1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */ 2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */ 3 4 #ifndef _MLXSW_REG_H 5 #define _MLXSW_REG_H 6 7 #include <linux/kernel.h> 8 #include <linux/string.h> 9 #include <linux/bitops.h> 10 #include <linux/if_vlan.h> 11 12 #include "item.h" 13 #include "port.h" 14 15 struct mlxsw_reg_info { 16 u16 id; 17 u16 len; /* In u8 */ 18 const char *name; 19 }; 20 21 #define MLXSW_REG_DEFINE(_name, _id, _len) \ 22 static const struct mlxsw_reg_info mlxsw_reg_##_name = { \ 23 .id = _id, \ 24 .len = _len, \ 25 .name = #_name, \ 26 } 27 28 #define MLXSW_REG(type) (&mlxsw_reg_##type) 29 #define MLXSW_REG_LEN(type) MLXSW_REG(type)->len 30 #define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len) 31 32 /* SGCR - Switch General Configuration Register 33 * -------------------------------------------- 34 * This register is used for configuration of the switch capabilities. 35 */ 36 #define MLXSW_REG_SGCR_ID 0x2000 37 #define MLXSW_REG_SGCR_LEN 0x10 38 39 MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN); 40 41 /* reg_sgcr_lag_lookup_pgt_base 42 * Base address used for lookup in PGT table 43 * Supported when CONFIG_PROFILE.lag_mode = 1 44 * Note: when IGCR.ddd_lag_mode=0, the address shall be aligned to 8 entries. 45 * Access: RW 46 */ 47 MLXSW_ITEM32(reg, sgcr, lag_lookup_pgt_base, 0x0C, 0, 16); 48 49 static inline void mlxsw_reg_sgcr_pack(char *payload, u16 lag_lookup_pgt_base) 50 { 51 MLXSW_REG_ZERO(sgcr, payload); 52 mlxsw_reg_sgcr_lag_lookup_pgt_base_set(payload, lag_lookup_pgt_base); 53 } 54 55 /* SPAD - Switch Physical Address Register 56 * --------------------------------------- 57 * The SPAD register configures the switch physical MAC address. 58 */ 59 #define MLXSW_REG_SPAD_ID 0x2002 60 #define MLXSW_REG_SPAD_LEN 0x10 61 62 MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN); 63 64 /* reg_spad_base_mac 65 * Base MAC address for the switch partitions. 66 * Per switch partition MAC address is equal to: 67 * base_mac + swid 68 * Access: RW 69 */ 70 MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6); 71 72 /* SSPR - Switch System Port Record Register 73 * ----------------------------------------- 74 * Configures the system port to local port mapping. 75 */ 76 #define MLXSW_REG_SSPR_ID 0x2008 77 #define MLXSW_REG_SSPR_LEN 0x8 78 79 MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN); 80 81 /* reg_sspr_m 82 * Master - if set, then the record describes the master system port. 83 * This is needed in case a local port is mapped into several system ports 84 * (for multipathing). That number will be reported as the source system 85 * port when packets are forwarded to the CPU. Only one master port is allowed 86 * per local port. 87 * 88 * Note: Must be set for Spectrum. 89 * Access: RW 90 */ 91 MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1); 92 93 /* reg_sspr_local_port 94 * Local port number. 95 * 96 * Access: RW 97 */ 98 MLXSW_ITEM32_LP(reg, sspr, 0x00, 16, 0x00, 12); 99 100 /* reg_sspr_system_port 101 * Unique identifier within the stacking domain that represents all the ports 102 * that are available in the system (external ports). 103 * 104 * Currently, only single-ASIC configurations are supported, so we default to 105 * 1:1 mapping between system ports and local ports. 106 * Access: Index 107 */ 108 MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16); 109 110 static inline void mlxsw_reg_sspr_pack(char *payload, u16 local_port) 111 { 112 MLXSW_REG_ZERO(sspr, payload); 113 mlxsw_reg_sspr_m_set(payload, 1); 114 mlxsw_reg_sspr_local_port_set(payload, local_port); 115 mlxsw_reg_sspr_system_port_set(payload, local_port); 116 } 117 118 /* SFDAT - Switch Filtering Database Aging Time 119 * -------------------------------------------- 120 * Controls the Switch aging time. Aging time is able to be set per Switch 121 * Partition. 122 */ 123 #define MLXSW_REG_SFDAT_ID 0x2009 124 #define MLXSW_REG_SFDAT_LEN 0x8 125 126 MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN); 127 128 /* reg_sfdat_swid 129 * Switch partition ID. 130 * Access: Index 131 */ 132 MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8); 133 134 /* reg_sfdat_age_time 135 * Aging time in seconds 136 * Min - 10 seconds 137 * Max - 1,000,000 seconds 138 * Default is 300 seconds. 139 * Access: RW 140 */ 141 MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20); 142 143 static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time) 144 { 145 MLXSW_REG_ZERO(sfdat, payload); 146 mlxsw_reg_sfdat_swid_set(payload, 0); 147 mlxsw_reg_sfdat_age_time_set(payload, age_time); 148 } 149 150 /* SFD - Switch Filtering Database 151 * ------------------------------- 152 * The following register defines the access to the filtering database. 153 * The register supports querying, adding, removing and modifying the database. 154 * The access is optimized for bulk updates in which case more than one 155 * FDB record is present in the same command. 156 */ 157 #define MLXSW_REG_SFD_ID 0x200A 158 #define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */ 159 #define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */ 160 #define MLXSW_REG_SFD_REC_MAX_COUNT 64 161 #define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \ 162 MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT) 163 164 MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN); 165 166 /* reg_sfd_swid 167 * Switch partition ID for queries. Reserved on Write. 168 * Access: Index 169 */ 170 MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8); 171 172 enum mlxsw_reg_sfd_op { 173 /* Dump entire FDB a (process according to record_locator) */ 174 MLXSW_REG_SFD_OP_QUERY_DUMP = 0, 175 /* Query records by {MAC, VID/FID} value */ 176 MLXSW_REG_SFD_OP_QUERY_QUERY = 1, 177 /* Query and clear activity. Query records by {MAC, VID/FID} value */ 178 MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2, 179 /* Test. Response indicates if each of the records could be 180 * added to the FDB. 181 */ 182 MLXSW_REG_SFD_OP_WRITE_TEST = 0, 183 /* Add/modify. Aged-out records cannot be added. This command removes 184 * the learning notification of the {MAC, VID/FID}. Response includes 185 * the entries that were added to the FDB. 186 */ 187 MLXSW_REG_SFD_OP_WRITE_EDIT = 1, 188 /* Remove record by {MAC, VID/FID}. This command also removes 189 * the learning notification and aged-out notifications 190 * of the {MAC, VID/FID}. The response provides current (pre-removal) 191 * entries as non-aged-out. 192 */ 193 MLXSW_REG_SFD_OP_WRITE_REMOVE = 2, 194 /* Remove learned notification by {MAC, VID/FID}. The response provides 195 * the removed learning notification. 196 */ 197 MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2, 198 }; 199 200 /* reg_sfd_op 201 * Operation. 202 * Access: OP 203 */ 204 MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2); 205 206 /* reg_sfd_record_locator 207 * Used for querying the FDB. Use record_locator=0 to initiate the 208 * query. When a record is returned, a new record_locator is 209 * returned to be used in the subsequent query. 210 * Reserved for database update. 211 * Access: Index 212 */ 213 MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30); 214 215 /* reg_sfd_num_rec 216 * Request: Number of records to read/add/modify/remove 217 * Response: Number of records read/added/replaced/removed 218 * See above description for more details. 219 * Ranges 0..64 220 * Access: RW 221 */ 222 MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8); 223 224 static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op, 225 u32 record_locator) 226 { 227 MLXSW_REG_ZERO(sfd, payload); 228 mlxsw_reg_sfd_op_set(payload, op); 229 mlxsw_reg_sfd_record_locator_set(payload, record_locator); 230 } 231 232 /* reg_sfd_rec_swid 233 * Switch partition ID. 234 * Access: Index 235 */ 236 MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8, 237 MLXSW_REG_SFD_REC_LEN, 0x00, false); 238 239 enum mlxsw_reg_sfd_rec_type { 240 MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0, 241 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1, 242 MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2, 243 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC, 244 }; 245 246 /* reg_sfd_rec_type 247 * FDB record type. 248 * Access: RW 249 */ 250 MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4, 251 MLXSW_REG_SFD_REC_LEN, 0x00, false); 252 253 enum mlxsw_reg_sfd_rec_policy { 254 /* Replacement disabled, aging disabled. */ 255 MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0, 256 /* (mlag remote): Replacement enabled, aging disabled, 257 * learning notification enabled on this port. 258 */ 259 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1, 260 /* (ingress device): Replacement enabled, aging enabled. */ 261 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3, 262 }; 263 264 /* reg_sfd_rec_policy 265 * Policy. 266 * Access: RW 267 */ 268 MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2, 269 MLXSW_REG_SFD_REC_LEN, 0x00, false); 270 271 /* reg_sfd_rec_a 272 * Activity. Set for new static entries. Set for static entries if a frame SMAC 273 * lookup hits on the entry. 274 * To clear the a bit, use "query and clear activity" op. 275 * Access: RO 276 */ 277 MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1, 278 MLXSW_REG_SFD_REC_LEN, 0x00, false); 279 280 /* reg_sfd_rec_mac 281 * MAC address. 282 * Access: Index 283 */ 284 MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6, 285 MLXSW_REG_SFD_REC_LEN, 0x02); 286 287 enum mlxsw_reg_sfd_rec_action { 288 /* forward */ 289 MLXSW_REG_SFD_REC_ACTION_NOP = 0, 290 /* forward and trap, trap_id is FDB_TRAP */ 291 MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1, 292 /* trap and do not forward, trap_id is FDB_TRAP */ 293 MLXSW_REG_SFD_REC_ACTION_TRAP = 2, 294 /* forward to IP router */ 295 MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3, 296 MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15, 297 }; 298 299 /* reg_sfd_rec_action 300 * Action to apply on the packet. 301 * Note: Dynamic entries can only be configured with NOP action. 302 * Access: RW 303 */ 304 MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4, 305 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 306 307 /* reg_sfd_uc_sub_port 308 * VEPA channel on local port. 309 * Valid only if local port is a non-stacking port. Must be 0 if multichannel 310 * VEPA is not enabled. 311 * Access: RW 312 */ 313 MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, 314 MLXSW_REG_SFD_REC_LEN, 0x08, false); 315 316 /* reg_sfd_uc_set_vid 317 * Set VID. 318 * 0 - Do not update VID. 319 * 1 - Set VID. 320 * For Spectrum-2 when set_vid=0 and smpe_valid=1, the smpe will modify the vid. 321 * Access: RW 322 * 323 * Note: Reserved when legacy bridge model is used. 324 */ 325 MLXSW_ITEM32_INDEXED(reg, sfd, uc_set_vid, MLXSW_REG_SFD_BASE_LEN, 31, 1, 326 MLXSW_REG_SFD_REC_LEN, 0x08, false); 327 328 /* reg_sfd_uc_fid_vid 329 * Filtering ID or VLAN ID 330 * For SwitchX and SwitchX-2: 331 * - Dynamic entries (policy 2,3) use FID 332 * - Static entries (policy 0) use VID 333 * - When independent learning is configured, VID=FID 334 * For Spectrum: use FID for both Dynamic and Static entries. 335 * VID should not be used. 336 * Access: Index 337 */ 338 MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 339 MLXSW_REG_SFD_REC_LEN, 0x08, false); 340 341 /* reg_sfd_uc_vid 342 * New VID when set_vid=1. 343 * Access: RW 344 * 345 * Note: Reserved when legacy bridge model is used and when set_vid=0. 346 */ 347 MLXSW_ITEM32_INDEXED(reg, sfd, uc_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12, 348 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 349 350 /* reg_sfd_uc_system_port 351 * Unique port identifier for the final destination of the packet. 352 * Access: RW 353 */ 354 MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16, 355 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 356 357 static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index, 358 enum mlxsw_reg_sfd_rec_type rec_type, 359 const char *mac, 360 enum mlxsw_reg_sfd_rec_action action) 361 { 362 u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload); 363 364 if (rec_index >= num_rec) 365 mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1); 366 mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0); 367 mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type); 368 mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac); 369 mlxsw_reg_sfd_rec_action_set(payload, rec_index, action); 370 } 371 372 static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index, 373 enum mlxsw_reg_sfd_rec_policy policy, 374 const char *mac, u16 fid_vid, u16 vid, 375 enum mlxsw_reg_sfd_rec_action action, 376 u16 local_port) 377 { 378 mlxsw_reg_sfd_rec_pack(payload, rec_index, 379 MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action); 380 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 381 mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0); 382 mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid); 383 mlxsw_reg_sfd_uc_set_vid_set(payload, rec_index, vid ? true : false); 384 mlxsw_reg_sfd_uc_vid_set(payload, rec_index, vid); 385 mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port); 386 } 387 388 /* reg_sfd_uc_lag_sub_port 389 * LAG sub port. 390 * Must be 0 if multichannel VEPA is not enabled. 391 * Access: RW 392 */ 393 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, 394 MLXSW_REG_SFD_REC_LEN, 0x08, false); 395 396 /* reg_sfd_uc_lag_set_vid 397 * Set VID. 398 * 0 - Do not update VID. 399 * 1 - Set VID. 400 * For Spectrum-2 when set_vid=0 and smpe_valid=1, the smpe will modify the vid. 401 * Access: RW 402 * 403 * Note: Reserved when legacy bridge model is used. 404 */ 405 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_set_vid, MLXSW_REG_SFD_BASE_LEN, 31, 1, 406 MLXSW_REG_SFD_REC_LEN, 0x08, false); 407 408 /* reg_sfd_uc_lag_fid_vid 409 * Filtering ID or VLAN ID 410 * For SwitchX and SwitchX-2: 411 * - Dynamic entries (policy 2,3) use FID 412 * - Static entries (policy 0) use VID 413 * - When independent learning is configured, VID=FID 414 * For Spectrum: use FID for both Dynamic and Static entries. 415 * VID should not be used. 416 * Access: Index 417 */ 418 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 419 MLXSW_REG_SFD_REC_LEN, 0x08, false); 420 421 /* reg_sfd_uc_lag_lag_vid 422 * New vlan ID. 423 * Access: RW 424 * 425 * Note: Reserved when legacy bridge model is used and set_vid=0. 426 */ 427 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12, 428 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 429 430 /* reg_sfd_uc_lag_lag_id 431 * LAG Identifier - pointer into the LAG descriptor table. 432 * Access: RW 433 */ 434 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10, 435 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 436 437 static inline void 438 mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index, 439 enum mlxsw_reg_sfd_rec_policy policy, 440 const char *mac, u16 fid_vid, 441 enum mlxsw_reg_sfd_rec_action action, u16 lag_vid, 442 u16 lag_id) 443 { 444 mlxsw_reg_sfd_rec_pack(payload, rec_index, 445 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG, 446 mac, action); 447 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 448 mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0); 449 mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid); 450 mlxsw_reg_sfd_uc_lag_set_vid_set(payload, rec_index, true); 451 mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid); 452 mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id); 453 } 454 455 /* reg_sfd_mc_pgi 456 * 457 * Multicast port group index - index into the port group table. 458 * Value 0x1FFF indicates the pgi should point to the MID entry. 459 * For Spectrum this value must be set to 0x1FFF 460 * Access: RW 461 */ 462 MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13, 463 MLXSW_REG_SFD_REC_LEN, 0x08, false); 464 465 /* reg_sfd_mc_fid_vid 466 * 467 * Filtering ID or VLAN ID 468 * Access: Index 469 */ 470 MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 471 MLXSW_REG_SFD_REC_LEN, 0x08, false); 472 473 /* reg_sfd_mc_mid 474 * 475 * Multicast identifier - global identifier that represents the multicast 476 * group across all devices. 477 * Access: RW 478 */ 479 MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 480 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 481 482 static inline void 483 mlxsw_reg_sfd_mc_pack(char *payload, int rec_index, 484 const char *mac, u16 fid_vid, 485 enum mlxsw_reg_sfd_rec_action action, u16 mid) 486 { 487 mlxsw_reg_sfd_rec_pack(payload, rec_index, 488 MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action); 489 mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF); 490 mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid); 491 mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid); 492 } 493 494 /* reg_sfd_uc_tunnel_uip_msb 495 * When protocol is IPv4, the most significant byte of the underlay IPv4 496 * destination IP. 497 * When protocol is IPv6, reserved. 498 * Access: RW 499 */ 500 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24, 501 8, MLXSW_REG_SFD_REC_LEN, 0x08, false); 502 503 /* reg_sfd_uc_tunnel_fid 504 * Filtering ID. 505 * Access: Index 506 */ 507 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 508 MLXSW_REG_SFD_REC_LEN, 0x08, false); 509 510 enum mlxsw_reg_sfd_uc_tunnel_protocol { 511 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4, 512 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6, 513 }; 514 515 /* reg_sfd_uc_tunnel_protocol 516 * IP protocol. 517 * Access: RW 518 */ 519 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27, 520 1, MLXSW_REG_SFD_REC_LEN, 0x0C, false); 521 522 /* reg_sfd_uc_tunnel_uip_lsb 523 * When protocol is IPv4, the least significant bytes of the underlay 524 * IPv4 destination IP. 525 * When protocol is IPv6, pointer to the underlay IPv6 destination IP 526 * which is configured by RIPS. 527 * Access: RW 528 */ 529 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0, 530 24, MLXSW_REG_SFD_REC_LEN, 0x0C, false); 531 532 static inline void 533 mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index, 534 enum mlxsw_reg_sfd_rec_policy policy, 535 const char *mac, u16 fid, 536 enum mlxsw_reg_sfd_rec_action action, 537 enum mlxsw_reg_sfd_uc_tunnel_protocol proto) 538 { 539 mlxsw_reg_sfd_rec_pack(payload, rec_index, 540 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac, 541 action); 542 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 543 mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid); 544 mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto); 545 } 546 547 static inline void 548 mlxsw_reg_sfd_uc_tunnel_pack4(char *payload, int rec_index, 549 enum mlxsw_reg_sfd_rec_policy policy, 550 const char *mac, u16 fid, 551 enum mlxsw_reg_sfd_rec_action action, u32 uip) 552 { 553 mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24); 554 mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip); 555 mlxsw_reg_sfd_uc_tunnel_pack(payload, rec_index, policy, mac, fid, 556 action, 557 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4); 558 } 559 560 static inline void 561 mlxsw_reg_sfd_uc_tunnel_pack6(char *payload, int rec_index, const char *mac, 562 u16 fid, enum mlxsw_reg_sfd_rec_action action, 563 u32 uip_ptr) 564 { 565 mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip_ptr); 566 /* Only static policy is supported for IPv6 unicast tunnel entry. */ 567 mlxsw_reg_sfd_uc_tunnel_pack(payload, rec_index, 568 MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY, 569 mac, fid, action, 570 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6); 571 } 572 573 enum mlxsw_reg_tunnel_port { 574 MLXSW_REG_TUNNEL_PORT_NVE, 575 MLXSW_REG_TUNNEL_PORT_VPLS, 576 MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL0, 577 MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL1, 578 }; 579 580 /* SFN - Switch FDB Notification Register 581 * ------------------------------------------- 582 * The switch provides notifications on newly learned FDB entries and 583 * aged out entries. The notifications can be polled by software. 