1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver 4 * 5 * Copyright (c) 2009-2010 Micrel, Inc. 6 * Tristram Ha <Tristram.Ha@micrel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/ioport.h> 16 #include <linux/pci.h> 17 #include <linux/proc_fs.h> 18 #include <linux/mii.h> 19 #include <linux/platform_device.h> 20 #include <linux/ethtool.h> 21 #include <linux/etherdevice.h> 22 #include <linux/in.h> 23 #include <linux/ip.h> 24 #include <linux/if_vlan.h> 25 #include <linux/crc32.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/micrel_phy.h> 29 30 31 /* DMA Registers */ 32 33 #define KS_DMA_TX_CTRL 0x0000 34 #define DMA_TX_ENABLE 0x00000001 35 #define DMA_TX_CRC_ENABLE 0x00000002 36 #define DMA_TX_PAD_ENABLE 0x00000004 37 #define DMA_TX_LOOPBACK 0x00000100 38 #define DMA_TX_FLOW_ENABLE 0x00000200 39 #define DMA_TX_CSUM_IP 0x00010000 40 #define DMA_TX_CSUM_TCP 0x00020000 41 #define DMA_TX_CSUM_UDP 0x00040000 42 #define DMA_TX_BURST_SIZE 0x3F000000 43 44 #define KS_DMA_RX_CTRL 0x0004 45 #define DMA_RX_ENABLE 0x00000001 46 #define KS884X_DMA_RX_MULTICAST 0x00000002 47 #define DMA_RX_PROMISCUOUS 0x00000004 48 #define DMA_RX_ERROR 0x00000008 49 #define DMA_RX_UNICAST 0x00000010 50 #define DMA_RX_ALL_MULTICAST 0x00000020 51 #define DMA_RX_BROADCAST 0x00000040 52 #define DMA_RX_FLOW_ENABLE 0x00000200 53 #define DMA_RX_CSUM_IP 0x00010000 54 #define DMA_RX_CSUM_TCP 0x00020000 55 #define DMA_RX_CSUM_UDP 0x00040000 56 #define DMA_RX_BURST_SIZE 0x3F000000 57 58 #define DMA_BURST_SHIFT 24 59 #define DMA_BURST_DEFAULT 8 60 61 #define KS_DMA_TX_START 0x0008 62 #define KS_DMA_RX_START 0x000C 63 #define DMA_START 0x00000001 64 65 #define KS_DMA_TX_ADDR 0x0010 66 #define KS_DMA_RX_ADDR 0x0014 67 68 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC 69 #define DMA_ADDR_LIST_SHIFT 2 70 71 /* MTR0 */ 72 #define KS884X_MULTICAST_0_OFFSET 0x0020 73 #define KS884X_MULTICAST_1_OFFSET 0x0021 74 #define KS884X_MULTICAST_2_OFFSET 0x0022 75 #define KS884x_MULTICAST_3_OFFSET 0x0023 76 /* MTR1 */ 77 #define KS884X_MULTICAST_4_OFFSET 0x0024 78 #define KS884X_MULTICAST_5_OFFSET 0x0025 79 #define KS884X_MULTICAST_6_OFFSET 0x0026 80 #define KS884X_MULTICAST_7_OFFSET 0x0027 81 82 /* Interrupt Registers */ 83 84 /* INTEN */ 85 #define KS884X_INTERRUPTS_ENABLE 0x0028 86 /* INTST */ 87 #define KS884X_INTERRUPTS_STATUS 0x002C 88 89 #define KS884X_INT_RX_STOPPED 0x02000000 90 #define KS884X_INT_TX_STOPPED 0x04000000 91 #define KS884X_INT_RX_OVERRUN 0x08000000 92 #define KS884X_INT_TX_EMPTY 0x10000000 93 #define KS884X_INT_RX 0x20000000 94 #define KS884X_INT_TX 0x40000000 95 #define KS884X_INT_PHY 0x80000000 96 97 #define KS884X_INT_RX_MASK \ 98 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN) 99 #define KS884X_INT_TX_MASK \ 100 (KS884X_INT_TX | KS884X_INT_TX_EMPTY) 101 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY) 102 103 /* MAC Additional Station Address */ 104 105 /* MAAL0 */ 106 #define KS_ADD_ADDR_0_LO 0x0080 107 /* MAAH0 */ 108 #define KS_ADD_ADDR_0_HI 0x0084 109 /* MAAL1 */ 110 #define KS_ADD_ADDR_1_LO 0x0088 111 /* MAAH1 */ 112 #define KS_ADD_ADDR_1_HI 0x008C 113 /* MAAL2 */ 114 #define KS_ADD_ADDR_2_LO 0x0090 115 /* MAAH2 */ 116 #define KS_ADD_ADDR_2_HI 0x0094 117 /* MAAL3 */ 118 #define KS_ADD_ADDR_3_LO 0x0098 119 /* MAAH3 */ 120 #define KS_ADD_ADDR_3_HI 0x009C 121 /* MAAL4 */ 122 #define KS_ADD_ADDR_4_LO 0x00A0 123 /* MAAH4 */ 124 #define KS_ADD_ADDR_4_HI 0x00A4 125 /* MAAL5 */ 126 #define KS_ADD_ADDR_5_LO 0x00A8 127 /* MAAH5 */ 128 #define KS_ADD_ADDR_5_HI 0x00AC 129 /* MAAL6 */ 130 #define KS_ADD_ADDR_6_LO 0x00B0 131 /* MAAH6 */ 132 #define KS_ADD_ADDR_6_HI 0x00B4 133 /* MAAL7 */ 134 #define KS_ADD_ADDR_7_LO 0x00B8 135 /* MAAH7 */ 136 #define KS_ADD_ADDR_7_HI 0x00BC 137 /* MAAL8 */ 138 #define KS_ADD_ADDR_8_LO 0x00C0 139 /* MAAH8 */ 140 #define KS_ADD_ADDR_8_HI 0x00C4 141 /* MAAL9 */ 142 #define KS_ADD_ADDR_9_LO 0x00C8 143 /* MAAH9 */ 144 #define KS_ADD_ADDR_9_HI 0x00CC 145 /* MAAL10 */ 146 #define KS_ADD_ADDR_A_LO 0x00D0 147 /* MAAH10 */ 148 #define KS_ADD_ADDR_A_HI 0x00D4 149 /* MAAL11 */ 150 #define KS_ADD_ADDR_B_LO 0x00D8 151 /* MAAH11 */ 152 #define KS_ADD_ADDR_B_HI 0x00DC 153 /* MAAL12 */ 154 #define KS_ADD_ADDR_C_LO 0x00E0 155 /* MAAH12 */ 156 #define KS_ADD_ADDR_C_HI 0x00E4 157 /* MAAL13 */ 158 #define KS_ADD_ADDR_D_LO 0x00E8 159 /* MAAH13 */ 160 #define KS_ADD_ADDR_D_HI 0x00EC 161 /* MAAL14 */ 162 #define KS_ADD_ADDR_E_LO 0x00F0 163 /* MAAH14 */ 164 #define KS_ADD_ADDR_E_HI 0x00F4 165 /* MAAL15 */ 166 #define KS_ADD_ADDR_F_LO 0x00F8 167 /* MAAH15 */ 168 #define KS_ADD_ADDR_F_HI 0x00FC 169 170 #define ADD_ADDR_HI_MASK 0x0000FFFF 171 #define ADD_ADDR_ENABLE 0x80000000 172 #define ADD_ADDR_INCR 8 173 174 /* Miscellaneous Registers */ 175 176 /* MARL */ 177 #define KS884X_ADDR_0_OFFSET 0x0200 178 #define KS884X_ADDR_1_OFFSET 0x0201 179 /* MARM */ 180 #define KS884X_ADDR_2_OFFSET 0x0202 181 #define KS884X_ADDR_3_OFFSET 0x0203 182 /* MARH */ 183 #define KS884X_ADDR_4_OFFSET 0x0204 184 #define KS884X_ADDR_5_OFFSET 0x0205 185 186 /* OBCR */ 187 #define KS884X_BUS_CTRL_OFFSET 0x0210 188 189 #define BUS_SPEED_125_MHZ 0x0000 190 #define BUS_SPEED_62_5_MHZ 0x0001 191 #define BUS_SPEED_41_66_MHZ 0x0002 192 #define BUS_SPEED_25_MHZ 0x0003 193 194 /* EEPCR */ 195 #define KS884X_EEPROM_CTRL_OFFSET 0x0212 196 197 #define EEPROM_CHIP_SELECT 0x0001 198 #define EEPROM_SERIAL_CLOCK 0x0002 199 #define EEPROM_DATA_OUT 0x0004 200 #define EEPROM_DATA_IN 0x0008 201 #define EEPROM_ACCESS_ENABLE 0x0010 202 203 /* MBIR */ 204 #define KS884X_MEM_INFO_OFFSET 0x0214 205 206 #define RX_MEM_TEST_FAILED 0x0008 207 #define RX_MEM_TEST_FINISHED 0x0010 208 #define TX_MEM_TEST_FAILED 0x0800 209 #define TX_MEM_TEST_FINISHED 0x1000 210 211 /* GCR */ 212 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216 213 #define GLOBAL_SOFTWARE_RESET 0x0001 214 215 #define KS8841_POWER_MANAGE_OFFSET 0x0218 216 217 /* WFCR */ 218 #define KS8841_WOL_CTRL_OFFSET 0x021A 219 #define KS8841_WOL_MAGIC_ENABLE 0x0080 220 #define KS8841_WOL_FRAME3_ENABLE 0x0008 221 #define KS8841_WOL_FRAME2_ENABLE 0x0004 222 #define KS8841_WOL_FRAME1_ENABLE 0x0002 223 #define KS8841_WOL_FRAME0_ENABLE 0x0001 224 225 /* WF0 */ 226 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220 227 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224 228 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228 229 230 /* IACR */ 231 #define KS884X_IACR_P 0x04A0 232 #define KS884X_IACR_OFFSET KS884X_IACR_P 233 234 /* IADR1 */ 235 #define KS884X_IADR1_P 0x04A2 236 #define KS884X_IADR2_P 0x04A4 237 #define KS884X_IADR3_P 0x04A6 238 #define KS884X_IADR4_P 0x04A8 239 #define KS884X_IADR5_P 0x04AA 240 241 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P 242 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1) 243 244 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P 245 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1) 246 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P 247 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1) 248 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P 249 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1) 250 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P 251 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1) 252 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P 253 254 /* P1MBCR */ 255 #define KS884X_P1MBCR_P 0x04D0 256 #define KS884X_P1MBSR_P 0x04D2 257 #define KS884X_PHY1ILR_P 0x04D4 258 #define KS884X_PHY1IHR_P 0x04D6 259 #define KS884X_P1ANAR_P 0x04D8 260 #define KS884X_P1ANLPR_P 0x04DA 261 262 /* P2MBCR */ 263 #define KS884X_P2MBCR_P 0x04E0 264 #define KS884X_P2MBSR_P 0x04E2 265 #define KS884X_PHY2ILR_P 0x04E4 266 #define KS884X_PHY2IHR_P 0x04E6 267 #define KS884X_P2ANAR_P 0x04E8 268 #define KS884X_P2ANLPR_P 0x04EA 269 270 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P 271 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P) 272 273 #define KS884X_PHY_CTRL_OFFSET 0x00 274 275 #define KS884X_PHY_STATUS_OFFSET 0x02 276 277 #define KS884X_PHY_ID_1_OFFSET 0x04 278 #define KS884X_PHY_ID_2_OFFSET 0x06 279 280 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08 281 282 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A 283 284 /* P1VCT */ 285 #define KS884X_P1VCT_P 0x04F0 286 #define KS884X_P1PHYCTRL_P 0x04F2 287 288 /* P2VCT */ 289 #define KS884X_P2VCT_P 0x04F4 290 #define KS884X_P2PHYCTRL_P 0x04F6 291 292 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P 293 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P) 294 295 #define KS884X_PHY_LINK_MD_OFFSET 0x00 296 297 #define PHY_START_CABLE_DIAG 0x8000 298 #define PHY_CABLE_DIAG_RESULT 0x6000 299 #define PHY_CABLE_STAT_NORMAL 0x0000 300 #define PHY_CABLE_STAT_OPEN 0x2000 301 #define PHY_CABLE_STAT_SHORT 0x4000 302 #define PHY_CABLE_STAT_FAILED 0x6000 303 #define PHY_CABLE_10M_SHORT 0x1000 304 #define PHY_CABLE_FAULT_COUNTER 0x01FF 305 306 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02 307 308 #define PHY_STAT_REVERSED_POLARITY 0x0020 309 #define PHY_STAT_MDIX 0x0010 310 #define PHY_FORCE_LINK 0x0008 311 #define PHY_POWER_SAVING_DISABLE 0x0004 312 #define PHY_REMOTE_LOOPBACK 0x0002 313 314 /* SIDER */ 315 #define KS884X_SIDER_P 0x0400 316 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P 317 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1) 318 319 #define REG_FAMILY_ID 0x88 320 321 #define REG_CHIP_ID_41 0x8810 322 #define REG_CHIP_ID_42 0x8800 323 324 #define KS884X_CHIP_ID_MASK_41 0xFF10 325 #define KS884X_CHIP_ID_MASK 0xFFF0 326 #define KS884X_CHIP_ID_SHIFT 4 327 #define KS884X_REVISION_MASK 0x000E 328 #define KS884X_REVISION_SHIFT 1 329 #define KS8842_START 0x0001 330 331 #define CHIP_IP_41_M 0x8810 332 #define CHIP_IP_42_M 0x8800 333 #define CHIP_IP_61_M 0x8890 334 #define CHIP_IP_62_M 0x8880 335 336 #define CHIP_IP_41_P 0x8850 337 #define CHIP_IP_42_P 0x8840 338 #define CHIP_IP_61_P 0x88D0 339 #define CHIP_IP_62_P 0x88C0 340 341 /* SGCR1 */ 342 #define KS8842_SGCR1_P 0x0402 343 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P 344 345 #define SWITCH_PASS_ALL 0x8000 346 #define SWITCH_TX_FLOW_CTRL 0x2000 347 #define SWITCH_RX_FLOW_CTRL 0x1000 348 #define SWITCH_CHECK_LENGTH 0x0800 349 #define SWITCH_AGING_ENABLE 0x0400 350 #define SWITCH_FAST_AGING 0x0200 351 #define SWITCH_AGGR_BACKOFF 0x0100 352 #define SWITCH_PASS_PAUSE 0x0008 353 #define SWITCH_LINK_AUTO_AGING 0x0001 354 355 /* SGCR2 */ 356 #define KS8842_SGCR2_P 0x0404 357 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P 358 359 #define SWITCH_VLAN_ENABLE 0x8000 360 #define SWITCH_IGMP_SNOOP 0x4000 361 #define IPV6_MLD_SNOOP_ENABLE 0x2000 362 #define IPV6_MLD_SNOOP_OPTION 0x1000 363 #define PRIORITY_SCHEME_SELECT 0x0800 364 #define SWITCH_MIRROR_RX_TX 0x0100 365 #define UNICAST_VLAN_BOUNDARY 0x0080 366 #define MULTICAST_STORM_DISABLE 0x0040 367 #define SWITCH_BACK_PRESSURE 0x0020 368 #define FAIR_FLOW_CTRL 0x0010 369 #define NO_EXC_COLLISION_DROP 0x0008 370 #define SWITCH_HUGE_PACKET 0x0004 371 #define SWITCH_LEGAL_PACKET 0x0002 372 #define SWITCH_BUF_RESERVE 0x0001 373 374 /* SGCR3 */ 375 #define KS8842_SGCR3_P 0x0406 376 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P 377 378 #define BROADCAST_STORM_RATE_LO 0xFF00 379 #define SWITCH_REPEATER 0x0080 380 #define SWITCH_HALF_DUPLEX 0x0040 381 #define SWITCH_FLOW_CTRL 0x0020 382 #define SWITCH_10_MBIT 0x0010 383 #define SWITCH_REPLACE_NULL_VID 0x0008 384 #define BROADCAST_STORM_RATE_HI 0x0007 385 386 #define BROADCAST_STORM_RATE 0x07FF 387 388 /* SGCR4 */ 389 #define KS8842_SGCR4_P 0x0408 390 391 /* SGCR5 */ 392 #define KS8842_SGCR5_P 0x040A 393 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P 394 395 #define LED_MODE 0x8200 396 #define LED_SPEED_DUPLEX_ACT 0x0000 397 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000 398 #define LED_DUPLEX_10_100 0x0200 399 400 /* SGCR6 */ 401 #define KS8842_SGCR6_P 0x0410 402 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P 403 404 #define KS8842_PRIORITY_MASK 3 405 #define KS8842_PRIORITY_SHIFT 2 406 407 /* SGCR7 */ 408 #define KS8842_SGCR7_P 0x0412 409 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P 410 411 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008 412 #define SWITCH_UNK_DEF_PORT_3 0x0004 413 #define SWITCH_UNK_DEF_PORT_2 0x0002 414 #define SWITCH_UNK_DEF_PORT_1 0x0001 415 416 /* MACAR1 */ 417 #define KS8842_MACAR1_P 0x0470 418 #define KS8842_MACAR2_P 0x0472 419 #define KS8842_MACAR3_P 0x0474 420 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P 421 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1) 422 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P 423 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1) 424 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P 425 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1) 426 427 /* TOSR1 */ 428 #define KS8842_TOSR1_P 0x0480 429 #define KS8842_TOSR2_P 0x0482 430 #define KS8842_TOSR3_P 0x0484 431 #define KS8842_TOSR4_P 0x0486 432 #define KS8842_TOSR5_P 0x0488 433 #define KS8842_TOSR6_P 0x048A 434 #define KS8842_TOSR7_P 0x0490 435 #define KS8842_TOSR8_P 0x0492 436 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P 437 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P 438 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P 439 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P 440 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P 441 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P 442 443 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P 444 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P 445 446 /* P1CR1 */ 447 #define KS8842_P1CR1_P 0x0500 448 #define KS8842_P1CR2_P 0x0502 449 #define KS8842_P1VIDR_P 0x0504 450 #define KS8842_P1CR3_P 0x0506 451 #define KS8842_P1IRCR_P 0x0508 452 #define KS8842_P1ERCR_P 0x050A 453 #define KS884X_P1SCSLMD_P 0x0510 454 #define KS884X_P1CR4_P 0x0512 455 #define KS884X_P1SR_P 0x0514 456 457 /* P2CR1 */ 458 #define KS8842_P2CR1_P 0x0520 459 #define KS8842_P2CR2_P 0x0522 460 #define KS8842_P2VIDR_P 0x0524 461 #define KS8842_P2CR3_P 0x0526 462 #define KS8842_P2IRCR_P 0x0528 463 #define KS8842_P2ERCR_P 0x052A 464 #define KS884X_P2SCSLMD_P 0x0530 465 #define KS884X_P2CR4_P 0x0532 466 #define KS884X_P2SR_P 0x0534 467 468 /* P3CR1 */ 469 #define KS8842_P3CR1_P 0x0540 470 #define KS8842_P3CR2_P 0x0542 471 #define KS8842_P3VIDR_P 0x0544 472 #define KS8842_P3CR3_P 0x0546 473 #define KS8842_P3IRCR_P 0x0548 474 #define KS8842_P3ERCR_P 0x054A 475 476 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P 477 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P 478 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P 479 480 #define PORT_CTRL_ADDR(port, addr) \ 481 (addr = KS8842_PORT_1_CTRL_1 + (port) * \ 482 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1)) 483 484 #define KS8842_PORT_CTRL_1_OFFSET 0x00 485 486 #define PORT_BROADCAST_STORM 0x0080 487 #define PORT_DIFFSERV_ENABLE 0x0040 488 #define PORT_802_1P_ENABLE 0x0020 489 #define PORT_BASED_PRIORITY_MASK 0x0018 490 #define PORT_BASED_PRIORITY_BASE 0x0003 491 #define PORT_BASED_PRIORITY_SHIFT 3 492 #define PORT_BASED_PRIORITY_0 0x0000 493 #define PORT_BASED_PRIORITY_1 0x0008 494 #define PORT_BASED_PRIORITY_2 0x0010 495 #define PORT_BASED_PRIORITY_3 0x0018 496 #define PORT_INSERT_TAG 0x0004 497 #define PORT_REMOVE_TAG 0x0002 498 #define PORT_PRIO_QUEUE_ENABLE 0x0001 499 500 #define KS8842_PORT_CTRL_2_OFFSET 0x02 501 502 #define PORT_INGRESS_VLAN_FILTER 0x4000 503 #define PORT_DISCARD_NON_VID 0x2000 504 #define PORT_FORCE_FLOW_CTRL 0x1000 505 #define PORT_BACK_PRESSURE 0x0800 506 #define PORT_TX_ENABLE 0x0400 507 #define PORT_RX_ENABLE 0x0200 508 #define PORT_LEARN_DISABLE 0x0100 509 #define PORT_MIRROR_SNIFFER 0x0080 510 #define PORT_MIRROR_RX 0x0040 511 #define PORT_MIRROR_TX 0x0020 512 #define PORT_USER_PRIORITY_CEILING 0x0008 513 #define PORT_VLAN_MEMBERSHIP 0x0007 514 515 #define KS8842_PORT_CTRL_VID_OFFSET 0x04 516 517 #define PORT_DEFAULT_VID 0x0001 518 519 #define KS8842_PORT_CTRL_3_OFFSET 0x06 520 521 #define PORT_INGRESS_LIMIT_MODE 0x000C 522 #define PORT_INGRESS_ALL 0x0000 523 #define PORT_INGRESS_UNICAST 0x0004 524 #define PORT_INGRESS_MULTICAST 0x0008 525 #define PORT_INGRESS_BROADCAST 0x000C 526 #define PORT_COUNT_IFG 0x0002 527 #define PORT_COUNT_PREAMBLE 0x0001 528 529 #define KS8842_PORT_IN_RATE_OFFSET 0x08 530 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A 531 532 #define PORT_PRIORITY_RATE 0x0F 533 #define PORT_PRIORITY_RATE_SHIFT 4 534 535 #define KS884X_PORT_LINK_MD 0x10 536 537 #define PORT_CABLE_10M_SHORT 0x8000 538 #define PORT_CABLE_DIAG_RESULT 0x6000 539 #define PORT_CABLE_STAT_NORMAL 0x0000 540 #define PORT_CABLE_STAT_OPEN 0x2000 541 #define PORT_CABLE_STAT_SHORT 0x4000 542 #define PORT_CABLE_STAT_FAILED 0x6000 543 #define PORT_START_CABLE_DIAG 0x1000 544 #define PORT_FORCE_LINK 0x0800 545 #define PORT_POWER_SAVING_DISABLE 0x0400 546 #define PORT_PHY_REMOTE_LOOPBACK 0x0200 547 #define PORT_CABLE_FAULT_COUNTER 0x01FF 548 549 #define KS884X_PORT_CTRL_4_OFFSET 0x12 550 551 #define PORT_LED_OFF 0x8000 552 #define PORT_TX_DISABLE 0x4000 553 #define PORT_AUTO_NEG_RESTART 0x2000 554 #define PORT_REMOTE_FAULT_DISABLE 0x1000 555 #define PORT_POWER_DOWN 0x0800 556 #define PORT_AUTO_MDIX_DISABLE 0x0400 557 #define PORT_FORCE_MDIX 0x0200 558 #define PORT_LOOPBACK 0x0100 559 #define PORT_AUTO_NEG_ENABLE 0x0080 560 #define PORT_FORCE_100_MBIT 0x0040 561 #define PORT_FORCE_FULL_DUPLEX 0x0020 562 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010 563 #define PORT_AUTO_NEG_100BTX_FD 0x0008 564 #define PORT_AUTO_NEG_100BTX 0x0004 565 #define PORT_AUTO_NEG_10BT_FD 0x0002 566 #define PORT_AUTO_NEG_10BT 0x0001 567 568 #define KS884X_PORT_STATUS_OFFSET 0x14 569 570 #define PORT_HP_MDIX 0x8000 571 #define PORT_REVERSED_POLARITY 0x2000 572 #define PORT_RX_FLOW_CTRL 0x0800 573 #define PORT_TX_FLOW_CTRL 0x1000 574 #define PORT_STATUS_SPEED_100MBIT 0x0400 575 #define PORT_STATUS_FULL_DUPLEX 0x0200 576 #define PORT_REMOTE_FAULT 0x0100 577 #define PORT_MDIX_STATUS 0x0080 578 #define PORT_AUTO_NEG_COMPLETE 0x0040 579 #define PORT_STATUS_LINK_GOOD 0x0020 580 #define PORT_REMOTE_SYM_PAUSE 0x0010 581 #define PORT_REMOTE_100BTX_FD 0x0008 582 #define PORT_REMOTE_100BTX 0x0004 583 #define PORT_REMOTE_10BT_FD 0x0002 584 #define PORT_REMOTE_10BT 0x0001 585 586 /* 587 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 588 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000 589 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000 590 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000 591 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000 592 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000 593 */ 594 595 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF 596 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000 597 #define STATIC_MAC_TABLE_VALID 0x00080000 598 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000 599 #define STATIC_MAC_TABLE_USE_FID 0x00200000 600 #define STATIC_MAC_TABLE_FID 0x03C00000 601 602 #define STATIC_MAC_FWD_PORTS_SHIFT 16 603 #define STATIC_MAC_FID_SHIFT 22 604 605 /* 606 #define VLAN_TABLE_VID 00-00000000-00000FFF 607 #define VLAN_TABLE_FID 00-00000000-0000F000 608 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000 609 #define VLAN_TABLE_VALID 00-00000000-00080000 610 */ 611 612 #define VLAN_TABLE_VID 0x00000FFF 613 #define VLAN_TABLE_FID 0x0000F000 614 #define VLAN_TABLE_MEMBERSHIP 0x00070000 615 #define VLAN_TABLE_VALID 0x00080000 616 617 #define VLAN_TABLE_FID_SHIFT 12 618 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16 619 620 /* 621 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 622 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000 623 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000 624 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000 625 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000 626 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000 627 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000 628 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000 629 */ 630 631 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF 632 #define DYNAMIC_MAC_TABLE_FID 0x000F0000 633 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000 634 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000 635 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000 636 637 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03 638 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04 639 #define DYNAMIC_MAC_TABLE_RESERVED 0x78 640 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80 641 642 #define DYNAMIC_MAC_FID_SHIFT 16 643 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20 644 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22 645 #define DYNAMIC_MAC_ENTRIES_SHIFT 24 646 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8 647 648 /* 649 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF 650 #define MIB_COUNTER_VALID 00-00000000-40000000 651 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000 652 */ 653 654 #define MIB_COUNTER_VALUE 0x3FFFFFFF 655 #define MIB_COUNTER_VALID 0x40000000 656 #define MIB_COUNTER_OVERFLOW 0x80000000 657 658 #define MIB_PACKET_DROPPED 0x0000FFFF 659 660 #define KS_MIB_PACKET_DROPPED_TX_0 0x100 661 #define KS_MIB_PACKET_DROPPED_TX_1 0x101 662 #define KS_MIB_PACKET_DROPPED_TX 0x102 663 #define KS_MIB_PACKET_DROPPED_RX_0 0x103 664 #define KS_MIB_PACKET_DROPPED_RX_1 0x104 665 #define KS_MIB_PACKET_DROPPED_RX 0x105 666 667 /* Change default LED mode. */ 668 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT 669 670 #define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i)) 671 672 #define MAX_ETHERNET_BODY_SIZE 1500 673 #define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN) 674 675 #define MAX_ETHERNET_PACKET_SIZE \ 676 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE) 677 678 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4) 679 #define MAX_RX_BUF_SIZE (1912 + 4) 680 681 #define ADDITIONAL_ENTRIES 16 682 #define MAX_MULTICAST_LIST 32 683 684 #define HW_MULTICAST_SIZE 8 685 686 #define HW_TO_DEV_PORT(port) (port - 1) 687 688 enum { 689 media_connected, 690 media_disconnected 691 }; 692 693 enum { 694 OID_COUNTER_UNKOWN, 695 696 OID_COUNTER_FIRST, 697 698 /* total transmit errors */ 699 OID_COUNTER_XMIT_ERROR, 700 701 /* total receive errors */ 702 OID_COUNTER_RCV_ERROR, 703 704 OID_COUNTER_LAST 705 }; 706 707 /* 708 * Hardware descriptor definitions 709 */ 710 711 #define DESC_ALIGNMENT 16 712 #define BUFFER_ALIGNMENT 8 713 714 #define NUM_OF_RX_DESC 64 715 #define NUM_OF_TX_DESC 64 716 717 #define KS_DESC_RX_FRAME_LEN 0x000007FF 718 #define KS_DESC_RX_FRAME_TYPE 0x00008000 719 #define KS_DESC_RX_ERROR_CRC 0x00010000 720 #define KS_DESC_RX_ERROR_RUNT 0x00020000 721 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000 722 #define KS_DESC_RX_ERROR_PHY 0x00080000 723 #define KS884X_DESC_RX_PORT_MASK 0x00300000 724 #define KS_DESC_RX_MULTICAST 0x01000000 725 #define KS_DESC_RX_ERROR 0x02000000 726 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000 727 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000 728 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000 729 #define KS_DESC_RX_LAST 0x20000000 730 #define KS_DESC_RX_FIRST 0x40000000 731 #define KS_DESC_RX_ERROR_COND \ 732 (KS_DESC_RX_ERROR_CRC | \ 733 KS_DESC_RX_ERROR_RUNT | \ 734 KS_DESC_RX_ERROR_PHY | \ 735 KS_DESC_RX_ERROR_TOO_LONG) 736 737 #define KS_DESC_HW_OWNED 0x80000000 738 739 #define KS_DESC_BUF_SIZE 0x000007FF 740 #define KS884X_DESC_TX_PORT_MASK 0x00300000 741 #define KS_DESC_END_OF_RING 0x02000000 742 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000 743 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000 744 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000 745 #define KS_DESC_TX_LAST 0x20000000 746 #define KS_DESC_TX_FIRST 0x40000000 747 #define KS_DESC_TX_INTERRUPT 0x80000000 748 749 #define KS_DESC_PORT_SHIFT 20 750 751 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE) 752 753 #define KS_DESC_TX_MASK \ 754 (KS_DESC_TX_INTERRUPT | \ 755 KS_DESC_TX_FIRST | \ 756 KS_DESC_TX_LAST | \ 757 KS_DESC_TX_CSUM_GEN_IP | \ 758 KS_DESC_TX_CSUM_GEN_TCP | \ 759 KS_DESC_TX_CSUM_GEN_UDP | \ 760 KS_DESC_BUF_SIZE) 761 762 struct ksz_desc_rx_stat { 763 #ifdef __BIG_ENDIAN_BITFIELD 764 u32 hw_owned:1; 765 u32 first_desc:1; 766 u32 last_desc:1; 767 u32 csum_err_ip:1; 768 u32 csum_err_tcp:1; 769 u32 csum_err_udp:1; 770 u32 error:1; 771 u32 multicast:1; 772 u32 src_port:4; 773 u32 err_phy:1; 774 u32 err_too_long:1; 775 u32 err_runt:1; 776 u32 err_crc:1; 777 u32 frame_type:1; 778 u32 reserved1:4; 779 u32 frame_len:11; 780 #else 781 u32 frame_len:11; 782 u32 reserved1:4; 783 u32 frame_type:1; 784 u32 err_crc:1; 785 u32 err_runt:1; 786 u32 err_too_long:1; 787 u32 err_phy:1; 788 u32 src_port:4; 789 u32 multicast:1; 790 u32 error:1; 791 u32 csum_err_udp:1; 792 u32 csum_err_tcp:1; 793 u32 csum_err_ip:1; 794 u32 last_desc:1; 795 u32 first_desc:1; 796 u32 hw_owned:1; 797 #endif 798 }; 799 800 struct ksz_desc_tx_stat { 801 #ifdef __BIG_ENDIAN_BITFIELD 802 u32 hw_owned:1; 803 u32 reserved1:31; 804 #else 805 u32 reserved1:31; 806 u32 hw_owned:1; 807 #endif 808 }; 809 810 struct ksz_desc_rx_buf { 811 #ifdef __BIG_ENDIAN_BITFIELD 812 u32 reserved4:6; 813 u32 end_of_ring:1; 814 u32 reserved3:14; 815 u32 buf_size:11; 816 #else 817 u32 buf_size:11; 818 u32 reserved3:14; 819 u32 end_of_ring:1; 820 u32 reserved4:6; 821 #endif 822 }; 823 824 struct ksz_desc_tx_buf { 825 #ifdef __BIG_ENDIAN_BITFIELD 826 u32 intr:1; 827 u32 first_seg:1; 828 u32 last_seg:1; 829 u32 csum_gen_ip:1; 830 u32 csum_gen_tcp:1; 831 u32 csum_gen_udp:1; 832 u32 end_of_ring:1; 833 u32 reserved4:1; 834 u32 dest_port:4; 835 u32 reserved3:9; 836 u32 buf_size:11; 837 #else 838 u32 buf_size:11; 839 u32 reserved3:9; 840 u32 dest_port:4; 841 u32 reserved4:1; 842 u32 end_of_ring:1; 843 u32 csum_gen_udp:1; 844 u32 csum_gen_tcp:1; 845 u32 csum_gen_ip:1; 846 u32 last_seg:1; 847 u32 first_seg:1; 848 u32 intr:1; 849 #endif 850 }; 851 852 union desc_stat { 853 struct ksz_desc_rx_stat rx; 854 struct ksz_desc_tx_stat tx; 855 u32 data; 856 }; 857 858 union desc_buf { 859 struct ksz_desc_rx_buf rx; 860 struct ksz_desc_tx_buf tx; 861 u32 data; 862 }; 863 864 /** 865 * struct ksz_hw_desc - Hardware descriptor data structure 866 * @ctrl: Descriptor control value. 