fast_aging(hw, 0);
2336 	}
2337 }
2338 
2339 /* VLAN */
2340 
2341 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2342 {
2343 	port_cfg(hw, p,
2344 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2345 }
2346 
2347 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2348 {
2349 	port_cfg(hw, p,
2350 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2351 }
2352 
2353 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2354 {
2355 	return port_chk(hw, p,
2356 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2357 }
2358 
2359 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2360 {
2361 	return port_chk(hw, p,
2362 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2363 }
2364 
2365 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2366 {
2367 	port_cfg(hw, p,
2368 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2369 }
2370 
2371 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2372 {
2373 	port_cfg(hw, p,
2374 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2375 }
2376 
2377 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2378 {
2379 	return port_chk(hw, p,
2380 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2381 }
2382 
2383 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2384 {
2385 	return port_chk(hw, p,
2386 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2387 }
2388 
2389 /* Mirroring */
2390 
2391 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2392 {
2393 	port_cfg(hw, p,
2394 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2395 }
2396 
2397 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2398 {
2399 	port_cfg(hw, p,
2400 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2401 }
2402 
2403 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2404 {
2405 	port_cfg(hw, p,
2406 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2407 }
2408 
2409 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2410 {
2411 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2412 }
2413 
2414 static void sw_init_mirror(struct ksz_hw *hw)
2415 {
2416 	int port;
2417 
2418 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2419 		port_cfg_mirror_sniffer(hw, port, 0);
2420 		port_cfg_mirror_rx(hw, port, 0);
2421 		port_cfg_mirror_tx(hw, port, 0);
2422 	}
2423 	sw_cfg_mirror_rx_tx(hw, 0);
2424 }
2425 
2426 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2427 {
2428 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2429 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2430 }
2431 
2432 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2433 {
2434 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2435 		SWITCH_UNK_DEF_PORT_ENABLE);
2436 }
2437 
2438 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2439 {
2440 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2441 }
2442 
2443 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2444 {
2445 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2446 }
2447 
2448 /* Priority */
2449 
2450 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2451 {
2452 	port_cfg(hw, p,
2453 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2454 }
2455 
2456 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2457 {
2458 	port_cfg(hw, p,
2459 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2460 }
2461 
2462 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2463 {
2464 	port_cfg(hw, p,
2465 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2466 }
2467 
2468 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2469 {
2470 	port_cfg(hw, p,
2471 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2472 }
2473 
2474 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2475 {
2476 	return port_chk(hw, p,
2477 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2478 }
2479 
2480 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2481 {
2482 	return port_chk(hw, p,
2483 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2484 }
2485 
2486 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2487 {
2488 	return port_chk(hw, p,
2489 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2490 }
2491 
2492 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2493 {
2494 	return port_chk(hw, p,
2495 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2496 }
2497 
2498 /**
2499  * sw_dis_diffserv - disable switch DiffServ priority
2500  * @hw: 	The hardware instance.
2501  * @port:	The port index.
2502  *
2503  * This routine disables the DiffServ priority function of the switch.
2504  */
2505 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2506 {
2507 	port_cfg_diffserv(hw, port, 0);
2508 }
2509 
2510 /**
2511  * sw_dis_802_1p - disable switch 802.1p priority
2512  * @hw: 	The hardware instance.
2513  * @port:	The port index.
2514  *
2515  * This routine disables the 802.1p priority function of the switch.
2516  */
2517 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2518 {
2519 	port_cfg_802_1p(hw, port, 0);
2520 }
2521 
2522 /**
2523  * sw_cfg_replace_null_vid -
2524  * @hw: 	The hardware instance.
2525  * @set:	The flag to disable or enable.
2526  *
2527  */
2528 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2529 {
2530 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2531 }
2532 
2533 /**
2534  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2535  * @hw: 	The hardware instance.
2536  * @port:	The port index.
2537  * @set:	The flag to disable or enable.
2538  *
2539  * This routine enables the 802.1p priority re-mapping function of the switch.
2540  * That allows 802.1p priority field to be replaced with the port's default
2541  * tag's priority value if the ingress packet's 802.1p priority has a higher
2542  * priority than port's default tag's priority.
2543  */
2544 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2545 {
2546 	port_cfg_replace_vid(hw, port, set);
2547 }
2548 
2549 /**
2550  * sw_cfg_port_based - configure switch port based priority
2551  * @hw: 	The hardware instance.
2552  * @port:	The port index.
2553  * @prio:	The priority to set.
2554  *
2555  * This routine configures the port based priority of the switch.
2556  */
2557 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2558 {
2559 	u16 data;
2560 
2561 	if (prio > PORT_BASED_PRIORITY_BASE)
2562 		prio = PORT_BASED_PRIORITY_BASE;
2563 
2564 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2565 
2566 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2567 	data &= ~PORT_BASED_PRIORITY_MASK;
2568 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2569 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2570 }
2571 
2572 /**
2573  * sw_dis_multi_queue - disable transmit multiple queues
2574  * @hw: 	The hardware instance.
2575  * @port:	The port index.
2576  *
2577  * This routine disables the transmit multiple queues selection of the switch
2578  * port.  Only single transmit queue on the port.
2579  */
2580 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2581 {
2582 	port_cfg_prio(hw, port, 0);
2583 }
2584 
2585 /**
2586  * sw_init_prio - initialize switch priority
2587  * @hw: 	The hardware instance.
2588  *
2589  * This routine initializes the switch QoS priority functions.
2590  */
2591 static void sw_init_prio(struct ksz_hw *hw)
2592 {
2593 	int port;
2594 	int tos;
2595 	struct ksz_switch *sw = hw->ksz_switch;
2596 
2597 	/*
2598 	 * Init all the 802.1p tag priority value to be assigned to different
2599 	 * priority queue.
2600 	 */
2601 	sw->p_802_1p[0] = 0;
2602 	sw->p_802_1p[1] = 0;
2603 	sw->p_802_1p[2] = 1;
2604 	sw->p_802_1p[3] = 1;
2605 	sw->p_802_1p[4] = 2;
2606 	sw->p_802_1p[5] = 2;
2607 	sw->p_802_1p[6] = 3;
2608 	sw->p_802_1p[7] = 3;
2609 
2610 	/*
2611 	 * Init all the DiffServ priority value to be assigned to priority
2612 	 * queue 0.
2613 	 */
2614 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2615 		sw->diffserv[tos] = 0;
2616 
2617 	/* All QoS functions disabled. */
2618 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2619 		sw_dis_multi_queue(hw, port);
2620 		sw_dis_diffserv(hw, port);
2621 		sw_dis_802_1p(hw, port);
2622 		sw_cfg_replace_vid(hw, port, 0);
2623 
2624 		sw->port_cfg[port].port_prio = 0;
2625 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2626 	}
2627 	sw_cfg_replace_null_vid(hw, 0);
2628 }
2629 
2630 /**
2631  * port_get_def_vid - get port default VID.
2632  * @hw: 	The hardware instance.
2633  * @port:	The port index.
2634  * @vid:	Buffer to store the VID.
2635  *
2636  * This routine retrieves the default VID of the port.
2637  */
2638 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2639 {
2640 	u32 addr;
2641 
2642 	PORT_CTRL_ADDR(port, addr);
2643 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2644 	*vid = readw(hw->io + addr);
2645 }
2646 
2647 /**
2648  * sw_init_vlan - initialize switch VLAN
2649  * @hw: 	The hardware instance.
2650  *
2651  * This routine initializes the VLAN function of the switch.
2652  */
2653 static void sw_init_vlan(struct ksz_hw *hw)
2654 {
2655 	int port;
2656 	int entry;
2657 	struct ksz_switch *sw = hw->ksz_switch;
2658 
2659 	/* Read 16 VLAN entries from device's VLAN table. */
2660 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2661 		sw_r_vlan_table(hw, entry,
2662 			&sw->vlan_table[entry].vid,
2663 			&sw->vlan_table[entry].fid,
2664 			&sw->vlan_table[entry].member);
2665 	}
2666 
2667 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2668 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2669 		sw->port_cfg[port].member = PORT_MASK;
2670 	}
2671 }
2672 
2673 /**
2674  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2675  * @hw: 	The hardware instance.
2676  * @port:	The port index.
2677  * @member:	The port-based VLAN membership.
2678  *
2679  * This routine configures the port-based VLAN membership of the port.
2680  */
2681 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2682 {
2683 	u32 addr;
2684 	u8 data;
2685 
2686 	PORT_CTRL_ADDR(port, addr);
2687 	addr += KS8842_PORT_CTRL_2_OFFSET;
2688 
2689 	data = readb(hw->io + addr);
2690 	data &= ~PORT_VLAN_MEMBERSHIP;
2691 	data |= (member & PORT_MASK);
2692 	writeb(data, hw->io + addr);
2693 
2694 	hw->ksz_switch->port_cfg[port].member = member;
2695 }
2696 
2697 /**
2698  * sw_get_addr - get the switch MAC address.
2699  * @hw: 	The hardware instance.
2700  * @mac_addr:	Buffer to store the MAC address.
2701  *
2702  * This function retrieves the MAC address of the switch.
2703  */
2704 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2705 {
2706 	int i;
2707 
2708 	for (i = 0; i < 6; i += 2) {
2709 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2710 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2711 	}
2712 }
2713 
2714 /**
2715  * sw_set_addr - configure switch MAC address
2716  * @hw: 	The hardware instance.
2717  * @mac_addr:	The MAC address.
2718  *
2719  * This function configures the MAC address of the switch.
2720  */
2721 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2722 {
2723 	int i;
2724 
2725 	for (i = 0; i < 6; i += 2) {
2726 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2727 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2728 	}
2729 }
2730 
2731 /**
2732  * sw_set_global_ctrl - set switch global control
2733  * @hw: 	The hardware instance.
2734  *
2735  * This routine sets the global control of the switch function.
2736  */
2737 static void sw_set_global_ctrl(struct ksz_hw *hw)
2738 {
2739 	u16 data;
2740 
2741 	/* Enable switch MII flow control. */
2742 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2743 	data |= SWITCH_FLOW_CTRL;
2744 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2745 
2746 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747 
2748 	/* Enable aggressive back off algorithm in half duplex mode. */
2749 	data |= SWITCH_AGGR_BACKOFF;
2750 
2751 	/* Enable automatic fast aging when link changed detected. */
2752 	data |= SWITCH_AGING_ENABLE;
2753 	data |= SWITCH_LINK_AUTO_AGING;
2754 
2755 	if (hw->overrides & FAST_AGING)
2756 		data |= SWITCH_FAST_AGING;
2757 	else
2758 		data &= ~SWITCH_FAST_AGING;
2759 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2760 
2761 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2762 
2763 	/* Enable no excessive collision drop. */
2764 	data |= NO_EXC_COLLISION_DROP;
2765 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2766 }
2767 
2768 enum {
2769 	STP_STATE_DISABLED = 0,
2770 	STP_STATE_LISTENING,
2771 	STP_STATE_LEARNING,
2772 	STP_STATE_FORWARDING,
2773 	STP_STATE_BLOCKED,
2774 	STP_STATE_SIMPLE
2775 };
2776 
2777 /**
2778  * port_set_stp_state - configure port spanning tree state
2779  * @hw: 	The hardware instance.
2780  * @port:	The port index.
2781  * @state:	The spanning tree state.
2782  *
2783  * This routine configures the spanning tree state of the port.
2784  */
2785 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2786 {
2787 	u16 data;
2788 
2789 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2790 	switch (state) {
2791 	case STP_STATE_DISABLED:
2792 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2793 		data |= PORT_LEARN_DISABLE;
2794 		break;
2795 	case STP_STATE_LISTENING:
2796 /*
2797  * No need to turn on transmit because of port direct mode.
2798  * Turning on receive is required if static MAC table is not setup.
2799  */
2800 		data &= ~PORT_TX_ENABLE;
2801 		data |= PORT_RX_ENABLE;
2802 		data |= PORT_LEARN_DISABLE;
2803 		break;
2804 	case STP_STATE_LEARNING:
2805 		data &= ~PORT_TX_ENABLE;
2806 		data |= PORT_RX_ENABLE;
2807 		data &= ~PORT_LEARN_DISABLE;
2808 		break;
2809 	case STP_STATE_FORWARDING:
2810 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2811 		data &= ~PORT_LEARN_DISABLE;
2812 		break;
2813 	case STP_STATE_BLOCKED:
2814 /*
2815  * Need to setup static MAC table with override to keep receiving BPDU
2816  * messages.  See sw_init_stp routine.
2817  */
2818 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2819 		data |= PORT_LEARN_DISABLE;
2820 		break;
2821 	case STP_STATE_SIMPLE:
2822 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2823 		data |= PORT_LEARN_DISABLE;
2824 		break;
2825 	}
2826 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2827 	hw->ksz_switch->port_cfg[port].stp_state = state;
2828 }
2829 
2830 #define STP_ENTRY			0
2831 #define BROADCAST_ENTRY			1
2832 #define BRIDGE_ADDR_ENTRY		2
2833 #define IPV6_ADDR_ENTRY			3
2834 
2835 /**
2836  * sw_clr_sta_mac_table - clear static MAC table
2837  * @hw: 	The hardware instance.
2838  *
2839  * This routine clears the static MAC table.
2840  */
2841 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2842 {
2843 	struct ksz_mac_table *entry;
2844 	int i;
2845 
2846 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2847 		entry = &hw->ksz_switch->mac_table[i];
2848 		sw_w_sta_mac_table(hw, i,
2849 			entry->mac_addr, entry->ports,
2850 			entry->override, 0,
2851 			entry->use_fid, entry->fid);
2852 	}
2853 }
2854 
2855 /**
2856  * sw_init_stp - initialize switch spanning tree support
2857  * @hw: 	The hardware instance.
2858  *
2859  * This routine initializes the spanning tree support of the switch.
2860  */
2861 static void sw_init_stp(struct ksz_hw *hw)
2862 {
2863 	struct ksz_mac_table *entry;
2864 
2865 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2866 	entry->mac_addr[0] = 0x01;
2867 	entry->mac_addr[1] = 0x80;
2868 	entry->mac_addr[2] = 0xC2;
2869 	entry->mac_addr[3] = 0x00;
2870 	entry->mac_addr[4] = 0x00;
2871 	entry->mac_addr[5] = 0x00;
2872 	entry->ports = HOST_MASK;
2873 	entry->override = 1;
2874 	entry->valid = 1;
2875 	sw_w_sta_mac_table(hw, STP_ENTRY,
2876 		entry->mac_addr, entry->ports,
2877 		entry->override, entry->valid,
2878 		entry->use_fid, entry->fid);
2879 }
2880 
2881 /**
2882  * sw_block_addr - block certain packets from the host port
2883  * @hw: 	The hardware instance.
2884  *
2885  * This routine blocks certain packets from reaching to the host port.
2886  */
2887 static void sw_block_addr(struct ksz_hw *hw)
2888 {
2889 	struct ksz_mac_table *entry;
2890 	int i;
2891 
2892 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2893 		entry = &hw->ksz_switch->mac_table[i];
2894 		entry->valid = 0;
2895 		sw_w_sta_mac_table(hw, i,
2896 			entry->mac_addr, entry->ports,
2897 			entry->override, entry->valid,
2898 			entry->use_fid, entry->fid);
2899 	}
2900 }
2901 
2902 #define PHY_LINK_SUPPORT		\
2903 	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2904 	PHY_AUTO_NEG_SYM_PAUSE |	\
2905 	PHY_AUTO_NEG_100BT4 |		\
2906 	PHY_AUTO_NEG_100BTX_FD |	\
2907 	PHY_AUTO_NEG_100BTX |		\
2908 	PHY_AUTO_NEG_10BT_FD |		\
2909 	PHY_AUTO_NEG_10BT)
2910 
2911 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2912 {
2913 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2914 }
2915 
2916 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2917 {
2918 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2919 }
2920 
2921 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2922 {
2923 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2924 }
2925 
2926 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2927 {
2928 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2929 }
2930 
2931 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2932 {
2933 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2934 }
2935 
2936 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2937 {
2938 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2939 }
2940 
2941 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2942 {
2943 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2944 }
2945 
2946 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2947 {
2948 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2949 }
2950 
2951 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2952 {
2953 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2954 }
2955 
2956 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2957 {
2958 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2959 }
2960 
2961 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2962 {
2963 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2964 }
2965 
2966 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2967 {
2968 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2969 }
2970 
2971 /**
2972  * hw_r_phy - read data from PHY register
2973  * @hw: 	The hardware instance.
2974  * @port:	Port to read.
2975  * @reg:	PHY register to read.
2976  * @val:	Buffer to store the read data.
2977  *
2978  * This routine reads data from the PHY register.
2979  */
2980 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2981 {
2982 	int phy;
2983 
2984 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2985 	*val = readw(hw->io + phy);
2986 }
2987 
2988 /**
2989  * port_w_phy - write data to PHY register
2990  * @hw: 	The hardware instance.
2991  * @port:	Port to write.
2992  * @reg:	PHY register to write.
2993  * @val:	Word data to write.
2994  *
2995  * This routine writes data to the PHY register.
2996  */
2997 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2998 {
2999 	int phy;
3000 
3001 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3002 	writew(val, hw->io + phy);
3003 }
3004 
3005 /*
3006  * EEPROM access functions
3007  */
3008 
3009 #define AT93C_CODE			0
3010 #define AT93C_WR_OFF			0x00
3011 #define AT93C_WR_ALL			0x10
3012 #define AT93C_ER_ALL			0x20
3013 #define AT93C_WR_ON			0x30
3014 
3015 #define AT93C_WRITE			1
3016 #define AT93C_READ			2
3017 #define AT93C_ERASE			3
3018 
3019 #define EEPROM_DELAY			4
3020 
3021 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3022 {
3023 	u16 data;
3024 
3025 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3026 	data &= ~gpio;
3027 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 }
3029 
3030 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3031 {
3032 	u16 data;
3033 
3034 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3035 	data |= gpio;
3036 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 }
3038 
3039 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3040 {
3041 	u16 data;
3042 
3043 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3044 	return (u8)(data & gpio);
3045 }
3046 
3047 static void eeprom_clk(struct ksz_hw *hw)
3048 {
3049 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3050 	udelay(EEPROM_DELAY);
3051 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052 	udelay(EEPROM_DELAY);
3053 }
3054 
3055 static u16 spi_r(struct ksz_hw *hw)
3056 {
3057 	int i;
3058 	u16 temp = 0;
3059 
3060 	for (i = 15; i >= 0; i--) {
3061 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3062 		udelay(EEPROM_DELAY);
3063 
3064 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3065 
3066 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3067 		udelay(EEPROM_DELAY);
3068 	}
3069 	return temp;
3070 }
3071 
3072 static void spi_w(struct ksz_hw *hw, u16 data)
3073 {
3074 	int i;
3075 
3076 	for (i = 15; i >= 0; i--) {
3077 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3078 			drop_gpio(hw, EEPROM_DATA_OUT);
3079 		eeprom_clk(hw);
3080 	}
3081 }
3082 
3083 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3084 {
3085 	int i;
3086 
3087 	/* Initial start bit */
3088 	raise_gpio(hw, EEPROM_DATA_OUT);
3089 	eeprom_clk(hw);
3090 
3091 	/* AT93C operation */
3092 	for (i = 1; i >= 0; i--) {
3093 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 			drop_gpio(hw, EEPROM_DATA_OUT);
3095 		eeprom_clk(hw);
3096 	}
3097 
3098 	/* Address location */
3099 	for (i = 5; i >= 0; i--) {
3100 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3101 			drop_gpio(hw, EEPROM_DATA_OUT);
3102 		eeprom_clk(hw);
3103 	}
3104 }
3105 
3106 #define EEPROM_DATA_RESERVED		0
3107 #define EEPROM_DATA_MAC_ADDR_0		1
3108 #define EEPROM_DATA_MAC_ADDR_1		2
3109 #define EEPROM_DATA_MAC_ADDR_2		3
3110 #define EEPROM_DATA_SUBSYS_ID		4
3111 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3112 #define EEPROM_DATA_PM_CAP		6
3113 
3114 /* User defined EEPROM data */
3115 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3116 
3117 /**
3118  * eeprom_read - read from AT93C46 EEPROM
3119  * @hw: 	The hardware instance.
