xref: /linux/drivers/net/ethernet/micrel/ksz884x.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4  *
5  * Copyright (c) 2009-2010 Micrel, Inc.
6  * 	Tristram Ha <Tristram.Ha@micrel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/mii.h>
19 #include <linux/platform_device.h>
20 #include <linux/ethtool.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/if_vlan.h>
25 #include <linux/crc32.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 
29 
30 /* DMA Registers */
31 
32 #define KS_DMA_TX_CTRL			0x0000
33 #define DMA_TX_ENABLE			0x00000001
34 #define DMA_TX_CRC_ENABLE		0x00000002
35 #define DMA_TX_PAD_ENABLE		0x00000004
36 #define DMA_TX_LOOPBACK			0x00000100
37 #define DMA_TX_FLOW_ENABLE		0x00000200
38 #define DMA_TX_CSUM_IP			0x00010000
39 #define DMA_TX_CSUM_TCP			0x00020000
40 #define DMA_TX_CSUM_UDP			0x00040000
41 #define DMA_TX_BURST_SIZE		0x3F000000
42 
43 #define KS_DMA_RX_CTRL			0x0004
44 #define DMA_RX_ENABLE			0x00000001
45 #define KS884X_DMA_RX_MULTICAST		0x00000002
46 #define DMA_RX_PROMISCUOUS		0x00000004
47 #define DMA_RX_ERROR			0x00000008
48 #define DMA_RX_UNICAST			0x00000010
49 #define DMA_RX_ALL_MULTICAST		0x00000020
50 #define DMA_RX_BROADCAST		0x00000040
51 #define DMA_RX_FLOW_ENABLE		0x00000200
52 #define DMA_RX_CSUM_IP			0x00010000
53 #define DMA_RX_CSUM_TCP			0x00020000
54 #define DMA_RX_CSUM_UDP			0x00040000
55 #define DMA_RX_BURST_SIZE		0x3F000000
56 
57 #define DMA_BURST_SHIFT			24
58 #define DMA_BURST_DEFAULT		8
59 
60 #define KS_DMA_TX_START			0x0008
61 #define KS_DMA_RX_START			0x000C
62 #define DMA_START			0x00000001
63 
64 #define KS_DMA_TX_ADDR			0x0010
65 #define KS_DMA_RX_ADDR			0x0014
66 
67 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
68 #define DMA_ADDR_LIST_SHIFT		2
69 
70 /* MTR0 */
71 #define KS884X_MULTICAST_0_OFFSET	0x0020
72 #define KS884X_MULTICAST_1_OFFSET	0x0021
73 #define KS884X_MULTICAST_2_OFFSET	0x0022
74 #define KS884x_MULTICAST_3_OFFSET	0x0023
75 /* MTR1 */
76 #define KS884X_MULTICAST_4_OFFSET	0x0024
77 #define KS884X_MULTICAST_5_OFFSET	0x0025
78 #define KS884X_MULTICAST_6_OFFSET	0x0026
79 #define KS884X_MULTICAST_7_OFFSET	0x0027
80 
81 /* Interrupt Registers */
82 
83 /* INTEN */
84 #define KS884X_INTERRUPTS_ENABLE	0x0028
85 /* INTST */
86 #define KS884X_INTERRUPTS_STATUS	0x002C
87 
88 #define KS884X_INT_RX_STOPPED		0x02000000
89 #define KS884X_INT_TX_STOPPED		0x04000000
90 #define KS884X_INT_RX_OVERRUN		0x08000000
91 #define KS884X_INT_TX_EMPTY		0x10000000
92 #define KS884X_INT_RX			0x20000000
93 #define KS884X_INT_TX			0x40000000
94 #define KS884X_INT_PHY			0x80000000
95 
96 #define KS884X_INT_RX_MASK		\
97 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
98 #define KS884X_INT_TX_MASK		\
99 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
100 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
101 
102 /* MAC Additional Station Address */
103 
104 /* MAAL0 */
105 #define KS_ADD_ADDR_0_LO		0x0080
106 /* MAAH0 */
107 #define KS_ADD_ADDR_0_HI		0x0084
108 /* MAAL1 */
109 #define KS_ADD_ADDR_1_LO		0x0088
110 /* MAAH1 */
111 #define KS_ADD_ADDR_1_HI		0x008C
112 /* MAAL2 */
113 #define KS_ADD_ADDR_2_LO		0x0090
114 /* MAAH2 */
115 #define KS_ADD_ADDR_2_HI		0x0094
116 /* MAAL3 */
117 #define KS_ADD_ADDR_3_LO		0x0098
118 /* MAAH3 */
119 #define KS_ADD_ADDR_3_HI		0x009C
120 /* MAAL4 */
121 #define KS_ADD_ADDR_4_LO		0x00A0
122 /* MAAH4 */
123 #define KS_ADD_ADDR_4_HI		0x00A4
124 /* MAAL5 */
125 #define KS_ADD_ADDR_5_LO		0x00A8
126 /* MAAH5 */
127 #define KS_ADD_ADDR_5_HI		0x00AC
128 /* MAAL6 */
129 #define KS_ADD_ADDR_6_LO		0x00B0
130 /* MAAH6 */
131 #define KS_ADD_ADDR_6_HI		0x00B4
132 /* MAAL7 */
133 #define KS_ADD_ADDR_7_LO		0x00B8
134 /* MAAH7 */
135 #define KS_ADD_ADDR_7_HI		0x00BC
136 /* MAAL8 */
137 #define KS_ADD_ADDR_8_LO		0x00C0
138 /* MAAH8 */
139 #define KS_ADD_ADDR_8_HI		0x00C4
140 /* MAAL9 */
141 #define KS_ADD_ADDR_9_LO		0x00C8
142 /* MAAH9 */
143 #define KS_ADD_ADDR_9_HI		0x00CC
144 /* MAAL10 */
145 #define KS_ADD_ADDR_A_LO		0x00D0
146 /* MAAH10 */
147 #define KS_ADD_ADDR_A_HI		0x00D4
148 /* MAAL11 */
149 #define KS_ADD_ADDR_B_LO		0x00D8
150 /* MAAH11 */
151 #define KS_ADD_ADDR_B_HI		0x00DC
152 /* MAAL12 */
153 #define KS_ADD_ADDR_C_LO		0x00E0
154 /* MAAH12 */
155 #define KS_ADD_ADDR_C_HI		0x00E4
156 /* MAAL13 */
157 #define KS_ADD_ADDR_D_LO		0x00E8
158 /* MAAH13 */
159 #define KS_ADD_ADDR_D_HI		0x00EC
160 /* MAAL14 */
161 #define KS_ADD_ADDR_E_LO		0x00F0
162 /* MAAH14 */
163 #define KS_ADD_ADDR_E_HI		0x00F4
164 /* MAAL15 */
165 #define KS_ADD_ADDR_F_LO		0x00F8
166 /* MAAH15 */
167 #define KS_ADD_ADDR_F_HI		0x00FC
168 
169 #define ADD_ADDR_HI_MASK		0x0000FFFF
170 #define ADD_ADDR_ENABLE			0x80000000
171 #define ADD_ADDR_INCR			8
172 
173 /* Miscellaneous Registers */
174 
175 /* MARL */
176 #define KS884X_ADDR_0_OFFSET		0x0200
177 #define KS884X_ADDR_1_OFFSET		0x0201
178 /* MARM */
179 #define KS884X_ADDR_2_OFFSET		0x0202
180 #define KS884X_ADDR_3_OFFSET		0x0203
181 /* MARH */
182 #define KS884X_ADDR_4_OFFSET		0x0204
183 #define KS884X_ADDR_5_OFFSET		0x0205
184 
185 /* OBCR */
186 #define KS884X_BUS_CTRL_OFFSET		0x0210
187 
188 #define BUS_SPEED_125_MHZ		0x0000
189 #define BUS_SPEED_62_5_MHZ		0x0001
190 #define BUS_SPEED_41_66_MHZ		0x0002
191 #define BUS_SPEED_25_MHZ		0x0003
192 
193 /* EEPCR */
194 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
195 
196 #define EEPROM_CHIP_SELECT		0x0001
197 #define EEPROM_SERIAL_CLOCK		0x0002
198 #define EEPROM_DATA_OUT			0x0004
199 #define EEPROM_DATA_IN			0x0008
200 #define EEPROM_ACCESS_ENABLE		0x0010
201 
202 /* MBIR */
203 #define KS884X_MEM_INFO_OFFSET		0x0214
204 
205 #define RX_MEM_TEST_FAILED		0x0008
206 #define RX_MEM_TEST_FINISHED		0x0010
207 #define TX_MEM_TEST_FAILED		0x0800
208 #define TX_MEM_TEST_FINISHED		0x1000
209 
210 /* GCR */
211 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
212 #define GLOBAL_SOFTWARE_RESET		0x0001
213 
214 #define KS8841_POWER_MANAGE_OFFSET	0x0218
215 
216 /* WFCR */
217 #define KS8841_WOL_CTRL_OFFSET		0x021A
218 #define KS8841_WOL_MAGIC_ENABLE		0x0080
219 #define KS8841_WOL_FRAME3_ENABLE	0x0008
220 #define KS8841_WOL_FRAME2_ENABLE	0x0004
221 #define KS8841_WOL_FRAME1_ENABLE	0x0002
222 #define KS8841_WOL_FRAME0_ENABLE	0x0001
223 
224 /* WF0 */
225 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
226 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
227 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
228 
229 /* IACR */
230 #define KS884X_IACR_P			0x04A0
231 #define KS884X_IACR_OFFSET		KS884X_IACR_P
232 
233 /* IADR1 */
234 #define KS884X_IADR1_P			0x04A2
235 #define KS884X_IADR2_P			0x04A4
236 #define KS884X_IADR3_P			0x04A6
237 #define KS884X_IADR4_P			0x04A8
238 #define KS884X_IADR5_P			0x04AA
239 
240 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
241 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
242 
243 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
244 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
245 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
246 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
247 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
248 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
249 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
250 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
251 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
252 
253 /* P1MBCR */
254 #define KS884X_P1MBCR_P			0x04D0
255 #define KS884X_P1MBSR_P			0x04D2
256 #define KS884X_PHY1ILR_P		0x04D4
257 #define KS884X_PHY1IHR_P		0x04D6
258 #define KS884X_P1ANAR_P			0x04D8
259 #define KS884X_P1ANLPR_P		0x04DA
260 
261 /* P2MBCR */
262 #define KS884X_P2MBCR_P			0x04E0
263 #define KS884X_P2MBSR_P			0x04E2
264 #define KS884X_PHY2ILR_P		0x04E4
265 #define KS884X_PHY2IHR_P		0x04E6
266 #define KS884X_P2ANAR_P			0x04E8
267 #define KS884X_P2ANLPR_P		0x04EA
268 
269 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
270 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
271 
272 #define KS884X_PHY_CTRL_OFFSET		0x00
273 
274 /* Mode Control Register */
275 #define PHY_REG_CTRL			0
276 
277 #define PHY_RESET			0x8000
278 #define PHY_LOOPBACK			0x4000
279 #define PHY_SPEED_100MBIT		0x2000
280 #define PHY_AUTO_NEG_ENABLE		0x1000
281 #define PHY_POWER_DOWN			0x0800
282 #define PHY_MII_DISABLE			0x0400
283 #define PHY_AUTO_NEG_RESTART		0x0200
284 #define PHY_FULL_DUPLEX			0x0100
285 #define PHY_COLLISION_TEST		0x0080
286 #define PHY_HP_MDIX			0x0020
287 #define PHY_FORCE_MDIX			0x0010
288 #define PHY_AUTO_MDIX_DISABLE		0x0008
289 #define PHY_REMOTE_FAULT_DISABLE	0x0004
290 #define PHY_TRANSMIT_DISABLE		0x0002
291 #define PHY_LED_DISABLE			0x0001
292 
293 #define KS884X_PHY_STATUS_OFFSET	0x02
294 
295 /* Mode Status Register */
296 #define PHY_REG_STATUS			1
297 
298 #define PHY_100BT4_CAPABLE		0x8000
299 #define PHY_100BTX_FD_CAPABLE		0x4000
300 #define PHY_100BTX_CAPABLE		0x2000
301 #define PHY_10BT_FD_CAPABLE		0x1000
302 #define PHY_10BT_CAPABLE		0x0800
303 #define PHY_MII_SUPPRESS_CAPABLE	0x0040
304 #define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
305 #define PHY_REMOTE_FAULT		0x0010
306 #define PHY_AUTO_NEG_CAPABLE		0x0008
307 #define PHY_LINK_STATUS			0x0004
308 #define PHY_JABBER_DETECT		0x0002
309 #define PHY_EXTENDED_CAPABILITY		0x0001
310 
311 #define KS884X_PHY_ID_1_OFFSET		0x04
312 #define KS884X_PHY_ID_2_OFFSET		0x06
313 
314 /* PHY Identifier Registers */
315 #define PHY_REG_ID_1			2
316 #define PHY_REG_ID_2			3
317 
318 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
319 
320 /* Auto-Negotiation Advertisement Register */
321 #define PHY_REG_AUTO_NEGOTIATION	4
322 
323 #define PHY_AUTO_NEG_NEXT_PAGE		0x8000
324 #define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
325 /* Not supported. */
326 #define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
327 #define PHY_AUTO_NEG_SYM_PAUSE		0x0400
328 #define PHY_AUTO_NEG_100BT4		0x0200
329 #define PHY_AUTO_NEG_100BTX_FD		0x0100
330 #define PHY_AUTO_NEG_100BTX		0x0080
331 #define PHY_AUTO_NEG_10BT_FD		0x0040
332 #define PHY_AUTO_NEG_10BT		0x0020
333 #define PHY_AUTO_NEG_SELECTOR		0x001F
334 #define PHY_AUTO_NEG_802_3		0x0001
335 
336 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
337 
338 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
339 
340 /* Auto-Negotiation Link Partner Ability Register */
341 #define PHY_REG_REMOTE_CAPABILITY	5
342 
343 #define PHY_REMOTE_NEXT_PAGE		0x8000
344 #define PHY_REMOTE_ACKNOWLEDGE		0x4000
345 #define PHY_REMOTE_REMOTE_FAULT		0x2000
346 #define PHY_REMOTE_SYM_PAUSE		0x0400
347 #define PHY_REMOTE_100BTX_FD		0x0100
348 #define PHY_REMOTE_100BTX		0x0080
349 #define PHY_REMOTE_10BT_FD		0x0040
350 #define PHY_REMOTE_10BT			0x0020
351 
352 /* P1VCT */
353 #define KS884X_P1VCT_P			0x04F0
354 #define KS884X_P1PHYCTRL_P		0x04F2
355 
356 /* P2VCT */
357 #define KS884X_P2VCT_P			0x04F4
358 #define KS884X_P2PHYCTRL_P		0x04F6
359 
360 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
361 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
362 
363 #define KS884X_PHY_LINK_MD_OFFSET	0x00
364 
365 #define PHY_START_CABLE_DIAG		0x8000
366 #define PHY_CABLE_DIAG_RESULT		0x6000
367 #define PHY_CABLE_STAT_NORMAL		0x0000
368 #define PHY_CABLE_STAT_OPEN		0x2000
369 #define PHY_CABLE_STAT_SHORT		0x4000
370 #define PHY_CABLE_STAT_FAILED		0x6000
371 #define PHY_CABLE_10M_SHORT		0x1000
372 #define PHY_CABLE_FAULT_COUNTER		0x01FF
373 
374 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
375 
376 #define PHY_STAT_REVERSED_POLARITY	0x0020
377 #define PHY_STAT_MDIX			0x0010
378 #define PHY_FORCE_LINK			0x0008
379 #define PHY_POWER_SAVING_DISABLE	0x0004
380 #define PHY_REMOTE_LOOPBACK		0x0002
381 
382 /* SIDER */
383 #define KS884X_SIDER_P			0x0400
384 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
385 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
386 
387 #define REG_FAMILY_ID			0x88
388 
389 #define REG_CHIP_ID_41			0x8810
390 #define REG_CHIP_ID_42			0x8800
391 
392 #define KS884X_CHIP_ID_MASK_41		0xFF10
393 #define KS884X_CHIP_ID_MASK		0xFFF0
394 #define KS884X_CHIP_ID_SHIFT		4
395 #define KS884X_REVISION_MASK		0x000E
396 #define KS884X_REVISION_SHIFT		1
397 #define KS8842_START			0x0001
398 
399 #define CHIP_IP_41_M			0x8810
400 #define CHIP_IP_42_M			0x8800
401 #define CHIP_IP_61_M			0x8890
402 #define CHIP_IP_62_M			0x8880
403 
404 #define CHIP_IP_41_P			0x8850
405 #define CHIP_IP_42_P			0x8840
406 #define CHIP_IP_61_P			0x88D0
407 #define CHIP_IP_62_P			0x88C0
408 
409 /* SGCR1 */
410 #define KS8842_SGCR1_P			0x0402
411 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
412 
413 #define SWITCH_PASS_ALL			0x8000
414 #define SWITCH_TX_FLOW_CTRL		0x2000
415 #define SWITCH_RX_FLOW_CTRL		0x1000
416 #define SWITCH_CHECK_LENGTH		0x0800
417 #define SWITCH_AGING_ENABLE		0x0400
418 #define SWITCH_FAST_AGING		0x0200
419 #define SWITCH_AGGR_BACKOFF		0x0100
420 #define SWITCH_PASS_PAUSE		0x0008
421 #define SWITCH_LINK_AUTO_AGING		0x0001
422 
423 /* SGCR2 */
424 #define KS8842_SGCR2_P			0x0404
425 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
426 
427 #define SWITCH_VLAN_ENABLE		0x8000
428 #define SWITCH_IGMP_SNOOP		0x4000
429 #define IPV6_MLD_SNOOP_ENABLE		0x2000
430 #define IPV6_MLD_SNOOP_OPTION		0x1000
431 #define PRIORITY_SCHEME_SELECT		0x0800
432 #define SWITCH_MIRROR_RX_TX		0x0100
433 #define UNICAST_VLAN_BOUNDARY		0x0080
434 #define MULTICAST_STORM_DISABLE		0x0040
435 #define SWITCH_BACK_PRESSURE		0x0020
436 #define FAIR_FLOW_CTRL			0x0010
437 #define NO_EXC_COLLISION_DROP		0x0008
438 #define SWITCH_HUGE_PACKET		0x0004
439 #define SWITCH_LEGAL_PACKET		0x0002
440 #define SWITCH_BUF_RESERVE		0x0001
441 
442 /* SGCR3 */
443 #define KS8842_SGCR3_P			0x0406
444 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
445 
446 #define BROADCAST_STORM_RATE_LO		0xFF00
447 #define SWITCH_REPEATER			0x0080
448 #define SWITCH_HALF_DUPLEX		0x0040
449 #define SWITCH_FLOW_CTRL		0x0020
450 #define SWITCH_10_MBIT			0x0010
451 #define SWITCH_REPLACE_NULL_VID		0x0008
452 #define BROADCAST_STORM_RATE_HI		0x0007
453 
454 #define BROADCAST_STORM_RATE		0x07FF
455 
456 /* SGCR4 */
457 #define KS8842_SGCR4_P			0x0408
458 
459 /* SGCR5 */
460 #define KS8842_SGCR5_P			0x040A
461 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
462 
463 #define LED_MODE			0x8200
464 #define LED_SPEED_DUPLEX_ACT		0x0000
465 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
466 #define LED_DUPLEX_10_100		0x0200
467 
468 /* SGCR6 */
469 #define KS8842_SGCR6_P			0x0410
470 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
471 
472 #define KS8842_PRIORITY_MASK		3
473 #define KS8842_PRIORITY_SHIFT		2
474 
475 /* SGCR7 */
476 #define KS8842_SGCR7_P			0x0412
477 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
478 
479 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
480 #define SWITCH_UNK_DEF_PORT_3		0x0004
481 #define SWITCH_UNK_DEF_PORT_2		0x0002
482 #define SWITCH_UNK_DEF_PORT_1		0x0001
483 
484 /* MACAR1 */
485 #define KS8842_MACAR1_P			0x0470
486 #define KS8842_MACAR2_P			0x0472
487 #define KS8842_MACAR3_P			0x0474
488 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
489 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
490 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
491 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
492 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
493 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
494 
495 /* TOSR1 */
496 #define KS8842_TOSR1_P			0x0480
497 #define KS8842_TOSR2_P			0x0482
498 #define KS8842_TOSR3_P			0x0484
499 #define KS8842_TOSR4_P			0x0486
500 #define KS8842_TOSR5_P			0x0488
501 #define KS8842_TOSR6_P			0x048A
502 #define KS8842_TOSR7_P			0x0490
503 #define KS8842_TOSR8_P			0x0492
504 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
505 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
506 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
507 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
508 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
509 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
510 
511 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
512 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
513 
514 /* P1CR1 */
515 #define KS8842_P1CR1_P			0x0500
516 #define KS8842_P1CR2_P			0x0502
517 #define KS8842_P1VIDR_P			0x0504
518 #define KS8842_P1CR3_P			0x0506
519 #define KS8842_P1IRCR_P			0x0508
520 #define KS8842_P1ERCR_P			0x050A
521 #define KS884X_P1SCSLMD_P		0x0510
522 #define KS884X_P1CR4_P			0x0512
523 #define KS884X_P1SR_P			0x0514
524 
525 /* P2CR1 */
526 #define KS8842_P2CR1_P			0x0520
527 #define KS8842_P2CR2_P			0x0522
528 #define KS8842_P2VIDR_P			0x0524
529 #define KS8842_P2CR3_P			0x0526
530 #define KS8842_P2IRCR_P			0x0528
531 #define KS8842_P2ERCR_P			0x052A
532 #define KS884X_P2SCSLMD_P		0x0530
533 #define KS884X_P2CR4_P			0x0532
534 #define KS884X_P2SR_P			0x0534
535 
536 /* P3CR1 */
537 #define KS8842_P3CR1_P			0x0540
538 #define KS8842_P3CR2_P			0x0542
539 #define KS8842_P3VIDR_P			0x0544
540 #define KS8842_P3CR3_P			0x0546
541 #define KS8842_P3IRCR_P			0x0548
542 #define KS8842_P3ERCR_P			0x054A
543 
544 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
545 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
546 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
547 
548 #define PORT_CTRL_ADDR(port, addr)		\
549 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
550 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
551 
552 #define KS8842_PORT_CTRL_1_OFFSET	0x00
553 
554 #define PORT_BROADCAST_STORM		0x0080
555 #define PORT_DIFFSERV_ENABLE		0x0040
556 #define PORT_802_1P_ENABLE		0x0020
557 #define PORT_BASED_PRIORITY_MASK	0x0018
558 #define PORT_BASED_PRIORITY_BASE	0x0003
559 #define PORT_BASED_PRIORITY_SHIFT	3
560 #define PORT_BASED_PRIORITY_0		0x0000
561 #define PORT_BASED_PRIORITY_1		0x0008
562 #define PORT_BASED_PRIORITY_2		0x0010
563 #define PORT_BASED_PRIORITY_3		0x0018
564 #define PORT_INSERT_TAG			0x0004
565 #define PORT_REMOVE_TAG			0x0002
566 #define PORT_PRIO_QUEUE_ENABLE		0x0001
567 
568 #define KS8842_PORT_CTRL_2_OFFSET	0x02
569 
570 #define PORT_INGRESS_VLAN_FILTER	0x4000
571 #define PORT_DISCARD_NON_VID		0x2000
572 #define PORT_FORCE_FLOW_CTRL		0x1000
573 #define PORT_BACK_PRESSURE		0x0800
574 #define PORT_TX_ENABLE			0x0400
575 #define PORT_RX_ENABLE			0x0200
576 #define PORT_LEARN_DISABLE		0x0100
577 #define PORT_MIRROR_SNIFFER		0x0080
578 #define PORT_MIRROR_RX			0x0040
579 #define PORT_MIRROR_TX			0x0020
580 #define PORT_USER_PRIORITY_CEILING	0x0008
581 #define PORT_VLAN_MEMBERSHIP		0x0007
582 
583 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
584 
585 #define PORT_DEFAULT_VID		0x0001
586 
587 #define KS8842_PORT_CTRL_3_OFFSET	0x06
588 
589 #define PORT_INGRESS_LIMIT_MODE		0x000C
590 #define PORT_INGRESS_ALL		0x0000
591 #define PORT_INGRESS_UNICAST		0x0004
592 #define PORT_INGRESS_MULTICAST		0x0008
593 #define PORT_INGRESS_BROADCAST		0x000C
594 #define PORT_COUNT_IFG			0x0002
595 #define PORT_COUNT_PREAMBLE		0x0001
596 
597 #define KS8842_PORT_IN_RATE_OFFSET	0x08
598 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
599 
600 #define PORT_PRIORITY_RATE		0x0F
601 #define PORT_PRIORITY_RATE_SHIFT	4
602 
603 #define KS884X_PORT_LINK_MD		0x10
604 
605 #define PORT_CABLE_10M_SHORT		0x8000
606 #define PORT_CABLE_DIAG_RESULT		0x6000
607 #define PORT_CABLE_STAT_NORMAL		0x0000
608 #define PORT_CABLE_STAT_OPEN		0x2000
609 #define PORT_CABLE_STAT_SHORT		0x4000
610 #define PORT_CABLE_STAT_FAILED		0x6000
611 #define PORT_START_CABLE_DIAG		0x1000
612 #define PORT_FORCE_LINK			0x0800
613 #define PORT_POWER_SAVING_DISABLE	0x0400
614 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
615 #define PORT_CABLE_FAULT_COUNTER	0x01FF
616 
617 #define KS884X_PORT_CTRL_4_OFFSET	0x12
618 
619 #define PORT_LED_OFF			0x8000
620 #define PORT_TX_DISABLE			0x4000
621 #define PORT_AUTO_NEG_RESTART		0x2000
622 #define PORT_REMOTE_FAULT_DISABLE	0x1000
623 #define PORT_POWER_DOWN			0x0800
624 #define PORT_AUTO_MDIX_DISABLE		0x0400
625 #define PORT_FORCE_MDIX			0x0200
626 #define PORT_LOOPBACK			0x0100
627 #define PORT_AUTO_NEG_ENABLE		0x0080
628 #define PORT_FORCE_100_MBIT		0x0040
629 #define PORT_FORCE_FULL_DUPLEX		0x0020
630 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
631 #define PORT_AUTO_NEG_100BTX_FD		0x0008
632 #define PORT_AUTO_NEG_100BTX		0x0004
633 #define PORT_AUTO_NEG_10BT_FD		0x0002
634 #define PORT_AUTO_NEG_10BT		0x0001
635 
636 #define KS884X_PORT_STATUS_OFFSET	0x14
637 
638 #define PORT_HP_MDIX			0x8000
639 #define PORT_REVERSED_POLARITY		0x2000
640 #define PORT_RX_FLOW_CTRL		0x0800
641 #define PORT_TX_FLOW_CTRL		0x1000
642 #define PORT_STATUS_SPEED_100MBIT	0x0400
643 #define PORT_STATUS_FULL_DUPLEX		0x0200
644 #define PORT_REMOTE_FAULT		0x0100
645 #define PORT_MDIX_STATUS		0x0080
646 #define PORT_AUTO_NEG_COMPLETE		0x0040
647 #define PORT_STATUS_LINK_GOOD		0x0020
648 #define PORT_REMOTE_SYM_PAUSE		0x0010
649 #define PORT_REMOTE_100BTX_FD		0x0008
650 #define PORT_REMOTE_100BTX		0x0004
651 #define PORT_REMOTE_10BT_FD		0x0002
652 #define PORT_REMOTE_10BT		0x0001
653 
654 /*
655 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
656 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
657 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
658 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
659 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
660 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
661 */
662 
663 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
665 #define STATIC_MAC_TABLE_VALID		0x00080000
666 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
667 #define STATIC_MAC_TABLE_USE_FID	0x00200000
668 #define STATIC_MAC_TABLE_FID		0x03C00000
669 
670 #define STATIC_MAC_FWD_PORTS_SHIFT	16
671 #define STATIC_MAC_FID_SHIFT		22
672 
673 /*
674 #define VLAN_TABLE_VID			00-00000000-00000FFF
675 #define VLAN_TABLE_FID			00-00000000-0000F000
676 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
677 #define VLAN_TABLE_VALID		00-00000000-00080000
678 */
679 
680 #define VLAN_TABLE_VID			0x00000FFF
681 #define VLAN_TABLE_FID			0x0000F000
682 #define VLAN_TABLE_MEMBERSHIP		0x00070000
683 #define VLAN_TABLE_VALID		0x00080000
684 
685 #define VLAN_TABLE_FID_SHIFT		12
686 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
687 
688 /*
689 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
690 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
691 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
692 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
693 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
694 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
695 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
696 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
697 */
698 
699 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
700 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
701 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
702 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
703 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
704 
705 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
706 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
707 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
708 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
709 
710 #define DYNAMIC_MAC_FID_SHIFT		16
711 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
712 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
713 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
714 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
715 
716 /*
717 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
718 #define MIB_COUNTER_VALID		00-00000000-40000000
719 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
720 */
721 
722 #define MIB_COUNTER_VALUE		0x3FFFFFFF
723 #define MIB_COUNTER_VALID		0x40000000
724 #define MIB_COUNTER_OVERFLOW		0x80000000
725 
726 #define MIB_PACKET_DROPPED		0x0000FFFF
727 
728 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
729 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
730 #define KS_MIB_PACKET_DROPPED_TX	0x102
731 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
732 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
733 #define KS_MIB_PACKET_DROPPED_RX	0x105
734 
735 /* Change default LED mode. */
736 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
737 
738 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
739 
740 #define MAX_ETHERNET_BODY_SIZE		1500
741 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
742 
743 #define MAX_ETHERNET_PACKET_SIZE	\
744 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
745 
746 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
747 #define MAX_RX_BUF_SIZE			(1912 + 4)
748 
749 #define ADDITIONAL_ENTRIES		16
750 #define MAX_MULTICAST_LIST		32
751 
752 #define HW_MULTICAST_SIZE		8
753 
754 #define HW_TO_DEV_PORT(port)		(port - 1)
755 
756 enum {
757 	media_connected,
758 	media_disconnected
759 };
760 
761 enum {
762 	OID_COUNTER_UNKOWN,
763 
764 	OID_COUNTER_FIRST,
765 
766 	/* total transmit errors */
767 	OID_COUNTER_XMIT_ERROR,
768 
769 	/* total receive errors */
770 	OID_COUNTER_RCV_ERROR,
771 
772 	OID_COUNTER_LAST
773 };
774 
775 /*
776  * Hardware descriptor definitions
777  */
778 
779 #define DESC_ALIGNMENT			16
780 #define BUFFER_ALIGNMENT		8
781 
782 #define NUM_OF_RX_DESC			64
783 #define NUM_OF_TX_DESC			64
784 
785 #define KS_DESC_RX_FRAME_LEN		0x000007FF
786 #define KS_DESC_RX_FRAME_TYPE		0x00008000
787 #define KS_DESC_RX_ERROR_CRC		0x00010000
788 #define KS_DESC_RX_ERROR_RUNT		0x00020000
789 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
790 #define KS_DESC_RX_ERROR_PHY		0x00080000
791 #define KS884X_DESC_RX_PORT_MASK	0x00300000
792 #define KS_DESC_RX_MULTICAST		0x01000000
793 #define KS_DESC_RX_ERROR		0x02000000
794 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
795 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
796 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
797 #define KS_DESC_RX_LAST			0x20000000
798 #define KS_DESC_RX_FIRST		0x40000000
799 #define KS_DESC_RX_ERROR_COND		\
800 	(KS_DESC_RX_ERROR_CRC |		\
801 	KS_DESC_RX_ERROR_RUNT |		\
802 	KS_DESC_RX_ERROR_PHY |		\
803 	KS_DESC_RX_ERROR_TOO_LONG)
804 
805 #define KS_DESC_HW_OWNED		0x80000000
806 
807 #define KS_DESC_BUF_SIZE		0x000007FF
808 #define KS884X_DESC_TX_PORT_MASK	0x00300000
809 #define KS_DESC_END_OF_RING		0x02000000
810 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
811 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
812 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
813 #define KS_DESC_TX_LAST			0x20000000
814 #define KS_DESC_TX_FIRST		0x40000000
815 #define KS_DESC_TX_INTERRUPT		0x80000000
816 
817 #define KS_DESC_PORT_SHIFT		20
818 
819 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
820 
821 #define KS_DESC_TX_MASK			\
822 	(KS_DESC_TX_INTERRUPT |		\
823 	KS_DESC_TX_FIRST |		\
824 	KS_DESC_TX_LAST |		\
825 	KS_DESC_TX_CSUM_GEN_IP |	\
826 	KS_DESC_TX_CSUM_GEN_TCP |	\
827 	KS_DESC_TX_CSUM_GEN_UDP |	\
828 	KS_DESC_BUF_SIZE)
829 
830 struct ksz_desc_rx_stat {
831 #ifdef __BIG_ENDIAN_BITFIELD
832 	u32 hw_owned:1;
833 	u32 first_desc:1;
834 	u32 last_desc:1;
835 	u32 csum_err_ip:1;
836 	u32 csum_err_tcp:1;
837 	u32 csum_err_udp:1;
838 	u32 error:1;
839 	u32 multicast:1;
840 	u32 src_port:4;
841 	u32 err_phy:1;
842 	u32 err_too_long:1;
843 	u32 err_runt:1;
844 	u32 err_crc:1;
845 	u32 frame_type:1;
846 	u32 reserved1:4;
847 	u32 frame_len:11;
848 #else
849 	u32 frame_len:11;
850 	u32 reserved1:4;
851 	u32 frame_type:1;
852 	u32 err_crc:1;
853 	u32 err_runt:1;
854 	u32 err_too_long:1;
855 	u32 err_phy:1;
856 	u32 src_port:4;
857 	u32 multicast:1;
858 	u32 error:1;
859 	u32 csum_err_udp:1;
860 	u32 csum_err_tcp:1;
861 	u32 csum_err_ip:1;
862 	u32 last_desc:1;
863 	u32 first_desc:1;
864 	u32 hw_owned:1;
865 #endif
866 };
867 
868 struct ksz_desc_tx_stat {
869 #ifdef __BIG_ENDIAN_BITFIELD
870 	u32 hw_owned:1;
871 	u32 reserved1:31;
872 #else
873 	u32 reserved1:31;
874 	u32 hw_owned:1;
875 #endif
876 };
877 
878 struct ksz_desc_rx_buf {
879 #ifdef __BIG_ENDIAN_BITFIELD
880 	u32 reserved4:6;
881 	u32 end_of_ring:1;
882 	u32 reserved3:14;
883 	u32 buf_size:11;
884 #else
885 	u32 buf_size:11;
886 	u32 reserved3:14;
887 	u32 end_of_ring:1;
888 	u32 reserved4:6;
889 #endif
890 };
891 
892 struct ksz_desc_tx_buf {
893 #ifdef __BIG_ENDIAN_BITFIELD
894 	u32 intr:1;
895 	u32 first_seg:1;
896 	u32 last_seg:1;
897 	u32 csum_gen_ip:1;
898 	u32 csum_gen_tcp:1;
899 	u32 csum_gen_udp:1;
900 	u32 end_of_ring:1;
901 	u32 reserved4:1;
902 	u32 dest_port:4;
903 	u32 reserved3:9;
904 	u32 buf_size:11;
905 #else
906 	u32 buf_size:11;
907 	u32 reserved3:9;
908 	u32 dest_port:4;
909 	u32 reserved4:1;
910 	u32 end_of_ring:1;
911 	u32 csum_gen_udp:1;
912 	u32 csum_gen_tcp:1;
913 	u32 csum_gen_ip:1;
914 	u32 last_seg:1;
915 	u32 first_seg:1;
916 	u32 intr:1;
917 #endif
918 };
919 
920 union desc_stat {
921 	struct ksz_desc_rx_stat rx;
922 	struct ksz_desc_tx_stat tx;
923 	u32 data;
924 };
925 
926 union desc_buf {
927 	struct ksz_desc_rx_buf rx;
928 	struct ksz_desc_tx_buf tx;
929 	u32 data;
930 };
931 
932 /**
933  * struct ksz_hw_desc - Hardware descriptor data structure
934  * @ctrl:	Descriptor control value.