867 * @buf: Descriptor buffer value. 868 * @addr: Physical address of memory buffer. 869 * @next: Pointer to next hardware descriptor. 870 */ 871 struct ksz_hw_desc { 872 union desc_stat ctrl; 873 union desc_buf buf; 874 u32 addr; 875 u32 next; 876 }; 877 878 /** 879 * struct ksz_sw_desc - Software descriptor data structure 880 * @ctrl: Descriptor control value. 881 * @buf: Descriptor buffer value. 882 * @buf_size: Current buffers size value in hardware descriptor. 883 */ 884 struct ksz_sw_desc { 885 union desc_stat ctrl; 886 union desc_buf buf; 887 u32 buf_size; 888 }; 889 890 /** 891 * struct ksz_dma_buf - OS dependent DMA buffer data structure 892 * @skb: Associated socket buffer. 893 * @dma: Associated physical DMA address. 894 * @len: Actual len used. 895 */ 896 struct ksz_dma_buf { 897 struct sk_buff *skb; 898 dma_addr_t dma; 899 int len; 900 }; 901 902 /** 903 * struct ksz_desc - Descriptor structure 904 * @phw: Hardware descriptor pointer to uncached physical memory. 905 * @sw: Cached memory to hold hardware descriptor values for 906 * manipulation. 907 * @dma_buf: Operating system dependent data structure to hold physical 908 * memory buffer allocation information. 909 */ 910 struct ksz_desc { 911 struct ksz_hw_desc *phw; 912 struct ksz_sw_desc sw; 913 struct ksz_dma_buf dma_buf; 914 }; 915 916 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf)) 917 918 /** 919 * struct ksz_desc_info - Descriptor information data structure 920 * @ring: First descriptor in the ring. 921 * @cur: Current descriptor being manipulated. 922 * @ring_virt: First hardware descriptor in the ring. 923 * @ring_phys: The physical address of the first descriptor of the ring. 924 * @size: Size of hardware descriptor. 925 * @alloc: Number of descriptors allocated. 926 * @avail: Number of descriptors available for use. 927 * @last: Index for last descriptor released to hardware. 928 * @next: Index for next descriptor available for use. 929 * @mask: Mask for index wrapping. 930 */ 931 struct ksz_desc_info { 932 struct ksz_desc *ring; 933 struct ksz_desc *cur; 934 struct ksz_hw_desc *ring_virt; 935 u32 ring_phys; 936 int size; 937 int alloc; 938 int avail; 939 int last; 940 int next; 941 int mask; 942 }; 943 944 /* 945 * KSZ8842 switch definitions 946 */ 947 948 enum { 949 TABLE_STATIC_MAC = 0, 950 TABLE_VLAN, 951 TABLE_DYNAMIC_MAC, 952 TABLE_MIB 953 }; 954 955 #define LEARNED_MAC_TABLE_ENTRIES 1024 956 #define STATIC_MAC_TABLE_ENTRIES 8 957 958 /** 959 * struct ksz_mac_table - Static MAC table data structure 960 * @mac_addr: MAC address to filter. 961 * @vid: VID value. 962 * @fid: FID value. 963 * @ports: Port membership. 964 * @override: Override setting. 965 * @use_fid: FID use setting. 966 * @valid: Valid setting indicating the entry is being used. 967 */ 968 struct ksz_mac_table { 969 u8 mac_addr[ETH_ALEN]; 970 u16 vid; 971 u8 fid; 972 u8 ports; 973 u8 override:1; 974 u8 use_fid:1; 975 u8 valid:1; 976 }; 977 978 #define VLAN_TABLE_ENTRIES 16 979 980 /** 981 * struct ksz_vlan_table - VLAN table data structure 982 * @vid: VID value. 983 * @fid: FID value. 984 * @member: Port membership. 985 */ 986 struct ksz_vlan_table { 987 u16 vid; 988 u8 fid; 989 u8 member; 990 }; 991 992 #define DIFFSERV_ENTRIES 64 993 #define PRIO_802_1P_ENTRIES 8 994 #define PRIO_QUEUES 4 995 996 #define SWITCH_PORT_NUM 2 997 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1) 998 #define HOST_MASK (1 << SWITCH_PORT_NUM) 999 #define PORT_MASK 7 1000 1001 #define MAIN_PORT 0 1002 #define OTHER_PORT 1 1003 #define HOST_PORT SWITCH_PORT_NUM 1004 1005 #define PORT_COUNTER_NUM 0x20 1006 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2) 1007 1008 #define MIB_COUNTER_RX_LO_PRIORITY 0x00 1009 #define MIB_COUNTER_RX_HI_PRIORITY 0x01 1010 #define MIB_COUNTER_RX_UNDERSIZE 0x02 1011 #define MIB_COUNTER_RX_FRAGMENT 0x03 1012 #define MIB_COUNTER_RX_OVERSIZE 0x04 1013 #define MIB_COUNTER_RX_JABBER 0x05 1014 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06 1015 #define MIB_COUNTER_RX_CRC_ERR 0x07 1016 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08 1017 #define MIB_COUNTER_RX_CTRL_8808 0x09 1018 #define MIB_COUNTER_RX_PAUSE 0x0A 1019 #define MIB_COUNTER_RX_BROADCAST 0x0B 1020 #define MIB_COUNTER_RX_MULTICAST 0x0C 1021 #define MIB_COUNTER_RX_UNICAST 0x0D 1022 #define MIB_COUNTER_RX_OCTET_64 0x0E 1023 #define MIB_COUNTER_RX_OCTET_65_127 0x0F 1024 #define MIB_COUNTER_RX_OCTET_128_255 0x10 1025 #define MIB_COUNTER_RX_OCTET_256_511 0x11 1026 #define MIB_COUNTER_RX_OCTET_512_1023 0x12 1027 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13 1028 #define MIB_COUNTER_TX_LO_PRIORITY 0x14 1029 #define MIB_COUNTER_TX_HI_PRIORITY 0x15 1030 #define MIB_COUNTER_TX_LATE_COLLISION 0x16 1031 #define MIB_COUNTER_TX_PAUSE 0x17 1032 #define MIB_COUNTER_TX_BROADCAST 0x18 1033 #define MIB_COUNTER_TX_MULTICAST 0x19 1034 #define MIB_COUNTER_TX_UNICAST 0x1A 1035 #define MIB_COUNTER_TX_DEFERRED 0x1B 1036 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C 1037 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D 1038 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E 1039 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F 1040 1041 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20 1042 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21 1043 1044 /** 1045 * struct ksz_port_mib - Port MIB data structure 1046 * @cnt_ptr: Current pointer to MIB counter index. 1047 * @link_down: Indication the link has just gone down. 1048 * @state: Connection status of the port. 1049 * @mib_start: The starting counter index. Some ports do not start at 0. 1050 * @counter: 64-bit MIB counter value. 1051 * @dropped: Temporary buffer to remember last read packet dropped values. 1052 * 1053 * MIB counters needs to be read periodically so that counters do not get 1054 * overflowed and give incorrect values. A right balance is needed to 1055 * satisfy this condition and not waste too much CPU time. 1056 * 1057 * It is pointless to read MIB counters when the port is disconnected. The 1058 * @state provides the connection status so that MIB counters are read only 1059 * when the port is connected. The @link_down indicates the port is just 1060 * disconnected so that all MIB counters are read one last time to update the 1061 * information. 1062 */ 1063 struct ksz_port_mib { 1064 u8 cnt_ptr; 1065 u8 link_down; 1066 u8 state; 1067 u8 mib_start; 1068 1069 u64 counter[TOTAL_PORT_COUNTER_NUM]; 1070 u32 dropped[2]; 1071 }; 1072 1073 /** 1074 * struct ksz_port_cfg - Port configuration data structure 1075 * @vid: VID value. 1076 * @member: Port membership. 1077 * @port_prio: Port priority. 1078 * @rx_rate: Receive priority rate. 1079 * @tx_rate: Transmit priority rate. 1080 * @stp_state: Current Spanning Tree Protocol state. 1081 */ 1082 struct ksz_port_cfg { 1083 u16 vid; 1084 u8 member; 1085 u8 port_prio; 1086 u32 rx_rate[PRIO_QUEUES]; 1087 u32 tx_rate[PRIO_QUEUES]; 1088 int stp_state; 1089 }; 1090 1091 /** 1092 * struct ksz_switch - KSZ8842 switch data structure 1093 * @mac_table: MAC table entries information. 1094 * @vlan_table: VLAN table entries information. 1095 * @port_cfg: Port configuration information. 1096 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS 1097 * (bit7 ~ bit2) field. 1098 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p 1099 * Tag priority field. 1100 * @br_addr: Bridge address. Used for STP. 1101 * @other_addr: Other MAC address. Used for multiple network device mode. 1102 * @broad_per: Broadcast storm percentage. 1103 * @member: Current port membership. Used for STP. 1104 */ 1105 struct ksz_switch { 1106 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES]; 1107 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES]; 1108 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM]; 1109 1110 u8 diffserv[DIFFSERV_ENTRIES]; 1111 u8 p_802_1p[PRIO_802_1P_ENTRIES]; 1112 1113 u8 br_addr[ETH_ALEN]; 1114 u8 other_addr[ETH_ALEN]; 1115 1116 u8 broad_per; 1117 u8 member; 1118 }; 1119 1120 #define TX_RATE_UNIT 10000 1121 1122 /** 1123 * struct ksz_port_info - Port information data structure 1124 * @state: Connection status of the port. 1125 * @tx_rate: Transmit rate divided by 10000 to get Mbit. 1126 * @duplex: Duplex mode. 1127 * @advertised: Advertised auto-negotiation setting. Used to determine link. 1128 * @partner: Auto-negotiation partner setting. Used to determine link. 1129 * @port_id: Port index to access actual hardware register. 1130 * @pdev: Pointer to OS dependent network device. 1131 */ 1132 struct ksz_port_info { 1133 uint state; 1134 uint tx_rate; 1135 u8 duplex; 1136 u8 advertised; 1137 u8 partner; 1138 u8 port_id; 1139 void *pdev; 1140 }; 1141 1142 #define MAX_TX_HELD_SIZE 52000 1143 1144 /* Hardware features and bug fixes. */ 1145 #define LINK_INT_WORKING (1 << 0) 1146 #define SMALL_PACKET_TX_BUG (1 << 1) 1147 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2) 1148 #define RX_HUGE_FRAME (1 << 4) 1149 #define STP_SUPPORT (1 << 8) 1150 1151 /* Software overrides. */ 1152 #define PAUSE_FLOW_CTRL (1 << 0) 1153 #define FAST_AGING (1 << 1) 1154 1155 /** 1156 * struct ksz_hw - KSZ884X hardware data structure 1157 * @io: Virtual address assigned. 1158 * @ksz_switch: Pointer to KSZ8842 switch. 1159 * @port_info: Port information. 1160 * @port_mib: Port MIB information. 1161 * @dev_count: Number of network devices this hardware supports. 1162 * @dst_ports: Destination ports in switch for transmission. 1163 * @id: Hardware ID. Used for display only. 1164 * @mib_cnt: Number of MIB counters this hardware has. 1165 * @mib_port_cnt: Number of ports with MIB counters. 1166 * @tx_cfg: Cached transmit control settings. 1167 * @rx_cfg: Cached receive control settings. 1168 * @intr_mask: Current interrupt mask. 1169 * @intr_set: Current interrup set. 1170 * @intr_blocked: Interrupt blocked. 1171 * @rx_desc_info: Receive descriptor information. 1172 * @tx_desc_info: Transmit descriptor information. 1173 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization. 1174 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization. 1175 * @tx_size: Transmit data size. Used for TX optimization. 1176 * The maximum is defined by MAX_TX_HELD_SIZE. 1177 * @perm_addr: Permanent MAC address. 1178 * @override_addr: Overridden MAC address. 1179 * @address: Additional MAC address entries. 1180 * @addr_list_size: Additional MAC address list size. 1181 * @mac_override: Indication of MAC address overridden. 1182 * @promiscuous: Counter to keep track of promiscuous mode set. 1183 * @all_multi: Counter to keep track of all multicast mode set. 1184 * @multi_list: Multicast address entries. 1185 * @multi_bits: Cached multicast hash table settings. 1186 * @multi_list_size: Multicast address list size. 1187 * @enabled: Indication of hardware enabled. 1188 * @rx_stop: Indication of receive process stop. 1189 * @reserved2: none 1190 * @features: Hardware features to enable. 1191 * @overrides: Hardware features to override. 1192 * @parent: Pointer to parent, network device private structure. 1193 */ 1194 struct ksz_hw { 1195 void __iomem *io; 1196 1197 struct ksz_switch *ksz_switch; 1198 struct ksz_port_info port_info[SWITCH_PORT_NUM]; 1199 struct ksz_port_mib port_mib[TOTAL_PORT_NUM]; 1200 int dev_count; 1201 int dst_ports; 1202 int id; 1203 int mib_cnt; 1204 int mib_port_cnt; 1205 1206 u32 tx_cfg; 1207 u32 rx_cfg; 1208 u32 intr_mask; 1209 u32 intr_set; 1210 uint intr_blocked; 1211 1212 struct ksz_desc_info rx_desc_info; 1213 struct ksz_desc_info tx_desc_info; 1214 1215 int tx_int_cnt; 1216 int tx_int_mask; 1217 int tx_size; 1218 1219 u8 perm_addr[ETH_ALEN]; 1220 u8 override_addr[ETH_ALEN]; 1221 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN]; 1222 u8 addr_list_size; 1223 u8 mac_override; 1224 u8 promiscuous; 1225 u8 all_multi; 1226 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN]; 1227 u8 multi_bits[HW_MULTICAST_SIZE]; 1228 u8 multi_list_size; 1229 1230 u8 enabled; 1231 u8 rx_stop; 1232 u8 reserved2[1]; 1233 1234 uint features; 1235 uint overrides; 1236 1237 void *parent; 1238 }; 1239 1240 enum { 1241 PHY_NO_FLOW_CTRL, 1242 PHY_FLOW_CTRL, 1243 PHY_TX_ONLY, 1244 PHY_RX_ONLY 1245 }; 1246 1247 /** 1248 * struct ksz_port - Virtual port data structure 1249 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full 1250 * duplex, and 0 for auto, which normally results in full 1251 * duplex. 1252 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and 1253 * 0 for auto, which normally results in 100 Mbit. 1254 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for 1255 * force. 1256 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow 1257 * control, and PHY_FLOW_CTRL for flow control. 1258 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100 1259 * Mbit PHY. 1260 * @first_port: Index of first port this port supports. 1261 * @mib_port_cnt: Number of ports with MIB counters. 1262 * @port_cnt: Number of ports this port supports. 1263 * @counter: Port statistics counter. 1264 * @hw: Pointer to hardware structure. 1265 * @linked: Pointer to port information linked to this port. 1266 */ 1267 struct ksz_port { 1268 u8 duplex; 1269 u8 speed; 1270 u8 force_link; 1271 u8 flow_ctrl; 1272 1273 int first_port; 1274 int mib_port_cnt; 1275 int port_cnt; 1276 u64 counter[OID_COUNTER_LAST]; 1277 1278 struct ksz_hw *hw; 1279 struct ksz_port_info *linked; 1280 }; 1281 1282 /** 1283 * struct ksz_timer_info - Timer information data structure 1284 * @timer: Kernel timer. 1285 * @cnt: Running timer counter. 1286 * @max: Number of times to run timer; -1 for infinity. 1287 * @period: Timer period in jiffies. 1288 */ 1289 struct ksz_timer_info { 1290 struct timer_list timer; 1291 int cnt; 1292 int max; 1293 int period; 1294 }; 1295 1296 /** 1297 * struct ksz_shared_mem - OS dependent shared memory data structure 1298 * @dma_addr: Physical DMA address allocated. 1299 * @alloc_size: Allocation size. 1300 * @phys: Actual physical address used. 1301 * @alloc_virt: Virtual address allocated. 1302 * @virt: Actual virtual address used. 1303 */ 1304 struct ksz_shared_mem { 1305 dma_addr_t dma_addr; 1306 uint alloc_size; 1307 uint phys; 1308 u8 *alloc_virt; 1309 u8 *virt; 1310 }; 1311 1312 /** 1313 * struct ksz_counter_info - OS dependent counter information data structure 1314 * @counter: Wait queue to wakeup after counters are read. 1315 * @time: Next time in jiffies to read counter. 1316 * @read: Indication of counters read in full or not. 1317 */ 1318 struct ksz_counter_info { 1319 wait_queue_head_t counter; 1320 unsigned long time; 1321 int read; 1322 }; 1323 1324 /** 1325 * struct dev_info - Network device information data structure 1326 * @dev: Pointer to network device. 1327 * @pdev: Pointer to PCI device. 1328 * @hw: Hardware structure. 1329 * @desc_pool: Physical memory used for descriptor pool. 1330 * @hwlock: Spinlock to prevent hardware from accessing. 1331 * @lock: Mutex lock to prevent device from accessing. 1332 * @dev_rcv: Receive process function used. 1333 * @last_skb: Socket buffer allocated for descriptor rx fragments. 1334 * @skb_index: Buffer index for receiving fragments. 1335 * @skb_len: Buffer length for receiving fragments. 1336 * @mib_read: Workqueue to read MIB counters. 1337 * @mib_timer_info: Timer to read MIB counters. 1338 * @counter: Used for MIB reading. 1339 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE; 1340 * the maximum is MAX_RX_BUF_SIZE. 1341 * @opened: Counter to keep track of device open. 1342 * @rx_tasklet: Receive processing tasklet. 1343 * @tx_tasklet: Transmit processing tasklet. 1344 * @wol_enable: Wake-on-LAN enable set by ethtool. 1345 * @wol_support: Wake-on-LAN support used by ethtool. 1346 * @pme_wait: Used for KSZ8841 power management. 1347 */ 1348 struct dev_info { 1349 struct net_device *dev; 1350 struct pci_dev *pdev; 1351 1352 struct ksz_hw hw; 1353 struct ksz_shared_mem desc_pool; 1354 1355 spinlock_t hwlock; 1356 struct mutex lock; 1357 1358 int (*dev_rcv)(struct dev_info *); 1359 1360 struct sk_buff *last_skb; 1361 int skb_index; 1362 int skb_len; 1363 1364 struct work_struct mib_read; 1365 struct ksz_timer_info mib_timer_info; 1366 struct ksz_counter_info counter[TOTAL_PORT_NUM]; 1367 1368 int mtu; 1369 int opened; 1370 1371 struct tasklet_struct rx_tasklet; 1372 struct tasklet_struct tx_tasklet; 1373 1374 int wol_enable; 1375 int wol_support; 1376 unsigned long pme_wait; 1377 }; 1378 1379 /** 1380 * struct dev_priv - Network device private data structure 1381 * @adapter: Adapter device information. 1382 * @port: Port information. 1383 * @monitor_timer_info: Timer to monitor ports. 1384 * @proc_sem: Semaphore for proc accessing. 1385 * @id: Device ID. 1386 * @mii_if: MII interface information. 1387 * @advertising: Temporary variable to store advertised settings. 1388 * @msg_enable: The message flags controlling driver output. 1389 * @media_state: The connection status of the device. 1390 * @multicast: The all multicast state of the device. 1391 * @promiscuous: The promiscuous state of the device. 1392 */ 1393 struct dev_priv { 1394 struct dev_info *adapter; 1395 struct ksz_port port; 1396 struct ksz_timer_info monitor_timer_info; 1397 1398 struct semaphore proc_sem; 1399 int id; 1400 1401 struct mii_if_info mii_if; 1402 u32 advertising; 1403 1404 u32 msg_enable; 1405 int media_state; 1406 int multicast; 1407 int promiscuous; 1408 }; 1409 1410 #define DRV_NAME "KSZ884X PCI" 1411 #define DEVICE_NAME "KSZ884x PCI" 1412 #define DRV_VERSION "1.0.0" 1413 #define DRV_RELDATE "Feb 8, 2010" 1414 1415 static char version[] = 1416 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")"; 1417 1418 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 }; 1419 1420 /* 1421 * Interrupt processing primary routines 1422 */ 1423 1424 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt) 1425 { 1426 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS); 1427 } 1428 1429 static inline void hw_dis_intr(struct ksz_hw *hw) 1430 { 1431 hw->intr_blocked = hw->intr_mask; 1432 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE); 1433 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1434 } 1435 1436 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt) 1437 { 1438 hw->intr_set = interrupt; 1439 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE); 1440 } 1441 1442 static inline void hw_ena_intr(struct ksz_hw *hw) 1443 { 1444 hw->intr_blocked = 0; 1445 hw_set_intr(hw, hw->intr_mask); 1446 } 1447 1448 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit) 1449 { 1450 hw->intr_mask &= ~(bit); 1451 } 1452 1453 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt) 1454 { 1455 u32 read_intr; 1456 1457 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1458 hw->intr_set = read_intr & ~interrupt; 1459 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1460 hw_dis_intr_bit(hw, interrupt); 1461 } 1462 1463 /** 1464 * hw_turn_on_intr - turn on specified interrupts 1465 * @hw: The hardware instance. 1466 * @bit: The interrupt bits to be on. 1467 * 1468 * This routine turns on the specified interrupts in the interrupt mask so that 1469 * those interrupts will be enabled. 1470 */ 1471 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit) 1472 { 1473 hw->intr_mask |= bit; 1474 1475 if (!hw->intr_blocked) 1476 hw_set_intr(hw, hw->intr_mask); 1477 } 1478 1479 static inline void hw_read_intr(struct ksz_hw *hw, uint *status) 1480 { 1481 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS); 1482 *status = *status & hw->intr_set; 1483 } 1484 1485 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt) 1486 { 1487 if (interrupt) 1488 hw_ena_intr(hw); 1489 } 1490 1491 /** 1492 * hw_block_intr - block hardware interrupts 1493 * @hw: The hardware instance. 1494 * 1495 * This function blocks all interrupts of the hardware and returns the current 1496 * interrupt enable mask so that interrupts can be restored later. 1497 * 1498 * Return the current interrupt enable mask. 1499 */ 1500 static uint hw_block_intr(struct ksz_hw *hw) 1501 { 1502 uint interrupt = 0; 1503 1504 if (!hw->intr_blocked) { 1505 hw_dis_intr(hw); 1506 interrupt = hw->intr_blocked; 1507 } 1508 return interrupt; 1509 } 1510 1511 /* 1512 * Hardware descriptor routines 1513 */ 1514 1515 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status) 1516 { 1517 status.rx.hw_owned = 0; 1518 desc->phw->ctrl.data = cpu_to_le32(status.data); 1519 } 1520 1521 static inline void release_desc(struct ksz_desc *desc) 1522 { 1523 desc->sw.ctrl.tx.hw_owned = 1; 1524 if (desc->sw.buf_size != desc->sw.buf.data) { 1525 desc->sw.buf_size = desc->sw.buf.data; 1526 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data); 1527 } 1528 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data); 1529 } 1530 1531 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc) 1532 { 1533 *desc = &info->ring[info->last]; 1534 info->last++; 1535 info->last &= info->mask; 1536 info->avail--; 1537 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK; 1538 } 1539 1540 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr) 1541 { 1542 desc->phw->addr = cpu_to_le32(addr); 1543 } 1544 1545 static inline void set_rx_len(struct ksz_desc *desc, u32 len) 1546 { 1547 desc->sw.buf.rx.buf_size = len; 1548 } 1549 1550 static inline void get_tx_pkt(struct ksz_desc_info *info, 1551 struct ksz_desc **desc) 1552 { 1553 *desc = &info->ring[info->next]; 1554 info->next++; 1555 info->next &= info->mask; 1556 info->avail--; 1557 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK; 1558 } 1559 1560 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr) 1561 { 1562 desc->phw->addr = cpu_to_le32(addr); 1563 } 1564 1565 static inline void set_tx_len(struct ksz_desc *desc, u32 len) 1566 { 1567 desc->sw.buf.tx.buf_size = len; 1568 } 1569 1570 /* Switch functions */ 1571 1572 #define TABLE_READ 0x10 1573 #define TABLE_SEL_SHIFT 2 1574 1575 #define HW_DELAY(hw, reg) \ 1576 do { \ 1577 readw(hw->io + reg); \ 1578 } while (0) 1579 1580 /** 1581 * sw_r_table - read 4 bytes of data from switch table 1582 * @hw: The hardware instance. 1583 * @table: The table selector. 1584 * @addr: The address of the table entry. 1585 * @data: Buffer to store the read data. 1586 * 1587 * This routine reads 4 bytes of data from the table of the switch. 1588 * Hardware interrupts are disabled to minimize corruption of read data. 1589 */ 1590 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data) 1591 { 1592 u16 ctrl_addr; 1593 uint interrupt; 1594 1595 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr; 1596 1597 interrupt = hw_block_intr(hw); 1598 1599 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1600 HW_DELAY(hw, KS884X_IACR_OFFSET); 1601 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1602 1603 hw_restore_intr(hw, interrupt); 1604 } 1605 1606 /** 1607 * sw_w_table_64 - write 8 bytes of data to the switch table 1608 * @hw: The hardware instance. 1609 * @table: The table selector. 1610 * @addr: The address of the table entry. 1611 * @data_hi: The high part of data to be written (bit63 ~ bit32). 1612 * @data_lo: The low part of data to be written (bit31 ~ bit0). 1613 * 1614 * This routine writes 8 bytes of data to the table of the switch. 