3120  * @reg:	The register offset.
3121  *
3122  * This function reads a word from the AT93C46 EEPROM.
3123  *
3124  * Return the data value.
3125  */
3126 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3127 {
3128 	u16 data;
3129 
3130 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3131 
3132 	spi_reg(hw, AT93C_READ, reg);
3133 	data = spi_r(hw);
3134 
3135 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3136 
3137 	return data;
3138 }
3139 
3140 /**
3141  * eeprom_write - write to AT93C46 EEPROM
3142  * @hw: 	The hardware instance.
3143  * @reg:	The register offset.
3144  * @data:	The data value.
3145  *
3146  * This procedure writes a word to the AT93C46 EEPROM.
3147  */
3148 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3149 {
3150 	int timeout;
3151 
3152 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3153 
3154 	/* Enable write. */
3155 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3156 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3157 	udelay(1);
3158 
3159 	/* Erase the register. */
3160 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3161 	spi_reg(hw, AT93C_ERASE, reg);
3162 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3163 	udelay(1);
3164 
3165 	/* Check operation complete. */
3166 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3167 	timeout = 8;
3168 	mdelay(2);
3169 	do {
3170 		mdelay(1);
3171 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3172 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 	udelay(1);
3174 
3175 	/* Write the register. */
3176 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 	spi_reg(hw, AT93C_WRITE, reg);
3178 	spi_w(hw, data);
3179 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3180 	udelay(1);
3181 
3182 	/* Check operation complete. */
3183 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3184 	timeout = 8;
3185 	mdelay(2);
3186 	do {
3187 		mdelay(1);
3188 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3189 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3190 	udelay(1);
3191 
3192 	/* Disable write. */
3193 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3194 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3195 
3196 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3197 }
3198 
3199 /*
3200  * Link detection routines
3201  */
3202 
3203 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3204 {
3205 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3206 	switch (port->flow_ctrl) {
3207 	case PHY_FLOW_CTRL:
3208 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3209 		break;
3210 	/* Not supported. */
3211 	case PHY_TX_ONLY:
3212 	case PHY_RX_ONLY:
3213 	default:
3214 		break;
3215 	}
3216 	return ctrl;
3217 }
3218 
3219 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3220 {
3221 	u32 rx_cfg;
3222 	u32 tx_cfg;
3223 
3224 	rx_cfg = hw->rx_cfg;
3225 	tx_cfg = hw->tx_cfg;
3226 	if (rx)
3227 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3228 	else
3229 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3230 	if (tx)
3231 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3232 	else
3233 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3234 	if (hw->enabled) {
3235 		if (rx_cfg != hw->rx_cfg)
3236 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3237 		if (tx_cfg != hw->tx_cfg)
3238 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3239 	}
3240 }
3241 
3242 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3243 	u16 local, u16 remote)
3244 {
3245 	int rx;
3246 	int tx;
3247 
3248 	if (hw->overrides & PAUSE_FLOW_CTRL)
3249 		return;
3250 
3251 	rx = tx = 0;
3252 	if (port->force_link)
3253 		rx = tx = 1;
3254 	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3255 		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3256 			rx = tx = 1;
3257 		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3258 				(local & PHY_AUTO_NEG_PAUSE) ==
3259 				PHY_AUTO_NEG_ASYM_PAUSE) {
3260 			tx = 1;
3261 		}
3262 	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3263 		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3264 			rx = 1;
3265 	}
3266 	if (!hw->ksz_switch)
3267 		set_flow_ctrl(hw, rx, tx);
3268 }
3269 
3270 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3271 	struct ksz_port_info *info, u16 link_status)
3272 {
3273 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3274 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3275 		u32 cfg = hw->tx_cfg;
3276 
3277 		/* Disable flow control in the half duplex mode. */
3278 		if (1 == info->duplex)
3279 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3280 		if (hw->enabled && cfg != hw->tx_cfg)
3281 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3282 	}
3283 }
3284 
3285 /**
3286  * port_get_link_speed - get current link status
3287  * @port: 	The port instance.
3288  *
3289  * This routine reads PHY registers to determine the current link status of the
3290  * switch ports.
3291  */
3292 static void port_get_link_speed(struct ksz_port *port)
3293 {
3294 	uint interrupt;
3295 	struct ksz_port_info *info;
3296 	struct ksz_port_info *linked = NULL;
3297 	struct ksz_hw *hw = port->hw;
3298 	u16 data;
3299 	u16 status;
3300 	u8 local;
3301 	u8 remote;
3302 	int i;
3303 	int p;
3304 	int change = 0;
3305 
3306 	interrupt = hw_block_intr(hw);
3307 
3308 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3309 		info = &hw->port_info[p];
3310 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3311 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3312 
3313 		/*
3314 		 * Link status is changing all the time even when there is no
3315 		 * cable connection!
3316 		 */
3317 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3318 			PORT_STATUS_LINK_GOOD);
3319 		local = (u8) data;
3320 
3321 		/* No change to status. */
3322 		if (local == info->advertised && remote == info->partner)
3323 			continue;
3324 
3325 		info->advertised = local;
3326 		info->partner = remote;
3327 		if (status & PORT_STATUS_LINK_GOOD) {
3328 
3329 			/* Remember the first linked port. */
3330 			if (!linked)
3331 				linked = info;
3332 
3333 			info->tx_rate = 10 * TX_RATE_UNIT;
3334 			if (status & PORT_STATUS_SPEED_100MBIT)
3335 				info->tx_rate = 100 * TX_RATE_UNIT;
3336 
3337 			info->duplex = 1;
3338 			if (status & PORT_STATUS_FULL_DUPLEX)
3339 				info->duplex = 2;
3340 
3341 			if (media_connected != info->state) {
3342 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3343 					&data);
3344 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3345 					&status);
3346 				determine_flow_ctrl(hw, port, data, status);
3347 				if (hw->ksz_switch) {
3348 					port_cfg_back_pressure(hw, p,
3349 						(1 == info->duplex));
3350 				}
3351 				change |= 1 << i;
3352 				port_cfg_change(hw, port, info, status);
3353 			}
3354 			info->state = media_connected;
3355 		} else {
3356 			if (media_disconnected != info->state) {
3357 				change |= 1 << i;
3358 
3359 				/* Indicate the link just goes down. */
3360 				hw->port_mib[p].link_down = 1;
3361 			}
3362 			info->state = media_disconnected;
3363 		}
3364 		hw->port_mib[p].state = (u8) info->state;
3365 	}
3366 
3367 	if (linked && media_disconnected == port->linked->state)
3368 		port->linked = linked;
3369 
3370 	hw_restore_intr(hw, interrupt);
3371 }
3372 
3373 #define PHY_RESET_TIMEOUT		10
3374 
3375 /**
3376  * port_set_link_speed - set port speed
3377  * @port: 	The port instance.
3378  *
3379  * This routine sets the link speed of the switch ports.
3380  */
3381 static void port_set_link_speed(struct ksz_port *port)
3382 {
3383 	struct ksz_port_info *info;
3384 	struct ksz_hw *hw = port->hw;
3385 	u16 data;
3386 	u16 cfg;
3387 	u8 status;
3388 	int i;
3389 	int p;
3390 
3391 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3392 		info = &hw->port_info[p];
3393 
3394 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3395 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3396 
3397 		cfg = 0;
3398 		if (status & PORT_STATUS_LINK_GOOD)
3399 			cfg = data;
3400 
3401 		data |= PORT_AUTO_NEG_ENABLE;
3402 		data = advertised_flow_ctrl(port, data);
3403 
3404 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3405 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3406 
3407 		/* Check if manual configuration is specified by the user. */
3408 		if (port->speed || port->duplex) {
3409 			if (10 == port->speed)
3410 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3411 					PORT_AUTO_NEG_100BTX);
3412 			else if (100 == port->speed)
3413 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3414 					PORT_AUTO_NEG_10BT);
3415 			if (1 == port->duplex)
3416 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3417 					PORT_AUTO_NEG_10BT_FD);
3418 			else if (2 == port->duplex)
3419 				data &= ~(PORT_AUTO_NEG_100BTX |
3420 					PORT_AUTO_NEG_10BT);
3421 		}
3422 		if (data != cfg) {
3423 			data |= PORT_AUTO_NEG_RESTART;
3424 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3425 		}
3426 	}
3427 }
3428 
3429 /**
3430  * port_force_link_speed - force port speed
3431  * @port: 	The port instance.
3432  *
3433  * This routine forces the link speed of the switch ports.
3434  */
3435 static void port_force_link_speed(struct ksz_port *port)
3436 {
3437 	struct ksz_hw *hw = port->hw;
3438 	u16 data;
3439 	int i;
3440 	int phy;
3441 	int p;
3442 
3443 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3444 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3445 		hw_r_phy_ctrl(hw, phy, &data);
3446 
3447 		data &= ~PHY_AUTO_NEG_ENABLE;
3448 
3449 		if (10 == port->speed)
3450 			data &= ~PHY_SPEED_100MBIT;
3451 		else if (100 == port->speed)
3452 			data |= PHY_SPEED_100MBIT;
3453 		if (1 == port->duplex)
3454 			data &= ~PHY_FULL_DUPLEX;
3455 		else if (2 == port->duplex)
3456 			data |= PHY_FULL_DUPLEX;
3457 		hw_w_phy_ctrl(hw, phy, data);
3458 	}
3459 }
3460 
3461 static void port_set_power_saving(struct ksz_port *port, int enable)
3462 {
3463 	struct ksz_hw *hw = port->hw;
3464 	int i;
3465 	int p;
3466 
3467 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3468 		port_cfg(hw, p,
3469 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3470 }
3471 
3472 /*
3473  * KSZ8841 power management functions
3474  */
3475 
3476 /**
3477  * hw_chk_wol_pme_status - check PMEN pin
3478  * @hw: 	The hardware instance.
3479  *
3480  * This function is used to check PMEN pin is asserted.
3481  *
3482  * Return 1 if PMEN pin is asserted; otherwise, 0.
3483  */
3484 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3485 {
3486 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487 	struct pci_dev *pdev = hw_priv->pdev;
3488 	u16 data;
3489 
3490 	if (!pdev->pm_cap)
3491 		return 0;
3492 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3493 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3494 }
3495 
3496 /**
3497  * hw_clr_wol_pme_status - clear PMEN pin
3498  * @hw: 	The hardware instance.
3499  *
3500  * This routine is used to clear PME_Status to deassert PMEN pin.
3501  */
3502 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3503 {
3504 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3505 	struct pci_dev *pdev = hw_priv->pdev;
3506 	u16 data;
3507 
3508 	if (!pdev->pm_cap)
3509 		return;
3510 
3511 	/* Clear PME_Status to deassert PMEN pin. */
3512 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3513 	data |= PCI_PM_CTRL_PME_STATUS;
3514 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3515 }
3516 
3517 /**
3518  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3519  * @hw: 	The hardware instance.
3520  * @set:	The flag indicating whether to enable or disable.
3521  *
3522  * This routine is used to enable or disable Wake-on-LAN.
3523  */
3524 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3525 {
3526 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3527 	struct pci_dev *pdev = hw_priv->pdev;
3528 	u16 data;
3529 
3530 	if (!pdev->pm_cap)
3531 		return;
3532 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3533 	data &= ~PCI_PM_CTRL_STATE_MASK;
3534 	if (set)
3535 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3536 	else
3537 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3538 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3539 }
3540 
3541 /**
3542  * hw_cfg_wol - configure Wake-on-LAN features
3543  * @hw: 	The hardware instance.
3544  * @frame:	The pattern frame bit.
3545  * @set:	The flag indicating whether to enable or disable.
3546  *
3547  * This routine is used to enable or disable certain Wake-on-LAN features.
3548  */
3549 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3550 {
3551 	u16 data;
3552 
3553 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3554 	if (set)
3555 		data |= frame;
3556 	else
3557 		data &= ~frame;
3558 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3559 }
3560 
3561 /**
3562  * hw_set_wol_frame - program Wake-on-LAN pattern
3563  * @hw: 	The hardware instance.
3564  * @i:		The frame index.
3565  * @mask_size:	The size of the mask.
3566  * @mask:	Mask to ignore certain bytes in the pattern.
3567  * @frame_size:	The size of the frame.
3568  * @pattern:	The frame data.
3569  *
3570  * This routine is used to program Wake-on-LAN pattern.
3571  */
3572 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3573 	const u8 *mask, uint frame_size, const u8 *pattern)
3574 {
3575 	int bits;
3576 	int from;
3577 	int len;
3578 	int to;
3579 	u32 crc;
3580 	u8 data[64];
3581 	u8 val = 0;
3582 
3583 	if (frame_size > mask_size * 8)
3584 		frame_size = mask_size * 8;
3585 	if (frame_size > 64)
3586 		frame_size = 64;
3587 
3588 	i *= 0x10;
3589 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3590 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3591 
3592 	bits = len = from = to = 0;
3593 	do {
3594 		if (bits) {
3595 			if ((val & 1))
3596 				data[to++] = pattern[from];
3597 			val >>= 1;
3598 			++from;
3599 			--bits;
3600 		} else {
3601 			val = mask[len];
3602 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3603 				+ len);
3604 			++len;
3605 			if (val)
3606 				bits = 8;
3607 			else
3608 				from += 8;
3609 		}
3610 	} while (from < (int) frame_size);
3611 	if (val) {
3612 		bits = mask[len - 1];
3613 		val <<= (from % 8);
3614 		bits &= ~val;
3615 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3616 			1);
3617 	}
3618 	crc = ether_crc(to, data);
3619 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3620 }
3621 
3622 /**
3623  * hw_add_wol_arp - add ARP pattern
3624  * @hw: 	The hardware instance.
3625  * @ip_addr:	The IPv4 address assigned to the device.
3626  *
3627  * This routine is used to add ARP pattern for waking up the host.
3628  */
3629 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3630 {
3631 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3632 	u8 pattern[42] = {
3633 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3634 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3635 		0x08, 0x06,
3636 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3637 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3638 		0x00, 0x00, 0x00, 0x00,
3639 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3640 		0x00, 0x00, 0x00, 0x00 };
3641 
3642 	memcpy(&pattern[38], ip_addr, 4);
3643 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3644 }
3645 
3646 /**
3647  * hw_add_wol_bcast - add broadcast pattern
3648  * @hw: 	The hardware instance.
3649  *
3650  * This routine is used to add broadcast pattern for waking up the host.
3651  */
3652 static void hw_add_wol_bcast(struct ksz_hw *hw)
3653 {
3654 	static const u8 mask[] = { 0x3F };
3655 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3656 
3657 	hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3658 }
3659 
3660 /**
3661  * hw_add_wol_mcast - add multicast pattern
3662  * @hw: 	The hardware instance.
3663  *
3664  * This routine is used to add multicast pattern for waking up the host.
3665  *
3666  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3667  * by IPv6 ping command.  Note that multicast packets are filtred through the
3668  * multicast hash table, so not all multicast packets can wake up the host.
3669  */
3670 static void hw_add_wol_mcast(struct ksz_hw *hw)
3671 {
3672 	static const u8 mask[] = { 0x3F };
3673 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3674 
3675 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3676 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3677 }
3678 
3679 /**
3680  * hw_add_wol_ucast - add unicast pattern
3681  * @hw: 	The hardware instance.
3682  *
3683  * This routine is used to add unicast pattern to wakeup the host.
3684  *
3685  * It is assumed the unicast packet is directed to the device, as the hardware
3686  * can only receive them in normal case.
3687  */
3688 static void hw_add_wol_ucast(struct ksz_hw *hw)
3689 {
3690 	static const u8 mask[] = { 0x3F };
3691 
3692 	hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3693 }
3694 
3695 /**
3696  * hw_enable_wol - enable Wake-on-LAN
3697  * @hw: 	The hardware instance.
3698  * @wol_enable:	The Wake-on-LAN settings.
3699  * @net_addr:	The IPv4 address assigned to the device.
3700  *
3701  * This routine is used to enable Wake-on-LAN depending on driver settings.
3702  */
3703 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3704 {
3705 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3706 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3707 	hw_add_wol_ucast(hw);
3708 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3709 	hw_add_wol_mcast(hw);
3710 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3711 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3712 	hw_add_wol_arp(hw, net_addr);
3713 }
3714 
3715 /**
3716  * hw_init - check driver is correct for the hardware
3717  * @hw: 	The hardware instance.
3718  *
3719  * This function checks the hardware is correct for this driver and sets the
3720  * hardware up for proper initialization.
3721  *
3722  * Return number of ports or 0 if not right.
3723  */
3724 static int hw_init(struct ksz_hw *hw)
3725 {
3726 	int rc = 0;
3727 	u16 data;
3728 	u16 revision;
3729 
3730 	/* Set bus speed to 125MHz. */
3731 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3732 
3733 	/* Check KSZ884x chip ID. */
3734 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3735 
3736 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3737 	data &= KS884X_CHIP_ID_MASK_41;
3738 	if (REG_CHIP_ID_41 == data)
3739 		rc = 1;
3740 	else if (REG_CHIP_ID_42 == data)
3741 		rc = 2;
3742 	else
3743 		return 0;
3744 
3745 	/* Setup hardware features or bug workarounds. */
3746 	if (revision <= 1) {
3747 		hw->features |= SMALL_PACKET_TX_BUG;
3748 		if (1 == rc)
3749 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3750 	}
3751 	return rc;
3752 }
3753 
3754 /**
3755  * hw_reset - reset the hardware
3756  * @hw: 	The hardware instance.
3757  *
3758  * This routine resets the hardware.
3759  */
3760 static void hw_reset(struct ksz_hw *hw)
3761 {
3762 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3763 
3764 	/* Wait for device to reset. */
3765 	mdelay(10);
3766 
3767 	/* Write 0 to clear device reset. */
3768 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3769 }
3770 
3771 /**
3772  * hw_setup - setup the hardware
3773  * @hw: 	The hardware instance.
3774  *
3775  * This routine setup the hardware for proper operation.