935  * @buf:	Descriptor buffer value.
936  * @addr:	Physical address of memory buffer.
937  * @next:	Pointer to next hardware descriptor.
938  */
939 struct ksz_hw_desc {
940 	union desc_stat ctrl;
941 	union desc_buf buf;
942 	u32 addr;
943 	u32 next;
944 };
945 
946 /**
947  * struct ksz_sw_desc - Software descriptor data structure
948  * @ctrl:	Descriptor control value.
949  * @buf:	Descriptor buffer value.
950  * @buf_size:	Current buffers size value in hardware descriptor.
951  */
952 struct ksz_sw_desc {
953 	union desc_stat ctrl;
954 	union desc_buf buf;
955 	u32 buf_size;
956 };
957 
958 /**
959  * struct ksz_dma_buf - OS dependent DMA buffer data structure
960  * @skb:	Associated socket buffer.
961  * @dma:	Associated physical DMA address.
962  * @len:	Actual len used.
963  */
964 struct ksz_dma_buf {
965 	struct sk_buff *skb;
966 	dma_addr_t dma;
967 	int len;
968 };
969 
970 /**
971  * struct ksz_desc - Descriptor structure
972  * @phw:	Hardware descriptor pointer to uncached physical memory.
973  * @sw:		Cached memory to hold hardware descriptor values for
974  * 		manipulation.
975  * @dma_buf:	Operating system dependent data structure to hold physical
976  * 		memory buffer allocation information.
977  */
978 struct ksz_desc {
979 	struct ksz_hw_desc *phw;
980 	struct ksz_sw_desc sw;
981 	struct ksz_dma_buf dma_buf;
982 };
983 
984 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
985 
986 /**
987  * struct ksz_desc_info - Descriptor information data structure
988  * @ring:	First descriptor in the ring.
989  * @cur:	Current descriptor being manipulated.
990  * @ring_virt:	First hardware descriptor in the ring.
991  * @ring_phys:	The physical address of the first descriptor of the ring.
992  * @size:	Size of hardware descriptor.
993  * @alloc:	Number of descriptors allocated.
994  * @avail:	Number of descriptors available for use.
995  * @last:	Index for last descriptor released to hardware.
996  * @next:	Index for next descriptor available for use.
997  * @mask:	Mask for index wrapping.
998  */
999 struct ksz_desc_info {
1000 	struct ksz_desc *ring;
1001 	struct ksz_desc *cur;
1002 	struct ksz_hw_desc *ring_virt;
1003 	u32 ring_phys;
1004 	int size;
1005 	int alloc;
1006 	int avail;
1007 	int last;
1008 	int next;
1009 	int mask;
1010 };
1011 
1012 /*
1013  * KSZ8842 switch definitions
1014  */
1015 
1016 enum {
1017 	TABLE_STATIC_MAC = 0,
1018 	TABLE_VLAN,
1019 	TABLE_DYNAMIC_MAC,
1020 	TABLE_MIB
1021 };
1022 
1023 #define LEARNED_MAC_TABLE_ENTRIES	1024
1024 #define STATIC_MAC_TABLE_ENTRIES	8
1025 
1026 /**
1027  * struct ksz_mac_table - Static MAC table data structure
1028  * @mac_addr:	MAC address to filter.
1029  * @vid:	VID value.
1030  * @fid:	FID value.
1031  * @ports:	Port membership.
1032  * @override:	Override setting.
1033  * @use_fid:	FID use setting.
1034  * @valid:	Valid setting indicating the entry is being used.
1035  */
1036 struct ksz_mac_table {
1037 	u8 mac_addr[ETH_ALEN];
1038 	u16 vid;
1039 	u8 fid;
1040 	u8 ports;
1041 	u8 override:1;
1042 	u8 use_fid:1;
1043 	u8 valid:1;
1044 };
1045 
1046 #define VLAN_TABLE_ENTRIES		16
1047 
1048 /**
1049  * struct ksz_vlan_table - VLAN table data structure
1050  * @vid:	VID value.
1051  * @fid:	FID value.
1052  * @member:	Port membership.
1053  */
1054 struct ksz_vlan_table {
1055 	u16 vid;
1056 	u8 fid;
1057 	u8 member;
1058 };
1059 
1060 #define DIFFSERV_ENTRIES		64
1061 #define PRIO_802_1P_ENTRIES		8
1062 #define PRIO_QUEUES			4
1063 
1064 #define SWITCH_PORT_NUM			2
1065 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1066 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1067 #define PORT_MASK			7
1068 
1069 #define MAIN_PORT			0
1070 #define OTHER_PORT			1
1071 #define HOST_PORT			SWITCH_PORT_NUM
1072 
1073 #define PORT_COUNTER_NUM		0x20
1074 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1075 
1076 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1077 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1078 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1079 #define MIB_COUNTER_RX_FRAGMENT		0x03
1080 #define MIB_COUNTER_RX_OVERSIZE		0x04
1081 #define MIB_COUNTER_RX_JABBER		0x05
1082 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1083 #define MIB_COUNTER_RX_CRC_ERR		0x07
1084 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1085 #define MIB_COUNTER_RX_CTRL_8808	0x09
1086 #define MIB_COUNTER_RX_PAUSE		0x0A
1087 #define MIB_COUNTER_RX_BROADCAST	0x0B
1088 #define MIB_COUNTER_RX_MULTICAST	0x0C
1089 #define MIB_COUNTER_RX_UNICAST		0x0D
1090 #define MIB_COUNTER_RX_OCTET_64		0x0E
1091 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1092 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1093 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1094 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1095 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1096 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1097 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1098 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1099 #define MIB_COUNTER_TX_PAUSE		0x17
1100 #define MIB_COUNTER_TX_BROADCAST	0x18
1101 #define MIB_COUNTER_TX_MULTICAST	0x19
1102 #define MIB_COUNTER_TX_UNICAST		0x1A
1103 #define MIB_COUNTER_TX_DEFERRED		0x1B
1104 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1105 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1106 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1107 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1108 
1109 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1110 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1111 
1112 /**
1113  * struct ksz_port_mib - Port MIB data structure
1114  * @cnt_ptr:	Current pointer to MIB counter index.
1115  * @link_down:	Indication the link has just gone down.
1116  * @state:	Connection status of the port.
1117  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1118  * @counter:	64-bit MIB counter value.
1119  * @dropped:	Temporary buffer to remember last read packet dropped values.
1120  *
1121  * MIB counters needs to be read periodically so that counters do not get
1122  * overflowed and give incorrect values.  A right balance is needed to
1123  * satisfy this condition and not waste too much CPU time.
1124  *
1125  * It is pointless to read MIB counters when the port is disconnected.  The
1126  * @state provides the connection status so that MIB counters are read only
1127  * when the port is connected.  The @link_down indicates the port is just
1128  * disconnected so that all MIB counters are read one last time to update the
1129  * information.
1130  */
1131 struct ksz_port_mib {
1132 	u8 cnt_ptr;
1133 	u8 link_down;
1134 	u8 state;
1135 	u8 mib_start;
1136 
1137 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1138 	u32 dropped[2];
1139 };
1140 
1141 /**
1142  * struct ksz_port_cfg - Port configuration data structure
1143  * @vid:	VID value.
1144  * @member:	Port membership.
1145  * @port_prio:	Port priority.
1146  * @rx_rate:	Receive priority rate.
1147  * @tx_rate:	Transmit priority rate.
1148  * @stp_state:	Current Spanning Tree Protocol state.
1149  */
1150 struct ksz_port_cfg {
1151 	u16 vid;
1152 	u8 member;
1153 	u8 port_prio;
1154 	u32 rx_rate[PRIO_QUEUES];
1155 	u32 tx_rate[PRIO_QUEUES];
1156 	int stp_state;
1157 };
1158 
1159 /**
1160  * struct ksz_switch - KSZ8842 switch data structure
1161  * @mac_table:	MAC table entries information.
1162  * @vlan_table:	VLAN table entries information.
1163  * @port_cfg:	Port configuration information.
1164  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1165  * 		(bit7 ~ bit2) field.
1166  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1167  * 		Tag priority field.
1168  * @br_addr:	Bridge address.  Used for STP.
1169  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1170  * @broad_per:	Broadcast storm percentage.
1171  * @member:	Current port membership.  Used for STP.
1172  */
1173 struct ksz_switch {
1174 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177 
1178 	u8 diffserv[DIFFSERV_ENTRIES];
1179 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180 
1181 	u8 br_addr[ETH_ALEN];
1182 	u8 other_addr[ETH_ALEN];
1183 
1184 	u8 broad_per;
1185 	u8 member;
1186 };
1187 
1188 #define TX_RATE_UNIT			10000
1189 
1190 /**
1191  * struct ksz_port_info - Port information data structure
1192  * @state:	Connection status of the port.
1193  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1194  * @duplex:	Duplex mode.
1195  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1196  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1197  * @port_id:	Port index to access actual hardware register.
1198  * @pdev:	Pointer to OS dependent network device.
1199  */
1200 struct ksz_port_info {
1201 	uint state;
1202 	uint tx_rate;
1203 	u8 duplex;
1204 	u8 advertised;
1205 	u8 partner;
1206 	u8 port_id;
1207 	void *pdev;
1208 };
1209 
1210 #define MAX_TX_HELD_SIZE		52000
1211 
1212 /* Hardware features and bug fixes. */
1213 #define LINK_INT_WORKING		(1 << 0)
1214 #define SMALL_PACKET_TX_BUG		(1 << 1)
1215 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1216 #define RX_HUGE_FRAME			(1 << 4)
1217 #define STP_SUPPORT			(1 << 8)
1218 
1219 /* Software overrides. */
1220 #define PAUSE_FLOW_CTRL			(1 << 0)
1221 #define FAST_AGING			(1 << 1)
1222 
1223 /**
1224  * struct ksz_hw - KSZ884X hardware data structure
1225  * @io:			Virtual address assigned.
1226  * @ksz_switch:		Pointer to KSZ8842 switch.
1227  * @port_info:		Port information.
1228  * @port_mib:		Port MIB information.
1229  * @dev_count:		Number of network devices this hardware supports.
1230  * @dst_ports:		Destination ports in switch for transmission.
1231  * @id:			Hardware ID.  Used for display only.
1232  * @mib_cnt:		Number of MIB counters this hardware has.
1233  * @mib_port_cnt:	Number of ports with MIB counters.
1234  * @tx_cfg:		Cached transmit control settings.
1235  * @rx_cfg:		Cached receive control settings.
1236  * @intr_mask:		Current interrupt mask.
1237  * @intr_set:		Current interrup set.
1238  * @intr_blocked:	Interrupt blocked.
1239  * @rx_desc_info:	Receive descriptor information.
1240  * @tx_desc_info:	Transmit descriptor information.
1241  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1242  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1243  * @tx_size:		Transmit data size.  Used for TX optimization.
1244  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1245  * @perm_addr:		Permanent MAC address.
1246  * @override_addr:	Overridden MAC address.
1247  * @address:		Additional MAC address entries.
1248  * @addr_list_size:	Additional MAC address list size.
1249  * @mac_override:	Indication of MAC address overridden.
1250  * @promiscuous:	Counter to keep track of promiscuous mode set.
1251  * @all_multi:		Counter to keep track of all multicast mode set.
1252  * @multi_list:		Multicast address entries.
1253  * @multi_bits:		Cached multicast hash table settings.
1254  * @multi_list_size:	Multicast address list size.
1255  * @enabled:		Indication of hardware enabled.
1256  * @rx_stop:		Indication of receive process stop.
1257  * @reserved2:		none
1258  * @features:		Hardware features to enable.
1259  * @overrides:		Hardware features to override.
1260  * @parent:		Pointer to parent, network device private structure.
1261  */
1262 struct ksz_hw {
1263 	void __iomem *io;
1264 
1265 	struct ksz_switch *ksz_switch;
1266 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1267 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1268 	int dev_count;
1269 	int dst_ports;
1270 	int id;
1271 	int mib_cnt;
1272 	int mib_port_cnt;
1273 
1274 	u32 tx_cfg;
1275 	u32 rx_cfg;
1276 	u32 intr_mask;
1277 	u32 intr_set;
1278 	uint intr_blocked;
1279 
1280 	struct ksz_desc_info rx_desc_info;
1281 	struct ksz_desc_info tx_desc_info;
1282 
1283 	int tx_int_cnt;
1284 	int tx_int_mask;
1285 	int tx_size;
1286 
1287 	u8 perm_addr[ETH_ALEN];
1288 	u8 override_addr[ETH_ALEN];
1289 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1290 	u8 addr_list_size;
1291 	u8 mac_override;
1292 	u8 promiscuous;
1293 	u8 all_multi;
1294 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1295 	u8 multi_bits[HW_MULTICAST_SIZE];
1296 	u8 multi_list_size;
1297 
1298 	u8 enabled;
1299 	u8 rx_stop;
1300 	u8 reserved2[1];
1301 
1302 	uint features;
1303 	uint overrides;
1304 
1305 	void *parent;
1306 };
1307 
1308 enum {
1309 	PHY_NO_FLOW_CTRL,
1310 	PHY_FLOW_CTRL,
1311 	PHY_TX_ONLY,
1312 	PHY_RX_ONLY
1313 };
1314 
1315 /**
1316  * struct ksz_port - Virtual port data structure
1317  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1318  * 			duplex, and 0 for auto, which normally results in full
1319  * 			duplex.
1320  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1321  * 			0 for auto, which normally results in 100 Mbit.
1322  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1323  * 			force.
1324  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1325  * 			control, and PHY_FLOW_CTRL for flow control.
1326  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1327  * 			Mbit PHY.
1328  * @first_port:		Index of first port this port supports.
1329  * @mib_port_cnt:	Number of ports with MIB counters.
1330  * @port_cnt:		Number of ports this port supports.
1331  * @counter:		Port statistics counter.
1332  * @hw:			Pointer to hardware structure.
1333  * @linked:		Pointer to port information linked to this port.
1334  */
1335 struct ksz_port {
1336 	u8 duplex;
1337 	u8 speed;
1338 	u8 force_link;
1339 	u8 flow_ctrl;
1340 
1341 	int first_port;
1342 	int mib_port_cnt;
1343 	int port_cnt;
1344 	u64 counter[OID_COUNTER_LAST];
1345 
1346 	struct ksz_hw *hw;
1347 	struct ksz_port_info *linked;
1348 };
1349 
1350 /**
1351  * struct ksz_timer_info - Timer information data structure
1352  * @timer:	Kernel timer.
1353  * @cnt:	Running timer counter.
1354  * @max:	Number of times to run timer; -1 for infinity.
1355  * @period:	Timer period in jiffies.
1356  */
1357 struct ksz_timer_info {
1358 	struct timer_list timer;
1359 	int cnt;
1360 	int max;
1361 	int period;
1362 };
1363 
1364 /**
1365  * struct ksz_shared_mem - OS dependent shared memory data structure
1366  * @dma_addr:	Physical DMA address allocated.
1367  * @alloc_size:	Allocation size.
1368  * @phys:	Actual physical address used.
1369  * @alloc_virt:	Virtual address allocated.
1370  * @virt:	Actual virtual address used.
1371  */
1372 struct ksz_shared_mem {
1373 	dma_addr_t dma_addr;
1374 	uint alloc_size;
1375 	uint phys;
1376 	u8 *alloc_virt;
1377 	u8 *virt;
1378 };
1379 
1380 /**
1381  * struct ksz_counter_info - OS dependent counter information data structure
1382  * @counter:	Wait queue to wakeup after counters are read.
1383  * @time:	Next time in jiffies to read counter.
1384  * @read:	Indication of counters read in full or not.
1385  */
1386 struct ksz_counter_info {
1387 	wait_queue_head_t counter;
1388 	unsigned long time;
1389 	int read;
1390 };
1391 
1392 /**
1393  * struct dev_info - Network device information data structure
1394  * @dev:		Pointer to network device.
1395  * @pdev:		Pointer to PCI device.
1396  * @hw:			Hardware structure.
1397  * @desc_pool:		Physical memory used for descriptor pool.
1398  * @hwlock:		Spinlock to prevent hardware from accessing.
1399  * @lock:		Mutex lock to prevent device from accessing.
1400  * @dev_rcv:		Receive process function used.
1401  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1402  * @skb_index:		Buffer index for receiving fragments.
1403  * @skb_len:		Buffer length for receiving fragments.
1404  * @mib_read:		Workqueue to read MIB counters.
1405  * @mib_timer_info:	Timer to read MIB counters.
1406  * @counter:		Used for MIB reading.
1407  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1408  * 			the maximum is MAX_RX_BUF_SIZE.
1409  * @opened:		Counter to keep track of device open.
1410  * @rx_tasklet:		Receive processing tasklet.
1411  * @tx_tasklet:		Transmit processing tasklet.
1412  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1413  * @wol_support:	Wake-on-LAN support used by ethtool.
1414  * @pme_wait:		Used for KSZ8841 power management.
1415  */
1416 struct dev_info {
1417 	struct net_device *dev;
1418 	struct pci_dev *pdev;
1419 
1420 	struct ksz_hw hw;
1421 	struct ksz_shared_mem desc_pool;
1422 
1423 	spinlock_t hwlock;
1424 	struct mutex lock;
1425 
1426 	int (*dev_rcv)(struct dev_info *);
1427 
1428 	struct sk_buff *last_skb;
1429 	int skb_index;
1430 	int skb_len;
1431 
1432 	struct work_struct mib_read;
1433 	struct ksz_timer_info mib_timer_info;
1434 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1435 
1436 	int mtu;
1437 	int opened;
1438 
1439 	struct tasklet_struct rx_tasklet;
1440 	struct tasklet_struct tx_tasklet;
1441 
1442 	int wol_enable;
1443 	int wol_support;
1444 	unsigned long pme_wait;
1445 };
1446 
1447 /**
1448  * struct dev_priv - Network device private data structure
1449  * @adapter:		Adapter device information.
1450  * @port:		Port information.
1451  * @monitor_timer_info:	Timer to monitor ports.
1452  * @proc_sem:		Semaphore for proc accessing.
1453  * @id:			Device ID.
1454  * @mii_if:		MII interface information.
1455  * @advertising:	Temporary variable to store advertised settings.
1456  * @msg_enable:		The message flags controlling driver output.
1457  * @media_state:	The connection status of the device.
1458  * @multicast:		The all multicast state of the device.
1459  * @promiscuous:	The promiscuous state of the device.
1460  */
1461 struct dev_priv {
1462 	struct dev_info *adapter;
1463 	struct ksz_port port;
1464 	struct ksz_timer_info monitor_timer_info;
1465 
1466 	struct semaphore proc_sem;
1467 	int id;
1468 
1469 	struct mii_if_info mii_if;
1470 	u32 advertising;
1471 
1472 	u32 msg_enable;
1473 	int media_state;
1474 	int multicast;
1475 	int promiscuous;
1476 };
1477 
1478 #define DRV_NAME		"KSZ884X PCI"
1479 #define DEVICE_NAME		"KSZ884x PCI"
1480 #define DRV_VERSION		"1.0.0"
1481 #define DRV_RELDATE		"Feb 8, 2010"
1482 
1483 static char version[] =
1484 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1485 
1486 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1487 
1488 /*
1489  * Interrupt processing primary routines
1490  */
1491 
1492 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1493 {
1494 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1495 }
1496 
1497 static inline void hw_dis_intr(struct ksz_hw *hw)
1498 {
1499 	hw->intr_blocked = hw->intr_mask;
1500 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1501 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1502 }
1503 
1504 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1505 {
1506 	hw->intr_set = interrupt;
1507 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 }
1509 
1510 static inline void hw_ena_intr(struct ksz_hw *hw)
1511 {
1512 	hw->intr_blocked = 0;
1513 	hw_set_intr(hw, hw->intr_mask);
1514 }
1515 
1516 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1517 {
1518 	hw->intr_mask &= ~(bit);
1519 }
1520 
1521 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1522 {
1523 	u32 read_intr;
1524 
1525 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1526 	hw->intr_set = read_intr & ~interrupt;
1527 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1528 	hw_dis_intr_bit(hw, interrupt);
1529 }
1530 
1531 /**
1532  * hw_turn_on_intr - turn on specified interrupts
1533  * @hw: 	The hardware instance.
1534  * @bit:	The interrupt bits to be on.
1535  *
1536  * This routine turns on the specified interrupts in the interrupt mask so that
1537  * those interrupts will be enabled.
1538  */
1539 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1540 {
1541 	hw->intr_mask |= bit;
1542 
1543 	if (!hw->intr_blocked)
1544 		hw_set_intr(hw, hw->intr_mask);
1545 }
1546 
1547 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1548 {
1549 	u32 read_intr;
1550 
1551 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1552 	hw->intr_set = read_intr | interrupt;
1553 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1554 }
1555 
1556 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1557 {
1558 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1559 	*status = *status & hw->intr_set;
1560 }
1561 
1562 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1563 {
1564 	if (interrupt)
1565 		hw_ena_intr(hw);
1566 }
1567 
1568 /**
1569  * hw_block_intr - block hardware interrupts
1570  * @hw: The hardware instance.