584 */ 585 #define MLXSW_REG_SFN_ID 0x200B 586 #define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */ 587 #define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */ 588 #define MLXSW_REG_SFN_REC_MAX_COUNT 64 589 #define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \ 590 MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT) 591 592 MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN); 593 594 /* reg_sfn_swid 595 * Switch partition ID. 596 * Access: Index 597 */ 598 MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8); 599 600 /* reg_sfn_end 601 * Forces the current session to end. 602 * Access: OP 603 */ 604 MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1); 605 606 /* reg_sfn_num_rec 607 * Request: Number of learned notifications and aged-out notification 608 * records requested. 609 * Response: Number of notification records returned (must be smaller 610 * than or equal to the value requested) 611 * Ranges 0..64 612 * Access: OP 613 */ 614 MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8); 615 616 static inline void mlxsw_reg_sfn_pack(char *payload) 617 { 618 MLXSW_REG_ZERO(sfn, payload); 619 mlxsw_reg_sfn_swid_set(payload, 0); 620 mlxsw_reg_sfn_end_set(payload, 0); 621 mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT); 622 } 623 624 /* reg_sfn_rec_swid 625 * Switch partition ID. 626 * Access: RO 627 */ 628 MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8, 629 MLXSW_REG_SFN_REC_LEN, 0x00, false); 630 631 enum mlxsw_reg_sfn_rec_type { 632 /* MAC addresses learned on a regular port. */ 633 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5, 634 /* MAC addresses learned on a LAG port. */ 635 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6, 636 /* Aged-out MAC address on a regular port. */ 637 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7, 638 /* Aged-out MAC address on a LAG port. */ 639 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8, 640 /* Learned unicast tunnel record. */ 641 MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD, 642 /* Aged-out unicast tunnel record. */ 643 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE, 644 }; 645 646 /* reg_sfn_rec_type 647 * Notification record type. 648 * Access: RO 649 */ 650 MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4, 651 MLXSW_REG_SFN_REC_LEN, 0x00, false); 652 653 /* reg_sfn_rec_mac 654 * MAC address. 655 * Access: RO 656 */ 657 MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6, 658 MLXSW_REG_SFN_REC_LEN, 0x02); 659 660 /* reg_sfn_mac_sub_port 661 * VEPA channel on the local port. 662 * 0 if multichannel VEPA is not enabled. 663 * Access: RO 664 */ 665 MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8, 666 MLXSW_REG_SFN_REC_LEN, 0x08, false); 667 668 /* reg_sfn_mac_fid 669 * Filtering identifier. 670 * Access: RO 671 */ 672 MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16, 673 MLXSW_REG_SFN_REC_LEN, 0x08, false); 674 675 /* reg_sfn_mac_system_port 676 * Unique port identifier for the final destination of the packet. 677 * Access: RO 678 */ 679 MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16, 680 MLXSW_REG_SFN_REC_LEN, 0x0C, false); 681 682 static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index, 683 char *mac, u16 *p_vid, 684 u16 *p_local_port) 685 { 686 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 687 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 688 *p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index); 689 } 690 691 /* reg_sfn_mac_lag_lag_id 692 * LAG ID (pointer into the LAG descriptor table). 693 * Access: RO 694 */ 695 MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10, 696 MLXSW_REG_SFN_REC_LEN, 0x0C, false); 697 698 static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index, 699 char *mac, u16 *p_vid, 700 u16 *p_lag_id) 701 { 702 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 703 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 704 *p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index); 705 } 706 707 /* reg_sfn_uc_tunnel_uip_msb 708 * When protocol is IPv4, the most significant byte of the underlay IPv4 709 * address of the remote VTEP. 710 * When protocol is IPv6, reserved. 711 * Access: RO 712 */ 713 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24, 714 8, MLXSW_REG_SFN_REC_LEN, 0x08, false); 715 716 enum mlxsw_reg_sfn_uc_tunnel_protocol { 717 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4, 718 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6, 719 }; 720 721 /* reg_sfn_uc_tunnel_protocol 722 * IP protocol. 723 * Access: RO 724 */ 725 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27, 726 1, MLXSW_REG_SFN_REC_LEN, 0x0C, false); 727 728 /* reg_sfn_uc_tunnel_uip_lsb 729 * When protocol is IPv4, the least significant bytes of the underlay 730 * IPv4 address of the remote VTEP. 731 * When protocol is IPv6, ipv6_id to be queried from TNIPSD. 732 * Access: RO 733 */ 734 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0, 735 24, MLXSW_REG_SFN_REC_LEN, 0x0C, false); 736 737 /* reg_sfn_uc_tunnel_port 738 * Tunnel port. 739 * Reserved on Spectrum. 740 * Access: RO 741 */ 742 MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4, 743 MLXSW_REG_SFN_REC_LEN, 0x10, false); 744 745 static inline void 746 mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac, 747 u16 *p_fid, u32 *p_uip, 748 enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto) 749 { 750 u32 uip_msb, uip_lsb; 751 752 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 753 *p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 754 uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index); 755 uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index); 756 *p_uip = uip_msb << 24 | uip_lsb; 757 *p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index); 758 } 759 760 /* SPMS - Switch Port MSTP/RSTP State Register 761 * ------------------------------------------- 762 * Configures the spanning tree state of a physical port. 763 */ 764 #define MLXSW_REG_SPMS_ID 0x200D 765 #define MLXSW_REG_SPMS_LEN 0x404 766 767 MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN); 768 769 /* reg_spms_local_port 770 * Local port number. 771 * Access: Index 772 */ 773 MLXSW_ITEM32_LP(reg, spms, 0x00, 16, 0x00, 12); 774 775 enum mlxsw_reg_spms_state { 776 MLXSW_REG_SPMS_STATE_NO_CHANGE, 777 MLXSW_REG_SPMS_STATE_DISCARDING, 778 MLXSW_REG_SPMS_STATE_LEARNING, 779 MLXSW_REG_SPMS_STATE_FORWARDING, 780 }; 781 782 /* reg_spms_state 783 * Spanning tree state of each VLAN ID (VID) of the local port. 784 * 0 - Do not change spanning tree state (used only when writing). 785 * 1 - Discarding. No learning or forwarding to/from this port (default). 786 * 2 - Learning. Port is learning, but not forwarding. 787 * 3 - Forwarding. Port is learning and forwarding. 788 * Access: RW 789 */ 790 MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2); 791 792 static inline void mlxsw_reg_spms_pack(char *payload, u16 local_port) 793 { 794 MLXSW_REG_ZERO(spms, payload); 795 mlxsw_reg_spms_local_port_set(payload, local_port); 796 } 797 798 static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid, 799 enum mlxsw_reg_spms_state state) 800 { 801 mlxsw_reg_spms_state_set(payload, vid, state); 802 } 803 804 /* SPVID - Switch Port VID 805 * ----------------------- 806 * The switch port VID configures the default VID for a port. 807 */ 808 #define MLXSW_REG_SPVID_ID 0x200E 809 #define MLXSW_REG_SPVID_LEN 0x08 810 811 MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN); 812 813 /* reg_spvid_tport 814 * Port is tunnel port. 815 * Reserved when SwitchX/-2 or Spectrum-1. 816 * Access: Index 817 */ 818 MLXSW_ITEM32(reg, spvid, tport, 0x00, 24, 1); 819 820 /* reg_spvid_local_port 821 * When tport = 0: Local port number. Not supported for CPU port. 822 * When tport = 1: Tunnel port. 823 * Access: Index 824 */ 825 MLXSW_ITEM32_LP(reg, spvid, 0x00, 16, 0x00, 12); 826 827 /* reg_spvid_sub_port 828 * Virtual port within the physical port. 829 * Should be set to 0 when virtual ports are not enabled on the port. 830 * Access: Index 831 */ 832 MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8); 833 834 /* reg_spvid_egr_et_set 835 * When VLAN is pushed at ingress (for untagged packets or for 836 * QinQ push mode) then the EtherType is decided at the egress port. 837 * Reserved when Spectrum-1. 838 * Access: RW 839 */ 840 MLXSW_ITEM32(reg, spvid, egr_et_set, 0x04, 24, 1); 841 842 /* reg_spvid_et_vlan 843 * EtherType used for when VLAN is pushed at ingress (for untagged 844 * packets or for QinQ push mode). 845 * 0: ether_type0 - (default) 846 * 1: ether_type1 847 * 2: ether_type2 - Reserved when Spectrum-1, supported by Spectrum-2 848 * Ethertype IDs are configured by SVER. 849 * Reserved when egr_et_set = 1. 850 * Access: RW 851 */ 852 MLXSW_ITEM32(reg, spvid, et_vlan, 0x04, 16, 2); 853 854 /* reg_spvid_pvid 855 * Port default VID 856 * Access: RW 857 */ 858 MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12); 859 860 static inline void mlxsw_reg_spvid_pack(char *payload, u16 local_port, u16 pvid, 861 u8 et_vlan) 862 { 863 MLXSW_REG_ZERO(spvid, payload); 864 mlxsw_reg_spvid_local_port_set(payload, local_port); 865 mlxsw_reg_spvid_pvid_set(payload, pvid); 866 mlxsw_reg_spvid_et_vlan_set(payload, et_vlan); 867 } 868 869 /* SPVM - Switch Port VLAN Membership 870 * ---------------------------------- 871 * The Switch Port VLAN Membership register configures the VLAN membership 872 * of a port in a VLAN denoted by VID. VLAN membership is managed per 873 * virtual port. The register can be used to add and remove VID(s) from a port. 874 */ 875 #define MLXSW_REG_SPVM_ID 0x200F 876 #define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */ 877 #define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */ 878 #define MLXSW_REG_SPVM_REC_MAX_COUNT 255 879 #define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \ 880 MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT) 881 882 MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN); 883 884 /* reg_spvm_pt 885 * Priority tagged. If this bit is set, packets forwarded to the port with 886 * untagged VLAN membership (u bit is set) will be tagged with priority tag 887 * (VID=0) 888 * Access: RW 889 */ 890 MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1); 891 892 /* reg_spvm_pte 893 * Priority Tagged Update Enable. On Write operations, if this bit is cleared, 894 * the pt bit will NOT be updated. To update the pt bit, pte must be set. 895 * Access: WO 896 */ 897 MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1); 898 899 /* reg_spvm_local_port 900 * Local port number. 901 * Access: Index 902 */ 903 MLXSW_ITEM32_LP(reg, spvm, 0x00, 16, 0x00, 12); 904 905 /* reg_spvm_sub_port 906 * Virtual port within the physical port. 907 * Should be set to 0 when virtual ports are not enabled on the port. 908 * Access: Index 909 */ 910 MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8); 911 912 /* reg_spvm_num_rec 913 * Number of records to update. Each record contains: i, e, u, vid. 914 * Access: OP 915 */ 916 MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8); 917 918 /* reg_spvm_rec_i 919 * Ingress membership in VLAN ID. 920 * Access: Index 921 */ 922 MLXSW_ITEM32_INDEXED(reg, spvm, rec_i, 923 MLXSW_REG_SPVM_BASE_LEN, 14, 1, 924 MLXSW_REG_SPVM_REC_LEN, 0, false); 925 926 /* reg_spvm_rec_e 927 * Egress membership in VLAN ID. 928 * Access: Index 929 */ 930 MLXSW_ITEM32_INDEXED(reg, spvm, rec_e, 931 MLXSW_REG_SPVM_BASE_LEN, 13, 1, 932 MLXSW_REG_SPVM_REC_LEN, 0, false); 933 934 /* reg_spvm_rec_u 935 * Untagged - port is an untagged member - egress transmission uses untagged 936 * frames on VID<n> 937 * Access: Index 938 */ 939 MLXSW_ITEM32_INDEXED(reg, spvm, rec_u, 940 MLXSW_REG_SPVM_BASE_LEN, 12, 1, 941 MLXSW_REG_SPVM_REC_LEN, 0, false); 942 943 /* reg_spvm_rec_vid 944 * Egress membership in VLAN ID. 945 * Access: Index 946 */ 947 MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid, 948 MLXSW_REG_SPVM_BASE_LEN, 0, 12, 949 MLXSW_REG_SPVM_REC_LEN, 0, false); 950 951 static inline void mlxsw_reg_spvm_pack(char *payload, u16 local_port, 952 u16 vid_begin, u16 vid_end, 953 bool is_member, bool untagged) 954 { 955 int size = vid_end - vid_begin + 1; 956 int i; 957 958 MLXSW_REG_ZERO(spvm, payload); 959 mlxsw_reg_spvm_local_port_set(payload, local_port); 960 mlxsw_reg_spvm_num_rec_set(payload, size); 961 962 for (i = 0; i < size; i++) { 963 mlxsw_reg_spvm_rec_i_set(payload, i, is_member); 964 mlxsw_reg_spvm_rec_e_set(payload, i, is_member); 965 mlxsw_reg_spvm_rec_u_set(payload, i, untagged); 966 mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i); 967 } 968 } 969 970 /* SPAFT - Switch Port Acceptable Frame Types 971 * ------------------------------------------ 972 * The Switch Port Acceptable Frame Types register configures the frame 973 * admittance of the port. 974 */ 975 #define MLXSW_REG_SPAFT_ID 0x2010 976 #define MLXSW_REG_SPAFT_LEN 0x08 977 978 MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN); 979 980 /* reg_spaft_local_port 981 * Local port number. 982 * Access: Index 983 * 984 * Note: CPU port is not supported (all tag types are allowed). 985 */ 986 MLXSW_ITEM32_LP(reg, spaft, 0x00, 16, 0x00, 12); 987 988 /* reg_spaft_sub_port 989 * Virtual port within the physical port. 990 * Should be set to 0 when virtual ports are not enabled on the port. 991 * Access: RW 992 */ 993 MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8); 994 995 /* reg_spaft_allow_untagged 996 * When set, untagged frames on the ingress are allowed (default). 997 * Access: RW 998 */ 999 MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1); 1000 1001 /* reg_spaft_allow_prio_tagged 1002 * When set, priority tagged frames on the ingress are allowed (default). 1003 * Access: RW 1004 */ 1005 MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1); 1006 1007 /* reg_spaft_allow_tagged 1008 * When set, tagged frames on the ingress are allowed (default). 1009 * Access: RW 1010 */ 1011 MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1); 1012 1013 static inline void mlxsw_reg_spaft_pack(char *payload, u16 local_port, 1014 bool allow_untagged) 1015 { 1016 MLXSW_REG_ZERO(spaft, payload); 1017 mlxsw_reg_spaft_local_port_set(payload, local_port); 1018 mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged); 1019 mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged); 1020 mlxsw_reg_spaft_allow_tagged_set(payload, true); 1021 } 1022 1023 /* SFGC - Switch Flooding Group Configuration 1024 * ------------------------------------------ 1025 * The following register controls the association of flooding tables and MIDs 1026 * to packet types used for flooding. 1027 * 1028 * Reserved when CONFIG_PROFILE.flood_mode = CFF. 1029 */ 1030 #define MLXSW_REG_SFGC_ID 0x2011 1031 #define MLXSW_REG_SFGC_LEN 0x14 1032 1033 MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN); 1034 1035 enum mlxsw_reg_sfgc_type { 1036 MLXSW_REG_SFGC_TYPE_BROADCAST, 1037 MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST, 1038 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4, 1039 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6, 1040 MLXSW_REG_SFGC_TYPE_RESERVED, 1041 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP, 1042 MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL, 1043 MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST, 1044 MLXSW_REG_SFGC_TYPE_MAX, 1045 }; 1046 1047 /* reg_sfgc_type 1048 * The traffic type to reach the flooding table. 1049 * Access: Index 1050 */ 1051 MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4); 1052 1053 /* bridge_type is used in SFGC and SFMR. */ 1054 enum mlxsw_reg_bridge_type { 1055 MLXSW_REG_BRIDGE_TYPE_0 = 0, /* Used for .1q FIDs. */ 1056 MLXSW_REG_BRIDGE_TYPE_1 = 1, /* Used for .1d FIDs. */ 1057 }; 1058 1059 /* reg_sfgc_bridge_type 1060 * Access: Index 1061 * 1062 * Note: SwitchX-2 only supports 802.1Q mode. 1063 */ 1064 MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3); 1065 1066 enum mlxsw_flood_table_type { 1067 MLXSW_REG_SFGC_TABLE_TYPE_VID = 1, 1068 MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2, 1069 MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0, 1070 MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3, 1071 MLXSW_REG_SFGC_TABLE_TYPE_FID = 4, 1072 }; 1073 1074 /* reg_sfgc_table_type 1075 * See mlxsw_flood_table_type 1076 * Access: RW 1077 * 1078 * Note: FID offset and FID types are not supported in SwitchX-2. 1079 */ 1080 MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3); 1081 1082 /* reg_sfgc_flood_table 1083 * Flooding table index to associate with the specific type on the specific 1084 * switch partition. 1085 * Access: RW 1086 */ 1087 MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6); 1088 1089 /* reg_sfgc_counter_set_type 1090 * Counter Set Type for flow counters. 1091 * Access: RW 1092 */ 1093 MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8); 1094 1095 /* reg_sfgc_counter_index 1096 * Counter Index for flow counters. 1097 * Access: RW 1098 */ 1099 MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24); 1100 1101 /* reg_sfgc_mid_base 1102 * MID Base. 1103 * Access: RW 1104 * 1105 * Note: Reserved when legacy bridge model is used. 1106 */ 1107 MLXSW_ITEM32(reg, sfgc, mid_base, 0x10, 0, 16); 1108 1109 static inline void 1110 mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type, 1111 enum mlxsw_reg_bridge_type bridge_type, 1112 enum mlxsw_flood_table_type table_type, 1113 unsigned int flood_table, u16 mid_base) 1114 { 1115 MLXSW_REG_ZERO(sfgc, payload); 1116 mlxsw_reg_sfgc_type_set(payload, type); 1117 mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type); 1118 mlxsw_reg_sfgc_table_type_set(payload, table_type); 1119 mlxsw_reg_sfgc_flood_table_set(payload, flood_table); 1120 mlxsw_reg_sfgc_mid_base_set(payload, mid_base); 1121 } 1122 1123 /* SFDF - Switch Filtering DB Flush 1124 * -------------------------------- 1125 * The switch filtering DB flush register is used to flush the FDB. 1126 * Note that FDB notifications are flushed as well. 1127 */ 1128 #define MLXSW_REG_SFDF_ID 0x2013 1129 #define MLXSW_REG_SFDF_LEN 0x14 1130 1131 MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN); 1132 1133 /* reg_sfdf_swid 1134 * Switch partition ID. 1135 * Access: Index 1136 */ 1137 MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8); 1138 1139 enum mlxsw_reg_sfdf_flush_type { 1140 MLXSW_REG_SFDF_FLUSH_PER_SWID, 1141 MLXSW_REG_SFDF_FLUSH_PER_FID, 1142 MLXSW_REG_SFDF_FLUSH_PER_PORT, 1143 MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID, 1144 MLXSW_REG_SFDF_FLUSH_PER_LAG, 1145 MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID, 1146 MLXSW_REG_SFDF_FLUSH_PER_NVE, 1147 MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID, 1148 }; 1149 1150 /* reg_sfdf_flush_type 1151 * Flush type. 1152 * 0 - All SWID dynamic entries are flushed. 1153 * 1 - All FID dynamic entries are flushed. 