3776  */
3777 static void hw_setup(struct ksz_hw *hw)
3778 {
3779 #if SET_DEFAULT_LED
3780 	u16 data;
3781 
3782 	/* Change default LED mode. */
3783 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3784 	data &= ~LED_MODE;
3785 	data |= SET_DEFAULT_LED;
3786 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3787 #endif
3788 
3789 	/* Setup transmit control. */
3790 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3791 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3792 
3793 	/* Setup receive control. */
3794 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3795 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3796 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3797 
3798 	/* Hardware cannot handle UDP packet in IP fragments. */
3799 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3800 
3801 	if (hw->all_multi)
3802 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3803 	if (hw->promiscuous)
3804 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3805 }
3806 
3807 /**
3808  * hw_setup_intr - setup interrupt mask
3809  * @hw: 	The hardware instance.
3810  *
3811  * This routine setup the interrupt mask for proper operation.
3812  */
3813 static void hw_setup_intr(struct ksz_hw *hw)
3814 {
3815 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3816 }
3817 
3818 static void ksz_check_desc_num(struct ksz_desc_info *info)
3819 {
3820 #define MIN_DESC_SHIFT  2
3821 
3822 	int alloc = info->alloc;
3823 	int shift;
3824 
3825 	shift = 0;
3826 	while (!(alloc & 1)) {
3827 		shift++;
3828 		alloc >>= 1;
3829 	}
3830 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3831 		pr_alert("Hardware descriptor numbers not right!\n");
3832 		while (alloc) {
3833 			shift++;
3834 			alloc >>= 1;
3835 		}
3836 		if (shift < MIN_DESC_SHIFT)
3837 			shift = MIN_DESC_SHIFT;
3838 		alloc = 1 << shift;
3839 		info->alloc = alloc;
3840 	}
3841 	info->mask = info->alloc - 1;
3842 }
3843 
3844 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3845 {
3846 	int i;
3847 	u32 phys = desc_info->ring_phys;
3848 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3849 	struct ksz_desc *cur = desc_info->ring;
3850 	struct ksz_desc *previous = NULL;
3851 
3852 	for (i = 0; i < desc_info->alloc; i++) {
3853 		cur->phw = desc++;
3854 		phys += desc_info->size;
3855 		previous = cur++;
3856 		previous->phw->next = cpu_to_le32(phys);
3857 	}
3858 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3859 	previous->sw.buf.rx.end_of_ring = 1;
3860 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3861 
3862 	desc_info->avail = desc_info->alloc;
3863 	desc_info->last = desc_info->next = 0;
3864 
3865 	desc_info->cur = desc_info->ring;
3866 }
3867 
3868 /**
3869  * hw_set_desc_base - set descriptor base addresses
3870  * @hw: 	The hardware instance.
3871  * @tx_addr:	The transmit descriptor base.
3872  * @rx_addr:	The receive descriptor base.
3873  *
3874  * This routine programs the descriptor base addresses after reset.
3875  */
3876 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3877 {
3878 	/* Set base address of Tx/Rx descriptors. */
3879 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3880 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3881 }
3882 
3883 static void hw_reset_pkts(struct ksz_desc_info *info)
3884 {
3885 	info->cur = info->ring;
3886 	info->avail = info->alloc;
3887 	info->last = info->next = 0;
3888 }
3889 
3890 static inline void hw_resume_rx(struct ksz_hw *hw)
3891 {
3892 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3893 }
3894 
3895 /**
3896  * hw_start_rx - start receiving
3897  * @hw: 	The hardware instance.
3898  *
3899  * This routine starts the receive function of the hardware.
3900  */
3901 static void hw_start_rx(struct ksz_hw *hw)
3902 {
3903 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3904 
3905 	/* Notify when the receive stops. */
3906 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3907 
3908 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3909 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3910 	hw->rx_stop++;
3911 
3912 	/* Variable overflows. */
3913 	if (0 == hw->rx_stop)
3914 		hw->rx_stop = 2;
3915 }
3916 
3917 /*
3918  * hw_stop_rx - stop receiving
3919  * @hw: 	The hardware instance.
3920  *
3921  * This routine stops the receive function of the hardware.
3922  */
3923 static void hw_stop_rx(struct ksz_hw *hw)
3924 {
3925 	hw->rx_stop = 0;
3926 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3927 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3928 }
3929 
3930 /**
3931  * hw_start_tx - start transmitting
3932  * @hw: 	The hardware instance.
3933  *
3934  * This routine starts the transmit function of the hardware.
3935  */
3936 static void hw_start_tx(struct ksz_hw *hw)
3937 {
3938 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3939 }
3940 
3941 /**
3942  * hw_stop_tx - stop transmitting
3943  * @hw: 	The hardware instance.
3944  *
3945  * This routine stops the transmit function of the hardware.
3946  */
3947 static void hw_stop_tx(struct ksz_hw *hw)
3948 {
3949 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3950 }
3951 
3952 /**
3953  * hw_disable - disable hardware
3954  * @hw: 	The hardware instance.
3955  *
3956  * This routine disables the hardware.
3957  */
3958 static void hw_disable(struct ksz_hw *hw)
3959 {
3960 	hw_stop_rx(hw);
3961 	hw_stop_tx(hw);
3962 	hw->enabled = 0;
3963 }
3964 
3965 /**
3966  * hw_enable - enable hardware
3967  * @hw: 	The hardware instance.
3968  *
3969  * This routine enables the hardware.
3970  */
3971 static void hw_enable(struct ksz_hw *hw)
3972 {
3973 	hw_start_tx(hw);
3974 	hw_start_rx(hw);
3975 	hw->enabled = 1;
3976 }
3977 
3978 /**
3979  * hw_alloc_pkt - allocate enough descriptors for transmission
3980  * @hw: 	The hardware instance.
3981  * @length:	The length of the packet.
3982  * @physical:	Number of descriptors required.
3983  *
3984  * This function allocates descriptors for transmission.
3985  *
3986  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3987  */
3988 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3989 {
3990 	/* Always leave one descriptor free. */
3991 	if (hw->tx_desc_info.avail <= 1)
3992 		return 0;
3993 
3994 	/* Allocate a descriptor for transmission and mark it current. */
3995 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3996 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3997 
3998 	/* Keep track of number of transmit descriptors used so far. */
3999 	++hw->tx_int_cnt;
4000 	hw->tx_size += length;
4001 
4002 	/* Cannot hold on too much data. */
4003 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
4004 		hw->tx_int_cnt = hw->tx_int_mask + 1;
4005 
4006 	if (physical > hw->tx_desc_info.avail)
4007 		return 1;
4008 
4009 	return hw->tx_desc_info.avail;
4010 }
4011 
4012 /**
4013  * hw_send_pkt - mark packet for transmission
4014  * @hw: 	The hardware instance.
4015  *
4016  * This routine marks the packet for transmission in PCI version.
4017  */
4018 static void hw_send_pkt(struct ksz_hw *hw)
4019 {
4020 	struct ksz_desc *cur = hw->tx_desc_info.cur;
4021 
4022 	cur->sw.buf.tx.last_seg = 1;
4023 
4024 	/* Interrupt only after specified number of descriptors used. */
4025 	if (hw->tx_int_cnt > hw->tx_int_mask) {
4026 		cur->sw.buf.tx.intr = 1;
4027 		hw->tx_int_cnt = 0;
4028 		hw->tx_size = 0;
4029 	}
4030 
4031 	/* KSZ8842 supports port directed transmission. */
4032 	cur->sw.buf.tx.dest_port = hw->dst_ports;
4033 
4034 	release_desc(cur);
4035 
4036 	writel(0, hw->io + KS_DMA_TX_START);
4037 }
4038 
4039 static int empty_addr(u8 *addr)
4040 {
4041 	u32 *addr1 = (u32 *) addr;
4042 	u16 *addr2 = (u16 *) &addr[4];
4043 
4044 	return 0 == *addr1 && 0 == *addr2;
4045 }
4046 
4047 /**
4048  * hw_set_addr - set MAC address
4049  * @hw: 	The hardware instance.
4050  *
4051  * This routine programs the MAC address of the hardware when the address is
4052  * overrided.
4053  */
4054 static void hw_set_addr(struct ksz_hw *hw)
4055 {
4056 	int i;
4057 
4058 	for (i = 0; i < MAC_ADDR_LEN; i++)
4059 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4060 			hw->io + KS884X_ADDR_0_OFFSET + i);
4061 
4062 	sw_set_addr(hw, hw->override_addr);
4063 }
4064 
4065 /**
4066  * hw_read_addr - read MAC address
4067  * @hw: 	The hardware instance.
4068  *
4069  * This routine retrieves the MAC address of the hardware.
4070  */
4071 static void hw_read_addr(struct ksz_hw *hw)
4072 {
4073 	int i;
4074 
4075 	for (i = 0; i < MAC_ADDR_LEN; i++)
4076 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4077 			KS884X_ADDR_0_OFFSET + i);
4078 
4079 	if (!hw->mac_override) {
4080 		memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4081 		if (empty_addr(hw->override_addr)) {
4082 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4083 				MAC_ADDR_LEN);
4084 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4085 				MAC_ADDR_LEN);
4086 			hw->override_addr[5] += hw->id;
4087 			hw_set_addr(hw);
4088 		}
4089 	}
4090 }
4091 
4092 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4093 {
4094 	int i;
4095 	u32 mac_addr_lo;
4096 	u32 mac_addr_hi;
4097 
4098 	mac_addr_hi = 0;
4099 	for (i = 0; i < 2; i++) {
4100 		mac_addr_hi <<= 8;
4101 		mac_addr_hi |= mac_addr[i];
4102 	}
4103 	mac_addr_hi |= ADD_ADDR_ENABLE;
4104 	mac_addr_lo = 0;
4105 	for (i = 2; i < 6; i++) {
4106 		mac_addr_lo <<= 8;
4107 		mac_addr_lo |= mac_addr[i];
4108 	}
4109 	index *= ADD_ADDR_INCR;
4110 
4111 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4112 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4113 }
4114 
4115 static void hw_set_add_addr(struct ksz_hw *hw)
4116 {
4117 	int i;
4118 
4119 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4120 		if (empty_addr(hw->address[i]))
4121 			writel(0, hw->io + ADD_ADDR_INCR * i +
4122 				KS_ADD_ADDR_0_HI);
4123 		else
4124 			hw_ena_add_addr(hw, i, hw->address[i]);
4125 	}
4126 }
4127 
4128 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4129 {
4130 	int i;
4131 	int j = ADDITIONAL_ENTRIES;
4132 
4133 	if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4134 		return 0;
4135 	for (i = 0; i < hw->addr_list_size; i++) {
4136 		if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4137 			return 0;
4138 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4139 			j = i;
4140 	}
4141 	if (j < ADDITIONAL_ENTRIES) {
4142 		memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4143 		hw_ena_add_addr(hw, j, hw->address[j]);
4144 		return 0;
4145 	}
4146 	return -1;
4147 }
4148 
4149 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4150 {
4151 	int i;
4152 
4153 	for (i = 0; i < hw->addr_list_size; i++) {
4154 		if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4155 			memset(hw->address[i], 0, MAC_ADDR_LEN);
4156 			writel(0, hw->io + ADD_ADDR_INCR * i +
4157 				KS_ADD_ADDR_0_HI);
4158 			return 0;
4159 		}
4160 	}
4161 	return -1;
4162 }
4163 
4164 /**
4165  * hw_clr_multicast - clear multicast addresses
4166  * @hw: 	The hardware instance.
4167  *
4168  * This routine removes all multicast addresses set in the hardware.
4169  */
4170 static void hw_clr_multicast(struct ksz_hw *hw)
4171 {
4172 	int i;
4173 
4174 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4175 		hw->multi_bits[i] = 0;
4176 
4177 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4178 	}
4179 }
4180 
4181 /**
4182  * hw_set_grp_addr - set multicast addresses
4183  * @hw: 	The hardware instance.
4184  *
4185  * This routine programs multicast addresses for the hardware to accept those
4186  * addresses.
4187  */
4188 static void hw_set_grp_addr(struct ksz_hw *hw)
4189 {
4190 	int i;
4191 	int index;
4192 	int position;
4193 	int value;
4194 
4195 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4196 
4197 	for (i = 0; i < hw->multi_list_size; i++) {
4198 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4199 		index = position >> 3;
4200 		value = 1 << (position & 7);
4201 		hw->multi_bits[index] |= (u8) value;
4202 	}
4203 
4204 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4205 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4206 			i);
4207 }
4208 
4209 /**
4210  * hw_set_multicast - enable or disable all multicast receiving
4211  * @hw: 	The hardware instance.
4212  * @multicast:	To turn on or off the all multicast feature.
4213  *
4214  * This routine enables/disables the hardware to accept all multicast packets.
4215  */
4216 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4217 {
4218 	/* Stop receiving for reconfiguration. */
4219 	hw_stop_rx(hw);
4220 
4221 	if (multicast)
4222 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4223 	else
4224 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4225 
4226 	if (hw->enabled)
4227 		hw_start_rx(hw);
4228 }
4229 
4230 /**
4231  * hw_set_promiscuous - enable or disable promiscuous receiving
4232  * @hw: 	The hardware instance.
4233  * @prom:	To turn on or off the promiscuous feature.
4234  *
4235  * This routine enables/disables the hardware to accept all packets.
4236  */
4237 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4238 {
4239 	/* Stop receiving for reconfiguration. */
4240 	hw_stop_rx(hw);
4241 
4242 	if (prom)
4243 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4244 	else
4245 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4246 
4247 	if (hw->enabled)
4248 		hw_start_rx(hw);
4249 }
4250 
4251 /**
4252  * sw_enable - enable the switch
4253  * @hw: 	The hardware instance.
4254  * @enable:	The flag to enable or disable the switch
4255  *
4256  * This routine is used to enable/disable the switch in KSZ8842.
4257  */
4258 static void sw_enable(struct ksz_hw *hw, int enable)
4259 {
4260 	int port;
4261 
4262 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4263 		if (hw->dev_count > 1) {
4264 			/* Set port-base vlan membership with host port. */
4265 			sw_cfg_port_base_vlan(hw, port,
4266 				HOST_MASK | (1 << port));
4267 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4268 		} else {
4269 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4270 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4271 		}
4272 	}
4273 	if (hw->dev_count > 1)
4274 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4275 	else
4276 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4277 
4278 	if (enable)
4279 		enable = KS8842_START;
4280 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4281 }
4282 
4283 /**
4284  * sw_setup - setup the switch
4285  * @hw: 	The hardware instance.
4286  *
4287  * This routine setup the hardware switch engine for default operation.
4288  */
4289 static void sw_setup(struct ksz_hw *hw)
4290 {
4291 	int port;
4292 
4293 	sw_set_global_ctrl(hw);
4294 
4295 	/* Enable switch broadcast storm protection at 10% percent rate. */
4296 	sw_init_broad_storm(hw);
4297 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4298 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4299 		sw_ena_broad_storm(hw, port);
4300 
4301 	sw_init_prio(hw);
4302 
4303 	sw_init_mirror(hw);
4304 
4305 	sw_init_prio_rate(hw);
4306 
4307 	sw_init_vlan(hw);
4308 
4309 	if (hw->features & STP_SUPPORT)
4310 		sw_init_stp(hw);
4311 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4312 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4313 		hw->overrides |= PAUSE_FLOW_CTRL;
4314 	sw_enable(hw, 1);
4315 }
4316 
4317 /**
4318  * ksz_start_timer - start kernel timer
4319  * @info:	Kernel timer information.
4320  * @time:	The time tick.
4321  *
4322  * This routine starts the kernel timer after the specified time tick.
4323  */
4324 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4325 {
4326 	info->cnt = 0;
4327 	info->timer.expires = jiffies + time;
4328 	add_timer(&info->timer);
4329 
4330 	/* infinity */
4331 	info->max = -1;
4332 }
4333 
4334 /**
4335  * ksz_stop_timer - stop kernel timer
4336  * @info:	Kernel timer information.
4337  *
4338  * This routine stops the kernel timer.
4339  */
4340 static void ksz_stop_timer(struct ksz_timer_info *info)
4341 {
4342 	if (info->max) {
4343 		info->max = 0;
4344 		del_timer_sync(&info->timer);
4345 	}
4346 }
4347 
4348 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4349 	void (*function)(unsigned long), void *data)
4350 {
4351 	info->max = 0;
4352 	info->period = period;
4353 	init_timer(&info->timer);
4354 	info->timer.function = function;
4355 	info->timer.data = (unsigned long) data;
4356 }
4357 
4358 static void ksz_update_timer(struct ksz_timer_info *info)
4359 {
4360 	++info->cnt;
4361 	if (info->max > 0) {
4362 		if (info->cnt < info->max) {
4363 			info->timer.expires = jiffies + info->period;
4364 			add_timer(&info->timer);
4365 		} else
4366 			info->max = 0;
4367 	} else if (info->max < 0) {
4368 		info->timer.expires = jiffies + info->period;
4369 		add_timer(&info->timer);
4370 	}
4371 }
4372 
4373 /**
4374  * ksz_alloc_soft_desc - allocate software descriptors
4375  * @desc_info:	Descriptor information structure.
4376  * @transmit:	Indication that descriptors are for transmit.
4377  *
4378  * This local function allocates software descriptors for manipulation in
4379  * memory.
4380  *
4381  * Return 0 if successful.
4382  */
4383 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4384 {
4385 	desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4386 		GFP_KERNEL);
4387 	if (!desc_info->ring)
4388 		return 1;
4389 	memset((void *) desc_info->ring, 0,
4390 		sizeof(struct ksz_desc) * desc_info->alloc);
4391 	hw_init_desc(desc_info, transmit);
4392 	return 0;
4393 }
4394 
4395 /**
4396  * ksz_alloc_desc - allocate hardware descriptors
4397  * @adapter:	Adapter information structure.
4398  *
4399  * This local function allocates hardware descriptors for receiving and
4400  * transmitting.
4401  *
4402  * Return 0 if successful.
4403  */
4404 static int ksz_alloc_desc(struct dev_info *adapter)
4405 {
4406 	struct ksz_hw *hw = &adapter->hw;
4407 	int offset;
4408 
4409 	/* Allocate memory for RX & TX descriptors. */
4410 	adapter->desc_pool.alloc_size =
4411 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4412 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4413 		DESC_ALIGNMENT;
4414 
4415 	adapter->desc_pool.alloc_virt =
4416 		pci_alloc_consistent(
4417 			adapter->pdev, adapter->desc_pool.alloc_size,
4418 			&adapter->desc_pool.dma_addr);
4419 	if (adapter->desc_pool.alloc_virt == NULL) {
4420 		adapter->desc_pool.alloc_size = 0;
4421 		return 1;
4422 	}
4423 	memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4424 
4425 	/* Align to the next cache line boundary. */
4426 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4427 		(DESC_ALIGNMENT -
4428 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4429 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4430 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4431 
4432 	/* Allocate receive/transmit descriptors. */
4433 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434 		adapter->desc_pool.virt;
4435 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4436 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4437 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4438 		(adapter->desc_pool.virt + offset);
4439 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4440 
4441 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4442 		return 1;
4443 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4444 		return 1;
4445 
4446 	return 0;
4447 }
4448 
4449 /**
4450  * free_dma_buf - release DMA buffer resources
4451  * @adapter:	Adapter information structure.
4452  *
4453  * This routine is just a helper function to release the DMA buffer resources.