1571  *
1572  * This function blocks all interrupts of the hardware and returns the current
1573  * interrupt enable mask so that interrupts can be restored later.
1574  *
1575  * Return the current interrupt enable mask.
1576  */
1577 static uint hw_block_intr(struct ksz_hw *hw)
1578 {
1579 	uint interrupt = 0;
1580 
1581 	if (!hw->intr_blocked) {
1582 		hw_dis_intr(hw);
1583 		interrupt = hw->intr_blocked;
1584 	}
1585 	return interrupt;
1586 }
1587 
1588 /*
1589  * Hardware descriptor routines
1590  */
1591 
1592 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1593 {
1594 	status.rx.hw_owned = 0;
1595 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1596 }
1597 
1598 static inline void release_desc(struct ksz_desc *desc)
1599 {
1600 	desc->sw.ctrl.tx.hw_owned = 1;
1601 	if (desc->sw.buf_size != desc->sw.buf.data) {
1602 		desc->sw.buf_size = desc->sw.buf.data;
1603 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1604 	}
1605 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1606 }
1607 
1608 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1609 {
1610 	*desc = &info->ring[info->last];
1611 	info->last++;
1612 	info->last &= info->mask;
1613 	info->avail--;
1614 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1615 }
1616 
1617 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1618 {
1619 	desc->phw->addr = cpu_to_le32(addr);
1620 }
1621 
1622 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1623 {
1624 	desc->sw.buf.rx.buf_size = len;
1625 }
1626 
1627 static inline void get_tx_pkt(struct ksz_desc_info *info,
1628 	struct ksz_desc **desc)
1629 {
1630 	*desc = &info->ring[info->next];
1631 	info->next++;
1632 	info->next &= info->mask;
1633 	info->avail--;
1634 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1635 }
1636 
1637 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1638 {
1639 	desc->phw->addr = cpu_to_le32(addr);
1640 }
1641 
1642 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1643 {
1644 	desc->sw.buf.tx.buf_size = len;
1645 }
1646 
1647 /* Switch functions */
1648 
1649 #define TABLE_READ			0x10
1650 #define TABLE_SEL_SHIFT			2
1651 
1652 #define HW_DELAY(hw, reg)			\
1653 	do {					\
1654 		readw(hw->io + reg);		\
1655 	} while (0)
1656 
1657 /**
1658  * sw_r_table - read 4 bytes of data from switch table
1659  * @hw:		The hardware instance.
1660  * @table:	The table selector.
1661  * @addr:	The address of the table entry.
1662  * @data:	Buffer to store the read data.
1663  *
1664  * This routine reads 4 bytes of data from the table of the switch.
1665  * Hardware interrupts are disabled to minimize corruption of read data.
1666  */
1667 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1668 {
1669 	u16 ctrl_addr;
1670 	uint interrupt;
1671 
1672 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1673 
1674 	interrupt = hw_block_intr(hw);
1675 
1676 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1677 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1678 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1679 
1680 	hw_restore_intr(hw, interrupt);
1681 }
1682 
1683 /**
1684  * sw_w_table_64 - write 8 bytes of data to the switch table
1685  * @hw:		The hardware instance.
1686  * @table:	The table selector.
1687  * @addr:	The address of the table entry.
1688  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1689  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1690  *
1691  * This routine writes 8 bytes of data to the table of the switch.
1692  * Hardware interrupts are disabled to minimize corruption of written data.
1693  */
1694 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1695 	u32 data_lo)
1696 {
1697 	u16 ctrl_addr;
1698 	uint interrupt;
1699 
1700 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1701 
1702 	interrupt = hw_block_intr(hw);
1703 
1704 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1705 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1706 
1707 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1708 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1709 
1710 	hw_restore_intr(hw, interrupt);
1711 }
1712 
1713 /**
1714  * sw_w_sta_mac_table - write to the static MAC table
1715  * @hw: 	The hardware instance.
1716  * @addr:	The address of the table entry.
1717  * @mac_addr:	The MAC address.
1718  * @ports:	The port members.
1719  * @override:	The flag to override the port receive/transmit settings.
1720  * @valid:	The flag to indicate entry is valid.
1721  * @use_fid:	The flag to indicate the FID is valid.
1722  * @fid:	The FID value.
1723  *
1724  * This routine writes an entry of the static MAC table of the switch.  It
1725  * calls sw_w_table_64() to write the data.
1726  */
1727 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1728 	u8 ports, int override, int valid, int use_fid, u8 fid)
1729 {
1730 	u32 data_hi;
1731 	u32 data_lo;
1732 
1733 	data_lo = ((u32) mac_addr[2] << 24) |
1734 		((u32) mac_addr[3] << 16) |
1735 		((u32) mac_addr[4] << 8) | mac_addr[5];
1736 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1737 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1738 
1739 	if (override)
1740 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1741 	if (use_fid) {
1742 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1743 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1744 	}
1745 	if (valid)
1746 		data_hi |= STATIC_MAC_TABLE_VALID;
1747 
1748 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1749 }
1750 
1751 /**
1752  * sw_r_vlan_table - read from the VLAN table
1753  * @hw: 	The hardware instance.
1754  * @addr:	The address of the table entry.
1755  * @vid:	Buffer to store the VID.
1756  * @fid:	Buffer to store the VID.
1757  * @member:	Buffer to store the port membership.
1758  *
1759  * This function reads an entry of the VLAN table of the switch.  It calls
1760  * sw_r_table() to get the data.
1761  *
1762  * Return 0 if the entry is valid; otherwise -1.
1763  */
1764 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1765 	u8 *member)
1766 {
1767 	u32 data;
1768 
1769 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1770 	if (data & VLAN_TABLE_VALID) {
1771 		*vid = (u16)(data & VLAN_TABLE_VID);
1772 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1773 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1774 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1775 		return 0;
1776 	}
1777 	return -1;
1778 }
1779 
1780 /**
1781  * port_r_mib_cnt - read MIB counter
1782  * @hw: 	The hardware instance.
1783  * @port:	The port index.
1784  * @addr:	The address of the counter.
1785  * @cnt:	Buffer to store the counter.
1786  *
1787  * This routine reads a MIB counter of the port.
1788  * Hardware interrupts are disabled to minimize corruption of read data.
1789  */
1790 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1791 {
1792 	u32 data;
1793 	u16 ctrl_addr;
1794 	uint interrupt;
1795 	int timeout;
1796 
1797 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1798 
1799 	interrupt = hw_block_intr(hw);
1800 
1801 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1802 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1803 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1804 
1805 	for (timeout = 100; timeout > 0; timeout--) {
1806 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1807 
1808 		if (data & MIB_COUNTER_VALID) {
1809 			if (data & MIB_COUNTER_OVERFLOW)
1810 				*cnt += MIB_COUNTER_VALUE + 1;
1811 			*cnt += data & MIB_COUNTER_VALUE;
1812 			break;
1813 		}
1814 	}
1815 
1816 	hw_restore_intr(hw, interrupt);
1817 }
1818 
1819 /**
1820  * port_r_mib_pkt - read dropped packet counts
1821  * @hw: 	The hardware instance.
1822  * @port:	The port index.
1823  * @last:	last one
1824  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1825  *
1826  * This routine reads the dropped packet counts of the port.
1827  * Hardware interrupts are disabled to minimize corruption of read data.
1828  */
1829 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1830 {
1831 	u32 cur;
1832 	u32 data;
1833 	u16 ctrl_addr;
1834 	uint interrupt;
1835 	int index;
1836 
1837 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1838 	do {
1839 		interrupt = hw_block_intr(hw);
1840 
1841 		ctrl_addr = (u16) index;
1842 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1843 			<< 8);
1844 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1845 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1846 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1847 
1848 		hw_restore_intr(hw, interrupt);
1849 
1850 		data &= MIB_PACKET_DROPPED;
1851 		cur = *last;
1852 		if (data != cur) {
1853 			*last = data;
1854 			if (data < cur)
1855 				data += MIB_PACKET_DROPPED + 1;
1856 			data -= cur;
1857 			*cnt += data;
1858 		}
1859 		++last;
1860 		++cnt;
1861 		index -= KS_MIB_PACKET_DROPPED_TX -
1862 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1863 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1864 }
1865 
1866 /**
1867  * port_r_cnt - read MIB counters periodically
1868  * @hw: 	The hardware instance.
1869  * @port:	The port index.
1870  *
1871  * This routine is used to read the counters of the port periodically to avoid
1872  * counter overflow.  The hardware should be acquired first before calling this
1873  * routine.
1874  *
1875  * Return non-zero when not all counters not read.
1876  */
1877 static int port_r_cnt(struct ksz_hw *hw, int port)
1878 {
1879 	struct ksz_port_mib *mib = &hw->port_mib[port];
1880 
1881 	if (mib->mib_start < PORT_COUNTER_NUM)
1882 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1883 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1884 				&mib->counter[mib->cnt_ptr]);
1885 			++mib->cnt_ptr;
1886 		}
1887 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1888 		port_r_mib_pkt(hw, port, mib->dropped,
1889 			&mib->counter[PORT_COUNTER_NUM]);
1890 	mib->cnt_ptr = 0;
1891 	return 0;
1892 }
1893 
1894 /**
1895  * port_init_cnt - initialize MIB counter values
1896  * @hw: 	The hardware instance.
1897  * @port:	The port index.
1898  *
1899  * This routine is used to initialize all counters to zero if the hardware
1900  * cannot do it after reset.
1901  */
1902 static void port_init_cnt(struct ksz_hw *hw, int port)
1903 {
1904 	struct ksz_port_mib *mib = &hw->port_mib[port];
1905 
1906 	mib->cnt_ptr = 0;
1907 	if (mib->mib_start < PORT_COUNTER_NUM)
1908 		do {
1909 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1910 				&mib->counter[mib->cnt_ptr]);
1911 			++mib->cnt_ptr;
1912 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1913 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1914 		port_r_mib_pkt(hw, port, mib->dropped,
1915 			&mib->counter[PORT_COUNTER_NUM]);
1916 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1917 	mib->cnt_ptr = 0;
1918 }
1919 
1920 /*
1921  * Port functions
1922  */
1923 
1924 /**
1925  * port_chk - check port register bits
1926  * @hw: 	The hardware instance.
1927  * @port:	The port index.
1928  * @offset:	The offset of the port register.
1929  * @bits:	The data bits to check.
1930  *
1931  * This function checks whether the specified bits of the port register are set
1932  * or not.
1933  *
1934  * Return 0 if the bits are not set.
1935  */
1936 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1937 {
1938 	u32 addr;
1939 	u16 data;
1940 
1941 	PORT_CTRL_ADDR(port, addr);
1942 	addr += offset;
1943 	data = readw(hw->io + addr);
1944 	return (data & bits) == bits;
1945 }
1946 
1947 /**
1948  * port_cfg - set port register bits
1949  * @hw: 	The hardware instance.
1950  * @port:	The port index.
1951  * @offset:	The offset of the port register.
1952  * @bits:	The data bits to set.
1953  * @set:	The flag indicating whether the bits are to be set or not.
1954  *
1955  * This routine sets or resets the specified bits of the port register.
1956  */
1957 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1958 	int set)
1959 {
1960 	u32 addr;
1961 	u16 data;
1962 
1963 	PORT_CTRL_ADDR(port, addr);
1964 	addr += offset;
1965 	data = readw(hw->io + addr);
1966 	if (set)
1967 		data |= bits;
1968 	else
1969 		data &= ~bits;
1970 	writew(data, hw->io + addr);
1971 }
1972 
1973 /**
1974  * port_chk_shift - check port bit
1975  * @hw: 	The hardware instance.
1976  * @port:	The port index.
1977  * @addr:	The offset of the register.
1978  * @shift:	Number of bits to shift.
1979  *
1980  * This function checks whether the specified port is set in the register or
1981  * not.
1982  *
1983  * Return 0 if the port is not set.
1984  */
1985 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1986 {
1987 	u16 data;
1988 	u16 bit = 1 << port;
1989 
1990 	data = readw(hw->io + addr);
1991 	data >>= shift;
1992 	return (data & bit) == bit;
1993 }
1994 
1995 /**
1996  * port_cfg_shift - set port bit
1997  * @hw: 	The hardware instance.
1998  * @port:	The port index.
1999  * @addr:	The offset of the register.
2000  * @shift:	Number of bits to shift.
2001  * @set:	The flag indicating whether the port is to be set or not.
2002  *
2003  * This routine sets or resets the specified port in the register.
2004  */
2005 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2006 	int set)
2007 {
2008 	u16 data;
2009 	u16 bits = 1 << port;
2010 
2011 	data = readw(hw->io + addr);
2012 	bits <<= shift;
2013 	if (set)
2014 		data |= bits;
2015 	else
2016 		data &= ~bits;
2017 	writew(data, hw->io + addr);
2018 }
2019 
2020 /**
2021  * port_r8 - read byte from port register
2022  * @hw: 	The hardware instance.
2023  * @port:	The port index.
2024  * @offset:	The offset of the port register.
2025  * @data:	Buffer to store the data.
2026  *
2027  * This routine reads a byte from the port register.
2028  */
2029 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2030 {
2031 	u32 addr;
2032 
2033 	PORT_CTRL_ADDR(port, addr);
2034 	addr += offset;
2035 	*data = readb(hw->io + addr);
2036 }
2037 
2038 /**
2039  * port_r16 - read word from port register.
2040  * @hw: 	The hardware instance.
2041  * @port:	The port index.
2042  * @offset:	The offset of the port register.
2043  * @data:	Buffer to store the data.
2044  *
2045  * This routine reads a word from the port register.
2046  */
2047 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2048 {
2049 	u32 addr;
2050 
2051 	PORT_CTRL_ADDR(port, addr);
2052 	addr += offset;
2053 	*data = readw(hw->io + addr);
2054 }
2055 
2056 /**
2057  * port_w16 - write word to port register.
2058  * @hw: 	The hardware instance.
2059  * @port:	The port index.
2060  * @offset:	The offset of the port register.
2061  * @data:	Data to write.
2062  *
2063  * This routine writes a word to the port register.
2064  */
2065 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2066 {
2067 	u32 addr;
2068 
2069 	PORT_CTRL_ADDR(port, addr);
2070 	addr += offset;
2071 	writew(data, hw->io + addr);
2072 }
2073 
2074 /**
2075  * sw_chk - check switch register bits
2076  * @hw: 	The hardware instance.
2077  * @addr:	The address of the switch register.
2078  * @bits:	The data bits to check.
2079  *
2080  * This function checks whether the specified bits of the switch register are
2081  * set or not.
2082  *
2083  * Return 0 if the bits are not set.
2084  */
2085 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2086 {
2087 	u16 data;
2088 
2089 	data = readw(hw->io + addr);
2090 	return (data & bits) == bits;
2091 }
2092 
2093 /**
2094  * sw_cfg - set switch register bits
2095  * @hw: 	The hardware instance.
2096  * @addr:	The address of the switch register.
2097  * @bits:	The data bits to set.
2098  * @set:	The flag indicating whether the bits are to be set or not.
2099  *
2100  * This function sets or resets the specified bits of the switch register.
2101  */
2102 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2103 {
2104 	u16 data;
2105 
2106 	data = readw(hw->io + addr);
2107 	if (set)
2108 		data |= bits;
2109 	else
2110 		data &= ~bits;
2111 	writew(data, hw->io + addr);
2112 }
2113 
2114 /* Bandwidth */
2115 
2116 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2117 {
2118 	port_cfg(hw, p,
2119 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2120 }
2121 
2122 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2123 {
2124 	return port_chk(hw, p,
2125 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2126 }
2127 
2128 /* Driver set switch broadcast storm protection at 10% rate. */
2129 #define BROADCAST_STORM_PROTECTION_RATE	10
2130 
2131 /* 148,800 frames * 67 ms / 100 */
2132 #define BROADCAST_STORM_VALUE		9969
2133 
2134 /**
2135  * sw_cfg_broad_storm - configure broadcast storm threshold
2136  * @hw: 	The hardware instance.
2137  * @percent:	Broadcast storm threshold in percent of transmit rate.
2138  *
2139  * This routine configures the broadcast storm threshold of the switch.
2140  */
2141 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2142 {
2143 	u16 data;
2144 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2145 
2146 	if (value > BROADCAST_STORM_RATE)
2147 		value = BROADCAST_STORM_RATE;
2148 
2149 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2150 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2151 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2152 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2153 }
2154 
2155 /**
2156  * sw_get_board_storm - get broadcast storm threshold
2157  * @hw: 	The hardware instance.
2158  * @percent:	Buffer to store the broadcast storm threshold percentage.
2159  *
2160  * This routine retrieves the broadcast storm threshold of the switch.
2161  */
2162 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2163 {
2164 	int num;
2165 	u16 data;
2166 
2167 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2168 	num = (data & BROADCAST_STORM_RATE_HI);
2169 	num <<= 8;
2170 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2171 	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2172 	*percent = (u8) num;
2173 }
2174 
2175 /**
2176  * sw_dis_broad_storm - disable broadstorm
2177  * @hw: 	The hardware instance.
2178  * @port:	The port index.
2179  *
2180  * This routine disables the broadcast storm limit function of the switch.
2181  */
2182 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2183 {
2184 	port_cfg_broad_storm(hw, port, 0);
2185 }
2186 
2187 /**
2188  * sw_ena_broad_storm - enable broadcast storm
2189  * @hw: 	The hardware instance.
2190  * @port:	The port index.
2191  *
2192  * This routine enables the broadcast storm limit function of the switch.
2193  */
2194 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2195 {
2196 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2197 	port_cfg_broad_storm(hw, port, 1);
2198 }
2199 
2200 /**
2201  * sw_init_broad_storm - initialize broadcast storm
2202  * @hw: 	The hardware instance.
2203  *
2204  * This routine initializes the broadcast storm limit function of the switch.
2205  */
2206 static void sw_init_broad_storm(struct ksz_hw *hw)
2207 {
2208 	int port;
2209 
2210 	hw->ksz_switch->broad_per = 1;
2211 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2212 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2213 		sw_dis_broad_storm(hw, port);
2214 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2215 }
2216 
2217 /**
2218  * hw_cfg_broad_storm - configure broadcast storm
2219  * @hw: 	The hardware instance.
2220  * @percent:	Broadcast storm threshold in percent of transmit rate.
2221  *
2222  * This routine configures the broadcast storm threshold of the switch.
2223  * It is called by user functions.  The hardware should be acquired first.
2224  */
2225 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2226 {
2227 	if (percent > 100)
2228 		percent = 100;
2229 
2230 	sw_cfg_broad_storm(hw, percent);
2231 	sw_get_broad_storm(hw, &percent);
2232 	hw->ksz_switch->broad_per = percent;
2233 }
2234 
2235 /**
2236  * sw_dis_prio_rate - disable switch priority rate
2237  * @hw: 	The hardware instance.
2238  * @port:	The port index.
2239  *
2240  * This routine disables the priority rate function of the switch.
2241  */
2242 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2243 {
2244 	u32 addr;
2245 
2246 	PORT_CTRL_ADDR(port, addr);
2247 	addr += KS8842_PORT_IN_RATE_OFFSET;
2248 	writel(0, hw->io + addr);
2249 }
2250 
2251 /**
2252  * sw_init_prio_rate - initialize switch prioirty rate
2253  * @hw: 	The hardware instance.
2254  *
2255  * This routine initializes the priority rate function of the switch.
2256  */
2257 static void sw_init_prio_rate(struct ksz_hw *hw)
2258 {
2259 	int port;
2260 	int prio;
2261 	struct ksz_switch *sw = hw->ksz_switch;
2262 
2263 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2264 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2265 			sw->port_cfg[port].rx_rate[prio] =
2266 			sw->port_cfg[port].tx_rate[prio] = 0;
2267 		}
2268 		sw_dis_prio_rate(hw, port);
2269 	}
2270 }
2271 
2272 /* Communication */
2273 
2274 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2275 {
2276 	port_cfg(hw, p,
2277 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2278 }
2279 
2280 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2281 {
2282 	port_cfg(hw, p,
2283 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2284 }
2285 
2286 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2287 {
2288 	return port_chk(hw, p,
2289 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2290 }
2291 
2292 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2293 {
2294 	return port_chk(hw, p,
2295 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2296 }
2297 
2298 /* Spanning Tree */
2299 
2300 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2301 {
2302 	port_cfg(hw, p,
2303 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2304 }
2305 
2306 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2307 {
2308 	port_cfg(hw, p,
2309 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2310 }
2311 
2312 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2313 {
2314 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2315 }
2316 
2317 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2318 {
2319 	if (!(hw->overrides & FAST_AGING)) {
2320 		sw_cfg_fast_aging(hw, 1);
2321 		mdelay(1);
2322 		sw_cfg_fast_aging(hw, 0);
2323 	}
2324 }
2325 
2326 /* VLAN */
2327 
2328 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2329 {
2330 	port_cfg(hw, p,
2331 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2332 }
2333 
2334 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2335 {
2336 	port_cfg(hw, p,
2337 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2338 }
2339 
2340 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2341 {
2342 	return port_chk(hw, p,
2343 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2344 }
2345 
2346 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2347 {
2348 	return port_chk(hw, p,
2349 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2350 }
2351 
2352 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2353 {
2354 	port_cfg(hw, p,
2355 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2356 }
2357 
2358 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2359 {
2360 	port_cfg(hw, p,
2361 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2362 }
2363 
2364 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2365 {
2366 	return port_chk(hw, p,
2367 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2368 }
2369 
2370 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2371 {
2372 	return port_chk(hw, p,
2373 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2374 }
2375 
2376 /* Mirroring */
2377 
2378 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2379 {
2380 	port_cfg(hw, p,
2381 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2382 }
2383 
2384 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2385 {
2386 	port_cfg(hw, p,
2387 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2388 }
2389 
2390 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2391 {
2392 	port_cfg(hw, p,
2393 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2394 }
2395 
2396 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2397 {
2398 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2399 }
2400 
2401 static void sw_init_mirror(struct ksz_hw *hw)
2402 {
2403 	int port;
2404 
2405 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2406 		port_cfg_mirror_sniffer(hw, port, 0);
2407 		port_cfg_mirror_rx(hw, port, 0);
2408 		port_cfg_mirror_tx(hw, port, 0);
2409 	}
2410 	sw_cfg_mirror_rx_tx(hw, 0);
2411 }
2412 
2413 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2414 {
2415 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2416 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2417 }
2418 
2419 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2420 {
2421 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 		SWITCH_UNK_DEF_PORT_ENABLE);
2423 }
2424 
2425 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2426 {
2427 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2428 }
2429 
2430 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2431 {
2432 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2433 }
2434 
2435 /* Priority */
2436 
2437 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2438 {
2439 	port_cfg(hw, p,
2440 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2441 }
2442 
2443 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2444 {
2445 	port_cfg(hw, p,
2446 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2447 }
2448 
2449 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2450 {
2451 	port_cfg(hw, p,
2452 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2453 }
2454 
2455 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2456 {
2457 	port_cfg(hw, p,
2458 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2459 }
2460 
2461 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2462 {
2463 	return port_chk(hw, p,
2464 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2465 }
2466 
2467 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2468 {
2469 	return port_chk(hw, p,
2470 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2471 }
2472 
2473 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2474 {
2475 	return port_chk(hw, p,
2476 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2477 }
2478 
2479 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2480 {
2481 	return port_chk(hw, p,
2482 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2483 }
2484 
2485 /**
2486  * sw_dis_diffserv - disable switch DiffServ priority
2487  * @hw: 	The hardware instance.
2488  * @port:	The port index.
2489  *
2490  * This routine disables the DiffServ priority function of the switch.
2491  */
2492 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2493 {
2494 	port_cfg_diffserv(hw, port, 0);
2495 }
2496 
2497 /**
2498  * sw_dis_802_1p - disable switch 802.1p priority
2499  * @hw: 	The hardware instance.
2500  * @port:	The port index.
2501  *
2502  * This routine disables the 802.1p priority function of the switch.
2503  */
2504 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2505 {
2506 	port_cfg_802_1p(hw, port, 0);
2507 }
2508 
2509 /**
2510  * sw_cfg_replace_null_vid -
2511  * @hw: 	The hardware instance.
2512  * @set:	The flag to disable or enable.
2513  *
2514  */
2515 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2516 {
2517 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2518 }
2519 
2520 /**
2521  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2522  * @hw: 	The hardware instance.
2523  * @port:	The port index.
2524  * @set:	The flag to disable or enable.
2525  *
2526  * This routine enables the 802.1p priority re-mapping function of the switch.
2527  * That allows 802.1p priority field to be replaced with the port's default
2528  * tag's priority value if the ingress packet's 802.1p priority has a higher
2529  * priority than port's default tag's priority.
2530  */
2531 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2532 {
2533 	port_cfg_replace_vid(hw, port, set);
2534 }
2535 
2536 /**
2537  * sw_cfg_port_based - configure switch port based priority
2538  * @hw: 	The hardware instance.
2539  * @port:	The port index.
2540  * @prio:	The priority to set.
2541  *
2542  * This routine configures the port based priority of the switch.
2543  */
2544 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2545 {
2546 	u16 data;
2547 
2548 	if (prio > PORT_BASED_PRIORITY_BASE)
2549 		prio = PORT_BASED_PRIORITY_BASE;
2550 
2551 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2552 
2553 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2554 	data &= ~PORT_BASED_PRIORITY_MASK;
2555 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2556 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2557 }
2558 
2559 /**
2560  * sw_dis_multi_queue - disable transmit multiple queues
2561  * @hw: 	The hardware instance.
2562  * @port:	The port index.
2563  *
2564  * This routine disables the transmit multiple queues selection of the switch
2565  * port.  Only single transmit queue on the port.
2566  */
2567 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2568 {
2569 	port_cfg_prio(hw, port, 0);
2570 }
2571 
2572 /**
2573  * sw_init_prio - initialize switch priority
2574  * @hw: 	The hardware instance.
2575  *
2576  * This routine initializes the switch QoS priority functions.
2577  */
2578 static void sw_init_prio(struct ksz_hw *hw)
2579 {
2580 	int port;
2581 	int tos;
2582 	struct ksz_switch *sw = hw->ksz_switch;
2583 
2584 	/*
2585 	 * Init all the 802.1p tag priority value to be assigned to different
2586 	 * priority queue.
2587 	 */
2588 	sw->p_802_1p[0] = 0;
2589 	sw->p_802_1p[1] = 0;
2590 	sw->p_802_1p[2] = 1;
2591 	sw->p_802_1p[3] = 1;
2592 	sw->p_802_1p[4] = 2;
2593 	sw->p_802_1p[5] = 2;
2594 	sw->p_802_1p[6] = 3;
2595 	sw->p_802_1p[7] = 3;
2596 
2597 	/*
2598 	 * Init all the DiffServ priority value to be assigned to priority
2599 	 * queue 0.
2600 	 */
2601 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2602 		sw->diffserv[tos] = 0;
2603 
2604 	/* All QoS functions disabled. */
2605 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2606 		sw_dis_multi_queue(hw, port);
2607 		sw_dis_diffserv(hw, port);
2608 		sw_dis_802_1p(hw, port);
2609 		sw_cfg_replace_vid(hw, port, 0);
2610 
2611 		sw->port_cfg[port].port_prio = 0;
2612 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2613 	}
2614 	sw_cfg_replace_null_vid(hw, 0);
2615 }
2616 
2617 /**
2618  * port_get_def_vid - get port default VID.
2619  * @hw: 	The hardware instance.
2620  * @port:	The port index.
2621  * @vid:	Buffer to store the VID.
2622  *
2623  * This routine retrieves the default VID of the port.
2624  */
2625 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2626 {
2627 	u32 addr;
2628 
2629 	PORT_CTRL_ADDR(port, addr);
2630 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2631 	*vid = readw(hw->io + addr);
2632 }
2633 
2634 /**
2635  * sw_init_vlan - initialize switch VLAN
2636  * @hw: 	The hardware instance.
2637  *
2638  * This routine initializes the VLAN function of the switch.
2639  */
2640 static void sw_init_vlan(struct ksz_hw *hw)
2641 {
2642 	int port;
2643 	int entry;
2644 	struct ksz_switch *sw = hw->ksz_switch;
2645 
2646 	/* Read 16 VLAN entries from device's VLAN table. */
2647 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2648 		sw_r_vlan_table(hw, entry,
2649 			&sw->vlan_table[entry].vid,
2650 			&sw->vlan_table[entry].fid,
2651 			&sw->vlan_table[entry].member);
2652 	}
2653 
2654 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2655 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2656 		sw->port_cfg[port].member = PORT_MASK;
2657 	}
2658 }
2659 
2660 /**
2661  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2662  * @hw: 	The hardware instance.