1154 * 2 - All dynamic entries pointing to port are flushed. 1155 * 3 - All FID dynamic entries pointing to port are flushed. 1156 * 4 - All dynamic entries pointing to LAG are flushed. 1157 * 5 - All FID dynamic entries pointing to LAG are flushed. 1158 * 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are 1159 * flushed. 1160 * 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are 1161 * flushed, per FID. 1162 * Access: RW 1163 */ 1164 MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4); 1165 1166 /* reg_sfdf_flush_static 1167 * Static. 1168 * 0 - Flush only dynamic entries. 1169 * 1 - Flush both dynamic and static entries. 1170 * Access: RW 1171 */ 1172 MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1); 1173 1174 static inline void mlxsw_reg_sfdf_pack(char *payload, 1175 enum mlxsw_reg_sfdf_flush_type type) 1176 { 1177 MLXSW_REG_ZERO(sfdf, payload); 1178 mlxsw_reg_sfdf_flush_type_set(payload, type); 1179 mlxsw_reg_sfdf_flush_static_set(payload, true); 1180 } 1181 1182 /* reg_sfdf_fid 1183 * FID to flush. 1184 * Access: RW 1185 */ 1186 MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16); 1187 1188 /* reg_sfdf_system_port 1189 * Port to flush. 1190 * Access: RW 1191 */ 1192 MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16); 1193 1194 /* reg_sfdf_port_fid_system_port 1195 * Port to flush, pointed to by FID. 1196 * Access: RW 1197 */ 1198 MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16); 1199 1200 /* reg_sfdf_lag_id 1201 * LAG ID to flush. 1202 * Access: RW 1203 */ 1204 MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10); 1205 1206 /* reg_sfdf_lag_fid_lag_id 1207 * LAG ID to flush, pointed to by FID. 1208 * Access: RW 1209 */ 1210 MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10); 1211 1212 /* SLDR - Switch LAG Descriptor Register 1213 * ----------------------------------------- 1214 * The switch LAG descriptor register is populated by LAG descriptors. 1215 * Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to 1216 * max_lag-1. 1217 */ 1218 #define MLXSW_REG_SLDR_ID 0x2014 1219 #define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */ 1220 1221 MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN); 1222 1223 enum mlxsw_reg_sldr_op { 1224 /* Indicates a creation of a new LAG-ID, lag_id must be valid */ 1225 MLXSW_REG_SLDR_OP_LAG_CREATE, 1226 MLXSW_REG_SLDR_OP_LAG_DESTROY, 1227 /* Ports that appear in the list have the Distributor enabled */ 1228 MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST, 1229 /* Removes ports from the disributor list */ 1230 MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST, 1231 }; 1232 1233 /* reg_sldr_op 1234 * Operation. 1235 * Access: RW 1236 */ 1237 MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3); 1238 1239 /* reg_sldr_lag_id 1240 * LAG identifier. The lag_id is the index into the LAG descriptor table. 1241 * Access: Index 1242 */ 1243 MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10); 1244 1245 static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id) 1246 { 1247 MLXSW_REG_ZERO(sldr, payload); 1248 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE); 1249 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1250 } 1251 1252 static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id) 1253 { 1254 MLXSW_REG_ZERO(sldr, payload); 1255 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY); 1256 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1257 } 1258 1259 /* reg_sldr_num_ports 1260 * The number of member ports of the LAG. 1261 * Reserved for Create / Destroy operations 1262 * For Add / Remove operations - indicates the number of ports in the list. 1263 * Access: RW 1264 */ 1265 MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8); 1266 1267 /* reg_sldr_system_port 1268 * System port. 1269 * Access: RW 1270 */ 1271 MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false); 1272 1273 static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id, 1274 u16 local_port) 1275 { 1276 MLXSW_REG_ZERO(sldr, payload); 1277 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST); 1278 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1279 mlxsw_reg_sldr_num_ports_set(payload, 1); 1280 mlxsw_reg_sldr_system_port_set(payload, 0, local_port); 1281 } 1282 1283 static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id, 1284 u16 local_port) 1285 { 1286 MLXSW_REG_ZERO(sldr, payload); 1287 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST); 1288 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1289 mlxsw_reg_sldr_num_ports_set(payload, 1); 1290 mlxsw_reg_sldr_system_port_set(payload, 0, local_port); 1291 } 1292 1293 /* SLCR - Switch LAG Configuration 2 Register 1294 * ------------------------------------------- 1295 * The Switch LAG Configuration register is used for configuring the 1296 * LAG properties of the switch. 1297 */ 1298 #define MLXSW_REG_SLCR_ID 0x2015 1299 #define MLXSW_REG_SLCR_LEN 0x10 1300 1301 MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN); 1302 1303 enum mlxsw_reg_slcr_pp { 1304 /* Global Configuration (for all ports) */ 1305 MLXSW_REG_SLCR_PP_GLOBAL, 1306 /* Per port configuration, based on local_port field */ 1307 MLXSW_REG_SLCR_PP_PER_PORT, 1308 }; 1309 1310 /* reg_slcr_pp 1311 * Per Port Configuration 1312 * Note: Reading at Global mode results in reading port 1 configuration. 1313 * Access: Index 1314 */ 1315 MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1); 1316 1317 /* reg_slcr_local_port 1318 * Local port number 1319 * Supported from CPU port 1320 * Not supported from router port 1321 * Reserved when pp = Global Configuration 1322 * Access: Index 1323 */ 1324 MLXSW_ITEM32_LP(reg, slcr, 0x00, 16, 0x00, 12); 1325 1326 enum mlxsw_reg_slcr_type { 1327 MLXSW_REG_SLCR_TYPE_CRC, /* default */ 1328 MLXSW_REG_SLCR_TYPE_XOR, 1329 MLXSW_REG_SLCR_TYPE_RANDOM, 1330 }; 1331 1332 /* reg_slcr_type 1333 * Hash type 1334 * Access: RW 1335 */ 1336 MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4); 1337 1338 /* Ingress port */ 1339 #define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0) 1340 /* SMAC - for IPv4 and IPv6 packets */ 1341 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1) 1342 /* SMAC - for non-IP packets */ 1343 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2) 1344 #define MLXSW_REG_SLCR_LAG_HASH_SMAC \ 1345 (MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \ 1346 MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP) 1347 /* DMAC - for IPv4 and IPv6 packets */ 1348 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3) 1349 /* DMAC - for non-IP packets */ 1350 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4) 1351 #define MLXSW_REG_SLCR_LAG_HASH_DMAC \ 1352 (MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \ 1353 MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP) 1354 /* Ethertype - for IPv4 and IPv6 packets */ 1355 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5) 1356 /* Ethertype - for non-IP packets */ 1357 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6) 1358 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \ 1359 (MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \ 1360 MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP) 1361 /* VLAN ID - for IPv4 and IPv6 packets */ 1362 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7) 1363 /* VLAN ID - for non-IP packets */ 1364 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8) 1365 #define MLXSW_REG_SLCR_LAG_HASH_VLANID \ 1366 (MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \ 1367 MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP) 1368 /* Source IP address (can be IPv4 or IPv6) */ 1369 #define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9) 1370 /* Destination IP address (can be IPv4 or IPv6) */ 1371 #define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10) 1372 /* TCP/UDP source port */ 1373 #define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11) 1374 /* TCP/UDP destination port*/ 1375 #define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12) 1376 /* IPv4 Protocol/IPv6 Next Header */ 1377 #define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13) 1378 /* IPv6 Flow label */ 1379 #define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14) 1380 /* SID - FCoE source ID */ 1381 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15) 1382 /* DID - FCoE destination ID */ 1383 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16) 1384 /* OXID - FCoE originator exchange ID */ 1385 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17) 1386 /* Destination QP number - for RoCE packets */ 1387 #define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19) 1388 1389 /* reg_slcr_lag_hash 1390 * LAG hashing configuration. This is a bitmask, in which each set 1391 * bit includes the corresponding item in the LAG hash calculation. 1392 * The default lag_hash contains SMAC, DMAC, VLANID and 1393 * Ethertype (for all packet types). 1394 * Access: RW 1395 */ 1396 MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20); 1397 1398 /* reg_slcr_seed 1399 * LAG seed value. The seed is the same for all ports. 1400 * Access: RW 1401 */ 1402 MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32); 1403 1404 static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed) 1405 { 1406 MLXSW_REG_ZERO(slcr, payload); 1407 mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL); 1408 mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC); 1409 mlxsw_reg_slcr_lag_hash_set(payload, lag_hash); 1410 mlxsw_reg_slcr_seed_set(payload, seed); 1411 } 1412 1413 /* SLCOR - Switch LAG Collector Register 1414 * ------------------------------------- 1415 * The Switch LAG Collector register controls the Local Port membership 1416 * in a LAG and enablement of the collector. 1417 */ 1418 #define MLXSW_REG_SLCOR_ID 0x2016 1419 #define MLXSW_REG_SLCOR_LEN 0x10 1420 1421 MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN); 1422 1423 enum mlxsw_reg_slcor_col { 1424 /* Port is added with collector disabled */ 1425 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT, 1426 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED, 1427 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED, 1428 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT, 1429 }; 1430 1431 /* reg_slcor_col 1432 * Collector configuration 1433 * Access: RW 1434 */ 1435 MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2); 1436 1437 /* reg_slcor_local_port 1438 * Local port number 1439 * Not supported for CPU port 1440 * Access: Index 1441 */ 1442 MLXSW_ITEM32_LP(reg, slcor, 0x00, 16, 0x00, 12); 1443 1444 /* reg_slcor_lag_id 1445 * LAG Identifier. Index into the LAG descriptor table. 1446 * Access: Index 1447 */ 1448 MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10); 1449 1450 /* reg_slcor_port_index 1451 * Port index in the LAG list. Only valid on Add Port to LAG col. 1452 * Valid range is from 0 to cap_max_lag_members-1 1453 * Access: RW 1454 */ 1455 MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10); 1456 1457 static inline void mlxsw_reg_slcor_pack(char *payload, 1458 u16 local_port, u16 lag_id, 1459 enum mlxsw_reg_slcor_col col) 1460 { 1461 MLXSW_REG_ZERO(slcor, payload); 1462 mlxsw_reg_slcor_col_set(payload, col); 1463 mlxsw_reg_slcor_local_port_set(payload, local_port); 1464 mlxsw_reg_slcor_lag_id_set(payload, lag_id); 1465 } 1466 1467 static inline void mlxsw_reg_slcor_port_add_pack(char *payload, 1468 u16 local_port, u16 lag_id, 1469 u8 port_index) 1470 { 1471 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1472 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT); 1473 mlxsw_reg_slcor_port_index_set(payload, port_index); 1474 } 1475 1476 static inline void mlxsw_reg_slcor_port_remove_pack(char *payload, 1477 u16 local_port, u16 lag_id) 1478 { 1479 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1480 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT); 1481 } 1482 1483 static inline void mlxsw_reg_slcor_col_enable_pack(char *payload, 1484 u16 local_port, u16 lag_id) 1485 { 1486 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1487 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); 1488 } 1489 1490 static inline void mlxsw_reg_slcor_col_disable_pack(char *payload, 1491 u16 local_port, u16 lag_id) 1492 { 1493 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1494 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); 1495 } 1496 1497 /* SPMLR - Switch Port MAC Learning Register 1498 * ----------------------------------------- 1499 * Controls the Switch MAC learning policy per port. 1500 */ 1501 #define MLXSW_REG_SPMLR_ID 0x2018 1502 #define MLXSW_REG_SPMLR_LEN 0x8 1503 1504 MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN); 1505 1506 /* reg_spmlr_local_port 1507 * Local port number. 1508 * Access: Index 1509 */ 1510 MLXSW_ITEM32_LP(reg, spmlr, 0x00, 16, 0x00, 12); 1511 1512 /* reg_spmlr_sub_port 1513 * Virtual port within the physical port. 1514 * Should be set to 0 when virtual ports are not enabled on the port. 1515 * Access: Index 1516 */ 1517 MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8); 1518 1519 enum mlxsw_reg_spmlr_learn_mode { 1520 MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0, 1521 MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2, 1522 MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3, 1523 }; 1524 1525 /* reg_spmlr_learn_mode 1526 * Learning mode on the port. 1527 * 0 - Learning disabled. 1528 * 2 - Learning enabled. 1529 * 3 - Security mode. 1530 * 1531 * In security mode the switch does not learn MACs on the port, but uses the 1532 * SMAC to see if it exists on another ingress port. If so, the packet is 1533 * classified as a bad packet and is discarded unless the software registers 1534 * to receive port security error packets usign HPKT. 1535 */ 1536 MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2); 1537 1538 static inline void mlxsw_reg_spmlr_pack(char *payload, u16 local_port, 1539 enum mlxsw_reg_spmlr_learn_mode mode) 1540 { 1541 MLXSW_REG_ZERO(spmlr, payload); 1542 mlxsw_reg_spmlr_local_port_set(payload, local_port); 1543 mlxsw_reg_spmlr_sub_port_set(payload, 0); 1544 mlxsw_reg_spmlr_learn_mode_set(payload, mode); 1545 } 1546 1547 /* SVFA - Switch VID to FID Allocation Register 1548 * -------------------------------------------- 1549 * Controls the VID to FID mapping and {Port, VID} to FID mapping for 1550 * virtualized ports. 1551 */ 1552 #define MLXSW_REG_SVFA_ID 0x201C 1553 #define MLXSW_REG_SVFA_LEN 0x18 1554 1555 MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN); 1556 1557 /* reg_svfa_swid 1558 * Switch partition ID. 1559 * Access: Index 1560 */ 1561 MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8); 1562 1563 /* reg_svfa_local_port 1564 * Local port number. 1565 * Access: Index 1566 * 1567 * Note: Reserved for 802.1Q FIDs. 1568 */ 1569 MLXSW_ITEM32_LP(reg, svfa, 0x00, 16, 0x00, 12); 1570 1571 enum mlxsw_reg_svfa_mt { 1572 MLXSW_REG_SVFA_MT_VID_TO_FID, 1573 MLXSW_REG_SVFA_MT_PORT_VID_TO_FID, 1574 MLXSW_REG_SVFA_MT_VNI_TO_FID, 1575 }; 1576 1577 /* reg_svfa_mapping_table 1578 * Mapping table: 1579 * 0 - VID to FID 1580 * 1 - {Port, VID} to FID 1581 * Access: Index 1582 * 1583 * Note: Reserved for SwitchX-2. 1584 */ 1585 MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3); 1586 1587 /* reg_svfa_v 1588 * Valid. 1589 * Valid if set. 1590 * Access: RW 1591 * 1592 * Note: Reserved for SwitchX-2. 1593 */ 1594 MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1); 1595 1596 /* reg_svfa_fid 1597 * Filtering ID. 1598 * Access: RW 1599 */ 1600 MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16); 1601 1602 /* reg_svfa_vid 1603 * VLAN ID. 1604 * Access: Index 1605 */ 1606 MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12); 1607 1608 /* reg_svfa_counter_set_type 1609 * Counter set type for flow counters. 1610 * Access: RW 1611 * 1612 * Note: Reserved for SwitchX-2. 1613 */ 1614 MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8); 1615 1616 /* reg_svfa_counter_index 1617 * Counter index for flow counters. 1618 * Access: RW 1619 * 1620 * Note: Reserved for SwitchX-2. 1621 */ 1622 MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24); 1623 1624 /* reg_svfa_vni 1625 * Virtual Network Identifier. 1626 * Access: Index 1627 * 1628 * Note: Reserved when mapping_table is not 2 (VNI mapping table). 1629 */ 1630 MLXSW_ITEM32(reg, svfa, vni, 0x10, 0, 24); 1631 1632 /* reg_svfa_irif_v 1633 * Ingress RIF valid. 1634 * 0 - Ingress RIF is not valid, no ingress RIF assigned. 1635 * 1 - Ingress RIF valid. 1636 * Must not be set for a non enabled RIF. 1637 * Access: RW 1638 * 1639 * Note: Reserved when legacy bridge model is used. 1640 */ 1641 MLXSW_ITEM32(reg, svfa, irif_v, 0x14, 24, 1); 1642 1643 /* reg_svfa_irif 1644 * Ingress RIF (Router Interface). 1645 * Range is 0..cap_max_router_interfaces-1. 1646 * Access: RW 1647 * 1648 * Note: Reserved when legacy bridge model is used and when irif_v=0. 1649 */ 1650 MLXSW_ITEM32(reg, svfa, irif, 0x14, 0, 16); 1651 1652 static inline void __mlxsw_reg_svfa_pack(char *payload, 1653 enum mlxsw_reg_svfa_mt mt, bool valid, 1654 u16 fid, bool irif_v, u16 irif) 1655 { 1656 MLXSW_REG_ZERO(svfa, payload); 1657 mlxsw_reg_svfa_swid_set(payload, 0); 1658 mlxsw_reg_svfa_mapping_table_set(payload, mt); 1659 mlxsw_reg_svfa_v_set(payload, valid); 1660 mlxsw_reg_svfa_fid_set(payload, fid); 1661 mlxsw_reg_svfa_irif_v_set(payload, irif_v); 1662 mlxsw_reg_svfa_irif_set(payload, irif_v ? irif : 0); 1663 } 1664 1665 static inline void mlxsw_reg_svfa_port_vid_pack(char *payload, u16 local_port, 1666 bool valid, u16 fid, u16 vid, 1667 bool irif_v, u16 irif) 1668 { 1669 enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_PORT_VID_TO_FID; 1670 1671 __mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif); 1672 mlxsw_reg_svfa_local_port_set(payload, local_port); 1673 mlxsw_reg_svfa_vid_set(payload, vid); 1674 } 1675 1676 static inline void mlxsw_reg_svfa_vid_pack(char *payload, bool valid, u16 fid, 1677 u16 vid, bool irif_v, u16 irif) 1678 { 1679 enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_VID_TO_FID; 1680 1681 __mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif); 1682 mlxsw_reg_svfa_vid_set(payload, vid); 1683 } 1684 1685 static inline void mlxsw_reg_svfa_vni_pack(char *payload, bool valid, u16 fid, 1686 u32 vni, bool irif_v, u16 irif) 1687 { 1688 enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_VNI_TO_FID; 1689 1690 __mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif); 1691 mlxsw_reg_svfa_vni_set(payload, vni); 1692 } 1693 1694 /* SPVTR - Switch Port VLAN Stacking Register 1695 * ------------------------------------------ 1696 * The Switch Port VLAN Stacking register configures the VLAN mode of the port 1697 * to enable VLAN stacking. 1698 */ 1699 #define MLXSW_REG_SPVTR_ID 0x201D 1700 #define MLXSW_REG_SPVTR_LEN 0x10 1701 1702 MLXSW_REG_DEFINE(spvtr, MLXSW_REG_SPVTR_ID, MLXSW_REG_SPVTR_LEN); 1703 1704 /* reg_spvtr_tport 1705 * Port is tunnel port. 1706 * Access: Index 1707 * 1708 * Note: Reserved when SwitchX/-2 or Spectrum-1. 1709 */ 1710 MLXSW_ITEM32(reg, spvtr, tport, 0x00, 24, 1); 1711 1712 /* reg_spvtr_local_port 1713 * When tport = 0: local port number (Not supported from/to CPU). 1714 * When tport = 1: tunnel port. 1715 * Access: Index 1716 */ 1717 MLXSW_ITEM32_LP(reg, spvtr, 0x00, 16, 0x00, 12); 1718 1719 /* reg_spvtr_ippe 1720 * Ingress Port Prio Mode Update Enable. 1721 * When set, the Port Prio Mode is updated with the provided ipprio_mode field. 1722 * Reserved on Get operations. 