4454  */
4455 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4456 	int direction)
4457 {
4458 	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4459 	dev_kfree_skb(dma_buf->skb);
4460 	dma_buf->skb = NULL;
4461 	dma_buf->dma = 0;
4462 }
4463 
4464 /**
4465  * ksz_init_rx_buffers - initialize receive descriptors
4466  * @adapter:	Adapter information structure.
4467  *
4468  * This routine initializes DMA buffers for receiving.
4469  */
4470 static void ksz_init_rx_buffers(struct dev_info *adapter)
4471 {
4472 	int i;
4473 	struct ksz_desc *desc;
4474 	struct ksz_dma_buf *dma_buf;
4475 	struct ksz_hw *hw = &adapter->hw;
4476 	struct ksz_desc_info *info = &hw->rx_desc_info;
4477 
4478 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4479 		get_rx_pkt(info, &desc);
4480 
4481 		dma_buf = DMA_BUFFER(desc);
4482 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4483 			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4484 		dma_buf->len = adapter->mtu;
4485 		if (!dma_buf->skb)
4486 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4487 		if (dma_buf->skb && !dma_buf->dma) {
4488 			dma_buf->skb->dev = adapter->dev;
4489 			dma_buf->dma = pci_map_single(
4490 				adapter->pdev,
4491 				skb_tail_pointer(dma_buf->skb),
4492 				dma_buf->len,
4493 				PCI_DMA_FROMDEVICE);
4494 		}
4495 
4496 		/* Set descriptor. */
4497 		set_rx_buf(desc, dma_buf->dma);
4498 		set_rx_len(desc, dma_buf->len);
4499 		release_desc(desc);
4500 	}
4501 }
4502 
4503 /**
4504  * ksz_alloc_mem - allocate memory for hardware descriptors
4505  * @adapter:	Adapter information structure.
4506  *
4507  * This function allocates memory for use by hardware descriptors for receiving
4508  * and transmitting.
4509  *
4510  * Return 0 if successful.
4511  */
4512 static int ksz_alloc_mem(struct dev_info *adapter)
4513 {
4514 	struct ksz_hw *hw = &adapter->hw;
4515 
4516 	/* Determine the number of receive and transmit descriptors. */
4517 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4518 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4519 
4520 	/* Determine how many descriptors to skip transmit interrupt. */
4521 	hw->tx_int_cnt = 0;
4522 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4523 	if (hw->tx_int_mask > 8)
4524 		hw->tx_int_mask = 8;
4525 	while (hw->tx_int_mask) {
4526 		hw->tx_int_cnt++;
4527 		hw->tx_int_mask >>= 1;
4528 	}
4529 	if (hw->tx_int_cnt) {
4530 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4531 		hw->tx_int_cnt = 0;
4532 	}
4533 
4534 	/* Determine the descriptor size. */
4535 	hw->rx_desc_info.size =
4536 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4537 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4538 	hw->tx_desc_info.size =
4539 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4540 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4541 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4542 		pr_alert("Hardware descriptor size not right!\n");
4543 	ksz_check_desc_num(&hw->rx_desc_info);
4544 	ksz_check_desc_num(&hw->tx_desc_info);
4545 
4546 	/* Allocate descriptors. */
4547 	if (ksz_alloc_desc(adapter))
4548 		return 1;
4549 
4550 	return 0;
4551 }
4552 
4553 /**
4554  * ksz_free_desc - free software and hardware descriptors
4555  * @adapter:	Adapter information structure.
4556  *
4557  * This local routine frees the software and hardware descriptors allocated by
4558  * ksz_alloc_desc().
4559  */
4560 static void ksz_free_desc(struct dev_info *adapter)
4561 {
4562 	struct ksz_hw *hw = &adapter->hw;
4563 
4564 	/* Reset descriptor. */
4565 	hw->rx_desc_info.ring_virt = NULL;
4566 	hw->tx_desc_info.ring_virt = NULL;
4567 	hw->rx_desc_info.ring_phys = 0;
4568 	hw->tx_desc_info.ring_phys = 0;
4569 
4570 	/* Free memory. */
4571 	if (adapter->desc_pool.alloc_virt)
4572 		pci_free_consistent(
4573 			adapter->pdev,
4574 			adapter->desc_pool.alloc_size,
4575 			adapter->desc_pool.alloc_virt,
4576 			adapter->desc_pool.dma_addr);
4577 
4578 	/* Reset resource pool. */
4579 	adapter->desc_pool.alloc_size = 0;
4580 	adapter->desc_pool.alloc_virt = NULL;
4581 
4582 	kfree(hw->rx_desc_info.ring);
4583 	hw->rx_desc_info.ring = NULL;
4584 	kfree(hw->tx_desc_info.ring);
4585 	hw->tx_desc_info.ring = NULL;
4586 }
4587 
4588 /**
4589  * ksz_free_buffers - free buffers used in the descriptors
4590  * @adapter:	Adapter information structure.
4591  * @desc_info:	Descriptor information structure.
4592  *
4593  * This local routine frees buffers used in the DMA buffers.
4594  */
4595 static void ksz_free_buffers(struct dev_info *adapter,
4596 	struct ksz_desc_info *desc_info, int direction)
4597 {
4598 	int i;
4599 	struct ksz_dma_buf *dma_buf;
4600 	struct ksz_desc *desc = desc_info->ring;
4601 
4602 	for (i = 0; i < desc_info->alloc; i++) {
4603 		dma_buf = DMA_BUFFER(desc);
4604 		if (dma_buf->skb)
4605 			free_dma_buf(adapter, dma_buf, direction);
4606 		desc++;
4607 	}
4608 }
4609 
4610 /**
4611  * ksz_free_mem - free all resources used by descriptors
4612  * @adapter:	Adapter information structure.
4613  *
4614  * This local routine frees all the resources allocated by ksz_alloc_mem().
4615  */
4616 static void ksz_free_mem(struct dev_info *adapter)
4617 {
4618 	/* Free transmit buffers. */
4619 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4620 		PCI_DMA_TODEVICE);
4621 
4622 	/* Free receive buffers. */
4623 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4624 		PCI_DMA_FROMDEVICE);
4625 
4626 	/* Free descriptors. */
4627 	ksz_free_desc(adapter);
4628 }
4629 
4630 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4631 	u64 *counter)
4632 {
4633 	int i;
4634 	int mib;
4635 	int port;
4636 	struct ksz_port_mib *port_mib;
4637 
4638 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4639 	for (i = 0, port = first; i < cnt; i++, port++) {
4640 		port_mib = &hw->port_mib[port];
4641 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4642 			counter[mib] += port_mib->counter[mib];
4643 	}
4644 }
4645 
4646 /**
4647  * send_packet - send packet
4648  * @skb:	Socket buffer.
4649  * @dev:	Network device.
4650  *
4651  * This routine is used to send a packet out to the network.
4652  */
4653 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4654 {
4655 	struct ksz_desc *desc;
4656 	struct ksz_desc *first;
4657 	struct dev_priv *priv = netdev_priv(dev);
4658 	struct dev_info *hw_priv = priv->adapter;
4659 	struct ksz_hw *hw = &hw_priv->hw;
4660 	struct ksz_desc_info *info = &hw->tx_desc_info;
4661 	struct ksz_dma_buf *dma_buf;
4662 	int len;
4663 	int last_frag = skb_shinfo(skb)->nr_frags;
4664 
4665 	/*
4666 	 * KSZ8842 with multiple device interfaces needs to be told which port
4667 	 * to send.
4668 	 */
4669 	if (hw->dev_count > 1)
4670 		hw->dst_ports = 1 << priv->port.first_port;
4671 
4672 	/* Hardware will pad the length to 60. */
4673 	len = skb->len;
4674 
4675 	/* Remember the very first descriptor. */
4676 	first = info->cur;
4677 	desc = first;
4678 
4679 	dma_buf = DMA_BUFFER(desc);
4680 	if (last_frag) {
4681 		int frag;
4682 		skb_frag_t *this_frag;
4683 
4684 		dma_buf->len = skb_headlen(skb);
4685 
4686 		dma_buf->dma = pci_map_single(
4687 			hw_priv->pdev, skb->data, dma_buf->len,
4688 			PCI_DMA_TODEVICE);
4689 		set_tx_buf(desc, dma_buf->dma);
4690 		set_tx_len(desc, dma_buf->len);
4691 
4692 		frag = 0;
4693 		do {
4694 			this_frag = &skb_shinfo(skb)->frags[frag];
4695 
4696 			/* Get a new descriptor. */
4697 			get_tx_pkt(info, &desc);
4698 
4699 			/* Keep track of descriptors used so far. */
4700 			++hw->tx_int_cnt;
4701 
4702 			dma_buf = DMA_BUFFER(desc);
4703 			dma_buf->len = skb_frag_size(this_frag);
4704 
4705 			dma_buf->dma = pci_map_single(
4706 				hw_priv->pdev,
4707 				skb_frag_address(this_frag),
4708 				dma_buf->len,
4709 				PCI_DMA_TODEVICE);
4710 			set_tx_buf(desc, dma_buf->dma);
4711 			set_tx_len(desc, dma_buf->len);
4712 
4713 			frag++;
4714 			if (frag == last_frag)
4715 				break;
4716 
4717 			/* Do not release the last descriptor here. */
4718 			release_desc(desc);
4719 		} while (1);
4720 
4721 		/* current points to the last descriptor. */
4722 		info->cur = desc;
4723 
4724 		/* Release the first descriptor. */
4725 		release_desc(first);
4726 	} else {
4727 		dma_buf->len = len;
4728 
4729 		dma_buf->dma = pci_map_single(
4730 			hw_priv->pdev, skb->data, dma_buf->len,
4731 			PCI_DMA_TODEVICE);
4732 		set_tx_buf(desc, dma_buf->dma);
4733 		set_tx_len(desc, dma_buf->len);
4734 	}
4735 
4736 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4737 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4738 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4739 	}
4740 
4741 	/*
4742 	 * The last descriptor holds the packet so that it can be returned to
4743 	 * network subsystem after all descriptors are transmitted.
4744 	 */
4745 	dma_buf->skb = skb;
4746 
4747 	hw_send_pkt(hw);
4748 
4749 	/* Update transmit statistics. */
4750 	dev->stats.tx_packets++;
4751 	dev->stats.tx_bytes += len;
4752 }
4753 
4754 /**
4755  * transmit_cleanup - clean up transmit descriptors
4756  * @dev:	Network device.
4757  *
4758  * This routine is called to clean up the transmitted buffers.
4759  */
4760 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4761 {
4762 	int last;
4763 	union desc_stat status;
4764 	struct ksz_hw *hw = &hw_priv->hw;
4765 	struct ksz_desc_info *info = &hw->tx_desc_info;
4766 	struct ksz_desc *desc;
4767 	struct ksz_dma_buf *dma_buf;
4768 	struct net_device *dev = NULL;
4769 
4770 	spin_lock(&hw_priv->hwlock);
4771 	last = info->last;
4772 
4773 	while (info->avail < info->alloc) {
4774 		/* Get next descriptor which is not hardware owned. */
4775 		desc = &info->ring[last];
4776 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4777 		if (status.tx.hw_owned) {
4778 			if (normal)
4779 				break;
4780 			else
4781 				reset_desc(desc, status);
4782 		}
4783 
4784 		dma_buf = DMA_BUFFER(desc);
4785 		pci_unmap_single(
4786 			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4787 			PCI_DMA_TODEVICE);
4788 
4789 		/* This descriptor contains the last buffer in the packet. */
4790 		if (dma_buf->skb) {
4791 			dev = dma_buf->skb->dev;
4792 
4793 			/* Release the packet back to network subsystem. */
4794 			dev_kfree_skb_irq(dma_buf->skb);
4795 			dma_buf->skb = NULL;
4796 		}
4797 
4798 		/* Free the transmitted descriptor. */
4799 		last++;
4800 		last &= info->mask;
4801 		info->avail++;
4802 	}
4803 	info->last = last;
4804 	spin_unlock(&hw_priv->hwlock);
4805 
4806 	/* Notify the network subsystem that the packet has been sent. */
4807 	if (dev)
4808 		dev->trans_start = jiffies;
4809 }
4810 
4811 /**
4812  * transmit_done - transmit done processing
4813  * @dev:	Network device.
4814  *
4815  * This routine is called when the transmit interrupt is triggered, indicating
4816  * either a packet is sent successfully or there are transmit errors.
4817  */
4818 static void tx_done(struct dev_info *hw_priv)
4819 {
4820 	struct ksz_hw *hw = &hw_priv->hw;
4821 	int port;
4822 
4823 	transmit_cleanup(hw_priv, 1);
4824 
4825 	for (port = 0; port < hw->dev_count; port++) {
4826 		struct net_device *dev = hw->port_info[port].pdev;
4827 
4828 		if (netif_running(dev) && netif_queue_stopped(dev))
4829 			netif_wake_queue(dev);
4830 	}
4831 }
4832 
4833 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4834 {
4835 	skb->dev = old->dev;
4836 	skb->protocol = old->protocol;
4837 	skb->ip_summed = old->ip_summed;
4838 	skb->csum = old->csum;
4839 	skb_set_network_header(skb, ETH_HLEN);
4840 
4841 	dev_kfree_skb(old);
4842 }
4843 
4844 /**
4845  * netdev_tx - send out packet
4846  * @skb:	Socket buffer.
4847  * @dev:	Network device.
4848  *
4849  * This function is used by the upper network layer to send out a packet.
4850  *
4851  * Return 0 if successful; otherwise an error code indicating failure.
4852  */
4853 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4854 {
4855 	struct dev_priv *priv = netdev_priv(dev);
4856 	struct dev_info *hw_priv = priv->adapter;
4857 	struct ksz_hw *hw = &hw_priv->hw;
4858 	int left;
4859 	int num = 1;
4860 	int rc = 0;
4861 
4862 	if (hw->features & SMALL_PACKET_TX_BUG) {
4863 		struct sk_buff *org_skb = skb;
4864 
4865 		if (skb->len <= 48) {
4866 			if (skb_end_pointer(skb) - skb->data >= 50) {
4867 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4868 				skb->len = 50;
4869 			} else {
4870 				skb = dev_alloc_skb(50);
4871 				if (!skb)
4872 					return NETDEV_TX_BUSY;
4873 				memcpy(skb->data, org_skb->data, org_skb->len);
4874 				memset(&skb->data[org_skb->len], 0,
4875 					50 - org_skb->len);
4876 				skb->len = 50;
4877 				copy_old_skb(org_skb, skb);
4878 			}
4879 		}
4880 	}
4881 
4882 	spin_lock_irq(&hw_priv->hwlock);
4883 
4884 	num = skb_shinfo(skb)->nr_frags + 1;
4885 	left = hw_alloc_pkt(hw, skb->len, num);
4886 	if (left) {
4887 		if (left < num ||
4888 				((CHECKSUM_PARTIAL == skb->ip_summed) &&
4889 				(ETH_P_IPV6 == htons(skb->protocol)))) {
4890 			struct sk_buff *org_skb = skb;
4891 
4892 			skb = dev_alloc_skb(org_skb->len);
4893 			if (!skb) {
4894 				rc = NETDEV_TX_BUSY;
4895 				goto unlock;
4896 			}
4897 			skb_copy_and_csum_dev(org_skb, skb->data);
4898 			org_skb->ip_summed = CHECKSUM_NONE;
4899 			skb->len = org_skb->len;
4900 			copy_old_skb(org_skb, skb);
4901 		}
4902 		send_packet(skb, dev);
4903 		if (left <= num)
4904 			netif_stop_queue(dev);
4905 	} else {
4906 		/* Stop the transmit queue until packet is allocated. */
4907 		netif_stop_queue(dev);
4908 		rc = NETDEV_TX_BUSY;
4909 	}
4910 unlock:
4911 	spin_unlock_irq(&hw_priv->hwlock);
4912 
4913 	return rc;
4914 }
4915 
4916 /**
4917  * netdev_tx_timeout - transmit timeout processing
4918  * @dev:	Network device.
4919  *
4920  * This routine is called when the transmit timer expires.  That indicates the
4921  * hardware is not running correctly because transmit interrupts are not
4922  * triggered to free up resources so that the transmit routine can continue
4923  * sending out packets.  The hardware is reset to correct the problem.
4924  */
4925 static void netdev_tx_timeout(struct net_device *dev)
4926 {
4927 	static unsigned long last_reset;
4928 
4929 	struct dev_priv *priv = netdev_priv(dev);
4930 	struct dev_info *hw_priv = priv->adapter;
4931 	struct ksz_hw *hw = &hw_priv->hw;
4932 	int port;
4933 
4934 	if (hw->dev_count > 1) {
4935 		/*
4936 		 * Only reset the hardware if time between calls is long
4937 		 * enough.
4938 		 */
4939 		if (jiffies - last_reset <= dev->watchdog_timeo)
4940 			hw_priv = NULL;
4941 	}
4942 
4943 	last_reset = jiffies;
4944 	if (hw_priv) {
4945 		hw_dis_intr(hw);
4946 		hw_disable(hw);
4947 
4948 		transmit_cleanup(hw_priv, 0);
4949 		hw_reset_pkts(&hw->rx_desc_info);
4950 		hw_reset_pkts(&hw->tx_desc_info);
4951 		ksz_init_rx_buffers(hw_priv);
4952 
4953 		hw_reset(hw);
4954 
4955 		hw_set_desc_base(hw,
4956 			hw->tx_desc_info.ring_phys,
4957 			hw->rx_desc_info.ring_phys);
4958 		hw_set_addr(hw);
4959 		if (hw->all_multi)
4960 			hw_set_multicast(hw, hw->all_multi);
4961 		else if (hw->multi_list_size)
4962 			hw_set_grp_addr(hw);
4963 
4964 		if (hw->dev_count > 1) {
4965 			hw_set_add_addr(hw);
4966 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4967 				struct net_device *port_dev;
4968 
4969 				port_set_stp_state(hw, port,
4970 					STP_STATE_DISABLED);
4971 
4972 				port_dev = hw->port_info[port].pdev;
4973 				if (netif_running(port_dev))
4974 					port_set_stp_state(hw, port,
4975 						STP_STATE_SIMPLE);
4976 			}
4977 		}
4978 
4979 		hw_enable(hw);
4980 		hw_ena_intr(hw);
4981 	}
4982 
4983 	dev->trans_start = jiffies;
4984 	netif_wake_queue(dev);
4985 }
4986 
4987 static inline void csum_verified(struct sk_buff *skb)
4988 {
4989 	unsigned short protocol;
4990 	struct iphdr *iph;
4991 
4992 	protocol = skb->protocol;
4993 	skb_reset_network_header(skb);
4994 	iph = (struct iphdr *) skb_network_header(skb);
4995 	if (protocol == htons(ETH_P_8021Q)) {
4996 		protocol = iph->tot_len;
4997 		skb_set_network_header(skb, VLAN_HLEN);
4998 		iph = (struct iphdr *) skb_network_header(skb);
4999 	}
5000 	if (protocol == htons(ETH_P_IP)) {
5001 		if (iph->protocol == IPPROTO_TCP)
5002 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5003 	}
5004 }
5005 
5006 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5007 	struct ksz_desc *desc, union desc_stat status)
5008 {
5009 	int packet_len;
5010 	struct dev_priv *priv = netdev_priv(dev);
5011 	struct dev_info *hw_priv = priv->adapter;
5012 	struct ksz_dma_buf *dma_buf;
5013 	struct sk_buff *skb;
5014 	int rx_status;
5015 
5016 	/* Received length includes 4-byte CRC. */
5017 	packet_len = status.rx.frame_len - 4;
5018 
5019 	dma_buf = DMA_BUFFER(desc);
5020 	pci_dma_sync_single_for_cpu(
5021 		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5022 		PCI_DMA_FROMDEVICE);
5023 
5024 	do {
5025 		/* skb->data != skb->head */
5026 		skb = dev_alloc_skb(packet_len + 2);
5027 		if (!skb) {
5028 			dev->stats.rx_dropped++;
5029 			return -ENOMEM;
5030 		}
5031 
5032 		/*
5033 		 * Align socket buffer in 4-byte boundary for better
5034 		 * performance.