1615 * Hardware interrupts are disabled to minimize corruption of written data. 1616 */ 1617 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi, 1618 u32 data_lo) 1619 { 1620 u16 ctrl_addr; 1621 uint interrupt; 1622 1623 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr; 1624 1625 interrupt = hw_block_intr(hw); 1626 1627 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET); 1628 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET); 1629 1630 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1631 HW_DELAY(hw, KS884X_IACR_OFFSET); 1632 1633 hw_restore_intr(hw, interrupt); 1634 } 1635 1636 /** 1637 * sw_w_sta_mac_table - write to the static MAC table 1638 * @hw: The hardware instance. 1639 * @addr: The address of the table entry. 1640 * @mac_addr: The MAC address. 1641 * @ports: The port members. 1642 * @override: The flag to override the port receive/transmit settings. 1643 * @valid: The flag to indicate entry is valid. 1644 * @use_fid: The flag to indicate the FID is valid. 1645 * @fid: The FID value. 1646 * 1647 * This routine writes an entry of the static MAC table of the switch. It 1648 * calls sw_w_table_64() to write the data. 1649 */ 1650 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr, 1651 u8 ports, int override, int valid, int use_fid, u8 fid) 1652 { 1653 u32 data_hi; 1654 u32 data_lo; 1655 1656 data_lo = ((u32) mac_addr[2] << 24) | 1657 ((u32) mac_addr[3] << 16) | 1658 ((u32) mac_addr[4] << 8) | mac_addr[5]; 1659 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1]; 1660 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT; 1661 1662 if (override) 1663 data_hi |= STATIC_MAC_TABLE_OVERRIDE; 1664 if (use_fid) { 1665 data_hi |= STATIC_MAC_TABLE_USE_FID; 1666 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT; 1667 } 1668 if (valid) 1669 data_hi |= STATIC_MAC_TABLE_VALID; 1670 1671 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo); 1672 } 1673 1674 /** 1675 * sw_r_vlan_table - read from the VLAN table 1676 * @hw: The hardware instance. 1677 * @addr: The address of the table entry. 1678 * @vid: Buffer to store the VID. 1679 * @fid: Buffer to store the VID. 1680 * @member: Buffer to store the port membership. 1681 * 1682 * This function reads an entry of the VLAN table of the switch. It calls 1683 * sw_r_table() to get the data. 1684 * 1685 * Return 0 if the entry is valid; otherwise -1. 1686 */ 1687 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid, 1688 u8 *member) 1689 { 1690 u32 data; 1691 1692 sw_r_table(hw, TABLE_VLAN, addr, &data); 1693 if (data & VLAN_TABLE_VALID) { 1694 *vid = (u16)(data & VLAN_TABLE_VID); 1695 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT); 1696 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >> 1697 VLAN_TABLE_MEMBERSHIP_SHIFT); 1698 return 0; 1699 } 1700 return -1; 1701 } 1702 1703 /** 1704 * port_r_mib_cnt - read MIB counter 1705 * @hw: The hardware instance. 1706 * @port: The port index. 1707 * @addr: The address of the counter. 1708 * @cnt: Buffer to store the counter. 1709 * 1710 * This routine reads a MIB counter of the port. 1711 * Hardware interrupts are disabled to minimize corruption of read data. 1712 */ 1713 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt) 1714 { 1715 u32 data; 1716 u16 ctrl_addr; 1717 uint interrupt; 1718 int timeout; 1719 1720 ctrl_addr = addr + PORT_COUNTER_NUM * port; 1721 1722 interrupt = hw_block_intr(hw); 1723 1724 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8); 1725 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1726 HW_DELAY(hw, KS884X_IACR_OFFSET); 1727 1728 for (timeout = 100; timeout > 0; timeout--) { 1729 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1730 1731 if (data & MIB_COUNTER_VALID) { 1732 if (data & MIB_COUNTER_OVERFLOW) 1733 *cnt += MIB_COUNTER_VALUE + 1; 1734 *cnt += data & MIB_COUNTER_VALUE; 1735 break; 1736 } 1737 } 1738 1739 hw_restore_intr(hw, interrupt); 1740 } 1741 1742 /** 1743 * port_r_mib_pkt - read dropped packet counts 1744 * @hw: The hardware instance. 1745 * @port: The port index. 1746 * @last: last one 1747 * @cnt: Buffer to store the receive and transmit dropped packet counts. 1748 * 1749 * This routine reads the dropped packet counts of the port. 1750 * Hardware interrupts are disabled to minimize corruption of read data. 1751 */ 1752 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt) 1753 { 1754 u32 cur; 1755 u32 data; 1756 u16 ctrl_addr; 1757 uint interrupt; 1758 int index; 1759 1760 index = KS_MIB_PACKET_DROPPED_RX_0 + port; 1761 do { 1762 interrupt = hw_block_intr(hw); 1763 1764 ctrl_addr = (u16) index; 1765 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) 1766 << 8); 1767 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1768 HW_DELAY(hw, KS884X_IACR_OFFSET); 1769 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1770 1771 hw_restore_intr(hw, interrupt); 1772 1773 data &= MIB_PACKET_DROPPED; 1774 cur = *last; 1775 if (data != cur) { 1776 *last = data; 1777 if (data < cur) 1778 data += MIB_PACKET_DROPPED + 1; 1779 data -= cur; 1780 *cnt += data; 1781 } 1782 ++last; 1783 ++cnt; 1784 index -= KS_MIB_PACKET_DROPPED_TX - 1785 KS_MIB_PACKET_DROPPED_TX_0 + 1; 1786 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port); 1787 } 1788 1789 /** 1790 * port_r_cnt - read MIB counters periodically 1791 * @hw: The hardware instance. 1792 * @port: The port index. 1793 * 1794 * This routine is used to read the counters of the port periodically to avoid 1795 * counter overflow. The hardware should be acquired first before calling this 1796 * routine. 1797 * 1798 * Return non-zero when not all counters not read. 1799 */ 1800 static int port_r_cnt(struct ksz_hw *hw, int port) 1801 { 1802 struct ksz_port_mib *mib = &hw->port_mib[port]; 1803 1804 if (mib->mib_start < PORT_COUNTER_NUM) 1805 while (mib->cnt_ptr < PORT_COUNTER_NUM) { 1806 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1807 &mib->counter[mib->cnt_ptr]); 1808 ++mib->cnt_ptr; 1809 } 1810 if (hw->mib_cnt > PORT_COUNTER_NUM) 1811 port_r_mib_pkt(hw, port, mib->dropped, 1812 &mib->counter[PORT_COUNTER_NUM]); 1813 mib->cnt_ptr = 0; 1814 return 0; 1815 } 1816 1817 /** 1818 * port_init_cnt - initialize MIB counter values 1819 * @hw: The hardware instance. 1820 * @port: The port index. 1821 * 1822 * This routine is used to initialize all counters to zero if the hardware 1823 * cannot do it after reset. 1824 */ 1825 static void port_init_cnt(struct ksz_hw *hw, int port) 1826 { 1827 struct ksz_port_mib *mib = &hw->port_mib[port]; 1828 1829 mib->cnt_ptr = 0; 1830 if (mib->mib_start < PORT_COUNTER_NUM) 1831 do { 1832 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1833 &mib->counter[mib->cnt_ptr]); 1834 ++mib->cnt_ptr; 1835 } while (mib->cnt_ptr < PORT_COUNTER_NUM); 1836 if (hw->mib_cnt > PORT_COUNTER_NUM) 1837 port_r_mib_pkt(hw, port, mib->dropped, 1838 &mib->counter[PORT_COUNTER_NUM]); 1839 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 1840 mib->cnt_ptr = 0; 1841 } 1842 1843 /* 1844 * Port functions 1845 */ 1846 1847 /** 1848 * port_cfg - set port register bits 1849 * @hw: The hardware instance. 1850 * @port: The port index. 1851 * @offset: The offset of the port register. 1852 * @bits: The data bits to set. 1853 * @set: The flag indicating whether the bits are to be set or not. 1854 * 1855 * This routine sets or resets the specified bits of the port register. 1856 */ 1857 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits, 1858 int set) 1859 { 1860 u32 addr; 1861 u16 data; 1862 1863 PORT_CTRL_ADDR(port, addr); 1864 addr += offset; 1865 data = readw(hw->io + addr); 1866 if (set) 1867 data |= bits; 1868 else 1869 data &= ~bits; 1870 writew(data, hw->io + addr); 1871 } 1872 1873 /** 1874 * port_r8 - read byte from port register 1875 * @hw: The hardware instance. 1876 * @port: The port index. 1877 * @offset: The offset of the port register. 1878 * @data: Buffer to store the data. 1879 * 1880 * This routine reads a byte from the port register. 1881 */ 1882 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data) 1883 { 1884 u32 addr; 1885 1886 PORT_CTRL_ADDR(port, addr); 1887 addr += offset; 1888 *data = readb(hw->io + addr); 1889 } 1890 1891 /** 1892 * port_r16 - read word from port register. 1893 * @hw: The hardware instance. 1894 * @port: The port index. 1895 * @offset: The offset of the port register. 1896 * @data: Buffer to store the data. 1897 * 1898 * This routine reads a word from the port register. 1899 */ 1900 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data) 1901 { 1902 u32 addr; 1903 1904 PORT_CTRL_ADDR(port, addr); 1905 addr += offset; 1906 *data = readw(hw->io + addr); 1907 } 1908 1909 /** 1910 * port_w16 - write word to port register. 1911 * @hw: The hardware instance. 1912 * @port: The port index. 1913 * @offset: The offset of the port register. 1914 * @data: Data to write. 1915 * 1916 * This routine writes a word to the port register. 1917 */ 1918 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data) 1919 { 1920 u32 addr; 1921 1922 PORT_CTRL_ADDR(port, addr); 1923 addr += offset; 1924 writew(data, hw->io + addr); 1925 } 1926 1927 /** 1928 * sw_chk - check switch register bits 1929 * @hw: The hardware instance. 1930 * @addr: The address of the switch register. 1931 * @bits: The data bits to check. 1932 * 1933 * This function checks whether the specified bits of the switch register are 1934 * set or not. 1935 * 1936 * Return 0 if the bits are not set. 1937 */ 1938 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits) 1939 { 1940 u16 data; 1941 1942 data = readw(hw->io + addr); 1943 return (data & bits) == bits; 1944 } 1945 1946 /** 1947 * sw_cfg - set switch register bits 1948 * @hw: The hardware instance. 1949 * @addr: The address of the switch register. 1950 * @bits: The data bits to set. 1951 * @set: The flag indicating whether the bits are to be set or not. 1952 * 1953 * This function sets or resets the specified bits of the switch register. 1954 */ 1955 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set) 1956 { 1957 u16 data; 1958 1959 data = readw(hw->io + addr); 1960 if (set) 1961 data |= bits; 1962 else 1963 data &= ~bits; 1964 writew(data, hw->io + addr); 1965 } 1966 1967 /* Bandwidth */ 1968 1969 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set) 1970 { 1971 port_cfg(hw, p, 1972 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set); 1973 } 1974 1975 /* Driver set switch broadcast storm protection at 10% rate. */ 1976 #define BROADCAST_STORM_PROTECTION_RATE 10 1977 1978 /* 148,800 frames * 67 ms / 100 */ 1979 #define BROADCAST_STORM_VALUE 9969 1980 1981 /** 1982 * sw_cfg_broad_storm - configure broadcast storm threshold 1983 * @hw: The hardware instance. 1984 * @percent: Broadcast storm threshold in percent of transmit rate. 1985 * 1986 * This routine configures the broadcast storm threshold of the switch. 1987 */ 1988 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 1989 { 1990 u16 data; 1991 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100); 1992 1993 if (value > BROADCAST_STORM_RATE) 1994 value = BROADCAST_STORM_RATE; 1995 1996 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 1997 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI); 1998 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8); 1999 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2000 } 2001 2002 /** 2003 * sw_get_broad_storm - get broadcast storm threshold 2004 * @hw: The hardware instance. 2005 * @percent: Buffer to store the broadcast storm threshold percentage. 2006 * 2007 * This routine retrieves the broadcast storm threshold of the switch. 2008 */ 2009 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent) 2010 { 2011 int num; 2012 u16 data; 2013 2014 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2015 num = (data & BROADCAST_STORM_RATE_HI); 2016 num <<= 8; 2017 num |= (data & BROADCAST_STORM_RATE_LO) >> 8; 2018 num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE); 2019 *percent = (u8) num; 2020 } 2021 2022 /** 2023 * sw_dis_broad_storm - disable broadstorm 2024 * @hw: The hardware instance. 2025 * @port: The port index. 2026 * 2027 * This routine disables the broadcast storm limit function of the switch. 2028 */ 2029 static void sw_dis_broad_storm(struct ksz_hw *hw, int port) 2030 { 2031 port_cfg_broad_storm(hw, port, 0); 2032 } 2033 2034 /** 2035 * sw_ena_broad_storm - enable broadcast storm 2036 * @hw: The hardware instance. 2037 * @port: The port index. 2038 * 2039 * This routine enables the broadcast storm limit function of the switch. 2040 */ 2041 static void sw_ena_broad_storm(struct ksz_hw *hw, int port) 2042 { 2043 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2044 port_cfg_broad_storm(hw, port, 1); 2045 } 2046 2047 /** 2048 * sw_init_broad_storm - initialize broadcast storm 2049 * @hw: The hardware instance. 2050 * 2051 * This routine initializes the broadcast storm limit function of the switch. 2052 */ 2053 static void sw_init_broad_storm(struct ksz_hw *hw) 2054 { 2055 int port; 2056 2057 hw->ksz_switch->broad_per = 1; 2058 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2059 for (port = 0; port < TOTAL_PORT_NUM; port++) 2060 sw_dis_broad_storm(hw, port); 2061 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1); 2062 } 2063 2064 /** 2065 * hw_cfg_broad_storm - configure broadcast storm 2066 * @hw: The hardware instance. 2067 * @percent: Broadcast storm threshold in percent of transmit rate. 2068 * 2069 * This routine configures the broadcast storm threshold of the switch. 2070 * It is called by user functions. The hardware should be acquired first. 2071 */ 2072 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2073 { 2074 if (percent > 100) 2075 percent = 100; 2076 2077 sw_cfg_broad_storm(hw, percent); 2078 sw_get_broad_storm(hw, &percent); 2079 hw->ksz_switch->broad_per = percent; 2080 } 2081 2082 /** 2083 * sw_dis_prio_rate - disable switch priority rate 2084 * @hw: The hardware instance. 2085 * @port: The port index. 2086 * 2087 * This routine disables the priority rate function of the switch. 2088 */ 2089 static void sw_dis_prio_rate(struct ksz_hw *hw, int port) 2090 { 2091 u32 addr; 2092 2093 PORT_CTRL_ADDR(port, addr); 2094 addr += KS8842_PORT_IN_RATE_OFFSET; 2095 writel(0, hw->io + addr); 2096 } 2097 2098 /** 2099 * sw_init_prio_rate - initialize switch prioirty rate 2100 * @hw: The hardware instance. 2101 * 2102 * This routine initializes the priority rate function of the switch. 2103 */ 2104 static void sw_init_prio_rate(struct ksz_hw *hw) 2105 { 2106 int port; 2107 int prio; 2108 struct ksz_switch *sw = hw->ksz_switch; 2109 2110 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2111 for (prio = 0; prio < PRIO_QUEUES; prio++) { 2112 sw->port_cfg[port].rx_rate[prio] = 2113 sw->port_cfg[port].tx_rate[prio] = 0; 2114 } 2115 sw_dis_prio_rate(hw, port); 2116 } 2117 } 2118 2119 /* Communication */ 2120 2121 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set) 2122 { 2123 port_cfg(hw, p, 2124 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set); 2125 } 2126 2127 /* Mirroring */ 2128 2129 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set) 2130 { 2131 port_cfg(hw, p, 2132 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set); 2133 } 2134 2135 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set) 2136 { 2137 port_cfg(hw, p, 2138 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set); 2139 } 2140 2141 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set) 2142 { 2143 port_cfg(hw, p, 2144 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set); 2145 } 2146 2147 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set) 2148 { 2149 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set); 2150 } 2151 2152 static void sw_init_mirror(struct ksz_hw *hw) 2153 { 2154 int port; 2155 2156 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2157 port_cfg_mirror_sniffer(hw, port, 0); 2158 port_cfg_mirror_rx(hw, port, 0); 2159 port_cfg_mirror_tx(hw, port, 0); 2160 } 2161 sw_cfg_mirror_rx_tx(hw, 0); 2162 } 2163 2164 /* Priority */ 2165 2166 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set) 2167 { 2168 port_cfg(hw, p, 2169 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set); 2170 } 2171 2172 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set) 2173 { 2174 port_cfg(hw, p, 2175 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set); 2176 } 2177 2178 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set) 2179 { 2180 port_cfg(hw, p, 2181 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set); 2182 } 2183 2184 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set) 2185 { 2186 port_cfg(hw, p, 2187 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set); 2188 } 2189 2190 /** 2191 * sw_dis_diffserv - disable switch DiffServ priority 2192 * @hw: The hardware instance. 2193 * @port: The port index. 2194 * 2195 * This routine disables the DiffServ priority function of the switch. 2196 */ 2197 static void sw_dis_diffserv(struct ksz_hw *hw, int port) 2198 { 2199 port_cfg_diffserv(hw, port, 0); 2200 } 2201 2202 /** 2203 * sw_dis_802_1p - disable switch 802.1p priority 2204 * @hw: The hardware instance. 2205 * @port: The port index. 2206 * 2207 * This routine disables the 802.1p priority function of the switch. 2208 */ 2209 static void sw_dis_802_1p(struct ksz_hw *hw, int port) 2210 { 2211 port_cfg_802_1p(hw, port, 0); 2212 } 2213 2214 /** 2215 * sw_cfg_replace_null_vid - 2216 * @hw: The hardware instance. 2217 * @set: The flag to disable or enable. 2218 * 2219 */ 2220 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set) 2221 { 2222 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set); 2223 } 2224 2225 /** 2226 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping 2227 * @hw: The hardware instance. 2228 * @port: The port index. 2229 * @set: The flag to disable or enable. 2230 * 2231 * This routine enables the 802.1p priority re-mapping function of the switch. 2232 * That allows 802.1p priority field to be replaced with the port's default 2233 * tag's priority value if the ingress packet's 802.1p priority has a higher 2234 * priority than port's default tag's priority. 2235 */ 2236 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set) 2237 { 2238 port_cfg_replace_vid(hw, port, set); 2239 } 2240 2241 /** 2242 * sw_cfg_port_based - configure switch port based priority 2243 * @hw: The hardware instance. 2244 * @port: The port index. 2245 * @prio: The priority to set. 2246 * 2247 * This routine configures the port based priority of the switch. 2248 */ 2249 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio) 2250 { 2251 u16 data; 2252 2253 if (prio > PORT_BASED_PRIORITY_BASE) 2254 prio = PORT_BASED_PRIORITY_BASE; 2255 2256 hw->ksz_switch->port_cfg[port].port_prio = prio; 2257 2258 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data); 2259 data &= ~PORT_BASED_PRIORITY_MASK; 2260 data |= prio << PORT_BASED_PRIORITY_SHIFT; 2261 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data); 2262 } 2263 2264 /** 2265 * sw_dis_multi_queue - disable transmit multiple queues 2266 * @hw: The hardware instance. 2267 * @port: The port index. 2268 * 2269 * This routine disables the transmit multiple queues selection of the switch 2270 * port. Only single transmit queue on the port. 2271 */ 2272 static void sw_dis_multi_queue(struct ksz_hw *hw, int port) 2273 { 2274 port_cfg_prio(hw, port, 0); 2275 } 2276 2277 /** 2278 * sw_init_prio - initialize switch priority 2279 * @hw: The hardware instance. 2280 * 2281 * This routine initializes the switch QoS priority functions. 2282 */ 2283 static void sw_init_prio(struct ksz_hw *hw) 2284 { 2285 int port; 2286 int tos; 2287 struct ksz_switch *sw = hw->ksz_switch; 2288 2289 /* 2290 * Init all the 802.1p tag priority value to be assigned to different 2291 * priority queue. 2292 */ 2293 sw->p_802_1p[0] = 0; 2294 sw->p_802_1p[1] = 0; 2295 sw->p_802_1p[2] = 1; 2296 sw->p_802_1p[3] = 1; 2297 sw->p_802_1p[4] = 2; 2298 sw->p_802_1p[5] = 2; 2299 sw->p_802_1p[6] = 3; 2300 sw->p_802_1p[7] = 3; 2301 2302 /* 2303 * Init all the DiffServ priority value to be assigned to priority 2304 * queue 0. 2305 */ 2306 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++) 2307 sw->diffserv[tos] = 0; 2308 2309 /* All QoS functions disabled. */ 2310 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2311 sw_dis_multi_queue(hw, port); 2312 sw_dis_diffserv(hw, port); 2313 sw_dis_802_1p(hw, port); 2314 sw_cfg_replace_vid(hw, port, 0); 2315 2316 sw->port_cfg[port].port_prio = 0; 2317 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio); 2318 } 2319 sw_cfg_replace_null_vid(hw, 0); 2320 } 2321 2322 /** 2323 * port_get_def_vid - get port default VID. 2324 * @hw: The hardware instance. 2325 * @port: The port index. 2326 * @vid: Buffer to store the VID. 2327 * 2328 * This routine retrieves the default VID of the port. 2329 */ 2330 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid) 2331 { 2332 u32 addr; 2333 2334 PORT_CTRL_ADDR(port, addr); 2335 addr += KS8842_PORT_CTRL_VID_OFFSET; 2336 *vid = readw(hw->io + addr); 2337 } 2338 2339 /** 2340 * sw_init_vlan - initialize switch VLAN 2341 * @hw: The hardware instance. 2342 * 2343 * This routine initializes the VLAN function of the switch. 2344 */ 2345 static void sw_init_vlan(struct ksz_hw *hw) 2346 { 2347 int port; 2348 int entry; 2349 struct ksz_switch *sw = hw->ksz_switch; 2350 2351 /* Read 16 VLAN entries from device's VLAN table. */ 2352 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) { 2353 sw_r_vlan_table(hw, entry, 2354 &sw->vlan_table[entry].vid, 2355 &sw->vlan_table[entry].fid, 2356 &sw->vlan_table[entry].member); 2357 } 2358 2359 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2360 port_get_def_vid(hw, port, &sw->port_cfg[port].vid); 2361 sw->port_cfg[port].member = PORT_MASK; 2362 } 2363 } 2364 2365 /** 2366 * sw_cfg_port_base_vlan - configure port-based VLAN membership 2367 * @hw: The hardware instance. 2368 * @port: The port index. 2369 * @member: The port-based VLAN membership. 2370 * 2371 * This routine configures the port-based VLAN membership of the port. 2372 */ 2373 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member) 2374 { 2375 u32 addr; 2376 u8 data; 2377 2378 PORT_CTRL_ADDR(port, addr); 2379 addr += KS8842_PORT_CTRL_2_OFFSET; 2380 2381 data = readb(hw->io + addr); 2382 data &= ~PORT_VLAN_MEMBERSHIP; 2383 data |= (member & PORT_MASK); 2384 writeb(data, hw->io + addr); 2385 2386 hw->ksz_switch->port_cfg[port].member = member; 2387 } 2388 2389 /** 2390 * sw_set_addr - configure switch MAC address 2391 * @hw: The hardware instance. 2392 * @mac_addr: The MAC address. 2393 * 2394 * This function configures the MAC address of the switch. 2395 */ 2396 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr) 2397 { 2398 int i; 2399 2400 for (i = 0; i < 6; i += 2) { 2401 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2402 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2403 } 2404 } 2405 2406 /** 2407 * sw_set_global_ctrl - set switch global control 2408 * @hw: The hardware instance. 2409 * 2410 * This routine sets the global control of the switch function. 2411 */ 2412 static void sw_set_global_ctrl(struct ksz_hw *hw) 2413 { 2414 u16 data; 2415 2416 /* Enable switch MII flow control. */ 2417 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2418 data |= SWITCH_FLOW_CTRL; 2419 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2420 2421 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2422 2423 /* Enable aggressive back off algorithm in half duplex mode. */ 2424 data |= SWITCH_AGGR_BACKOFF; 2425 2426 /* Enable automatic fast aging when link changed detected. */ 2427 data |= SWITCH_AGING_ENABLE; 2428 data |= SWITCH_LINK_AUTO_AGING; 2429 2430 if (hw->overrides & FAST_AGING) 2431 data |= SWITCH_FAST_AGING; 2432 else 2433 data &= ~SWITCH_FAST_AGING; 2434 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2435 2436 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2437 2438 /* Enable no excessive collision drop. */ 2439 data |= NO_EXC_COLLISION_DROP; 2440 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2441 } 2442 2443 enum { 2444 STP_STATE_DISABLED = 0, 2445 STP_STATE_LISTENING, 2446 STP_STATE_LEARNING, 2447 STP_STATE_FORWARDING, 2448 STP_STATE_BLOCKED, 2449 STP_STATE_SIMPLE 2450 }; 2451 2452 /** 2453 * port_set_stp_state - configure port spanning tree state 2454 * @hw: The hardware instance. 2455 * @port: The port index. 2456 * @state: The spanning tree state. 2457 * 2458 * This routine configures the spanning tree state of the port. 2459 */ 2460 static void port_set_stp_state(struct ksz_hw *hw, int port, int state) 2461 { 2462 u16 data; 2463 2464 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data); 2465 switch (state) { 2466 case STP_STATE_DISABLED: 2467 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2468 data |= PORT_LEARN_DISABLE; 2469 break; 2470 case STP_STATE_LISTENING: 2471 /* 2472 * No need to turn on transmit because of port direct mode. 2473 * Turning on receive is required if static MAC table is not setup. 