2663  * @port:	The port index.
2664  * @member:	The port-based VLAN membership.
2665  *
2666  * This routine configures the port-based VLAN membership of the port.
2667  */
2668 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2669 {
2670 	u32 addr;
2671 	u8 data;
2672 
2673 	PORT_CTRL_ADDR(port, addr);
2674 	addr += KS8842_PORT_CTRL_2_OFFSET;
2675 
2676 	data = readb(hw->io + addr);
2677 	data &= ~PORT_VLAN_MEMBERSHIP;
2678 	data |= (member & PORT_MASK);
2679 	writeb(data, hw->io + addr);
2680 
2681 	hw->ksz_switch->port_cfg[port].member = member;
2682 }
2683 
2684 /**
2685  * sw_get_addr - get the switch MAC address.
2686  * @hw: 	The hardware instance.
2687  * @mac_addr:	Buffer to store the MAC address.
2688  *
2689  * This function retrieves the MAC address of the switch.
2690  */
2691 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2692 {
2693 	int i;
2694 
2695 	for (i = 0; i < 6; i += 2) {
2696 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2697 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2698 	}
2699 }
2700 
2701 /**
2702  * sw_set_addr - configure switch MAC address
2703  * @hw: 	The hardware instance.
2704  * @mac_addr:	The MAC address.
2705  *
2706  * This function configures the MAC address of the switch.
2707  */
2708 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2709 {
2710 	int i;
2711 
2712 	for (i = 0; i < 6; i += 2) {
2713 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2714 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2715 	}
2716 }
2717 
2718 /**
2719  * sw_set_global_ctrl - set switch global control
2720  * @hw: 	The hardware instance.
2721  *
2722  * This routine sets the global control of the switch function.
2723  */
2724 static void sw_set_global_ctrl(struct ksz_hw *hw)
2725 {
2726 	u16 data;
2727 
2728 	/* Enable switch MII flow control. */
2729 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730 	data |= SWITCH_FLOW_CTRL;
2731 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2732 
2733 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2734 
2735 	/* Enable aggressive back off algorithm in half duplex mode. */
2736 	data |= SWITCH_AGGR_BACKOFF;
2737 
2738 	/* Enable automatic fast aging when link changed detected. */
2739 	data |= SWITCH_AGING_ENABLE;
2740 	data |= SWITCH_LINK_AUTO_AGING;
2741 
2742 	if (hw->overrides & FAST_AGING)
2743 		data |= SWITCH_FAST_AGING;
2744 	else
2745 		data &= ~SWITCH_FAST_AGING;
2746 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747 
2748 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2749 
2750 	/* Enable no excessive collision drop. */
2751 	data |= NO_EXC_COLLISION_DROP;
2752 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2753 }
2754 
2755 enum {
2756 	STP_STATE_DISABLED = 0,
2757 	STP_STATE_LISTENING,
2758 	STP_STATE_LEARNING,
2759 	STP_STATE_FORWARDING,
2760 	STP_STATE_BLOCKED,
2761 	STP_STATE_SIMPLE
2762 };
2763 
2764 /**
2765  * port_set_stp_state - configure port spanning tree state
2766  * @hw: 	The hardware instance.
2767  * @port:	The port index.
2768  * @state:	The spanning tree state.
2769  *
2770  * This routine configures the spanning tree state of the port.
2771  */
2772 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2773 {
2774 	u16 data;
2775 
2776 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2777 	switch (state) {
2778 	case STP_STATE_DISABLED:
2779 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2780 		data |= PORT_LEARN_DISABLE;
2781 		break;
2782 	case STP_STATE_LISTENING:
2783 /*
2784  * No need to turn on transmit because of port direct mode.
2785  * Turning on receive is required if static MAC table is not setup.
2786  */
2787 		data &= ~PORT_TX_ENABLE;
2788 		data |= PORT_RX_ENABLE;
2789 		data |= PORT_LEARN_DISABLE;
2790 		break;
2791 	case STP_STATE_LEARNING:
2792 		data &= ~PORT_TX_ENABLE;
2793 		data |= PORT_RX_ENABLE;
2794 		data &= ~PORT_LEARN_DISABLE;
2795 		break;
2796 	case STP_STATE_FORWARDING:
2797 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2798 		data &= ~PORT_LEARN_DISABLE;
2799 		break;
2800 	case STP_STATE_BLOCKED:
2801 /*
2802  * Need to setup static MAC table with override to keep receiving BPDU
2803  * messages.  See sw_init_stp routine.
2804  */
2805 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2806 		data |= PORT_LEARN_DISABLE;
2807 		break;
2808 	case STP_STATE_SIMPLE:
2809 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810 		data |= PORT_LEARN_DISABLE;
2811 		break;
2812 	}
2813 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2814 	hw->ksz_switch->port_cfg[port].stp_state = state;
2815 }
2816 
2817 #define STP_ENTRY			0
2818 #define BROADCAST_ENTRY			1
2819 #define BRIDGE_ADDR_ENTRY		2
2820 #define IPV6_ADDR_ENTRY			3
2821 
2822 /**
2823  * sw_clr_sta_mac_table - clear static MAC table
2824  * @hw: 	The hardware instance.
2825  *
2826  * This routine clears the static MAC table.
2827  */
2828 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2829 {
2830 	struct ksz_mac_table *entry;
2831 	int i;
2832 
2833 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2834 		entry = &hw->ksz_switch->mac_table[i];
2835 		sw_w_sta_mac_table(hw, i,
2836 			entry->mac_addr, entry->ports,
2837 			entry->override, 0,
2838 			entry->use_fid, entry->fid);
2839 	}
2840 }
2841 
2842 /**
2843  * sw_init_stp - initialize switch spanning tree support
2844  * @hw: 	The hardware instance.
2845  *
2846  * This routine initializes the spanning tree support of the switch.
2847  */
2848 static void sw_init_stp(struct ksz_hw *hw)
2849 {
2850 	struct ksz_mac_table *entry;
2851 
2852 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2853 	entry->mac_addr[0] = 0x01;
2854 	entry->mac_addr[1] = 0x80;
2855 	entry->mac_addr[2] = 0xC2;
2856 	entry->mac_addr[3] = 0x00;
2857 	entry->mac_addr[4] = 0x00;
2858 	entry->mac_addr[5] = 0x00;
2859 	entry->ports = HOST_MASK;
2860 	entry->override = 1;
2861 	entry->valid = 1;
2862 	sw_w_sta_mac_table(hw, STP_ENTRY,
2863 		entry->mac_addr, entry->ports,
2864 		entry->override, entry->valid,
2865 		entry->use_fid, entry->fid);
2866 }
2867 
2868 /**
2869  * sw_block_addr - block certain packets from the host port
2870  * @hw: 	The hardware instance.
2871  *
2872  * This routine blocks certain packets from reaching to the host port.
2873  */
2874 static void sw_block_addr(struct ksz_hw *hw)
2875 {
2876 	struct ksz_mac_table *entry;
2877 	int i;
2878 
2879 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2880 		entry = &hw->ksz_switch->mac_table[i];
2881 		entry->valid = 0;
2882 		sw_w_sta_mac_table(hw, i,
2883 			entry->mac_addr, entry->ports,
2884 			entry->override, entry->valid,
2885 			entry->use_fid, entry->fid);
2886 	}
2887 }
2888 
2889 #define PHY_LINK_SUPPORT		\
2890 	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2891 	PHY_AUTO_NEG_SYM_PAUSE |	\
2892 	PHY_AUTO_NEG_100BT4 |		\
2893 	PHY_AUTO_NEG_100BTX_FD |	\
2894 	PHY_AUTO_NEG_100BTX |		\
2895 	PHY_AUTO_NEG_10BT_FD |		\
2896 	PHY_AUTO_NEG_10BT)
2897 
2898 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2899 {
2900 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2901 }
2902 
2903 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2904 {
2905 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2906 }
2907 
2908 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2909 {
2910 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2911 }
2912 
2913 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2914 {
2915 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2916 }
2917 
2918 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2919 {
2920 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2921 }
2922 
2923 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2924 {
2925 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2926 }
2927 
2928 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2929 {
2930 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2931 }
2932 
2933 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2934 {
2935 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2936 }
2937 
2938 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2939 {
2940 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2941 }
2942 
2943 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2944 {
2945 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2946 }
2947 
2948 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2949 {
2950 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2951 }
2952 
2953 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2954 {
2955 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2956 }
2957 
2958 /**
2959  * hw_r_phy - read data from PHY register
2960  * @hw: 	The hardware instance.
2961  * @port:	Port to read.
2962  * @reg:	PHY register to read.
2963  * @val:	Buffer to store the read data.
2964  *
2965  * This routine reads data from the PHY register.
2966  */
2967 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2968 {
2969 	int phy;
2970 
2971 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2972 	*val = readw(hw->io + phy);
2973 }
2974 
2975 /**
2976  * port_w_phy - write data to PHY register
2977  * @hw: 	The hardware instance.
2978  * @port:	Port to write.
2979  * @reg:	PHY register to write.
2980  * @val:	Word data to write.
2981  *
2982  * This routine writes data to the PHY register.
2983  */
2984 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2985 {
2986 	int phy;
2987 
2988 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2989 	writew(val, hw->io + phy);
2990 }
2991 
2992 /*
2993  * EEPROM access functions
2994  */
2995 
2996 #define AT93C_CODE			0
2997 #define AT93C_WR_OFF			0x00
2998 #define AT93C_WR_ALL			0x10
2999 #define AT93C_ER_ALL			0x20
3000 #define AT93C_WR_ON			0x30
3001 
3002 #define AT93C_WRITE			1
3003 #define AT93C_READ			2
3004 #define AT93C_ERASE			3
3005 
3006 #define EEPROM_DELAY			4
3007 
3008 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3009 {
3010 	u16 data;
3011 
3012 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013 	data &= ~gpio;
3014 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3015 }
3016 
3017 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3018 {
3019 	u16 data;
3020 
3021 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022 	data |= gpio;
3023 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3024 }
3025 
3026 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3027 {
3028 	u16 data;
3029 
3030 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3031 	return (u8)(data & gpio);
3032 }
3033 
3034 static void eeprom_clk(struct ksz_hw *hw)
3035 {
3036 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3037 	udelay(EEPROM_DELAY);
3038 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3039 	udelay(EEPROM_DELAY);
3040 }
3041 
3042 static u16 spi_r(struct ksz_hw *hw)
3043 {
3044 	int i;
3045 	u16 temp = 0;
3046 
3047 	for (i = 15; i >= 0; i--) {
3048 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049 		udelay(EEPROM_DELAY);
3050 
3051 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3052 
3053 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3054 		udelay(EEPROM_DELAY);
3055 	}
3056 	return temp;
3057 }
3058 
3059 static void spi_w(struct ksz_hw *hw, u16 data)
3060 {
3061 	int i;
3062 
3063 	for (i = 15; i >= 0; i--) {
3064 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3065 			drop_gpio(hw, EEPROM_DATA_OUT);
3066 		eeprom_clk(hw);
3067 	}
3068 }
3069 
3070 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3071 {
3072 	int i;
3073 
3074 	/* Initial start bit */
3075 	raise_gpio(hw, EEPROM_DATA_OUT);
3076 	eeprom_clk(hw);
3077 
3078 	/* AT93C operation */
3079 	for (i = 1; i >= 0; i--) {
3080 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3081 			drop_gpio(hw, EEPROM_DATA_OUT);
3082 		eeprom_clk(hw);
3083 	}
3084 
3085 	/* Address location */
3086 	for (i = 5; i >= 0; i--) {
3087 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3088 			drop_gpio(hw, EEPROM_DATA_OUT);
3089 		eeprom_clk(hw);
3090 	}
3091 }
3092 
3093 #define EEPROM_DATA_RESERVED		0
3094 #define EEPROM_DATA_MAC_ADDR_0		1
3095 #define EEPROM_DATA_MAC_ADDR_1		2
3096 #define EEPROM_DATA_MAC_ADDR_2		3
3097 #define EEPROM_DATA_SUBSYS_ID		4
3098 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3099 #define EEPROM_DATA_PM_CAP		6
3100 
3101 /* User defined EEPROM data */
3102 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3103 
3104 /**
3105  * eeprom_read - read from AT93C46 EEPROM
3106  * @hw: 	The hardware instance.
3107  * @reg:	The register offset.
3108  *
3109  * This function reads a word from the AT93C46 EEPROM.
3110  *
3111  * Return the data value.
3112  */
3113 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3114 {
3115 	u16 data;
3116 
3117 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3118 
3119 	spi_reg(hw, AT93C_READ, reg);
3120 	data = spi_r(hw);
3121 
3122 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3123 
3124 	return data;
3125 }
3126 
3127 /**
3128  * eeprom_write - write to AT93C46 EEPROM
3129  * @hw: 	The hardware instance.
3130  * @reg:	The register offset.
3131  * @data:	The data value.
3132  *
3133  * This procedure writes a word to the AT93C46 EEPROM.
3134  */
3135 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3136 {
3137 	int timeout;
3138 
3139 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3140 
3141 	/* Enable write. */
3142 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3143 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3144 	udelay(1);
3145 
3146 	/* Erase the register. */
3147 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3148 	spi_reg(hw, AT93C_ERASE, reg);
3149 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 	udelay(1);
3151 
3152 	/* Check operation complete. */
3153 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 	timeout = 8;
3155 	mdelay(2);
3156 	do {
3157 		mdelay(1);
3158 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3159 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3160 	udelay(1);
3161 
3162 	/* Write the register. */
3163 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3164 	spi_reg(hw, AT93C_WRITE, reg);
3165 	spi_w(hw, data);
3166 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3167 	udelay(1);
3168 
3169 	/* Check operation complete. */
3170 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3171 	timeout = 8;
3172 	mdelay(2);
3173 	do {
3174 		mdelay(1);
3175 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3176 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3177 	udelay(1);
3178 
3179 	/* Disable write. */
3180 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3181 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3182 
3183 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3184 }
3185 
3186 /*
3187  * Link detection routines
3188  */
3189 
3190 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3191 {
3192 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3193 	switch (port->flow_ctrl) {
3194 	case PHY_FLOW_CTRL:
3195 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3196 		break;
3197 	/* Not supported. */
3198 	case PHY_TX_ONLY:
3199 	case PHY_RX_ONLY:
3200 	default:
3201 		break;
3202 	}
3203 	return ctrl;
3204 }
3205 
3206 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3207 {
3208 	u32 rx_cfg;
3209 	u32 tx_cfg;
3210 
3211 	rx_cfg = hw->rx_cfg;
3212 	tx_cfg = hw->tx_cfg;
3213 	if (rx)
3214 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3215 	else
3216 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3217 	if (tx)
3218 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3219 	else
3220 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3221 	if (hw->enabled) {
3222 		if (rx_cfg != hw->rx_cfg)
3223 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3224 		if (tx_cfg != hw->tx_cfg)
3225 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3226 	}
3227 }
3228 
3229 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3230 	u16 local, u16 remote)
3231 {
3232 	int rx;
3233 	int tx;
3234 
3235 	if (hw->overrides & PAUSE_FLOW_CTRL)
3236 		return;
3237 
3238 	rx = tx = 0;
3239 	if (port->force_link)
3240 		rx = tx = 1;
3241 	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3242 		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3243 			rx = tx = 1;
3244 		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3245 				(local & PHY_AUTO_NEG_PAUSE) ==
3246 				PHY_AUTO_NEG_ASYM_PAUSE) {
3247 			tx = 1;
3248 		}
3249 	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3250 		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3251 			rx = 1;
3252 	}
3253 	if (!hw->ksz_switch)
3254 		set_flow_ctrl(hw, rx, tx);
3255 }
3256 
3257 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3258 	struct ksz_port_info *info, u16 link_status)
3259 {
3260 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3261 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3262 		u32 cfg = hw->tx_cfg;
3263 
3264 		/* Disable flow control in the half duplex mode. */
3265 		if (1 == info->duplex)
3266 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3267 		if (hw->enabled && cfg != hw->tx_cfg)
3268 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3269 	}
3270 }
3271 
3272 /**
3273  * port_get_link_speed - get current link status
3274  * @port: 	The port instance.
3275  *
3276  * This routine reads PHY registers to determine the current link status of the
3277  * switch ports.
3278  */
3279 static void port_get_link_speed(struct ksz_port *port)
3280 {
3281 	uint interrupt;
3282 	struct ksz_port_info *info;
3283 	struct ksz_port_info *linked = NULL;
3284 	struct ksz_hw *hw = port->hw;
3285 	u16 data;
3286 	u16 status;
3287 	u8 local;
3288 	u8 remote;
3289 	int i;
3290 	int p;
3291 	int change = 0;
3292 
3293 	interrupt = hw_block_intr(hw);
3294 
3295 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3296 		info = &hw->port_info[p];
3297 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3298 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3299 
3300 		/*
3301 		 * Link status is changing all the time even when there is no
3302 		 * cable connection!
3303 		 */
3304 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3305 			PORT_STATUS_LINK_GOOD);
3306 		local = (u8) data;
3307 
3308 		/* No change to status. */
3309 		if (local == info->advertised && remote == info->partner)
3310 			continue;
3311 
3312 		info->advertised = local;
3313 		info->partner = remote;
3314 		if (status & PORT_STATUS_LINK_GOOD) {
3315 
3316 			/* Remember the first linked port. */
3317 			if (!linked)
3318 				linked = info;
3319 
3320 			info->tx_rate = 10 * TX_RATE_UNIT;
3321 			if (status & PORT_STATUS_SPEED_100MBIT)
3322 				info->tx_rate = 100 * TX_RATE_UNIT;
3323 
3324 			info->duplex = 1;
3325 			if (status & PORT_STATUS_FULL_DUPLEX)
3326 				info->duplex = 2;
3327 
3328 			if (media_connected != info->state) {
3329 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3330 					&data);
3331 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3332 					&status);
3333 				determine_flow_ctrl(hw, port, data, status);
3334 				if (hw->ksz_switch) {
3335 					port_cfg_back_pressure(hw, p,
3336 						(1 == info->duplex));
3337 				}
3338 				change |= 1 << i;
3339 				port_cfg_change(hw, port, info, status);
3340 			}
3341 			info->state = media_connected;
3342 		} else {
3343 			if (media_disconnected != info->state) {
3344 				change |= 1 << i;
3345 
3346 				/* Indicate the link just goes down. */
3347 				hw->port_mib[p].link_down = 1;
3348 			}
3349 			info->state = media_disconnected;
3350 		}
3351 		hw->port_mib[p].state = (u8) info->state;
3352 	}
3353 
3354 	if (linked && media_disconnected == port->linked->state)
3355 		port->linked = linked;
3356 
3357 	hw_restore_intr(hw, interrupt);
3358 }
3359 
3360 #define PHY_RESET_TIMEOUT		10
3361 
3362 /**
3363  * port_set_link_speed - set port speed
3364  * @port: 	The port instance.
3365  *
3366  * This routine sets the link speed of the switch ports.
3367  */
3368 static void port_set_link_speed(struct ksz_port *port)
3369 {
3370 	struct ksz_hw *hw = port->hw;
3371 	u16 data;
3372 	u16 cfg;
3373 	u8 status;
3374 	int i;
3375 	int p;
3376 
3377 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3378 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3379 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3380 
3381 		cfg = 0;
3382 		if (status & PORT_STATUS_LINK_GOOD)
3383 			cfg = data;
3384 
3385 		data |= PORT_AUTO_NEG_ENABLE;
3386 		data = advertised_flow_ctrl(port, data);
3387 
3388 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3389 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3390 
3391 		/* Check if manual configuration is specified by the user. */
3392 		if (port->speed || port->duplex) {
3393 			if (10 == port->speed)
3394 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3395 					PORT_AUTO_NEG_100BTX);
3396 			else if (100 == port->speed)
3397 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3398 					PORT_AUTO_NEG_10BT);
3399 			if (1 == port->duplex)
3400 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3401 					PORT_AUTO_NEG_10BT_FD);
3402 			else if (2 == port->duplex)
3403 				data &= ~(PORT_AUTO_NEG_100BTX |
3404 					PORT_AUTO_NEG_10BT);
3405 		}
3406 		if (data != cfg) {
3407 			data |= PORT_AUTO_NEG_RESTART;
3408 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3409 		}
3410 	}
3411 }
3412 
3413 /**
3414  * port_force_link_speed - force port speed
3415  * @port: 	The port instance.
3416  *
3417  * This routine forces the link speed of the switch ports.
3418  */
3419 static void port_force_link_speed(struct ksz_port *port)
3420 {
3421 	struct ksz_hw *hw = port->hw;
3422 	u16 data;
3423 	int i;
3424 	int phy;
3425 	int p;
3426 
3427 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3428 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3429 		hw_r_phy_ctrl(hw, phy, &data);
3430 
3431 		data &= ~PHY_AUTO_NEG_ENABLE;
3432 
3433 		if (10 == port->speed)
3434 			data &= ~PHY_SPEED_100MBIT;
3435 		else if (100 == port->speed)
3436 			data |= PHY_SPEED_100MBIT;
3437 		if (1 == port->duplex)
3438 			data &= ~PHY_FULL_DUPLEX;
3439 		else if (2 == port->duplex)
3440 			data |= PHY_FULL_DUPLEX;
3441 		hw_w_phy_ctrl(hw, phy, data);
3442 	}
3443 }
3444 
3445 static void port_set_power_saving(struct ksz_port *port, int enable)
3446 {
3447 	struct ksz_hw *hw = port->hw;
3448 	int i;
3449 	int p;
3450 
3451 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3452 		port_cfg(hw, p,
3453 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3454 }
3455 
3456 /*
3457  * KSZ8841 power management functions
3458  */
3459 
3460 /**
3461  * hw_chk_wol_pme_status - check PMEN pin
3462  * @hw: 	The hardware instance.
3463  *
3464  * This function is used to check PMEN pin is asserted.
3465  *
3466  * Return 1 if PMEN pin is asserted; otherwise, 0.
3467  */
3468 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3469 {
3470 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3471 	struct pci_dev *pdev = hw_priv->pdev;
3472 	u16 data;
3473 
3474 	if (!pdev->pm_cap)
3475 		return 0;
3476 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3477 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3478 }
3479 
3480 /**
3481  * hw_clr_wol_pme_status - clear PMEN pin
3482  * @hw: 	The hardware instance.
3483  *
3484  * This routine is used to clear PME_Status to deassert PMEN pin.
3485  */
3486 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3487 {
3488 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3489 	struct pci_dev *pdev = hw_priv->pdev;
3490 	u16 data;
3491 
3492 	if (!pdev->pm_cap)
3493 		return;
3494 
3495 	/* Clear PME_Status to deassert PMEN pin. */
3496 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3497 	data |= PCI_PM_CTRL_PME_STATUS;
3498 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3499 }
3500 
3501 /**
3502  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3503  * @hw: 	The hardware instance.
3504  * @set:	The flag indicating whether to enable or disable.
3505  *
3506  * This routine is used to enable or disable Wake-on-LAN.
3507  */
3508 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3509 {
3510 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3511 	struct pci_dev *pdev = hw_priv->pdev;
3512 	u16 data;
3513 
3514 	if (!pdev->pm_cap)
3515 		return;
3516 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3517 	data &= ~PCI_PM_CTRL_STATE_MASK;
3518 	if (set)
3519 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3520 	else
3521 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3522 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3523 }
3524 
3525 /**
3526  * hw_cfg_wol - configure Wake-on-LAN features
3527  * @hw: 	The hardware instance.
3528  * @frame:	The pattern frame bit.
3529  * @set:	The flag indicating whether to enable or disable.
3530  *
3531  * This routine is used to enable or disable certain Wake-on-LAN features.
3532  */
3533 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3534 {
3535 	u16 data;
3536 
3537 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3538 	if (set)
3539 		data |= frame;
3540 	else
3541 		data &= ~frame;
3542 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3543 }
3544 
3545 /**
3546  * hw_set_wol_frame - program Wake-on-LAN pattern
3547  * @hw: 	The hardware instance.
3548  * @i:		The frame index.
3549  * @mask_size:	The size of the mask.
3550  * @mask:	Mask to ignore certain bytes in the pattern.
3551  * @frame_size:	The size of the frame.
3552  * @pattern:	The frame data.
3553  *
3554  * This routine is used to program Wake-on-LAN pattern.
3555  */
3556 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3557 	const u8 *mask, uint frame_size, const u8 *pattern)
3558 {
3559 	int bits;
3560 	int from;
3561 	int len;
3562 	int to;
3563 	u32 crc;
3564 	u8 data[64];
3565 	u8 val = 0;
3566 
3567 	if (frame_size > mask_size * 8)
3568 		frame_size = mask_size * 8;
3569 	if (frame_size > 64)
3570 		frame_size = 64;
3571 
3572 	i *= 0x10;
3573 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3574 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3575 
3576 	bits = len = from = to = 0;
3577 	do {
3578 		if (bits) {
3579 			if ((val & 1))
3580 				data[to++] = pattern[from];
3581 			val >>= 1;
3582 			++from;
3583 			--bits;
3584 		} else {
3585 			val = mask[len];
3586 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3587 				+ len);
3588 			++len;
3589 			if (val)
3590 				bits = 8;
3591 			else
3592 				from += 8;
3593 		}
3594 	} while (from < (int) frame_size);
3595 	if (val) {
3596 		bits = mask[len - 1];
3597 		val <<= (from % 8);
3598 		bits &= ~val;
3599 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3600 			1);
3601 	}
3602 	crc = ether_crc(to, data);
3603 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3604 }
3605 
3606 /**
3607  * hw_add_wol_arp - add ARP pattern
3608  * @hw: 	The hardware instance.
3609  * @ip_addr:	The IPv4 address assigned to the device.
3610  *
3611  * This routine is used to add ARP pattern for waking up the host.
3612  */
3613 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3614 {
3615 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3616 	u8 pattern[42] = {
3617 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3618 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3619 		0x08, 0x06,
3620 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3621 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622 		0x00, 0x00, 0x00, 0x00,
3623 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3624 		0x00, 0x00, 0x00, 0x00 };
3625 
3626 	memcpy(&pattern[38], ip_addr, 4);
3627 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3628 }
3629 
3630 /**
3631  * hw_add_wol_bcast - add broadcast pattern
3632  * @hw: 	The hardware instance.
3633  *
3634  * This routine is used to add broadcast pattern for waking up the host.
3635  */
3636 static void hw_add_wol_bcast(struct ksz_hw *hw)
3637 {
3638 	static const u8 mask[] = { 0x3F };
3639 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3640 
3641 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3642 }
3643 
3644 /**
3645  * hw_add_wol_mcast - add multicast pattern
3646  * @hw: 	The hardware instance.
3647  *
3648  * This routine is used to add multicast pattern for waking up the host.
3649  *
3650  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3651  * by IPv6 ping command.  Note that multicast packets are filtred through the
3652  * multicast hash table, so not all multicast packets can wake up the host.
3653  */
3654 static void hw_add_wol_mcast(struct ksz_hw *hw)
3655 {
3656 	static const u8 mask[] = { 0x3F };
3657 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3658 
3659 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3660 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3661 }
3662 
3663 /**
3664  * hw_add_wol_ucast - add unicast pattern
3665  * @hw: 	The hardware instance.
3666  *
3667  * This routine is used to add unicast pattern to wakeup the host.
3668  *
3669  * It is assumed the unicast packet is directed to the device, as the hardware
3670  * can only receive them in normal case.
3671  */
3672 static void hw_add_wol_ucast(struct ksz_hw *hw)
3673 {
3674 	static const u8 mask[] = { 0x3F };
3675 
3676 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3677 }
3678 
3679 /**
3680  * hw_enable_wol - enable Wake-on-LAN
3681  * @hw: 	The hardware instance.
3682  * @wol_enable:	The Wake-on-LAN settings.
3683  * @net_addr:	The IPv4 address assigned to the device.
3684  *
3685  * This routine is used to enable Wake-on-LAN depending on driver settings.
3686  */
3687 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3688 {
3689 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3690 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3691 	hw_add_wol_ucast(hw);
3692 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3693 	hw_add_wol_mcast(hw);
3694 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3695 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3696 	hw_add_wol_arp(hw, net_addr);
3697 }
3698 
3699 /**
3700  * hw_init - check driver is correct for the hardware
3701  * @hw: 	The hardware instance.