1723 * Access: OP 1724 */ 1725 MLXSW_ITEM32(reg, spvtr, ippe, 0x04, 31, 1); 1726 1727 /* reg_spvtr_ipve 1728 * Ingress Port VID Mode Update Enable. 1729 * When set, the Ingress Port VID Mode is updated with the provided ipvid_mode 1730 * field. 1731 * Reserved on Get operations. 1732 * Access: OP 1733 */ 1734 MLXSW_ITEM32(reg, spvtr, ipve, 0x04, 30, 1); 1735 1736 /* reg_spvtr_epve 1737 * Egress Port VID Mode Update Enable. 1738 * When set, the Egress Port VID Mode is updated with the provided epvid_mode 1739 * field. 1740 * Access: OP 1741 */ 1742 MLXSW_ITEM32(reg, spvtr, epve, 0x04, 29, 1); 1743 1744 /* reg_spvtr_ipprio_mode 1745 * Ingress Port Priority Mode. 1746 * This controls the PCP and DEI of the new outer VLAN 1747 * Note: for SwitchX/-2 the DEI is not affected. 1748 * 0: use port default PCP and DEI (configured by QPDPC). 1749 * 1: use C-VLAN PCP and DEI. 1750 * Has no effect when ipvid_mode = 0. 1751 * Reserved when tport = 1. 1752 * Access: RW 1753 */ 1754 MLXSW_ITEM32(reg, spvtr, ipprio_mode, 0x04, 20, 4); 1755 1756 enum mlxsw_reg_spvtr_ipvid_mode { 1757 /* IEEE Compliant PVID (default) */ 1758 MLXSW_REG_SPVTR_IPVID_MODE_IEEE_COMPLIANT_PVID, 1759 /* Push VLAN (for VLAN stacking, except prio tagged packets) */ 1760 MLXSW_REG_SPVTR_IPVID_MODE_PUSH_VLAN_FOR_UNTAGGED_PACKET, 1761 /* Always push VLAN (also for prio tagged packets) */ 1762 MLXSW_REG_SPVTR_IPVID_MODE_ALWAYS_PUSH_VLAN, 1763 }; 1764 1765 /* reg_spvtr_ipvid_mode 1766 * Ingress Port VLAN-ID Mode. 1767 * For Spectrum family, this affects the values of SPVM.i 1768 * Access: RW 1769 */ 1770 MLXSW_ITEM32(reg, spvtr, ipvid_mode, 0x04, 16, 4); 1771 1772 enum mlxsw_reg_spvtr_epvid_mode { 1773 /* IEEE Compliant VLAN membership */ 1774 MLXSW_REG_SPVTR_EPVID_MODE_IEEE_COMPLIANT_VLAN_MEMBERSHIP, 1775 /* Pop VLAN (for VLAN stacking) */ 1776 MLXSW_REG_SPVTR_EPVID_MODE_POP_VLAN, 1777 }; 1778 1779 /* reg_spvtr_epvid_mode 1780 * Egress Port VLAN-ID Mode. 1781 * For Spectrum family, this affects the values of SPVM.e,u,pt. 1782 * Access: WO 1783 */ 1784 MLXSW_ITEM32(reg, spvtr, epvid_mode, 0x04, 0, 4); 1785 1786 static inline void mlxsw_reg_spvtr_pack(char *payload, bool tport, 1787 u16 local_port, 1788 enum mlxsw_reg_spvtr_ipvid_mode ipvid_mode) 1789 { 1790 MLXSW_REG_ZERO(spvtr, payload); 1791 mlxsw_reg_spvtr_tport_set(payload, tport); 1792 mlxsw_reg_spvtr_local_port_set(payload, local_port); 1793 mlxsw_reg_spvtr_ipvid_mode_set(payload, ipvid_mode); 1794 mlxsw_reg_spvtr_ipve_set(payload, true); 1795 } 1796 1797 /* SVPE - Switch Virtual-Port Enabling Register 1798 * -------------------------------------------- 1799 * Enables port virtualization. 1800 */ 1801 #define MLXSW_REG_SVPE_ID 0x201E 1802 #define MLXSW_REG_SVPE_LEN 0x4 1803 1804 MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN); 1805 1806 /* reg_svpe_local_port 1807 * Local port number 1808 * Access: Index 1809 * 1810 * Note: CPU port is not supported (uses VLAN mode only). 1811 */ 1812 MLXSW_ITEM32_LP(reg, svpe, 0x00, 16, 0x00, 12); 1813 1814 /* reg_svpe_vp_en 1815 * Virtual port enable. 1816 * 0 - Disable, VLAN mode (VID to FID). 1817 * 1 - Enable, Virtual port mode ({Port, VID} to FID). 1818 * Access: RW 1819 */ 1820 MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1); 1821 1822 static inline void mlxsw_reg_svpe_pack(char *payload, u16 local_port, 1823 bool enable) 1824 { 1825 MLXSW_REG_ZERO(svpe, payload); 1826 mlxsw_reg_svpe_local_port_set(payload, local_port); 1827 mlxsw_reg_svpe_vp_en_set(payload, enable); 1828 } 1829 1830 /* SFMR - Switch FID Management Register 1831 * ------------------------------------- 1832 * Creates and configures FIDs. 1833 */ 1834 #define MLXSW_REG_SFMR_ID 0x201F 1835 #define MLXSW_REG_SFMR_LEN 0x30 1836 1837 MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN); 1838 1839 enum mlxsw_reg_sfmr_op { 1840 MLXSW_REG_SFMR_OP_CREATE_FID, 1841 MLXSW_REG_SFMR_OP_DESTROY_FID, 1842 }; 1843 1844 /* reg_sfmr_op 1845 * Operation. 1846 * 0 - Create or edit FID. 1847 * 1 - Destroy FID. 1848 * Access: WO 1849 */ 1850 MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4); 1851 1852 /* reg_sfmr_fid 1853 * Filtering ID. 1854 * Access: Index 1855 */ 1856 MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16); 1857 1858 /* reg_sfmr_flood_rsp 1859 * Router sub-port flooding table. 1860 * 0 - Regular flooding table. 1861 * 1 - Router sub-port flooding table. For this FID the flooding is per 1862 * router-sub-port local_port. Must not be set for a FID which is not a 1863 * router-sub-port and must be set prior to enabling the relevant RIF. 1864 * Access: RW 1865 * 1866 * Note: Reserved when legacy bridge model is used. 1867 * Reserved when CONFIG_PROFILE.flood_mode = CFF. 1868 */ 1869 MLXSW_ITEM32(reg, sfmr, flood_rsp, 0x08, 31, 1); 1870 1871 /* reg_sfmr_flood_bridge_type 1872 * Flood bridge type (see SFGC.bridge_type). 1873 * 0 - type_0. 1874 * 1 - type_1. 1875 * Access: RW 1876 * 1877 * Note: Reserved when legacy bridge model is used and when flood_rsp=1. 1878 * Reserved when CONFIG_PROFILE.flood_mode = CFF 1879 */ 1880 MLXSW_ITEM32(reg, sfmr, flood_bridge_type, 0x08, 28, 1); 1881 1882 /* reg_sfmr_fid_offset 1883 * FID offset. 1884 * Used to point into the flooding table selected by SFGC register if 1885 * the table is of type FID-Offset. Otherwise, this field is reserved. 1886 * Access: RW 1887 * 1888 * Note: Reserved when CONFIG_PROFILE.flood_mode = CFF 1889 */ 1890 MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16); 1891 1892 /* reg_sfmr_vtfp 1893 * Valid Tunnel Flood Pointer. 1894 * If not set, then nve_tunnel_flood_ptr is reserved and considered NULL. 1895 * Access: RW 1896 * 1897 * Note: Reserved for 802.1Q FIDs. 1898 */ 1899 MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1); 1900 1901 /* reg_sfmr_nve_tunnel_flood_ptr 1902 * Underlay Flooding and BC Pointer. 1903 * Used as a pointer to the first entry of the group based link lists of 1904 * flooding or BC entries (for NVE tunnels). 1905 * Access: RW 1906 */ 1907 MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24); 1908 1909 /* reg_sfmr_vv 1910 * VNI Valid. 1911 * If not set, then vni is reserved. 1912 * Access: RW 1913 * 1914 * Note: Reserved for 802.1Q FIDs. 1915 */ 1916 MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1); 1917 1918 /* reg_sfmr_vni 1919 * Virtual Network Identifier. 1920 * When legacy bridge model is used, a given VNI can only be assigned to one 1921 * FID. When unified bridge model is used, it configures only the FID->VNI, 1922 * the VNI->FID is done by SVFA. 1923 * Access: RW 1924 */ 1925 MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24); 1926 1927 /* reg_sfmr_irif_v 1928 * Ingress RIF valid. 1929 * 0 - Ingress RIF is not valid, no ingress RIF assigned. 1930 * 1 - Ingress RIF valid. 1931 * Must not be set for a non valid RIF. 1932 * Access: RW 1933 * 1934 * Note: Reserved when legacy bridge model is used. 1935 */ 1936 MLXSW_ITEM32(reg, sfmr, irif_v, 0x14, 24, 1); 1937 1938 /* reg_sfmr_irif 1939 * Ingress RIF (Router Interface). 1940 * Range is 0..cap_max_router_interfaces-1. 1941 * Access: RW 1942 * 1943 * Note: Reserved when legacy bridge model is used and when irif_v=0. 1944 */ 1945 MLXSW_ITEM32(reg, sfmr, irif, 0x14, 0, 16); 1946 1947 /* reg_sfmr_cff_mid_base 1948 * Pointer to PGT table. 1949 * Range: 0..(cap_max_pgt-1) 1950 * Access: RW 1951 * 1952 * Note: Reserved when SwitchX/-2 and Spectrum-1. 1953 * Supported when CONFIG_PROFILE.flood_mode = CFF. 1954 */ 1955 MLXSW_ITEM32(reg, sfmr, cff_mid_base, 0x20, 0, 16); 1956 1957 /* reg_sfmr_nve_flood_prf_id 1958 * FID flooding profile_id for NVE Encap 1959 * Range 0..(max_cap_nve_flood_prf-1) 1960 * Access: RW 1961 * 1962 * Note: Reserved when SwitchX/-2 and Spectrum-1 1963 */ 1964 MLXSW_ITEM32(reg, sfmr, nve_flood_prf_id, 0x24, 8, 2); 1965 1966 /* reg_sfmr_cff_prf_id 1967 * Compressed Fid Flooding profile_id 1968 * Range 0..(max_cap_nve_flood_prf-1) 1969 * Access: RW 1970 * 1971 * Note: Reserved when SwitchX/-2 and Spectrum-1 1972 * Supported only when CONFIG_PROFLE.flood_mode = CFF. 1973 */ 1974 MLXSW_ITEM32(reg, sfmr, cff_prf_id, 0x24, 0, 2); 1975 1976 /* reg_sfmr_smpe_valid 1977 * SMPE is valid. 1978 * Access: RW 1979 * 1980 * Note: Reserved when legacy bridge model is used, when flood_rsp=1 and on 1981 * Spectrum-1. 1982 */ 1983 MLXSW_ITEM32(reg, sfmr, smpe_valid, 0x28, 20, 1); 1984 1985 /* reg_sfmr_smpe 1986 * Switch multicast port to egress VID. 1987 * Range is 0..cap_max_rmpe-1 1988 * Access: RW 1989 * 1990 * Note: Reserved when legacy bridge model is used, when flood_rsp=1 and on 1991 * Spectrum-1. 1992 */ 1993 MLXSW_ITEM32(reg, sfmr, smpe, 0x28, 0, 16); 1994 1995 static inline void mlxsw_reg_sfmr_pack(char *payload, 1996 enum mlxsw_reg_sfmr_op op, u16 fid, 1997 bool smpe_valid, u16 smpe) 1998 { 1999 MLXSW_REG_ZERO(sfmr, payload); 2000 mlxsw_reg_sfmr_op_set(payload, op); 2001 mlxsw_reg_sfmr_fid_set(payload, fid); 2002 mlxsw_reg_sfmr_smpe_valid_set(payload, smpe_valid); 2003 mlxsw_reg_sfmr_smpe_set(payload, smpe); 2004 } 2005 2006 /* SPVMLR - Switch Port VLAN MAC Learning Register 2007 * ----------------------------------------------- 2008 * Controls the switch MAC learning policy per {Port, VID}. 2009 */ 2010 #define MLXSW_REG_SPVMLR_ID 0x2020 2011 #define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */ 2012 #define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */ 2013 #define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255 2014 #define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \ 2015 MLXSW_REG_SPVMLR_REC_LEN * \ 2016 MLXSW_REG_SPVMLR_REC_MAX_COUNT) 2017 2018 MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN); 2019 2020 /* reg_spvmlr_local_port 2021 * Local ingress port. 2022 * Access: Index 2023 * 2024 * Note: CPU port is not supported. 2025 */ 2026 MLXSW_ITEM32_LP(reg, spvmlr, 0x00, 16, 0x00, 12); 2027 2028 /* reg_spvmlr_num_rec 2029 * Number of records to update. 2030 * Access: OP 2031 */ 2032 MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8); 2033 2034 /* reg_spvmlr_rec_learn_enable 2035 * 0 - Disable learning for {Port, VID}. 2036 * 1 - Enable learning for {Port, VID}. 2037 * Access: RW 2038 */ 2039 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN, 2040 31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); 2041 2042 /* reg_spvmlr_rec_vid 2043 * VLAN ID to be added/removed from port or for querying. 2044 * Access: Index 2045 */ 2046 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12, 2047 MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); 2048 2049 static inline void mlxsw_reg_spvmlr_pack(char *payload, u16 local_port, 2050 u16 vid_begin, u16 vid_end, 2051 bool learn_enable) 2052 { 2053 int num_rec = vid_end - vid_begin + 1; 2054 int i; 2055 2056 WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT); 2057 2058 MLXSW_REG_ZERO(spvmlr, payload); 2059 mlxsw_reg_spvmlr_local_port_set(payload, local_port); 2060 mlxsw_reg_spvmlr_num_rec_set(payload, num_rec); 2061 2062 for (i = 0; i < num_rec; i++) { 2063 mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable); 2064 mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i); 2065 } 2066 } 2067 2068 /* SPFSR - Switch Port FDB Security Register 2069 * ----------------------------------------- 2070 * Configures the security mode per port. 2071 */ 2072 #define MLXSW_REG_SPFSR_ID 0x2023 2073 #define MLXSW_REG_SPFSR_LEN 0x08 2074 2075 MLXSW_REG_DEFINE(spfsr, MLXSW_REG_SPFSR_ID, MLXSW_REG_SPFSR_LEN); 2076 2077 /* reg_spfsr_local_port 2078 * Local port. 2079 * Access: Index 2080 * 2081 * Note: not supported for CPU port. 2082 */ 2083 MLXSW_ITEM32_LP(reg, spfsr, 0x00, 16, 0x00, 12); 2084 2085 /* reg_spfsr_security 2086 * Security checks. 2087 * 0: disabled (default) 2088 * 1: enabled 2089 * Access: RW 2090 */ 2091 MLXSW_ITEM32(reg, spfsr, security, 0x04, 31, 1); 2092 2093 static inline void mlxsw_reg_spfsr_pack(char *payload, u16 local_port, 2094 bool security) 2095 { 2096 MLXSW_REG_ZERO(spfsr, payload); 2097 mlxsw_reg_spfsr_local_port_set(payload, local_port); 2098 mlxsw_reg_spfsr_security_set(payload, security); 2099 } 2100 2101 /* SPVC - Switch Port VLAN Classification Register 2102 * ----------------------------------------------- 2103 * Configures the port to identify packets as untagged / single tagged / 2104 * double packets based on the packet EtherTypes. 2105 * Ethertype IDs are configured by SVER. 2106 */ 2107 #define MLXSW_REG_SPVC_ID 0x2026 2108 #define MLXSW_REG_SPVC_LEN 0x0C 2109 2110 MLXSW_REG_DEFINE(spvc, MLXSW_REG_SPVC_ID, MLXSW_REG_SPVC_LEN); 2111 2112 /* reg_spvc_local_port 2113 * Local port. 2114 * Access: Index 2115 * 2116 * Note: applies both to Rx port and Tx port, so if a packet traverses 2117 * through Rx port i and a Tx port j then port i and port j must have the 2118 * same configuration. 2119 */ 2120 MLXSW_ITEM32_LP(reg, spvc, 0x00, 16, 0x00, 12); 2121 2122 /* reg_spvc_inner_et2 2123 * Vlan Tag1 EtherType2 enable. 2124 * Packet is initially classified as double VLAN Tag if in addition to 2125 * being classified with a tag0 VLAN Tag its tag1 EtherType value is 2126 * equal to ether_type2. 2127 * 0: disable (default) 2128 * 1: enable 2129 * Access: RW 2130 */ 2131 MLXSW_ITEM32(reg, spvc, inner_et2, 0x08, 17, 1); 2132 2133 /* reg_spvc_et2 2134 * Vlan Tag0 EtherType2 enable. 2135 * Packet is initially classified as VLAN Tag if its tag0 EtherType is 2136 * equal to ether_type2. 2137 * 0: disable (default) 2138 * 1: enable 2139 * Access: RW 2140 */ 2141 MLXSW_ITEM32(reg, spvc, et2, 0x08, 16, 1); 2142 2143 /* reg_spvc_inner_et1 2144 * Vlan Tag1 EtherType1 enable. 2145 * Packet is initially classified as double VLAN Tag if in addition to 2146 * being classified with a tag0 VLAN Tag its tag1 EtherType value is 2147 * equal to ether_type1. 2148 * 0: disable 2149 * 1: enable (default) 2150 * Access: RW 2151 */ 2152 MLXSW_ITEM32(reg, spvc, inner_et1, 0x08, 9, 1); 2153 2154 /* reg_spvc_et1 2155 * Vlan Tag0 EtherType1 enable. 2156 * Packet is initially classified as VLAN Tag if its tag0 EtherType is 2157 * equal to ether_type1. 2158 * 0: disable 2159 * 1: enable (default) 2160 * Access: RW 2161 */ 2162 MLXSW_ITEM32(reg, spvc, et1, 0x08, 8, 1); 2163 2164 /* reg_inner_et0 2165 * Vlan Tag1 EtherType0 enable. 2166 * Packet is initially classified as double VLAN Tag if in addition to 2167 * being classified with a tag0 VLAN Tag its tag1 EtherType value is 2168 * equal to ether_type0. 2169 * 0: disable 2170 * 1: enable (default) 2171 * Access: RW 2172 */ 2173 MLXSW_ITEM32(reg, spvc, inner_et0, 0x08, 1, 1); 2174 2175 /* reg_et0 2176 * Vlan Tag0 EtherType0 enable. 2177 * Packet is initially classified as VLAN Tag if its tag0 EtherType is 2178 * equal to ether_type0. 2179 * 0: disable 2180 * 1: enable (default) 2181 * Access: RW 2182 */ 2183 MLXSW_ITEM32(reg, spvc, et0, 0x08, 0, 1); 2184 2185 static inline void mlxsw_reg_spvc_pack(char *payload, u16 local_port, bool et1, 2186 bool et0) 2187 { 2188 MLXSW_REG_ZERO(spvc, payload); 2189 mlxsw_reg_spvc_local_port_set(payload, local_port); 2190 /* Enable inner_et1 and inner_et0 to enable identification of double 2191 * tagged packets. 2192 */ 2193 mlxsw_reg_spvc_inner_et1_set(payload, 1); 2194 mlxsw_reg_spvc_inner_et0_set(payload, 1); 2195 mlxsw_reg_spvc_et1_set(payload, et1); 2196 mlxsw_reg_spvc_et0_set(payload, et0); 2197 } 2198 2199 /* SFFP - Switch FID Flooding Profiles Register 2200 * -------------------------------------------- 2201 * The SFFP register populates the fid flooding profile tables used for the NVE 2202 * flooding and Compressed-FID Flooding (CFF). 2203 * 2204 * Reserved on Spectrum-1. 2205 */ 2206 #define MLXSW_REG_SFFP_ID 0x2029 2207 #define MLXSW_REG_SFFP_LEN 0x0C 2208 2209 MLXSW_REG_DEFINE(sffp, MLXSW_REG_SFFP_ID, MLXSW_REG_SFFP_LEN); 2210 2211 /* reg_sffp_profile_id 2212 * Profile ID a.k.a. SFMR.nve_flood_prf_id or SFMR.cff_prf_id 2213 * Range 0..max_cap_nve_flood_prf-1 2214 * Access: Index 2215 */ 2216 MLXSW_ITEM32(reg, sffp, profile_id, 0x00, 16, 2); 2217 2218 /* reg_sffp_type 2219 * The traffic type to reach the flooding table. 2220 * Same as SFGC.type 2221 * Access: Index 2222 */ 2223 MLXSW_ITEM32(reg, sffp, type, 0x00, 0, 4); 2224 2225 /* reg_sffp_flood_offset 2226 * Flood offset. Offset to add to SFMR.cff_mid_base to get the final PGT address 2227 * for FID flood; or offset to add to SFMR.nve_tunnel_flood_ptr to get KVD 2228 * pointer for NVE underlay. 2229 * Access: RW 2230 */ 2231 MLXSW_ITEM32(reg, sffp, flood_offset, 0x04, 0, 3); 2232 2233 static inline void mlxsw_reg_sffp_pack(char *payload, u8 profile_id, 2234 enum mlxsw_reg_sfgc_type type, 2235 u8 flood_offset) 2236 { 2237 MLXSW_REG_ZERO(sffp, payload); 2238 mlxsw_reg_sffp_profile_id_set(payload, profile_id); 2239 mlxsw_reg_sffp_type_set(payload, type); 2240 mlxsw_reg_sffp_flood_offset_set(payload, flood_offset); 2241 } 2242 2243 /* SPEVET - Switch Port Egress VLAN EtherType 2244 * ------------------------------------------ 2245 * The switch port egress VLAN EtherType configures which EtherType to push at 2246 * egress for packets incoming through a local port for which 'SPVID.egr_et_set' 2247 * is set. 2248 */ 2249 #define MLXSW_REG_SPEVET_ID 0x202A 2250 #define MLXSW_REG_SPEVET_LEN 0x08 2251 2252 MLXSW_REG_DEFINE(spevet, MLXSW_REG_SPEVET_ID, MLXSW_REG_SPEVET_LEN); 2253 2254 /* reg_spevet_local_port 2255 * Egress Local port number. 2256 * Not supported to CPU port. 2257 * Access: Index 2258 */ 2259 MLXSW_ITEM32_LP(reg, spevet, 0x00, 16, 0x00, 12); 2260 2261 /* reg_spevet_et_vlan 2262 * Egress EtherType VLAN to push when SPVID.egr_et_set field set for the packet: 2263 * 0: ether_type0 - (default) 2264 * 1: ether_type1 2265 * 2: ether_type2 2266 * Access: RW 2267 */ 2268 MLXSW_ITEM32(reg, spevet, et_vlan, 0x04, 16, 2); 2269 2270 static inline void mlxsw_reg_spevet_pack(char *payload, u16 local_port, 2271 u8 et_vlan) 2272 { 2273 MLXSW_REG_ZERO(spevet, payload); 2274 mlxsw_reg_spevet_local_port_set(payload, local_port); 2275 mlxsw_reg_spevet_et_vlan_set(payload, et_vlan); 2276 } 2277 2278 /* SMPE - Switch Multicast Port to Egress VID 2279 * ------------------------------------------ 2280 * The switch multicast port to egress VID maps 2281 * {egress_port, SMPE index} -> {VID}. 2282 */ 2283 #define MLXSW_REG_SMPE_ID 0x202B 2284 #define MLXSW_REG_SMPE_LEN 0x0C 2285 2286 MLXSW_REG_DEFINE(smpe, MLXSW_REG_SMPE_ID, MLXSW_REG_SMPE_LEN); 2287 2288 /* reg_smpe_local_port 2289 * Local port number. 2290 * CPU port is not supported. 2291 * Access: Index 2292 */ 2293 MLXSW_ITEM32_LP(reg, smpe, 0x00, 16, 0x00, 12); 2294 2295 /* reg_smpe_smpe_index 2296 * Switch multicast port to egress VID. 2297 * Range is 0..cap_max_rmpe-1. 2298 * Access: Index 2299 */ 2300 MLXSW_ITEM32(reg, smpe, smpe_index, 0x04, 0, 16); 2301 2302 /* reg_smpe_evid 2303 * Egress VID. 2304 * Access: RW 2305 */ 2306 MLXSW_ITEM32(reg, smpe, evid, 0x08, 0, 12); 2307 2308 static inline void mlxsw_reg_smpe_pack(char *payload, u16 local_port, 2309 u16 smpe_index, u16 evid) 2310 { 2311 MLXSW_REG_ZERO(smpe, payload); 2312 mlxsw_reg_smpe_local_port_set(payload, local_port); 2313 mlxsw_reg_smpe_smpe_index_set(payload, smpe_index); 2314 mlxsw_reg_smpe_evid_set(payload, evid); 2315 } 2316 2317 /* SMID-V2 - Switch Multicast ID Version 2 Register 2318 * ------------------------------------------------ 2319 * The MID record maps from a MID (Multicast ID), which is a unique identifier 2320 * of the multicast group within the stacking domain, into a list of local 2321 * ports into which the packet is replicated. 