2474 */ 2475 data &= ~PORT_TX_ENABLE; 2476 data |= PORT_RX_ENABLE; 2477 data |= PORT_LEARN_DISABLE; 2478 break; 2479 case STP_STATE_LEARNING: 2480 data &= ~PORT_TX_ENABLE; 2481 data |= PORT_RX_ENABLE; 2482 data &= ~PORT_LEARN_DISABLE; 2483 break; 2484 case STP_STATE_FORWARDING: 2485 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2486 data &= ~PORT_LEARN_DISABLE; 2487 break; 2488 case STP_STATE_BLOCKED: 2489 /* 2490 * Need to setup static MAC table with override to keep receiving BPDU 2491 * messages. See sw_init_stp routine. 2492 */ 2493 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2494 data |= PORT_LEARN_DISABLE; 2495 break; 2496 case STP_STATE_SIMPLE: 2497 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2498 data |= PORT_LEARN_DISABLE; 2499 break; 2500 } 2501 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data); 2502 hw->ksz_switch->port_cfg[port].stp_state = state; 2503 } 2504 2505 #define STP_ENTRY 0 2506 #define BROADCAST_ENTRY 1 2507 #define BRIDGE_ADDR_ENTRY 2 2508 #define IPV6_ADDR_ENTRY 3 2509 2510 /** 2511 * sw_clr_sta_mac_table - clear static MAC table 2512 * @hw: The hardware instance. 2513 * 2514 * This routine clears the static MAC table. 2515 */ 2516 static void sw_clr_sta_mac_table(struct ksz_hw *hw) 2517 { 2518 struct ksz_mac_table *entry; 2519 int i; 2520 2521 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) { 2522 entry = &hw->ksz_switch->mac_table[i]; 2523 sw_w_sta_mac_table(hw, i, 2524 entry->mac_addr, entry->ports, 2525 entry->override, 0, 2526 entry->use_fid, entry->fid); 2527 } 2528 } 2529 2530 /** 2531 * sw_init_stp - initialize switch spanning tree support 2532 * @hw: The hardware instance. 2533 * 2534 * This routine initializes the spanning tree support of the switch. 2535 */ 2536 static void sw_init_stp(struct ksz_hw *hw) 2537 { 2538 struct ksz_mac_table *entry; 2539 2540 entry = &hw->ksz_switch->mac_table[STP_ENTRY]; 2541 entry->mac_addr[0] = 0x01; 2542 entry->mac_addr[1] = 0x80; 2543 entry->mac_addr[2] = 0xC2; 2544 entry->mac_addr[3] = 0x00; 2545 entry->mac_addr[4] = 0x00; 2546 entry->mac_addr[5] = 0x00; 2547 entry->ports = HOST_MASK; 2548 entry->override = 1; 2549 entry->valid = 1; 2550 sw_w_sta_mac_table(hw, STP_ENTRY, 2551 entry->mac_addr, entry->ports, 2552 entry->override, entry->valid, 2553 entry->use_fid, entry->fid); 2554 } 2555 2556 /** 2557 * sw_block_addr - block certain packets from the host port 2558 * @hw: The hardware instance. 2559 * 2560 * This routine blocks certain packets from reaching to the host port. 2561 */ 2562 static void sw_block_addr(struct ksz_hw *hw) 2563 { 2564 struct ksz_mac_table *entry; 2565 int i; 2566 2567 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) { 2568 entry = &hw->ksz_switch->mac_table[i]; 2569 entry->valid = 0; 2570 sw_w_sta_mac_table(hw, i, 2571 entry->mac_addr, entry->ports, 2572 entry->override, entry->valid, 2573 entry->use_fid, entry->fid); 2574 } 2575 } 2576 2577 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data) 2578 { 2579 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2580 } 2581 2582 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data) 2583 { 2584 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2585 } 2586 2587 /** 2588 * hw_r_phy - read data from PHY register 2589 * @hw: The hardware instance. 2590 * @port: Port to read. 2591 * @reg: PHY register to read. 2592 * @val: Buffer to store the read data. 2593 * 2594 * This routine reads data from the PHY register. 2595 */ 2596 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val) 2597 { 2598 int phy; 2599 2600 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2601 *val = readw(hw->io + phy); 2602 } 2603 2604 /** 2605 * hw_w_phy - write data to PHY register 2606 * @hw: The hardware instance. 2607 * @port: Port to write. 2608 * @reg: PHY register to write. 2609 * @val: Word data to write. 2610 * 2611 * This routine writes data to the PHY register. 2612 */ 2613 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val) 2614 { 2615 int phy; 2616 2617 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2618 writew(val, hw->io + phy); 2619 } 2620 2621 /* 2622 * EEPROM access functions 2623 */ 2624 2625 #define AT93C_CODE 0 2626 #define AT93C_WR_OFF 0x00 2627 #define AT93C_WR_ALL 0x10 2628 #define AT93C_ER_ALL 0x20 2629 #define AT93C_WR_ON 0x30 2630 2631 #define AT93C_WRITE 1 2632 #define AT93C_READ 2 2633 #define AT93C_ERASE 3 2634 2635 #define EEPROM_DELAY 4 2636 2637 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio) 2638 { 2639 u16 data; 2640 2641 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 2642 data &= ~gpio; 2643 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 2644 } 2645 2646 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio) 2647 { 2648 u16 data; 2649 2650 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 2651 data |= gpio; 2652 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 2653 } 2654 2655 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio) 2656 { 2657 u16 data; 2658 2659 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 2660 return (u8)(data & gpio); 2661 } 2662 2663 static void eeprom_clk(struct ksz_hw *hw) 2664 { 2665 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 2666 udelay(EEPROM_DELAY); 2667 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 2668 udelay(EEPROM_DELAY); 2669 } 2670 2671 static u16 spi_r(struct ksz_hw *hw) 2672 { 2673 int i; 2674 u16 temp = 0; 2675 2676 for (i = 15; i >= 0; i--) { 2677 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 2678 udelay(EEPROM_DELAY); 2679 2680 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0; 2681 2682 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 2683 udelay(EEPROM_DELAY); 2684 } 2685 return temp; 2686 } 2687 2688 static void spi_w(struct ksz_hw *hw, u16 data) 2689 { 2690 int i; 2691 2692 for (i = 15; i >= 0; i--) { 2693 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 2694 drop_gpio(hw, EEPROM_DATA_OUT); 2695 eeprom_clk(hw); 2696 } 2697 } 2698 2699 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg) 2700 { 2701 int i; 2702 2703 /* Initial start bit */ 2704 raise_gpio(hw, EEPROM_DATA_OUT); 2705 eeprom_clk(hw); 2706 2707 /* AT93C operation */ 2708 for (i = 1; i >= 0; i--) { 2709 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 2710 drop_gpio(hw, EEPROM_DATA_OUT); 2711 eeprom_clk(hw); 2712 } 2713 2714 /* Address location */ 2715 for (i = 5; i >= 0; i--) { 2716 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 2717 drop_gpio(hw, EEPROM_DATA_OUT); 2718 eeprom_clk(hw); 2719 } 2720 } 2721 2722 #define EEPROM_DATA_RESERVED 0 2723 #define EEPROM_DATA_MAC_ADDR_0 1 2724 #define EEPROM_DATA_MAC_ADDR_1 2 2725 #define EEPROM_DATA_MAC_ADDR_2 3 2726 #define EEPROM_DATA_SUBSYS_ID 4 2727 #define EEPROM_DATA_SUBSYS_VEN_ID 5 2728 #define EEPROM_DATA_PM_CAP 6 2729 2730 /* User defined EEPROM data */ 2731 #define EEPROM_DATA_OTHER_MAC_ADDR 9 2732 2733 /** 2734 * eeprom_read - read from AT93C46 EEPROM 2735 * @hw: The hardware instance. 2736 * @reg: The register offset. 2737 * 2738 * This function reads a word from the AT93C46 EEPROM. 2739 * 2740 * Return the data value. 2741 */ 2742 static u16 eeprom_read(struct ksz_hw *hw, u8 reg) 2743 { 2744 u16 data; 2745 2746 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 2747 2748 spi_reg(hw, AT93C_READ, reg); 2749 data = spi_r(hw); 2750 2751 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 2752 2753 return data; 2754 } 2755 2756 /** 2757 * eeprom_write - write to AT93C46 EEPROM 2758 * @hw: The hardware instance. 2759 * @reg: The register offset. 2760 * @data: The data value. 2761 * 2762 * This procedure writes a word to the AT93C46 EEPROM. 2763 */ 2764 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data) 2765 { 2766 int timeout; 2767 2768 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 2769 2770 /* Enable write. */ 2771 spi_reg(hw, AT93C_CODE, AT93C_WR_ON); 2772 drop_gpio(hw, EEPROM_CHIP_SELECT); 2773 udelay(1); 2774 2775 /* Erase the register. */ 2776 raise_gpio(hw, EEPROM_CHIP_SELECT); 2777 spi_reg(hw, AT93C_ERASE, reg); 2778 drop_gpio(hw, EEPROM_CHIP_SELECT); 2779 udelay(1); 2780 2781 /* Check operation complete. */ 2782 raise_gpio(hw, EEPROM_CHIP_SELECT); 2783 timeout = 8; 2784 mdelay(2); 2785 do { 2786 mdelay(1); 2787 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 2788 drop_gpio(hw, EEPROM_CHIP_SELECT); 2789 udelay(1); 2790 2791 /* Write the register. */ 2792 raise_gpio(hw, EEPROM_CHIP_SELECT); 2793 spi_reg(hw, AT93C_WRITE, reg); 2794 spi_w(hw, data); 2795 drop_gpio(hw, EEPROM_CHIP_SELECT); 2796 udelay(1); 2797 2798 /* Check operation complete. */ 2799 raise_gpio(hw, EEPROM_CHIP_SELECT); 2800 timeout = 8; 2801 mdelay(2); 2802 do { 2803 mdelay(1); 2804 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 2805 drop_gpio(hw, EEPROM_CHIP_SELECT); 2806 udelay(1); 2807 2808 /* Disable write. */ 2809 raise_gpio(hw, EEPROM_CHIP_SELECT); 2810 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF); 2811 2812 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 2813 } 2814 2815 /* 2816 * Link detection routines 2817 */ 2818 2819 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl) 2820 { 2821 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE; 2822 switch (port->flow_ctrl) { 2823 case PHY_FLOW_CTRL: 2824 ctrl |= PORT_AUTO_NEG_SYM_PAUSE; 2825 break; 2826 /* Not supported. */ 2827 case PHY_TX_ONLY: 2828 case PHY_RX_ONLY: 2829 default: 2830 break; 2831 } 2832 return ctrl; 2833 } 2834 2835 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx) 2836 { 2837 u32 rx_cfg; 2838 u32 tx_cfg; 2839 2840 rx_cfg = hw->rx_cfg; 2841 tx_cfg = hw->tx_cfg; 2842 if (rx) 2843 hw->rx_cfg |= DMA_RX_FLOW_ENABLE; 2844 else 2845 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE; 2846 if (tx) 2847 hw->tx_cfg |= DMA_TX_FLOW_ENABLE; 2848 else 2849 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 2850 if (hw->enabled) { 2851 if (rx_cfg != hw->rx_cfg) 2852 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 2853 if (tx_cfg != hw->tx_cfg) 2854 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 2855 } 2856 } 2857 2858 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port, 2859 u16 local, u16 remote) 2860 { 2861 int rx; 2862 int tx; 2863 2864 if (hw->overrides & PAUSE_FLOW_CTRL) 2865 return; 2866 2867 rx = tx = 0; 2868 if (port->force_link) 2869 rx = tx = 1; 2870 if (remote & LPA_PAUSE_CAP) { 2871 if (local & ADVERTISE_PAUSE_CAP) { 2872 rx = tx = 1; 2873 } else if ((remote & LPA_PAUSE_ASYM) && 2874 (local & 2875 (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) == 2876 ADVERTISE_PAUSE_ASYM) { 2877 tx = 1; 2878 } 2879 } else if (remote & LPA_PAUSE_ASYM) { 2880 if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) 2881 == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) 2882 rx = 1; 2883 } 2884 if (!hw->ksz_switch) 2885 set_flow_ctrl(hw, rx, tx); 2886 } 2887 2888 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port, 2889 struct ksz_port_info *info, u16 link_status) 2890 { 2891 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) && 2892 !(hw->overrides & PAUSE_FLOW_CTRL)) { 2893 u32 cfg = hw->tx_cfg; 2894 2895 /* Disable flow control in the half duplex mode. */ 2896 if (1 == info->duplex) 2897 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 2898 if (hw->enabled && cfg != hw->tx_cfg) 2899 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 2900 } 2901 } 2902 2903 /** 2904 * port_get_link_speed - get current link status 2905 * @port: The port instance. 2906 * 2907 * This routine reads PHY registers to determine the current link status of the 2908 * switch ports. 2909 */ 2910 static void port_get_link_speed(struct ksz_port *port) 2911 { 2912 uint interrupt; 2913 struct ksz_port_info *info; 2914 struct ksz_port_info *linked = NULL; 2915 struct ksz_hw *hw = port->hw; 2916 u16 data; 2917 u16 status; 2918 u8 local; 2919 u8 remote; 2920 int i; 2921 int p; 2922 2923 interrupt = hw_block_intr(hw); 2924 2925 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 2926 info = &hw->port_info[p]; 2927 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 2928 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 2929 2930 /* 2931 * Link status is changing all the time even when there is no 2932 * cable connection! 2933 */ 2934 remote = status & (PORT_AUTO_NEG_COMPLETE | 2935 PORT_STATUS_LINK_GOOD); 2936 local = (u8) data; 2937 2938 /* No change to status. */ 2939 if (local == info->advertised && remote == info->partner) 2940 continue; 2941 2942 info->advertised = local; 2943 info->partner = remote; 2944 if (status & PORT_STATUS_LINK_GOOD) { 2945 2946 /* Remember the first linked port. */ 2947 if (!linked) 2948 linked = info; 2949 2950 info->tx_rate = 10 * TX_RATE_UNIT; 2951 if (status & PORT_STATUS_SPEED_100MBIT) 2952 info->tx_rate = 100 * TX_RATE_UNIT; 2953 2954 info->duplex = 1; 2955 if (status & PORT_STATUS_FULL_DUPLEX) 2956 info->duplex = 2; 2957 2958 if (media_connected != info->state) { 2959 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET, 2960 &data); 2961 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET, 2962 &status); 2963 determine_flow_ctrl(hw, port, data, status); 2964 if (hw->ksz_switch) { 2965 port_cfg_back_pressure(hw, p, 2966 (1 == info->duplex)); 2967 } 2968 port_cfg_change(hw, port, info, status); 2969 } 2970 info->state = media_connected; 2971 } else { 2972 /* Indicate the link just goes down. */ 2973 if (media_disconnected != info->state) 2974 hw->port_mib[p].link_down = 1; 2975 2976 info->state = media_disconnected; 2977 } 2978 hw->port_mib[p].state = (u8) info->state; 2979 } 2980 2981 if (linked && media_disconnected == port->linked->state) 2982 port->linked = linked; 2983 2984 hw_restore_intr(hw, interrupt); 2985 } 2986 2987 #define PHY_RESET_TIMEOUT 10 2988 2989 /** 2990 * port_set_link_speed - set port speed 2991 * @port: The port instance. 2992 * 2993 * This routine sets the link speed of the switch ports. 2994 */ 2995 static void port_set_link_speed(struct ksz_port *port) 2996 { 2997 struct ksz_hw *hw = port->hw; 2998 u16 data; 2999 u16 cfg; 3000 u8 status; 3001 int i; 3002 int p; 3003 3004 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3005 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3006 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3007 3008 cfg = 0; 3009 if (status & PORT_STATUS_LINK_GOOD) 3010 cfg = data; 3011 3012 data |= PORT_AUTO_NEG_ENABLE; 3013 data = advertised_flow_ctrl(port, data); 3014 3015 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | 3016 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT; 3017 3018 /* Check if manual configuration is specified by the user. */ 3019 if (port->speed || port->duplex) { 3020 if (10 == port->speed) 3021 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3022 PORT_AUTO_NEG_100BTX); 3023 else if (100 == port->speed) 3024 data &= ~(PORT_AUTO_NEG_10BT_FD | 3025 PORT_AUTO_NEG_10BT); 3026 if (1 == port->duplex) 3027 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3028 PORT_AUTO_NEG_10BT_FD); 3029 else if (2 == port->duplex) 3030 data &= ~(PORT_AUTO_NEG_100BTX | 3031 PORT_AUTO_NEG_10BT); 3032 } 3033 if (data != cfg) { 3034 data |= PORT_AUTO_NEG_RESTART; 3035 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data); 3036 } 3037 } 3038 } 3039 3040 /** 3041 * port_force_link_speed - force port speed 3042 * @port: The port instance. 3043 * 3044 * This routine forces the link speed of the switch ports. 3045 */ 3046 static void port_force_link_speed(struct ksz_port *port) 3047 { 3048 struct ksz_hw *hw = port->hw; 3049 u16 data; 3050 int i; 3051 int phy; 3052 int p; 3053 3054 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3055 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL; 3056 hw_r_phy_ctrl(hw, phy, &data); 3057 3058 data &= ~BMCR_ANENABLE; 3059 3060 if (10 == port->speed) 3061 data &= ~BMCR_SPEED100; 3062 else if (100 == port->speed) 3063 data |= BMCR_SPEED100; 3064 if (1 == port->duplex) 3065 data &= ~BMCR_FULLDPLX; 3066 else if (2 == port->duplex) 3067 data |= BMCR_FULLDPLX; 3068 hw_w_phy_ctrl(hw, phy, data); 3069 } 3070 } 3071 3072 static void port_set_power_saving(struct ksz_port *port, int enable) 3073 { 3074 struct ksz_hw *hw = port->hw; 3075 int i; 3076 int p; 3077 3078 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) 3079 port_cfg(hw, p, 3080 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable); 3081 } 3082 3083 /* 3084 * KSZ8841 power management functions 3085 */ 3086 3087 /** 3088 * hw_chk_wol_pme_status - check PMEN pin 3089 * @hw: The hardware instance. 3090 * 3091 * This function is used to check PMEN pin is asserted. 3092 * 3093 * Return 1 if PMEN pin is asserted; otherwise, 0. 3094 */ 3095 static int hw_chk_wol_pme_status(struct ksz_hw *hw) 3096 { 3097 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3098 struct pci_dev *pdev = hw_priv->pdev; 3099 u16 data; 3100 3101 if (!pdev->pm_cap) 3102 return 0; 3103 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3104 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS; 3105 } 3106 3107 /** 3108 * hw_clr_wol_pme_status - clear PMEN pin 3109 * @hw: The hardware instance. 3110 * 3111 * This routine is used to clear PME_Status to deassert PMEN pin. 3112 */ 3113 static void hw_clr_wol_pme_status(struct ksz_hw *hw) 3114 { 3115 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3116 struct pci_dev *pdev = hw_priv->pdev; 3117 u16 data; 3118 3119 if (!pdev->pm_cap) 3120 return; 3121 3122 /* Clear PME_Status to deassert PMEN pin. */ 3123 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3124 data |= PCI_PM_CTRL_PME_STATUS; 3125 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3126 } 3127 3128 /** 3129 * hw_cfg_wol_pme - enable or disable Wake-on-LAN 3130 * @hw: The hardware instance. 3131 * @set: The flag indicating whether to enable or disable. 3132 * 3133 * This routine is used to enable or disable Wake-on-LAN. 3134 */ 3135 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set) 3136 { 3137 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3138 struct pci_dev *pdev = hw_priv->pdev; 3139 u16 data; 3140 3141 if (!pdev->pm_cap) 3142 return; 3143 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3144 data &= ~PCI_PM_CTRL_STATE_MASK; 3145 if (set) 3146 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot; 3147 else 3148 data &= ~PCI_PM_CTRL_PME_ENABLE; 3149 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3150 } 3151 3152 /** 3153 * hw_cfg_wol - configure Wake-on-LAN features 3154 * @hw: The hardware instance. 3155 * @frame: The pattern frame bit. 3156 * @set: The flag indicating whether to enable or disable. 3157 * 3158 * This routine is used to enable or disable certain Wake-on-LAN features. 3159 */ 3160 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set) 3161 { 3162 u16 data; 3163 3164 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET); 3165 if (set) 3166 data |= frame; 3167 else 3168 data &= ~frame; 3169 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET); 3170 } 3171 3172 /** 3173 * hw_set_wol_frame - program Wake-on-LAN pattern 3174 * @hw: The hardware instance. 3175 * @i: The frame index. 3176 * @mask_size: The size of the mask. 3177 * @mask: Mask to ignore certain bytes in the pattern. 3178 * @frame_size: The size of the frame. 3179 * @pattern: The frame data. 3180 * 3181 * This routine is used to program Wake-on-LAN pattern. 3182 */ 3183 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size, 3184 const u8 *mask, uint frame_size, const u8 *pattern) 3185 { 3186 int bits; 3187 int from; 3188 int len; 3189 int to; 3190 u32 crc; 3191 u8 data[64]; 3192 u8 val = 0; 3193 3194 if (frame_size > mask_size * 8) 3195 frame_size = mask_size * 8; 3196 if (frame_size > 64) 3197 frame_size = 64; 3198 3199 i *= 0x10; 3200 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i); 3201 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i); 3202 3203 bits = len = from = to = 0; 3204 do { 3205 if (bits) { 3206 if ((val & 1)) 3207 data[to++] = pattern[from]; 3208 val >>= 1; 3209 ++from; 3210 --bits; 3211 } else { 3212 val = mask[len]; 3213 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i 3214 + len); 3215 ++len; 3216 if (val) 3217 bits = 8; 3218 else 3219 from += 8; 3220 } 3221 } while (from < (int) frame_size); 3222 if (val) { 3223 bits = mask[len - 1]; 3224 val <<= (from % 8); 3225 bits &= ~val; 3226 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len - 3227 1); 3228 } 3229 crc = ether_crc(to, data); 3230 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i); 3231 } 3232 3233 /** 3234 * hw_add_wol_arp - add ARP pattern 3235 * @hw: The hardware instance. 3236 * @ip_addr: The IPv4 address assigned to the device. 3237 * 3238 * This routine is used to add ARP pattern for waking up the host. 3239 */ 3240 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr) 3241 { 3242 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 }; 3243 u8 pattern[42] = { 3244 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 3245 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3246 0x08, 0x06, 3247 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01, 3248 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3249 0x00, 0x00, 0x00, 0x00, 3250 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3251 0x00, 0x00, 0x00, 0x00 }; 3252 3253 memcpy(&pattern[38], ip_addr, 4); 3254 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern); 3255 } 3256 3257 /** 3258 * hw_add_wol_bcast - add broadcast pattern 3259 * @hw: The hardware instance. 3260 * 3261 * This routine is used to add broadcast pattern for waking up the host. 3262 */ 3263 static void hw_add_wol_bcast(struct ksz_hw *hw) 3264 { 3265 static const u8 mask[] = { 0x3F }; 3266 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3267 3268 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern); 3269 } 3270 3271 /** 3272 * hw_add_wol_mcast - add multicast pattern 3273 * @hw: The hardware instance. 3274 * 3275 * This routine is used to add multicast pattern for waking up the host. 3276 * 3277 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used 3278 * by IPv6 ping command. Note that multicast packets are filtred through the 3279 * multicast hash table, so not all multicast packets can wake up the host. 3280 */ 3281 static void hw_add_wol_mcast(struct ksz_hw *hw) 3282 { 3283 static const u8 mask[] = { 0x3F }; 3284 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 }; 3285 3286 memcpy(&pattern[3], &hw->override_addr[3], 3); 3287 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern); 3288 } 3289 3290 /** 3291 * hw_add_wol_ucast - add unicast pattern 3292 * @hw: The hardware instance. 3293 * 3294 * This routine is used to add unicast pattern to wakeup the host. 3295 * 3296 * It is assumed the unicast packet is directed to the device, as the hardware 3297 * can only receive them in normal case. 3298 */ 3299 static void hw_add_wol_ucast(struct ksz_hw *hw) 3300 { 3301 static const u8 mask[] = { 0x3F }; 3302 3303 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr); 3304 } 3305 3306 /** 3307 * hw_enable_wol - enable Wake-on-LAN 3308 * @hw: The hardware instance. 3309 * @wol_enable: The Wake-on-LAN settings. 3310 * @net_addr: The IPv4 address assigned to the device. 3311 * 3312 * This routine is used to enable Wake-on-LAN depending on driver settings. 3313 */ 3314 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr) 3315 { 3316 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC)); 3317 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST)); 3318 hw_add_wol_ucast(hw); 3319 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST)); 3320 hw_add_wol_mcast(hw); 3321 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST)); 3322 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP)); 3323 hw_add_wol_arp(hw, net_addr); 3324 } 3325 3326 /** 3327 * hw_init - check driver is correct for the hardware 3328 * @hw: The hardware instance. 3329 * 3330 * This function checks the hardware is correct for this driver and sets the 3331 * hardware up for proper initialization. 3332 * 3333 * Return number of ports or 0 if not right. 3334 */ 3335 static int hw_init(struct ksz_hw *hw) 3336 { 3337 int rc = 0; 3338 u16 data; 3339 u16 revision; 3340 3341 /* Set bus speed to 125MHz. */ 3342 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET); 3343 3344 /* Check KSZ884x chip ID. */ 3345 data = readw(hw->io + KS884X_CHIP_ID_OFFSET); 3346 3347 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT; 3348 data &= KS884X_CHIP_ID_MASK_41; 3349 if (REG_CHIP_ID_41 == data) 3350 rc = 1; 3351 else if (REG_CHIP_ID_42 == data) 3352 rc = 2; 3353 else 3354 return 0; 3355 3356 /* Setup hardware features or bug workarounds. */ 3357 if (revision <= 1) { 3358 hw->features |= SMALL_PACKET_TX_BUG; 3359 if (1 == rc) 3360 hw->features |= HALF_DUPLEX_SIGNAL_BUG; 3361 } 3362 return rc; 3363 } 3364 3365 /** 3366 * hw_reset - reset the hardware 3367 * @hw: The hardware instance. 3368 * 3369 * This routine resets the hardware. 