5035 		 */
5036 		skb_reserve(skb, 2);
5037 
5038 		memcpy(skb_put(skb, packet_len),
5039 			dma_buf->skb->data, packet_len);
5040 	} while (0);
5041 
5042 	skb->protocol = eth_type_trans(skb, dev);
5043 
5044 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5045 		csum_verified(skb);
5046 
5047 	/* Update receive statistics. */
5048 	dev->stats.rx_packets++;
5049 	dev->stats.rx_bytes += packet_len;
5050 
5051 	/* Notify upper layer for received packet. */
5052 	rx_status = netif_rx(skb);
5053 
5054 	return 0;
5055 }
5056 
5057 static int dev_rcv_packets(struct dev_info *hw_priv)
5058 {
5059 	int next;
5060 	union desc_stat status;
5061 	struct ksz_hw *hw = &hw_priv->hw;
5062 	struct net_device *dev = hw->port_info[0].pdev;
5063 	struct ksz_desc_info *info = &hw->rx_desc_info;
5064 	int left = info->alloc;
5065 	struct ksz_desc *desc;
5066 	int received = 0;
5067 
5068 	next = info->next;
5069 	while (left--) {
5070 		/* Get next descriptor which is not hardware owned. */
5071 		desc = &info->ring[next];
5072 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5073 		if (status.rx.hw_owned)
5074 			break;
5075 
5076 		/* Status valid only when last descriptor bit is set. */
5077 		if (status.rx.last_desc && status.rx.first_desc) {
5078 			if (rx_proc(dev, hw, desc, status))
5079 				goto release_packet;
5080 			received++;
5081 		}
5082 
5083 release_packet:
5084 		release_desc(desc);
5085 		next++;
5086 		next &= info->mask;
5087 	}
5088 	info->next = next;
5089 
5090 	return received;
5091 }
5092 
5093 static int port_rcv_packets(struct dev_info *hw_priv)
5094 {
5095 	int next;
5096 	union desc_stat status;
5097 	struct ksz_hw *hw = &hw_priv->hw;
5098 	struct net_device *dev = hw->port_info[0].pdev;
5099 	struct ksz_desc_info *info = &hw->rx_desc_info;
5100 	int left = info->alloc;
5101 	struct ksz_desc *desc;
5102 	int received = 0;
5103 
5104 	next = info->next;
5105 	while (left--) {
5106 		/* Get next descriptor which is not hardware owned. */
5107 		desc = &info->ring[next];
5108 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5109 		if (status.rx.hw_owned)
5110 			break;
5111 
5112 		if (hw->dev_count > 1) {
5113 			/* Get received port number. */
5114 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5115 
5116 			dev = hw->port_info[p].pdev;
5117 			if (!netif_running(dev))
5118 				goto release_packet;
5119 		}
5120 
5121 		/* Status valid only when last descriptor bit is set. */
5122 		if (status.rx.last_desc && status.rx.first_desc) {
5123 			if (rx_proc(dev, hw, desc, status))
5124 				goto release_packet;
5125 			received++;
5126 		}
5127 
5128 release_packet:
5129 		release_desc(desc);
5130 		next++;
5131 		next &= info->mask;
5132 	}
5133 	info->next = next;
5134 
5135 	return received;
5136 }
5137 
5138 static int dev_rcv_special(struct dev_info *hw_priv)
5139 {
5140 	int next;
5141 	union desc_stat status;
5142 	struct ksz_hw *hw = &hw_priv->hw;
5143 	struct net_device *dev = hw->port_info[0].pdev;
5144 	struct ksz_desc_info *info = &hw->rx_desc_info;
5145 	int left = info->alloc;
5146 	struct ksz_desc *desc;
5147 	int received = 0;
5148 
5149 	next = info->next;
5150 	while (left--) {
5151 		/* Get next descriptor which is not hardware owned. */
5152 		desc = &info->ring[next];
5153 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5154 		if (status.rx.hw_owned)
5155 			break;
5156 
5157 		if (hw->dev_count > 1) {
5158 			/* Get received port number. */
5159 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5160 
5161 			dev = hw->port_info[p].pdev;
5162 			if (!netif_running(dev))
5163 				goto release_packet;
5164 		}
5165 
5166 		/* Status valid only when last descriptor bit is set. */
5167 		if (status.rx.last_desc && status.rx.first_desc) {
5168 			/*
5169 			 * Receive without error.  With receive errors
5170 			 * disabled, packets with receive errors will be
5171 			 * dropped, so no need to check the error bit.
5172 			 */
5173 			if (!status.rx.error || (status.data &
5174 					KS_DESC_RX_ERROR_COND) ==
5175 					KS_DESC_RX_ERROR_TOO_LONG) {
5176 				if (rx_proc(dev, hw, desc, status))
5177 					goto release_packet;
5178 				received++;
5179 			} else {
5180 				struct dev_priv *priv = netdev_priv(dev);
5181 
5182 				/* Update receive error statistics. */
5183 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5184 			}
5185 		}
5186 
5187 release_packet:
5188 		release_desc(desc);
5189 		next++;
5190 		next &= info->mask;
5191 	}
5192 	info->next = next;
5193 
5194 	return received;
5195 }
5196 
5197 static void rx_proc_task(unsigned long data)
5198 {
5199 	struct dev_info *hw_priv = (struct dev_info *) data;
5200 	struct ksz_hw *hw = &hw_priv->hw;
5201 
5202 	if (!hw->enabled)
5203 		return;
5204 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5205 
5206 		/* In case receive process is suspended because of overrun. */
5207 		hw_resume_rx(hw);
5208 
5209 		/* tasklets are interruptible. */
5210 		spin_lock_irq(&hw_priv->hwlock);
5211 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5212 		spin_unlock_irq(&hw_priv->hwlock);
5213 	} else {
5214 		hw_ack_intr(hw, KS884X_INT_RX);
5215 		tasklet_schedule(&hw_priv->rx_tasklet);
5216 	}
5217 }
5218 
5219 static void tx_proc_task(unsigned long data)
5220 {
5221 	struct dev_info *hw_priv = (struct dev_info *) data;
5222 	struct ksz_hw *hw = &hw_priv->hw;
5223 
5224 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5225 
5226 	tx_done(hw_priv);
5227 
5228 	/* tasklets are interruptible. */
5229 	spin_lock_irq(&hw_priv->hwlock);
5230 	hw_turn_on_intr(hw, KS884X_INT_TX);
5231 	spin_unlock_irq(&hw_priv->hwlock);
5232 }
5233 
5234 static inline void handle_rx_stop(struct ksz_hw *hw)
5235 {
5236 	/* Receive just has been stopped. */
5237 	if (0 == hw->rx_stop)
5238 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5239 	else if (hw->rx_stop > 1) {
5240 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5241 			hw_start_rx(hw);
5242 		} else {
5243 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5244 			hw->rx_stop = 0;
5245 		}
5246 	} else
5247 		/* Receive just has been started. */
5248 		hw->rx_stop++;
5249 }
5250 
5251 /**
5252  * netdev_intr - interrupt handling
5253  * @irq:	Interrupt number.
5254  * @dev_id:	Network device.
5255  *
5256  * This function is called by upper network layer to signal interrupt.
5257  *
5258  * Return IRQ_HANDLED if interrupt is handled.
5259  */
5260 static irqreturn_t netdev_intr(int irq, void *dev_id)
5261 {
5262 	uint int_enable = 0;
5263 	struct net_device *dev = (struct net_device *) dev_id;
5264 	struct dev_priv *priv = netdev_priv(dev);
5265 	struct dev_info *hw_priv = priv->adapter;
5266 	struct ksz_hw *hw = &hw_priv->hw;
5267 
5268 	hw_read_intr(hw, &int_enable);
5269 
5270 	/* Not our interrupt! */
5271 	if (!int_enable)
5272 		return IRQ_NONE;
5273 
5274 	do {
5275 		hw_ack_intr(hw, int_enable);
5276 		int_enable &= hw->intr_mask;
5277 
5278 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5279 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5280 			tasklet_schedule(&hw_priv->tx_tasklet);
5281 		}
5282 
5283 		if (likely(int_enable & KS884X_INT_RX)) {
5284 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5285 			tasklet_schedule(&hw_priv->rx_tasklet);
5286 		}
5287 
5288 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5289 			dev->stats.rx_fifo_errors++;
5290 			hw_resume_rx(hw);
5291 		}
5292 
5293 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5294 			struct ksz_port *port = &priv->port;
5295 
5296 			hw->features |= LINK_INT_WORKING;
5297 			port_get_link_speed(port);
5298 		}
5299 
5300 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5301 			handle_rx_stop(hw);
5302 			break;
5303 		}
5304 
5305 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5306 			u32 data;
5307 
5308 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5309 			pr_info("Tx stopped\n");
5310 			data = readl(hw->io + KS_DMA_TX_CTRL);
5311 			if (!(data & DMA_TX_ENABLE))
5312 				pr_info("Tx disabled\n");
5313 			break;
5314 		}
5315 	} while (0);
5316 
5317 	hw_ena_intr(hw);
5318 
5319 	return IRQ_HANDLED;
5320 }
5321 
5322 /*
5323  * Linux network device functions
5324  */
5325 
5326 static unsigned long next_jiffies;
5327 
5328 #ifdef CONFIG_NET_POLL_CONTROLLER
5329 static void netdev_netpoll(struct net_device *dev)
5330 {
5331 	struct dev_priv *priv = netdev_priv(dev);
5332 	struct dev_info *hw_priv = priv->adapter;
5333 
5334 	hw_dis_intr(&hw_priv->hw);
5335 	netdev_intr(dev->irq, dev);
5336 }
5337 #endif
5338 
5339 static void bridge_change(struct ksz_hw *hw)
5340 {
5341 	int port;
5342 	u8  member;
5343 	struct ksz_switch *sw = hw->ksz_switch;
5344 
5345 	/* No ports in forwarding state. */
5346 	if (!sw->member) {
5347 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5348 		sw_block_addr(hw);
5349 	}
5350 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5351 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5352 			member = HOST_MASK | sw->member;
5353 		else
5354 			member = HOST_MASK | (1 << port);
5355 		if (member != sw->port_cfg[port].member)
5356 			sw_cfg_port_base_vlan(hw, port, member);
5357 	}
5358 }
5359 
5360 /**
5361  * netdev_close - close network device
5362  * @dev:	Network device.
5363  *
5364  * This function process the close operation of network device.  This is caused
5365  * by the user command "ifconfig ethX down."
5366  *
5367  * Return 0 if successful; otherwise an error code indicating failure.
5368  */
5369 static int netdev_close(struct net_device *dev)
5370 {
5371 	struct dev_priv *priv = netdev_priv(dev);
5372 	struct dev_info *hw_priv = priv->adapter;
5373 	struct ksz_port *port = &priv->port;
5374 	struct ksz_hw *hw = &hw_priv->hw;
5375 	int pi;
5376 
5377 	netif_stop_queue(dev);
5378 
5379 	ksz_stop_timer(&priv->monitor_timer_info);
5380 
5381 	/* Need to shut the port manually in multiple device interfaces mode. */
5382 	if (hw->dev_count > 1) {
5383 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5384 
5385 		/* Port is closed.  Need to change bridge setting. */
5386 		if (hw->features & STP_SUPPORT) {
5387 			pi = 1 << port->first_port;
5388 			if (hw->ksz_switch->member & pi) {
5389 				hw->ksz_switch->member &= ~pi;
5390 				bridge_change(hw);
5391 			}
5392 		}
5393 	}
5394 	if (port->first_port > 0)
5395 		hw_del_addr(hw, dev->dev_addr);
5396 	if (!hw_priv->wol_enable)
5397 		port_set_power_saving(port, true);
5398 
5399 	if (priv->multicast)
5400 		--hw->all_multi;
5401 	if (priv->promiscuous)
5402 		--hw->promiscuous;
5403 
5404 	hw_priv->opened--;
5405 	if (!(hw_priv->opened)) {
5406 		ksz_stop_timer(&hw_priv->mib_timer_info);
5407 		flush_work(&hw_priv->mib_read);
5408 
5409 		hw_dis_intr(hw);
5410 		hw_disable(hw);
5411 		hw_clr_multicast(hw);
5412 
5413 		/* Delay for receive task to stop scheduling itself. */
5414 		msleep(2000 / HZ);
5415 
5416 		tasklet_disable(&hw_priv->rx_tasklet);
5417 		tasklet_disable(&hw_priv->tx_tasklet);
5418 		free_irq(dev->irq, hw_priv->dev);
5419 
5420 		transmit_cleanup(hw_priv, 0);
5421 		hw_reset_pkts(&hw->rx_desc_info);
5422 		hw_reset_pkts(&hw->tx_desc_info);
5423 
5424 		/* Clean out static MAC table when the switch is shutdown. */
5425 		if (hw->features & STP_SUPPORT)
5426 			sw_clr_sta_mac_table(hw);
5427 	}
5428 
5429 	return 0;
5430 }
5431 
5432 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5433 {
5434 	if (hw->ksz_switch) {
5435 		u32 data;
5436 
5437 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5438 		if (hw->features & RX_HUGE_FRAME)
5439 			data |= SWITCH_HUGE_PACKET;
5440 		else
5441 			data &= ~SWITCH_HUGE_PACKET;
5442 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5443 	}
5444 	if (hw->features & RX_HUGE_FRAME) {
5445 		hw->rx_cfg |= DMA_RX_ERROR;
5446 		hw_priv->dev_rcv = dev_rcv_special;
5447 	} else {
5448 		hw->rx_cfg &= ~DMA_RX_ERROR;
5449 		if (hw->dev_count > 1)
5450 			hw_priv->dev_rcv = port_rcv_packets;
5451 		else
5452 			hw_priv->dev_rcv = dev_rcv_packets;
5453 	}
5454 }
5455 
5456 static int prepare_hardware(struct net_device *dev)
5457 {
5458 	struct dev_priv *priv = netdev_priv(dev);
5459 	struct dev_info *hw_priv = priv->adapter;
5460 	struct ksz_hw *hw = &hw_priv->hw;
5461 	int rc = 0;
5462 
5463 	/* Remember the network device that requests interrupts. */
5464 	hw_priv->dev = dev;
5465 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5466 	if (rc)
5467 		return rc;
5468 	tasklet_enable(&hw_priv->rx_tasklet);
5469 	tasklet_enable(&hw_priv->tx_tasklet);
5470 
5471 	hw->promiscuous = 0;
5472 	hw->all_multi = 0;
5473 	hw->multi_list_size = 0;
5474 
5475 	hw_reset(hw);
5476 
5477 	hw_set_desc_base(hw,
5478 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5479 	hw_set_addr(hw);
5480 	hw_cfg_huge_frame(hw_priv, hw);
5481 	ksz_init_rx_buffers(hw_priv);
5482 	return 0;
5483 }
5484 
5485 static void set_media_state(struct net_device *dev, int media_state)
5486 {
5487 	struct dev_priv *priv = netdev_priv(dev);
5488 
5489 	if (media_state == priv->media_state)
5490 		netif_carrier_on(dev);
5491 	else
5492 		netif_carrier_off(dev);
5493 	netif_info(priv, link, dev, "link %s\n",
5494 		   media_state == priv->media_state ? "on" : "off");
5495 }
5496 
5497 /**
5498  * netdev_open - open network device
5499  * @dev:	Network device.
5500  *
5501  * This function process the open operation of network device.  This is caused
5502  * by the user command "ifconfig ethX up."
5503  *
5504  * Return 0 if successful; otherwise an error code indicating failure.
5505  */
5506 static int netdev_open(struct net_device *dev)
5507 {
5508 	struct dev_priv *priv = netdev_priv(dev);
5509 	struct dev_info *hw_priv = priv->adapter;
5510 	struct ksz_hw *hw = &hw_priv->hw;
5511 	struct ksz_port *port = &priv->port;
5512 	int i;
5513 	int p;
5514 	int rc = 0;
5515 
5516 	priv->multicast = 0;
5517 	priv->promiscuous = 0;
5518 
5519 	/* Reset device statistics. */
5520 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5521 	memset((void *) port->counter, 0,
5522 		(sizeof(u64) * OID_COUNTER_LAST));
5523 
5524 	if (!(hw_priv->opened)) {
5525 		rc = prepare_hardware(dev);
5526 		if (rc)
5527 			return rc;
5528 		for (i = 0; i < hw->mib_port_cnt; i++) {
5529 			if (next_jiffies < jiffies)
5530 				next_jiffies = jiffies + HZ * 2;
5531 			else
5532 				next_jiffies += HZ * 1;
5533 			hw_priv->counter[i].time = next_jiffies;
5534 			hw->port_mib[i].state = media_disconnected;
5535 			port_init_cnt(hw, i);
5536 		}
5537 		if (hw->ksz_switch)
5538 			hw->port_mib[HOST_PORT].state = media_connected;
5539 		else {
5540 			hw_add_wol_bcast(hw);
5541 			hw_cfg_wol_pme(hw, 0);
5542 			hw_clr_wol_pme_status(&hw_priv->hw);
5543 		}
5544 	}
5545 	port_set_power_saving(port, false);
5546 
5547 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5548 		/*
5549 		 * Initialize to invalid value so that link detection
5550 		 * is done.
5551 		 */
5552 		hw->port_info[p].partner = 0xFF;
5553 		hw->port_info[p].state = media_disconnected;
5554 	}
5555 
5556 	/* Need to open the port in multiple device interfaces mode. */
5557 	if (hw->dev_count > 1) {
5558 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5559 		if (port->first_port > 0)
5560 			hw_add_addr(hw, dev->dev_addr);
5561 	}
5562 
5563 	port_get_link_speed(port);
5564 	if (port->force_link)
5565 		port_force_link_speed(port);
5566 	else
5567 		port_set_link_speed(port);
5568 
5569 	if (!(hw_priv->opened)) {
5570 		hw_setup_intr(hw);
5571 		hw_enable(hw);
5572 		hw_ena_intr(hw);
5573 
5574 		if (hw->mib_port_cnt)
5575 			ksz_start_timer(&hw_priv->mib_timer_info,
5576 				hw_priv->mib_timer_info.period);
5577 	}
5578 
5579 	hw_priv->opened++;
5580 
5581 	ksz_start_timer(&priv->monitor_timer_info,
5582 		priv->monitor_timer_info.period);
5583 
5584 	priv->media_state = port->linked->state;
5585 
5586 	set_media_state(dev, media_connected);
5587 	netif_start_queue(dev);
5588 
5589 	return 0;
5590 }
5591 
5592 /* RX errors = rx_errors */
5593 /* RX dropped = rx_dropped */
5594 /* RX overruns = rx_fifo_errors */
5595 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5596 /* TX errors = tx_errors */
5597 /* TX dropped = tx_dropped */
5598 /* TX overruns = tx_fifo_errors */
5599 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5600 /* collisions = collisions */
5601 
5602 /**
5603  * netdev_query_statistics - query network device statistics
5604  * @dev:	Network device.