3702  *
3703  * This function checks the hardware is correct for this driver and sets the
3704  * hardware up for proper initialization.
3705  *
3706  * Return number of ports or 0 if not right.
3707  */
3708 static int hw_init(struct ksz_hw *hw)
3709 {
3710 	int rc = 0;
3711 	u16 data;
3712 	u16 revision;
3713 
3714 	/* Set bus speed to 125MHz. */
3715 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3716 
3717 	/* Check KSZ884x chip ID. */
3718 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3719 
3720 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3721 	data &= KS884X_CHIP_ID_MASK_41;
3722 	if (REG_CHIP_ID_41 == data)
3723 		rc = 1;
3724 	else if (REG_CHIP_ID_42 == data)
3725 		rc = 2;
3726 	else
3727 		return 0;
3728 
3729 	/* Setup hardware features or bug workarounds. */
3730 	if (revision <= 1) {
3731 		hw->features |= SMALL_PACKET_TX_BUG;
3732 		if (1 == rc)
3733 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3734 	}
3735 	return rc;
3736 }
3737 
3738 /**
3739  * hw_reset - reset the hardware
3740  * @hw: 	The hardware instance.
3741  *
3742  * This routine resets the hardware.
3743  */
3744 static void hw_reset(struct ksz_hw *hw)
3745 {
3746 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3747 
3748 	/* Wait for device to reset. */
3749 	mdelay(10);
3750 
3751 	/* Write 0 to clear device reset. */
3752 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3753 }
3754 
3755 /**
3756  * hw_setup - setup the hardware
3757  * @hw: 	The hardware instance.
3758  *
3759  * This routine setup the hardware for proper operation.
3760  */
3761 static void hw_setup(struct ksz_hw *hw)
3762 {
3763 #if SET_DEFAULT_LED
3764 	u16 data;
3765 
3766 	/* Change default LED mode. */
3767 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3768 	data &= ~LED_MODE;
3769 	data |= SET_DEFAULT_LED;
3770 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3771 #endif
3772 
3773 	/* Setup transmit control. */
3774 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3775 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3776 
3777 	/* Setup receive control. */
3778 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3779 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3780 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3781 
3782 	/* Hardware cannot handle UDP packet in IP fragments. */
3783 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3784 
3785 	if (hw->all_multi)
3786 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3787 	if (hw->promiscuous)
3788 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3789 }
3790 
3791 /**
3792  * hw_setup_intr - setup interrupt mask
3793  * @hw: 	The hardware instance.
3794  *
3795  * This routine setup the interrupt mask for proper operation.
3796  */
3797 static void hw_setup_intr(struct ksz_hw *hw)
3798 {
3799 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3800 }
3801 
3802 static void ksz_check_desc_num(struct ksz_desc_info *info)
3803 {
3804 #define MIN_DESC_SHIFT  2
3805 
3806 	int alloc = info->alloc;
3807 	int shift;
3808 
3809 	shift = 0;
3810 	while (!(alloc & 1)) {
3811 		shift++;
3812 		alloc >>= 1;
3813 	}
3814 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3815 		pr_alert("Hardware descriptor numbers not right!\n");
3816 		while (alloc) {
3817 			shift++;
3818 			alloc >>= 1;
3819 		}
3820 		if (shift < MIN_DESC_SHIFT)
3821 			shift = MIN_DESC_SHIFT;
3822 		alloc = 1 << shift;
3823 		info->alloc = alloc;
3824 	}
3825 	info->mask = info->alloc - 1;
3826 }
3827 
3828 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3829 {
3830 	int i;
3831 	u32 phys = desc_info->ring_phys;
3832 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3833 	struct ksz_desc *cur = desc_info->ring;
3834 	struct ksz_desc *previous = NULL;
3835 
3836 	for (i = 0; i < desc_info->alloc; i++) {
3837 		cur->phw = desc++;
3838 		phys += desc_info->size;
3839 		previous = cur++;
3840 		previous->phw->next = cpu_to_le32(phys);
3841 	}
3842 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3843 	previous->sw.buf.rx.end_of_ring = 1;
3844 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3845 
3846 	desc_info->avail = desc_info->alloc;
3847 	desc_info->last = desc_info->next = 0;
3848 
3849 	desc_info->cur = desc_info->ring;
3850 }
3851 
3852 /**
3853  * hw_set_desc_base - set descriptor base addresses
3854  * @hw: 	The hardware instance.
3855  * @tx_addr:	The transmit descriptor base.
3856  * @rx_addr:	The receive descriptor base.
3857  *
3858  * This routine programs the descriptor base addresses after reset.
3859  */
3860 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3861 {
3862 	/* Set base address of Tx/Rx descriptors. */
3863 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3864 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3865 }
3866 
3867 static void hw_reset_pkts(struct ksz_desc_info *info)
3868 {
3869 	info->cur = info->ring;
3870 	info->avail = info->alloc;
3871 	info->last = info->next = 0;
3872 }
3873 
3874 static inline void hw_resume_rx(struct ksz_hw *hw)
3875 {
3876 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3877 }
3878 
3879 /**
3880  * hw_start_rx - start receiving
3881  * @hw: 	The hardware instance.
3882  *
3883  * This routine starts the receive function of the hardware.
3884  */
3885 static void hw_start_rx(struct ksz_hw *hw)
3886 {
3887 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3888 
3889 	/* Notify when the receive stops. */
3890 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3891 
3892 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3893 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3894 	hw->rx_stop++;
3895 
3896 	/* Variable overflows. */
3897 	if (0 == hw->rx_stop)
3898 		hw->rx_stop = 2;
3899 }
3900 
3901 /**
3902  * hw_stop_rx - stop receiving
3903  * @hw: 	The hardware instance.
3904  *
3905  * This routine stops the receive function of the hardware.
3906  */
3907 static void hw_stop_rx(struct ksz_hw *hw)
3908 {
3909 	hw->rx_stop = 0;
3910 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3911 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3912 }
3913 
3914 /**
3915  * hw_start_tx - start transmitting
3916  * @hw: 	The hardware instance.
3917  *
3918  * This routine starts the transmit function of the hardware.
3919  */
3920 static void hw_start_tx(struct ksz_hw *hw)
3921 {
3922 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3923 }
3924 
3925 /**
3926  * hw_stop_tx - stop transmitting
3927  * @hw: 	The hardware instance.
3928  *
3929  * This routine stops the transmit function of the hardware.
3930  */
3931 static void hw_stop_tx(struct ksz_hw *hw)
3932 {
3933 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3934 }
3935 
3936 /**
3937  * hw_disable - disable hardware
3938  * @hw: 	The hardware instance.
3939  *
3940  * This routine disables the hardware.
3941  */
3942 static void hw_disable(struct ksz_hw *hw)
3943 {
3944 	hw_stop_rx(hw);
3945 	hw_stop_tx(hw);
3946 	hw->enabled = 0;
3947 }
3948 
3949 /**
3950  * hw_enable - enable hardware
3951  * @hw: 	The hardware instance.
3952  *
3953  * This routine enables the hardware.
3954  */
3955 static void hw_enable(struct ksz_hw *hw)
3956 {
3957 	hw_start_tx(hw);
3958 	hw_start_rx(hw);
3959 	hw->enabled = 1;
3960 }
3961 
3962 /**
3963  * hw_alloc_pkt - allocate enough descriptors for transmission
3964  * @hw: 	The hardware instance.
3965  * @length:	The length of the packet.
3966  * @physical:	Number of descriptors required.
3967  *
3968  * This function allocates descriptors for transmission.
3969  *
3970  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3971  */
3972 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3973 {
3974 	/* Always leave one descriptor free. */
3975 	if (hw->tx_desc_info.avail <= 1)
3976 		return 0;
3977 
3978 	/* Allocate a descriptor for transmission and mark it current. */
3979 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3980 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3981 
3982 	/* Keep track of number of transmit descriptors used so far. */
3983 	++hw->tx_int_cnt;
3984 	hw->tx_size += length;
3985 
3986 	/* Cannot hold on too much data. */
3987 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3988 		hw->tx_int_cnt = hw->tx_int_mask + 1;
3989 
3990 	if (physical > hw->tx_desc_info.avail)
3991 		return 1;
3992 
3993 	return hw->tx_desc_info.avail;
3994 }
3995 
3996 /**
3997  * hw_send_pkt - mark packet for transmission
3998  * @hw: 	The hardware instance.
3999  *
4000  * This routine marks the packet for transmission in PCI version.
4001  */
4002 static void hw_send_pkt(struct ksz_hw *hw)
4003 {
4004 	struct ksz_desc *cur = hw->tx_desc_info.cur;
4005 
4006 	cur->sw.buf.tx.last_seg = 1;
4007 
4008 	/* Interrupt only after specified number of descriptors used. */
4009 	if (hw->tx_int_cnt > hw->tx_int_mask) {
4010 		cur->sw.buf.tx.intr = 1;
4011 		hw->tx_int_cnt = 0;
4012 		hw->tx_size = 0;
4013 	}
4014 
4015 	/* KSZ8842 supports port directed transmission. */
4016 	cur->sw.buf.tx.dest_port = hw->dst_ports;
4017 
4018 	release_desc(cur);
4019 
4020 	writel(0, hw->io + KS_DMA_TX_START);
4021 }
4022 
4023 static int empty_addr(u8 *addr)
4024 {
4025 	u32 *addr1 = (u32 *) addr;
4026 	u16 *addr2 = (u16 *) &addr[4];
4027 
4028 	return 0 == *addr1 && 0 == *addr2;
4029 }
4030 
4031 /**
4032  * hw_set_addr - set MAC address
4033  * @hw: 	The hardware instance.
4034  *
4035  * This routine programs the MAC address of the hardware when the address is
4036  * overridden.
4037  */
4038 static void hw_set_addr(struct ksz_hw *hw)
4039 {
4040 	int i;
4041 
4042 	for (i = 0; i < ETH_ALEN; i++)
4043 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4044 			hw->io + KS884X_ADDR_0_OFFSET + i);
4045 
4046 	sw_set_addr(hw, hw->override_addr);
4047 }
4048 
4049 /**
4050  * hw_read_addr - read MAC address
4051  * @hw: 	The hardware instance.
4052  *
4053  * This routine retrieves the MAC address of the hardware.
4054  */
4055 static void hw_read_addr(struct ksz_hw *hw)
4056 {
4057 	int i;
4058 
4059 	for (i = 0; i < ETH_ALEN; i++)
4060 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4061 			KS884X_ADDR_0_OFFSET + i);
4062 
4063 	if (!hw->mac_override) {
4064 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4065 		if (empty_addr(hw->override_addr)) {
4066 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4067 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4068 			       ETH_ALEN);
4069 			hw->override_addr[5] += hw->id;
4070 			hw_set_addr(hw);
4071 		}
4072 	}
4073 }
4074 
4075 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4076 {
4077 	int i;
4078 	u32 mac_addr_lo;
4079 	u32 mac_addr_hi;
4080 
4081 	mac_addr_hi = 0;
4082 	for (i = 0; i < 2; i++) {
4083 		mac_addr_hi <<= 8;
4084 		mac_addr_hi |= mac_addr[i];
4085 	}
4086 	mac_addr_hi |= ADD_ADDR_ENABLE;
4087 	mac_addr_lo = 0;
4088 	for (i = 2; i < 6; i++) {
4089 		mac_addr_lo <<= 8;
4090 		mac_addr_lo |= mac_addr[i];
4091 	}
4092 	index *= ADD_ADDR_INCR;
4093 
4094 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4095 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4096 }
4097 
4098 static void hw_set_add_addr(struct ksz_hw *hw)
4099 {
4100 	int i;
4101 
4102 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4103 		if (empty_addr(hw->address[i]))
4104 			writel(0, hw->io + ADD_ADDR_INCR * i +
4105 				KS_ADD_ADDR_0_HI);
4106 		else
4107 			hw_ena_add_addr(hw, i, hw->address[i]);
4108 	}
4109 }
4110 
4111 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4112 {
4113 	int i;
4114 	int j = ADDITIONAL_ENTRIES;
4115 
4116 	if (ether_addr_equal(hw->override_addr, mac_addr))
4117 		return 0;
4118 	for (i = 0; i < hw->addr_list_size; i++) {
4119 		if (ether_addr_equal(hw->address[i], mac_addr))
4120 			return 0;
4121 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4122 			j = i;
4123 	}
4124 	if (j < ADDITIONAL_ENTRIES) {
4125 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4126 		hw_ena_add_addr(hw, j, hw->address[j]);
4127 		return 0;
4128 	}
4129 	return -1;
4130 }
4131 
4132 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4133 {
4134 	int i;
4135 
4136 	for (i = 0; i < hw->addr_list_size; i++) {
4137 		if (ether_addr_equal(hw->address[i], mac_addr)) {
4138 			eth_zero_addr(hw->address[i]);
4139 			writel(0, hw->io + ADD_ADDR_INCR * i +
4140 				KS_ADD_ADDR_0_HI);
4141 			return 0;
4142 		}
4143 	}
4144 	return -1;
4145 }
4146 
4147 /**
4148  * hw_clr_multicast - clear multicast addresses
4149  * @hw: 	The hardware instance.
4150  *
4151  * This routine removes all multicast addresses set in the hardware.
4152  */
4153 static void hw_clr_multicast(struct ksz_hw *hw)
4154 {
4155 	int i;
4156 
4157 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4158 		hw->multi_bits[i] = 0;
4159 
4160 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4161 	}
4162 }
4163 
4164 /**
4165  * hw_set_grp_addr - set multicast addresses
4166  * @hw: 	The hardware instance.
4167  *
4168  * This routine programs multicast addresses for the hardware to accept those
4169  * addresses.
4170  */
4171 static void hw_set_grp_addr(struct ksz_hw *hw)
4172 {
4173 	int i;
4174 	int index;
4175 	int position;
4176 	int value;
4177 
4178 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4179 
4180 	for (i = 0; i < hw->multi_list_size; i++) {
4181 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4182 		index = position >> 3;
4183 		value = 1 << (position & 7);
4184 		hw->multi_bits[index] |= (u8) value;
4185 	}
4186 
4187 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4188 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4189 			i);
4190 }
4191 
4192 /**
4193  * hw_set_multicast - enable or disable all multicast receiving
4194  * @hw: 	The hardware instance.
4195  * @multicast:	To turn on or off the all multicast feature.
4196  *
4197  * This routine enables/disables the hardware to accept all multicast packets.
4198  */
4199 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4200 {
4201 	/* Stop receiving for reconfiguration. */
4202 	hw_stop_rx(hw);
4203 
4204 	if (multicast)
4205 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4206 	else
4207 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4208 
4209 	if (hw->enabled)
4210 		hw_start_rx(hw);
4211 }
4212 
4213 /**
4214  * hw_set_promiscuous - enable or disable promiscuous receiving
4215  * @hw: 	The hardware instance.
4216  * @prom:	To turn on or off the promiscuous feature.
4217  *
4218  * This routine enables/disables the hardware to accept all packets.
4219  */
4220 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4221 {
4222 	/* Stop receiving for reconfiguration. */
4223 	hw_stop_rx(hw);
4224 
4225 	if (prom)
4226 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4227 	else
4228 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4229 
4230 	if (hw->enabled)
4231 		hw_start_rx(hw);
4232 }
4233 
4234 /**
4235  * sw_enable - enable the switch
4236  * @hw: 	The hardware instance.
4237  * @enable:	The flag to enable or disable the switch
4238  *
4239  * This routine is used to enable/disable the switch in KSZ8842.
4240  */
4241 static void sw_enable(struct ksz_hw *hw, int enable)
4242 {
4243 	int port;
4244 
4245 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4246 		if (hw->dev_count > 1) {
4247 			/* Set port-base vlan membership with host port. */
4248 			sw_cfg_port_base_vlan(hw, port,
4249 				HOST_MASK | (1 << port));
4250 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4251 		} else {
4252 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4253 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4254 		}
4255 	}
4256 	if (hw->dev_count > 1)
4257 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4258 	else
4259 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4260 
4261 	if (enable)
4262 		enable = KS8842_START;
4263 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4264 }
4265 
4266 /**
4267  * sw_setup - setup the switch
4268  * @hw: 	The hardware instance.
4269  *
4270  * This routine setup the hardware switch engine for default operation.
4271  */
4272 static void sw_setup(struct ksz_hw *hw)
4273 {
4274 	int port;
4275 
4276 	sw_set_global_ctrl(hw);
4277 
4278 	/* Enable switch broadcast storm protection at 10% percent rate. */
4279 	sw_init_broad_storm(hw);
4280 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4281 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4282 		sw_ena_broad_storm(hw, port);
4283 
4284 	sw_init_prio(hw);
4285 
4286 	sw_init_mirror(hw);
4287 
4288 	sw_init_prio_rate(hw);
4289 
4290 	sw_init_vlan(hw);
4291 
4292 	if (hw->features & STP_SUPPORT)
4293 		sw_init_stp(hw);
4294 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4295 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4296 		hw->overrides |= PAUSE_FLOW_CTRL;
4297 	sw_enable(hw, 1);
4298 }
4299 
4300 /**
4301  * ksz_start_timer - start kernel timer
4302  * @info:	Kernel timer information.
4303  * @time:	The time tick.
4304  *
4305  * This routine starts the kernel timer after the specified time tick.
4306  */
4307 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4308 {
4309 	info->cnt = 0;
4310 	info->timer.expires = jiffies + time;
4311 	add_timer(&info->timer);
4312 
4313 	/* infinity */
4314 	info->max = -1;
4315 }
4316 
4317 /**
4318  * ksz_stop_timer - stop kernel timer
4319  * @info:	Kernel timer information.
4320  *
4321  * This routine stops the kernel timer.
4322  */
4323 static void ksz_stop_timer(struct ksz_timer_info *info)
4324 {
4325 	if (info->max) {
4326 		info->max = 0;
4327 		del_timer_sync(&info->timer);
4328 	}
4329 }
4330 
4331 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4332 	void (*function)(struct timer_list *))
4333 {
4334 	info->max = 0;
4335 	info->period = period;
4336 	timer_setup(&info->timer, function, 0);
4337 }
4338 
4339 static void ksz_update_timer(struct ksz_timer_info *info)
4340 {
4341 	++info->cnt;
4342 	if (info->max > 0) {
4343 		if (info->cnt < info->max) {
4344 			info->timer.expires = jiffies + info->period;
4345 			add_timer(&info->timer);
4346 		} else
4347 			info->max = 0;
4348 	} else if (info->max < 0) {
4349 		info->timer.expires = jiffies + info->period;
4350 		add_timer(&info->timer);
4351 	}
4352 }
4353 
4354 /**
4355  * ksz_alloc_soft_desc - allocate software descriptors
4356  * @desc_info:	Descriptor information structure.
4357  * @transmit:	Indication that descriptors are for transmit.
4358  *
4359  * This local function allocates software descriptors for manipulation in
4360  * memory.
4361  *
4362  * Return 0 if successful.
4363  */
4364 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4365 {
4366 	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4367 				  GFP_KERNEL);
4368 	if (!desc_info->ring)
4369 		return 1;
4370 	hw_init_desc(desc_info, transmit);
4371 	return 0;
4372 }
4373 
4374 /**
4375  * ksz_alloc_desc - allocate hardware descriptors
4376  * @adapter:	Adapter information structure.
4377  *
4378  * This local function allocates hardware descriptors for receiving and
4379  * transmitting.
4380  *
4381  * Return 0 if successful.
4382  */
4383 static int ksz_alloc_desc(struct dev_info *adapter)
4384 {
4385 	struct ksz_hw *hw = &adapter->hw;
4386 	int offset;
4387 
4388 	/* Allocate memory for RX & TX descriptors. */
4389 	adapter->desc_pool.alloc_size =
4390 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4391 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4392 		DESC_ALIGNMENT;
4393 
4394 	adapter->desc_pool.alloc_virt =
4395 		dma_alloc_coherent(&adapter->pdev->dev,
4396 				   adapter->desc_pool.alloc_size,
4397 				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4398 	if (adapter->desc_pool.alloc_virt == NULL) {
4399 		adapter->desc_pool.alloc_size = 0;
4400 		return 1;
4401 	}
4402 
4403 	/* Align to the next cache line boundary. */
4404 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4405 		(DESC_ALIGNMENT -
4406 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4407 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4408 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4409 
4410 	/* Allocate receive/transmit descriptors. */
4411 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4412 		adapter->desc_pool.virt;
4413 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4414 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4415 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4416 		(adapter->desc_pool.virt + offset);
4417 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4418 
4419 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4420 		return 1;
4421 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4422 		return 1;
4423 
4424 	return 0;
4425 }
4426 
4427 /**
4428  * free_dma_buf - release DMA buffer resources
4429  * @adapter:	Adapter information structure.
4430  * @dma_buf:	pointer to buf
4431  * @direction:	to or from device
4432  *
4433  * This routine is just a helper function to release the DMA buffer resources.
4434  */
4435 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4436 	int direction)
4437 {
4438 	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4439 			 direction);
4440 	dev_kfree_skb(dma_buf->skb);
4441 	dma_buf->skb = NULL;
4442 	dma_buf->dma = 0;
4443 }
4444 
4445 /**
4446  * ksz_init_rx_buffers - initialize receive descriptors
4447  * @adapter:	Adapter information structure.
4448  *
4449  * This routine initializes DMA buffers for receiving.
4450  */
4451 static void ksz_init_rx_buffers(struct dev_info *adapter)
4452 {
4453 	int i;
4454 	struct ksz_desc *desc;
4455 	struct ksz_dma_buf *dma_buf;
4456 	struct ksz_hw *hw = &adapter->hw;
4457 	struct ksz_desc_info *info = &hw->rx_desc_info;
4458 
4459 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4460 		get_rx_pkt(info, &desc);
4461 
4462 		dma_buf = DMA_BUFFER(desc);
4463 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4464 			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4465 		dma_buf->len = adapter->mtu;
4466 		if (!dma_buf->skb)
4467 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4468 		if (dma_buf->skb && !dma_buf->dma)
4469 			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4470 						skb_tail_pointer(dma_buf->skb),
4471 						dma_buf->len,
4472 						DMA_FROM_DEVICE);
4473 
4474 		/* Set descriptor. */
4475 		set_rx_buf(desc, dma_buf->dma);
4476 		set_rx_len(desc, dma_buf->len);
4477 		release_desc(desc);
4478 	}
4479 }
4480 
4481 /**
4482  * ksz_alloc_mem - allocate memory for hardware descriptors
4483  * @adapter:	Adapter information structure.
4484  *
4485  * This function allocates memory for use by hardware descriptors for receiving
4486  * and transmitting.
4487  *
4488  * Return 0 if successful.
4489  */
4490 static int ksz_alloc_mem(struct dev_info *adapter)
4491 {
4492 	struct ksz_hw *hw = &adapter->hw;
4493 
4494 	/* Determine the number of receive and transmit descriptors. */
4495 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4496 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4497 
4498 	/* Determine how many descriptors to skip transmit interrupt. */
4499 	hw->tx_int_cnt = 0;
4500 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4501 	if (hw->tx_int_mask > 8)
4502 		hw->tx_int_mask = 8;
4503 	while (hw->tx_int_mask) {
4504 		hw->tx_int_cnt++;
4505 		hw->tx_int_mask >>= 1;
4506 	}
4507 	if (hw->tx_int_cnt) {
4508 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4509 		hw->tx_int_cnt = 0;
4510 	}
4511 
4512 	/* Determine the descriptor size. */
4513 	hw->rx_desc_info.size =
4514 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4515 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4516 	hw->tx_desc_info.size =
4517 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4518 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4519 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4520 		pr_alert("Hardware descriptor size not right!\n");
4521 	ksz_check_desc_num(&hw->rx_desc_info);
4522 	ksz_check_desc_num(&hw->tx_desc_info);
4523 
4524 	/* Allocate descriptors. */
4525 	if (ksz_alloc_desc(adapter))
4526 		return 1;
4527 
4528 	return 0;
4529 }
4530 
4531 /**
4532  * ksz_free_desc - free software and hardware descriptors
4533  * @adapter:	Adapter information structure.
4534  *
4535  * This local routine frees the software and hardware descriptors allocated by
4536  * ksz_alloc_desc().
4537  */
4538 static void ksz_free_desc(struct dev_info *adapter)
4539 {
4540 	struct ksz_hw *hw = &adapter->hw;
4541 
4542 	/* Reset descriptor. */
4543 	hw->rx_desc_info.ring_virt = NULL;
4544 	hw->tx_desc_info.ring_virt = NULL;
4545 	hw->rx_desc_info.ring_phys = 0;
4546 	hw->tx_desc_info.ring_phys = 0;
4547 
4548 	/* Free memory. */
4549 	if (adapter->desc_pool.alloc_virt)
4550 		dma_free_coherent(&adapter->pdev->dev,
4551 				  adapter->desc_pool.alloc_size,
4552 				  adapter->desc_pool.alloc_virt,
4553 				  adapter->desc_pool.dma_addr);
4554 
4555 	/* Reset resource pool. */
4556 	adapter->desc_pool.alloc_size = 0;
4557 	adapter->desc_pool.alloc_virt = NULL;
4558 
4559 	kfree(hw->rx_desc_info.ring);
4560 	hw->rx_desc_info.ring = NULL;
4561 	kfree(hw->tx_desc_info.ring);
4562 	hw->tx_desc_info.ring = NULL;
4563 }
4564 
4565 /**
4566  * ksz_free_buffers - free buffers used in the descriptors
4567  * @adapter:	Adapter information structure.
4568  * @desc_info:	Descriptor information structure.
4569  * @direction:	to or from device
4570  *
4571  * This local routine frees buffers used in the DMA buffers.
4572  */
4573 static void ksz_free_buffers(struct dev_info *adapter,
4574 	struct ksz_desc_info *desc_info, int direction)
4575 {
4576 	int i;
4577 	struct ksz_dma_buf *dma_buf;
4578 	struct ksz_desc *desc = desc_info->ring;
4579 
4580 	for (i = 0; i < desc_info->alloc; i++) {
4581 		dma_buf = DMA_BUFFER(desc);
4582 		if (dma_buf->skb)
4583 			free_dma_buf(adapter, dma_buf, direction);
4584 		desc++;
4585 	}
4586 }
4587 
4588 /**
4589  * ksz_free_mem - free all resources used by descriptors
4590  * @adapter:	Adapter information structure.
4591  *
4592  * This local routine frees all the resources allocated by ksz_alloc_mem().
4593  */
4594 static void ksz_free_mem(struct dev_info *adapter)
4595 {
4596 	/* Free transmit buffers. */
4597 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4598 
4599 	/* Free receive buffers. */
4600 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4601 
4602 	/* Free descriptors. */
4603 	ksz_free_desc(adapter);
4604 }
4605 
4606 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4607 	u64 *counter)
4608 {
4609 	int i;
4610 	int mib;
4611 	int port;
4612 	struct ksz_port_mib *port_mib;
4613 
4614 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4615 	for (i = 0, port = first; i < cnt; i++, port++) {
4616 		port_mib = &hw->port_mib[port];
4617 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4618 			counter[mib] += port_mib->counter[mib];
4619 	}
4620 }
4621 
4622 /**
4623  * send_packet - send packet
4624  * @skb:	Socket buffer.
4625  * @dev:	Network device.
4626  *
4627  * This routine is used to send a packet out to the network.
4628  */
4629 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4630 {
4631 	struct ksz_desc *desc;
4632 	struct ksz_desc *first;
4633 	struct dev_priv *priv = netdev_priv(dev);
4634 	struct dev_info *hw_priv = priv->adapter;
4635 	struct ksz_hw *hw = &hw_priv->hw;
4636 	struct ksz_desc_info *info = &hw->tx_desc_info;
4637 	struct ksz_dma_buf *dma_buf;
4638 	int len;
4639 	int last_frag = skb_shinfo(skb)->nr_frags;
4640 
4641 	/*
4642 	 * KSZ8842 with multiple device interfaces needs to be told which port
4643 	 * to send.