2322 */ 2323 #define MLXSW_REG_SMID2_ID 0x2034 2324 #define MLXSW_REG_SMID2_LEN 0x120 2325 2326 MLXSW_REG_DEFINE(smid2, MLXSW_REG_SMID2_ID, MLXSW_REG_SMID2_LEN); 2327 2328 /* reg_smid2_swid 2329 * Switch partition ID. 2330 * Access: Index 2331 */ 2332 MLXSW_ITEM32(reg, smid2, swid, 0x00, 24, 8); 2333 2334 /* reg_smid2_mid 2335 * Multicast identifier - global identifier that represents the multicast group 2336 * across all devices. 2337 * Access: Index 2338 */ 2339 MLXSW_ITEM32(reg, smid2, mid, 0x00, 0, 16); 2340 2341 /* reg_smid2_smpe_valid 2342 * SMPE is valid. 2343 * When not valid, the egress VID will not be modified by the SMPE table. 2344 * Access: RW 2345 * 2346 * Note: Reserved when legacy bridge model is used and on Spectrum-2. 2347 */ 2348 MLXSW_ITEM32(reg, smid2, smpe_valid, 0x08, 20, 1); 2349 2350 /* reg_smid2_smpe 2351 * Switch multicast port to egress VID. 2352 * Access: RW 2353 * 2354 * Note: Reserved when legacy bridge model is used and on Spectrum-2. 2355 */ 2356 MLXSW_ITEM32(reg, smid2, smpe, 0x08, 0, 16); 2357 2358 /* reg_smid2_port 2359 * Local port memebership (1 bit per port). 2360 * Access: RW 2361 */ 2362 MLXSW_ITEM_BIT_ARRAY(reg, smid2, port, 0x20, 0x80, 1); 2363 2364 /* reg_smid2_port_mask 2365 * Local port mask (1 bit per port). 2366 * Access: WO 2367 */ 2368 MLXSW_ITEM_BIT_ARRAY(reg, smid2, port_mask, 0xA0, 0x80, 1); 2369 2370 static inline void mlxsw_reg_smid2_pack(char *payload, u16 mid, u16 port, 2371 bool set, bool smpe_valid, u16 smpe) 2372 { 2373 MLXSW_REG_ZERO(smid2, payload); 2374 mlxsw_reg_smid2_swid_set(payload, 0); 2375 mlxsw_reg_smid2_mid_set(payload, mid); 2376 mlxsw_reg_smid2_port_set(payload, port, set); 2377 mlxsw_reg_smid2_port_mask_set(payload, port, 1); 2378 mlxsw_reg_smid2_smpe_valid_set(payload, smpe_valid); 2379 mlxsw_reg_smid2_smpe_set(payload, smpe_valid ? smpe : 0); 2380 } 2381 2382 /* CWTP - Congetion WRED ECN TClass Profile 2383 * ---------------------------------------- 2384 * Configures the profiles for queues of egress port and traffic class 2385 */ 2386 #define MLXSW_REG_CWTP_ID 0x2802 2387 #define MLXSW_REG_CWTP_BASE_LEN 0x28 2388 #define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08 2389 #define MLXSW_REG_CWTP_LEN 0x40 2390 2391 MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN); 2392 2393 /* reg_cwtp_local_port 2394 * Local port number 2395 * Not supported for CPU port 2396 * Access: Index 2397 */ 2398 MLXSW_ITEM32_LP(reg, cwtp, 0x00, 16, 0x00, 12); 2399 2400 /* reg_cwtp_traffic_class 2401 * Traffic Class to configure 2402 * Access: Index 2403 */ 2404 MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8); 2405 2406 /* reg_cwtp_profile_min 2407 * Minimum Average Queue Size of the profile in cells. 2408 * Access: RW 2409 */ 2410 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN, 2411 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false); 2412 2413 /* reg_cwtp_profile_percent 2414 * Percentage of WRED and ECN marking for maximum Average Queue size 2415 * Range is 0 to 100, units of integer percentage 2416 * Access: RW 2417 */ 2418 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN, 2419 24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); 2420 2421 /* reg_cwtp_profile_max 2422 * Maximum Average Queue size of the profile in cells 2423 * Access: RW 2424 */ 2425 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN, 2426 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); 2427 2428 #define MLXSW_REG_CWTP_MIN_VALUE 64 2429 #define MLXSW_REG_CWTP_MAX_PROFILE 2 2430 #define MLXSW_REG_CWTP_DEFAULT_PROFILE 1 2431 2432 static inline void mlxsw_reg_cwtp_pack(char *payload, u16 local_port, 2433 u8 traffic_class) 2434 { 2435 int i; 2436 2437 MLXSW_REG_ZERO(cwtp, payload); 2438 mlxsw_reg_cwtp_local_port_set(payload, local_port); 2439 mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class); 2440 2441 for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) { 2442 mlxsw_reg_cwtp_profile_min_set(payload, i, 2443 MLXSW_REG_CWTP_MIN_VALUE); 2444 mlxsw_reg_cwtp_profile_max_set(payload, i, 2445 MLXSW_REG_CWTP_MIN_VALUE); 2446 } 2447 } 2448 2449 #define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1) 2450 2451 static inline void 2452 mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max, 2453 u32 probability) 2454 { 2455 u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile); 2456 2457 mlxsw_reg_cwtp_profile_min_set(payload, index, min); 2458 mlxsw_reg_cwtp_profile_max_set(payload, index, max); 2459 mlxsw_reg_cwtp_profile_percent_set(payload, index, probability); 2460 } 2461 2462 /* CWTPM - Congestion WRED ECN TClass and Pool Mapping 2463 * --------------------------------------------------- 2464 * The CWTPM register maps each egress port and traffic class to profile num. 2465 */ 2466 #define MLXSW_REG_CWTPM_ID 0x2803 2467 #define MLXSW_REG_CWTPM_LEN 0x44 2468 2469 MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN); 2470 2471 /* reg_cwtpm_local_port 2472 * Local port number 2473 * Not supported for CPU port 2474 * Access: Index 2475 */ 2476 MLXSW_ITEM32_LP(reg, cwtpm, 0x00, 16, 0x00, 12); 2477 2478 /* reg_cwtpm_traffic_class 2479 * Traffic Class to configure 2480 * Access: Index 2481 */ 2482 MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8); 2483 2484 /* reg_cwtpm_ew 2485 * Control enablement of WRED for traffic class: 2486 * 0 - Disable 2487 * 1 - Enable 2488 * Access: RW 2489 */ 2490 MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1); 2491 2492 /* reg_cwtpm_ee 2493 * Control enablement of ECN for traffic class: 2494 * 0 - Disable 2495 * 1 - Enable 2496 * Access: RW 2497 */ 2498 MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1); 2499 2500 /* reg_cwtpm_tcp_g 2501 * TCP Green Profile. 2502 * Index of the profile within {port, traffic class} to use. 2503 * 0 for disabling both WRED and ECN for this type of traffic. 2504 * Access: RW 2505 */ 2506 MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2); 2507 2508 /* reg_cwtpm_tcp_y 2509 * TCP Yellow Profile. 2510 * Index of the profile within {port, traffic class} to use. 2511 * 0 for disabling both WRED and ECN for this type of traffic. 2512 * Access: RW 2513 */ 2514 MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2); 2515 2516 /* reg_cwtpm_tcp_r 2517 * TCP Red Profile. 2518 * Index of the profile within {port, traffic class} to use. 2519 * 0 for disabling both WRED and ECN for this type of traffic. 2520 * Access: RW 2521 */ 2522 MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2); 2523 2524 /* reg_cwtpm_ntcp_g 2525 * Non-TCP Green Profile. 2526 * Index of the profile within {port, traffic class} to use. 2527 * 0 for disabling both WRED and ECN for this type of traffic. 2528 * Access: RW 2529 */ 2530 MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2); 2531 2532 /* reg_cwtpm_ntcp_y 2533 * Non-TCP Yellow Profile. 2534 * Index of the profile within {port, traffic class} to use. 2535 * 0 for disabling both WRED and ECN for this type of traffic. 2536 * Access: RW 2537 */ 2538 MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2); 2539 2540 /* reg_cwtpm_ntcp_r 2541 * Non-TCP Red Profile. 2542 * Index of the profile within {port, traffic class} to use. 2543 * 0 for disabling both WRED and ECN for this type of traffic. 2544 * Access: RW 2545 */ 2546 MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2); 2547 2548 #define MLXSW_REG_CWTPM_RESET_PROFILE 0 2549 2550 static inline void mlxsw_reg_cwtpm_pack(char *payload, u16 local_port, 2551 u8 traffic_class, u8 profile, 2552 bool wred, bool ecn) 2553 { 2554 MLXSW_REG_ZERO(cwtpm, payload); 2555 mlxsw_reg_cwtpm_local_port_set(payload, local_port); 2556 mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class); 2557 mlxsw_reg_cwtpm_ew_set(payload, wred); 2558 mlxsw_reg_cwtpm_ee_set(payload, ecn); 2559 mlxsw_reg_cwtpm_tcp_g_set(payload, profile); 2560 mlxsw_reg_cwtpm_tcp_y_set(payload, profile); 2561 mlxsw_reg_cwtpm_tcp_r_set(payload, profile); 2562 mlxsw_reg_cwtpm_ntcp_g_set(payload, profile); 2563 mlxsw_reg_cwtpm_ntcp_y_set(payload, profile); 2564 mlxsw_reg_cwtpm_ntcp_r_set(payload, profile); 2565 } 2566 2567 /* PGCR - Policy-Engine General Configuration Register 2568 * --------------------------------------------------- 2569 * This register configures general Policy-Engine settings. 2570 */ 2571 #define MLXSW_REG_PGCR_ID 0x3001 2572 #define MLXSW_REG_PGCR_LEN 0x20 2573 2574 MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN); 2575 2576 /* reg_pgcr_default_action_pointer_base 2577 * Default action pointer base. Each region has a default action pointer 2578 * which is equal to default_action_pointer_base + region_id. 2579 * Access: RW 2580 */ 2581 MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24); 2582 2583 static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base) 2584 { 2585 MLXSW_REG_ZERO(pgcr, payload); 2586 mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base); 2587 } 2588 2589 /* PPBT - Policy-Engine Port Binding Table 2590 * --------------------------------------- 2591 * This register is used for configuration of the Port Binding Table. 2592 */ 2593 #define MLXSW_REG_PPBT_ID 0x3002 2594 #define MLXSW_REG_PPBT_LEN 0x14 2595 2596 MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN); 2597 2598 enum mlxsw_reg_pxbt_e { 2599 MLXSW_REG_PXBT_E_IACL, 2600 MLXSW_REG_PXBT_E_EACL, 2601 }; 2602 2603 /* reg_ppbt_e 2604 * Access: Index 2605 */ 2606 MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1); 2607 2608 enum mlxsw_reg_pxbt_op { 2609 MLXSW_REG_PXBT_OP_BIND, 2610 MLXSW_REG_PXBT_OP_UNBIND, 2611 }; 2612 2613 /* reg_ppbt_op 2614 * Access: RW 2615 */ 2616 MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3); 2617 2618 /* reg_ppbt_local_port 2619 * Local port. Not including CPU port. 2620 * Access: Index 2621 */ 2622 MLXSW_ITEM32_LP(reg, ppbt, 0x00, 16, 0x00, 12); 2623 2624 /* reg_ppbt_g 2625 * group - When set, the binding is of an ACL group. When cleared, 2626 * the binding is of an ACL. 2627 * Must be set to 1 for Spectrum. 2628 * Access: RW 2629 */ 2630 MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1); 2631 2632 /* reg_ppbt_acl_info 2633 * ACL/ACL group identifier. If the g bit is set, this field should hold 2634 * the acl_group_id, else it should hold the acl_id. 2635 * Access: RW 2636 */ 2637 MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16); 2638 2639 static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e, 2640 enum mlxsw_reg_pxbt_op op, 2641 u16 local_port, u16 acl_info) 2642 { 2643 MLXSW_REG_ZERO(ppbt, payload); 2644 mlxsw_reg_ppbt_e_set(payload, e); 2645 mlxsw_reg_ppbt_op_set(payload, op); 2646 mlxsw_reg_ppbt_local_port_set(payload, local_port); 2647 mlxsw_reg_ppbt_g_set(payload, true); 2648 mlxsw_reg_ppbt_acl_info_set(payload, acl_info); 2649 } 2650 2651 /* PACL - Policy-Engine ACL Register 2652 * --------------------------------- 2653 * This register is used for configuration of the ACL. 2654 */ 2655 #define MLXSW_REG_PACL_ID 0x3004 2656 #define MLXSW_REG_PACL_LEN 0x70 2657 2658 MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN); 2659 2660 /* reg_pacl_v 2661 * Valid. Setting the v bit makes the ACL valid. It should not be cleared 2662 * while the ACL is bounded to either a port, VLAN or ACL rule. 2663 * Access: RW 2664 */ 2665 MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1); 2666 2667 /* reg_pacl_acl_id 2668 * An identifier representing the ACL (managed by software) 2669 * Range 0 .. cap_max_acl_regions - 1 2670 * Access: Index 2671 */ 2672 MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16); 2673 2674 #define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16 2675 2676 /* reg_pacl_tcam_region_info 2677 * Opaque object that represents a TCAM region. 2678 * Obtained through PTAR register. 2679 * Access: RW 2680 */ 2681 MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30, 2682 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2683 2684 static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id, 2685 bool valid, const char *tcam_region_info) 2686 { 2687 MLXSW_REG_ZERO(pacl, payload); 2688 mlxsw_reg_pacl_acl_id_set(payload, acl_id); 2689 mlxsw_reg_pacl_v_set(payload, valid); 2690 mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info); 2691 } 2692 2693 /* PAGT - Policy-Engine ACL Group Table 2694 * ------------------------------------ 2695 * This register is used for configuration of the ACL Group Table. 2696 */ 2697 #define MLXSW_REG_PAGT_ID 0x3005 2698 #define MLXSW_REG_PAGT_BASE_LEN 0x30 2699 #define MLXSW_REG_PAGT_ACL_LEN 4 2700 #define MLXSW_REG_PAGT_ACL_MAX_NUM 16 2701 #define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \ 2702 MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN) 2703 2704 MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN); 2705 2706 /* reg_pagt_size 2707 * Number of ACLs in the group. 2708 * Size 0 invalidates a group. 2709 * Range 0 .. cap_max_acl_group_size (hard coded to 16 for now) 2710 * Total number of ACLs in all groups must be lower or equal 2711 * to cap_max_acl_tot_groups 2712 * Note: a group which is binded must not be invalidated 2713 * Access: Index 2714 */ 2715 MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8); 2716 2717 /* reg_pagt_acl_group_id 2718 * An identifier (numbered from 0..cap_max_acl_groups-1) representing 2719 * the ACL Group identifier (managed by software). 2720 * Access: Index 2721 */ 2722 MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16); 2723 2724 /* reg_pagt_multi 2725 * Multi-ACL 2726 * 0 - This ACL is the last ACL in the multi-ACL 2727 * 1 - This ACL is part of a multi-ACL 2728 * Access: RW 2729 */ 2730 MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false); 2731 2732 /* reg_pagt_acl_id 2733 * ACL identifier 2734 * Access: RW 2735 */ 2736 MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false); 2737 2738 static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id) 2739 { 2740 MLXSW_REG_ZERO(pagt, payload); 2741 mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id); 2742 } 2743 2744 static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index, 2745 u16 acl_id, bool multi) 2746 { 2747 u8 size = mlxsw_reg_pagt_size_get(payload); 2748 2749 if (index >= size) 2750 mlxsw_reg_pagt_size_set(payload, index + 1); 2751 mlxsw_reg_pagt_multi_set(payload, index, multi); 2752 mlxsw_reg_pagt_acl_id_set(payload, index, acl_id); 2753 } 2754 2755 /* PTAR - Policy-Engine TCAM Allocation Register 2756 * --------------------------------------------- 2757 * This register is used for allocation of regions in the TCAM. 2758 * Note: Query method is not supported on this register. 2759 */ 2760 #define MLXSW_REG_PTAR_ID 0x3006 2761 #define MLXSW_REG_PTAR_BASE_LEN 0x20 2762 #define MLXSW_REG_PTAR_KEY_ID_LEN 1 2763 #define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16 2764 #define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \ 2765 MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN) 2766 2767 MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN); 2768 2769 enum mlxsw_reg_ptar_op { 2770 /* allocate a TCAM region */ 2771 MLXSW_REG_PTAR_OP_ALLOC, 2772 /* resize a TCAM region */ 2773 MLXSW_REG_PTAR_OP_RESIZE, 2774 /* deallocate TCAM region */ 2775 MLXSW_REG_PTAR_OP_FREE, 2776 /* test allocation */ 2777 MLXSW_REG_PTAR_OP_TEST, 2778 }; 2779 2780 /* reg_ptar_op 2781 * Access: OP 2782 */ 2783 MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4); 2784 2785 /* reg_ptar_action_set_type 2786 * Type of action set to be used on this region. 2787 * For Spectrum and Spectrum-2, this is always type 2 - "flexible" 2788 * Access: WO 2789 */ 2790 MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8); 2791 2792 enum mlxsw_reg_ptar_key_type { 2793 MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */ 2794 MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */ 2795 }; 2796 2797 /* reg_ptar_key_type 2798 * TCAM key type for the region. 2799 * Access: WO 2800 */ 2801 MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8); 2802 2803 /* reg_ptar_region_size 2804 * TCAM region size. When allocating/resizing this is the requested size, 2805 * the response is the actual size. Note that actual size may be 2806 * larger than requested. 2807 * Allowed range 1 .. cap_max_rules-1 2808 * Reserved during op deallocate. 2809 * Access: WO 2810 */ 2811 MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16); 2812 2813 /* reg_ptar_region_id 2814 * Region identifier 2815 * Range 0 .. cap_max_regions-1 2816 * Access: Index 2817 */ 2818 MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16); 2819 2820 /* reg_ptar_tcam_region_info 2821 * Opaque object that represents the TCAM region. 2822 * Returned when allocating a region. 2823 * Provided by software for ACL generation and region deallocation and resize. 2824 * Access: RW 2825 */ 2826 MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10, 2827 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2828 2829 /* reg_ptar_flexible_key_id 2830 * Identifier of the Flexible Key. 2831 * Only valid if key_type == "FLEX_KEY" 2832 * The key size will be rounded up to one of the following values: 2833 * 9B, 18B, 36B, 54B. 2834 * This field is reserved for in resize operation. 2835 * Access: WO 2836 */ 2837 MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8, 2838 MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false); 2839 2840 static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op, 2841 enum mlxsw_reg_ptar_key_type key_type, 2842 u16 region_size, u16 region_id, 2843 const char *tcam_region_info) 2844 { 2845 MLXSW_REG_ZERO(ptar, payload); 2846 mlxsw_reg_ptar_op_set(payload, op); 2847 mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */ 2848 mlxsw_reg_ptar_key_type_set(payload, key_type); 2849 mlxsw_reg_ptar_region_size_set(payload, region_size); 2850 mlxsw_reg_ptar_region_id_set(payload, region_id); 2851 mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info); 2852 } 2853 2854 static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index, 2855 u16 key_id) 2856 { 2857 mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id); 2858 } 2859 2860 static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info) 2861 { 2862 mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info); 2863 } 2864 2865 /* PPRR - Policy-Engine Port Range Register 2866 * ---------------------------------------- 2867 * This register is used for configuring port range identification. 2868 */ 2869 #define MLXSW_REG_PPRR_ID 0x3008 2870 #define MLXSW_REG_PPRR_LEN 0x14 2871 2872 MLXSW_REG_DEFINE(pprr, MLXSW_REG_PPRR_ID, MLXSW_REG_PPRR_LEN); 2873 2874 /* reg_pprr_ipv4 2875 * Apply port range register to IPv4 packets. 2876 * Access: RW 2877 */ 2878 MLXSW_ITEM32(reg, pprr, ipv4, 0x00, 31, 1); 2879 2880 /* reg_pprr_ipv6 2881 * Apply port range register to IPv6 packets. 2882 * Access: RW 2883 */ 2884 MLXSW_ITEM32(reg, pprr, ipv6, 0x00, 30, 1); 2885 2886 /* reg_pprr_src 2887 * Apply port range register to source L4 ports. 2888 * Access: RW 2889 */ 2890 MLXSW_ITEM32(reg, pprr, src, 0x00, 29, 1); 2891 2892 /* reg_pprr_dst 2893 * Apply port range register to destination L4 ports. 2894 * Access: RW 2895 */ 2896 MLXSW_ITEM32(reg, pprr, dst, 0x00, 28, 1); 2897 2898 /* reg_pprr_tcp 2899 * Apply port range register to TCP packets. 2900 * Access: RW 2901 */ 2902 MLXSW_ITEM32(reg, pprr, tcp, 0x00, 27, 1); 2903 2904 /* reg_pprr_udp 2905 * Apply port range register to UDP packets. 2906 * Access: RW 2907 */ 2908 MLXSW_ITEM32(reg, pprr, udp, 0x00, 26, 1); 2909 2910 /* reg_pprr_register_index 2911 * Index of Port Range Register being accessed. 2912 * Range is 0..cap_max_acl_l4_port_range-1. 2913 * Access: Index 2914 */ 2915 MLXSW_ITEM32(reg, pprr, register_index, 0x00, 0, 8); 2916 2917 /* reg_prrr_port_range_min 2918 * Minimum port range for comparison. 