5605  *
5606  * This function returns the statistics of the network device.  The device
5607  * needs not be opened.
5608  *
5609  * Return network device statistics.
5610  */
5611 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5612 {
5613 	struct dev_priv *priv = netdev_priv(dev);
5614 	struct ksz_port *port = &priv->port;
5615 	struct ksz_hw *hw = &priv->adapter->hw;
5616 	struct ksz_port_mib *mib;
5617 	int i;
5618 	int p;
5619 
5620 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5621 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5622 
5623 	/* Reset to zero to add count later. */
5624 	dev->stats.multicast = 0;
5625 	dev->stats.collisions = 0;
5626 	dev->stats.rx_length_errors = 0;
5627 	dev->stats.rx_crc_errors = 0;
5628 	dev->stats.rx_frame_errors = 0;
5629 	dev->stats.tx_window_errors = 0;
5630 
5631 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5632 		mib = &hw->port_mib[p];
5633 
5634 		dev->stats.multicast += (unsigned long)
5635 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5636 
5637 		dev->stats.collisions += (unsigned long)
5638 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5639 
5640 		dev->stats.rx_length_errors += (unsigned long)(
5641 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5642 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5643 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5644 			mib->counter[MIB_COUNTER_RX_JABBER]);
5645 		dev->stats.rx_crc_errors += (unsigned long)
5646 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5647 		dev->stats.rx_frame_errors += (unsigned long)(
5648 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5649 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5650 
5651 		dev->stats.tx_window_errors += (unsigned long)
5652 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5653 	}
5654 
5655 	return &dev->stats;
5656 }
5657 
5658 /**
5659  * netdev_set_mac_address - set network device MAC address
5660  * @dev:	Network device.
5661  * @addr:	Buffer of MAC address.
5662  *
5663  * This function is used to set the MAC address of the network device.
5664  *
5665  * Return 0 to indicate success.
5666  */
5667 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5668 {
5669 	struct dev_priv *priv = netdev_priv(dev);
5670 	struct dev_info *hw_priv = priv->adapter;
5671 	struct ksz_hw *hw = &hw_priv->hw;
5672 	struct sockaddr *mac = addr;
5673 	uint interrupt;
5674 
5675 	if (priv->port.first_port > 0)
5676 		hw_del_addr(hw, dev->dev_addr);
5677 	else {
5678 		hw->mac_override = 1;
5679 		memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5680 	}
5681 
5682 	memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5683 
5684 	interrupt = hw_block_intr(hw);
5685 
5686 	if (priv->port.first_port > 0)
5687 		hw_add_addr(hw, dev->dev_addr);
5688 	else
5689 		hw_set_addr(hw);
5690 	hw_restore_intr(hw, interrupt);
5691 
5692 	return 0;
5693 }
5694 
5695 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5696 	struct ksz_hw *hw, int promiscuous)
5697 {
5698 	if (promiscuous != priv->promiscuous) {
5699 		u8 prev_state = hw->promiscuous;
5700 
5701 		if (promiscuous)
5702 			++hw->promiscuous;
5703 		else
5704 			--hw->promiscuous;
5705 		priv->promiscuous = promiscuous;
5706 
5707 		/* Turn on/off promiscuous mode. */
5708 		if (hw->promiscuous <= 1 && prev_state <= 1)
5709 			hw_set_promiscuous(hw, hw->promiscuous);
5710 
5711 		/*
5712 		 * Port is not in promiscuous mode, meaning it is released
5713 		 * from the bridge.
5714 		 */
5715 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5716 		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5717 			struct ksz_switch *sw = hw->ksz_switch;
5718 			int port = priv->port.first_port;
5719 
5720 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5721 			port = 1 << port;
5722 			if (sw->member & port) {
5723 				sw->member &= ~port;
5724 				bridge_change(hw);
5725 			}
5726 		}
5727 	}
5728 }
5729 
5730 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5731 	int multicast)
5732 {
5733 	if (multicast != priv->multicast) {
5734 		u8 all_multi = hw->all_multi;
5735 
5736 		if (multicast)
5737 			++hw->all_multi;
5738 		else
5739 			--hw->all_multi;
5740 		priv->multicast = multicast;
5741 
5742 		/* Turn on/off all multicast mode. */
5743 		if (hw->all_multi <= 1 && all_multi <= 1)
5744 			hw_set_multicast(hw, hw->all_multi);
5745 	}
5746 }
5747 
5748 /**
5749  * netdev_set_rx_mode
5750  * @dev:	Network device.
5751  *
5752  * This routine is used to set multicast addresses or put the network device
5753  * into promiscuous mode.
5754  */
5755 static void netdev_set_rx_mode(struct net_device *dev)
5756 {
5757 	struct dev_priv *priv = netdev_priv(dev);
5758 	struct dev_info *hw_priv = priv->adapter;
5759 	struct ksz_hw *hw = &hw_priv->hw;
5760 	struct netdev_hw_addr *ha;
5761 	int multicast = (dev->flags & IFF_ALLMULTI);
5762 
5763 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5764 
5765 	if (hw_priv->hw.dev_count > 1)
5766 		multicast |= (dev->flags & IFF_MULTICAST);
5767 	dev_set_multicast(priv, hw, multicast);
5768 
5769 	/* Cannot use different hashes in multiple device interfaces mode. */
5770 	if (hw_priv->hw.dev_count > 1)
5771 		return;
5772 
5773 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5774 		int i = 0;
5775 
5776 		/* List too big to support so turn on all multicast mode. */
5777 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5778 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5779 				hw->multi_list_size = MAX_MULTICAST_LIST;
5780 				++hw->all_multi;
5781 				hw_set_multicast(hw, hw->all_multi);
5782 			}
5783 			return;
5784 		}
5785 
5786 		netdev_for_each_mc_addr(ha, dev) {
5787 			if (i >= MAX_MULTICAST_LIST)
5788 				break;
5789 			memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
5790 		}
5791 		hw->multi_list_size = (u8) i;
5792 		hw_set_grp_addr(hw);
5793 	} else {
5794 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5795 			--hw->all_multi;
5796 			hw_set_multicast(hw, hw->all_multi);
5797 		}
5798 		hw->multi_list_size = 0;
5799 		hw_clr_multicast(hw);
5800 	}
5801 }
5802 
5803 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5804 {
5805 	struct dev_priv *priv = netdev_priv(dev);
5806 	struct dev_info *hw_priv = priv->adapter;
5807 	struct ksz_hw *hw = &hw_priv->hw;
5808 	int hw_mtu;
5809 
5810 	if (netif_running(dev))
5811 		return -EBUSY;
5812 
5813 	/* Cannot use different MTU in multiple device interfaces mode. */
5814 	if (hw->dev_count > 1)
5815 		if (dev != hw_priv->dev)
5816 			return 0;
5817 	if (new_mtu < 60)
5818 		return -EINVAL;
5819 
5820 	if (dev->mtu != new_mtu) {
5821 		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5822 		if (hw_mtu > MAX_RX_BUF_SIZE)
5823 			return -EINVAL;
5824 		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5825 			hw->features |= RX_HUGE_FRAME;
5826 			hw_mtu = MAX_RX_BUF_SIZE;
5827 		} else {
5828 			hw->features &= ~RX_HUGE_FRAME;
5829 			hw_mtu = REGULAR_RX_BUF_SIZE;
5830 		}
5831 		hw_mtu = (hw_mtu + 3) & ~3;
5832 		hw_priv->mtu = hw_mtu;
5833 		dev->mtu = new_mtu;
5834 	}
5835 	return 0;
5836 }
5837 
5838 /**
5839  * netdev_ioctl - I/O control processing
5840  * @dev:	Network device.
5841  * @ifr:	Interface request structure.
5842  * @cmd:	I/O control code.
5843  *
5844  * This function is used to process I/O control calls.
5845  *
5846  * Return 0 to indicate success.
5847  */
5848 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5849 {
5850 	struct dev_priv *priv = netdev_priv(dev);
5851 	struct dev_info *hw_priv = priv->adapter;
5852 	struct ksz_hw *hw = &hw_priv->hw;
5853 	struct ksz_port *port = &priv->port;
5854 	int rc;
5855 	int result = 0;
5856 	struct mii_ioctl_data *data = if_mii(ifr);
5857 
5858 	if (down_interruptible(&priv->proc_sem))
5859 		return -ERESTARTSYS;
5860 
5861 	/* assume success */
5862 	rc = 0;
5863 	switch (cmd) {
5864 	/* Get address of MII PHY in use. */
5865 	case SIOCGMIIPHY:
5866 		data->phy_id = priv->id;
5867 
5868 		/* Fallthrough... */
5869 
5870 	/* Read MII PHY register. */
5871 	case SIOCGMIIREG:
5872 		if (data->phy_id != priv->id || data->reg_num >= 6)
5873 			result = -EIO;
5874 		else
5875 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5876 				&data->val_out);
5877 		break;
5878 
5879 	/* Write MII PHY register. */
5880 	case SIOCSMIIREG:
5881 		if (!capable(CAP_NET_ADMIN))
5882 			result = -EPERM;
5883 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5884 			result = -EIO;
5885 		else
5886 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5887 				data->val_in);
5888 		break;
5889 
5890 	default:
5891 		result = -EOPNOTSUPP;
5892 	}
5893 
5894 	up(&priv->proc_sem);
5895 
5896 	return result;
5897 }
5898 
5899 /*
5900  * MII support
5901  */
5902 
5903 /**
5904  * mdio_read - read PHY register
5905  * @dev:	Network device.
5906  * @phy_id:	The PHY id.
5907  * @reg_num:	The register number.
5908  *
5909  * This function returns the PHY register value.
5910  *
5911  * Return the register value.
5912  */
5913 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5914 {
5915 	struct dev_priv *priv = netdev_priv(dev);
5916 	struct ksz_port *port = &priv->port;
5917 	struct ksz_hw *hw = port->hw;
5918 	u16 val_out;
5919 
5920 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5921 	return val_out;
5922 }
5923 
5924 /**
5925  * mdio_write - set PHY register
5926  * @dev:	Network device.
5927  * @phy_id:	The PHY id.
5928  * @reg_num:	The register number.
5929  * @val:	The register value.
5930  *
5931  * This procedure sets the PHY register value.
5932  */
5933 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5934 {
5935 	struct dev_priv *priv = netdev_priv(dev);
5936 	struct ksz_port *port = &priv->port;
5937 	struct ksz_hw *hw = port->hw;
5938 	int i;
5939 	int pi;
5940 
5941 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5942 		hw_w_phy(hw, pi, reg_num << 1, val);
5943 }
5944 
5945 /*
5946  * ethtool support
5947  */
5948 
5949 #define EEPROM_SIZE			0x40
5950 
5951 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5952 
5953 #define ADVERTISED_ALL			\
5954 	(ADVERTISED_10baseT_Half |	\
5955 	ADVERTISED_10baseT_Full |	\
5956 	ADVERTISED_100baseT_Half |	\
5957 	ADVERTISED_100baseT_Full)
5958 
5959 /* These functions use the MII functions in mii.c. */
5960 
5961 /**
5962  * netdev_get_settings - get network device settings
5963  * @dev:	Network device.
5964  * @cmd:	Ethtool command.
5965  *
5966  * This function queries the PHY and returns its state in the ethtool command.
5967  *
5968  * Return 0 if successful; otherwise an error code.
5969  */
5970 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5971 {
5972 	struct dev_priv *priv = netdev_priv(dev);
5973 	struct dev_info *hw_priv = priv->adapter;
5974 
5975 	mutex_lock(&hw_priv->lock);
5976 	mii_ethtool_gset(&priv->mii_if, cmd);
5977 	cmd->advertising |= SUPPORTED_TP;
5978 	mutex_unlock(&hw_priv->lock);
5979 
5980 	/* Save advertised settings for workaround in next function. */
5981 	priv->advertising = cmd->advertising;
5982 	return 0;
5983 }
5984 
5985 /**
5986  * netdev_set_settings - set network device settings
5987  * @dev:	Network device.
5988  * @cmd:	Ethtool command.
5989  *
5990  * This function sets the PHY according to the ethtool command.
5991  *
5992  * Return 0 if successful; otherwise an error code.
5993  */
5994 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5995 {
5996 	struct dev_priv *priv = netdev_priv(dev);
5997 	struct dev_info *hw_priv = priv->adapter;
5998 	struct ksz_port *port = &priv->port;
5999 	u32 speed = ethtool_cmd_speed(cmd);
6000 	int rc;
6001 
6002 	/*
6003 	 * ethtool utility does not change advertised setting if auto
6004 	 * negotiation is not specified explicitly.
6005 	 */
6006 	if (cmd->autoneg && priv->advertising == cmd->advertising) {
6007 		cmd->advertising |= ADVERTISED_ALL;
6008 		if (10 == speed)
6009 			cmd->advertising &=
6010 				~(ADVERTISED_100baseT_Full |
6011 				ADVERTISED_100baseT_Half);
6012 		else if (100 == speed)
6013 			cmd->advertising &=
6014 				~(ADVERTISED_10baseT_Full |
6015 				ADVERTISED_10baseT_Half);
6016 		if (0 == cmd->duplex)
6017 			cmd->advertising &=
6018 				~(ADVERTISED_100baseT_Full |
6019 				ADVERTISED_10baseT_Full);
6020 		else if (1 == cmd->duplex)
6021 			cmd->advertising &=
6022 				~(ADVERTISED_100baseT_Half |
6023 				ADVERTISED_10baseT_Half);
6024 	}
6025 	mutex_lock(&hw_priv->lock);
6026 	if (cmd->autoneg &&
6027 			(cmd->advertising & ADVERTISED_ALL) ==
6028 			ADVERTISED_ALL) {
6029 		port->duplex = 0;
6030 		port->speed = 0;
6031 		port->force_link = 0;
6032 	} else {
6033 		port->duplex = cmd->duplex + 1;
6034 		if (1000 != speed)
6035 			port->speed = speed;
6036 		if (cmd->autoneg)
6037 			port->force_link = 0;
6038 		else
6039 			port->force_link = 1;
6040 	}
6041 	rc = mii_ethtool_sset(&priv->mii_if, cmd);
6042 	mutex_unlock(&hw_priv->lock);
6043 	return rc;
6044 }
6045 
6046 /**
6047  * netdev_nway_reset - restart auto-negotiation
6048  * @dev:	Network device.
6049  *
6050  * This function restarts the PHY for auto-negotiation.
6051  *
6052  * Return 0 if successful; otherwise an error code.
6053  */
6054 static int netdev_nway_reset(struct net_device *dev)
6055 {
6056 	struct dev_priv *priv = netdev_priv(dev);
6057 	struct dev_info *hw_priv = priv->adapter;
6058 	int rc;
6059 
6060 	mutex_lock(&hw_priv->lock);
6061 	rc = mii_nway_restart(&priv->mii_if);
6062 	mutex_unlock(&hw_priv->lock);
6063 	return rc;
6064 }
6065 
6066 /**
6067  * netdev_get_link - get network device link status
6068  * @dev:	Network device.
6069  *
6070  * This function gets the link status from the PHY.
6071  *
6072  * Return true if PHY is linked and false otherwise.
6073  */
6074 static u32 netdev_get_link(struct net_device *dev)
6075 {
6076 	struct dev_priv *priv = netdev_priv(dev);
6077 	int rc;
6078 
6079 	rc = mii_link_ok(&priv->mii_if);
6080 	return rc;
6081 }
6082 
6083 /**
6084  * netdev_get_drvinfo - get network driver information
6085  * @dev:	Network device.
6086  * @info:	Ethtool driver info data structure.
6087  *
6088  * This procedure returns the driver information.
6089  */
6090 static void netdev_get_drvinfo(struct net_device *dev,
6091 	struct ethtool_drvinfo *info)
6092 {
6093 	struct dev_priv *priv = netdev_priv(dev);
6094 	struct dev_info *hw_priv = priv->adapter;
6095 
6096 	strcpy(info->driver, DRV_NAME);
6097 	strcpy(info->version, DRV_VERSION);
6098 	strcpy(info->bus_info, pci_name(hw_priv->pdev));
6099 }
6100 
6101 /**
6102  * netdev_get_regs_len - get length of register dump
6103  * @dev:	Network device.
6104  *
6105  * This function returns the length of the register dump.
6106  *
6107  * Return length of the register dump.
6108  */
6109 static struct hw_regs {
6110 	int start;
6111 	int end;
6112 } hw_regs_range[] = {
6113 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6114 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6115 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6116 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6117 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6118 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6119 	{ 0, 0 }
6120 };
6121 
6122 static int netdev_get_regs_len(struct net_device *dev)
6123 {
6124 	struct hw_regs *range = hw_regs_range;
6125 	int regs_len = 0x10 * sizeof(u32);
6126 
6127 	while (range->end > range->start) {
6128 		regs_len += (range->end - range->start + 3) / 4 * 4;
6129 		range++;
6130 	}
6131 	return regs_len;
6132 }
6133 
6134 /**
6135  * netdev_get_regs - get register dump
6136  * @dev:	Network device.
6137  * @regs:	Ethtool registers data structure.
6138  * @ptr:	Buffer to store the register values.
6139  *
6140  * This procedure dumps the register values in the provided buffer.
6141  */
6142 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6143 	void *ptr)
6144 {
6145 	struct dev_priv *priv = netdev_priv(dev);
6146 	struct dev_info *hw_priv = priv->adapter;
6147 	struct ksz_hw *hw = &hw_priv->hw;
6148 	int *buf = (int *) ptr;
6149 	struct hw_regs *range = hw_regs_range;
6150 	int len;
6151 
6152 	mutex_lock(&hw_priv->lock);
6153 	regs->version = 0;
6154 	for (len = 0; len < 0x40; len += 4) {
6155 		pci_read_config_dword(hw_priv->pdev, len, buf);
6156 		buf++;
6157 	}
6158 	while (range->end > range->start) {
6159 		for (len = range->start; len < range->end; len += 4) {
6160 			*buf = readl(hw->io + len);
6161 			buf++;
6162 		}
6163 		range++;
6164 	}
6165 	mutex_unlock(&hw_priv->lock);
6166 }
6167 
6168 #define WOL_SUPPORT			\
6169 	(WAKE_PHY | WAKE_MAGIC |	\
6170 	WAKE_UCAST | WAKE_MCAST |	\
6171 	WAKE_BCAST | WAKE_ARP)
6172 
6173 /**
6174  * netdev_get_wol - get Wake-on-LAN support
6175  * @dev:	Network device.