4644 	 */
4645 	if (hw->dev_count > 1)
4646 		hw->dst_ports = 1 << priv->port.first_port;
4647 
4648 	/* Hardware will pad the length to 60. */
4649 	len = skb->len;
4650 
4651 	/* Remember the very first descriptor. */
4652 	first = info->cur;
4653 	desc = first;
4654 
4655 	dma_buf = DMA_BUFFER(desc);
4656 	if (last_frag) {
4657 		int frag;
4658 		skb_frag_t *this_frag;
4659 
4660 		dma_buf->len = skb_headlen(skb);
4661 
4662 		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4663 					      dma_buf->len, DMA_TO_DEVICE);
4664 		set_tx_buf(desc, dma_buf->dma);
4665 		set_tx_len(desc, dma_buf->len);
4666 
4667 		frag = 0;
4668 		do {
4669 			this_frag = &skb_shinfo(skb)->frags[frag];
4670 
4671 			/* Get a new descriptor. */
4672 			get_tx_pkt(info, &desc);
4673 
4674 			/* Keep track of descriptors used so far. */
4675 			++hw->tx_int_cnt;
4676 
4677 			dma_buf = DMA_BUFFER(desc);
4678 			dma_buf->len = skb_frag_size(this_frag);
4679 
4680 			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4681 						      skb_frag_address(this_frag),
4682 						      dma_buf->len,
4683 						      DMA_TO_DEVICE);
4684 			set_tx_buf(desc, dma_buf->dma);
4685 			set_tx_len(desc, dma_buf->len);
4686 
4687 			frag++;
4688 			if (frag == last_frag)
4689 				break;
4690 
4691 			/* Do not release the last descriptor here. */
4692 			release_desc(desc);
4693 		} while (1);
4694 
4695 		/* current points to the last descriptor. */
4696 		info->cur = desc;
4697 
4698 		/* Release the first descriptor. */
4699 		release_desc(first);
4700 	} else {
4701 		dma_buf->len = len;
4702 
4703 		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4704 					      dma_buf->len, DMA_TO_DEVICE);
4705 		set_tx_buf(desc, dma_buf->dma);
4706 		set_tx_len(desc, dma_buf->len);
4707 	}
4708 
4709 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4710 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4711 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4712 	}
4713 
4714 	/*
4715 	 * The last descriptor holds the packet so that it can be returned to
4716 	 * network subsystem after all descriptors are transmitted.
4717 	 */
4718 	dma_buf->skb = skb;
4719 
4720 	hw_send_pkt(hw);
4721 
4722 	/* Update transmit statistics. */
4723 	dev->stats.tx_packets++;
4724 	dev->stats.tx_bytes += len;
4725 }
4726 
4727 /**
4728  * transmit_cleanup - clean up transmit descriptors
4729  * @hw_priv:	Network device.
4730  * @normal:	break if owned
4731  *
4732  * This routine is called to clean up the transmitted buffers.
4733  */
4734 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4735 {
4736 	int last;
4737 	union desc_stat status;
4738 	struct ksz_hw *hw = &hw_priv->hw;
4739 	struct ksz_desc_info *info = &hw->tx_desc_info;
4740 	struct ksz_desc *desc;
4741 	struct ksz_dma_buf *dma_buf;
4742 	struct net_device *dev = NULL;
4743 
4744 	spin_lock_irq(&hw_priv->hwlock);
4745 	last = info->last;
4746 
4747 	while (info->avail < info->alloc) {
4748 		/* Get next descriptor which is not hardware owned. */
4749 		desc = &info->ring[last];
4750 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4751 		if (status.tx.hw_owned) {
4752 			if (normal)
4753 				break;
4754 			else
4755 				reset_desc(desc, status);
4756 		}
4757 
4758 		dma_buf = DMA_BUFFER(desc);
4759 		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4760 				 dma_buf->len, DMA_TO_DEVICE);
4761 
4762 		/* This descriptor contains the last buffer in the packet. */
4763 		if (dma_buf->skb) {
4764 			dev = dma_buf->skb->dev;
4765 
4766 			/* Release the packet back to network subsystem. */
4767 			dev_kfree_skb_irq(dma_buf->skb);
4768 			dma_buf->skb = NULL;
4769 		}
4770 
4771 		/* Free the transmitted descriptor. */
4772 		last++;
4773 		last &= info->mask;
4774 		info->avail++;
4775 	}
4776 	info->last = last;
4777 	spin_unlock_irq(&hw_priv->hwlock);
4778 
4779 	/* Notify the network subsystem that the packet has been sent. */
4780 	if (dev)
4781 		netif_trans_update(dev);
4782 }
4783 
4784 /**
4785  * transmit_done - transmit done processing
4786  * @hw_priv:	Network device.
4787  *
4788  * This routine is called when the transmit interrupt is triggered, indicating
4789  * either a packet is sent successfully or there are transmit errors.
4790  */
4791 static void tx_done(struct dev_info *hw_priv)
4792 {
4793 	struct ksz_hw *hw = &hw_priv->hw;
4794 	int port;
4795 
4796 	transmit_cleanup(hw_priv, 1);
4797 
4798 	for (port = 0; port < hw->dev_count; port++) {
4799 		struct net_device *dev = hw->port_info[port].pdev;
4800 
4801 		if (netif_running(dev) && netif_queue_stopped(dev))
4802 			netif_wake_queue(dev);
4803 	}
4804 }
4805 
4806 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4807 {
4808 	skb->dev = old->dev;
4809 	skb->protocol = old->protocol;
4810 	skb->ip_summed = old->ip_summed;
4811 	skb->csum = old->csum;
4812 	skb_set_network_header(skb, ETH_HLEN);
4813 
4814 	dev_consume_skb_any(old);
4815 }
4816 
4817 /**
4818  * netdev_tx - send out packet
4819  * @skb:	Socket buffer.
4820  * @dev:	Network device.
4821  *
4822  * This function is used by the upper network layer to send out a packet.
4823  *
4824  * Return 0 if successful; otherwise an error code indicating failure.
4825  */
4826 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4827 {
4828 	struct dev_priv *priv = netdev_priv(dev);
4829 	struct dev_info *hw_priv = priv->adapter;
4830 	struct ksz_hw *hw = &hw_priv->hw;
4831 	int left;
4832 	int num = 1;
4833 	int rc = 0;
4834 
4835 	if (hw->features & SMALL_PACKET_TX_BUG) {
4836 		struct sk_buff *org_skb = skb;
4837 
4838 		if (skb->len <= 48) {
4839 			if (skb_end_pointer(skb) - skb->data >= 50) {
4840 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4841 				skb->len = 50;
4842 			} else {
4843 				skb = netdev_alloc_skb(dev, 50);
4844 				if (!skb)
4845 					return NETDEV_TX_BUSY;
4846 				memcpy(skb->data, org_skb->data, org_skb->len);
4847 				memset(&skb->data[org_skb->len], 0,
4848 					50 - org_skb->len);
4849 				skb->len = 50;
4850 				copy_old_skb(org_skb, skb);
4851 			}
4852 		}
4853 	}
4854 
4855 	spin_lock_irq(&hw_priv->hwlock);
4856 
4857 	num = skb_shinfo(skb)->nr_frags + 1;
4858 	left = hw_alloc_pkt(hw, skb->len, num);
4859 	if (left) {
4860 		if (left < num ||
4861 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4862 		     skb->protocol == htons(ETH_P_IPV6))) {
4863 			struct sk_buff *org_skb = skb;
4864 
4865 			skb = netdev_alloc_skb(dev, org_skb->len);
4866 			if (!skb) {
4867 				rc = NETDEV_TX_BUSY;
4868 				goto unlock;
4869 			}
4870 			skb_copy_and_csum_dev(org_skb, skb->data);
4871 			org_skb->ip_summed = CHECKSUM_NONE;
4872 			skb->len = org_skb->len;
4873 			copy_old_skb(org_skb, skb);
4874 		}
4875 		send_packet(skb, dev);
4876 		if (left <= num)
4877 			netif_stop_queue(dev);
4878 	} else {
4879 		/* Stop the transmit queue until packet is allocated. */
4880 		netif_stop_queue(dev);
4881 		rc = NETDEV_TX_BUSY;
4882 	}
4883 unlock:
4884 	spin_unlock_irq(&hw_priv->hwlock);
4885 
4886 	return rc;
4887 }
4888 
4889 /**
4890  * netdev_tx_timeout - transmit timeout processing
4891  * @dev:	Network device.
4892  * @txqueue:	index of hanging queue
4893  *
4894  * This routine is called when the transmit timer expires.  That indicates the
4895  * hardware is not running correctly because transmit interrupts are not
4896  * triggered to free up resources so that the transmit routine can continue
4897  * sending out packets.  The hardware is reset to correct the problem.
4898  */
4899 static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4900 {
4901 	static unsigned long last_reset;
4902 
4903 	struct dev_priv *priv = netdev_priv(dev);
4904 	struct dev_info *hw_priv = priv->adapter;
4905 	struct ksz_hw *hw = &hw_priv->hw;
4906 	int port;
4907 
4908 	if (hw->dev_count > 1) {
4909 		/*
4910 		 * Only reset the hardware if time between calls is long
4911 		 * enough.
4912 		 */
4913 		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4914 			hw_priv = NULL;
4915 	}
4916 
4917 	last_reset = jiffies;
4918 	if (hw_priv) {
4919 		hw_dis_intr(hw);
4920 		hw_disable(hw);
4921 
4922 		transmit_cleanup(hw_priv, 0);
4923 		hw_reset_pkts(&hw->rx_desc_info);
4924 		hw_reset_pkts(&hw->tx_desc_info);
4925 		ksz_init_rx_buffers(hw_priv);
4926 
4927 		hw_reset(hw);
4928 
4929 		hw_set_desc_base(hw,
4930 			hw->tx_desc_info.ring_phys,
4931 			hw->rx_desc_info.ring_phys);
4932 		hw_set_addr(hw);
4933 		if (hw->all_multi)
4934 			hw_set_multicast(hw, hw->all_multi);
4935 		else if (hw->multi_list_size)
4936 			hw_set_grp_addr(hw);
4937 
4938 		if (hw->dev_count > 1) {
4939 			hw_set_add_addr(hw);
4940 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4941 				struct net_device *port_dev;
4942 
4943 				port_set_stp_state(hw, port,
4944 					STP_STATE_DISABLED);
4945 
4946 				port_dev = hw->port_info[port].pdev;
4947 				if (netif_running(port_dev))
4948 					port_set_stp_state(hw, port,
4949 						STP_STATE_SIMPLE);
4950 			}
4951 		}
4952 
4953 		hw_enable(hw);
4954 		hw_ena_intr(hw);
4955 	}
4956 
4957 	netif_trans_update(dev);
4958 	netif_wake_queue(dev);
4959 }
4960 
4961 static inline void csum_verified(struct sk_buff *skb)
4962 {
4963 	unsigned short protocol;
4964 	struct iphdr *iph;
4965 
4966 	protocol = skb->protocol;
4967 	skb_reset_network_header(skb);
4968 	iph = (struct iphdr *) skb_network_header(skb);
4969 	if (protocol == htons(ETH_P_8021Q)) {
4970 		protocol = iph->tot_len;
4971 		skb_set_network_header(skb, VLAN_HLEN);
4972 		iph = (struct iphdr *) skb_network_header(skb);
4973 	}
4974 	if (protocol == htons(ETH_P_IP)) {
4975 		if (iph->protocol == IPPROTO_TCP)
4976 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4977 	}
4978 }
4979 
4980 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4981 	struct ksz_desc *desc, union desc_stat status)
4982 {
4983 	int packet_len;
4984 	struct dev_priv *priv = netdev_priv(dev);
4985 	struct dev_info *hw_priv = priv->adapter;
4986 	struct ksz_dma_buf *dma_buf;
4987 	struct sk_buff *skb;
4988 
4989 	/* Received length includes 4-byte CRC. */
4990 	packet_len = status.rx.frame_len - 4;
4991 
4992 	dma_buf = DMA_BUFFER(desc);
4993 	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4994 				packet_len + 4, DMA_FROM_DEVICE);
4995 
4996 	do {
4997 		/* skb->data != skb->head */
4998 		skb = netdev_alloc_skb(dev, packet_len + 2);
4999 		if (!skb) {
5000 			dev->stats.rx_dropped++;
5001 			return -ENOMEM;
5002 		}
5003 
5004 		/*
5005 		 * Align socket buffer in 4-byte boundary for better
5006 		 * performance.
5007 		 */
5008 		skb_reserve(skb, 2);
5009 
5010 		skb_put_data(skb, dma_buf->skb->data, packet_len);
5011 	} while (0);
5012 
5013 	skb->protocol = eth_type_trans(skb, dev);
5014 
5015 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5016 		csum_verified(skb);
5017 
5018 	/* Update receive statistics. */
5019 	dev->stats.rx_packets++;
5020 	dev->stats.rx_bytes += packet_len;
5021 
5022 	/* Notify upper layer for received packet. */
5023 	netif_rx(skb);
5024 
5025 	return 0;
5026 }
5027 
5028 static int dev_rcv_packets(struct dev_info *hw_priv)
5029 {
5030 	int next;
5031 	union desc_stat status;
5032 	struct ksz_hw *hw = &hw_priv->hw;
5033 	struct net_device *dev = hw->port_info[0].pdev;
5034 	struct ksz_desc_info *info = &hw->rx_desc_info;
5035 	int left = info->alloc;
5036 	struct ksz_desc *desc;
5037 	int received = 0;
5038 
5039 	next = info->next;
5040 	while (left--) {
5041 		/* Get next descriptor which is not hardware owned. */
5042 		desc = &info->ring[next];
5043 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5044 		if (status.rx.hw_owned)
5045 			break;
5046 
5047 		/* Status valid only when last descriptor bit is set. */
5048 		if (status.rx.last_desc && status.rx.first_desc) {
5049 			if (rx_proc(dev, hw, desc, status))
5050 				goto release_packet;
5051 			received++;
5052 		}
5053 
5054 release_packet:
5055 		release_desc(desc);
5056 		next++;
5057 		next &= info->mask;
5058 	}
5059 	info->next = next;
5060 
5061 	return received;
5062 }
5063 
5064 static int port_rcv_packets(struct dev_info *hw_priv)
5065 {
5066 	int next;
5067 	union desc_stat status;
5068 	struct ksz_hw *hw = &hw_priv->hw;
5069 	struct net_device *dev = hw->port_info[0].pdev;
5070 	struct ksz_desc_info *info = &hw->rx_desc_info;
5071 	int left = info->alloc;
5072 	struct ksz_desc *desc;
5073 	int received = 0;
5074 
5075 	next = info->next;
5076 	while (left--) {
5077 		/* Get next descriptor which is not hardware owned. */
5078 		desc = &info->ring[next];
5079 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5080 		if (status.rx.hw_owned)
5081 			break;
5082 
5083 		if (hw->dev_count > 1) {
5084 			/* Get received port number. */
5085 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5086 
5087 			dev = hw->port_info[p].pdev;
5088 			if (!netif_running(dev))
5089 				goto release_packet;
5090 		}
5091 
5092 		/* Status valid only when last descriptor bit is set. */
5093 		if (status.rx.last_desc && status.rx.first_desc) {
5094 			if (rx_proc(dev, hw, desc, status))
5095 				goto release_packet;
5096 			received++;
5097 		}
5098 
5099 release_packet:
5100 		release_desc(desc);
5101 		next++;
5102 		next &= info->mask;
5103 	}
5104 	info->next = next;
5105 
5106 	return received;
5107 }
5108 
5109 static int dev_rcv_special(struct dev_info *hw_priv)
5110 {
5111 	int next;
5112 	union desc_stat status;
5113 	struct ksz_hw *hw = &hw_priv->hw;
5114 	struct net_device *dev = hw->port_info[0].pdev;
5115 	struct ksz_desc_info *info = &hw->rx_desc_info;
5116 	int left = info->alloc;
5117 	struct ksz_desc *desc;
5118 	int received = 0;
5119 
5120 	next = info->next;
5121 	while (left--) {
5122 		/* Get next descriptor which is not hardware owned. */
5123 		desc = &info->ring[next];
5124 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5125 		if (status.rx.hw_owned)
5126 			break;
5127 
5128 		if (hw->dev_count > 1) {
5129 			/* Get received port number. */
5130 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5131 
5132 			dev = hw->port_info[p].pdev;
5133 			if (!netif_running(dev))
5134 				goto release_packet;
5135 		}
5136 
5137 		/* Status valid only when last descriptor bit is set. */
5138 		if (status.rx.last_desc && status.rx.first_desc) {
5139 			/*
5140 			 * Receive without error.  With receive errors
5141 			 * disabled, packets with receive errors will be
5142 			 * dropped, so no need to check the error bit.
5143 			 */
5144 			if (!status.rx.error || (status.data &
5145 					KS_DESC_RX_ERROR_COND) ==
5146 					KS_DESC_RX_ERROR_TOO_LONG) {
5147 				if (rx_proc(dev, hw, desc, status))
5148 					goto release_packet;
5149 				received++;
5150 			} else {
5151 				struct dev_priv *priv = netdev_priv(dev);
5152 
5153 				/* Update receive error statistics. */
5154 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5155 			}
5156 		}
5157 
5158 release_packet:
5159 		release_desc(desc);
5160 		next++;
5161 		next &= info->mask;
5162 	}
5163 	info->next = next;
5164 
5165 	return received;
5166 }
5167 
5168 static void rx_proc_task(struct tasklet_struct *t)
5169 {
5170 	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
5171 	struct ksz_hw *hw = &hw_priv->hw;
5172 
5173 	if (!hw->enabled)
5174 		return;
5175 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5176 
5177 		/* In case receive process is suspended because of overrun. */
5178 		hw_resume_rx(hw);
5179 
5180 		/* tasklets are interruptible. */
5181 		spin_lock_irq(&hw_priv->hwlock);
5182 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5183 		spin_unlock_irq(&hw_priv->hwlock);
5184 	} else {
5185 		hw_ack_intr(hw, KS884X_INT_RX);
5186 		tasklet_schedule(&hw_priv->rx_tasklet);
5187 	}
5188 }
5189 
5190 static void tx_proc_task(struct tasklet_struct *t)
5191 {
5192 	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
5193 	struct ksz_hw *hw = &hw_priv->hw;
5194 
5195 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5196 
5197 	tx_done(hw_priv);
5198 
5199 	/* tasklets are interruptible. */
5200 	spin_lock_irq(&hw_priv->hwlock);
5201 	hw_turn_on_intr(hw, KS884X_INT_TX);
5202 	spin_unlock_irq(&hw_priv->hwlock);
5203 }
5204 
5205 static inline void handle_rx_stop(struct ksz_hw *hw)
5206 {
5207 	/* Receive just has been stopped. */
5208 	if (0 == hw->rx_stop)
5209 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5210 	else if (hw->rx_stop > 1) {
5211 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5212 			hw_start_rx(hw);
5213 		} else {
5214 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5215 			hw->rx_stop = 0;
5216 		}
5217 	} else
5218 		/* Receive just has been started. */
5219 		hw->rx_stop++;
5220 }
5221 
5222 /**
5223  * netdev_intr - interrupt handling
5224  * @irq:	Interrupt number.
5225  * @dev_id:	Network device.
5226  *
5227  * This function is called by upper network layer to signal interrupt.
5228  *
5229  * Return IRQ_HANDLED if interrupt is handled.
5230  */
5231 static irqreturn_t netdev_intr(int irq, void *dev_id)
5232 {
5233 	uint int_enable = 0;
5234 	struct net_device *dev = (struct net_device *) dev_id;
5235 	struct dev_priv *priv = netdev_priv(dev);
5236 	struct dev_info *hw_priv = priv->adapter;
5237 	struct ksz_hw *hw = &hw_priv->hw;
5238 
5239 	spin_lock(&hw_priv->hwlock);
5240 
5241 	hw_read_intr(hw, &int_enable);
5242 
5243 	/* Not our interrupt! */
5244 	if (!int_enable) {
5245 		spin_unlock(&hw_priv->hwlock);
5246 		return IRQ_NONE;
5247 	}
5248 
5249 	do {
5250 		hw_ack_intr(hw, int_enable);
5251 		int_enable &= hw->intr_mask;
5252 
5253 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5254 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5255 			tasklet_schedule(&hw_priv->tx_tasklet);
5256 		}
5257 
5258 		if (likely(int_enable & KS884X_INT_RX)) {
5259 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5260 			tasklet_schedule(&hw_priv->rx_tasklet);
5261 		}
5262 
5263 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5264 			dev->stats.rx_fifo_errors++;
5265 			hw_resume_rx(hw);
5266 		}
5267 
5268 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5269 			struct ksz_port *port = &priv->port;
5270 
5271 			hw->features |= LINK_INT_WORKING;
5272 			port_get_link_speed(port);
5273 		}
5274 
5275 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5276 			handle_rx_stop(hw);
5277 			break;
5278 		}
5279 
5280 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5281 			u32 data;
5282 
5283 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5284 			pr_info("Tx stopped\n");
5285 			data = readl(hw->io + KS_DMA_TX_CTRL);
5286 			if (!(data & DMA_TX_ENABLE))
5287 				pr_info("Tx disabled\n");
5288 			break;
5289 		}
5290 	} while (0);
5291 
5292 	hw_ena_intr(hw);
5293 
5294 	spin_unlock(&hw_priv->hwlock);
5295 
5296 	return IRQ_HANDLED;
5297 }
5298 
5299 /*
5300  * Linux network device functions
5301  */
5302 
5303 static unsigned long next_jiffies;
5304 
5305 #ifdef CONFIG_NET_POLL_CONTROLLER
5306 static void netdev_netpoll(struct net_device *dev)
5307 {
5308 	struct dev_priv *priv = netdev_priv(dev);
5309 	struct dev_info *hw_priv = priv->adapter;
5310 
5311 	hw_dis_intr(&hw_priv->hw);
5312 	netdev_intr(dev->irq, dev);
5313 }
5314 #endif
5315 
5316 static void bridge_change(struct ksz_hw *hw)
5317 {
5318 	int port;
5319 	u8  member;
5320 	struct ksz_switch *sw = hw->ksz_switch;
5321 
5322 	/* No ports in forwarding state. */
5323 	if (!sw->member) {
5324 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5325 		sw_block_addr(hw);
5326 	}
5327 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5328 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5329 			member = HOST_MASK | sw->member;
5330 		else
5331 			member = HOST_MASK | (1 << port);
5332 		if (member != sw->port_cfg[port].member)
5333 			sw_cfg_port_base_vlan(hw, port, member);
5334 	}
5335 }
5336 
5337 /**
5338  * netdev_close - close network device
5339  * @dev:	Network device.
5340  *
5341  * This function process the close operation of network device.  This is caused
5342  * by the user command "ifconfig ethX down."
5343  *
5344  * Return 0 if successful; otherwise an error code indicating failure.
5345  */
5346 static int netdev_close(struct net_device *dev)
5347 {
5348 	struct dev_priv *priv = netdev_priv(dev);
5349 	struct dev_info *hw_priv = priv->adapter;
5350 	struct ksz_port *port = &priv->port;
5351 	struct ksz_hw *hw = &hw_priv->hw;
5352 	int pi;
5353 
5354 	netif_stop_queue(dev);
5355 
5356 	ksz_stop_timer(&priv->monitor_timer_info);
5357 
5358 	/* Need to shut the port manually in multiple device interfaces mode. */
5359 	if (hw->dev_count > 1) {
5360 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5361 
5362 		/* Port is closed.  Need to change bridge setting. */
5363 		if (hw->features & STP_SUPPORT) {
5364 			pi = 1 << port->first_port;
5365 			if (hw->ksz_switch->member & pi) {
5366 				hw->ksz_switch->member &= ~pi;
5367 				bridge_change(hw);
5368 			}
5369 		}
5370 	}
5371 	if (port->first_port > 0)
5372 		hw_del_addr(hw, dev->dev_addr);
5373 	if (!hw_priv->wol_enable)
5374 		port_set_power_saving(port, true);
5375 
5376 	if (priv->multicast)
5377 		--hw->all_multi;
5378 	if (priv->promiscuous)
5379 		--hw->promiscuous;
5380 
5381 	hw_priv->opened--;
5382 	if (!(hw_priv->opened)) {
5383 		ksz_stop_timer(&hw_priv->mib_timer_info);
5384 		flush_work(&hw_priv->mib_read);
5385 
5386 		hw_dis_intr(hw);
5387 		hw_disable(hw);
5388 		hw_clr_multicast(hw);
5389 
5390 		/* Delay for receive task to stop scheduling itself. */
5391 		msleep(2000 / HZ);
5392 
5393 		tasklet_kill(&hw_priv->rx_tasklet);
5394 		tasklet_kill(&hw_priv->tx_tasklet);
5395 		free_irq(dev->irq, hw_priv->dev);
5396 
5397 		transmit_cleanup(hw_priv, 0);
5398 		hw_reset_pkts(&hw->rx_desc_info);
5399 		hw_reset_pkts(&hw->tx_desc_info);
5400 
5401 		/* Clean out static MAC table when the switch is shutdown. */
5402 		if (hw->features & STP_SUPPORT)
5403 			sw_clr_sta_mac_table(hw);
5404 	}
5405 
5406 	return 0;
5407 }
5408 
5409 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5410 {
5411 	if (hw->ksz_switch) {
5412 		u32 data;
5413 
5414 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5415 		if (hw->features & RX_HUGE_FRAME)
5416 			data |= SWITCH_HUGE_PACKET;
5417 		else
5418 			data &= ~SWITCH_HUGE_PACKET;
5419 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5420 	}
5421 	if (hw->features & RX_HUGE_FRAME) {
5422 		hw->rx_cfg |= DMA_RX_ERROR;
5423 		hw_priv->dev_rcv = dev_rcv_special;
5424 	} else {
5425 		hw->rx_cfg &= ~DMA_RX_ERROR;
5426 		if (hw->dev_count > 1)
5427 			hw_priv->dev_rcv = port_rcv_packets;
5428 		else
5429 			hw_priv->dev_rcv = dev_rcv_packets;
5430 	}
5431 }
5432 
5433 static int prepare_hardware(struct net_device *dev)
5434 {
5435 	struct dev_priv *priv = netdev_priv(dev);
5436 	struct dev_info *hw_priv = priv->adapter;
5437 	struct ksz_hw *hw = &hw_priv->hw;
5438 	int rc = 0;
5439 
5440 	/* Remember the network device that requests interrupts. */
5441 	hw_priv->dev = dev;
5442 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5443 	if (rc)
5444 		return rc;
5445 	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5446 	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5447 
5448 	hw->promiscuous = 0;
5449 	hw->all_multi = 0;
5450 	hw->multi_list_size = 0;
5451 
5452 	hw_reset(hw);
5453 
5454 	hw_set_desc_base(hw,
5455 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5456 	hw_set_addr(hw);
5457 	hw_cfg_huge_frame(hw_priv, hw);
5458 	ksz_init_rx_buffers(hw_priv);
5459 	return 0;
5460 }
5461 
5462 static void set_media_state(struct net_device *dev, int media_state)
5463 {
5464 	struct dev_priv *priv = netdev_priv(dev);
5465 
5466 	if (media_state == priv->media_state)
5467 		netif_carrier_on(dev);
5468 	else
5469 		netif_carrier_off(dev);
5470 	netif_info(priv, link, dev, "link %s\n",
5471 		   media_state == priv->media_state ? "on" : "off");
5472 }
5473 
5474 /**
5475  * netdev_open - open network device
5476  * @dev:	Network device.
5477  *
5478  * This function process the open operation of network device.  This is caused
5479  * by the user command "ifconfig ethX up."
5480  *
5481  * Return 0 if successful; otherwise an error code indicating failure.
5482  */
5483 static int netdev_open(struct net_device *dev)
5484 {
5485 	struct dev_priv *priv = netdev_priv(dev);
5486 	struct dev_info *hw_priv = priv->adapter;
5487 	struct ksz_hw *hw = &hw_priv->hw;
5488 	struct ksz_port *port = &priv->port;
5489 	int i;
5490 	int p;
5491 	int rc = 0;
5492 
5493 	priv->multicast = 0;
5494 	priv->promiscuous = 0;
5495 
5496 	/* Reset device statistics. */
5497 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5498 	memset((void *) port->counter, 0,
5499 		(sizeof(u64) * OID_COUNTER_LAST));
5500 
5501 	if (!(hw_priv->opened)) {
5502 		rc = prepare_hardware(dev);
5503 		if (rc)
5504 			return rc;
5505 		for (i = 0; i < hw->mib_port_cnt; i++) {
5506 			if (next_jiffies < jiffies)
5507 				next_jiffies = jiffies + HZ * 2;
5508 			else
5509 				next_jiffies += HZ * 1;
5510 			hw_priv->counter[i].time = next_jiffies;
5511 			hw->port_mib[i].state = media_disconnected;
5512 			port_init_cnt(hw, i);
5513 		}
5514 		if (hw->ksz_switch)
5515 			hw->port_mib[HOST_PORT].state = media_connected;
5516 		else {
5517 			hw_add_wol_bcast(hw);
5518 			hw_cfg_wol_pme(hw, 0);
5519 			hw_clr_wol_pme_status(&hw_priv->hw);
5520 		}
5521 	}
5522 	port_set_power_saving(port, false);
5523 
5524 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5525 		/*
5526 		 * Initialize to invalid value so that link detection
5527 		 * is done.
