1 // SPDX-License-Identifier: GPL-2.0-only 2 /* drivers/net/ethernet/micrel/ks8851.c 3 * 4 * Copyright 2009 Simtec Electronics 5 * http://www.simtec.co.uk/ 6 * Ben Dooks <ben@simtec.co.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ethtool.h> 17 #include <linux/cache.h> 18 #include <linux/crc32.h> 19 #include <linux/mii.h> 20 #include <linux/regulator/consumer.h> 21 22 #include <linux/spi/spi.h> 23 #include <linux/of_net.h> 24 25 #include "ks8851.h" 26 27 static int msg_enable; 28 29 /** 30 * struct ks8851_net_spi - KS8851 SPI driver private data 31 * @lock: Lock to ensure that the device is not accessed when busy. 32 * @tx_work: Work queue for tx packets 33 * @ks8851: KS8851 driver common private data 34 * @spidev: The spi device we're bound to. 35 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1. 36 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2. 37 * @spi_xfer1: @spi_msg1 SPI transfer structure 38 * @spi_xfer2: @spi_msg2 SPI transfer structure 39 * 40 * The @lock ensures that the chip is protected when certain operations are 41 * in progress. When the read or write packet transfer is in progress, most 42 * of the chip registers are not ccessible until the transfer is finished and 43 * the DMA has been de-asserted. 44 */ 45 struct ks8851_net_spi { 46 struct ks8851_net ks8851; 47 struct mutex lock; 48 struct work_struct tx_work; 49 struct spi_device *spidev; 50 struct spi_message spi_msg1; 51 struct spi_message spi_msg2; 52 struct spi_transfer spi_xfer1; 53 struct spi_transfer spi_xfer2[2]; 54 }; 55 56 #define to_ks8851_spi(ks) container_of((ks), struct ks8851_net_spi, ks8851) 57 58 /* SPI frame opcodes */ 59 #define KS_SPIOP_RD 0x00 60 #define KS_SPIOP_WR 0x40 61 #define KS_SPIOP_RXFIFO 0x80 62 #define KS_SPIOP_TXFIFO 0xC0 63 64 /* shift for byte-enable data */ 65 #define BYTE_EN(_x) ((_x) << 2) 66 67 /* turn register number and byte-enable mask into data for start of packet */ 68 #define MK_OP(_byteen, _reg) \ 69 (BYTE_EN(_byteen) | (_reg) << (8 + 2) | (_reg) >> 6) 70 71 /** 72 * ks8851_lock_spi - register access lock 73 * @ks: The chip state 74 * @flags: Spinlock flags 75 * 76 * Claim chip register access lock 77 */ 78 static void ks8851_lock_spi(struct ks8851_net *ks, unsigned long *flags) 79 { 80 struct ks8851_net_spi *kss = to_ks8851_spi(ks); 81 82 mutex_lock(&kss->lock); 83 } 84 85 /** 86 * ks8851_unlock_spi - register access unlock 87 * @ks: The chip state 88 * @flags: Spinlock flags 89 * 90 * Release chip register access lock 91 */ 92 static void ks8851_unlock_spi(struct ks8851_net *ks, unsigned long *flags) 93 { 94 struct ks8851_net_spi *kss = to_ks8851_spi(ks); 95 96 mutex_unlock(&kss->lock); 97 } 98 99 /* SPI register read/write calls. 100 * 101 * All these calls issue SPI transactions to access the chip's registers. They 102 * all require that the necessary lock is held to prevent accesses when the 103 * chip is busy transferring packet data (RX/TX FIFO accesses). 