3370 */ 3371 static void hw_reset(struct ksz_hw *hw) 3372 { 3373 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3374 3375 /* Wait for device to reset. */ 3376 mdelay(10); 3377 3378 /* Write 0 to clear device reset. */ 3379 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3380 } 3381 3382 /** 3383 * hw_setup - setup the hardware 3384 * @hw: The hardware instance. 3385 * 3386 * This routine setup the hardware for proper operation. 3387 */ 3388 static void hw_setup(struct ksz_hw *hw) 3389 { 3390 #if SET_DEFAULT_LED 3391 u16 data; 3392 3393 /* Change default LED mode. */ 3394 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3395 data &= ~LED_MODE; 3396 data |= SET_DEFAULT_LED; 3397 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3398 #endif 3399 3400 /* Setup transmit control. */ 3401 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE | 3402 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE); 3403 3404 /* Setup receive control. */ 3405 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST | 3406 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE); 3407 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST; 3408 3409 /* Hardware cannot handle UDP packet in IP fragments. */ 3410 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 3411 3412 if (hw->all_multi) 3413 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 3414 if (hw->promiscuous) 3415 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 3416 } 3417 3418 /** 3419 * hw_setup_intr - setup interrupt mask 3420 * @hw: The hardware instance. 3421 * 3422 * This routine setup the interrupt mask for proper operation. 3423 */ 3424 static void hw_setup_intr(struct ksz_hw *hw) 3425 { 3426 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN; 3427 } 3428 3429 static void ksz_check_desc_num(struct ksz_desc_info *info) 3430 { 3431 #define MIN_DESC_SHIFT 2 3432 3433 int alloc = info->alloc; 3434 int shift; 3435 3436 shift = 0; 3437 while (!(alloc & 1)) { 3438 shift++; 3439 alloc >>= 1; 3440 } 3441 if (alloc != 1 || shift < MIN_DESC_SHIFT) { 3442 pr_alert("Hardware descriptor numbers not right!\n"); 3443 while (alloc) { 3444 shift++; 3445 alloc >>= 1; 3446 } 3447 if (shift < MIN_DESC_SHIFT) 3448 shift = MIN_DESC_SHIFT; 3449 alloc = 1 << shift; 3450 info->alloc = alloc; 3451 } 3452 info->mask = info->alloc - 1; 3453 } 3454 3455 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit) 3456 { 3457 int i; 3458 u32 phys = desc_info->ring_phys; 3459 struct ksz_hw_desc *desc = desc_info->ring_virt; 3460 struct ksz_desc *cur = desc_info->ring; 3461 struct ksz_desc *previous = NULL; 3462 3463 for (i = 0; i < desc_info->alloc; i++) { 3464 cur->phw = desc++; 3465 phys += desc_info->size; 3466 previous = cur++; 3467 previous->phw->next = cpu_to_le32(phys); 3468 } 3469 previous->phw->next = cpu_to_le32(desc_info->ring_phys); 3470 previous->sw.buf.rx.end_of_ring = 1; 3471 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data); 3472 3473 desc_info->avail = desc_info->alloc; 3474 desc_info->last = desc_info->next = 0; 3475 3476 desc_info->cur = desc_info->ring; 3477 } 3478 3479 /** 3480 * hw_set_desc_base - set descriptor base addresses 3481 * @hw: The hardware instance. 3482 * @tx_addr: The transmit descriptor base. 3483 * @rx_addr: The receive descriptor base. 3484 * 3485 * This routine programs the descriptor base addresses after reset. 3486 */ 3487 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr) 3488 { 3489 /* Set base address of Tx/Rx descriptors. */ 3490 writel(tx_addr, hw->io + KS_DMA_TX_ADDR); 3491 writel(rx_addr, hw->io + KS_DMA_RX_ADDR); 3492 } 3493 3494 static void hw_reset_pkts(struct ksz_desc_info *info) 3495 { 3496 info->cur = info->ring; 3497 info->avail = info->alloc; 3498 info->last = info->next = 0; 3499 } 3500 3501 static inline void hw_resume_rx(struct ksz_hw *hw) 3502 { 3503 writel(DMA_START, hw->io + KS_DMA_RX_START); 3504 } 3505 3506 /** 3507 * hw_start_rx - start receiving 3508 * @hw: The hardware instance. 3509 * 3510 * This routine starts the receive function of the hardware. 3511 */ 3512 static void hw_start_rx(struct ksz_hw *hw) 3513 { 3514 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3515 3516 /* Notify when the receive stops. */ 3517 hw->intr_mask |= KS884X_INT_RX_STOPPED; 3518 3519 writel(DMA_START, hw->io + KS_DMA_RX_START); 3520 hw_ack_intr(hw, KS884X_INT_RX_STOPPED); 3521 hw->rx_stop++; 3522 3523 /* Variable overflows. */ 3524 if (0 == hw->rx_stop) 3525 hw->rx_stop = 2; 3526 } 3527 3528 /** 3529 * hw_stop_rx - stop receiving 3530 * @hw: The hardware instance. 3531 * 3532 * This routine stops the receive function of the hardware. 3533 */ 3534 static void hw_stop_rx(struct ksz_hw *hw) 3535 { 3536 hw->rx_stop = 0; 3537 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED); 3538 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL); 3539 } 3540 3541 /** 3542 * hw_start_tx - start transmitting 3543 * @hw: The hardware instance. 3544 * 3545 * This routine starts the transmit function of the hardware. 3546 */ 3547 static void hw_start_tx(struct ksz_hw *hw) 3548 { 3549 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3550 } 3551 3552 /** 3553 * hw_stop_tx - stop transmitting 3554 * @hw: The hardware instance. 3555 * 3556 * This routine stops the transmit function of the hardware. 3557 */ 3558 static void hw_stop_tx(struct ksz_hw *hw) 3559 { 3560 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL); 3561 } 3562 3563 /** 3564 * hw_disable - disable hardware 3565 * @hw: The hardware instance. 3566 * 3567 * This routine disables the hardware. 3568 */ 3569 static void hw_disable(struct ksz_hw *hw) 3570 { 3571 hw_stop_rx(hw); 3572 hw_stop_tx(hw); 3573 hw->enabled = 0; 3574 } 3575 3576 /** 3577 * hw_enable - enable hardware 3578 * @hw: The hardware instance. 3579 * 3580 * This routine enables the hardware. 3581 */ 3582 static void hw_enable(struct ksz_hw *hw) 3583 { 3584 hw_start_tx(hw); 3585 hw_start_rx(hw); 3586 hw->enabled = 1; 3587 } 3588 3589 /** 3590 * hw_alloc_pkt - allocate enough descriptors for transmission 3591 * @hw: The hardware instance. 3592 * @length: The length of the packet. 3593 * @physical: Number of descriptors required. 3594 * 3595 * This function allocates descriptors for transmission. 3596 * 3597 * Return 0 if not successful; 1 for buffer copy; or number of descriptors. 3598 */ 3599 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical) 3600 { 3601 /* Always leave one descriptor free. */ 3602 if (hw->tx_desc_info.avail <= 1) 3603 return 0; 3604 3605 /* Allocate a descriptor for transmission and mark it current. */ 3606 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur); 3607 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1; 3608 3609 /* Keep track of number of transmit descriptors used so far. */ 3610 ++hw->tx_int_cnt; 3611 hw->tx_size += length; 3612 3613 /* Cannot hold on too much data. */ 3614 if (hw->tx_size >= MAX_TX_HELD_SIZE) 3615 hw->tx_int_cnt = hw->tx_int_mask + 1; 3616 3617 if (physical > hw->tx_desc_info.avail) 3618 return 1; 3619 3620 return hw->tx_desc_info.avail; 3621 } 3622 3623 /** 3624 * hw_send_pkt - mark packet for transmission 3625 * @hw: The hardware instance. 3626 * 3627 * This routine marks the packet for transmission in PCI version. 3628 */ 3629 static void hw_send_pkt(struct ksz_hw *hw) 3630 { 3631 struct ksz_desc *cur = hw->tx_desc_info.cur; 3632 3633 cur->sw.buf.tx.last_seg = 1; 3634 3635 /* Interrupt only after specified number of descriptors used. */ 3636 if (hw->tx_int_cnt > hw->tx_int_mask) { 3637 cur->sw.buf.tx.intr = 1; 3638 hw->tx_int_cnt = 0; 3639 hw->tx_size = 0; 3640 } 3641 3642 /* KSZ8842 supports port directed transmission. */ 3643 cur->sw.buf.tx.dest_port = hw->dst_ports; 3644 3645 release_desc(cur); 3646 3647 writel(0, hw->io + KS_DMA_TX_START); 3648 } 3649 3650 static int empty_addr(u8 *addr) 3651 { 3652 u32 *addr1 = (u32 *) addr; 3653 u16 *addr2 = (u16 *) &addr[4]; 3654 3655 return 0 == *addr1 && 0 == *addr2; 3656 } 3657 3658 /** 3659 * hw_set_addr - set MAC address 3660 * @hw: The hardware instance. 3661 * 3662 * This routine programs the MAC address of the hardware when the address is 3663 * overridden. 3664 */ 3665 static void hw_set_addr(struct ksz_hw *hw) 3666 { 3667 int i; 3668 3669 for (i = 0; i < ETH_ALEN; i++) 3670 writeb(hw->override_addr[MAC_ADDR_ORDER(i)], 3671 hw->io + KS884X_ADDR_0_OFFSET + i); 3672 3673 sw_set_addr(hw, hw->override_addr); 3674 } 3675 3676 /** 3677 * hw_read_addr - read MAC address 3678 * @hw: The hardware instance. 3679 * 3680 * This routine retrieves the MAC address of the hardware. 3681 */ 3682 static void hw_read_addr(struct ksz_hw *hw) 3683 { 3684 int i; 3685 3686 for (i = 0; i < ETH_ALEN; i++) 3687 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io + 3688 KS884X_ADDR_0_OFFSET + i); 3689 3690 if (!hw->mac_override) { 3691 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN); 3692 if (empty_addr(hw->override_addr)) { 3693 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN); 3694 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS, 3695 ETH_ALEN); 3696 hw->override_addr[5] += hw->id; 3697 hw_set_addr(hw); 3698 } 3699 } 3700 } 3701 3702 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr) 3703 { 3704 int i; 3705 u32 mac_addr_lo; 3706 u32 mac_addr_hi; 3707 3708 mac_addr_hi = 0; 3709 for (i = 0; i < 2; i++) { 3710 mac_addr_hi <<= 8; 3711 mac_addr_hi |= mac_addr[i]; 3712 } 3713 mac_addr_hi |= ADD_ADDR_ENABLE; 3714 mac_addr_lo = 0; 3715 for (i = 2; i < 6; i++) { 3716 mac_addr_lo <<= 8; 3717 mac_addr_lo |= mac_addr[i]; 3718 } 3719 index *= ADD_ADDR_INCR; 3720 3721 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO); 3722 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI); 3723 } 3724 3725 static void hw_set_add_addr(struct ksz_hw *hw) 3726 { 3727 int i; 3728 3729 for (i = 0; i < ADDITIONAL_ENTRIES; i++) { 3730 if (empty_addr(hw->address[i])) 3731 writel(0, hw->io + ADD_ADDR_INCR * i + 3732 KS_ADD_ADDR_0_HI); 3733 else 3734 hw_ena_add_addr(hw, i, hw->address[i]); 3735 } 3736 } 3737 3738 static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr) 3739 { 3740 int i; 3741 int j = ADDITIONAL_ENTRIES; 3742 3743 if (ether_addr_equal(hw->override_addr, mac_addr)) 3744 return 0; 3745 for (i = 0; i < hw->addr_list_size; i++) { 3746 if (ether_addr_equal(hw->address[i], mac_addr)) 3747 return 0; 3748 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i])) 3749 j = i; 3750 } 3751 if (j < ADDITIONAL_ENTRIES) { 3752 memcpy(hw->address[j], mac_addr, ETH_ALEN); 3753 hw_ena_add_addr(hw, j, hw->address[j]); 3754 return 0; 3755 } 3756 return -1; 3757 } 3758 3759 static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr) 3760 { 3761 int i; 3762 3763 for (i = 0; i < hw->addr_list_size; i++) { 3764 if (ether_addr_equal(hw->address[i], mac_addr)) { 3765 eth_zero_addr(hw->address[i]); 3766 writel(0, hw->io + ADD_ADDR_INCR * i + 3767 KS_ADD_ADDR_0_HI); 3768 return 0; 3769 } 3770 } 3771 return -1; 3772 } 3773 3774 /** 3775 * hw_clr_multicast - clear multicast addresses 3776 * @hw: The hardware instance. 3777 * 3778 * This routine removes all multicast addresses set in the hardware. 3779 */ 3780 static void hw_clr_multicast(struct ksz_hw *hw) 3781 { 3782 int i; 3783 3784 for (i = 0; i < HW_MULTICAST_SIZE; i++) { 3785 hw->multi_bits[i] = 0; 3786 3787 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i); 3788 } 3789 } 3790 3791 /** 3792 * hw_set_grp_addr - set multicast addresses 3793 * @hw: The hardware instance. 3794 * 3795 * This routine programs multicast addresses for the hardware to accept those 3796 * addresses. 3797 */ 3798 static void hw_set_grp_addr(struct ksz_hw *hw) 3799 { 3800 int i; 3801 int index; 3802 int position; 3803 int value; 3804 3805 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE); 3806 3807 for (i = 0; i < hw->multi_list_size; i++) { 3808 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f; 3809 index = position >> 3; 3810 value = 1 << (position & 7); 3811 hw->multi_bits[index] |= (u8) value; 3812 } 3813 3814 for (i = 0; i < HW_MULTICAST_SIZE; i++) 3815 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET + 3816 i); 3817 } 3818 3819 /** 3820 * hw_set_multicast - enable or disable all multicast receiving 3821 * @hw: The hardware instance. 3822 * @multicast: To turn on or off the all multicast feature. 3823 * 3824 * This routine enables/disables the hardware to accept all multicast packets. 3825 */ 3826 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast) 3827 { 3828 /* Stop receiving for reconfiguration. */ 3829 hw_stop_rx(hw); 3830 3831 if (multicast) 3832 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 3833 else 3834 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST; 3835 3836 if (hw->enabled) 3837 hw_start_rx(hw); 3838 } 3839 3840 /** 3841 * hw_set_promiscuous - enable or disable promiscuous receiving 3842 * @hw: The hardware instance. 3843 * @prom: To turn on or off the promiscuous feature. 3844 * 3845 * This routine enables/disables the hardware to accept all packets. 3846 */ 3847 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom) 3848 { 3849 /* Stop receiving for reconfiguration. */ 3850 hw_stop_rx(hw); 3851 3852 if (prom) 3853 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 3854 else 3855 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS; 3856 3857 if (hw->enabled) 3858 hw_start_rx(hw); 3859 } 3860 3861 /** 3862 * sw_enable - enable the switch 3863 * @hw: The hardware instance. 3864 * @enable: The flag to enable or disable the switch 3865 * 3866 * This routine is used to enable/disable the switch in KSZ8842. 3867 */ 3868 static void sw_enable(struct ksz_hw *hw, int enable) 3869 { 3870 int port; 3871 3872 for (port = 0; port < SWITCH_PORT_NUM; port++) { 3873 if (hw->dev_count > 1) { 3874 /* Set port-base vlan membership with host port. */ 3875 sw_cfg_port_base_vlan(hw, port, 3876 HOST_MASK | (1 << port)); 3877 port_set_stp_state(hw, port, STP_STATE_DISABLED); 3878 } else { 3879 sw_cfg_port_base_vlan(hw, port, PORT_MASK); 3880 port_set_stp_state(hw, port, STP_STATE_FORWARDING); 3881 } 3882 } 3883 if (hw->dev_count > 1) 3884 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 3885 else 3886 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING); 3887 3888 if (enable) 3889 enable = KS8842_START; 3890 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET); 3891 } 3892 3893 /** 3894 * sw_setup - setup the switch 3895 * @hw: The hardware instance. 3896 * 3897 * This routine setup the hardware switch engine for default operation. 3898 */ 3899 static void sw_setup(struct ksz_hw *hw) 3900 { 3901 int port; 3902 3903 sw_set_global_ctrl(hw); 3904 3905 /* Enable switch broadcast storm protection at 10% percent rate. */ 3906 sw_init_broad_storm(hw); 3907 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE); 3908 for (port = 0; port < SWITCH_PORT_NUM; port++) 3909 sw_ena_broad_storm(hw, port); 3910 3911 sw_init_prio(hw); 3912 3913 sw_init_mirror(hw); 3914 3915 sw_init_prio_rate(hw); 3916 3917 sw_init_vlan(hw); 3918 3919 if (hw->features & STP_SUPPORT) 3920 sw_init_stp(hw); 3921 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 3922 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL)) 3923 hw->overrides |= PAUSE_FLOW_CTRL; 3924 sw_enable(hw, 1); 3925 } 3926 3927 /** 3928 * ksz_start_timer - start kernel timer 3929 * @info: Kernel timer information. 3930 * @time: The time tick. 3931 * 3932 * This routine starts the kernel timer after the specified time tick. 3933 */ 3934 static void ksz_start_timer(struct ksz_timer_info *info, int time) 3935 { 3936 info->cnt = 0; 3937 info->timer.expires = jiffies + time; 3938 add_timer(&info->timer); 3939 3940 /* infinity */ 3941 info->max = -1; 3942 } 3943 3944 /** 3945 * ksz_stop_timer - stop kernel timer 3946 * @info: Kernel timer information. 3947 * 3948 * This routine stops the kernel timer. 3949 */ 3950 static void ksz_stop_timer(struct ksz_timer_info *info) 3951 { 3952 if (info->max) { 3953 info->max = 0; 3954 del_timer_sync(&info->timer); 3955 } 3956 } 3957 3958 static void ksz_init_timer(struct ksz_timer_info *info, int period, 3959 void (*function)(struct timer_list *)) 3960 { 3961 info->max = 0; 3962 info->period = period; 3963 timer_setup(&info->timer, function, 0); 3964 } 3965 3966 static void ksz_update_timer(struct ksz_timer_info *info) 3967 { 3968 ++info->cnt; 3969 if (info->max > 0) { 3970 if (info->cnt < info->max) { 3971 info->timer.expires = jiffies + info->period; 3972 add_timer(&info->timer); 3973 } else 3974 info->max = 0; 3975 } else if (info->max < 0) { 3976 info->timer.expires = jiffies + info->period; 3977 add_timer(&info->timer); 3978 } 3979 } 3980 3981 /** 3982 * ksz_alloc_soft_desc - allocate software descriptors 3983 * @desc_info: Descriptor information structure. 3984 * @transmit: Indication that descriptors are for transmit. 3985 * 3986 * This local function allocates software descriptors for manipulation in 3987 * memory. 3988 * 3989 * Return 0 if successful. 3990 */ 3991 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit) 3992 { 3993 desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc), 3994 GFP_KERNEL); 3995 if (!desc_info->ring) 3996 return 1; 3997 hw_init_desc(desc_info, transmit); 3998 return 0; 3999 } 4000 4001 /** 4002 * ksz_alloc_desc - allocate hardware descriptors 4003 * @adapter: Adapter information structure. 4004 * 4005 * This local function allocates hardware descriptors for receiving and 4006 * transmitting. 4007 * 4008 * Return 0 if successful. 4009 */ 4010 static int ksz_alloc_desc(struct dev_info *adapter) 4011 { 4012 struct ksz_hw *hw = &adapter->hw; 4013 int offset; 4014 4015 /* Allocate memory for RX & TX descriptors. */ 4016 adapter->desc_pool.alloc_size = 4017 hw->rx_desc_info.size * hw->rx_desc_info.alloc + 4018 hw->tx_desc_info.size * hw->tx_desc_info.alloc + 4019 DESC_ALIGNMENT; 4020 4021 adapter->desc_pool.alloc_virt = 4022 dma_alloc_coherent(&adapter->pdev->dev, 4023 adapter->desc_pool.alloc_size, 4024 &adapter->desc_pool.dma_addr, GFP_KERNEL); 4025 if (adapter->desc_pool.alloc_virt == NULL) { 4026 adapter->desc_pool.alloc_size = 0; 4027 return 1; 4028 } 4029 4030 /* Align to the next cache line boundary. */ 4031 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ? 4032 (DESC_ALIGNMENT - 4033 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0); 4034 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset; 4035 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset; 4036 4037 /* Allocate receive/transmit descriptors. */ 4038 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *) 4039 adapter->desc_pool.virt; 4040 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys; 4041 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size; 4042 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *) 4043 (adapter->desc_pool.virt + offset); 4044 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset; 4045 4046 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0)) 4047 return 1; 4048 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1)) 4049 return 1; 4050 4051 return 0; 4052 } 4053 4054 /** 4055 * free_dma_buf - release DMA buffer resources 4056 * @adapter: Adapter information structure. 4057 * @dma_buf: pointer to buf 4058 * @direction: to or from device 4059 * 4060 * This routine is just a helper function to release the DMA buffer resources. 4061 */ 4062 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf, 4063 int direction) 4064 { 4065 dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len, 4066 direction); 4067 dev_kfree_skb(dma_buf->skb); 4068 dma_buf->skb = NULL; 4069 dma_buf->dma = 0; 4070 } 4071 4072 /** 4073 * ksz_init_rx_buffers - initialize receive descriptors 4074 * @adapter: Adapter information structure. 4075 * 4076 * This routine initializes DMA buffers for receiving. 4077 */ 4078 static void ksz_init_rx_buffers(struct dev_info *adapter) 4079 { 4080 int i; 4081 struct ksz_desc *desc; 4082 struct ksz_dma_buf *dma_buf; 4083 struct ksz_hw *hw = &adapter->hw; 4084 struct ksz_desc_info *info = &hw->rx_desc_info; 4085 4086 for (i = 0; i < hw->rx_desc_info.alloc; i++) { 4087 get_rx_pkt(info, &desc); 4088 4089 dma_buf = DMA_BUFFER(desc); 4090 if (dma_buf->skb && dma_buf->len != adapter->mtu) 4091 free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE); 4092 dma_buf->len = adapter->mtu; 4093 if (!dma_buf->skb) 4094 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC); 4095 if (dma_buf->skb && !dma_buf->dma) 4096 dma_buf->dma = dma_map_single(&adapter->pdev->dev, 4097 skb_tail_pointer(dma_buf->skb), 4098 dma_buf->len, 4099 DMA_FROM_DEVICE); 4100 4101 /* Set descriptor. */ 4102 set_rx_buf(desc, dma_buf->dma); 4103 set_rx_len(desc, dma_buf->len); 4104 release_desc(desc); 4105 } 4106 } 4107 4108 /** 4109 * ksz_alloc_mem - allocate memory for hardware descriptors 4110 * @adapter: Adapter information structure. 4111 * 4112 * This function allocates memory for use by hardware descriptors for receiving 4113 * and transmitting. 4114 * 4115 * Return 0 if successful. 4116 */ 4117 static int ksz_alloc_mem(struct dev_info *adapter) 4118 { 4119 struct ksz_hw *hw = &adapter->hw; 4120 4121 /* Determine the number of receive and transmit descriptors. */ 4122 hw->rx_desc_info.alloc = NUM_OF_RX_DESC; 4123 hw->tx_desc_info.alloc = NUM_OF_TX_DESC; 4124 4125 /* Determine how many descriptors to skip transmit interrupt. */ 4126 hw->tx_int_cnt = 0; 4127 hw->tx_int_mask = NUM_OF_TX_DESC / 4; 4128 if (hw->tx_int_mask > 8) 4129 hw->tx_int_mask = 8; 4130 while (hw->tx_int_mask) { 4131 hw->tx_int_cnt++; 4132 hw->tx_int_mask >>= 1; 4133 } 4134 if (hw->tx_int_cnt) { 4135 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1; 4136 hw->tx_int_cnt = 0; 4137 } 4138 4139 /* Determine the descriptor size. */ 4140 hw->rx_desc_info.size = 4141 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4142 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4143 hw->tx_desc_info.size = 4144 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4145 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4146 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc)) 4147 pr_alert("Hardware descriptor size not right!\n"); 4148 ksz_check_desc_num(&hw->rx_desc_info); 4149 ksz_check_desc_num(&hw->tx_desc_info); 4150 4151 /* Allocate descriptors. */ 4152 if (ksz_alloc_desc(adapter)) 4153 return 1; 4154 4155 return 0; 4156 } 4157 4158 /** 4159 * ksz_free_desc - free software and hardware descriptors 4160 * @adapter: Adapter information structure. 4161 * 4162 * This local routine frees the software and hardware descriptors allocated by 4163 * ksz_alloc_desc(). 4164 */ 4165 static void ksz_free_desc(struct dev_info *adapter) 4166 { 4167 struct ksz_hw *hw = &adapter->hw; 4168 4169 /* Reset descriptor. */ 4170 hw->rx_desc_info.ring_virt = NULL; 4171 hw->tx_desc_info.ring_virt = NULL; 4172 hw->rx_desc_info.ring_phys = 0; 4173 hw->tx_desc_info.ring_phys = 0; 4174 4175 /* Free memory. */ 4176 if (adapter->desc_pool.alloc_virt) 4177 dma_free_coherent(&adapter->pdev->dev, 4178 adapter->desc_pool.alloc_size, 4179 adapter->desc_pool.alloc_virt, 4180 adapter->desc_pool.dma_addr); 4181 4182 /* Reset resource pool. */ 4183 adapter->desc_pool.alloc_size = 0; 4184 adapter->desc_pool.alloc_virt = NULL; 4185 4186 kfree(hw->rx_desc_info.ring); 4187 hw->rx_desc_info.ring = NULL; 4188 kfree(hw->tx_desc_info.ring); 4189 hw->tx_desc_info.ring = NULL; 4190 } 4191 4192 /** 4193 * ksz_free_buffers - free buffers used in the descriptors 4194 * @adapter: Adapter information structure. 4195 * @desc_info: Descriptor information structure. 4196 * @direction: to or from device 4197 * 4198 * This local routine frees buffers used in the DMA buffers. 4199 */ 4200 static void ksz_free_buffers(struct dev_info *adapter, 4201 struct ksz_desc_info *desc_info, int direction) 4202 { 4203 int i; 4204 struct ksz_dma_buf *dma_buf; 4205 struct ksz_desc *desc = desc_info->ring; 4206 4207 for (i = 0; i < desc_info->alloc; i++) { 4208 dma_buf = DMA_BUFFER(desc); 4209 if (dma_buf->skb) 4210 free_dma_buf(adapter, dma_buf, direction); 4211 desc++; 4212 } 4213 } 4214 4215 /** 4216 * ksz_free_mem - free all resources used by descriptors 4217 * @adapter: Adapter information structure. 4218 * 4219 * This local routine frees all the resources allocated by ksz_alloc_mem(). 4220 */ 4221 static void ksz_free_mem(struct dev_info *adapter) 4222 { 4223 /* Free transmit buffers. */ 4224 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE); 4225 4226 /* Free receive buffers. */ 4227 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE); 4228 4229 /* Free descriptors. */ 4230 ksz_free_desc(adapter); 4231 } 4232 4233 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt, 4234 u64 *counter) 4235 { 4236 int i; 4237 int mib; 4238 int port; 4239 struct ksz_port_mib *port_mib; 4240 4241 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 4242 for (i = 0, port = first; i < cnt; i++, port++) { 4243 port_mib = &hw->port_mib[port]; 4244 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++) 4245 counter[mib] += port_mib->counter[mib]; 4246 } 4247 } 4248 4249 /** 4250 * send_packet - send packet 4251 * @skb: Socket buffer. 