5528 		 */
5529 		hw->port_info[p].partner = 0xFF;
5530 		hw->port_info[p].state = media_disconnected;
5531 	}
5532 
5533 	/* Need to open the port in multiple device interfaces mode. */
5534 	if (hw->dev_count > 1) {
5535 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5536 		if (port->first_port > 0)
5537 			hw_add_addr(hw, dev->dev_addr);
5538 	}
5539 
5540 	port_get_link_speed(port);
5541 	if (port->force_link)
5542 		port_force_link_speed(port);
5543 	else
5544 		port_set_link_speed(port);
5545 
5546 	if (!(hw_priv->opened)) {
5547 		hw_setup_intr(hw);
5548 		hw_enable(hw);
5549 		hw_ena_intr(hw);
5550 
5551 		if (hw->mib_port_cnt)
5552 			ksz_start_timer(&hw_priv->mib_timer_info,
5553 				hw_priv->mib_timer_info.period);
5554 	}
5555 
5556 	hw_priv->opened++;
5557 
5558 	ksz_start_timer(&priv->monitor_timer_info,
5559 		priv->monitor_timer_info.period);
5560 
5561 	priv->media_state = port->linked->state;
5562 
5563 	set_media_state(dev, media_connected);
5564 	netif_start_queue(dev);
5565 
5566 	return 0;
5567 }
5568 
5569 /* RX errors = rx_errors */
5570 /* RX dropped = rx_dropped */
5571 /* RX overruns = rx_fifo_errors */
5572 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5573 /* TX errors = tx_errors */
5574 /* TX dropped = tx_dropped */
5575 /* TX overruns = tx_fifo_errors */
5576 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5577 /* collisions = collisions */
5578 
5579 /**
5580  * netdev_query_statistics - query network device statistics
5581  * @dev:	Network device.
5582  *
5583  * This function returns the statistics of the network device.  The device
5584  * needs not be opened.
5585  *
5586  * Return network device statistics.
5587  */
5588 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5589 {
5590 	struct dev_priv *priv = netdev_priv(dev);
5591 	struct ksz_port *port = &priv->port;
5592 	struct ksz_hw *hw = &priv->adapter->hw;
5593 	struct ksz_port_mib *mib;
5594 	int i;
5595 	int p;
5596 
5597 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5598 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5599 
5600 	/* Reset to zero to add count later. */
5601 	dev->stats.multicast = 0;
5602 	dev->stats.collisions = 0;
5603 	dev->stats.rx_length_errors = 0;
5604 	dev->stats.rx_crc_errors = 0;
5605 	dev->stats.rx_frame_errors = 0;
5606 	dev->stats.tx_window_errors = 0;
5607 
5608 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5609 		mib = &hw->port_mib[p];
5610 
5611 		dev->stats.multicast += (unsigned long)
5612 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5613 
5614 		dev->stats.collisions += (unsigned long)
5615 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5616 
5617 		dev->stats.rx_length_errors += (unsigned long)(
5618 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5619 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5620 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5621 			mib->counter[MIB_COUNTER_RX_JABBER]);
5622 		dev->stats.rx_crc_errors += (unsigned long)
5623 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5624 		dev->stats.rx_frame_errors += (unsigned long)(
5625 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5626 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5627 
5628 		dev->stats.tx_window_errors += (unsigned long)
5629 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5630 	}
5631 
5632 	return &dev->stats;
5633 }
5634 
5635 /**
5636  * netdev_set_mac_address - set network device MAC address
5637  * @dev:	Network device.
5638  * @addr:	Buffer of MAC address.
5639  *
5640  * This function is used to set the MAC address of the network device.
5641  *
5642  * Return 0 to indicate success.
5643  */
5644 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5645 {
5646 	struct dev_priv *priv = netdev_priv(dev);
5647 	struct dev_info *hw_priv = priv->adapter;
5648 	struct ksz_hw *hw = &hw_priv->hw;
5649 	struct sockaddr *mac = addr;
5650 	uint interrupt;
5651 
5652 	if (priv->port.first_port > 0)
5653 		hw_del_addr(hw, dev->dev_addr);
5654 	else {
5655 		hw->mac_override = 1;
5656 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5657 	}
5658 
5659 	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5660 
5661 	interrupt = hw_block_intr(hw);
5662 
5663 	if (priv->port.first_port > 0)
5664 		hw_add_addr(hw, dev->dev_addr);
5665 	else
5666 		hw_set_addr(hw);
5667 	hw_restore_intr(hw, interrupt);
5668 
5669 	return 0;
5670 }
5671 
5672 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5673 	struct ksz_hw *hw, int promiscuous)
5674 {
5675 	if (promiscuous != priv->promiscuous) {
5676 		u8 prev_state = hw->promiscuous;
5677 
5678 		if (promiscuous)
5679 			++hw->promiscuous;
5680 		else
5681 			--hw->promiscuous;
5682 		priv->promiscuous = promiscuous;
5683 
5684 		/* Turn on/off promiscuous mode. */
5685 		if (hw->promiscuous <= 1 && prev_state <= 1)
5686 			hw_set_promiscuous(hw, hw->promiscuous);
5687 
5688 		/*
5689 		 * Port is not in promiscuous mode, meaning it is released
5690 		 * from the bridge.
5691 		 */
5692 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5693 		    netif_is_bridge_port(dev)) {
5694 			struct ksz_switch *sw = hw->ksz_switch;
5695 			int port = priv->port.first_port;
5696 
5697 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5698 			port = 1 << port;
5699 			if (sw->member & port) {
5700 				sw->member &= ~port;
5701 				bridge_change(hw);
5702 			}
5703 		}
5704 	}
5705 }
5706 
5707 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5708 	int multicast)
5709 {
5710 	if (multicast != priv->multicast) {
5711 		u8 all_multi = hw->all_multi;
5712 
5713 		if (multicast)
5714 			++hw->all_multi;
5715 		else
5716 			--hw->all_multi;
5717 		priv->multicast = multicast;
5718 
5719 		/* Turn on/off all multicast mode. */
5720 		if (hw->all_multi <= 1 && all_multi <= 1)
5721 			hw_set_multicast(hw, hw->all_multi);
5722 	}
5723 }
5724 
5725 /**
5726  * netdev_set_rx_mode
5727  * @dev:	Network device.
5728  *
5729  * This routine is used to set multicast addresses or put the network device
5730  * into promiscuous mode.
5731  */
5732 static void netdev_set_rx_mode(struct net_device *dev)
5733 {
5734 	struct dev_priv *priv = netdev_priv(dev);
5735 	struct dev_info *hw_priv = priv->adapter;
5736 	struct ksz_hw *hw = &hw_priv->hw;
5737 	struct netdev_hw_addr *ha;
5738 	int multicast = (dev->flags & IFF_ALLMULTI);
5739 
5740 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5741 
5742 	if (hw_priv->hw.dev_count > 1)
5743 		multicast |= (dev->flags & IFF_MULTICAST);
5744 	dev_set_multicast(priv, hw, multicast);
5745 
5746 	/* Cannot use different hashes in multiple device interfaces mode. */
5747 	if (hw_priv->hw.dev_count > 1)
5748 		return;
5749 
5750 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5751 		int i = 0;
5752 
5753 		/* List too big to support so turn on all multicast mode. */
5754 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5755 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5756 				hw->multi_list_size = MAX_MULTICAST_LIST;
5757 				++hw->all_multi;
5758 				hw_set_multicast(hw, hw->all_multi);
5759 			}
5760 			return;
5761 		}
5762 
5763 		netdev_for_each_mc_addr(ha, dev) {
5764 			if (i >= MAX_MULTICAST_LIST)
5765 				break;
5766 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5767 		}
5768 		hw->multi_list_size = (u8) i;
5769 		hw_set_grp_addr(hw);
5770 	} else {
5771 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5772 			--hw->all_multi;
5773 			hw_set_multicast(hw, hw->all_multi);
5774 		}
5775 		hw->multi_list_size = 0;
5776 		hw_clr_multicast(hw);
5777 	}
5778 }
5779 
5780 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5781 {
5782 	struct dev_priv *priv = netdev_priv(dev);
5783 	struct dev_info *hw_priv = priv->adapter;
5784 	struct ksz_hw *hw = &hw_priv->hw;
5785 	int hw_mtu;
5786 
5787 	if (netif_running(dev))
5788 		return -EBUSY;
5789 
5790 	/* Cannot use different MTU in multiple device interfaces mode. */
5791 	if (hw->dev_count > 1)
5792 		if (dev != hw_priv->dev)
5793 			return 0;
5794 
5795 	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5796 	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5797 		hw->features |= RX_HUGE_FRAME;
5798 		hw_mtu = MAX_RX_BUF_SIZE;
5799 	} else {
5800 		hw->features &= ~RX_HUGE_FRAME;
5801 		hw_mtu = REGULAR_RX_BUF_SIZE;
5802 	}
5803 	hw_mtu = (hw_mtu + 3) & ~3;
5804 	hw_priv->mtu = hw_mtu;
5805 	dev->mtu = new_mtu;
5806 
5807 	return 0;
5808 }
5809 
5810 /**
5811  * netdev_ioctl - I/O control processing
5812  * @dev:	Network device.
5813  * @ifr:	Interface request structure.
5814  * @cmd:	I/O control code.
5815  *
5816  * This function is used to process I/O control calls.
5817  *
5818  * Return 0 to indicate success.
5819  */
5820 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5821 {
5822 	struct dev_priv *priv = netdev_priv(dev);
5823 	struct dev_info *hw_priv = priv->adapter;
5824 	struct ksz_hw *hw = &hw_priv->hw;
5825 	struct ksz_port *port = &priv->port;
5826 	int result = 0;
5827 	struct mii_ioctl_data *data = if_mii(ifr);
5828 
5829 	if (down_interruptible(&priv->proc_sem))
5830 		return -ERESTARTSYS;
5831 
5832 	switch (cmd) {
5833 	/* Get address of MII PHY in use. */
5834 	case SIOCGMIIPHY:
5835 		data->phy_id = priv->id;
5836 		fallthrough;
5837 
5838 	/* Read MII PHY register. */
5839 	case SIOCGMIIREG:
5840 		if (data->phy_id != priv->id || data->reg_num >= 6)
5841 			result = -EIO;
5842 		else
5843 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5844 				&data->val_out);
5845 		break;
5846 
5847 	/* Write MII PHY register. */
5848 	case SIOCSMIIREG:
5849 		if (!capable(CAP_NET_ADMIN))
5850 			result = -EPERM;
5851 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5852 			result = -EIO;
5853 		else
5854 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5855 				data->val_in);
5856 		break;
5857 
5858 	default:
5859 		result = -EOPNOTSUPP;
5860 	}
5861 
5862 	up(&priv->proc_sem);
5863 
5864 	return result;
5865 }
5866 
5867 /*
5868  * MII support
5869  */
5870 
5871 /**
5872  * mdio_read - read PHY register
5873  * @dev:	Network device.
5874  * @phy_id:	The PHY id.
5875  * @reg_num:	The register number.
5876  *
5877  * This function returns the PHY register value.
5878  *
5879  * Return the register value.
5880  */
5881 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5882 {
5883 	struct dev_priv *priv = netdev_priv(dev);
5884 	struct ksz_port *port = &priv->port;
5885 	struct ksz_hw *hw = port->hw;
5886 	u16 val_out;
5887 
5888 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5889 	return val_out;
5890 }
5891 
5892 /**
5893  * mdio_write - set PHY register
5894  * @dev:	Network device.
5895  * @phy_id:	The PHY id.
5896  * @reg_num:	The register number.
5897  * @val:	The register value.
5898  *
5899  * This procedure sets the PHY register value.
5900  */
5901 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5902 {
5903 	struct dev_priv *priv = netdev_priv(dev);
5904 	struct ksz_port *port = &priv->port;
5905 	struct ksz_hw *hw = port->hw;
5906 	int i;
5907 	int pi;
5908 
5909 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5910 		hw_w_phy(hw, pi, reg_num << 1, val);
5911 }
5912 
5913 /*
5914  * ethtool support
5915  */
5916 
5917 #define EEPROM_SIZE			0x40
5918 
5919 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5920 
5921 #define ADVERTISED_ALL			\
5922 	(ADVERTISED_10baseT_Half |	\
5923 	ADVERTISED_10baseT_Full |	\
5924 	ADVERTISED_100baseT_Half |	\
5925 	ADVERTISED_100baseT_Full)
5926 
5927 /* These functions use the MII functions in mii.c. */
5928 
5929 /**
5930  * netdev_get_link_ksettings - get network device settings
5931  * @dev:	Network device.
5932  * @cmd:	Ethtool command.
5933  *
5934  * This function queries the PHY and returns its state in the ethtool command.
5935  *
5936  * Return 0 if successful; otherwise an error code.
5937  */
5938 static int netdev_get_link_ksettings(struct net_device *dev,
5939 				     struct ethtool_link_ksettings *cmd)
5940 {
5941 	struct dev_priv *priv = netdev_priv(dev);
5942 	struct dev_info *hw_priv = priv->adapter;
5943 
5944 	mutex_lock(&hw_priv->lock);
5945 	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5946 	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5947 	mutex_unlock(&hw_priv->lock);
5948 
5949 	/* Save advertised settings for workaround in next function. */
5950 	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5951 						cmd->link_modes.advertising);
5952 
5953 	return 0;
5954 }
5955 
5956 /**
5957  * netdev_set_link_ksettings - set network device settings
5958  * @dev:	Network device.
5959  * @cmd:	Ethtool command.
5960  *
5961  * This function sets the PHY according to the ethtool command.
5962  *
5963  * Return 0 if successful; otherwise an error code.
5964  */
5965 static int netdev_set_link_ksettings(struct net_device *dev,
5966 				     const struct ethtool_link_ksettings *cmd)
5967 {
5968 	struct dev_priv *priv = netdev_priv(dev);
5969 	struct dev_info *hw_priv = priv->adapter;
5970 	struct ksz_port *port = &priv->port;
5971 	struct ethtool_link_ksettings copy_cmd;
5972 	u32 speed = cmd->base.speed;
5973 	u32 advertising;
5974 	int rc;
5975 
5976 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5977 						cmd->link_modes.advertising);
5978 
5979 	/*
5980 	 * ethtool utility does not change advertised setting if auto
5981 	 * negotiation is not specified explicitly.
5982 	 */
5983 	if (cmd->base.autoneg && priv->advertising == advertising) {
5984 		advertising |= ADVERTISED_ALL;
5985 		if (10 == speed)
5986 			advertising &=
5987 				~(ADVERTISED_100baseT_Full |
5988 				ADVERTISED_100baseT_Half);
5989 		else if (100 == speed)
5990 			advertising &=
5991 				~(ADVERTISED_10baseT_Full |
5992 				ADVERTISED_10baseT_Half);
5993 		if (0 == cmd->base.duplex)
5994 			advertising &=
5995 				~(ADVERTISED_100baseT_Full |
5996 				ADVERTISED_10baseT_Full);
5997 		else if (1 == cmd->base.duplex)
5998 			advertising &=
5999 				~(ADVERTISED_100baseT_Half |
6000 				ADVERTISED_10baseT_Half);
6001 	}
6002 	mutex_lock(&hw_priv->lock);
6003 	if (cmd->base.autoneg &&
6004 	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6005 		port->duplex = 0;
6006 		port->speed = 0;
6007 		port->force_link = 0;
6008 	} else {
6009 		port->duplex = cmd->base.duplex + 1;
6010 		if (1000 != speed)
6011 			port->speed = speed;
6012 		if (cmd->base.autoneg)
6013 			port->force_link = 0;
6014 		else
6015 			port->force_link = 1;
6016 	}
6017 
6018 	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6019 	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6020 						advertising);
6021 	rc = mii_ethtool_set_link_ksettings(
6022 		&priv->mii_if,
6023 		(const struct ethtool_link_ksettings *)&copy_cmd);
6024 	mutex_unlock(&hw_priv->lock);
6025 	return rc;
6026 }
6027 
6028 /**
6029  * netdev_nway_reset - restart auto-negotiation
6030  * @dev:	Network device.
6031  *
6032  * This function restarts the PHY for auto-negotiation.
6033  *
6034  * Return 0 if successful; otherwise an error code.
6035  */
6036 static int netdev_nway_reset(struct net_device *dev)
6037 {
6038 	struct dev_priv *priv = netdev_priv(dev);
6039 	struct dev_info *hw_priv = priv->adapter;
6040 	int rc;
6041 
6042 	mutex_lock(&hw_priv->lock);
6043 	rc = mii_nway_restart(&priv->mii_if);
6044 	mutex_unlock(&hw_priv->lock);
6045 	return rc;
6046 }
6047 
6048 /**
6049  * netdev_get_link - get network device link status
6050  * @dev:	Network device.
6051  *
6052  * This function gets the link status from the PHY.
6053  *
6054  * Return true if PHY is linked and false otherwise.
6055  */
6056 static u32 netdev_get_link(struct net_device *dev)
6057 {
6058 	struct dev_priv *priv = netdev_priv(dev);
6059 	int rc;
6060 
6061 	rc = mii_link_ok(&priv->mii_if);
6062 	return rc;
6063 }
6064 
6065 /**
6066  * netdev_get_drvinfo - get network driver information
6067  * @dev:	Network device.
6068  * @info:	Ethtool driver info data structure.
6069  *
6070  * This procedure returns the driver information.
6071  */
6072 static void netdev_get_drvinfo(struct net_device *dev,
6073 	struct ethtool_drvinfo *info)
6074 {
6075 	struct dev_priv *priv = netdev_priv(dev);
6076 	struct dev_info *hw_priv = priv->adapter;
6077 
6078 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6079 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6080 	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6081 		sizeof(info->bus_info));
6082 }
6083 
6084 static struct hw_regs {
6085 	int start;
6086 	int end;
6087 } hw_regs_range[] = {
6088 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6089 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6090 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6091 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6092 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6093 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6094 	{ 0, 0 }
6095 };
6096 
6097 /**
6098  * netdev_get_regs_len - get length of register dump
6099  * @dev:	Network device.
6100  *
6101  * This function returns the length of the register dump.
6102  *
6103  * Return length of the register dump.
6104  */
6105 static int netdev_get_regs_len(struct net_device *dev)
6106 {
6107 	struct hw_regs *range = hw_regs_range;
6108 	int regs_len = 0x10 * sizeof(u32);
6109 
6110 	while (range->end > range->start) {
6111 		regs_len += (range->end - range->start + 3) / 4 * 4;
6112 		range++;
6113 	}
6114 	return regs_len;
6115 }
6116 
6117 /**
6118  * netdev_get_regs - get register dump
6119  * @dev:	Network device.
6120  * @regs:	Ethtool registers data structure.
6121  * @ptr:	Buffer to store the register values.
6122  *
6123  * This procedure dumps the register values in the provided buffer.
6124  */
6125 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6126 	void *ptr)
6127 {
6128 	struct dev_priv *priv = netdev_priv(dev);
6129 	struct dev_info *hw_priv = priv->adapter;
6130 	struct ksz_hw *hw = &hw_priv->hw;
6131 	int *buf = (int *) ptr;
6132 	struct hw_regs *range = hw_regs_range;
6133 	int len;
6134 
6135 	mutex_lock(&hw_priv->lock);
6136 	regs->version = 0;
6137 	for (len = 0; len < 0x40; len += 4) {
6138 		pci_read_config_dword(hw_priv->pdev, len, buf);
6139 		buf++;
6140 	}
6141 	while (range->end > range->start) {
6142 		for (len = range->start; len < range->end; len += 4) {
6143 			*buf = readl(hw->io + len);
6144 			buf++;
6145 		}
6146 		range++;
6147 	}
6148 	mutex_unlock(&hw_priv->lock);
6149 }
6150 
6151 #define WOL_SUPPORT			\
6152 	(WAKE_PHY | WAKE_MAGIC |	\
6153 	WAKE_UCAST | WAKE_MCAST |	\
6154 	WAKE_BCAST | WAKE_ARP)
6155 
6156 /**
6157  * netdev_get_wol - get Wake-on-LAN support
6158  * @dev:	Network device.
6159  * @wol:	Ethtool Wake-on-LAN data structure.
6160  *
6161  * This procedure returns Wake-on-LAN support.
6162  */
6163 static void netdev_get_wol(struct net_device *dev,
6164 	struct ethtool_wolinfo *wol)
6165 {
6166 	struct dev_priv *priv = netdev_priv(dev);
6167 	struct dev_info *hw_priv = priv->adapter;
6168 
6169 	wol->supported = hw_priv->wol_support;
6170 	wol->wolopts = hw_priv->wol_enable;
6171 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6172 }
6173 
6174 /**
6175  * netdev_set_wol - set Wake-on-LAN support
6176  * @dev:	Network device.
6177  * @wol:	Ethtool Wake-on-LAN data structure.
6178  *
6179  * This function sets Wake-on-LAN support.
6180  *
6181  * Return 0 if successful; otherwise an error code.
6182  */
6183 static int netdev_set_wol(struct net_device *dev,
6184 	struct ethtool_wolinfo *wol)
6185 {
6186 	struct dev_priv *priv = netdev_priv(dev);
6187 	struct dev_info *hw_priv = priv->adapter;
6188 
6189 	/* Need to find a way to retrieve the device IP address. */
6190 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6191 
6192 	if (wol->wolopts & ~hw_priv->wol_support)
6193 		return -EINVAL;
6194 
6195 	hw_priv->wol_enable = wol->wolopts;
6196 
6197 	/* Link wakeup cannot really be disabled. */
6198 	if (wol->wolopts)
6199 		hw_priv->wol_enable |= WAKE_PHY;
6200 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6201 	return 0;
6202 }
6203 
6204 /**
6205  * netdev_get_msglevel - get debug message level
6206  * @dev:	Network device.
6207  *
6208  * This function returns current debug message level.
6209  *
6210  * Return current debug message flags.
6211  */
6212 static u32 netdev_get_msglevel(struct net_device *dev)
6213 {
6214 	struct dev_priv *priv = netdev_priv(dev);
6215 
6216 	return priv->msg_enable;
6217 }
6218 
6219 /**
6220  * netdev_set_msglevel - set debug message level
6221  * @dev:	Network device.
6222  * @value:	Debug message flags.
6223  *
6224  * This procedure sets debug message level.
6225  */
6226 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6227 {
6228 	struct dev_priv *priv = netdev_priv(dev);
6229 
6230 	priv->msg_enable = value;
6231 }
6232 
6233 /**
6234  * netdev_get_eeprom_len - get EEPROM length
6235  * @dev:	Network device.
6236  *
6237  * This function returns the length of the EEPROM.
6238  *
6239  * Return length of the EEPROM.
6240  */
6241 static int netdev_get_eeprom_len(struct net_device *dev)
6242 {
6243 	return EEPROM_SIZE * 2;
6244 }
6245 
6246 #define EEPROM_MAGIC			0x10A18842
6247 
6248 /**
6249  * netdev_get_eeprom - get EEPROM data
6250  * @dev:	Network device.
6251  * @eeprom:	Ethtool EEPROM data structure.
6252  * @data:	Buffer to store the EEPROM data.
6253  *
6254  * This function dumps the EEPROM data in the provided buffer.
6255  *
6256  * Return 0 if successful; otherwise an error code.
6257  */
6258 static int netdev_get_eeprom(struct net_device *dev,
6259 	struct ethtool_eeprom *eeprom, u8 *data)
6260 {
6261 	struct dev_priv *priv = netdev_priv(dev);
6262 	struct dev_info *hw_priv = priv->adapter;
6263 	u8 *eeprom_byte = (u8 *) eeprom_data;
6264 	int i;
6265 	int len;
6266 
6267 	len = (eeprom->offset + eeprom->len + 1) / 2;
6268 	for (i = eeprom->offset / 2; i < len; i++)
6269 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6270 	eeprom->magic = EEPROM_MAGIC;
6271 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6272 
6273 	return 0;
6274 }
6275 
6276 /**
6277  * netdev_set_eeprom - write EEPROM data
6278  * @dev:	Network device.
6279  * @eeprom:	Ethtool EEPROM data structure.
6280  * @data:	Data buffer.
6281  *
6282  * This function modifies the EEPROM data one byte at a time.
6283  *
6284  * Return 0 if successful; otherwise an error code.
6285  */
6286 static int netdev_set_eeprom(struct net_device *dev,
6287 	struct ethtool_eeprom *eeprom, u8 *data)
6288 {
6289 	struct dev_priv *priv = netdev_priv(dev);
6290 	struct dev_info *hw_priv = priv->adapter;
6291 	u16 eeprom_word[EEPROM_SIZE];
6292 	u8 *eeprom_byte = (u8 *) eeprom_word;
6293 	int i;
6294 	int len;
6295 
6296 	if (eeprom->magic != EEPROM_MAGIC)
6297 		return -EINVAL;
6298 
6299 	len = (eeprom->offset + eeprom->len + 1) / 2;
6300 	for (i = eeprom->offset / 2; i < len; i++)
6301 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6302 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6303 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6304 	for (i = 0; i < EEPROM_SIZE; i++)
6305 		if (eeprom_word[i] != eeprom_data[i]) {
6306 			eeprom_data[i] = eeprom_word[i];
6307 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6308 	}
6309 
6310 	return 0;
6311 }
6312 
6313 /**
6314  * netdev_get_pauseparam - get flow control parameters
6315  * @dev:	Network device.
6316  * @pause:	Ethtool PAUSE settings data structure.
6317  *
6318  * This procedure returns the PAUSE control flow settings.
6319  */
6320 static void netdev_get_pauseparam(struct net_device *dev,
6321 	struct ethtool_pauseparam *pause)
6322 {
6323 	struct dev_priv *priv = netdev_priv(dev);
6324 	struct dev_info *hw_priv = priv->adapter;
6325 	struct ksz_hw *hw = &hw_priv->hw;
6326 
6327 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6328 	if (!hw->ksz_switch) {
6329 		pause->rx_pause =
6330 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6331 		pause->tx_pause =
6332 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6333 	} else {
6334 		pause->rx_pause =
6335 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6336 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6337 		pause->tx_pause =
6338 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6339 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6340 	}
6341 }
6342 
6343 /**
6344  * netdev_set_pauseparam - set flow control parameters
6345  * @dev:	Network device.
6346  * @pause:	Ethtool PAUSE settings data structure.
6347  *
6348  * This function sets the PAUSE control flow settings.
6349  * Not implemented yet.
6350  *
6351  * Return 0 if successful; otherwise an error code.
6352  */
6353 static int netdev_set_pauseparam(struct net_device *dev,
6354 	struct ethtool_pauseparam *pause)
6355 {
6356 	struct dev_priv *priv = netdev_priv(dev);
6357 	struct dev_info *hw_priv = priv->adapter;
6358 	struct ksz_hw *hw = &hw_priv->hw;
6359 	struct ksz_port *port = &priv->port;
6360 
6361 	mutex_lock(&hw_priv->lock);
6362 	if (pause->autoneg) {
6363 		if (!pause->rx_pause && !pause->tx_pause)
6364 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6365 		else
6366 			port->flow_ctrl = PHY_FLOW_CTRL;
6367 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6368 		port->force_link = 0;
6369 		if (hw->ksz_switch) {
6370 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6371 				SWITCH_RX_FLOW_CTRL, 1);
6372 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6373 				SWITCH_TX_FLOW_CTRL, 1);
6374 		}
6375 		port_set_link_speed(port);
6376 	} else {
6377 		hw->overrides |= PAUSE_FLOW_CTRL;
6378 		if (hw->ksz_switch) {
6379 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6380 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6381 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6382 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6383 		} else
6384 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6385 	}
6386 	mutex_unlock(&hw_priv->lock);
6387 
6388 	return 0;
6389 }
6390 
6391 /**
6392  * netdev_get_ringparam - get tx/rx ring parameters
6393  * @dev:	Network device.
6394  * @ring:	Ethtool RING settings data structure.
6395  *
6396  * This procedure returns the TX/RX ring settings.