2919 * Match is defined as: 2920 * port_range_min <= packet_port <= port_range_max. 2921 * Access: RW 2922 */ 2923 MLXSW_ITEM32(reg, pprr, port_range_min, 0x04, 16, 16); 2924 2925 /* reg_prrr_port_range_max 2926 * Maximum port range for comparison. 2927 * Access: RW 2928 */ 2929 MLXSW_ITEM32(reg, pprr, port_range_max, 0x04, 0, 16); 2930 2931 static inline void mlxsw_reg_pprr_pack(char *payload, u8 register_index) 2932 { 2933 MLXSW_REG_ZERO(pprr, payload); 2934 mlxsw_reg_pprr_register_index_set(payload, register_index); 2935 } 2936 2937 /* PPBS - Policy-Engine Policy Based Switching Register 2938 * ---------------------------------------------------- 2939 * This register retrieves and sets Policy Based Switching Table entries. 2940 */ 2941 #define MLXSW_REG_PPBS_ID 0x300C 2942 #define MLXSW_REG_PPBS_LEN 0x14 2943 2944 MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN); 2945 2946 /* reg_ppbs_pbs_ptr 2947 * Index into the PBS table. 2948 * For Spectrum, the index points to the KVD Linear. 2949 * Access: Index 2950 */ 2951 MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24); 2952 2953 /* reg_ppbs_system_port 2954 * Unique port identifier for the final destination of the packet. 2955 * Access: RW 2956 */ 2957 MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16); 2958 2959 static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr, 2960 u16 system_port) 2961 { 2962 MLXSW_REG_ZERO(ppbs, payload); 2963 mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr); 2964 mlxsw_reg_ppbs_system_port_set(payload, system_port); 2965 } 2966 2967 /* PRCR - Policy-Engine Rules Copy Register 2968 * ---------------------------------------- 2969 * This register is used for accessing rules within a TCAM region. 2970 */ 2971 #define MLXSW_REG_PRCR_ID 0x300D 2972 #define MLXSW_REG_PRCR_LEN 0x40 2973 2974 MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN); 2975 2976 enum mlxsw_reg_prcr_op { 2977 /* Move rules. Moves the rules from "tcam_region_info" starting 2978 * at offset "offset" to "dest_tcam_region_info" 2979 * at offset "dest_offset." 2980 */ 2981 MLXSW_REG_PRCR_OP_MOVE, 2982 /* Copy rules. Copies the rules from "tcam_region_info" starting 2983 * at offset "offset" to "dest_tcam_region_info" 2984 * at offset "dest_offset." 2985 */ 2986 MLXSW_REG_PRCR_OP_COPY, 2987 }; 2988 2989 /* reg_prcr_op 2990 * Access: OP 2991 */ 2992 MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4); 2993 2994 /* reg_prcr_offset 2995 * Offset within the source region to copy/move from. 2996 * Access: Index 2997 */ 2998 MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16); 2999 3000 /* reg_prcr_size 3001 * The number of rules to copy/move. 3002 * Access: WO 3003 */ 3004 MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16); 3005 3006 /* reg_prcr_tcam_region_info 3007 * Opaque object that represents the source TCAM region. 3008 * Access: Index 3009 */ 3010 MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10, 3011 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 3012 3013 /* reg_prcr_dest_offset 3014 * Offset within the source region to copy/move to. 3015 * Access: Index 3016 */ 3017 MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16); 3018 3019 /* reg_prcr_dest_tcam_region_info 3020 * Opaque object that represents the destination TCAM region. 3021 * Access: Index 3022 */ 3023 MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30, 3024 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 3025 3026 static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op, 3027 const char *src_tcam_region_info, 3028 u16 src_offset, 3029 const char *dest_tcam_region_info, 3030 u16 dest_offset, u16 size) 3031 { 3032 MLXSW_REG_ZERO(prcr, payload); 3033 mlxsw_reg_prcr_op_set(payload, op); 3034 mlxsw_reg_prcr_offset_set(payload, src_offset); 3035 mlxsw_reg_prcr_size_set(payload, size); 3036 mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload, 3037 src_tcam_region_info); 3038 mlxsw_reg_prcr_dest_offset_set(payload, dest_offset); 3039 mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload, 3040 dest_tcam_region_info); 3041 } 3042 3043 /* PEFA - Policy-Engine Extended Flexible Action Register 3044 * ------------------------------------------------------ 3045 * This register is used for accessing an extended flexible action entry 3046 * in the central KVD Linear Database. 3047 */ 3048 #define MLXSW_REG_PEFA_ID 0x300F 3049 #define MLXSW_REG_PEFA_LEN 0xB0 3050 3051 MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN); 3052 3053 /* reg_pefa_index 3054 * Index in the KVD Linear Centralized Database. 3055 * Access: Index 3056 */ 3057 MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24); 3058 3059 /* reg_pefa_a 3060 * Index in the KVD Linear Centralized Database. 3061 * Activity 3062 * For a new entry: set if ca=0, clear if ca=1 3063 * Set if a packet lookup has hit on the specific entry 3064 * Access: RO 3065 */ 3066 MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1); 3067 3068 /* reg_pefa_ca 3069 * Clear activity 3070 * When write: activity is according to this field 3071 * When read: after reading the activity is cleared according to ca 3072 * Access: OP 3073 */ 3074 MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1); 3075 3076 #define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8 3077 3078 /* reg_pefa_flex_action_set 3079 * Action-set to perform when rule is matched. 3080 * Must be zero padded if action set is shorter. 3081 * Access: RW 3082 */ 3083 MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN); 3084 3085 static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca, 3086 const char *flex_action_set) 3087 { 3088 MLXSW_REG_ZERO(pefa, payload); 3089 mlxsw_reg_pefa_index_set(payload, index); 3090 mlxsw_reg_pefa_ca_set(payload, ca); 3091 if (flex_action_set) 3092 mlxsw_reg_pefa_flex_action_set_memcpy_to(payload, 3093 flex_action_set); 3094 } 3095 3096 static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a) 3097 { 3098 *p_a = mlxsw_reg_pefa_a_get(payload); 3099 } 3100 3101 /* PEMRBT - Policy-Engine Multicast Router Binding Table Register 3102 * -------------------------------------------------------------- 3103 * This register is used for binding Multicast router to an ACL group 3104 * that serves the MC router. 3105 * This register is not supported by SwitchX/-2 and Spectrum. 3106 */ 3107 #define MLXSW_REG_PEMRBT_ID 0x3014 3108 #define MLXSW_REG_PEMRBT_LEN 0x14 3109 3110 MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN); 3111 3112 enum mlxsw_reg_pemrbt_protocol { 3113 MLXSW_REG_PEMRBT_PROTO_IPV4, 3114 MLXSW_REG_PEMRBT_PROTO_IPV6, 3115 }; 3116 3117 /* reg_pemrbt_protocol 3118 * Access: Index 3119 */ 3120 MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1); 3121 3122 /* reg_pemrbt_group_id 3123 * ACL group identifier. 3124 * Range 0..cap_max_acl_groups-1 3125 * Access: RW 3126 */ 3127 MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16); 3128 3129 static inline void 3130 mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol, 3131 u16 group_id) 3132 { 3133 MLXSW_REG_ZERO(pemrbt, payload); 3134 mlxsw_reg_pemrbt_protocol_set(payload, protocol); 3135 mlxsw_reg_pemrbt_group_id_set(payload, group_id); 3136 } 3137 3138 /* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2 3139 * ----------------------------------------------------- 3140 * This register is used for accessing rules within a TCAM region. 3141 * It is a new version of PTCE in order to support wider key, 3142 * mask and action within a TCAM region. This register is not supported 3143 * by SwitchX and SwitchX-2. 3144 */ 3145 #define MLXSW_REG_PTCE2_ID 0x3017 3146 #define MLXSW_REG_PTCE2_LEN 0x1D8 3147 3148 MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN); 3149 3150 /* reg_ptce2_v 3151 * Valid. 3152 * Access: RW 3153 */ 3154 MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1); 3155 3156 /* reg_ptce2_a 3157 * Activity. Set if a packet lookup has hit on the specific entry. 3158 * To clear the "a" bit, use "clear activity" op or "clear on read" op. 3159 * Access: RO 3160 */ 3161 MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1); 3162 3163 enum mlxsw_reg_ptce2_op { 3164 /* Read operation. */ 3165 MLXSW_REG_PTCE2_OP_QUERY_READ = 0, 3166 /* clear on read operation. Used to read entry 3167 * and clear Activity bit. 3168 */ 3169 MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1, 3170 /* Write operation. Used to write a new entry to the table. 3171 * All R/W fields are relevant for new entry. Activity bit is set 3172 * for new entries - Note write with v = 0 will delete the entry. 3173 */ 3174 MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0, 3175 /* Update action. Only action set will be updated. */ 3176 MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1, 3177 /* Clear activity. A bit is cleared for the entry. */ 3178 MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2, 3179 }; 3180 3181 /* reg_ptce2_op 3182 * Access: OP 3183 */ 3184 MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3); 3185 3186 /* reg_ptce2_offset 3187 * Access: Index 3188 */ 3189 MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16); 3190 3191 /* reg_ptce2_priority 3192 * Priority of the rule, higher values win. The range is 1..cap_kvd_size-1. 3193 * Note: priority does not have to be unique per rule. 3194 * Within a region, higher priority should have lower offset (no limitation 3195 * between regions in a multi-region). 3196 * Access: RW 3197 */ 3198 MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24); 3199 3200 /* reg_ptce2_tcam_region_info 3201 * Opaque object that represents the TCAM region. 3202 * Access: Index 3203 */ 3204 MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10, 3205 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 3206 3207 #define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96 3208 3209 /* reg_ptce2_flex_key_blocks 3210 * ACL Key. 3211 * Access: RW 3212 */ 3213 MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20, 3214 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 3215 3216 /* reg_ptce2_mask 3217 * mask- in the same size as key. A bit that is set directs the TCAM 3218 * to compare the corresponding bit in key. A bit that is clear directs 3219 * the TCAM to ignore the corresponding bit in key. 3220 * Access: RW 3221 */ 3222 MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80, 3223 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 3224 3225 /* reg_ptce2_flex_action_set 3226 * ACL action set. 3227 * Access: RW 3228 */ 3229 MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0, 3230 MLXSW_REG_FLEX_ACTION_SET_LEN); 3231 3232 static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid, 3233 enum mlxsw_reg_ptce2_op op, 3234 const char *tcam_region_info, 3235 u16 offset, u32 priority) 3236 { 3237 MLXSW_REG_ZERO(ptce2, payload); 3238 mlxsw_reg_ptce2_v_set(payload, valid); 3239 mlxsw_reg_ptce2_op_set(payload, op); 3240 mlxsw_reg_ptce2_offset_set(payload, offset); 3241 mlxsw_reg_ptce2_priority_set(payload, priority); 3242 mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info); 3243 } 3244 3245 /* PERPT - Policy-Engine ERP Table Register 3246 * ---------------------------------------- 3247 * This register adds and removes eRPs from the eRP table. 3248 */ 3249 #define MLXSW_REG_PERPT_ID 0x3021 3250 #define MLXSW_REG_PERPT_LEN 0x80 3251 3252 MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN); 3253 3254 /* reg_perpt_erpt_bank 3255 * eRP table bank. 3256 * Range 0 .. cap_max_erp_table_banks - 1 3257 * Access: Index 3258 */ 3259 MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4); 3260 3261 /* reg_perpt_erpt_index 3262 * Index to eRP table within the eRP bank. 3263 * Range is 0 .. cap_max_erp_table_bank_size - 1 3264 * Access: Index 3265 */ 3266 MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8); 3267 3268 enum mlxsw_reg_perpt_key_size { 3269 MLXSW_REG_PERPT_KEY_SIZE_2KB, 3270 MLXSW_REG_PERPT_KEY_SIZE_4KB, 3271 MLXSW_REG_PERPT_KEY_SIZE_8KB, 3272 MLXSW_REG_PERPT_KEY_SIZE_12KB, 3273 }; 3274 3275 /* reg_perpt_key_size 3276 * Access: OP 3277 */ 3278 MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4); 3279 3280 /* reg_perpt_bf_bypass 3281 * 0 - The eRP is used only if bloom filter state is set for the given 3282 * rule. 3283 * 1 - The eRP is used regardless of bloom filter state. 3284 * The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass 3285 * Access: RW 3286 */ 3287 MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1); 3288 3289 /* reg_perpt_erp_id 3290 * eRP ID for use by the rules. 3291 * Access: RW 3292 */ 3293 MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4); 3294 3295 /* reg_perpt_erpt_base_bank 3296 * Base eRP table bank, points to head of erp_vector 3297 * Range is 0 .. cap_max_erp_table_banks - 1 3298 * Access: OP 3299 */ 3300 MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4); 3301 3302 /* reg_perpt_erpt_base_index 3303 * Base index to eRP table within the eRP bank 3304 * Range is 0 .. cap_max_erp_table_bank_size - 1 3305 * Access: OP 3306 */ 3307 MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8); 3308 3309 /* reg_perpt_erp_index_in_vector 3310 * eRP index in the vector. 3311 * Access: OP 3312 */ 3313 MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4); 3314 3315 /* reg_perpt_erp_vector 3316 * eRP vector. 3317 * Access: OP 3318 */ 3319 MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1); 3320 3321 /* reg_perpt_mask 3322 * Mask 3323 * 0 - A-TCAM will ignore the bit in key 3324 * 1 - A-TCAM will compare the bit in key 3325 * Access: RW 3326 */ 3327 MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 3328 3329 static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload, 3330 unsigned long *erp_vector, 3331 unsigned long size) 3332 { 3333 unsigned long bit; 3334 3335 for_each_set_bit(bit, erp_vector, size) 3336 mlxsw_reg_perpt_erp_vector_set(payload, bit, true); 3337 } 3338 3339 static inline void 3340 mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index, 3341 enum mlxsw_reg_perpt_key_size key_size, u8 erp_id, 3342 u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index, 3343 char *mask) 3344 { 3345 MLXSW_REG_ZERO(perpt, payload); 3346 mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank); 3347 mlxsw_reg_perpt_erpt_index_set(payload, erpt_index); 3348 mlxsw_reg_perpt_key_size_set(payload, key_size); 3349 mlxsw_reg_perpt_bf_bypass_set(payload, false); 3350 mlxsw_reg_perpt_erp_id_set(payload, erp_id); 3351 mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank); 3352 mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index); 3353 mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index); 3354 mlxsw_reg_perpt_mask_memcpy_to(payload, mask); 3355 } 3356 3357 /* PERAR - Policy-Engine Region Association Register 3358 * ------------------------------------------------- 3359 * This register associates a hw region for region_id's. Changing on the fly 3360 * is supported by the device. 3361 */ 3362 #define MLXSW_REG_PERAR_ID 0x3026 3363 #define MLXSW_REG_PERAR_LEN 0x08 3364 3365 MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN); 3366 3367 /* reg_perar_region_id 3368 * Region identifier 3369 * Range 0 .. cap_max_regions-1 3370 * Access: Index 3371 */ 3372 MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16); 3373 3374 static inline unsigned int 3375 mlxsw_reg_perar_hw_regions_needed(unsigned int block_num) 3376 { 3377 return DIV_ROUND_UP(block_num, 4); 3378 } 3379 3380 /* reg_perar_hw_region 3381 * HW Region 3382 * Range 0 .. cap_max_regions-1 3383 * Default: hw_region = region_id 3384 * For a 8 key block region, 2 consecutive regions are used 3385 * For a 12 key block region, 3 consecutive regions are used 3386 * Access: RW 3387 */ 3388 MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16); 3389 3390 static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id, 3391 u16 hw_region) 3392 { 3393 MLXSW_REG_ZERO(perar, payload); 3394 mlxsw_reg_perar_region_id_set(payload, region_id); 3395 mlxsw_reg_perar_hw_region_set(payload, hw_region); 3396 } 3397 3398 /* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3 3399 * ----------------------------------------------------- 3400 * This register is a new version of PTCE-V2 in order to support the 3401 * A-TCAM. This register is not supported by SwitchX/-2 and Spectrum. 3402 */ 3403 #define MLXSW_REG_PTCE3_ID 0x3027 3404 #define MLXSW_REG_PTCE3_LEN 0xF0 3405 3406 MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN); 3407 3408 /* reg_ptce3_v 3409 * Valid. 3410 * Access: RW 3411 */ 3412 MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1); 3413 3414 enum mlxsw_reg_ptce3_op { 3415 /* Write operation. Used to write a new entry to the table. 3416 * All R/W fields are relevant for new entry. Activity bit is set 3417 * for new entries. Write with v = 0 will delete the entry. Must 3418 * not be used if an entry exists. 3419 */ 3420 MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0, 3421 /* Update operation */ 3422 MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1, 3423 /* Read operation */ 3424 MLXSW_REG_PTCE3_OP_QUERY_READ = 0, 3425 }; 3426 3427 /* reg_ptce3_op 3428 * Access: OP 3429 */ 3430 MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3); 3431 3432 /* reg_ptce3_priority 3433 * Priority of the rule. Higher values win. 3434 * For Spectrum-2 range is 1..cap_kvd_size - 1 3435 * Note: Priority does not have to be unique per rule. 3436 * Access: RW 3437 */ 3438 MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24); 3439 3440 /* reg_ptce3_tcam_region_info 3441 * Opaque object that represents the TCAM region. 3442 * Access: Index 3443 */ 3444 MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10, 3445 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 3446 3447 /* reg_ptce3_flex2_key_blocks 3448 * ACL key. The key must be masked according to eRP (if exists) or 3449 * according to master mask. 3450 * Access: Index 3451 */ 3452 MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20, 3453 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 3454 3455 /* reg_ptce3_erp_id 3456 * eRP ID. 3457 * Access: Index 3458 */ 3459 MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4); 3460 3461 /* reg_ptce3_delta_start 3462 * Start point of delta_value and delta_mask, in bits. Must not exceed 3463 * num_key_blocks * 36 - 8. Reserved when delta_mask = 0. 3464 * Access: Index 3465 */ 3466 MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10); 3467 3468 /* reg_ptce3_delta_mask 3469 * Delta mask. 3470 * 0 - Ignore relevant bit in delta_value 3471 * 1 - Compare relevant bit in delta_value 3472 * Delta mask must not be set for reserved fields in the key blocks. 3473 * Note: No delta when no eRPs. Thus, for regions with 3474 * PERERP.erpt_pointer_valid = 0 the delta mask must be 0. 3475 * Access: Index 3476 */ 3477 MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8); 3478 3479 /* reg_ptce3_delta_value 3480 * Delta value. 3481 * Bits which are masked by delta_mask must be 0. 3482 * Access: Index 3483 */ 3484 MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8); 3485 3486 /* reg_ptce3_prune_vector 3487 * Pruning vector relative to the PERPT.erp_id. 3488 * Used for reducing lookups. 3489 * 0 - NEED: Do a lookup using the eRP. 3490 * 1 - PRUNE: Do not perform a lookup using the eRP. 3491 * Maybe be modified by PEAPBL and PEAPBM. 3492 * Note: In Spectrum-2, a region of 8 key blocks must be set to either 3493 * all 1's or all 0's. 3494 * Access: RW 3495 */ 3496 MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1); 3497 3498 /* reg_ptce3_prune_ctcam 3499 * Pruning on C-TCAM. Used for reducing lookups. 