4252 * @dev: Network device. 4253 * 4254 * This routine is used to send a packet out to the network. 4255 */ 4256 static void send_packet(struct sk_buff *skb, struct net_device *dev) 4257 { 4258 struct ksz_desc *desc; 4259 struct ksz_desc *first; 4260 struct dev_priv *priv = netdev_priv(dev); 4261 struct dev_info *hw_priv = priv->adapter; 4262 struct ksz_hw *hw = &hw_priv->hw; 4263 struct ksz_desc_info *info = &hw->tx_desc_info; 4264 struct ksz_dma_buf *dma_buf; 4265 int len; 4266 int last_frag = skb_shinfo(skb)->nr_frags; 4267 4268 /* 4269 * KSZ8842 with multiple device interfaces needs to be told which port 4270 * to send. 4271 */ 4272 if (hw->dev_count > 1) 4273 hw->dst_ports = 1 << priv->port.first_port; 4274 4275 /* Hardware will pad the length to 60. */ 4276 len = skb->len; 4277 4278 /* Remember the very first descriptor. */ 4279 first = info->cur; 4280 desc = first; 4281 4282 dma_buf = DMA_BUFFER(desc); 4283 if (last_frag) { 4284 int frag; 4285 skb_frag_t *this_frag; 4286 4287 dma_buf->len = skb_headlen(skb); 4288 4289 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data, 4290 dma_buf->len, DMA_TO_DEVICE); 4291 set_tx_buf(desc, dma_buf->dma); 4292 set_tx_len(desc, dma_buf->len); 4293 4294 frag = 0; 4295 do { 4296 this_frag = &skb_shinfo(skb)->frags[frag]; 4297 4298 /* Get a new descriptor. */ 4299 get_tx_pkt(info, &desc); 4300 4301 /* Keep track of descriptors used so far. */ 4302 ++hw->tx_int_cnt; 4303 4304 dma_buf = DMA_BUFFER(desc); 4305 dma_buf->len = skb_frag_size(this_frag); 4306 4307 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, 4308 skb_frag_address(this_frag), 4309 dma_buf->len, 4310 DMA_TO_DEVICE); 4311 set_tx_buf(desc, dma_buf->dma); 4312 set_tx_len(desc, dma_buf->len); 4313 4314 frag++; 4315 if (frag == last_frag) 4316 break; 4317 4318 /* Do not release the last descriptor here. */ 4319 release_desc(desc); 4320 } while (1); 4321 4322 /* current points to the last descriptor. */ 4323 info->cur = desc; 4324 4325 /* Release the first descriptor. */ 4326 release_desc(first); 4327 } else { 4328 dma_buf->len = len; 4329 4330 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data, 4331 dma_buf->len, DMA_TO_DEVICE); 4332 set_tx_buf(desc, dma_buf->dma); 4333 set_tx_len(desc, dma_buf->len); 4334 } 4335 4336 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4337 (desc)->sw.buf.tx.csum_gen_tcp = 1; 4338 (desc)->sw.buf.tx.csum_gen_udp = 1; 4339 } 4340 4341 /* 4342 * The last descriptor holds the packet so that it can be returned to 4343 * network subsystem after all descriptors are transmitted. 4344 */ 4345 dma_buf->skb = skb; 4346 4347 hw_send_pkt(hw); 4348 4349 /* Update transmit statistics. */ 4350 dev->stats.tx_packets++; 4351 dev->stats.tx_bytes += len; 4352 } 4353 4354 /** 4355 * transmit_cleanup - clean up transmit descriptors 4356 * @hw_priv: Network device. 4357 * @normal: break if owned 4358 * 4359 * This routine is called to clean up the transmitted buffers. 4360 */ 4361 static void transmit_cleanup(struct dev_info *hw_priv, int normal) 4362 { 4363 int last; 4364 union desc_stat status; 4365 struct ksz_hw *hw = &hw_priv->hw; 4366 struct ksz_desc_info *info = &hw->tx_desc_info; 4367 struct ksz_desc *desc; 4368 struct ksz_dma_buf *dma_buf; 4369 struct net_device *dev = NULL; 4370 4371 spin_lock_irq(&hw_priv->hwlock); 4372 last = info->last; 4373 4374 while (info->avail < info->alloc) { 4375 /* Get next descriptor which is not hardware owned. */ 4376 desc = &info->ring[last]; 4377 status.data = le32_to_cpu(desc->phw->ctrl.data); 4378 if (status.tx.hw_owned) { 4379 if (normal) 4380 break; 4381 else 4382 reset_desc(desc, status); 4383 } 4384 4385 dma_buf = DMA_BUFFER(desc); 4386 dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma, 4387 dma_buf->len, DMA_TO_DEVICE); 4388 4389 /* This descriptor contains the last buffer in the packet. */ 4390 if (dma_buf->skb) { 4391 dev = dma_buf->skb->dev; 4392 4393 /* Release the packet back to network subsystem. */ 4394 dev_kfree_skb_irq(dma_buf->skb); 4395 dma_buf->skb = NULL; 4396 } 4397 4398 /* Free the transmitted descriptor. */ 4399 last++; 4400 last &= info->mask; 4401 info->avail++; 4402 } 4403 info->last = last; 4404 spin_unlock_irq(&hw_priv->hwlock); 4405 4406 /* Notify the network subsystem that the packet has been sent. */ 4407 if (dev) 4408 netif_trans_update(dev); 4409 } 4410 4411 /** 4412 * tx_done - transmit done processing 4413 * @hw_priv: Network device. 4414 * 4415 * This routine is called when the transmit interrupt is triggered, indicating 4416 * either a packet is sent successfully or there are transmit errors. 4417 */ 4418 static void tx_done(struct dev_info *hw_priv) 4419 { 4420 struct ksz_hw *hw = &hw_priv->hw; 4421 int port; 4422 4423 transmit_cleanup(hw_priv, 1); 4424 4425 for (port = 0; port < hw->dev_count; port++) { 4426 struct net_device *dev = hw->port_info[port].pdev; 4427 4428 if (netif_running(dev) && netif_queue_stopped(dev)) 4429 netif_wake_queue(dev); 4430 } 4431 } 4432 4433 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb) 4434 { 4435 skb->dev = old->dev; 4436 skb->protocol = old->protocol; 4437 skb->ip_summed = old->ip_summed; 4438 skb->csum = old->csum; 4439 skb_set_network_header(skb, ETH_HLEN); 4440 4441 dev_consume_skb_any(old); 4442 } 4443 4444 /** 4445 * netdev_tx - send out packet 4446 * @skb: Socket buffer. 4447 * @dev: Network device. 4448 * 4449 * This function is used by the upper network layer to send out a packet. 4450 * 4451 * Return 0 if successful; otherwise an error code indicating failure. 4452 */ 4453 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev) 4454 { 4455 struct dev_priv *priv = netdev_priv(dev); 4456 struct dev_info *hw_priv = priv->adapter; 4457 struct ksz_hw *hw = &hw_priv->hw; 4458 int left; 4459 int num = 1; 4460 int rc = 0; 4461 4462 if (hw->features & SMALL_PACKET_TX_BUG) { 4463 struct sk_buff *org_skb = skb; 4464 4465 if (skb->len <= 48) { 4466 if (skb_end_pointer(skb) - skb->data >= 50) { 4467 memset(&skb->data[skb->len], 0, 50 - skb->len); 4468 skb->len = 50; 4469 } else { 4470 skb = netdev_alloc_skb(dev, 50); 4471 if (!skb) 4472 return NETDEV_TX_BUSY; 4473 memcpy(skb->data, org_skb->data, org_skb->len); 4474 memset(&skb->data[org_skb->len], 0, 4475 50 - org_skb->len); 4476 skb->len = 50; 4477 copy_old_skb(org_skb, skb); 4478 } 4479 } 4480 } 4481 4482 spin_lock_irq(&hw_priv->hwlock); 4483 4484 num = skb_shinfo(skb)->nr_frags + 1; 4485 left = hw_alloc_pkt(hw, skb->len, num); 4486 if (left) { 4487 if (left < num || 4488 (CHECKSUM_PARTIAL == skb->ip_summed && 4489 skb->protocol == htons(ETH_P_IPV6))) { 4490 struct sk_buff *org_skb = skb; 4491 4492 skb = netdev_alloc_skb(dev, org_skb->len); 4493 if (!skb) { 4494 rc = NETDEV_TX_BUSY; 4495 goto unlock; 4496 } 4497 skb_copy_and_csum_dev(org_skb, skb->data); 4498 org_skb->ip_summed = CHECKSUM_NONE; 4499 skb->len = org_skb->len; 4500 copy_old_skb(org_skb, skb); 4501 } 4502 send_packet(skb, dev); 4503 if (left <= num) 4504 netif_stop_queue(dev); 4505 } else { 4506 /* Stop the transmit queue until packet is allocated. */ 4507 netif_stop_queue(dev); 4508 rc = NETDEV_TX_BUSY; 4509 } 4510 unlock: 4511 spin_unlock_irq(&hw_priv->hwlock); 4512 4513 return rc; 4514 } 4515 4516 /** 4517 * netdev_tx_timeout - transmit timeout processing 4518 * @dev: Network device. 4519 * @txqueue: index of hanging queue 4520 * 4521 * This routine is called when the transmit timer expires. That indicates the 4522 * hardware is not running correctly because transmit interrupts are not 4523 * triggered to free up resources so that the transmit routine can continue 4524 * sending out packets. The hardware is reset to correct the problem. 4525 */ 4526 static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue) 4527 { 4528 static unsigned long last_reset; 4529 4530 struct dev_priv *priv = netdev_priv(dev); 4531 struct dev_info *hw_priv = priv->adapter; 4532 struct ksz_hw *hw = &hw_priv->hw; 4533 int port; 4534 4535 if (hw->dev_count > 1) { 4536 /* 4537 * Only reset the hardware if time between calls is long 4538 * enough. 4539 */ 4540 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo)) 4541 hw_priv = NULL; 4542 } 4543 4544 last_reset = jiffies; 4545 if (hw_priv) { 4546 hw_dis_intr(hw); 4547 hw_disable(hw); 4548 4549 transmit_cleanup(hw_priv, 0); 4550 hw_reset_pkts(&hw->rx_desc_info); 4551 hw_reset_pkts(&hw->tx_desc_info); 4552 ksz_init_rx_buffers(hw_priv); 4553 4554 hw_reset(hw); 4555 4556 hw_set_desc_base(hw, 4557 hw->tx_desc_info.ring_phys, 4558 hw->rx_desc_info.ring_phys); 4559 hw_set_addr(hw); 4560 if (hw->all_multi) 4561 hw_set_multicast(hw, hw->all_multi); 4562 else if (hw->multi_list_size) 4563 hw_set_grp_addr(hw); 4564 4565 if (hw->dev_count > 1) { 4566 hw_set_add_addr(hw); 4567 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4568 struct net_device *port_dev; 4569 4570 port_set_stp_state(hw, port, 4571 STP_STATE_DISABLED); 4572 4573 port_dev = hw->port_info[port].pdev; 4574 if (netif_running(port_dev)) 4575 port_set_stp_state(hw, port, 4576 STP_STATE_SIMPLE); 4577 } 4578 } 4579 4580 hw_enable(hw); 4581 hw_ena_intr(hw); 4582 } 4583 4584 netif_trans_update(dev); 4585 netif_wake_queue(dev); 4586 } 4587 4588 static inline void csum_verified(struct sk_buff *skb) 4589 { 4590 unsigned short protocol; 4591 struct iphdr *iph; 4592 4593 protocol = skb->protocol; 4594 skb_reset_network_header(skb); 4595 iph = (struct iphdr *) skb_network_header(skb); 4596 if (protocol == htons(ETH_P_8021Q)) { 4597 protocol = iph->tot_len; 4598 skb_set_network_header(skb, VLAN_HLEN); 4599 iph = (struct iphdr *) skb_network_header(skb); 4600 } 4601 if (protocol == htons(ETH_P_IP)) { 4602 if (iph->protocol == IPPROTO_TCP) 4603 skb->ip_summed = CHECKSUM_UNNECESSARY; 4604 } 4605 } 4606 4607 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw, 4608 struct ksz_desc *desc, union desc_stat status) 4609 { 4610 int packet_len; 4611 struct dev_priv *priv = netdev_priv(dev); 4612 struct dev_info *hw_priv = priv->adapter; 4613 struct ksz_dma_buf *dma_buf; 4614 struct sk_buff *skb; 4615 4616 /* Received length includes 4-byte CRC. */ 4617 packet_len = status.rx.frame_len - 4; 4618 4619 dma_buf = DMA_BUFFER(desc); 4620 dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma, 4621 packet_len + 4, DMA_FROM_DEVICE); 4622 4623 do { 4624 /* skb->data != skb->head */ 4625 skb = netdev_alloc_skb(dev, packet_len + 2); 4626 if (!skb) { 4627 dev->stats.rx_dropped++; 4628 return -ENOMEM; 4629 } 4630 4631 /* 4632 * Align socket buffer in 4-byte boundary for better 4633 * performance. 4634 */ 4635 skb_reserve(skb, 2); 4636 4637 skb_put_data(skb, dma_buf->skb->data, packet_len); 4638 } while (0); 4639 4640 skb->protocol = eth_type_trans(skb, dev); 4641 4642 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP)) 4643 csum_verified(skb); 4644 4645 /* Update receive statistics. */ 4646 dev->stats.rx_packets++; 4647 dev->stats.rx_bytes += packet_len; 4648 4649 /* Notify upper layer for received packet. */ 4650 netif_rx(skb); 4651 4652 return 0; 4653 } 4654 4655 static int dev_rcv_packets(struct dev_info *hw_priv) 4656 { 4657 int next; 4658 union desc_stat status; 4659 struct ksz_hw *hw = &hw_priv->hw; 4660 struct net_device *dev = hw->port_info[0].pdev; 4661 struct ksz_desc_info *info = &hw->rx_desc_info; 4662 int left = info->alloc; 4663 struct ksz_desc *desc; 4664 int received = 0; 4665 4666 next = info->next; 4667 while (left--) { 4668 /* Get next descriptor which is not hardware owned. */ 4669 desc = &info->ring[next]; 4670 status.data = le32_to_cpu(desc->phw->ctrl.data); 4671 if (status.rx.hw_owned) 4672 break; 4673 4674 /* Status valid only when last descriptor bit is set. */ 4675 if (status.rx.last_desc && status.rx.first_desc) { 4676 if (rx_proc(dev, hw, desc, status)) 4677 goto release_packet; 4678 received++; 4679 } 4680 4681 release_packet: 4682 release_desc(desc); 4683 next++; 4684 next &= info->mask; 4685 } 4686 info->next = next; 4687 4688 return received; 4689 } 4690 4691 static int port_rcv_packets(struct dev_info *hw_priv) 4692 { 4693 int next; 4694 union desc_stat status; 4695 struct ksz_hw *hw = &hw_priv->hw; 4696 struct net_device *dev = hw->port_info[0].pdev; 4697 struct ksz_desc_info *info = &hw->rx_desc_info; 4698 int left = info->alloc; 4699 struct ksz_desc *desc; 4700 int received = 0; 4701 4702 next = info->next; 4703 while (left--) { 4704 /* Get next descriptor which is not hardware owned. */ 4705 desc = &info->ring[next]; 4706 status.data = le32_to_cpu(desc->phw->ctrl.data); 4707 if (status.rx.hw_owned) 4708 break; 4709 4710 if (hw->dev_count > 1) { 4711 /* Get received port number. */ 4712 int p = HW_TO_DEV_PORT(status.rx.src_port); 4713 4714 dev = hw->port_info[p].pdev; 4715 if (!netif_running(dev)) 4716 goto release_packet; 4717 } 4718 4719 /* Status valid only when last descriptor bit is set. */ 4720 if (status.rx.last_desc && status.rx.first_desc) { 4721 if (rx_proc(dev, hw, desc, status)) 4722 goto release_packet; 4723 received++; 4724 } 4725 4726 release_packet: 4727 release_desc(desc); 4728 next++; 4729 next &= info->mask; 4730 } 4731 info->next = next; 4732 4733 return received; 4734 } 4735 4736 static int dev_rcv_special(struct dev_info *hw_priv) 4737 { 4738 int next; 4739 union desc_stat status; 4740 struct ksz_hw *hw = &hw_priv->hw; 4741 struct net_device *dev = hw->port_info[0].pdev; 4742 struct ksz_desc_info *info = &hw->rx_desc_info; 4743 int left = info->alloc; 4744 struct ksz_desc *desc; 4745 int received = 0; 4746 4747 next = info->next; 4748 while (left--) { 4749 /* Get next descriptor which is not hardware owned. */ 4750 desc = &info->ring[next]; 4751 status.data = le32_to_cpu(desc->phw->ctrl.data); 4752 if (status.rx.hw_owned) 4753 break; 4754 4755 if (hw->dev_count > 1) { 4756 /* Get received port number. */ 4757 int p = HW_TO_DEV_PORT(status.rx.src_port); 4758 4759 dev = hw->port_info[p].pdev; 4760 if (!netif_running(dev)) 4761 goto release_packet; 4762 } 4763 4764 /* Status valid only when last descriptor bit is set. */ 4765 if (status.rx.last_desc && status.rx.first_desc) { 4766 /* 4767 * Receive without error. With receive errors 4768 * disabled, packets with receive errors will be 4769 * dropped, so no need to check the error bit. 4770 */ 4771 if (!status.rx.error || (status.data & 4772 KS_DESC_RX_ERROR_COND) == 4773 KS_DESC_RX_ERROR_TOO_LONG) { 4774 if (rx_proc(dev, hw, desc, status)) 4775 goto release_packet; 4776 received++; 4777 } else { 4778 struct dev_priv *priv = netdev_priv(dev); 4779 4780 /* Update receive error statistics. */ 4781 priv->port.counter[OID_COUNTER_RCV_ERROR]++; 4782 } 4783 } 4784 4785 release_packet: 4786 release_desc(desc); 4787 next++; 4788 next &= info->mask; 4789 } 4790 info->next = next; 4791 4792 return received; 4793 } 4794 4795 static void rx_proc_task(struct tasklet_struct *t) 4796 { 4797 struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet); 4798 struct ksz_hw *hw = &hw_priv->hw; 4799 4800 if (!hw->enabled) 4801 return; 4802 if (unlikely(!hw_priv->dev_rcv(hw_priv))) { 4803 4804 /* In case receive process is suspended because of overrun. */ 4805 hw_resume_rx(hw); 4806 4807 /* tasklets are interruptible. */ 4808 spin_lock_irq(&hw_priv->hwlock); 4809 hw_turn_on_intr(hw, KS884X_INT_RX_MASK); 4810 spin_unlock_irq(&hw_priv->hwlock); 4811 } else { 4812 hw_ack_intr(hw, KS884X_INT_RX); 4813 tasklet_schedule(&hw_priv->rx_tasklet); 4814 } 4815 } 4816 4817 static void tx_proc_task(struct tasklet_struct *t) 4818 { 4819 struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet); 4820 struct ksz_hw *hw = &hw_priv->hw; 4821 4822 hw_ack_intr(hw, KS884X_INT_TX_MASK); 4823 4824 tx_done(hw_priv); 4825 4826 /* tasklets are interruptible. */ 4827 spin_lock_irq(&hw_priv->hwlock); 4828 hw_turn_on_intr(hw, KS884X_INT_TX); 4829 spin_unlock_irq(&hw_priv->hwlock); 4830 } 4831 4832 static inline void handle_rx_stop(struct ksz_hw *hw) 4833 { 4834 /* Receive just has been stopped. */ 4835 if (0 == hw->rx_stop) 4836 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 4837 else if (hw->rx_stop > 1) { 4838 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) { 4839 hw_start_rx(hw); 4840 } else { 4841 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 4842 hw->rx_stop = 0; 4843 } 4844 } else 4845 /* Receive just has been started. */ 4846 hw->rx_stop++; 4847 } 4848 4849 /** 4850 * netdev_intr - interrupt handling 4851 * @irq: Interrupt number. 4852 * @dev_id: Network device. 4853 * 4854 * This function is called by upper network layer to signal interrupt. 4855 * 4856 * Return IRQ_HANDLED if interrupt is handled. 4857 */ 4858 static irqreturn_t netdev_intr(int irq, void *dev_id) 4859 { 4860 uint int_enable = 0; 4861 struct net_device *dev = (struct net_device *) dev_id; 4862 struct dev_priv *priv = netdev_priv(dev); 4863 struct dev_info *hw_priv = priv->adapter; 4864 struct ksz_hw *hw = &hw_priv->hw; 4865 4866 spin_lock(&hw_priv->hwlock); 4867 4868 hw_read_intr(hw, &int_enable); 4869 4870 /* Not our interrupt! */ 4871 if (!int_enable) { 4872 spin_unlock(&hw_priv->hwlock); 4873 return IRQ_NONE; 4874 } 4875 4876 do { 4877 hw_ack_intr(hw, int_enable); 4878 int_enable &= hw->intr_mask; 4879 4880 if (unlikely(int_enable & KS884X_INT_TX_MASK)) { 4881 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK); 4882 tasklet_schedule(&hw_priv->tx_tasklet); 4883 } 4884 4885 if (likely(int_enable & KS884X_INT_RX)) { 4886 hw_dis_intr_bit(hw, KS884X_INT_RX); 4887 tasklet_schedule(&hw_priv->rx_tasklet); 4888 } 4889 4890 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) { 4891 dev->stats.rx_fifo_errors++; 4892 hw_resume_rx(hw); 4893 } 4894 4895 if (unlikely(int_enable & KS884X_INT_PHY)) { 4896 struct ksz_port *port = &priv->port; 4897 4898 hw->features |= LINK_INT_WORKING; 4899 port_get_link_speed(port); 4900 } 4901 4902 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) { 4903 handle_rx_stop(hw); 4904 break; 4905 } 4906 4907 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) { 4908 u32 data; 4909 4910 hw->intr_mask &= ~KS884X_INT_TX_STOPPED; 4911 pr_info("Tx stopped\n"); 4912 data = readl(hw->io + KS_DMA_TX_CTRL); 4913 if (!(data & DMA_TX_ENABLE)) 4914 pr_info("Tx disabled\n"); 4915 break; 4916 } 4917 } while (0); 4918 4919 hw_ena_intr(hw); 4920 4921 spin_unlock(&hw_priv->hwlock); 4922 4923 return IRQ_HANDLED; 4924 } 4925 4926 /* 4927 * Linux network device functions 4928 */ 4929 4930 4931 #ifdef CONFIG_NET_POLL_CONTROLLER 4932 static void netdev_netpoll(struct net_device *dev) 4933 { 4934 struct dev_priv *priv = netdev_priv(dev); 4935 struct dev_info *hw_priv = priv->adapter; 4936 4937 hw_dis_intr(&hw_priv->hw); 4938 netdev_intr(dev->irq, dev); 4939 } 4940 #endif 4941 4942 static void bridge_change(struct ksz_hw *hw) 4943 { 4944 int port; 4945 u8 member; 4946 struct ksz_switch *sw = hw->ksz_switch; 4947 4948 /* No ports in forwarding state. */ 4949 if (!sw->member) { 4950 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 4951 sw_block_addr(hw); 4952 } 4953 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4954 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state) 4955 member = HOST_MASK | sw->member; 4956 else 4957 member = HOST_MASK | (1 << port); 4958 if (member != sw->port_cfg[port].member) 4959 sw_cfg_port_base_vlan(hw, port, member); 4960 } 4961 } 4962 4963 /** 4964 * netdev_close - close network device 4965 * @dev: Network device. 4966 * 4967 * This function process the close operation of network device. This is caused 4968 * by the user command "ifconfig ethX down." 4969 * 4970 * Return 0 if successful; otherwise an error code indicating failure. 4971 */ 4972 static int netdev_close(struct net_device *dev) 4973 { 4974 struct dev_priv *priv = netdev_priv(dev); 4975 struct dev_info *hw_priv = priv->adapter; 4976 struct ksz_port *port = &priv->port; 4977 struct ksz_hw *hw = &hw_priv->hw; 4978 int pi; 4979 4980 netif_stop_queue(dev); 4981 4982 ksz_stop_timer(&priv->monitor_timer_info); 4983 4984 /* Need to shut the port manually in multiple device interfaces mode. */ 4985 if (hw->dev_count > 1) { 4986 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED); 4987 4988 /* Port is closed. Need to change bridge setting. */ 4989 if (hw->features & STP_SUPPORT) { 4990 pi = 1 << port->first_port; 4991 if (hw->ksz_switch->member & pi) { 4992 hw->ksz_switch->member &= ~pi; 4993 bridge_change(hw); 4994 } 4995 } 4996 } 4997 if (port->first_port > 0) 4998 hw_del_addr(hw, dev->dev_addr); 4999 if (!hw_priv->wol_enable) 5000 port_set_power_saving(port, true); 5001 5002 if (priv->multicast) 5003 --hw->all_multi; 5004 if (priv->promiscuous) 5005 --hw->promiscuous; 5006 5007 hw_priv->opened--; 5008 if (!(hw_priv->opened)) { 5009 ksz_stop_timer(&hw_priv->mib_timer_info); 5010 flush_work(&hw_priv->mib_read); 5011 5012 hw_dis_intr(hw); 5013 hw_disable(hw); 5014 hw_clr_multicast(hw); 5015 5016 /* Delay for receive task to stop scheduling itself. */ 5017 msleep(2000 / HZ); 5018 5019 tasklet_kill(&hw_priv->rx_tasklet); 5020 tasklet_kill(&hw_priv->tx_tasklet); 5021 free_irq(dev->irq, hw_priv->dev); 5022 5023 transmit_cleanup(hw_priv, 0); 5024 hw_reset_pkts(&hw->rx_desc_info); 5025 hw_reset_pkts(&hw->tx_desc_info); 5026 5027 /* Clean out static MAC table when the switch is shutdown. */ 5028 if (hw->features & STP_SUPPORT) 5029 sw_clr_sta_mac_table(hw); 5030 } 5031 5032 return 0; 5033 } 5034 5035 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw) 5036 { 5037 if (hw->ksz_switch) { 5038 u32 data; 5039 5040 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5041 if (hw->features & RX_HUGE_FRAME) 5042 data |= SWITCH_HUGE_PACKET; 5043 else 5044 data &= ~SWITCH_HUGE_PACKET; 5045 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5046 } 5047 if (hw->features & RX_HUGE_FRAME) { 5048 hw->rx_cfg |= DMA_RX_ERROR; 5049 hw_priv->dev_rcv = dev_rcv_special; 5050 } else { 5051 hw->rx_cfg &= ~DMA_RX_ERROR; 5052 if (hw->dev_count > 1) 5053 hw_priv->dev_rcv = port_rcv_packets; 5054 else 5055 hw_priv->dev_rcv = dev_rcv_packets; 5056 } 5057 } 5058 5059 static int prepare_hardware(struct net_device *dev) 5060 { 5061 struct dev_priv *priv = netdev_priv(dev); 5062 struct dev_info *hw_priv = priv->adapter; 5063 struct ksz_hw *hw = &hw_priv->hw; 5064 int rc = 0; 5065 5066 /* Remember the network device that requests interrupts. */ 5067 hw_priv->dev = dev; 5068 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev); 5069 if (rc) 5070 return rc; 5071 tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task); 5072 tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task); 5073 5074 hw->promiscuous = 0; 5075 hw->all_multi = 0; 5076 hw->multi_list_size = 0; 5077 5078 hw_reset(hw); 5079 5080 hw_set_desc_base(hw, 5081 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); 5082 hw_set_addr(hw); 5083 hw_cfg_huge_frame(hw_priv, hw); 5084 ksz_init_rx_buffers(hw_priv); 5085 return 0; 5086 } 5087 5088 static void set_media_state(struct net_device *dev, int media_state) 5089 { 5090 struct dev_priv *priv = netdev_priv(dev); 5091 5092 if (media_state == priv->media_state) 5093 netif_carrier_on(dev); 5094 else 5095 netif_carrier_off(dev); 5096 netif_info(priv, link, dev, "link %s\n", 5097 media_state == priv->media_state ? "on" : "off"); 5098 } 5099 5100 /** 5101 * netdev_open - open network device 5102 * @dev: Network device. 5103 * 5104 * This function process the open operation of network device. This is caused 5105 * by the user command "ifconfig ethX up." 5106 * 5107 * Return 0 if successful; otherwise an error code indicating failure. 5108 */ 5109 static int netdev_open(struct net_device *dev) 5110 { 5111 struct dev_priv *priv = netdev_priv(dev); 5112 struct dev_info *hw_priv = priv->adapter; 5113 struct ksz_hw *hw = &hw_priv->hw; 5114 struct ksz_port *port = &priv->port; 5115 unsigned long next_jiffies; 5116 int i; 5117 int p; 5118 int rc = 0; 5119 5120 next_jiffies = jiffies + HZ * 2; 5121 priv->multicast = 0; 5122 priv->promiscuous = 0; 5123 5124 /* Reset device statistics. */ 5125 memset(&dev->stats, 0, sizeof(struct net_device_stats)); 5126 memset((void *) port->counter, 0, 5127 (sizeof(u64) * OID_COUNTER_LAST)); 5128 5129 if (!(hw_priv->opened)) { 5130 rc = prepare_hardware(dev); 5131 if (rc) 5132 return rc; 5133 for (i = 0; i < hw->mib_port_cnt; i++) { 5134 next_jiffies += HZ * 1; 5135 hw_priv->counter[i].time = next_jiffies; 5136 hw->port_mib[i].state = media_disconnected; 5137 port_init_cnt(hw, i); 5138 } 5139 if (hw->ksz_switch) 5140 hw->port_mib[HOST_PORT].state = media_connected; 5141 else { 5142 hw_add_wol_bcast(hw); 5143 hw_cfg_wol_pme(hw, 0); 5144 hw_clr_wol_pme_status(&hw_priv->hw); 5145 } 5146 } 5147 port_set_power_saving(port, false); 5148 5149 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 5150 /* 5151 * Initialize to invalid value so that link detection 5152 * is done. 5153 */ 5154 hw->port_info[p].partner = 0xFF; 5155 hw->port_info[p].state = media_disconnected; 5156 } 5157 5158 /* Need to open the port in multiple device interfaces mode. */ 5159 if (hw->dev_count > 1) { 5160 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE); 5161 if (port->first_port > 0) 5162 hw_add_addr(hw, dev->dev_addr); 5163 } 5164 5165 port_get_link_speed(port); 5166 if (port->force_link) 5167 port_force_link_speed(port); 5168 else 5169 port_set_link_speed(port); 5170 5171 if (!