6397  */
6398 static void netdev_get_ringparam(struct net_device *dev,
6399 	struct ethtool_ringparam *ring)
6400 {
6401 	struct dev_priv *priv = netdev_priv(dev);
6402 	struct dev_info *hw_priv = priv->adapter;
6403 	struct ksz_hw *hw = &hw_priv->hw;
6404 
6405 	ring->tx_max_pending = (1 << 9);
6406 	ring->tx_pending = hw->tx_desc_info.alloc;
6407 	ring->rx_max_pending = (1 << 9);
6408 	ring->rx_pending = hw->rx_desc_info.alloc;
6409 }
6410 
6411 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6412 
6413 static struct {
6414 	char string[ETH_GSTRING_LEN];
6415 } ethtool_stats_keys[STATS_LEN] = {
6416 	{ "rx_lo_priority_octets" },
6417 	{ "rx_hi_priority_octets" },
6418 	{ "rx_undersize_packets" },
6419 	{ "rx_fragments" },
6420 	{ "rx_oversize_packets" },
6421 	{ "rx_jabbers" },
6422 	{ "rx_symbol_errors" },
6423 	{ "rx_crc_errors" },
6424 	{ "rx_align_errors" },
6425 	{ "rx_mac_ctrl_packets" },
6426 	{ "rx_pause_packets" },
6427 	{ "rx_bcast_packets" },
6428 	{ "rx_mcast_packets" },
6429 	{ "rx_ucast_packets" },
6430 	{ "rx_64_or_less_octet_packets" },
6431 	{ "rx_65_to_127_octet_packets" },
6432 	{ "rx_128_to_255_octet_packets" },
6433 	{ "rx_256_to_511_octet_packets" },
6434 	{ "rx_512_to_1023_octet_packets" },
6435 	{ "rx_1024_to_1522_octet_packets" },
6436 
6437 	{ "tx_lo_priority_octets" },
6438 	{ "tx_hi_priority_octets" },
6439 	{ "tx_late_collisions" },
6440 	{ "tx_pause_packets" },
6441 	{ "tx_bcast_packets" },
6442 	{ "tx_mcast_packets" },
6443 	{ "tx_ucast_packets" },
6444 	{ "tx_deferred" },
6445 	{ "tx_total_collisions" },
6446 	{ "tx_excessive_collisions" },
6447 	{ "tx_single_collisions" },
6448 	{ "tx_mult_collisions" },
6449 
6450 	{ "rx_discards" },
6451 	{ "tx_discards" },
6452 };
6453 
6454 /**
6455  * netdev_get_strings - get statistics identity strings
6456  * @dev:	Network device.
6457  * @stringset:	String set identifier.
6458  * @buf:	Buffer to store the strings.
6459  *
6460  * This procedure returns the strings used to identify the statistics.
6461  */
6462 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6463 {
6464 	struct dev_priv *priv = netdev_priv(dev);
6465 	struct dev_info *hw_priv = priv->adapter;
6466 	struct ksz_hw *hw = &hw_priv->hw;
6467 
6468 	if (ETH_SS_STATS == stringset)
6469 		memcpy(buf, &ethtool_stats_keys,
6470 			ETH_GSTRING_LEN * hw->mib_cnt);
6471 }
6472 
6473 /**
6474  * netdev_get_sset_count - get statistics size
6475  * @dev:	Network device.
6476  * @sset:	The statistics set number.
6477  *
6478  * This function returns the size of the statistics to be reported.
6479  *
6480  * Return size of the statistics to be reported.
6481  */
6482 static int netdev_get_sset_count(struct net_device *dev, int sset)
6483 {
6484 	struct dev_priv *priv = netdev_priv(dev);
6485 	struct dev_info *hw_priv = priv->adapter;
6486 	struct ksz_hw *hw = &hw_priv->hw;
6487 
6488 	switch (sset) {
6489 	case ETH_SS_STATS:
6490 		return hw->mib_cnt;
6491 	default:
6492 		return -EOPNOTSUPP;
6493 	}
6494 }
6495 
6496 /**
6497  * netdev_get_ethtool_stats - get network device statistics
6498  * @dev:	Network device.
6499  * @stats:	Ethtool statistics data structure.
6500  * @data:	Buffer to store the statistics.
6501  *
6502  * This procedure returns the statistics.
6503  */
6504 static void netdev_get_ethtool_stats(struct net_device *dev,
6505 	struct ethtool_stats *stats, u64 *data)
6506 {
6507 	struct dev_priv *priv = netdev_priv(dev);
6508 	struct dev_info *hw_priv = priv->adapter;
6509 	struct ksz_hw *hw = &hw_priv->hw;
6510 	struct ksz_port *port = &priv->port;
6511 	int n_stats = stats->n_stats;
6512 	int i;
6513 	int n;
6514 	int p;
6515 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6516 
6517 	mutex_lock(&hw_priv->lock);
6518 	n = SWITCH_PORT_NUM;
6519 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6520 		if (media_connected == hw->port_mib[p].state) {
6521 			hw_priv->counter[p].read = 1;
6522 
6523 			/* Remember first port that requests read. */
6524 			if (n == SWITCH_PORT_NUM)
6525 				n = p;
6526 		}
6527 	}
6528 	mutex_unlock(&hw_priv->lock);
6529 
6530 	if (n < SWITCH_PORT_NUM)
6531 		schedule_work(&hw_priv->mib_read);
6532 
6533 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6534 		p = n;
6535 		wait_event_interruptible_timeout(
6536 			hw_priv->counter[p].counter,
6537 			2 == hw_priv->counter[p].read,
6538 			HZ * 1);
6539 	} else
6540 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6541 			if (0 == i) {
6542 				wait_event_interruptible_timeout(
6543 					hw_priv->counter[p].counter,
6544 					2 == hw_priv->counter[p].read,
6545 					HZ * 2);
6546 			} else if (hw->port_mib[p].cnt_ptr) {
6547 				wait_event_interruptible_timeout(
6548 					hw_priv->counter[p].counter,
6549 					2 == hw_priv->counter[p].read,
6550 					HZ * 1);
6551 			}
6552 		}
6553 
6554 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6555 	n = hw->mib_cnt;
6556 	if (n > n_stats)
6557 		n = n_stats;
6558 	n_stats -= n;
6559 	for (i = 0; i < n; i++)
6560 		*data++ = counter[i];
6561 }
6562 
6563 /**
6564  * netdev_set_features - set receive checksum support
6565  * @dev:	Network device.
6566  * @features:	New device features (offloads).
6567  *
6568  * This function sets receive checksum support setting.
6569  *
6570  * Return 0 if successful; otherwise an error code.
6571  */
6572 static int netdev_set_features(struct net_device *dev,
6573 	netdev_features_t features)
6574 {
6575 	struct dev_priv *priv = netdev_priv(dev);
6576 	struct dev_info *hw_priv = priv->adapter;
6577 	struct ksz_hw *hw = &hw_priv->hw;
6578 
6579 	mutex_lock(&hw_priv->lock);
6580 
6581 	/* see note in hw_setup() */
6582 	if (features & NETIF_F_RXCSUM)
6583 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6584 	else
6585 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6586 
6587 	if (hw->enabled)
6588 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6589 
6590 	mutex_unlock(&hw_priv->lock);
6591 
6592 	return 0;
6593 }
6594 
6595 static const struct ethtool_ops netdev_ethtool_ops = {
6596 	.nway_reset		= netdev_nway_reset,
6597 	.get_link		= netdev_get_link,
6598 	.get_drvinfo		= netdev_get_drvinfo,
6599 	.get_regs_len		= netdev_get_regs_len,
6600 	.get_regs		= netdev_get_regs,
6601 	.get_wol		= netdev_get_wol,
6602 	.set_wol		= netdev_set_wol,
6603 	.get_msglevel		= netdev_get_msglevel,
6604 	.set_msglevel		= netdev_set_msglevel,
6605 	.get_eeprom_len		= netdev_get_eeprom_len,
6606 	.get_eeprom		= netdev_get_eeprom,
6607 	.set_eeprom		= netdev_set_eeprom,
6608 	.get_pauseparam		= netdev_get_pauseparam,
6609 	.set_pauseparam		= netdev_set_pauseparam,
6610 	.get_ringparam		= netdev_get_ringparam,
6611 	.get_strings		= netdev_get_strings,
6612 	.get_sset_count		= netdev_get_sset_count,
6613 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6614 	.get_link_ksettings	= netdev_get_link_ksettings,
6615 	.set_link_ksettings	= netdev_set_link_ksettings,
6616 };
6617 
6618 /*
6619  * Hardware monitoring
6620  */
6621 
6622 static void update_link(struct net_device *dev, struct dev_priv *priv,
6623 	struct ksz_port *port)
6624 {
6625 	if (priv->media_state != port->linked->state) {
6626 		priv->media_state = port->linked->state;
6627 		if (netif_running(dev))
6628 			set_media_state(dev, media_connected);
6629 	}
6630 }
6631 
6632 static void mib_read_work(struct work_struct *work)
6633 {
6634 	struct dev_info *hw_priv =
6635 		container_of(work, struct dev_info, mib_read);
6636 	struct ksz_hw *hw = &hw_priv->hw;
6637 	struct ksz_port_mib *mib;
6638 	int i;
6639 
6640 	next_jiffies = jiffies;
6641 	for (i = 0; i < hw->mib_port_cnt; i++) {
6642 		mib = &hw->port_mib[i];
6643 
6644 		/* Reading MIB counters or requested to read. */
6645 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6646 
6647 			/* Need to process receive interrupt. */
6648 			if (port_r_cnt(hw, i))
6649 				break;
6650 			hw_priv->counter[i].read = 0;
6651 
6652 			/* Finish reading counters. */
6653 			if (0 == mib->cnt_ptr) {
6654 				hw_priv->counter[i].read = 2;
6655 				wake_up_interruptible(
6656 					&hw_priv->counter[i].counter);
6657 			}
6658 		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6659 			/* Only read MIB counters when the port is connected. */
6660 			if (media_connected == mib->state)
6661 				hw_priv->counter[i].read = 1;
6662 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6663 			hw_priv->counter[i].time = next_jiffies;
6664 
6665 		/* Port is just disconnected. */
6666 		} else if (mib->link_down) {
6667 			mib->link_down = 0;
6668 
6669 			/* Read counters one last time after link is lost. */
6670 			hw_priv->counter[i].read = 1;
6671 		}
6672 	}
6673 }
6674 
6675 static void mib_monitor(struct timer_list *t)
6676 {
6677 	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6678 
6679 	mib_read_work(&hw_priv->mib_read);
6680 
6681 	/* This is used to verify Wake-on-LAN is working. */
6682 	if (hw_priv->pme_wait) {
6683 		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6684 			hw_clr_wol_pme_status(&hw_priv->hw);
6685 			hw_priv->pme_wait = 0;
6686 		}
6687 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6688 
6689 		/* PME is asserted.  Wait 2 seconds to clear it. */
6690 		hw_priv->pme_wait = jiffies + HZ * 2;
6691 	}
6692 
6693 	ksz_update_timer(&hw_priv->mib_timer_info);
6694 }
6695 
6696 /**
6697  * dev_monitor - periodic monitoring
6698  * @t:	timer list containing a network device pointer.
6699  *
6700  * This routine is run in a kernel timer to monitor the network device.
6701  */
6702 static void dev_monitor(struct timer_list *t)
6703 {
6704 	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6705 	struct net_device *dev = priv->mii_if.dev;
6706 	struct dev_info *hw_priv = priv->adapter;
6707 	struct ksz_hw *hw = &hw_priv->hw;
6708 	struct ksz_port *port = &priv->port;
6709 
6710 	if (!(hw->features & LINK_INT_WORKING))
6711 		port_get_link_speed(port);
6712 	update_link(dev, priv, port);
6713 
6714 	ksz_update_timer(&priv->monitor_timer_info);
6715 }
6716 
6717 /*
6718  * Linux network device interface functions
6719  */
6720 
6721 /* Driver exported variables */
6722 
6723 static int msg_enable;
6724 
6725 static char *macaddr = ":";
6726 static char *mac1addr = ":";
6727 
6728 /*
6729  * This enables multiple network device mode for KSZ8842, which contains a
6730  * switch with two physical ports.  Some users like to take control of the
6731  * ports for running Spanning Tree Protocol.  The driver will create an
6732  * additional eth? device for the other port.
6733  *
6734  * Some limitations are the network devices cannot have different MTU and
6735  * multicast hash tables.
6736  */
6737 static int multi_dev;
6738 
6739 /*
6740  * As most users select multiple network device mode to use Spanning Tree
6741  * Protocol, this enables a feature in which most unicast and multicast packets
6742  * are forwarded inside the switch and not passed to the host.  Only packets
6743  * that need the host's attention are passed to it.  This prevents the host
6744  * wasting CPU time to examine each and every incoming packets and do the
6745  * forwarding itself.
6746  *
6747  * As the hack requires the private bridge header, the driver cannot compile
6748  * with just the kernel headers.
6749  *
6750  * Enabling STP support also turns on multiple network device mode.
6751  */
6752 static int stp;
6753 
6754 /*
6755  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6756  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6757  * STP support is enabled.
6758  */
6759 static int fast_aging;
6760 
6761 /**
6762  * netdev_init - initialize network device.
6763  * @dev:	Network device.
6764  *
6765  * This function initializes the network device.
6766  *
6767  * Return 0 if successful; otherwise an error code indicating failure.
6768  */
6769 static int __init netdev_init(struct net_device *dev)
6770 {
6771 	struct dev_priv *priv = netdev_priv(dev);
6772 
6773 	/* 500 ms timeout */
6774 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6775 		dev_monitor);
6776 
6777 	/* 500 ms timeout */
6778 	dev->watchdog_timeo = HZ / 2;
6779 
6780 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6781 
6782 	/*
6783 	 * Hardware does not really support IPv6 checksum generation, but
6784 	 * driver actually runs faster with this on.
6785 	 */
6786 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6787 
6788 	dev->features |= dev->hw_features;
6789 
6790 	sema_init(&priv->proc_sem, 1);
6791 
6792 	priv->mii_if.phy_id_mask = 0x1;
6793 	priv->mii_if.reg_num_mask = 0x7;
6794 	priv->mii_if.dev = dev;
6795 	priv->mii_if.mdio_read = mdio_read;
6796 	priv->mii_if.mdio_write = mdio_write;
6797 	priv->mii_if.phy_id = priv->port.first_port + 1;
6798 
6799 	priv->msg_enable = netif_msg_init(msg_enable,
6800 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6801 
6802 	return 0;
6803 }
6804 
6805 static const struct net_device_ops netdev_ops = {
6806 	.ndo_init		= netdev_init,
6807 	.ndo_open		= netdev_open,
6808 	.ndo_stop		= netdev_close,
6809 	.ndo_get_stats		= netdev_query_statistics,
6810 	.ndo_start_xmit		= netdev_tx,
6811 	.ndo_tx_timeout		= netdev_tx_timeout,
6812 	.ndo_change_mtu		= netdev_change_mtu,
6813 	.ndo_set_features	= netdev_set_features,
6814 	.ndo_set_mac_address	= netdev_set_mac_address,
6815 	.ndo_validate_addr	= eth_validate_addr,
6816 	.ndo_do_ioctl		= netdev_ioctl,
6817 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6818 #ifdef CONFIG_NET_POLL_CONTROLLER
6819 	.ndo_poll_controller	= netdev_netpoll,
6820 #endif
6821 };
6822 
6823 static void netdev_free(struct net_device *dev)
6824 {
6825 	if (dev->watchdog_timeo)
6826 		unregister_netdev(dev);
6827 
6828 	free_netdev(dev);
6829 }
6830 
6831 struct platform_info {
6832 	struct dev_info dev_info;
6833 	struct net_device *netdev[SWITCH_PORT_NUM];
6834 };
6835 
6836 static int net_device_present;
6837 
6838 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6839 {
6840 	int i;
6841 	int j;
6842 	int got_num;
6843 	int num;
6844 
6845 	i = j = num = got_num = 0;
6846 	while (j < ETH_ALEN) {
6847 		if (macaddr[i]) {
6848 			int digit;
6849 
6850 			got_num = 1;
6851 			digit = hex_to_bin(macaddr[i]);
6852 			if (digit >= 0)
6853 				num = num * 16 + digit;
6854 			else if (':' == macaddr[i])
6855 				got_num = 2;
6856 			else
6857 				break;
6858 		} else if (got_num)
6859 			got_num = 2;
6860 		else
6861 			break;
6862 		if (2 == got_num) {
6863 			if (MAIN_PORT == port) {
6864 				hw_priv->hw.override_addr[j++] = (u8) num;
6865 				hw_priv->hw.override_addr[5] +=
6866 					hw_priv->hw.id;
6867 			} else {
6868 				hw_priv->hw.ksz_switch->other_addr[j++] =
6869 					(u8) num;
6870 				hw_priv->hw.ksz_switch->other_addr[5] +=
6871 					hw_priv->hw.id;
6872 			}
6873 			num = got_num = 0;
6874 		}
6875 		i++;
6876 	}
6877 	if (ETH_ALEN == j) {
6878 		if (MAIN_PORT == port)
6879 			hw_priv->hw.mac_override = 1;
6880 	}
6881 }
6882 
6883 #define KS884X_DMA_MASK			(~0x0UL)
6884 
6885 static void read_other_addr(struct ksz_hw *hw)
6886 {
6887 	int i;
6888 	u16 data[3];
6889 	struct ksz_switch *sw = hw->ksz_switch;
6890 
6891 	for (i = 0; i < 3; i++)
6892 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6893 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6894 		sw->other_addr[5] = (u8) data[0];
6895 		sw->other_addr[4] = (u8)(data[0] >> 8);
6896 		sw->other_addr[3] = (u8) data[1];
6897 		sw->other_addr[2] = (u8)(data[1] >> 8);
6898 		sw->other_addr[1] = (u8) data[2];
6899 		sw->other_addr[0] = (u8)(data[2] >> 8);
6900 	}
6901 }
6902 
6903 #ifndef PCI_VENDOR_ID_MICREL_KS
6904 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6905 #endif
6906 
6907 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6908 {
6909 	struct net_device *dev;
6910 	struct dev_priv *priv;
6911 	struct dev_info *hw_priv;
6912 	struct ksz_hw *hw;
6913 	struct platform_info *info;
6914 	struct ksz_port *port;
6915 	unsigned long reg_base;
6916 	unsigned long reg_len;
6917 	int cnt;
6918 	int i;
6919 	int mib_port_count;
6920 	int pi;
6921 	int port_count;
6922 	int result;
6923 	char banner[sizeof(version)];
6924 	struct ksz_switch *sw = NULL;
6925 
6926 	result = pci_enable_device(pdev);
6927 	if (result)
6928 		return result;
6929 
6930 	result = -ENODEV;
6931 
6932 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6933 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6934 		return result;
6935 
6936 	reg_base = pci_resource_start(pdev, 0);
6937 	reg_len = pci_resource_len(pdev, 0);
6938 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6939 		return result;
6940 
6941 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6942 		return result;
6943 	pci_set_master(pdev);
6944 
6945 	result = -ENOMEM;
6946 
6947 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6948 	if (!info)
6949 		goto pcidev_init_dev_err;
6950 
6951 	hw_priv = &info->dev_info;
6952 	hw_priv->pdev = pdev;
6953 
6954 	hw = &hw_priv->hw;
6955 
6956 	hw->io = ioremap(reg_base, reg_len);
6957 	if (!hw->io)
6958 		goto pcidev_init_io_err;
6959 
6960 	cnt = hw_init(hw);
6961 	if (!cnt) {
6962 		if (msg_enable & NETIF_MSG_PROBE)
6963 			pr_alert("chip not detected\n");
6964 		result = -ENODEV;
6965 		goto pcidev_init_alloc_err;
6966 	}
6967 
6968 	snprintf(banner, sizeof(banner), "%s", version);
6969 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6970 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6971 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6972 
6973 	/* Assume device is KSZ8841. */
6974 	hw->dev_count = 1;
6975 	port_count = 1;
6976 	mib_port_count = 1;
6977 	hw->addr_list_size = 0;
6978 	hw->mib_cnt = PORT_COUNTER_NUM;
6979 	hw->mib_port_cnt = 1;
6980 
6981 	/* KSZ8842 has a switch with multiple ports. */
6982 	if (2 == cnt) {
6983 		if (fast_aging)
6984 			hw->overrides |= FAST_AGING;
6985 
6986 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6987 
6988 		/* Multiple network device interfaces are required. */
6989 		if (multi_dev) {
6990 			hw->dev_count = SWITCH_PORT_NUM;
6991 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6992 		}
6993 
6994 		/* Single network device has multiple ports. */
6995 		if (1 == hw->dev_count) {
6996 			port_count = SWITCH_PORT_NUM;
6997 			mib_port_count = SWITCH_PORT_NUM;
6998 		}
6999 		hw->mib_port_cnt = TOTAL_PORT_NUM;
7000 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7001 		if (!hw->ksz_switch)
7002 			goto pcidev_init_alloc_err;
7003 
7004 		sw = hw->ksz_switch;
7005 	}
7006 	for (i = 0; i < hw->mib_port_cnt; i++)
7007 		hw->port_mib[i].mib_start = 0;
7008 
7009 	hw->parent = hw_priv;
7010 
7011 	/* Default MTU is 1500. */
7012 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7013 
7014 	if (ksz_alloc_mem(hw_priv))
7015 		goto pcidev_init_mem_err;
7016 
7017 	hw_priv->hw.id = net_device_present;
7018 
7019 	spin_lock_init(&hw_priv->hwlock);
7020 	mutex_init(&hw_priv->lock);
7021 
7022 	for (i = 0; i < TOTAL_PORT_NUM; i++)
7023 		init_waitqueue_head(&hw_priv->counter[i].counter);
7024 
7025 	if (macaddr[0] != ':')
7026 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7027 
7028 	/* Read MAC address and initialize override address if not overridden. */
7029 	hw_read_addr(hw);
7030 
7031 	/* Multiple device interfaces mode requires a second MAC address. */
7032 	if (hw->dev_count > 1) {
7033 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7034 		read_other_addr(hw);
7035 		if (mac1addr[0] != ':')
7036 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7037 	}
7038 
7039 	hw_setup(hw);
7040 	if (hw->ksz_switch)
7041 		sw_setup(hw);
7042 	else {
7043 		hw_priv->wol_support = WOL_SUPPORT;
7044 		hw_priv->wol_enable = 0;
7045 	}
7046 
7047 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7048 
7049 	/* 500 ms timeout */
7050 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7051 		mib_monitor);
7052 
7053 	for (i = 0; i < hw->dev_count; i++) {
7054 		dev = alloc_etherdev(sizeof(struct dev_priv));
7055 		if (!dev)
7056 			goto pcidev_init_reg_err;
7057 		SET_NETDEV_DEV(dev, &pdev->dev);
7058 		info->netdev[i] = dev;
7059 
7060 		priv = netdev_priv(dev);
7061 		priv->adapter = hw_priv;
7062 		priv->id = net_device_present++;
7063 
7064 		port = &priv->port;
7065 		port->port_cnt = port_count;
7066 		port->mib_port_cnt = mib_port_count;
7067 		port->first_port = i;
7068 		port->flow_ctrl = PHY_FLOW_CTRL;
7069 
7070 		port->hw = hw;
7071 		port->linked = &hw->port_info[port->first_port];
7072 
7073 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7074 			hw->port_info[pi].port_id = pi;
7075 			hw->port_info[pi].pdev = dev;
7076 			hw->port_info[pi].state = media_disconnected;
7077 		}
7078 
7079 		dev->mem_start = (unsigned long) hw->io;
7080 		dev->mem_end = dev->mem_start + reg_len - 1;
7081 		dev->irq = pdev->irq;
7082 		if (MAIN_PORT == i)
7083 			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7084 			       ETH_ALEN);
7085 		else {
7086 			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7087 			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7088 				dev->dev_addr[5] += port->first_port;
7089 		}
7090 
7091 		dev->netdev_ops = &netdev_ops;
7092 		dev->ethtool_ops = &netdev_ethtool_ops;
7093 
7094 		/* MTU range: 60 - 1894 */
7095 		dev->min_mtu = ETH_ZLEN;
7096 		dev->max_mtu = MAX_RX_BUF_SIZE -
7097 			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7098 
7099 		if (register_netdev(dev))
7100 			goto pcidev_init_reg_err;
7101 		port_set_power_saving(port, true);
7102 	}
7103 
7104 	pci_dev_get(hw_priv->pdev);
7105 	pci_set_drvdata(pdev, info);
7106 	return 0;
7107 
7108 pcidev_init_reg_err:
7109 	for (i = 0; i < hw->dev_count; i++) {
7110 		if (info->netdev[i]) {
7111 			netdev_free(info->netdev[i]);
7112 			info->netdev[i] = NULL;
7113 		}
7114 	}
7115 
7116 pcidev_init_mem_err:
7117 	ksz_free_mem(hw_priv);
7118 	kfree(hw->ksz_switch);
7119 
7120 pcidev_init_alloc_err:
7121 	iounmap(hw->io);
7122 
7123 pcidev_init_io_err:
7124 	kfree(info);
7125 
7126 pcidev_init_dev_err:
7127 	release_mem_region(reg_base, reg_len);
7128 
7129 	return result;
7130 }
7131 
7132 static void pcidev_exit(struct pci_dev *pdev)
7133 {
7134 	int i;
7135 	struct platform_info *info = pci_get_drvdata(pdev);
7136 	struct dev_info *hw_priv = &info->dev_info;
7137 
7138 	release_mem_region(pci_resource_start(pdev, 0),
7139 		pci_resource_len(pdev, 0));
7140 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7141 		if (info->netdev[i])
7142 			netdev_free(info->netdev[i]);
7143 	}
7144 	if (hw_priv->hw.io)
7145 		iounmap(hw_priv->hw.io);
7146 	ksz_free_mem(hw_priv);
7147 	kfree(hw_priv->hw.ksz_switch);
7148 	pci_dev_put(hw_priv->pdev);
7149 	kfree(info);
7150 }
7151 
7152 static int __maybe_unused pcidev_resume(struct device *dev_d)
7153 {
7154 	int i;
7155 	struct platform_info *info = dev_get_drvdata(dev_d);
7156 	struct dev_info *hw_priv = &info->dev_info;
7157 	struct ksz_hw *hw = &hw_priv->hw;
7158 
7159 	device_wakeup_disable(dev_d);
7160 
7161 	if (hw_priv->wol_enable)
7162 		hw_cfg_wol_pme(hw, 0);
7163 	for (i = 0; i < hw->dev_count; i++) {
7164 		if (info->netdev[i]) {
7165 			struct net_device *dev = info->netdev[i];
7166 
7167 			if (netif_running(dev)) {
7168 				netdev_open(dev);
7169 				netif_device_attach(dev);
7170 			}
7171 		}
7172 	}
7173 	return 0;
7174 }
7175 
7176 static int __maybe_unused pcidev_suspend(struct device *dev_d)
7177 {
7178 	int i;
7179 	struct platform_info *info = dev_get_drvdata(dev_d);
7180 	struct dev_info *hw_priv = &info->dev_info;
7181 	struct ksz_hw *hw = &hw_priv->hw;
7182 
7183 	/* Need to find a way to retrieve the device IP address. */
7184 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7185 
7186 	for (i = 0; i < hw->dev_count; i++) {
7187 		if (info->netdev[i]) {
7188 			struct net_device *dev = info->netdev[i];
7189 
7190 			if (netif_running(dev)) {
7191 				netif_device_detach(dev);
7192 				netdev_close(dev);
7193 			}
7194 		}
7195 	}
7196 	if (hw_priv->wol_enable) {
7197 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7198 		hw_cfg_wol_pme(hw, 1);
7199 	}
7200 
7201 	device_wakeup_enable(dev_d);
7202 	return 0;
7203 }
7204 
7205 static char pcidev_name[] = "ksz884xp";
7206 
7207 static const struct pci_device_id pcidev_table[] = {
7208 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7209 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7210 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7211 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7212 	{ 0 }
7213 };
7214 
7215 MODULE_DEVICE_TABLE(pci, pcidev_table);
7216 
7217 static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7218 
7219 static struct pci_driver pci_device_driver = {
7220 	.driver.pm	= &pcidev_pm_ops,
7221 	.name		= pcidev_name,
7222 	.id_table	= pcidev_table,
7223 	.probe		= pcidev_init,
7224 	.remove		= pcidev_exit
7225 };
7226 
7227 module_pci_driver(pci_device_driver);
7228 
7229 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7230 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7231 MODULE_LICENSE("GPL");
7232 
7233 module_param_named(message, msg_enable, int, 0);
7234 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7235 
7236 module_param(macaddr, charp, 0);
7237 module_param(mac1addr, charp, 0);
7238 module_param(fast_aging, int, 0);
7239 module_param(multi_dev, int, 0);
7240 module_param(stp, int, 0);
7241 MODULE_PARM_DESC(macaddr, "MAC address");
7242 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7243 MODULE_PARM_DESC(fast_aging, "Fast aging");
7244 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7245 MODULE_PARM_DESC(stp, "STP support");
7246