3500 * 0 - NEED: Do a lookup in the C-TCAM. 3501 * 1 - PRUNE: Do not perform a lookup in the C-TCAM. 3502 * Access: RW 3503 */ 3504 MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1); 3505 3506 /* reg_ptce3_large_exists 3507 * Large entry key ID exists. 3508 * Within the region: 3509 * 0 - SINGLE: The large_entry_key_id is not currently in use. 3510 * For rule insert: The MSB of the key (blocks 6..11) will be added. 3511 * For rule delete: The MSB of the key will be removed. 3512 * 1 - NON_SINGLE: The large_entry_key_id is currently in use. 3513 * For rule insert: The MSB of the key (blocks 6..11) will not be added. 3514 * For rule delete: The MSB of the key will not be removed. 3515 * Access: WO 3516 */ 3517 MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1); 3518 3519 /* reg_ptce3_large_entry_key_id 3520 * Large entry key ID. 3521 * A key for 12 key blocks rules. Reserved when region has less than 12 key 3522 * blocks. Must be different for different keys which have the same common 3523 * 6 key blocks (MSB, blocks 6..11) key within a region. 3524 * Range is 0..cap_max_pe_large_key_id - 1 3525 * Access: RW 3526 */ 3527 MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24); 3528 3529 /* reg_ptce3_action_pointer 3530 * Pointer to action. 3531 * Range is 0..cap_max_kvd_action_sets - 1 3532 * Access: RW 3533 */ 3534 MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24); 3535 3536 static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid, 3537 enum mlxsw_reg_ptce3_op op, 3538 u32 priority, 3539 const char *tcam_region_info, 3540 const char *key, u8 erp_id, 3541 u16 delta_start, u8 delta_mask, 3542 u8 delta_value, bool large_exists, 3543 u32 lkey_id, u32 action_pointer) 3544 { 3545 MLXSW_REG_ZERO(ptce3, payload); 3546 mlxsw_reg_ptce3_v_set(payload, valid); 3547 mlxsw_reg_ptce3_op_set(payload, op); 3548 mlxsw_reg_ptce3_priority_set(payload, priority); 3549 mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info); 3550 mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key); 3551 mlxsw_reg_ptce3_erp_id_set(payload, erp_id); 3552 mlxsw_reg_ptce3_delta_start_set(payload, delta_start); 3553 mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask); 3554 mlxsw_reg_ptce3_delta_value_set(payload, delta_value); 3555 mlxsw_reg_ptce3_large_exists_set(payload, large_exists); 3556 mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id); 3557 mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer); 3558 } 3559 3560 /* PERCR - Policy-Engine Region Configuration Register 3561 * --------------------------------------------------- 3562 * This register configures the region parameters. The region_id must be 3563 * allocated. 3564 */ 3565 #define MLXSW_REG_PERCR_ID 0x302A 3566 #define MLXSW_REG_PERCR_LEN 0x80 3567 3568 MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN); 3569 3570 /* reg_percr_region_id 3571 * Region identifier. 3572 * Range 0..cap_max_regions-1 3573 * Access: Index 3574 */ 3575 MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16); 3576 3577 /* reg_percr_atcam_ignore_prune 3578 * Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule. 3579 * Access: RW 3580 */ 3581 MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1); 3582 3583 /* reg_percr_ctcam_ignore_prune 3584 * Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule. 3585 * Access: RW 3586 */ 3587 MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1); 3588 3589 /* reg_percr_bf_bypass 3590 * Bloom filter bypass. 3591 * 0 - Bloom filter is used (default) 3592 * 1 - Bloom filter is bypassed. The bypass is an OR condition of 3593 * region_id or eRP. See PERPT.bf_bypass 3594 * Access: RW 3595 */ 3596 MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1); 3597 3598 /* reg_percr_master_mask 3599 * Master mask. Logical OR mask of all masks of all rules of a region 3600 * (both A-TCAM and C-TCAM). When there are no eRPs 3601 * (erpt_pointer_valid = 0), then this provides the mask. 3602 * Access: RW 3603 */ 3604 MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96); 3605 3606 static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id) 3607 { 3608 MLXSW_REG_ZERO(percr, payload); 3609 mlxsw_reg_percr_region_id_set(payload, region_id); 3610 mlxsw_reg_percr_atcam_ignore_prune_set(payload, false); 3611 mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false); 3612 mlxsw_reg_percr_bf_bypass_set(payload, false); 3613 } 3614 3615 /* PERERP - Policy-Engine Region eRP Register 3616 * ------------------------------------------ 3617 * This register configures the region eRP. The region_id must be 3618 * allocated. 3619 */ 3620 #define MLXSW_REG_PERERP_ID 0x302B 3621 #define MLXSW_REG_PERERP_LEN 0x1C 3622 3623 MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN); 3624 3625 /* reg_pererp_region_id 3626 * Region identifier. 3627 * Range 0..cap_max_regions-1 3628 * Access: Index 3629 */ 3630 MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16); 3631 3632 /* reg_pererp_ctcam_le 3633 * C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0. 3634 * Access: RW 3635 */ 3636 MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1); 3637 3638 /* reg_pererp_erpt_pointer_valid 3639 * erpt_pointer is valid. 3640 * Access: RW 3641 */ 3642 MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1); 3643 3644 /* reg_pererp_erpt_bank_pointer 3645 * Pointer to eRP table bank. May be modified at any time. 3646 * Range 0..cap_max_erp_table_banks-1 3647 * Reserved when erpt_pointer_valid = 0 3648 */ 3649 MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4); 3650 3651 /* reg_pererp_erpt_pointer 3652 * Pointer to eRP table within the eRP bank. Can be changed for an 3653 * existing region. 3654 * Range 0..cap_max_erp_table_size-1 3655 * Reserved when erpt_pointer_valid = 0 3656 * Access: RW 3657 */ 3658 MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8); 3659 3660 /* reg_pererp_erpt_vector 3661 * Vector of allowed eRP indexes starting from erpt_pointer within the 3662 * erpt_bank_pointer. Next entries will be in next bank. 3663 * Note that eRP index is used and not eRP ID. 3664 * Reserved when erpt_pointer_valid = 0 3665 * Access: RW 3666 */ 3667 MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1); 3668 3669 /* reg_pererp_master_rp_id 3670 * Master RP ID. When there are no eRPs, then this provides the eRP ID 3671 * for the lookup. Can be changed for an existing region. 3672 * Reserved when erpt_pointer_valid = 1 3673 * Access: RW 3674 */ 3675 MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4); 3676 3677 static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload, 3678 unsigned long *erp_vector, 3679 unsigned long size) 3680 { 3681 unsigned long bit; 3682 3683 for_each_set_bit(bit, erp_vector, size) 3684 mlxsw_reg_pererp_erpt_vector_set(payload, bit, true); 3685 } 3686 3687 static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id, 3688 bool ctcam_le, bool erpt_pointer_valid, 3689 u8 erpt_bank_pointer, u8 erpt_pointer, 3690 u8 master_rp_id) 3691 { 3692 MLXSW_REG_ZERO(pererp, payload); 3693 mlxsw_reg_pererp_region_id_set(payload, region_id); 3694 mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le); 3695 mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid); 3696 mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer); 3697 mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer); 3698 mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id); 3699 } 3700 3701 /* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register 3702 * ---------------------------------------------------------------- 3703 * This register configures the Bloom filter entries. 3704 */ 3705 #define MLXSW_REG_PEABFE_ID 0x3022 3706 #define MLXSW_REG_PEABFE_BASE_LEN 0x10 3707 #define MLXSW_REG_PEABFE_BF_REC_LEN 0x4 3708 #define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256 3709 #define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \ 3710 MLXSW_REG_PEABFE_BF_REC_LEN * \ 3711 MLXSW_REG_PEABFE_BF_REC_MAX_COUNT) 3712 3713 MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN); 3714 3715 /* reg_peabfe_size 3716 * Number of BF entries to be updated. 3717 * Range 1..256 3718 * Access: Op 3719 */ 3720 MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9); 3721 3722 /* reg_peabfe_bf_entry_state 3723 * Bloom filter state 3724 * 0 - Clear 3725 * 1 - Set 3726 * Access: RW 3727 */ 3728 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state, 3729 MLXSW_REG_PEABFE_BASE_LEN, 31, 1, 3730 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3731 3732 /* reg_peabfe_bf_entry_bank 3733 * Bloom filter bank ID 3734 * Range 0..cap_max_erp_table_banks-1 3735 * Access: Index 3736 */ 3737 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank, 3738 MLXSW_REG_PEABFE_BASE_LEN, 24, 4, 3739 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3740 3741 /* reg_peabfe_bf_entry_index 3742 * Bloom filter entry index 3743 * Range 0..2^cap_max_bf_log-1 3744 * Access: Index 3745 */ 3746 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index, 3747 MLXSW_REG_PEABFE_BASE_LEN, 0, 24, 3748 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3749 3750 static inline void mlxsw_reg_peabfe_pack(char *payload) 3751 { 3752 MLXSW_REG_ZERO(peabfe, payload); 3753 } 3754 3755 static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index, 3756 u8 state, u8 bank, u32 bf_index) 3757 { 3758 u8 num_rec = mlxsw_reg_peabfe_size_get(payload); 3759 3760 if (rec_index >= num_rec) 3761 mlxsw_reg_peabfe_size_set(payload, rec_index + 1); 3762 mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state); 3763 mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank); 3764 mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index); 3765 } 3766 3767 /* IEDR - Infrastructure Entry Delete Register 3768 * ---------------------------------------------------- 3769 * This register is used for deleting entries from the entry tables. 3770 * It is legitimate to attempt to delete a nonexisting entry (the device will 3771 * respond as a good flow). 3772 */ 3773 #define MLXSW_REG_IEDR_ID 0x3804 3774 #define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */ 3775 #define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */ 3776 #define MLXSW_REG_IEDR_REC_MAX_COUNT 64 3777 #define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \ 3778 MLXSW_REG_IEDR_REC_LEN * \ 3779 MLXSW_REG_IEDR_REC_MAX_COUNT) 3780 3781 MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN); 3782 3783 /* reg_iedr_num_rec 3784 * Number of records. 3785 * Access: OP 3786 */ 3787 MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8); 3788 3789 /* reg_iedr_rec_type 3790 * Resource type. 3791 * Access: OP 3792 */ 3793 MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8, 3794 MLXSW_REG_IEDR_REC_LEN, 0x00, false); 3795 3796 /* reg_iedr_rec_size 3797 * Size of entries do be deleted. The unit is 1 entry, regardless of entry type. 3798 * Access: OP 3799 */ 3800 MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 13, 3801 MLXSW_REG_IEDR_REC_LEN, 0x00, false); 3802 3803 /* reg_iedr_rec_index_start 3804 * Resource index start. 3805 * Access: OP 3806 */ 3807 MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24, 3808 MLXSW_REG_IEDR_REC_LEN, 0x04, false); 3809 3810 static inline void mlxsw_reg_iedr_pack(char *payload) 3811 { 3812 MLXSW_REG_ZERO(iedr, payload); 3813 } 3814 3815 static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index, 3816 u8 rec_type, u16 rec_size, 3817 u32 rec_index_start) 3818 { 3819 u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload); 3820 3821 if (rec_index >= num_rec) 3822 mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1); 3823 mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type); 3824 mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size); 3825 mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start); 3826 } 3827 3828 /* QPTS - QoS Priority Trust State Register 3829 * ---------------------------------------- 3830 * This register controls the port policy to calculate the switch priority and 3831 * packet color based on incoming packet fields. 3832 */ 3833 #define MLXSW_REG_QPTS_ID 0x4002 3834 #define MLXSW_REG_QPTS_LEN 0x8 3835 3836 MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN); 3837 3838 /* reg_qpts_local_port 3839 * Local port number. 3840 * Access: Index 3841 * 3842 * Note: CPU port is supported. 3843 */ 3844 MLXSW_ITEM32_LP(reg, qpts, 0x00, 16, 0x00, 12); 3845 3846 enum mlxsw_reg_qpts_trust_state { 3847 MLXSW_REG_QPTS_TRUST_STATE_PCP = 1, 3848 MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */ 3849 }; 3850 3851 /* reg_qpts_trust_state 3852 * Trust state for a given port. 3853 * Access: RW 3854 */ 3855 MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3); 3856 3857 static inline void mlxsw_reg_qpts_pack(char *payload, u16 local_port, 3858 enum mlxsw_reg_qpts_trust_state ts) 3859 { 3860 MLXSW_REG_ZERO(qpts, payload); 3861 3862 mlxsw_reg_qpts_local_port_set(payload, local_port); 3863 mlxsw_reg_qpts_trust_state_set(payload, ts); 3864 } 3865 3866 /* QPCR - QoS Policer Configuration Register 3867 * ----------------------------------------- 3868 * The QPCR register is used to create policers - that limit 3869 * the rate of bytes or packets via some trap group. 3870 */ 3871 #define MLXSW_REG_QPCR_ID 0x4004 3872 #define MLXSW_REG_QPCR_LEN 0x28 3873 3874 MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN); 3875 3876 enum mlxsw_reg_qpcr_g { 3877 MLXSW_REG_QPCR_G_GLOBAL = 2, 3878 MLXSW_REG_QPCR_G_STORM_CONTROL = 3, 3879 }; 3880 3881 /* reg_qpcr_g 3882 * The policer type. 3883 * Access: Index 3884 */ 3885 MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2); 3886 3887 /* reg_qpcr_pid 3888 * Policer ID. 3889 * Access: Index 3890 */ 3891 MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14); 3892 3893 /* reg_qpcr_clear_counter 3894 * Clear counters. 3895 * Access: OP 3896 */ 3897 MLXSW_ITEM32(reg, qpcr, clear_counter, 0x04, 31, 1); 3898 3899 /* reg_qpcr_color_aware 3900 * Is the policer aware of colors. 3901 * Must be 0 (unaware) for cpu port. 3902 * Access: RW for unbounded policer. RO for bounded policer. 3903 */ 3904 MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1); 3905 3906 /* reg_qpcr_bytes 3907 * Is policer limit is for bytes per sec or packets per sec. 3908 * 0 - packets 3909 * 1 - bytes 3910 * Access: RW for unbounded policer. RO for bounded policer. 3911 */ 3912 MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1); 3913 3914 enum mlxsw_reg_qpcr_ir_units { 3915 MLXSW_REG_QPCR_IR_UNITS_M, 3916 MLXSW_REG_QPCR_IR_UNITS_K, 3917 }; 3918 3919 /* reg_qpcr_ir_units 3920 * Policer's units for cir and eir fields (for bytes limits only) 3921 * 1 - 10^3 3922 * 0 - 10^6 3923 * Access: OP 3924 */ 3925 MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1); 3926 3927 enum mlxsw_reg_qpcr_rate_type { 3928 MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1, 3929 MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2, 3930 }; 3931 3932 /* reg_qpcr_rate_type 3933 * Policer can have one limit (single rate) or 2 limits with specific operation 3934 * for packets that exceed the lower rate but not the upper one. 3935 * (For cpu port must be single rate) 3936 * Access: RW for unbounded policer. RO for bounded policer. 3937 */ 3938 MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2); 3939 3940 /* reg_qpc_cbs 3941 * Policer's committed burst size. 3942 * The policer is working with time slices of 50 nano sec. By default every 3943 * slice is granted the proportionate share of the committed rate. If we want to 3944 * allow a slice to exceed that share (while still keeping the rate per sec) we 3945 * can allow burst. The burst size is between the default proportionate share 3946 * (and no lower than 8) to 32Gb. (Even though giving a number higher than the 3947 * committed rate will result in exceeding the rate). The burst size must be a 3948 * log of 2 and will be determined by 2^cbs. 3949 * Access: RW 3950 */ 3951 MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6); 3952 3953 /* reg_qpcr_cir 3954 * Policer's committed rate. 3955 * The rate used for sungle rate, the lower rate for double rate. 3956 * For bytes limits, the rate will be this value * the unit from ir_units. 3957 * (Resolution error is up to 1%). 3958 * Access: RW 3959 */ 3960 MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32); 3961 3962 /* reg_qpcr_eir 3963 * Policer's exceed rate. 3964 * The higher rate for double rate, reserved for single rate. 3965 * Lower rate for double rate policer. 3966 * For bytes limits, the rate will be this value * the unit from ir_units. 3967 * (Resolution error is up to 1%). 3968 * Access: RW 3969 */ 3970 MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32); 3971 3972 #define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2 3973 3974 /* reg_qpcr_exceed_action. 3975 * What to do with packets between the 2 limits for double rate. 3976 * Access: RW for unbounded policer. RO for bounded policer. 3977 */ 3978 MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4); 3979 3980 enum mlxsw_reg_qpcr_action { 3981 /* Discard */ 3982 MLXSW_REG_QPCR_ACTION_DISCARD = 1, 3983 /* Forward and set color to red. 3984 * If the packet is intended to cpu port, it will be dropped. 3985 */ 3986 MLXSW_REG_QPCR_ACTION_FORWARD = 2, 3987 }; 3988 3989 /* reg_qpcr_violate_action 3990 * What to do with packets that cross the cir limit (for single rate) or the eir 3991 * limit (for double rate). 3992 * Access: RW for unbounded policer. RO for bounded policer. 3993 */ 3994 MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4); 3995 3996 /* reg_qpcr_violate_count 3997 * Counts the number of times violate_action happened on this PID. 3998 * Access: RW 3999 */ 4000 MLXSW_ITEM64(reg, qpcr, violate_count, 0x20, 0, 64); 4001 4002 /* Packets */ 4003 #define MLXSW_REG_QPCR_LOWEST_CIR 1 4004 #define MLXSW_REG_QPCR_HIGHEST_CIR (2 * 1000 * 1000 * 1000) /* 2Gpps */ 4005 #define MLXSW_REG_QPCR_LOWEST_CBS 4 4006 #define MLXSW_REG_QPCR_HIGHEST_CBS 24 4007 4008 /* Bandwidth */ 4009 #define MLXSW_REG_QPCR_LOWEST_CIR_BITS 1024 /* bps */ 4010 #define MLXSW_REG_QPCR_HIGHEST_CIR_BITS 2000000000000ULL /* 2Tbps */ 4011 #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP1 4 4012 #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP2 4 4013 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP1 25 4014 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP2 31 4015 4016 static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid, 4017 enum mlxsw_reg_qpcr_ir_units ir_units, 4018 bool bytes, u32 cir, u16 cbs) 4019 { 4020 MLXSW_REG_ZERO(qpcr, payload); 4021 mlxsw_reg_qpcr_pid_set(payload, pid); 4022 mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL); 4023 mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE); 4024 mlxsw_reg_qpcr_violate_action_set(payload, 4025 MLXSW_REG_QPCR_ACTION_DISCARD); 4026 mlxsw_reg_qpcr_cir_set(payload, cir); 4027 mlxsw_reg_qpcr_ir_units_set(payload, ir_units); 4028 mlxsw_reg_qpcr_bytes_set(payload, bytes); 4029 mlxsw_reg_qpcr_cbs_set(payload, cbs); 4030 } 4031 4032 /* QTCT - QoS Switch Traffic Class Table 4033 * ------------------------------------- 4034 * Configures the mapping between the packet switch priority and the 4035 * traffic class on the transmit port. 4036 */ 4037 #define MLXSW_REG_QTCT_ID 0x400A 4038 #define MLXSW_REG_QTCT_LEN 0x08 4039 4040 MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN); 4041 4042 /* reg_qtct_local_port 4043 * Local port number. 4044 * Access: Index 4045 * 4046 * Note: CPU port is not supported. 