6176  * @wol:	Ethtool Wake-on-LAN data structure.
6177  *
6178  * This procedure returns Wake-on-LAN support.
6179  */
6180 static void netdev_get_wol(struct net_device *dev,
6181 	struct ethtool_wolinfo *wol)
6182 {
6183 	struct dev_priv *priv = netdev_priv(dev);
6184 	struct dev_info *hw_priv = priv->adapter;
6185 
6186 	wol->supported = hw_priv->wol_support;
6187 	wol->wolopts = hw_priv->wol_enable;
6188 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6189 }
6190 
6191 /**
6192  * netdev_set_wol - set Wake-on-LAN support
6193  * @dev:	Network device.
6194  * @wol:	Ethtool Wake-on-LAN data structure.
6195  *
6196  * This function sets Wake-on-LAN support.
6197  *
6198  * Return 0 if successful; otherwise an error code.
6199  */
6200 static int netdev_set_wol(struct net_device *dev,
6201 	struct ethtool_wolinfo *wol)
6202 {
6203 	struct dev_priv *priv = netdev_priv(dev);
6204 	struct dev_info *hw_priv = priv->adapter;
6205 
6206 	/* Need to find a way to retrieve the device IP address. */
6207 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6208 
6209 	if (wol->wolopts & ~hw_priv->wol_support)
6210 		return -EINVAL;
6211 
6212 	hw_priv->wol_enable = wol->wolopts;
6213 
6214 	/* Link wakeup cannot really be disabled. */
6215 	if (wol->wolopts)
6216 		hw_priv->wol_enable |= WAKE_PHY;
6217 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6218 	return 0;
6219 }
6220 
6221 /**
6222  * netdev_get_msglevel - get debug message level
6223  * @dev:	Network device.
6224  *
6225  * This function returns current debug message level.
6226  *
6227  * Return current debug message flags.
6228  */
6229 static u32 netdev_get_msglevel(struct net_device *dev)
6230 {
6231 	struct dev_priv *priv = netdev_priv(dev);
6232 
6233 	return priv->msg_enable;
6234 }
6235 
6236 /**
6237  * netdev_set_msglevel - set debug message level
6238  * @dev:	Network device.
6239  * @value:	Debug message flags.
6240  *
6241  * This procedure sets debug message level.
6242  */
6243 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6244 {
6245 	struct dev_priv *priv = netdev_priv(dev);
6246 
6247 	priv->msg_enable = value;
6248 }
6249 
6250 /**
6251  * netdev_get_eeprom_len - get EEPROM length
6252  * @dev:	Network device.
6253  *
6254  * This function returns the length of the EEPROM.
6255  *
6256  * Return length of the EEPROM.
6257  */
6258 static int netdev_get_eeprom_len(struct net_device *dev)
6259 {
6260 	return EEPROM_SIZE * 2;
6261 }
6262 
6263 /**
6264  * netdev_get_eeprom - get EEPROM data
6265  * @dev:	Network device.
6266  * @eeprom:	Ethtool EEPROM data structure.
6267  * @data:	Buffer to store the EEPROM data.
6268  *
6269  * This function dumps the EEPROM data in the provided buffer.
6270  *
6271  * Return 0 if successful; otherwise an error code.
6272  */
6273 #define EEPROM_MAGIC			0x10A18842
6274 
6275 static int netdev_get_eeprom(struct net_device *dev,
6276 	struct ethtool_eeprom *eeprom, u8 *data)
6277 {
6278 	struct dev_priv *priv = netdev_priv(dev);
6279 	struct dev_info *hw_priv = priv->adapter;
6280 	u8 *eeprom_byte = (u8 *) eeprom_data;
6281 	int i;
6282 	int len;
6283 
6284 	len = (eeprom->offset + eeprom->len + 1) / 2;
6285 	for (i = eeprom->offset / 2; i < len; i++)
6286 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6287 	eeprom->magic = EEPROM_MAGIC;
6288 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6289 
6290 	return 0;
6291 }
6292 
6293 /**
6294  * netdev_set_eeprom - write EEPROM data
6295  * @dev:	Network device.
6296  * @eeprom:	Ethtool EEPROM data structure.
6297  * @data:	Data buffer.
6298  *
6299  * This function modifies the EEPROM data one byte at a time.
6300  *
6301  * Return 0 if successful; otherwise an error code.
6302  */
6303 static int netdev_set_eeprom(struct net_device *dev,
6304 	struct ethtool_eeprom *eeprom, u8 *data)
6305 {
6306 	struct dev_priv *priv = netdev_priv(dev);
6307 	struct dev_info *hw_priv = priv->adapter;
6308 	u16 eeprom_word[EEPROM_SIZE];
6309 	u8 *eeprom_byte = (u8 *) eeprom_word;
6310 	int i;
6311 	int len;
6312 
6313 	if (eeprom->magic != EEPROM_MAGIC)
6314 		return -EINVAL;
6315 
6316 	len = (eeprom->offset + eeprom->len + 1) / 2;
6317 	for (i = eeprom->offset / 2; i < len; i++)
6318 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6319 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6320 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6321 	for (i = 0; i < EEPROM_SIZE; i++)
6322 		if (eeprom_word[i] != eeprom_data[i]) {
6323 			eeprom_data[i] = eeprom_word[i];
6324 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6325 	}
6326 
6327 	return 0;
6328 }
6329 
6330 /**
6331  * netdev_get_pauseparam - get flow control parameters
6332  * @dev:	Network device.
6333  * @pause:	Ethtool PAUSE settings data structure.
6334  *
6335  * This procedure returns the PAUSE control flow settings.
6336  */
6337 static void netdev_get_pauseparam(struct net_device *dev,
6338 	struct ethtool_pauseparam *pause)
6339 {
6340 	struct dev_priv *priv = netdev_priv(dev);
6341 	struct dev_info *hw_priv = priv->adapter;
6342 	struct ksz_hw *hw = &hw_priv->hw;
6343 
6344 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6345 	if (!hw->ksz_switch) {
6346 		pause->rx_pause =
6347 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6348 		pause->tx_pause =
6349 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6350 	} else {
6351 		pause->rx_pause =
6352 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6353 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6354 		pause->tx_pause =
6355 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6356 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6357 	}
6358 }
6359 
6360 /**
6361  * netdev_set_pauseparam - set flow control parameters
6362  * @dev:	Network device.
6363  * @pause:	Ethtool PAUSE settings data structure.
6364  *
6365  * This function sets the PAUSE control flow settings.
6366  * Not implemented yet.
6367  *
6368  * Return 0 if successful; otherwise an error code.
6369  */
6370 static int netdev_set_pauseparam(struct net_device *dev,
6371 	struct ethtool_pauseparam *pause)
6372 {
6373 	struct dev_priv *priv = netdev_priv(dev);
6374 	struct dev_info *hw_priv = priv->adapter;
6375 	struct ksz_hw *hw = &hw_priv->hw;
6376 	struct ksz_port *port = &priv->port;
6377 
6378 	mutex_lock(&hw_priv->lock);
6379 	if (pause->autoneg) {
6380 		if (!pause->rx_pause && !pause->tx_pause)
6381 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6382 		else
6383 			port->flow_ctrl = PHY_FLOW_CTRL;
6384 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6385 		port->force_link = 0;
6386 		if (hw->ksz_switch) {
6387 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6388 				SWITCH_RX_FLOW_CTRL, 1);
6389 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390 				SWITCH_TX_FLOW_CTRL, 1);
6391 		}
6392 		port_set_link_speed(port);
6393 	} else {
6394 		hw->overrides |= PAUSE_FLOW_CTRL;
6395 		if (hw->ksz_switch) {
6396 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6397 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6398 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6399 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6400 		} else
6401 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6402 	}
6403 	mutex_unlock(&hw_priv->lock);
6404 
6405 	return 0;
6406 }
6407 
6408 /**
6409  * netdev_get_ringparam - get tx/rx ring parameters
6410  * @dev:	Network device.
6411  * @pause:	Ethtool RING settings data structure.
6412  *
6413  * This procedure returns the TX/RX ring settings.
6414  */
6415 static void netdev_get_ringparam(struct net_device *dev,
6416 	struct ethtool_ringparam *ring)
6417 {
6418 	struct dev_priv *priv = netdev_priv(dev);
6419 	struct dev_info *hw_priv = priv->adapter;
6420 	struct ksz_hw *hw = &hw_priv->hw;
6421 
6422 	ring->tx_max_pending = (1 << 9);
6423 	ring->tx_pending = hw->tx_desc_info.alloc;
6424 	ring->rx_max_pending = (1 << 9);
6425 	ring->rx_pending = hw->rx_desc_info.alloc;
6426 }
6427 
6428 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6429 
6430 static struct {
6431 	char string[ETH_GSTRING_LEN];
6432 } ethtool_stats_keys[STATS_LEN] = {
6433 	{ "rx_lo_priority_octets" },
6434 	{ "rx_hi_priority_octets" },
6435 	{ "rx_undersize_packets" },
6436 	{ "rx_fragments" },
6437 	{ "rx_oversize_packets" },
6438 	{ "rx_jabbers" },
6439 	{ "rx_symbol_errors" },
6440 	{ "rx_crc_errors" },
6441 	{ "rx_align_errors" },
6442 	{ "rx_mac_ctrl_packets" },
6443 	{ "rx_pause_packets" },
6444 	{ "rx_bcast_packets" },
6445 	{ "rx_mcast_packets" },
6446 	{ "rx_ucast_packets" },
6447 	{ "rx_64_or_less_octet_packets" },
6448 	{ "rx_65_to_127_octet_packets" },
6449 	{ "rx_128_to_255_octet_packets" },
6450 	{ "rx_256_to_511_octet_packets" },
6451 	{ "rx_512_to_1023_octet_packets" },
6452 	{ "rx_1024_to_1522_octet_packets" },
6453 
6454 	{ "tx_lo_priority_octets" },
6455 	{ "tx_hi_priority_octets" },
6456 	{ "tx_late_collisions" },
6457 	{ "tx_pause_packets" },
6458 	{ "tx_bcast_packets" },
6459 	{ "tx_mcast_packets" },
6460 	{ "tx_ucast_packets" },
6461 	{ "tx_deferred" },
6462 	{ "tx_total_collisions" },
6463 	{ "tx_excessive_collisions" },
6464 	{ "tx_single_collisions" },
6465 	{ "tx_mult_collisions" },
6466 
6467 	{ "rx_discards" },
6468 	{ "tx_discards" },
6469 };
6470 
6471 /**
6472  * netdev_get_strings - get statistics identity strings
6473  * @dev:	Network device.
6474  * @stringset:	String set identifier.
6475  * @buf:	Buffer to store the strings.
6476  *
6477  * This procedure returns the strings used to identify the statistics.
6478  */
6479 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6480 {
6481 	struct dev_priv *priv = netdev_priv(dev);
6482 	struct dev_info *hw_priv = priv->adapter;
6483 	struct ksz_hw *hw = &hw_priv->hw;
6484 
6485 	if (ETH_SS_STATS == stringset)
6486 		memcpy(buf, &ethtool_stats_keys,
6487 			ETH_GSTRING_LEN * hw->mib_cnt);
6488 }
6489 
6490 /**
6491  * netdev_get_sset_count - get statistics size
6492  * @dev:	Network device.
6493  * @sset:	The statistics set number.
6494  *
6495  * This function returns the size of the statistics to be reported.
6496  *
6497  * Return size of the statistics to be reported.
6498  */
6499 static int netdev_get_sset_count(struct net_device *dev, int sset)
6500 {
6501 	struct dev_priv *priv = netdev_priv(dev);
6502 	struct dev_info *hw_priv = priv->adapter;
6503 	struct ksz_hw *hw = &hw_priv->hw;
6504 
6505 	switch (sset) {
6506 	case ETH_SS_STATS:
6507 		return hw->mib_cnt;
6508 	default:
6509 		return -EOPNOTSUPP;
6510 	}
6511 }
6512 
6513 /**
6514  * netdev_get_ethtool_stats - get network device statistics
6515  * @dev:	Network device.
6516  * @stats:	Ethtool statistics data structure.
6517  * @data:	Buffer to store the statistics.
6518  *
6519  * This procedure returns the statistics.
6520  */
6521 static void netdev_get_ethtool_stats(struct net_device *dev,
6522 	struct ethtool_stats *stats, u64 *data)
6523 {
6524 	struct dev_priv *priv = netdev_priv(dev);
6525 	struct dev_info *hw_priv = priv->adapter;
6526 	struct ksz_hw *hw = &hw_priv->hw;
6527 	struct ksz_port *port = &priv->port;
6528 	int n_stats = stats->n_stats;
6529 	int i;
6530 	int n;
6531 	int p;
6532 	int rc;
6533 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6534 
6535 	mutex_lock(&hw_priv->lock);
6536 	n = SWITCH_PORT_NUM;
6537 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6538 		if (media_connected == hw->port_mib[p].state) {
6539 			hw_priv->counter[p].read = 1;
6540 
6541 			/* Remember first port that requests read. */
6542 			if (n == SWITCH_PORT_NUM)
6543 				n = p;
6544 		}
6545 	}
6546 	mutex_unlock(&hw_priv->lock);
6547 
6548 	if (n < SWITCH_PORT_NUM)
6549 		schedule_work(&hw_priv->mib_read);
6550 
6551 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6552 		p = n;
6553 		rc = wait_event_interruptible_timeout(
6554 			hw_priv->counter[p].counter,
6555 			2 == hw_priv->counter[p].read,
6556 			HZ * 1);
6557 	} else
6558 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6559 			if (0 == i) {
6560 				rc = wait_event_interruptible_timeout(
6561 					hw_priv->counter[p].counter,
6562 					2 == hw_priv->counter[p].read,
6563 					HZ * 2);
6564 			} else if (hw->port_mib[p].cnt_ptr) {
6565 				rc = wait_event_interruptible_timeout(
6566 					hw_priv->counter[p].counter,
6567 					2 == hw_priv->counter[p].read,
6568 					HZ * 1);
6569 			}
6570 		}
6571 
6572 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6573 	n = hw->mib_cnt;
6574 	if (n > n_stats)
6575 		n = n_stats;
6576 	n_stats -= n;
6577 	for (i = 0; i < n; i++)
6578 		*data++ = counter[i];
6579 }
6580 
6581 /**
6582  * netdev_set_features - set receive checksum support
6583  * @dev:	Network device.
6584  * @features:	New device features (offloads).
6585  *
6586  * This function sets receive checksum support setting.
6587  *
6588  * Return 0 if successful; otherwise an error code.
6589  */
6590 static int netdev_set_features(struct net_device *dev, u32 features)
6591 {
6592 	struct dev_priv *priv = netdev_priv(dev);
6593 	struct dev_info *hw_priv = priv->adapter;
6594 	struct ksz_hw *hw = &hw_priv->hw;
6595 
6596 	mutex_lock(&hw_priv->lock);
6597 
6598 	/* see note in hw_setup() */
6599 	if (features & NETIF_F_RXCSUM)
6600 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6601 	else
6602 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6603 
6604 	if (hw->enabled)
6605 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6606 
6607 	mutex_unlock(&hw_priv->lock);
6608 
6609 	return 0;
6610 }
6611 
6612 static struct ethtool_ops netdev_ethtool_ops = {
6613 	.get_settings		= netdev_get_settings,
6614 	.set_settings		= netdev_set_settings,
6615 	.nway_reset		= netdev_nway_reset,
6616 	.get_link		= netdev_get_link,
6617 	.get_drvinfo		= netdev_get_drvinfo,
6618 	.get_regs_len		= netdev_get_regs_len,
6619 	.get_regs		= netdev_get_regs,
6620 	.get_wol		= netdev_get_wol,
6621 	.set_wol		= netdev_set_wol,
6622 	.get_msglevel		= netdev_get_msglevel,
6623 	.set_msglevel		= netdev_set_msglevel,
6624 	.get_eeprom_len		= netdev_get_eeprom_len,
6625 	.get_eeprom		= netdev_get_eeprom,
6626 	.set_eeprom		= netdev_set_eeprom,
6627 	.get_pauseparam		= netdev_get_pauseparam,
6628 	.set_pauseparam		= netdev_set_pauseparam,
6629 	.get_ringparam		= netdev_get_ringparam,
6630 	.get_strings		= netdev_get_strings,
6631 	.get_sset_count		= netdev_get_sset_count,
6632 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6633 };
6634 
6635 /*
6636  * Hardware monitoring
6637  */
6638 
6639 static void update_link(struct net_device *dev, struct dev_priv *priv,
6640 	struct ksz_port *port)
6641 {
6642 	if (priv->media_state != port->linked->state) {
6643 		priv->media_state = port->linked->state;
6644 		if (netif_running(dev))
6645 			set_media_state(dev, media_connected);
6646 	}
6647 }
6648 
6649 static void mib_read_work(struct work_struct *work)
6650 {
6651 	struct dev_info *hw_priv =
6652 		container_of(work, struct dev_info, mib_read);
6653 	struct ksz_hw *hw = &hw_priv->hw;
6654 	struct ksz_port_mib *mib;
6655 	int i;
6656 
6657 	next_jiffies = jiffies;
6658 	for (i = 0; i < hw->mib_port_cnt; i++) {
6659 		mib = &hw->port_mib[i];
6660 
6661 		/* Reading MIB counters or requested to read. */
6662 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6663 
6664 			/* Need to process receive interrupt. */
6665 			if (port_r_cnt(hw, i))
6666 				break;
6667 			hw_priv->counter[i].read = 0;
6668 
6669 			/* Finish reading counters. */
6670 			if (0 == mib->cnt_ptr) {
6671 				hw_priv->counter[i].read = 2;
6672 				wake_up_interruptible(
6673 					&hw_priv->counter[i].counter);
6674 			}
6675 		} else if (jiffies >= hw_priv->counter[i].time) {
6676 			/* Only read MIB counters when the port is connected. */
6677 			if (media_connected == mib->state)
6678 				hw_priv->counter[i].read = 1;
6679 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6680 			hw_priv->counter[i].time = next_jiffies;
6681 
6682 		/* Port is just disconnected. */
6683 		} else if (mib->link_down) {
6684 			mib->link_down = 0;
6685 
6686 			/* Read counters one last time after link is lost. */
6687 			hw_priv->counter[i].read = 1;
6688 		}
6689 	}
6690 }
6691 
6692 static void mib_monitor(unsigned long ptr)
6693 {
6694 	struct dev_info *hw_priv = (struct dev_info *) ptr;
6695 
6696 	mib_read_work(&hw_priv->mib_read);
6697 
6698 	/* This is used to verify Wake-on-LAN is working. */
6699 	if (hw_priv->pme_wait) {
6700 		if (hw_priv->pme_wait <= jiffies) {
6701 			hw_clr_wol_pme_status(&hw_priv->hw);
6702 			hw_priv->pme_wait = 0;
6703 		}
6704 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6705 
6706 		/* PME is asserted.  Wait 2 seconds to clear it. */
6707 		hw_priv->pme_wait = jiffies + HZ * 2;
6708 	}
6709 
6710 	ksz_update_timer(&hw_priv->mib_timer_info);
6711 }
6712 
6713 /**
6714  * dev_monitor - periodic monitoring
6715  * @ptr:	Network device pointer.