(hw_priv->opened)) { 5172 hw_setup_intr(hw); 5173 hw_enable(hw); 5174 hw_ena_intr(hw); 5175 5176 if (hw->mib_port_cnt) 5177 ksz_start_timer(&hw_priv->mib_timer_info, 5178 hw_priv->mib_timer_info.period); 5179 } 5180 5181 hw_priv->opened++; 5182 5183 ksz_start_timer(&priv->monitor_timer_info, 5184 priv->monitor_timer_info.period); 5185 5186 priv->media_state = port->linked->state; 5187 5188 set_media_state(dev, media_connected); 5189 netif_start_queue(dev); 5190 5191 return 0; 5192 } 5193 5194 /* RX errors = rx_errors */ 5195 /* RX dropped = rx_dropped */ 5196 /* RX overruns = rx_fifo_errors */ 5197 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */ 5198 /* TX errors = tx_errors */ 5199 /* TX dropped = tx_dropped */ 5200 /* TX overruns = tx_fifo_errors */ 5201 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */ 5202 /* collisions = collisions */ 5203 5204 /** 5205 * netdev_query_statistics - query network device statistics 5206 * @dev: Network device. 5207 * 5208 * This function returns the statistics of the network device. The device 5209 * needs not be opened. 5210 * 5211 * Return network device statistics. 5212 */ 5213 static struct net_device_stats *netdev_query_statistics(struct net_device *dev) 5214 { 5215 struct dev_priv *priv = netdev_priv(dev); 5216 struct ksz_port *port = &priv->port; 5217 struct ksz_hw *hw = &priv->adapter->hw; 5218 struct ksz_port_mib *mib; 5219 int i; 5220 int p; 5221 5222 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR]; 5223 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR]; 5224 5225 /* Reset to zero to add count later. */ 5226 dev->stats.multicast = 0; 5227 dev->stats.collisions = 0; 5228 dev->stats.rx_length_errors = 0; 5229 dev->stats.rx_crc_errors = 0; 5230 dev->stats.rx_frame_errors = 0; 5231 dev->stats.tx_window_errors = 0; 5232 5233 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 5234 mib = &hw->port_mib[p]; 5235 5236 dev->stats.multicast += (unsigned long) 5237 mib->counter[MIB_COUNTER_RX_MULTICAST]; 5238 5239 dev->stats.collisions += (unsigned long) 5240 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION]; 5241 5242 dev->stats.rx_length_errors += (unsigned long)( 5243 mib->counter[MIB_COUNTER_RX_UNDERSIZE] + 5244 mib->counter[MIB_COUNTER_RX_FRAGMENT] + 5245 mib->counter[MIB_COUNTER_RX_OVERSIZE] + 5246 mib->counter[MIB_COUNTER_RX_JABBER]); 5247 dev->stats.rx_crc_errors += (unsigned long) 5248 mib->counter[MIB_COUNTER_RX_CRC_ERR]; 5249 dev->stats.rx_frame_errors += (unsigned long)( 5250 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] + 5251 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]); 5252 5253 dev->stats.tx_window_errors += (unsigned long) 5254 mib->counter[MIB_COUNTER_TX_LATE_COLLISION]; 5255 } 5256 5257 return &dev->stats; 5258 } 5259 5260 /** 5261 * netdev_set_mac_address - set network device MAC address 5262 * @dev: Network device. 5263 * @addr: Buffer of MAC address. 5264 * 5265 * This function is used to set the MAC address of the network device. 5266 * 5267 * Return 0 to indicate success. 5268 */ 5269 static int netdev_set_mac_address(struct net_device *dev, void *addr) 5270 { 5271 struct dev_priv *priv = netdev_priv(dev); 5272 struct dev_info *hw_priv = priv->adapter; 5273 struct ksz_hw *hw = &hw_priv->hw; 5274 struct sockaddr *mac = addr; 5275 uint interrupt; 5276 5277 if (priv->port.first_port > 0) 5278 hw_del_addr(hw, dev->dev_addr); 5279 else { 5280 hw->mac_override = 1; 5281 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN); 5282 } 5283 5284 eth_hw_addr_set(dev, mac->sa_data); 5285 5286 interrupt = hw_block_intr(hw); 5287 5288 if (priv->port.first_port > 0) 5289 hw_add_addr(hw, dev->dev_addr); 5290 else 5291 hw_set_addr(hw); 5292 hw_restore_intr(hw, interrupt); 5293 5294 return 0; 5295 } 5296 5297 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv, 5298 struct ksz_hw *hw, int promiscuous) 5299 { 5300 if (promiscuous != priv->promiscuous) { 5301 u8 prev_state = hw->promiscuous; 5302 5303 if (promiscuous) 5304 ++hw->promiscuous; 5305 else 5306 --hw->promiscuous; 5307 priv->promiscuous = promiscuous; 5308 5309 /* Turn on/off promiscuous mode. */ 5310 if (hw->promiscuous <= 1 && prev_state <= 1) 5311 hw_set_promiscuous(hw, hw->promiscuous); 5312 5313 /* 5314 * Port is not in promiscuous mode, meaning it is released 5315 * from the bridge. 5316 */ 5317 if ((hw->features & STP_SUPPORT) && !promiscuous && 5318 netif_is_bridge_port(dev)) { 5319 struct ksz_switch *sw = hw->ksz_switch; 5320 int port = priv->port.first_port; 5321 5322 port_set_stp_state(hw, port, STP_STATE_DISABLED); 5323 port = 1 << port; 5324 if (sw->member & port) { 5325 sw->member &= ~port; 5326 bridge_change(hw); 5327 } 5328 } 5329 } 5330 } 5331 5332 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw, 5333 int multicast) 5334 { 5335 if (multicast != priv->multicast) { 5336 u8 all_multi = hw->all_multi; 5337 5338 if (multicast) 5339 ++hw->all_multi; 5340 else 5341 --hw->all_multi; 5342 priv->multicast = multicast; 5343 5344 /* Turn on/off all multicast mode. */ 5345 if (hw->all_multi <= 1 && all_multi <= 1) 5346 hw_set_multicast(hw, hw->all_multi); 5347 } 5348 } 5349 5350 /** 5351 * netdev_set_rx_mode 5352 * @dev: Network device. 5353 * 5354 * This routine is used to set multicast addresses or put the network device 5355 * into promiscuous mode. 5356 */ 5357 static void netdev_set_rx_mode(struct net_device *dev) 5358 { 5359 struct dev_priv *priv = netdev_priv(dev); 5360 struct dev_info *hw_priv = priv->adapter; 5361 struct ksz_hw *hw = &hw_priv->hw; 5362 struct netdev_hw_addr *ha; 5363 int multicast = (dev->flags & IFF_ALLMULTI); 5364 5365 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC)); 5366 5367 if (hw_priv->hw.dev_count > 1) 5368 multicast |= (dev->flags & IFF_MULTICAST); 5369 dev_set_multicast(priv, hw, multicast); 5370 5371 /* Cannot use different hashes in multiple device interfaces mode. */ 5372 if (hw_priv->hw.dev_count > 1) 5373 return; 5374 5375 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { 5376 int i = 0; 5377 5378 /* List too big to support so turn on all multicast mode. */ 5379 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) { 5380 if (MAX_MULTICAST_LIST != hw->multi_list_size) { 5381 hw->multi_list_size = MAX_MULTICAST_LIST; 5382 ++hw->all_multi; 5383 hw_set_multicast(hw, hw->all_multi); 5384 } 5385 return; 5386 } 5387 5388 netdev_for_each_mc_addr(ha, dev) { 5389 if (i >= MAX_MULTICAST_LIST) 5390 break; 5391 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN); 5392 } 5393 hw->multi_list_size = (u8) i; 5394 hw_set_grp_addr(hw); 5395 } else { 5396 if (MAX_MULTICAST_LIST == hw->multi_list_size) { 5397 --hw->all_multi; 5398 hw_set_multicast(hw, hw->all_multi); 5399 } 5400 hw->multi_list_size = 0; 5401 hw_clr_multicast(hw); 5402 } 5403 } 5404 5405 static int netdev_change_mtu(struct net_device *dev, int new_mtu) 5406 { 5407 struct dev_priv *priv = netdev_priv(dev); 5408 struct dev_info *hw_priv = priv->adapter; 5409 struct ksz_hw *hw = &hw_priv->hw; 5410 int hw_mtu; 5411 5412 if (netif_running(dev)) 5413 return -EBUSY; 5414 5415 /* Cannot use different MTU in multiple device interfaces mode. */ 5416 if (hw->dev_count > 1) 5417 if (dev != hw_priv->dev) 5418 return 0; 5419 5420 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4; 5421 if (hw_mtu > REGULAR_RX_BUF_SIZE) { 5422 hw->features |= RX_HUGE_FRAME; 5423 hw_mtu = MAX_RX_BUF_SIZE; 5424 } else { 5425 hw->features &= ~RX_HUGE_FRAME; 5426 hw_mtu = REGULAR_RX_BUF_SIZE; 5427 } 5428 hw_mtu = (hw_mtu + 3) & ~3; 5429 hw_priv->mtu = hw_mtu; 5430 WRITE_ONCE(dev->mtu, new_mtu); 5431 5432 return 0; 5433 } 5434 5435 /** 5436 * netdev_ioctl - I/O control processing 5437 * @dev: Network device. 5438 * @ifr: Interface request structure. 5439 * @cmd: I/O control code. 5440 * 5441 * This function is used to process I/O control calls. 5442 * 5443 * Return 0 to indicate success. 5444 */ 5445 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 5446 { 5447 struct dev_priv *priv = netdev_priv(dev); 5448 struct dev_info *hw_priv = priv->adapter; 5449 struct ksz_hw *hw = &hw_priv->hw; 5450 struct ksz_port *port = &priv->port; 5451 int result = 0; 5452 struct mii_ioctl_data *data = if_mii(ifr); 5453 5454 if (down_interruptible(&priv->proc_sem)) 5455 return -ERESTARTSYS; 5456 5457 switch (cmd) { 5458 /* Get address of MII PHY in use. */ 5459 case SIOCGMIIPHY: 5460 data->phy_id = priv->id; 5461 fallthrough; 5462 5463 /* Read MII PHY register. */ 5464 case SIOCGMIIREG: 5465 if (data->phy_id != priv->id || data->reg_num >= 6) 5466 result = -EIO; 5467 else 5468 hw_r_phy(hw, port->linked->port_id, data->reg_num, 5469 &data->val_out); 5470 break; 5471 5472 /* Write MII PHY register. */ 5473 case SIOCSMIIREG: 5474 if (!capable(CAP_NET_ADMIN)) 5475 result = -EPERM; 5476 else if (data->phy_id != priv->id || data->reg_num >= 6) 5477 result = -EIO; 5478 else 5479 hw_w_phy(hw, port->linked->port_id, data->reg_num, 5480 data->val_in); 5481 break; 5482 5483 default: 5484 result = -EOPNOTSUPP; 5485 } 5486 5487 up(&priv->proc_sem); 5488 5489 return result; 5490 } 5491 5492 /* 5493 * MII support 5494 */ 5495 5496 /** 5497 * mdio_read - read PHY register 5498 * @dev: Network device. 5499 * @phy_id: The PHY id. 5500 * @reg_num: The register number. 5501 * 5502 * This function returns the PHY register value. 5503 * 5504 * Return the register value. 5505 */ 5506 static int mdio_read(struct net_device *dev, int phy_id, int reg_num) 5507 { 5508 struct dev_priv *priv = netdev_priv(dev); 5509 struct ksz_port *port = &priv->port; 5510 struct ksz_hw *hw = port->hw; 5511 u16 val_out; 5512 5513 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out); 5514 return val_out; 5515 } 5516 5517 /** 5518 * mdio_write - set PHY register 5519 * @dev: Network device. 5520 * @phy_id: The PHY id. 5521 * @reg_num: The register number. 5522 * @val: The register value. 5523 * 5524 * This procedure sets the PHY register value. 5525 */ 5526 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) 5527 { 5528 struct dev_priv *priv = netdev_priv(dev); 5529 struct ksz_port *port = &priv->port; 5530 struct ksz_hw *hw = port->hw; 5531 int i; 5532 int pi; 5533 5534 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++) 5535 hw_w_phy(hw, pi, reg_num << 1, val); 5536 } 5537 5538 /* 5539 * ethtool support 5540 */ 5541 5542 #define EEPROM_SIZE 0x40 5543 5544 static u16 eeprom_data[EEPROM_SIZE] = { 0 }; 5545 5546 #define ADVERTISED_ALL \ 5547 (ADVERTISED_10baseT_Half | \ 5548 ADVERTISED_10baseT_Full | \ 5549 ADVERTISED_100baseT_Half | \ 5550 ADVERTISED_100baseT_Full) 5551 5552 /* These functions use the MII functions in mii.c. */ 5553 5554 /** 5555 * netdev_get_link_ksettings - get network device settings 5556 * @dev: Network device. 5557 * @cmd: Ethtool command. 5558 * 5559 * This function queries the PHY and returns its state in the ethtool command. 5560 * 5561 * Return 0 if successful; otherwise an error code. 5562 */ 5563 static int netdev_get_link_ksettings(struct net_device *dev, 5564 struct ethtool_link_ksettings *cmd) 5565 { 5566 struct dev_priv *priv = netdev_priv(dev); 5567 struct dev_info *hw_priv = priv->adapter; 5568 5569 mutex_lock(&hw_priv->lock); 5570 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd); 5571 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP); 5572 mutex_unlock(&hw_priv->lock); 5573 5574 /* Save advertised settings for workaround in next function. */ 5575 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising, 5576 cmd->link_modes.advertising); 5577 5578 return 0; 5579 } 5580 5581 /** 5582 * netdev_set_link_ksettings - set network device settings 5583 * @dev: Network device. 5584 * @cmd: Ethtool command. 5585 * 5586 * This function sets the PHY according to the ethtool command. 5587 * 5588 * Return 0 if successful; otherwise an error code. 5589 */ 5590 static int netdev_set_link_ksettings(struct net_device *dev, 5591 const struct ethtool_link_ksettings *cmd) 5592 { 5593 struct dev_priv *priv = netdev_priv(dev); 5594 struct dev_info *hw_priv = priv->adapter; 5595 struct ksz_port *port = &priv->port; 5596 struct ethtool_link_ksettings copy_cmd; 5597 u32 speed = cmd->base.speed; 5598 u32 advertising; 5599 int rc; 5600 5601 ethtool_convert_link_mode_to_legacy_u32(&advertising, 5602 cmd->link_modes.advertising); 5603 5604 /* 5605 * ethtool utility does not change advertised setting if auto 5606 * negotiation is not specified explicitly. 5607 */ 5608 if (cmd->base.autoneg && priv->advertising == advertising) { 5609 advertising |= ADVERTISED_ALL; 5610 if (10 == speed) 5611 advertising &= 5612 ~(ADVERTISED_100baseT_Full | 5613 ADVERTISED_100baseT_Half); 5614 else if (100 == speed) 5615 advertising &= 5616 ~(ADVERTISED_10baseT_Full | 5617 ADVERTISED_10baseT_Half); 5618 if (0 == cmd->base.duplex) 5619 advertising &= 5620 ~(ADVERTISED_100baseT_Full | 5621 ADVERTISED_10baseT_Full); 5622 else if (1 == cmd->base.duplex) 5623 advertising &= 5624 ~(ADVERTISED_100baseT_Half | 5625 ADVERTISED_10baseT_Half); 5626 } 5627 mutex_lock(&hw_priv->lock); 5628 if (cmd->base.autoneg && 5629 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) { 5630 port->duplex = 0; 5631 port->speed = 0; 5632 port->force_link = 0; 5633 } else { 5634 port->duplex = cmd->base.duplex + 1; 5635 if (1000 != speed) 5636 port->speed = speed; 5637 if (cmd->base.autoneg) 5638 port->force_link = 0; 5639 else 5640 port->force_link = 1; 5641 } 5642 5643 memcpy(©_cmd, cmd, sizeof(copy_cmd)); 5644 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising, 5645 advertising); 5646 rc = mii_ethtool_set_link_ksettings( 5647 &priv->mii_if, 5648 (const struct ethtool_link_ksettings *)©_cmd); 5649 mutex_unlock(&hw_priv->lock); 5650 return rc; 5651 } 5652 5653 /** 5654 * netdev_nway_reset - restart auto-negotiation 5655 * @dev: Network device. 5656 * 5657 * This function restarts the PHY for auto-negotiation. 5658 * 5659 * Return 0 if successful; otherwise an error code. 5660 */ 5661 static int netdev_nway_reset(struct net_device *dev) 5662 { 5663 struct dev_priv *priv = netdev_priv(dev); 5664 struct dev_info *hw_priv = priv->adapter; 5665 int rc; 5666 5667 mutex_lock(&hw_priv->lock); 5668 rc = mii_nway_restart(&priv->mii_if); 5669 mutex_unlock(&hw_priv->lock); 5670 return rc; 5671 } 5672 5673 /** 5674 * netdev_get_link - get network device link status 5675 * @dev: Network device. 5676 * 5677 * This function gets the link status from the PHY. 5678 * 5679 * Return true if PHY is linked and false otherwise. 5680 */ 5681 static u32 netdev_get_link(struct net_device *dev) 5682 { 5683 struct dev_priv *priv = netdev_priv(dev); 5684 int rc; 5685 5686 rc = mii_link_ok(&priv->mii_if); 5687 return rc; 5688 } 5689 5690 /** 5691 * netdev_get_drvinfo - get network driver information 5692 * @dev: Network device. 5693 * @info: Ethtool driver info data structure. 5694 * 5695 * This procedure returns the driver information. 5696 */ 5697 static void netdev_get_drvinfo(struct net_device *dev, 5698 struct ethtool_drvinfo *info) 5699 { 5700 struct dev_priv *priv = netdev_priv(dev); 5701 struct dev_info *hw_priv = priv->adapter; 5702 5703 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 5704 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 5705 strscpy(info->bus_info, pci_name(hw_priv->pdev), 5706 sizeof(info->bus_info)); 5707 } 5708 5709 static struct hw_regs { 5710 int start; 5711 int end; 5712 } hw_regs_range[] = { 5713 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS }, 5714 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI }, 5715 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET }, 5716 { KS884X_SIDER_P, KS8842_SGCR7_P }, 5717 { KS8842_MACAR1_P, KS8842_TOSR8_P }, 5718 { KS884X_P1MBCR_P, KS8842_P3ERCR_P }, 5719 { 0, 0 } 5720 }; 5721 5722 /** 5723 * netdev_get_regs_len - get length of register dump 5724 * @dev: Network device. 5725 * 5726 * This function returns the length of the register dump. 5727 * 5728 * Return length of the register dump. 5729 */ 5730 static int netdev_get_regs_len(struct net_device *dev) 5731 { 5732 struct hw_regs *range = hw_regs_range; 5733 int regs_len = 0x10 * sizeof(u32); 5734 5735 while (range->end > range->start) { 5736 regs_len += (range->end - range->start + 3) / 4 * 4; 5737 range++; 5738 } 5739 return regs_len; 5740 } 5741 5742 /** 5743 * netdev_get_regs - get register dump 5744 * @dev: Network device. 5745 * @regs: Ethtool registers data structure. 5746 * @ptr: Buffer to store the register values. 5747 * 5748 * This procedure dumps the register values in the provided buffer. 5749 */ 5750 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs, 5751 void *ptr) 5752 { 5753 struct dev_priv *priv = netdev_priv(dev); 5754 struct dev_info *hw_priv = priv->adapter; 5755 struct ksz_hw *hw = &hw_priv->hw; 5756 int *buf = (int *) ptr; 5757 struct hw_regs *range = hw_regs_range; 5758 int len; 5759 5760 mutex_lock(&hw_priv->lock); 5761 regs->version = 0; 5762 for (len = 0; len < 0x40; len += 4) { 5763 pci_read_config_dword(hw_priv->pdev, len, buf); 5764 buf++; 5765 } 5766 while (range->end > range->start) { 5767 for (len = range->start; len < range->end; len += 4) { 5768 *buf = readl(hw->io + len); 5769 buf++; 5770 } 5771 range++; 5772 } 5773 mutex_unlock(&hw_priv->lock); 5774 } 5775 5776 #define WOL_SUPPORT \ 5777 (WAKE_PHY | WAKE_MAGIC | \ 5778 WAKE_UCAST | WAKE_MCAST | \ 5779 WAKE_BCAST | WAKE_ARP) 5780 5781 /** 5782 * netdev_get_wol - get Wake-on-LAN support 5783 * @dev: Network device. 5784 * @wol: Ethtool Wake-on-LAN data structure. 5785 * 5786 * This procedure returns Wake-on-LAN support. 5787 */ 5788 static void netdev_get_wol(struct net_device *dev, 5789 struct ethtool_wolinfo *wol) 5790 { 5791 struct dev_priv *priv = netdev_priv(dev); 5792 struct dev_info *hw_priv = priv->adapter; 5793 5794 wol->supported = hw_priv->wol_support; 5795 wol->wolopts = hw_priv->wol_enable; 5796 memset(&wol->sopass, 0, sizeof(wol->sopass)); 5797 } 5798 5799 /** 5800 * netdev_set_wol - set Wake-on-LAN support 5801 * @dev: Network device. 5802 * @wol: Ethtool Wake-on-LAN data structure. 5803 * 5804 * This function sets Wake-on-LAN support. 5805 * 5806 * Return 0 if successful; otherwise an error code. 5807 */ 5808 static int netdev_set_wol(struct net_device *dev, 5809 struct ethtool_wolinfo *wol) 5810 { 5811 struct dev_priv *priv = netdev_priv(dev); 5812 struct dev_info *hw_priv = priv->adapter; 5813 5814 /* Need to find a way to retrieve the device IP address. */ 5815 static const u8 net_addr[] = { 192, 168, 1, 1 }; 5816 5817 if (wol->wolopts & ~hw_priv->wol_support) 5818 return -EINVAL; 5819 5820 hw_priv->wol_enable = wol->wolopts; 5821 5822 /* Link wakeup cannot really be disabled. */ 5823 if (wol->wolopts) 5824 hw_priv->wol_enable |= WAKE_PHY; 5825 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr); 5826 return 0; 5827 } 5828 5829 /** 5830 * netdev_get_msglevel - get debug message level 5831 * @dev: Network device. 5832 * 5833 * This function returns current debug message level. 5834 * 5835 * Return current debug message flags. 5836 */ 5837 static u32 netdev_get_msglevel(struct net_device *dev) 5838 { 5839 struct dev_priv *priv = netdev_priv(dev); 5840 5841 return priv->msg_enable; 5842 } 5843 5844 /** 5845 * netdev_set_msglevel - set debug message level 5846 * @dev: Network device. 5847 * @value: Debug message flags. 5848 * 5849 * This procedure sets debug message level. 5850 */ 5851 static void netdev_set_msglevel(struct net_device *dev, u32 value) 5852 { 5853 struct dev_priv *priv = netdev_priv(dev); 5854 5855 priv->msg_enable = value; 5856 } 5857 5858 /** 5859 * netdev_get_eeprom_len - get EEPROM length 5860 * @dev: Network device. 5861 * 5862 * This function returns the length of the EEPROM. 5863 * 5864 * Return length of the EEPROM. 5865 */ 5866 static int netdev_get_eeprom_len(struct net_device *dev) 5867 { 5868 return EEPROM_SIZE * 2; 5869 } 5870 5871 #define EEPROM_MAGIC 0x10A18842 5872 5873 /** 5874 * netdev_get_eeprom - get EEPROM data 5875 * @dev: Network device. 5876 * @eeprom: Ethtool EEPROM data structure. 5877 * @data: Buffer to store the EEPROM data. 5878 * 5879 * This function dumps the EEPROM data in the provided buffer. 5880 * 5881 * Return 0 if successful; otherwise an error code. 5882 */ 5883 static int netdev_get_eeprom(struct net_device *dev, 5884 struct ethtool_eeprom *eeprom, u8 *data) 5885 { 5886 struct dev_priv *priv = netdev_priv(dev); 5887 struct dev_info *hw_priv = priv->adapter; 5888 u8 *eeprom_byte = (u8 *) eeprom_data; 5889 int i; 5890 int len; 5891 5892 len = (eeprom->offset + eeprom->len + 1) / 2; 5893 for (i = eeprom->offset / 2; i < len; i++) 5894 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 5895 eeprom->magic = EEPROM_MAGIC; 5896 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len); 5897 5898 return 0; 5899 } 5900 5901 /** 5902 * netdev_set_eeprom - write EEPROM data 5903 * @dev: Network device. 5904 * @eeprom: Ethtool EEPROM data structure. 5905 * @data: Data buffer. 5906 * 5907 * This function modifies the EEPROM data one byte at a time. 5908 * 5909 * Return 0 if successful; otherwise an error code. 5910 */ 5911 static int netdev_set_eeprom(struct net_device *dev, 5912 struct ethtool_eeprom *eeprom, u8 *data) 5913 { 5914 struct dev_priv *priv = netdev_priv(dev); 5915 struct dev_info *hw_priv = priv->adapter; 5916 u16 eeprom_word[EEPROM_SIZE]; 5917 u8 *eeprom_byte = (u8 *) eeprom_word; 5918 int i; 5919 int len; 5920 5921 if (eeprom->magic != EEPROM_MAGIC) 5922 return -EINVAL; 5923 5924 len = (eeprom->offset + eeprom->len + 1) / 2; 5925 for (i = eeprom->offset / 2; i < len; i++) 5926 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 5927 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2); 5928 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len); 5929 for (i = 0; i < EEPROM_SIZE; i++) 5930 if (eeprom_word[i] != eeprom_data[i]) { 5931 eeprom_data[i] = eeprom_word[i]; 5932 eeprom_write(&hw_priv->hw, i, eeprom_data[i]); 5933 } 5934 5935 return 0; 5936 } 5937 5938 /** 5939 * netdev_get_pauseparam - get flow control parameters 5940 * @dev: Network device. 5941 * @pause: Ethtool PAUSE settings data structure. 5942 * 5943 * This procedure returns the PAUSE control flow settings. 5944 */ 5945 static void netdev_get_pauseparam(struct net_device *dev, 5946 struct ethtool_pauseparam *pause) 5947 { 5948 struct dev_priv *priv = netdev_priv(dev); 5949 struct dev_info *hw_priv = priv->adapter; 5950 struct ksz_hw *hw = &hw_priv->hw; 5951 5952 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1; 5953 if (!hw->ksz_switch) { 5954 pause->rx_pause = 5955 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0; 5956 pause->tx_pause = 5957 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0; 5958 } else { 5959 pause->rx_pause = 5960 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 5961 SWITCH_RX_FLOW_CTRL)) ? 1 : 0; 5962 pause->tx_pause = 5963 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 5964 SWITCH_TX_FLOW_CTRL)) ? 1 : 0; 5965 } 5966 } 5967 5968 /** 5969 * netdev_set_pauseparam - set flow control parameters 5970 * @dev: Network device. 5971 * @pause: Ethtool PAUSE settings data structure. 5972 * 5973 * This function sets the PAUSE control flow settings. 5974 * Not implemented yet. 5975 * 5976 * Return 0 if successful; otherwise an error code. 5977 */ 5978 static int netdev_set_pauseparam(struct net_device *dev, 5979 struct ethtool_pauseparam *pause) 5980 { 5981 struct dev_priv *priv = netdev_priv(dev); 5982 struct dev_info *hw_priv = priv->adapter; 5983 struct ksz_hw *hw = &hw_priv->hw; 5984 struct ksz_port *port = &priv->port; 5985 5986 mutex_lock(&hw_priv->lock); 5987 if (pause->autoneg) { 5988 if (!pause->rx_pause && !pause->tx_pause) 5989 port->flow_ctrl = PHY_NO_FLOW_CTRL; 5990 else 5991 port->flow_ctrl = PHY_FLOW_CTRL; 5992 hw->overrides &= ~PAUSE_FLOW_CTRL; 5993 port->force_link = 0; 5994 if (hw->ksz_switch) { 5995 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 5996 SWITCH_RX_FLOW_CTRL, 1); 5997 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 5998 SWITCH_TX_FLOW_CTRL, 1); 5999 } 6000 port_set_link_speed(port); 6001 } else { 6002 hw->overrides |= PAUSE_FLOW_CTRL; 6003 if (hw->ksz_switch) { 6004 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6005 SWITCH_RX_FLOW_CTRL, pause->rx_pause); 6006 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6007 SWITCH_TX_FLOW_CTRL, pause->tx_pause); 6008 } else 6009 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause); 6010 } 6011 mutex_unlock(&hw_priv->lock); 6012 6013 return 0; 6014 } 6015 6016 /** 6017 * netdev_get_ringparam - get tx/rx ring parameters 6018 * @dev: Network device. 