104 */ 105 106 /** 107 * ks8851_wrreg16_spi - write 16bit register value to chip via SPI 108 * @ks: The chip state 109 * @reg: The register address 110 * @val: The value to write 111 * 112 * Issue a write to put the value @val into the register specified in @reg. 113 */ 114 static void ks8851_wrreg16_spi(struct ks8851_net *ks, unsigned int reg, 115 unsigned int val) 116 { 117 struct ks8851_net_spi *kss = to_ks8851_spi(ks); 118 struct spi_transfer *xfer = &kss->spi_xfer1; 119 struct spi_message *msg = &kss->spi_msg1; 120 __le16 txb[2]; 121 int ret; 122 123 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR); 124 txb[1] = cpu_to_le16(val); 125 126 xfer->tx_buf = txb; 127 xfer->rx_buf = NULL; 128 xfer->len = 4; 129 130 ret = spi_sync(kss->spidev, msg); 131 if (ret < 0) 132 netdev_err(ks->netdev, "spi_sync() failed\n"); 133 } 134 135 /** 136 * ks8851_rdreg - issue read register command and return the data 137 * @ks: The device state 138 * @op: The register address and byte enables in message format. 139 * @rxb: The RX buffer to return the result into 140 * @rxl: The length of data expected. 141 * 142 * This is the low level read call that issues the necessary spi message(s) 143 * to read data from the register specified in @op. 144 */ 145 static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op, 146 u8 *rxb, unsigned int rxl) 147 { 148 struct ks8851_net_spi *kss = to_ks8851_spi(ks); 149 struct spi_transfer *xfer; 150 struct spi_message *msg; 151 __le16 *txb = (__le16 *)ks->txd; 152 u8 *trx = ks->rxd; 153 int ret; 154 155 txb[0] = cpu_to_le16(op | KS_SPIOP_RD); 156 157 if (kss->spidev->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) { 158 msg = &kss->spi_msg2; 159 xfer = kss->spi_xfer2; 160 161 xfer->tx_buf = txb; 162 xfer->rx_buf = NULL; 163 xfer->len = 2; 164 165 xfer++; 166 xfer->tx_buf = NULL; 167 xfer->rx_buf = trx; 168 xfer->len = rxl; 169 } else { 170 msg = &kss->spi_msg1; 171 xfer = &kss->spi_xfer1; 172 173 xfer->tx_buf = txb; 174 xfer->rx_buf = trx; 175 xfer->len = rxl + 2; 176 } 177 178 ret = spi_sync(kss->spidev, msg); 179 if (ret < 0) 180 netdev_err(ks->netdev, "read: spi_sync() failed\n"); 181 else if (kss->spidev->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) 182 memcpy(rxb, trx, rxl); 183 else 184 memcpy(rxb, trx + 2, rxl); 185 } 186 187 /** 188 * ks8851_rdreg16_spi - read 16 bit register from device via SPI 189 * @ks: The chip information 190 * @reg: The register address 191 * 192 * Read a 16bit register from the chip, returning the result 193 */ 194 static unsigned int ks8851_rdreg16_spi(struct ks8851_net *ks, unsigned int reg) 195 { 196 __le16 rx = 0; 197 198 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2); 199 return le16_to_cpu(rx); 200 } 201 202 /** 203 * ks8851_rdfifo_spi - read data from the receive fifo via SPI 204 * @ks: The device state. 205 * @buff: The buffer address 206 * @len: The length of the data to read 207 * 208 * Issue an RXQ FIFO read command and read the @len amount of data from 209 * the FIFO into the buffer specified by @buff. 210 */ 211 static void ks8851_rdfifo_spi(struct ks8851_net *ks, u8 *buff, unsigned int len) 212 { 213 struct ks8851_net_spi *kss = to_ks8851_spi(ks); 214 struct spi_transfer *xfer = kss->spi_xfer2; 215 struct spi_message *msg = &kss->spi_msg2; 216 u8 txb[1]; 217 int ret; 218 219 netif_dbg(ks, rx_status, ks->netdev, 220 "%s: %d@%p\n", __func__, len, buff); 221 222 /* set the operation we're issuing */ 223 txb[0] = KS_SPIOP_RXFIFO; 224 225 xfer->tx_buf = txb; 226 xfer->rx_buf = NULL; 227 xfer->len = 1; 228 229 xfer++; 230 xfer->rx_buf = buff; 231 xfer->tx_buf = NULL; 232 xfer->len = len; 233 234 ret = spi_sync(kss->spidev, msg); 235 if (ret < 0) 236 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); 237 } 238 239 /** 240 * ks8851_wrfifo_spi - write packet to TX FIFO via SPI 241 * @ks: The device state. 242 * @txp: The sk_buff to transmit. 