6716  *
6717  * This routine is run in a kernel timer to monitor the network device.
6718  */
6719 static void dev_monitor(unsigned long ptr)
6720 {
6721 	struct net_device *dev = (struct net_device *) ptr;
6722 	struct dev_priv *priv = netdev_priv(dev);
6723 	struct dev_info *hw_priv = priv->adapter;
6724 	struct ksz_hw *hw = &hw_priv->hw;
6725 	struct ksz_port *port = &priv->port;
6726 
6727 	if (!(hw->features & LINK_INT_WORKING))
6728 		port_get_link_speed(port);
6729 	update_link(dev, priv, port);
6730 
6731 	ksz_update_timer(&priv->monitor_timer_info);
6732 }
6733 
6734 /*
6735  * Linux network device interface functions
6736  */
6737 
6738 /* Driver exported variables */
6739 
6740 static int msg_enable;
6741 
6742 static char *macaddr = ":";
6743 static char *mac1addr = ":";
6744 
6745 /*
6746  * This enables multiple network device mode for KSZ8842, which contains a
6747  * switch with two physical ports.  Some users like to take control of the
6748  * ports for running Spanning Tree Protocol.  The driver will create an
6749  * additional eth? device for the other port.
6750  *
6751  * Some limitations are the network devices cannot have different MTU and
6752  * multicast hash tables.
6753  */
6754 static int multi_dev;
6755 
6756 /*
6757  * As most users select multiple network device mode to use Spanning Tree
6758  * Protocol, this enables a feature in which most unicast and multicast packets
6759  * are forwarded inside the switch and not passed to the host.  Only packets
6760  * that need the host's attention are passed to it.  This prevents the host
6761  * wasting CPU time to examine each and every incoming packets and do the
6762  * forwarding itself.
6763  *
6764  * As the hack requires the private bridge header, the driver cannot compile
6765  * with just the kernel headers.
6766  *
6767  * Enabling STP support also turns on multiple network device mode.
6768  */
6769 static int stp;
6770 
6771 /*
6772  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6773  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6774  * STP suport is enabled.
6775  */
6776 static int fast_aging;
6777 
6778 /**
6779  * netdev_init - initialize network device.
6780  * @dev:	Network device.
6781  *
6782  * This function initializes the network device.
6783  *
6784  * Return 0 if successful; otherwise an error code indicating failure.
6785  */
6786 static int __init netdev_init(struct net_device *dev)
6787 {
6788 	struct dev_priv *priv = netdev_priv(dev);
6789 
6790 	/* 500 ms timeout */
6791 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6792 		dev_monitor, dev);
6793 
6794 	/* 500 ms timeout */
6795 	dev->watchdog_timeo = HZ / 2;
6796 
6797 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6798 
6799 	/*
6800 	 * Hardware does not really support IPv6 checksum generation, but
6801 	 * driver actually runs faster with this on.
6802 	 */
6803 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6804 
6805 	dev->features |= dev->hw_features;
6806 
6807 	sema_init(&priv->proc_sem, 1);
6808 
6809 	priv->mii_if.phy_id_mask = 0x1;
6810 	priv->mii_if.reg_num_mask = 0x7;
6811 	priv->mii_if.dev = dev;
6812 	priv->mii_if.mdio_read = mdio_read;
6813 	priv->mii_if.mdio_write = mdio_write;
6814 	priv->mii_if.phy_id = priv->port.first_port + 1;
6815 
6816 	priv->msg_enable = netif_msg_init(msg_enable,
6817 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6818 
6819 	return 0;
6820 }
6821 
6822 static const struct net_device_ops netdev_ops = {
6823 	.ndo_init		= netdev_init,
6824 	.ndo_open		= netdev_open,
6825 	.ndo_stop		= netdev_close,
6826 	.ndo_get_stats		= netdev_query_statistics,
6827 	.ndo_start_xmit		= netdev_tx,
6828 	.ndo_tx_timeout		= netdev_tx_timeout,
6829 	.ndo_change_mtu		= netdev_change_mtu,
6830 	.ndo_set_features	= netdev_set_features,
6831 	.ndo_set_mac_address	= netdev_set_mac_address,
6832 	.ndo_validate_addr	= eth_validate_addr,
6833 	.ndo_do_ioctl		= netdev_ioctl,
6834 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6835 #ifdef CONFIG_NET_POLL_CONTROLLER
6836 	.ndo_poll_controller	= netdev_netpoll,
6837 #endif
6838 };
6839 
6840 static void netdev_free(struct net_device *dev)
6841 {
6842 	if (dev->watchdog_timeo)
6843 		unregister_netdev(dev);
6844 
6845 	free_netdev(dev);
6846 }
6847 
6848 struct platform_info {
6849 	struct dev_info dev_info;
6850 	struct net_device *netdev[SWITCH_PORT_NUM];
6851 };
6852 
6853 static int net_device_present;
6854 
6855 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6856 {
6857 	int i;
6858 	int j;
6859 	int got_num;
6860 	int num;
6861 
6862 	i = j = num = got_num = 0;
6863 	while (j < MAC_ADDR_LEN) {
6864 		if (macaddr[i]) {
6865 			int digit;
6866 
6867 			got_num = 1;
6868 			digit = hex_to_bin(macaddr[i]);
6869 			if (digit >= 0)
6870 				num = num * 16 + digit;
6871 			else if (':' == macaddr[i])
6872 				got_num = 2;
6873 			else
6874 				break;
6875 		} else if (got_num)
6876 			got_num = 2;
6877 		else
6878 			break;
6879 		if (2 == got_num) {
6880 			if (MAIN_PORT == port) {
6881 				hw_priv->hw.override_addr[j++] = (u8) num;
6882 				hw_priv->hw.override_addr[5] +=
6883 					hw_priv->hw.id;
6884 			} else {
6885 				hw_priv->hw.ksz_switch->other_addr[j++] =
6886 					(u8) num;
6887 				hw_priv->hw.ksz_switch->other_addr[5] +=
6888 					hw_priv->hw.id;
6889 			}
6890 			num = got_num = 0;
6891 		}
6892 		i++;
6893 	}
6894 	if (MAC_ADDR_LEN == j) {
6895 		if (MAIN_PORT == port)
6896 			hw_priv->hw.mac_override = 1;
6897 	}
6898 }
6899 
6900 #define KS884X_DMA_MASK			(~0x0UL)
6901 
6902 static void read_other_addr(struct ksz_hw *hw)
6903 {
6904 	int i;
6905 	u16 data[3];
6906 	struct ksz_switch *sw = hw->ksz_switch;
6907 
6908 	for (i = 0; i < 3; i++)
6909 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6910 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6911 		sw->other_addr[5] = (u8) data[0];
6912 		sw->other_addr[4] = (u8)(data[0] >> 8);
6913 		sw->other_addr[3] = (u8) data[1];
6914 		sw->other_addr[2] = (u8)(data[1] >> 8);
6915 		sw->other_addr[1] = (u8) data[2];
6916 		sw->other_addr[0] = (u8)(data[2] >> 8);
6917 	}
6918 }
6919 
6920 #ifndef PCI_VENDOR_ID_MICREL_KS
6921 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6922 #endif
6923 
6924 static int __devinit pcidev_init(struct pci_dev *pdev,
6925 	const struct pci_device_id *id)
6926 {
6927 	struct net_device *dev;
6928 	struct dev_priv *priv;
6929 	struct dev_info *hw_priv;
6930 	struct ksz_hw *hw;
6931 	struct platform_info *info;
6932 	struct ksz_port *port;
6933 	unsigned long reg_base;
6934 	unsigned long reg_len;
6935 	int cnt;
6936 	int i;
6937 	int mib_port_count;
6938 	int pi;
6939 	int port_count;
6940 	int result;
6941 	char banner[sizeof(version)];
6942 	struct ksz_switch *sw = NULL;
6943 
6944 	result = pci_enable_device(pdev);
6945 	if (result)
6946 		return result;
6947 
6948 	result = -ENODEV;
6949 
6950 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6951 			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6952 		return result;
6953 
6954 	reg_base = pci_resource_start(pdev, 0);
6955 	reg_len = pci_resource_len(pdev, 0);
6956 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6957 		return result;
6958 
6959 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6960 		return result;
6961 	pci_set_master(pdev);
6962 
6963 	result = -ENOMEM;
6964 
6965 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6966 	if (!info)
6967 		goto pcidev_init_dev_err;
6968 
6969 	hw_priv = &info->dev_info;
6970 	hw_priv->pdev = pdev;
6971 
6972 	hw = &hw_priv->hw;
6973 
6974 	hw->io = ioremap(reg_base, reg_len);
6975 	if (!hw->io)
6976 		goto pcidev_init_io_err;
6977 
6978 	cnt = hw_init(hw);
6979 	if (!cnt) {
6980 		if (msg_enable & NETIF_MSG_PROBE)
6981 			pr_alert("chip not detected\n");
6982 		result = -ENODEV;
6983 		goto pcidev_init_alloc_err;
6984 	}
6985 
6986 	snprintf(banner, sizeof(banner), "%s", version);
6987 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6988 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6989 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6990 
6991 	/* Assume device is KSZ8841. */
6992 	hw->dev_count = 1;
6993 	port_count = 1;
6994 	mib_port_count = 1;
6995 	hw->addr_list_size = 0;
6996 	hw->mib_cnt = PORT_COUNTER_NUM;
6997 	hw->mib_port_cnt = 1;
6998 
6999 	/* KSZ8842 has a switch with multiple ports. */
7000 	if (2 == cnt) {
7001 		if (fast_aging)
7002 			hw->overrides |= FAST_AGING;
7003 
7004 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7005 
7006 		/* Multiple network device interfaces are required. */
7007 		if (multi_dev) {
7008 			hw->dev_count = SWITCH_PORT_NUM;
7009 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7010 		}
7011 
7012 		/* Single network device has multiple ports. */
7013 		if (1 == hw->dev_count) {
7014 			port_count = SWITCH_PORT_NUM;
7015 			mib_port_count = SWITCH_PORT_NUM;
7016 		}
7017 		hw->mib_port_cnt = TOTAL_PORT_NUM;
7018 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7019 		if (!hw->ksz_switch)
7020 			goto pcidev_init_alloc_err;
7021 
7022 		sw = hw->ksz_switch;
7023 	}
7024 	for (i = 0; i < hw->mib_port_cnt; i++)
7025 		hw->port_mib[i].mib_start = 0;
7026 
7027 	hw->parent = hw_priv;
7028 
7029 	/* Default MTU is 1500. */
7030 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7031 
7032 	if (ksz_alloc_mem(hw_priv))
7033 		goto pcidev_init_mem_err;
7034 
7035 	hw_priv->hw.id = net_device_present;
7036 
7037 	spin_lock_init(&hw_priv->hwlock);
7038 	mutex_init(&hw_priv->lock);
7039 
7040 	/* tasklet is enabled. */
7041 	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7042 		(unsigned long) hw_priv);
7043 	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7044 		(unsigned long) hw_priv);
7045 
7046 	/* tasklet_enable will decrement the atomic counter. */
7047 	tasklet_disable(&hw_priv->rx_tasklet);
7048 	tasklet_disable(&hw_priv->tx_tasklet);
7049 
7050 	for (i = 0; i < TOTAL_PORT_NUM; i++)
7051 		init_waitqueue_head(&hw_priv->counter[i].counter);
7052 
7053 	if (macaddr[0] != ':')
7054 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7055 
7056 	/* Read MAC address and initialize override address if not overrided. */
7057 	hw_read_addr(hw);
7058 
7059 	/* Multiple device interfaces mode requires a second MAC address. */
7060 	if (hw->dev_count > 1) {
7061 		memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7062 		read_other_addr(hw);
7063 		if (mac1addr[0] != ':')
7064 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7065 	}
7066 
7067 	hw_setup(hw);
7068 	if (hw->ksz_switch)
7069 		sw_setup(hw);
7070 	else {
7071 		hw_priv->wol_support = WOL_SUPPORT;
7072 		hw_priv->wol_enable = 0;
7073 	}
7074 
7075 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7076 
7077 	/* 500 ms timeout */
7078 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7079 		mib_monitor, hw_priv);
7080 
7081 	for (i = 0; i < hw->dev_count; i++) {
7082 		dev = alloc_etherdev(sizeof(struct dev_priv));
7083 		if (!dev)
7084 			goto pcidev_init_reg_err;
7085 		info->netdev[i] = dev;
7086 
7087 		priv = netdev_priv(dev);
7088 		priv->adapter = hw_priv;
7089 		priv->id = net_device_present++;
7090 
7091 		port = &priv->port;
7092 		port->port_cnt = port_count;
7093 		port->mib_port_cnt = mib_port_count;
7094 		port->first_port = i;
7095 		port->flow_ctrl = PHY_FLOW_CTRL;
7096 
7097 		port->hw = hw;
7098 		port->linked = &hw->port_info[port->first_port];
7099 
7100 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7101 			hw->port_info[pi].port_id = pi;
7102 			hw->port_info[pi].pdev = dev;
7103 			hw->port_info[pi].state = media_disconnected;
7104 		}
7105 
7106 		dev->mem_start = (unsigned long) hw->io;
7107 		dev->mem_end = dev->mem_start + reg_len - 1;
7108 		dev->irq = pdev->irq;
7109 		if (MAIN_PORT == i)
7110 			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7111 				MAC_ADDR_LEN);
7112 		else {
7113 			memcpy(dev->dev_addr, sw->other_addr,
7114 				MAC_ADDR_LEN);
7115 			if (!memcmp(sw->other_addr, hw->override_addr,
7116 					MAC_ADDR_LEN))
7117 				dev->dev_addr[5] += port->first_port;
7118 		}
7119 
7120 		dev->netdev_ops = &netdev_ops;
7121 		SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7122 		if (register_netdev(dev))
7123 			goto pcidev_init_reg_err;
7124 		port_set_power_saving(port, true);
7125 	}
7126 
7127 	pci_dev_get(hw_priv->pdev);
7128 	pci_set_drvdata(pdev, info);
7129 	return 0;
7130 
7131 pcidev_init_reg_err:
7132 	for (i = 0; i < hw->dev_count; i++) {
7133 		if (info->netdev[i]) {
7134 			netdev_free(info->netdev[i]);
7135 			info->netdev[i] = NULL;
7136 		}
7137 	}
7138 
7139 pcidev_init_mem_err:
7140 	ksz_free_mem(hw_priv);
7141 	kfree(hw->ksz_switch);
7142 
7143 pcidev_init_alloc_err:
7144 	iounmap(hw->io);
7145 
7146 pcidev_init_io_err:
7147 	kfree(info);
7148 
7149 pcidev_init_dev_err:
7150 	release_mem_region(reg_base, reg_len);
7151 
7152 	return result;
7153 }
7154 
7155 static void pcidev_exit(struct pci_dev *pdev)
7156 {
7157 	int i;
7158 	struct platform_info *info = pci_get_drvdata(pdev);
7159 	struct dev_info *hw_priv = &info->dev_info;
7160 
7161 	pci_set_drvdata(pdev, NULL);
7162 
7163 	release_mem_region(pci_resource_start(pdev, 0),
7164 		pci_resource_len(pdev, 0));
7165 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7166 		if (info->netdev[i])
7167 			netdev_free(info->netdev[i]);
7168 	}
7169 	if (hw_priv->hw.io)
7170 		iounmap(hw_priv->hw.io);
7171 	ksz_free_mem(hw_priv);
7172 	kfree(hw_priv->hw.ksz_switch);
7173 	pci_dev_put(hw_priv->pdev);
7174 	kfree(info);
7175 }
7176 
7177 #ifdef CONFIG_PM
7178 static int pcidev_resume(struct pci_dev *pdev)
7179 {
7180 	int i;
7181 	struct platform_info *info = pci_get_drvdata(pdev);
7182 	struct dev_info *hw_priv = &info->dev_info;
7183 	struct ksz_hw *hw = &hw_priv->hw;
7184 
7185 	pci_set_power_state(pdev, PCI_D0);
7186 	pci_restore_state(pdev);
7187 	pci_enable_wake(pdev, PCI_D0, 0);
7188 
7189 	if (hw_priv->wol_enable)
7190 		hw_cfg_wol_pme(hw, 0);
7191 	for (i = 0; i < hw->dev_count; i++) {
7192 		if (info->netdev[i]) {
7193 			struct net_device *dev = info->netdev[i];
7194 
7195 			if (netif_running(dev)) {
7196 				netdev_open(dev);
7197 				netif_device_attach(dev);
7198 			}
7199 		}
7200 	}
7201 	return 0;
7202 }
7203 
7204 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7205 {
7206 	int i;
7207 	struct platform_info *info = pci_get_drvdata(pdev);
7208 	struct dev_info *hw_priv = &info->dev_info;
7209 	struct ksz_hw *hw = &hw_priv->hw;
7210 
7211 	/* Need to find a way to retrieve the device IP address. */
7212 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7213 
7214 	for (i = 0; i < hw->dev_count; i++) {
7215 		if (info->netdev[i]) {
7216 			struct net_device *dev = info->netdev[i];
7217 
7218 			if (netif_running(dev)) {
7219 				netif_device_detach(dev);
7220 				netdev_close(dev);
7221 			}
7222 		}
7223 	}
7224 	if (hw_priv->wol_enable) {
7225 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7226 		hw_cfg_wol_pme(hw, 1);
7227 	}
7228 
7229 	pci_save_state(pdev);
7230 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7231 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7232 	return 0;
7233 }
7234 #endif
7235 
7236 static char pcidev_name[] = "ksz884xp";
7237 
7238 static struct pci_device_id pcidev_table[] = {
7239 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7240 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7241 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7242 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7243 	{ 0 }
7244 };
7245 
7246 MODULE_DEVICE_TABLE(pci, pcidev_table);
7247 
7248 static struct pci_driver pci_device_driver = {
7249 #ifdef CONFIG_PM
7250 	.suspend	= pcidev_suspend,
7251 	.resume		= pcidev_resume,
7252 #endif
7253 	.name		= pcidev_name,
7254 	.id_table	= pcidev_table,
7255 	.probe		= pcidev_init,
7256 	.remove		= pcidev_exit
7257 };
7258 
7259 static int __init ksz884x_init_module(void)
7260 {
7261 	return pci_register_driver(&pci_device_driver);
7262 }
7263 
7264 static void __exit ksz884x_cleanup_module(void)
7265 {
7266 	pci_unregister_driver(&pci_device_driver);
7267 }
7268 
7269 module_init(ksz884x_init_module);
7270 module_exit(ksz884x_cleanup_module);
7271 
7272 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7273 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7274 MODULE_LICENSE("GPL");
7275 
7276 module_param_named(message, msg_enable, int, 0);
7277 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7278 
7279 module_param(macaddr, charp, 0);
7280 module_param(mac1addr, charp, 0);
7281 module_param(fast_aging, int, 0);
7282 module_param(multi_dev, int, 0);
7283 module_param(stp, int, 0);
7284 MODULE_PARM_DESC(macaddr, "MAC address");
7285 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7286 MODULE_PARM_DESC(fast_aging, "Fast aging");
7287 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7288 MODULE_PARM_DESC(stp, "STP support");
7289