6019 * @ring: Ethtool RING settings data structure. 6020 * @kernel_ring: Ethtool external RING settings data structure. 6021 * @extack: Netlink handle. 6022 * 6023 * This procedure returns the TX/RX ring settings. 6024 */ 6025 static void netdev_get_ringparam(struct net_device *dev, 6026 struct ethtool_ringparam *ring, 6027 struct kernel_ethtool_ringparam *kernel_ring, 6028 struct netlink_ext_ack *extack) 6029 { 6030 struct dev_priv *priv = netdev_priv(dev); 6031 struct dev_info *hw_priv = priv->adapter; 6032 struct ksz_hw *hw = &hw_priv->hw; 6033 6034 ring->tx_max_pending = (1 << 9); 6035 ring->tx_pending = hw->tx_desc_info.alloc; 6036 ring->rx_max_pending = (1 << 9); 6037 ring->rx_pending = hw->rx_desc_info.alloc; 6038 } 6039 6040 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM) 6041 6042 static struct { 6043 char string[ETH_GSTRING_LEN]; 6044 } ethtool_stats_keys[STATS_LEN] = { 6045 { "rx_lo_priority_octets" }, 6046 { "rx_hi_priority_octets" }, 6047 { "rx_undersize_packets" }, 6048 { "rx_fragments" }, 6049 { "rx_oversize_packets" }, 6050 { "rx_jabbers" }, 6051 { "rx_symbol_errors" }, 6052 { "rx_crc_errors" }, 6053 { "rx_align_errors" }, 6054 { "rx_mac_ctrl_packets" }, 6055 { "rx_pause_packets" }, 6056 { "rx_bcast_packets" }, 6057 { "rx_mcast_packets" }, 6058 { "rx_ucast_packets" }, 6059 { "rx_64_or_less_octet_packets" }, 6060 { "rx_65_to_127_octet_packets" }, 6061 { "rx_128_to_255_octet_packets" }, 6062 { "rx_256_to_511_octet_packets" }, 6063 { "rx_512_to_1023_octet_packets" }, 6064 { "rx_1024_to_1522_octet_packets" }, 6065 6066 { "tx_lo_priority_octets" }, 6067 { "tx_hi_priority_octets" }, 6068 { "tx_late_collisions" }, 6069 { "tx_pause_packets" }, 6070 { "tx_bcast_packets" }, 6071 { "tx_mcast_packets" }, 6072 { "tx_ucast_packets" }, 6073 { "tx_deferred" }, 6074 { "tx_total_collisions" }, 6075 { "tx_excessive_collisions" }, 6076 { "tx_single_collisions" }, 6077 { "tx_mult_collisions" }, 6078 6079 { "rx_discards" }, 6080 { "tx_discards" }, 6081 }; 6082 6083 /** 6084 * netdev_get_strings - get statistics identity strings 6085 * @dev: Network device. 6086 * @stringset: String set identifier. 6087 * @buf: Buffer to store the strings. 6088 * 6089 * This procedure returns the strings used to identify the statistics. 6090 */ 6091 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 6092 { 6093 struct dev_priv *priv = netdev_priv(dev); 6094 struct dev_info *hw_priv = priv->adapter; 6095 struct ksz_hw *hw = &hw_priv->hw; 6096 6097 if (ETH_SS_STATS == stringset) 6098 memcpy(buf, ðtool_stats_keys, 6099 ETH_GSTRING_LEN * hw->mib_cnt); 6100 } 6101 6102 /** 6103 * netdev_get_sset_count - get statistics size 6104 * @dev: Network device. 6105 * @sset: The statistics set number. 6106 * 6107 * This function returns the size of the statistics to be reported. 6108 * 6109 * Return size of the statistics to be reported. 6110 */ 6111 static int netdev_get_sset_count(struct net_device *dev, int sset) 6112 { 6113 struct dev_priv *priv = netdev_priv(dev); 6114 struct dev_info *hw_priv = priv->adapter; 6115 struct ksz_hw *hw = &hw_priv->hw; 6116 6117 switch (sset) { 6118 case ETH_SS_STATS: 6119 return hw->mib_cnt; 6120 default: 6121 return -EOPNOTSUPP; 6122 } 6123 } 6124 6125 /** 6126 * netdev_get_ethtool_stats - get network device statistics 6127 * @dev: Network device. 6128 * @stats: Ethtool statistics data structure. 6129 * @data: Buffer to store the statistics. 6130 * 6131 * This procedure returns the statistics. 6132 */ 6133 static void netdev_get_ethtool_stats(struct net_device *dev, 6134 struct ethtool_stats *stats, u64 *data) 6135 { 6136 struct dev_priv *priv = netdev_priv(dev); 6137 struct dev_info *hw_priv = priv->adapter; 6138 struct ksz_hw *hw = &hw_priv->hw; 6139 struct ksz_port *port = &priv->port; 6140 int n_stats = stats->n_stats; 6141 int i; 6142 int n; 6143 int p; 6144 u64 counter[TOTAL_PORT_COUNTER_NUM]; 6145 6146 mutex_lock(&hw_priv->lock); 6147 n = SWITCH_PORT_NUM; 6148 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 6149 if (media_connected == hw->port_mib[p].state) { 6150 hw_priv->counter[p].read = 1; 6151 6152 /* Remember first port that requests read. */ 6153 if (n == SWITCH_PORT_NUM) 6154 n = p; 6155 } 6156 } 6157 mutex_unlock(&hw_priv->lock); 6158 6159 if (n < SWITCH_PORT_NUM) 6160 schedule_work(&hw_priv->mib_read); 6161 6162 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) { 6163 p = n; 6164 wait_event_interruptible_timeout( 6165 hw_priv->counter[p].counter, 6166 2 == hw_priv->counter[p].read, 6167 HZ * 1); 6168 } else 6169 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) { 6170 if (0 == i) { 6171 wait_event_interruptible_timeout( 6172 hw_priv->counter[p].counter, 6173 2 == hw_priv->counter[p].read, 6174 HZ * 2); 6175 } else if (hw->port_mib[p].cnt_ptr) { 6176 wait_event_interruptible_timeout( 6177 hw_priv->counter[p].counter, 6178 2 == hw_priv->counter[p].read, 6179 HZ * 1); 6180 } 6181 } 6182 6183 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter); 6184 n = hw->mib_cnt; 6185 if (n > n_stats) 6186 n = n_stats; 6187 n_stats -= n; 6188 for (i = 0; i < n; i++) 6189 *data++ = counter[i]; 6190 } 6191 6192 /** 6193 * netdev_set_features - set receive checksum support 6194 * @dev: Network device. 6195 * @features: New device features (offloads). 6196 * 6197 * This function sets receive checksum support setting. 6198 * 6199 * Return 0 if successful; otherwise an error code. 6200 */ 6201 static int netdev_set_features(struct net_device *dev, 6202 netdev_features_t features) 6203 { 6204 struct dev_priv *priv = netdev_priv(dev); 6205 struct dev_info *hw_priv = priv->adapter; 6206 struct ksz_hw *hw = &hw_priv->hw; 6207 6208 mutex_lock(&hw_priv->lock); 6209 6210 /* see note in hw_setup() */ 6211 if (features & NETIF_F_RXCSUM) 6212 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP; 6213 else 6214 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 6215 6216 if (hw->enabled) 6217 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 6218 6219 mutex_unlock(&hw_priv->lock); 6220 6221 return 0; 6222 } 6223 6224 static const struct ethtool_ops netdev_ethtool_ops = { 6225 .nway_reset = netdev_nway_reset, 6226 .get_link = netdev_get_link, 6227 .get_drvinfo = netdev_get_drvinfo, 6228 .get_regs_len = netdev_get_regs_len, 6229 .get_regs = netdev_get_regs, 6230 .get_wol = netdev_get_wol, 6231 .set_wol = netdev_set_wol, 6232 .get_msglevel = netdev_get_msglevel, 6233 .set_msglevel = netdev_set_msglevel, 6234 .get_eeprom_len = netdev_get_eeprom_len, 6235 .get_eeprom = netdev_get_eeprom, 6236 .set_eeprom = netdev_set_eeprom, 6237 .get_pauseparam = netdev_get_pauseparam, 6238 .set_pauseparam = netdev_set_pauseparam, 6239 .get_ringparam = netdev_get_ringparam, 6240 .get_strings = netdev_get_strings, 6241 .get_sset_count = netdev_get_sset_count, 6242 .get_ethtool_stats = netdev_get_ethtool_stats, 6243 .get_link_ksettings = netdev_get_link_ksettings, 6244 .set_link_ksettings = netdev_set_link_ksettings, 6245 }; 6246 6247 /* 6248 * Hardware monitoring 6249 */ 6250 6251 static void update_link(struct net_device *dev, struct dev_priv *priv, 6252 struct ksz_port *port) 6253 { 6254 if (priv->media_state != port->linked->state) { 6255 priv->media_state = port->linked->state; 6256 if (netif_running(dev)) 6257 set_media_state(dev, media_connected); 6258 } 6259 } 6260 6261 static void mib_read_work(struct work_struct *work) 6262 { 6263 struct dev_info *hw_priv = 6264 container_of(work, struct dev_info, mib_read); 6265 struct ksz_hw *hw = &hw_priv->hw; 6266 unsigned long next_jiffies; 6267 struct ksz_port_mib *mib; 6268 int i; 6269 6270 next_jiffies = jiffies; 6271 for (i = 0; i < hw->mib_port_cnt; i++) { 6272 mib = &hw->port_mib[i]; 6273 6274 /* Reading MIB counters or requested to read. */ 6275 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) { 6276 6277 /* Need to process receive interrupt. */ 6278 if (port_r_cnt(hw, i)) 6279 break; 6280 hw_priv->counter[i].read = 0; 6281 6282 /* Finish reading counters. */ 6283 if (0 == mib->cnt_ptr) { 6284 hw_priv->counter[i].read = 2; 6285 wake_up_interruptible( 6286 &hw_priv->counter[i].counter); 6287 } 6288 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) { 6289 /* Only read MIB counters when the port is connected. */ 6290 if (media_connected == mib->state) 6291 hw_priv->counter[i].read = 1; 6292 next_jiffies += HZ * 1 * hw->mib_port_cnt; 6293 hw_priv->counter[i].time = next_jiffies; 6294 6295 /* Port is just disconnected. */ 6296 } else if (mib->link_down) { 6297 mib->link_down = 0; 6298 6299 /* Read counters one last time after link is lost. */ 6300 hw_priv->counter[i].read = 1; 6301 } 6302 } 6303 } 6304 6305 static void mib_monitor(struct timer_list *t) 6306 { 6307 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer); 6308 6309 mib_read_work(&hw_priv->mib_read); 6310 6311 /* This is used to verify Wake-on-LAN is working. */ 6312 if (hw_priv->pme_wait) { 6313 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) { 6314 hw_clr_wol_pme_status(&hw_priv->hw); 6315 hw_priv->pme_wait = 0; 6316 } 6317 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) { 6318 6319 /* PME is asserted. Wait 2 seconds to clear it. */ 6320 hw_priv->pme_wait = jiffies + HZ * 2; 6321 } 6322 6323 ksz_update_timer(&hw_priv->mib_timer_info); 6324 } 6325 6326 /** 6327 * dev_monitor - periodic monitoring 6328 * @t: timer list containing a network device pointer. 6329 * 6330 * This routine is run in a kernel timer to monitor the network device. 6331 */ 6332 static void dev_monitor(struct timer_list *t) 6333 { 6334 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer); 6335 struct net_device *dev = priv->mii_if.dev; 6336 struct dev_info *hw_priv = priv->adapter; 6337 struct ksz_hw *hw = &hw_priv->hw; 6338 struct ksz_port *port = &priv->port; 6339 6340 if (!(hw->features & LINK_INT_WORKING)) 6341 port_get_link_speed(port); 6342 update_link(dev, priv, port); 6343 6344 ksz_update_timer(&priv->monitor_timer_info); 6345 } 6346 6347 /* 6348 * Linux network device interface functions 6349 */ 6350 6351 /* Driver exported variables */ 6352 6353 static int msg_enable; 6354 6355 static char *macaddr = ":"; 6356 static char *mac1addr = ":"; 6357 6358 /* 6359 * This enables multiple network device mode for KSZ8842, which contains a 6360 * switch with two physical ports. Some users like to take control of the 6361 * ports for running Spanning Tree Protocol. The driver will create an 6362 * additional eth? device for the other port. 6363 * 6364 * Some limitations are the network devices cannot have different MTU and 6365 * multicast hash tables. 6366 */ 6367 static int multi_dev; 6368 6369 /* 6370 * As most users select multiple network device mode to use Spanning Tree 6371 * Protocol, this enables a feature in which most unicast and multicast packets 6372 * are forwarded inside the switch and not passed to the host. Only packets 6373 * that need the host's attention are passed to it. This prevents the host 6374 * wasting CPU time to examine each and every incoming packets and do the 6375 * forwarding itself. 6376 * 6377 * As the hack requires the private bridge header, the driver cannot compile 6378 * with just the kernel headers. 6379 * 6380 * Enabling STP support also turns on multiple network device mode. 6381 */ 6382 static int stp; 6383 6384 /* 6385 * This enables fast aging in the KSZ8842 switch. Not sure what situation 6386 * needs that. However, fast aging is used to flush the dynamic MAC table when 6387 * STP support is enabled. 6388 */ 6389 static int fast_aging; 6390 6391 /** 6392 * netdev_init - initialize network device. 6393 * @dev: Network device. 6394 * 6395 * This function initializes the network device. 6396 * 6397 * Return 0 if successful; otherwise an error code indicating failure. 6398 */ 6399 static int __init netdev_init(struct net_device *dev) 6400 { 6401 struct dev_priv *priv = netdev_priv(dev); 6402 6403 /* 500 ms timeout */ 6404 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000, 6405 dev_monitor); 6406 6407 /* 500 ms timeout */ 6408 dev->watchdog_timeo = HZ / 2; 6409 6410 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; 6411 6412 /* 6413 * Hardware does not really support IPv6 checksum generation, but 6414 * driver actually runs faster with this on. 6415 */ 6416 dev->hw_features |= NETIF_F_IPV6_CSUM; 6417 6418 dev->features |= dev->hw_features; 6419 6420 sema_init(&priv->proc_sem, 1); 6421 6422 priv->mii_if.phy_id_mask = 0x1; 6423 priv->mii_if.reg_num_mask = 0x7; 6424 priv->mii_if.dev = dev; 6425 priv->mii_if.mdio_read = mdio_read; 6426 priv->mii_if.mdio_write = mdio_write; 6427 priv->mii_if.phy_id = priv->port.first_port + 1; 6428 6429 priv->msg_enable = netif_msg_init(msg_enable, 6430 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); 6431 6432 return 0; 6433 } 6434 6435 static const struct net_device_ops netdev_ops = { 6436 .ndo_init = netdev_init, 6437 .ndo_open = netdev_open, 6438 .ndo_stop = netdev_close, 6439 .ndo_get_stats = netdev_query_statistics, 6440 .ndo_start_xmit = netdev_tx, 6441 .ndo_tx_timeout = netdev_tx_timeout, 6442 .ndo_change_mtu = netdev_change_mtu, 6443 .ndo_set_features = netdev_set_features, 6444 .ndo_set_mac_address = netdev_set_mac_address, 6445 .ndo_validate_addr = eth_validate_addr, 6446 .ndo_eth_ioctl = netdev_ioctl, 6447 .ndo_set_rx_mode = netdev_set_rx_mode, 6448 #ifdef CONFIG_NET_POLL_CONTROLLER 6449 .ndo_poll_controller = netdev_netpoll, 6450 #endif 6451 }; 6452 6453 static void netdev_free(struct net_device *dev) 6454 { 6455 if (dev->watchdog_timeo) 6456 unregister_netdev(dev); 6457 6458 free_netdev(dev); 6459 } 6460 6461 struct platform_info { 6462 struct dev_info dev_info; 6463 struct net_device *netdev[SWITCH_PORT_NUM]; 6464 }; 6465 6466 static int net_device_present; 6467 6468 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port) 6469 { 6470 int i; 6471 int j; 6472 int got_num; 6473 int num; 6474 6475 i = j = num = got_num = 0; 6476 while (j < ETH_ALEN) { 6477 if (macaddr[i]) { 6478 int digit; 6479 6480 got_num = 1; 6481 digit = hex_to_bin(macaddr[i]); 6482 if (digit >= 0) 6483 num = num * 16 + digit; 6484 else if (':' == macaddr[i]) 6485 got_num = 2; 6486 else 6487 break; 6488 } else if (got_num) 6489 got_num = 2; 6490 else 6491 break; 6492 if (2 == got_num) { 6493 if (MAIN_PORT == port) { 6494 hw_priv->hw.override_addr[j++] = (u8) num; 6495 hw_priv->hw.override_addr[5] += 6496 hw_priv->hw.id; 6497 } else { 6498 hw_priv->hw.ksz_switch->other_addr[j++] = 6499 (u8) num; 6500 hw_priv->hw.ksz_switch->other_addr[5] += 6501 hw_priv->hw.id; 6502 } 6503 num = got_num = 0; 6504 } 6505 i++; 6506 } 6507 if (ETH_ALEN == j) { 6508 if (MAIN_PORT == port) 6509 hw_priv->hw.mac_override = 1; 6510 } 6511 } 6512 6513 #define KS884X_DMA_MASK (~0x0UL) 6514 6515 static void read_other_addr(struct ksz_hw *hw) 6516 { 6517 int i; 6518 u16 data[3]; 6519 struct ksz_switch *sw = hw->ksz_switch; 6520 6521 for (i = 0; i < 3; i++) 6522 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR); 6523 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) { 6524 sw->other_addr[5] = (u8) data[0]; 6525 sw->other_addr[4] = (u8)(data[0] >> 8); 6526 sw->other_addr[3] = (u8) data[1]; 6527 sw->other_addr[2] = (u8)(data[1] >> 8); 6528 sw->other_addr[1] = (u8) data[2]; 6529 sw->other_addr[0] = (u8)(data[2] >> 8); 6530 } 6531 } 6532 6533 #ifndef PCI_VENDOR_ID_MICREL_KS 6534 #define PCI_VENDOR_ID_MICREL_KS 0x16c6 6535 #endif 6536 6537 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id) 6538 { 6539 struct net_device *dev; 6540 struct dev_priv *priv; 6541 struct dev_info *hw_priv; 6542 struct ksz_hw *hw; 6543 struct platform_info *info; 6544 struct ksz_port *port; 6545 unsigned long reg_base; 6546 unsigned long reg_len; 6547 int cnt; 6548 int i; 6549 int mib_port_count; 6550 int pi; 6551 int port_count; 6552 int result; 6553 char banner[sizeof(version)]; 6554 struct ksz_switch *sw = NULL; 6555 6556 result = pcim_enable_device(pdev); 6557 if (result) 6558 return result; 6559 6560 result = -ENODEV; 6561 6562 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) || 6563 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) 6564 return result; 6565 6566 reg_base = pci_resource_start(pdev, 0); 6567 reg_len = pci_resource_len(pdev, 0); 6568 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) 6569 return result; 6570 6571 if (!request_mem_region(reg_base, reg_len, DRV_NAME)) 6572 return result; 6573 pci_set_master(pdev); 6574 6575 result = -ENOMEM; 6576 6577 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL); 6578 if (!info) 6579 goto pcidev_init_dev_err; 6580 6581 hw_priv = &info->dev_info; 6582 hw_priv->pdev = pdev; 6583 6584 hw = &hw_priv->hw; 6585 6586 hw->io = ioremap(reg_base, reg_len); 6587 if (!hw->io) 6588 goto pcidev_init_io_err; 6589 6590 cnt = hw_init(hw); 6591 if (!cnt) { 6592 if (msg_enable & NETIF_MSG_PROBE) 6593 pr_alert("chip not detected\n"); 6594 result = -ENODEV; 6595 goto pcidev_init_alloc_err; 6596 } 6597 6598 snprintf(banner, sizeof(banner), "%s", version); 6599 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */ 6600 dev_info(&hw_priv->pdev->dev, "%s\n", banner); 6601 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq); 6602 6603 /* Assume device is KSZ8841. */ 6604 hw->dev_count = 1; 6605 port_count = 1; 6606 mib_port_count = 1; 6607 hw->addr_list_size = 0; 6608 hw->mib_cnt = PORT_COUNTER_NUM; 6609 hw->mib_port_cnt = 1; 6610 6611 /* KSZ8842 has a switch with multiple ports. */ 6612 if (2 == cnt) { 6613 if (fast_aging) 6614 hw->overrides |= FAST_AGING; 6615 6616 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM; 6617 6618 /* Multiple network device interfaces are required. */ 6619 if (multi_dev) { 6620 hw->dev_count = SWITCH_PORT_NUM; 6621 hw->addr_list_size = SWITCH_PORT_NUM - 1; 6622 } 6623 6624 /* Single network device has multiple ports. */ 6625 if (1 == hw->dev_count) { 6626 port_count = SWITCH_PORT_NUM; 6627 mib_port_count = SWITCH_PORT_NUM; 6628 } 6629 hw->mib_port_cnt = TOTAL_PORT_NUM; 6630 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL); 6631 if (!hw->ksz_switch) 6632 goto pcidev_init_alloc_err; 6633 6634 sw = hw->ksz_switch; 6635 } 6636 for (i = 0; i < hw->mib_port_cnt; i++) 6637 hw->port_mib[i].mib_start = 0; 6638 6639 hw->parent = hw_priv; 6640 6641 /* Default MTU is 1500. */ 6642 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3; 6643 6644 if (ksz_alloc_mem(hw_priv)) 6645 goto pcidev_init_mem_err; 6646 6647 hw_priv->hw.id = net_device_present; 6648 6649 spin_lock_init(&hw_priv->hwlock); 6650 mutex_init(&hw_priv->lock); 6651 6652 for (i = 0; i < TOTAL_PORT_NUM; i++) 6653 init_waitqueue_head(&hw_priv->counter[i].counter); 6654 6655 if (macaddr[0] != ':') 6656 get_mac_addr(hw_priv, macaddr, MAIN_PORT); 6657 6658 /* Read MAC address and initialize override address if not overridden. */ 6659 hw_read_addr(hw); 6660 6661 /* Multiple device interfaces mode requires a second MAC address. */ 6662 if (hw->dev_count > 1) { 6663 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN); 6664 read_other_addr(hw); 6665 if (mac1addr[0] != ':') 6666 get_mac_addr(hw_priv, mac1addr, OTHER_PORT); 6667 } 6668 6669 hw_setup(hw); 6670 if (hw->ksz_switch) 6671 sw_setup(hw); 6672 else { 6673 hw_priv->wol_support = WOL_SUPPORT; 6674 hw_priv->wol_enable = 0; 6675 } 6676 6677 INIT_WORK(&hw_priv->mib_read, mib_read_work); 6678 6679 /* 500 ms timeout */ 6680 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000, 6681 mib_monitor); 6682 6683 for (i = 0; i < hw->dev_count; i++) { 6684 dev = alloc_etherdev(sizeof(struct dev_priv)); 6685 if (!dev) 6686 goto pcidev_init_reg_err; 6687 SET_NETDEV_DEV(dev, &pdev->dev); 6688 info->netdev[i] = dev; 6689 6690 priv = netdev_priv(dev); 6691 priv->adapter = hw_priv; 6692 priv->id = net_device_present++; 6693 6694 port = &priv->port; 6695 port->port_cnt = port_count; 6696 port->mib_port_cnt = mib_port_count; 6697 port->first_port = i; 6698 port->flow_ctrl = PHY_FLOW_CTRL; 6699 6700 port->hw = hw; 6701 port->linked = &hw->port_info[port->first_port]; 6702 6703 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) { 6704 hw->port_info[pi].port_id = pi; 6705 hw->port_info[pi].pdev = dev; 6706 hw->port_info[pi].state = media_disconnected; 6707 } 6708 6709 dev->mem_start = (unsigned long) hw->io; 6710 dev->mem_end = dev->mem_start + reg_len - 1; 6711 dev->irq = pdev->irq; 6712 if (MAIN_PORT == i) 6713 eth_hw_addr_set(dev, hw_priv->hw.override_addr); 6714 else { 6715 u8 addr[ETH_ALEN]; 6716 6717 ether_addr_copy(addr, sw->other_addr); 6718 if (ether_addr_equal(sw->other_addr, hw->override_addr)) 6719 addr[5] += port->first_port; 6720 eth_hw_addr_set(dev, addr); 6721 } 6722 6723 dev->netdev_ops = &netdev_ops; 6724 dev->ethtool_ops = &netdev_ethtool_ops; 6725 6726 /* MTU range: 60 - 1894 */ 6727 dev->min_mtu = ETH_ZLEN; 6728 dev->max_mtu = MAX_RX_BUF_SIZE - 6729 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 6730 6731 if (register_netdev(dev)) 6732 goto pcidev_init_reg_err; 6733 port_set_power_saving(port, true); 6734 } 6735 6736 pci_dev_get(hw_priv->pdev); 6737 pci_set_drvdata(pdev, info); 6738 return 0; 6739 6740 pcidev_init_reg_err: 6741 for (i = 0; i < hw->dev_count; i++) { 6742 if (info->netdev[i]) { 6743 netdev_free(info->netdev[i]); 6744 info->netdev[i] = NULL; 6745 } 6746 } 6747 6748 pcidev_init_mem_err: 6749 ksz_free_mem(hw_priv); 6750 kfree(hw->ksz_switch); 6751 6752 pcidev_init_alloc_err: 6753 iounmap(hw->io); 6754 6755 pcidev_init_io_err: 6756 kfree(info); 6757 6758 pcidev_init_dev_err: 6759 release_mem_region(reg_base, reg_len); 6760 6761 return result; 6762 } 6763 6764 static void pcidev_exit(struct pci_dev *pdev) 6765 { 6766 int i; 6767 struct platform_info *info = pci_get_drvdata(pdev); 6768 struct dev_info *hw_priv = &info->dev_info; 6769 6770 release_mem_region(pci_resource_start(pdev, 0), 6771 pci_resource_len(pdev, 0)); 6772 for (i = 0; i < hw_priv->hw.dev_count; i++) { 6773 if (info->netdev[i]) 6774 netdev_free(info->netdev[i]); 6775 } 6776 if (hw_priv->hw.io) 6777 iounmap(hw_priv->hw.io); 6778 ksz_free_mem(hw_priv); 6779 kfree(hw_priv->hw.ksz_switch); 6780 pci_dev_put(hw_priv->pdev); 6781 kfree(info); 6782 } 6783 6784 static int __maybe_unused pcidev_resume(struct device *dev_d) 6785 { 6786 int i; 6787 struct platform_info *info = dev_get_drvdata(dev_d); 6788 struct dev_info *hw_priv = &info->dev_info; 6789 struct ksz_hw *hw = &hw_priv->hw; 6790 6791 device_wakeup_disable(dev_d); 6792 6793 if (hw_priv->wol_enable) 6794 hw_cfg_wol_pme(hw, 0); 6795 for (i = 0; i < hw->dev_count; i++) { 6796 if (info->netdev[i]) { 6797 struct net_device *dev = info->netdev[i]; 6798 6799 if (netif_running(dev)) { 6800 netdev_open(dev); 6801 netif_device_attach(dev); 6802 } 6803 } 6804 } 6805 return 0; 6806 } 6807 6808 static int __maybe_unused pcidev_suspend(struct device *dev_d) 6809 { 6810 int i; 6811 struct platform_info *info = dev_get_drvdata(dev_d); 6812 struct dev_info *hw_priv = &info->dev_info; 6813 struct ksz_hw *hw = &hw_priv->hw; 6814 6815 /* Need to find a way to retrieve the device IP address. */ 6816 static const u8 net_addr[] = { 192, 168, 1, 1 }; 6817 6818 for (i = 0; i < hw->dev_count; i++) { 6819 if (info->netdev[i]) { 6820 struct net_device *dev = info->netdev[i]; 6821 6822 if (netif_running(dev)) { 6823 netif_device_detach(dev); 6824 netdev_close(dev); 6825 } 6826 } 6827 } 6828 if (hw_priv->wol_enable) { 6829 hw_enable_wol(hw, hw_priv->wol_enable, net_addr); 6830 hw_cfg_wol_pme(hw, 1); 6831 } 6832 6833 device_wakeup_enable(dev_d); 6834 return 0; 6835 } 6836 6837 static char pcidev_name[] = "ksz884xp"; 6838 6839 static const struct pci_device_id pcidev_table[] = { 6840 { PCI_VENDOR_ID_MICREL_KS, 0x8841, 6841 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 6842 { PCI_VENDOR_ID_MICREL_KS, 0x8842, 6843 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 6844 { 0 } 6845 }; 6846 6847 MODULE_DEVICE_TABLE(pci, pcidev_table); 6848 6849 static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume); 6850 6851 static struct pci_driver pci_device_driver = { 6852 .driver.pm = &pcidev_pm_ops, 6853 .name = pcidev_name, 6854 .id_table = pcidev_table, 6855 .probe = pcidev_init, 6856 .remove = pcidev_exit 6857 }; 6858 6859 module_pci_driver(pci_device_driver); 6860 6861 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver"); 6862 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>"); 6863 MODULE_LICENSE("GPL"); 6864 6865 module_param_named(message, msg_enable, int, 0); 6866 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); 6867 6868 module_param(macaddr, charp, 0); 6869 module_param(mac1addr, charp, 0); 6870 module_param(fast_aging, int, 0); 6871 module_param(multi_dev, int, 0); 6872 module_param(stp, int, 0); 6873 MODULE_PARM_DESC(macaddr, "MAC address"); 6874 MODULE_PARM_DESC(mac1addr, "Second MAC address"); 6875 MODULE_PARM_DESC(fast_aging, "Fast aging"); 6876 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces"); 6877 MODULE_PARM_DESC(stp, "STP support"); 6878