243 * @irq: IRQ on completion of the packet. 244 * 245 * Send the @txp to the chip. This means creating the relevant packet header 246 * specifying the length of the packet and the other information the chip 247 * needs, such as IRQ on completion. Send the header and the packet data to 248 * the device. 249 */ 250 static void ks8851_wrfifo_spi(struct ks8851_net *ks, struct sk_buff *txp, 251 bool irq) 252 { 253 struct ks8851_net_spi *kss = to_ks8851_spi(ks); 254 struct spi_transfer *xfer = kss->spi_xfer2; 255 struct spi_message *msg = &kss->spi_msg2; 256 unsigned int fid = 0; 257 int ret; 258 259 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n", 260 __func__, txp, txp->len, txp->data, irq); 261 262 fid = ks->fid++; 263 fid &= TXFR_TXFID_MASK; 264 265 if (irq) 266 fid |= TXFR_TXIC; /* irq on completion */ 267 268 /* start header at txb[1] to align txw entries */ 269 ks->txh.txb[1] = KS_SPIOP_TXFIFO; 270 ks->txh.txw[1] = cpu_to_le16(fid); 271 ks->txh.txw[2] = cpu_to_le16(txp->len); 272 273 xfer->tx_buf = &ks->txh.txb[1]; 274 xfer->rx_buf = NULL; 275 xfer->len = 5; 276 277 xfer++; 278 xfer->tx_buf = txp->data; 279 xfer->rx_buf = NULL; 280 xfer->len = ALIGN(txp->len, 4); 281 282 ret = spi_sync(kss->spidev, msg); 283 if (ret < 0) 284 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); 285 } 286 287 /** 288 * calc_txlen - calculate size of message to send packet 289 * @len: Length of data 290 * 291 * Returns the size of the TXFIFO message needed to send 292 * this packet. 293 */ 294 static unsigned int calc_txlen(unsigned int len) 295 { 296 return ALIGN(len + 4, 4); 297 } 298 299 /** 300 * ks8851_tx_work - process tx packet(s) 301 * @work: The work strucutre what was scheduled. 302 * 303 * This is called when a number of packets have been scheduled for 304 * transmission and need to be sent to the device. 305 */ 306 static void ks8851_tx_work(struct work_struct *work) 307 { 308 unsigned int dequeued_len = 0; 309 struct ks8851_net_spi *kss; 310 unsigned short tx_space; 311 struct ks8851_net *ks; 312 unsigned long flags; 313 struct sk_buff *txb; 314 bool last; 315 316 kss = container_of(work, struct ks8851_net_spi, tx_work); 317 ks = &kss->ks8851; 318 last = skb_queue_empty(&ks->txq); 319 320 ks8851_lock_spi(ks, &flags); 321 322 while (!last) { 323 txb = skb_dequeue(&ks->txq); 324 last = skb_queue_empty(&ks->txq); 325 326 if (txb) { 327 dequeued_len += calc_txlen(txb->len); 328 329 ks8851_wrreg16_spi(ks, KS_RXQCR, 330 ks->rc_rxqcr | RXQCR_SDA); 331 ks8851_wrfifo_spi(ks, txb, last); 332 ks8851_wrreg16_spi(ks, KS_RXQCR, ks->rc_rxqcr); 333 ks8851_wrreg16_spi(ks, KS_TXQCR, TXQCR_METFE); 334 335 ks8851_done_tx(ks, txb); 336 } 337 } 338 339 tx_space = ks8851_rdreg16_spi(ks, KS_TXMIR); 340 341 spin_lock_bh(&ks->statelock); 342 ks->queued_len -= dequeued_len; 343 ks->tx_space = tx_space; 344 spin_unlock_bh(&ks->statelock); 345 346 ks8851_unlock_spi(ks, &flags); 347 } 348 349 /** 350 * ks8851_flush_tx_work_spi - flush outstanding TX work 351 * @ks: The device state 352 */ 353 static void ks8851_flush_tx_work_spi(struct ks8851_net *ks) 354 { 355 struct ks8851_net_spi *kss = to_ks8851_spi(ks); 356 357 flush_work(&kss->tx_work); 358 } 359 360 /** 361 * ks8851_start_xmit_spi - transmit packet using SPI 362 * @skb: The buffer to transmit 363 * @dev: The device used to transmit the packet. 364 * 365 * Called by the network layer to transmit the @skb. Queue the packet for 366 * the device and schedule the necessary work to transmit the packet when 367 * it is free. 368 * 369 * We do this to firstly avoid sleeping with the network device locked, 370 * and secondly so we can round up more than one packet to transmit which 371 * means we can try and avoid generating too many transmit done interrupts. 372 */ 373 static netdev_tx_t ks8851_start_xmit_spi(struct sk_buff *skb, 374 struct net_device *dev) 375 { 376 unsigned int needed = calc_txlen(skb->len); 377 struct ks8851_net *ks = netdev_priv(dev); 378 netdev_tx_t ret = NETDEV_TX_OK; 379 struct ks8851_net_spi *kss; 380 381 kss = to_ks8851_spi(ks); 382 383 netif_dbg(ks, tx_queued, ks->netdev, 384 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data); 385 386 spin_lock(&ks->statelock); 387 388 if (ks->queued_len + needed > ks->tx_space) { 389 netif_stop_queue(dev); 390 ret = NETDEV_TX_BUSY; 391 } else { 392 ks->queued_len += needed; 393 skb_queue_tail(&ks->txq, skb); 394 } 395 396 spin_unlock(&ks->statelock); 397 if (ret == NETDEV_TX_OK) 398 schedule_work(&kss->tx_work); 399 400 return ret; 401 } 402 403 static int ks8851_probe_spi(struct spi_device *spi) 404 { 405 struct device *dev = &spi->dev; 406 struct ks8851_net_spi *kss; 407 struct net_device *netdev; 408 struct ks8851_net *ks; 409 410 netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_spi)); 411 if (!netdev) 412 return -ENOMEM; 413 414 spi->bits_per_word = 8; 415 416 kss = netdev_priv(netdev); 417 ks = &kss->ks8851; 418 419 ks->lock = ks8851_lock_spi; 420 ks->unlock = ks8851_unlock_spi; 421 ks->rdreg16 = ks8851_rdreg16_spi; 422 ks->wrreg16 = ks8851_wrreg16_spi; 423 ks->rdfifo = ks8851_rdfifo_spi; 424 ks->wrfifo = ks8851_wrfifo_spi; 425 ks->start_xmit = ks8851_start_xmit_spi; 426 ks->flush_tx_work = ks8851_flush_tx_work_spi; 427 428 #define STD_IRQ (IRQ_LCI | /* Link Change */ \ 429 IRQ_TXI | /* TX done */ \ 430 IRQ_RXI | /* RX done */ \ 431 IRQ_SPIBEI | /* SPI bus error */ \ 432 IRQ_TXPSI | /* TX process stop */ \ 433 IRQ_RXPSI) /* RX process stop */ 434 ks->rc_ier = STD_IRQ; 435 436 kss->spidev = spi; 437 mutex_init(&kss->lock); 438 INIT_WORK(&kss->tx_work, ks8851_tx_work); 439 440 /* initialise pre-made spi transfer messages */ 441 spi_message_init(&kss->spi_msg1); 442 spi_message_add_tail(&kss->spi_xfer1, &kss->spi_msg1); 443 444 spi_message_init(&kss->spi_msg2); 445 spi_message_add_tail(&kss->spi_xfer2[0], &kss->spi_msg2); 446 spi_message_add_tail(&kss->spi_xfer2[1], &kss->spi_msg2); 447 448 netdev->irq = spi->irq; 449 450 return ks8851_probe_common(netdev, dev, msg_enable); 451 } 452 453 static void ks8851_remove_spi(struct spi_device *spi) 454 { 455 ks8851_remove_common(&spi->dev); 456 } 457 458 static const struct of_device_id ks8851_match_table[] = { 459 { .compatible = "micrel,ks8851" }, 460 { } 461 }; 462 MODULE_DEVICE_TABLE(of, ks8851_match_table); 463 464 static struct spi_driver ks8851_driver = { 465 .driver = { 466 .name = "ks8851", 467 .of_match_table = ks8851_match_table, 468 .pm = &ks8851_pm_ops, 469 }, 470 .probe = ks8851_probe_spi, 471 .remove = ks8851_remove_spi, 472 }; 473 module_spi_driver(ks8851_driver); 474 475 MODULE_DESCRIPTION("KS8851 Network driver"); 476 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); 477 MODULE_LICENSE("GPL"); 478 479 module_param_named(message, msg_enable, int, 0); 480 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); 481 MODULE_ALIAS("spi:ks8851"); 482