4047 */ 4048 MLXSW_ITEM32_LP(reg, qtct, 0x00, 16, 0x00, 12); 4049 4050 /* reg_qtct_sub_port 4051 * Virtual port within the physical port. 4052 * Should be set to 0 when virtual ports are not enabled on the port. 4053 * Access: Index 4054 */ 4055 MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8); 4056 4057 /* reg_qtct_switch_prio 4058 * Switch priority. 4059 * Access: Index 4060 */ 4061 MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4); 4062 4063 /* reg_qtct_tclass 4064 * Traffic class. 4065 * Default values: 4066 * switch_prio 0 : tclass 1 4067 * switch_prio 1 : tclass 0 4068 * switch_prio i : tclass i, for i > 1 4069 * Access: RW 4070 */ 4071 MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4); 4072 4073 static inline void mlxsw_reg_qtct_pack(char *payload, u16 local_port, 4074 u8 switch_prio, u8 tclass) 4075 { 4076 MLXSW_REG_ZERO(qtct, payload); 4077 mlxsw_reg_qtct_local_port_set(payload, local_port); 4078 mlxsw_reg_qtct_switch_prio_set(payload, switch_prio); 4079 mlxsw_reg_qtct_tclass_set(payload, tclass); 4080 } 4081 4082 /* QEEC - QoS ETS Element Configuration Register 4083 * --------------------------------------------- 4084 * Configures the ETS elements. 4085 */ 4086 #define MLXSW_REG_QEEC_ID 0x400D 4087 #define MLXSW_REG_QEEC_LEN 0x20 4088 4089 MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN); 4090 4091 /* reg_qeec_local_port 4092 * Local port number. 4093 * Access: Index 4094 * 4095 * Note: CPU port is supported. 4096 */ 4097 MLXSW_ITEM32_LP(reg, qeec, 0x00, 16, 0x00, 12); 4098 4099 enum mlxsw_reg_qeec_hr { 4100 MLXSW_REG_QEEC_HR_PORT, 4101 MLXSW_REG_QEEC_HR_GROUP, 4102 MLXSW_REG_QEEC_HR_SUBGROUP, 4103 MLXSW_REG_QEEC_HR_TC, 4104 }; 4105 4106 /* reg_qeec_element_hierarchy 4107 * 0 - Port 4108 * 1 - Group 4109 * 2 - Subgroup 4110 * 3 - Traffic Class 4111 * Access: Index 4112 */ 4113 MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4); 4114 4115 /* reg_qeec_element_index 4116 * The index of the element in the hierarchy. 4117 * Access: Index 4118 */ 4119 MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8); 4120 4121 /* reg_qeec_next_element_index 4122 * The index of the next (lower) element in the hierarchy. 4123 * Access: RW 4124 * 4125 * Note: Reserved for element_hierarchy 0. 4126 */ 4127 MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8); 4128 4129 /* reg_qeec_mise 4130 * Min shaper configuration enable. Enables configuration of the min 4131 * shaper on this ETS element 4132 * 0 - Disable 4133 * 1 - Enable 4134 * Access: RW 4135 */ 4136 MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1); 4137 4138 /* reg_qeec_ptps 4139 * PTP shaper 4140 * 0: regular shaper mode 4141 * 1: PTP oriented shaper 4142 * Allowed only for hierarchy 0 4143 * Not supported for CPU port 4144 * Note that ptps mode may affect the shaper rates of all hierarchies 4145 * Supported only on Spectrum-1 4146 * Access: RW 4147 */ 4148 MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1); 4149 4150 enum { 4151 MLXSW_REG_QEEC_BYTES_MODE, 4152 MLXSW_REG_QEEC_PACKETS_MODE, 4153 }; 4154 4155 /* reg_qeec_pb 4156 * Packets or bytes mode. 4157 * 0 - Bytes mode 4158 * 1 - Packets mode 4159 * Access: RW 4160 * 4161 * Note: Used for max shaper configuration. For Spectrum, packets mode 4162 * is supported only for traffic classes of CPU port. 4163 */ 4164 MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1); 4165 4166 /* The smallest permitted min shaper rate. */ 4167 #define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */ 4168 4169 /* reg_qeec_min_shaper_rate 4170 * Min shaper information rate. 4171 * For CPU port, can only be configured for port hierarchy. 4172 * When in bytes mode, value is specified in units of 1000bps. 4173 * Access: RW 4174 */ 4175 MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28); 4176 4177 /* reg_qeec_mase 4178 * Max shaper configuration enable. Enables configuration of the max 4179 * shaper on this ETS element. 4180 * 0 - Disable 4181 * 1 - Enable 4182 * Access: RW 4183 */ 4184 MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1); 4185 4186 /* The largest max shaper value possible to disable the shaper. */ 4187 #define MLXSW_REG_QEEC_MAS_DIS ((1u << 31) - 1) /* Kbps */ 4188 4189 /* reg_qeec_max_shaper_rate 4190 * Max shaper information rate. 4191 * For CPU port, can only be configured for port hierarchy. 4192 * When in bytes mode, value is specified in units of 1000bps. 4193 * Access: RW 4194 */ 4195 MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 31); 4196 4197 /* reg_qeec_de 4198 * DWRR configuration enable. Enables configuration of the dwrr and 4199 * dwrr_weight. 4200 * 0 - Disable 4201 * 1 - Enable 4202 * Access: RW 4203 */ 4204 MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1); 4205 4206 /* reg_qeec_dwrr 4207 * Transmission selection algorithm to use on the link going down from 4208 * the ETS element. 4209 * 0 - Strict priority 4210 * 1 - DWRR 4211 * Access: RW 4212 */ 4213 MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1); 4214 4215 /* reg_qeec_dwrr_weight 4216 * DWRR weight on the link going down from the ETS element. The 4217 * percentage of bandwidth guaranteed to an ETS element within 4218 * its hierarchy. The sum of all weights across all ETS elements 4219 * within one hierarchy should be equal to 100. Reserved when 4220 * transmission selection algorithm is strict priority. 4221 * Access: RW 4222 */ 4223 MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8); 4224 4225 /* reg_qeec_max_shaper_bs 4226 * Max shaper burst size 4227 * Burst size is 2^max_shaper_bs * 512 bits 4228 * For Spectrum-1: Range is: 5..25 4229 * For Spectrum-2: Range is: 11..25 4230 * Reserved when ptps = 1 4231 * Access: RW 4232 */ 4233 MLXSW_ITEM32(reg, qeec, max_shaper_bs, 0x1C, 0, 6); 4234 4235 #define MLXSW_REG_QEEC_HIGHEST_SHAPER_BS 25 4236 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP1 5 4237 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP2 11 4238 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP3 11 4239 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP4 11 4240 4241 static inline void mlxsw_reg_qeec_pack(char *payload, u16 local_port, 4242 enum mlxsw_reg_qeec_hr hr, u8 index, 4243 u8 next_index) 4244 { 4245 MLXSW_REG_ZERO(qeec, payload); 4246 mlxsw_reg_qeec_local_port_set(payload, local_port); 4247 mlxsw_reg_qeec_element_hierarchy_set(payload, hr); 4248 mlxsw_reg_qeec_element_index_set(payload, index); 4249 mlxsw_reg_qeec_next_element_index_set(payload, next_index); 4250 } 4251 4252 static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u16 local_port, 4253 bool ptps) 4254 { 4255 MLXSW_REG_ZERO(qeec, payload); 4256 mlxsw_reg_qeec_local_port_set(payload, local_port); 4257 mlxsw_reg_qeec_element_hierarchy_set(payload, MLXSW_REG_QEEC_HR_PORT); 4258 mlxsw_reg_qeec_ptps_set(payload, ptps); 4259 } 4260 4261 /* QRWE - QoS ReWrite Enable 4262 * ------------------------- 4263 * This register configures the rewrite enable per receive port. 4264 */ 4265 #define MLXSW_REG_QRWE_ID 0x400F 4266 #define MLXSW_REG_QRWE_LEN 0x08 4267 4268 MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN); 4269 4270 /* reg_qrwe_local_port 4271 * Local port number. 4272 * Access: Index 4273 * 4274 * Note: CPU port is supported. No support for router port. 4275 */ 4276 MLXSW_ITEM32_LP(reg, qrwe, 0x00, 16, 0x00, 12); 4277 4278 /* reg_qrwe_dscp 4279 * Whether to enable DSCP rewrite (default is 0, don't rewrite). 4280 * Access: RW 4281 */ 4282 MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1); 4283 4284 /* reg_qrwe_pcp 4285 * Whether to enable PCP and DEI rewrite (default is 0, don't rewrite). 4286 * Access: RW 4287 */ 4288 MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1); 4289 4290 static inline void mlxsw_reg_qrwe_pack(char *payload, u16 local_port, 4291 bool rewrite_pcp, bool rewrite_dscp) 4292 { 4293 MLXSW_REG_ZERO(qrwe, payload); 4294 mlxsw_reg_qrwe_local_port_set(payload, local_port); 4295 mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp); 4296 mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp); 4297 } 4298 4299 /* QPDSM - QoS Priority to DSCP Mapping 4300 * ------------------------------------ 4301 * QoS Priority to DSCP Mapping Register 4302 */ 4303 #define MLXSW_REG_QPDSM_ID 0x4011 4304 #define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */ 4305 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */ 4306 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16 4307 #define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \ 4308 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \ 4309 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT) 4310 4311 MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN); 4312 4313 /* reg_qpdsm_local_port 4314 * Local Port. Supported for data packets from CPU port. 4315 * Access: Index 4316 */ 4317 MLXSW_ITEM32_LP(reg, qpdsm, 0x00, 16, 0x00, 12); 4318 4319 /* reg_qpdsm_prio_entry_color0_e 4320 * Enable update of the entry for color 0 and a given port. 4321 * Access: WO 4322 */ 4323 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e, 4324 MLXSW_REG_QPDSM_BASE_LEN, 31, 1, 4325 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4326 4327 /* reg_qpdsm_prio_entry_color0_dscp 4328 * DSCP field in the outer label of the packet for color 0 and a given port. 4329 * Reserved when e=0. 4330 * Access: RW 4331 */ 4332 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp, 4333 MLXSW_REG_QPDSM_BASE_LEN, 24, 6, 4334 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4335 4336 /* reg_qpdsm_prio_entry_color1_e 4337 * Enable update of the entry for color 1 and a given port. 4338 * Access: WO 4339 */ 4340 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e, 4341 MLXSW_REG_QPDSM_BASE_LEN, 23, 1, 4342 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4343 4344 /* reg_qpdsm_prio_entry_color1_dscp 4345 * DSCP field in the outer label of the packet for color 1 and a given port. 4346 * Reserved when e=0. 4347 * Access: RW 4348 */ 4349 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp, 4350 MLXSW_REG_QPDSM_BASE_LEN, 16, 6, 4351 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4352 4353 /* reg_qpdsm_prio_entry_color2_e 4354 * Enable update of the entry for color 2 and a given port. 4355 * Access: WO 4356 */ 4357 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e, 4358 MLXSW_REG_QPDSM_BASE_LEN, 15, 1, 4359 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4360 4361 /* reg_qpdsm_prio_entry_color2_dscp 4362 * DSCP field in the outer label of the packet for color 2 and a given port. 4363 * Reserved when e=0. 4364 * Access: RW 4365 */ 4366 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp, 4367 MLXSW_REG_QPDSM_BASE_LEN, 8, 6, 4368 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4369 4370 static inline void mlxsw_reg_qpdsm_pack(char *payload, u16 local_port) 4371 { 4372 MLXSW_REG_ZERO(qpdsm, payload); 4373 mlxsw_reg_qpdsm_local_port_set(payload, local_port); 4374 } 4375 4376 static inline void 4377 mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp) 4378 { 4379 mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1); 4380 mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp); 4381 mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1); 4382 mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp); 4383 mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1); 4384 mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp); 4385 } 4386 4387 /* QPDP - QoS Port DSCP to Priority Mapping Register 4388 * ------------------------------------------------- 4389 * This register controls the port default Switch Priority and Color. The 4390 * default Switch Priority and Color are used for frames where the trust state 4391 * uses default values. All member ports of a LAG should be configured with the 4392 * same default values. 4393 */ 4394 #define MLXSW_REG_QPDP_ID 0x4007 4395 #define MLXSW_REG_QPDP_LEN 0x8 4396 4397 MLXSW_REG_DEFINE(qpdp, MLXSW_REG_QPDP_ID, MLXSW_REG_QPDP_LEN); 4398 4399 /* reg_qpdp_local_port 4400 * Local Port. Supported for data packets from CPU port. 4401 * Access: Index 4402 */ 4403 MLXSW_ITEM32_LP(reg, qpdp, 0x00, 16, 0x00, 12); 4404 4405 /* reg_qpdp_switch_prio 4406 * Default port Switch Priority (default 0) 4407 * Access: RW 4408 */ 4409 MLXSW_ITEM32(reg, qpdp, switch_prio, 0x04, 0, 4); 4410 4411 static inline void mlxsw_reg_qpdp_pack(char *payload, u16 local_port, 4412 u8 switch_prio) 4413 { 4414 MLXSW_REG_ZERO(qpdp, payload); 4415 mlxsw_reg_qpdp_local_port_set(payload, local_port); 4416 mlxsw_reg_qpdp_switch_prio_set(payload, switch_prio); 4417 } 4418 4419 /* QPDPM - QoS Port DSCP to Priority Mapping Register 4420 * -------------------------------------------------- 4421 * This register controls the mapping from DSCP field to 4422 * Switch Priority for IP packets. 4423 */ 4424 #define MLXSW_REG_QPDPM_ID 0x4013 4425 #define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */ 4426 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */ 4427 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64 4428 #define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \ 4429 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \ 4430 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT) 4431 4432 MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN); 4433 4434 /* reg_qpdpm_local_port 4435 * Local Port. Supported for data packets from CPU port. 4436 * Access: Index 4437 */ 4438 MLXSW_ITEM32_LP(reg, qpdpm, 0x00, 16, 0x00, 12); 4439 4440 /* reg_qpdpm_dscp_e 4441 * Enable update of the specific entry. When cleared, the switch_prio and color 4442 * fields are ignored and the previous switch_prio and color values are 4443 * preserved. 4444 * Access: WO 4445 */ 4446 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1, 4447 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 4448 4449 /* reg_qpdpm_dscp_prio 4450 * The new Switch Priority value for the relevant DSCP value. 4451 * Access: RW 4452 */ 4453 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio, 4454 MLXSW_REG_QPDPM_BASE_LEN, 0, 4, 4455 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 4456 4457 static inline void mlxsw_reg_qpdpm_pack(char *payload, u16 local_port) 4458 { 4459 MLXSW_REG_ZERO(qpdpm, payload); 4460 mlxsw_reg_qpdpm_local_port_set(payload, local_port); 4461 } 4462 4463 static inline void 4464 mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio) 4465 { 4466 mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1); 4467 mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio); 4468 } 4469 4470 /* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register 4471 * ------------------------------------------------------------------ 4472 * This register configures if the Switch Priority to Traffic Class mapping is 4473 * based on Multicast packet indication. If so, then multicast packets will get 4474 * a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by 4475 * QTCT. 4476 * By default, Switch Priority to Traffic Class mapping is not based on 4477 * Multicast packet indication. 4478 */ 4479 #define MLXSW_REG_QTCTM_ID 0x401A 4480 #define MLXSW_REG_QTCTM_LEN 0x08 4481 4482 MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN); 4483 4484 /* reg_qtctm_local_port 4485 * Local port number. 4486 * No support for CPU port. 4487 * Access: Index 4488 */ 4489 MLXSW_ITEM32_LP(reg, qtctm, 0x00, 16, 0x00, 12); 4490 4491 /* reg_qtctm_mc 4492 * Multicast Mode 4493 * Whether Switch Priority to Traffic Class mapping is based on Multicast packet 4494 * indication (default is 0, not based on Multicast packet indication). 4495 */ 4496 MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1); 4497 4498 static inline void 4499 mlxsw_reg_qtctm_pack(char *payload, u16 local_port, bool mc) 4500 { 4501 MLXSW_REG_ZERO(qtctm, payload); 4502 mlxsw_reg_qtctm_local_port_set(payload, local_port); 4503 mlxsw_reg_qtctm_mc_set(payload, mc); 4504 } 4505 4506 /* QPSC - QoS PTP Shaper Configuration Register 4507 * -------------------------------------------- 4508 * The QPSC allows advanced configuration of the shapers when QEEC.ptps=1. 4509 * Supported only on Spectrum-1. 4510 */ 4511 #define MLXSW_REG_QPSC_ID 0x401B 4512 #define MLXSW_REG_QPSC_LEN 0x28 4513 4514 MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN); 4515 4516 enum mlxsw_reg_qpsc_port_speed { 4517 MLXSW_REG_QPSC_PORT_SPEED_100M, 4518 MLXSW_REG_QPSC_PORT_SPEED_1G, 4519 MLXSW_REG_QPSC_PORT_SPEED_10G, 4520 MLXSW_REG_QPSC_PORT_SPEED_25G, 4521 }; 4522 4523 /* reg_qpsc_port_speed 4524 * Port speed. 4525 * Access: Index 4526 */ 4527 MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4); 4528 4529 /* reg_qpsc_shaper_time_exp 4530 * The base-time-interval for updating the shapers tokens (for all hierarchies). 4531 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec 4532 * shaper_rate = 64bit * shaper_inc / shaper_update_rate 4533 * Access: RW 4534 */ 4535 MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4); 4536 4537 /* reg_qpsc_shaper_time_mantissa 4538 * The base-time-interval for updating the shapers tokens (for all hierarchies). 4539 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec 4540 * shaper_rate = 64bit * shaper_inc / shaper_update_rate 4541 * Access: RW 4542 */ 4543 MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5); 4544 4545 /* reg_qpsc_shaper_inc 4546 * Number of tokens added to shaper on each update. 4547 * Units of 8B. 4548 * Access: RW 4549 */ 4550 MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5); 4551 4552 /* reg_qpsc_shaper_bs 4553 * Max shaper Burst size. 4554 * Burst size is 2 ^ max_shaper_bs * 512 [bits] 4555 * Range is: 5..25 (from 2KB..2GB) 4556 * Access: RW 4557 */ 4558 MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6); 4559 4560 /* reg_qpsc_ptsc_we 4561 * Write enable to port_to_shaper_credits. 4562 * Access: WO 4563 */ 4564 MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1); 4565 4566 /* reg_qpsc_port_to_shaper_credits 4567 * For split ports: range 1..57 4568 * For non-split ports: range 1..112 4569 * Written only when ptsc_we is set. 4570 * Access: RW 4571 */ 4572 MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8); 4573 4574 /* reg_qpsc_ing_timestamp_inc 4575 * Ingress timestamp increment. 4576 * 2's complement. 4577 * The timestamp of MTPPTR at ingress will be incremented by this value. Global 4578 * value for all ports. 4579 * Same units as used by MTPPTR. 4580 * Access: RW 4581 */ 4582 MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32); 4583 4584 /* reg_qpsc_egr_timestamp_inc 4585 * Egress timestamp increment. 4586 * 2's complement. 4587 * The timestamp of MTPPTR at egress will be incremented by this value. Global 4588 * value for all ports. 4589 * Same units as used by MTPPTR. 4590 * Access: RW 4591 */ 4592 MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32); 4593 4594 static inline void 4595 mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed, 4596 u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc, 4597 u8 shaper_bs, u8 port_to_shaper_credits, 4598 int ing_timestamp_inc, int egr_timestamp_inc) 4599 { 4600 MLXSW_REG_ZERO(qpsc, payload); 4601 mlxsw_reg_qpsc_port_speed_set(payload, port_speed); 4602 mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp); 4603 mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa); 4604 mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc); 4605 mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs); 4606 mlxsw_reg_qpsc_ptsc_we_set(payload, true); 4607 mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits); 4608 mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc); 4609 mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc); 4610 } 4611 4612 /* PMLP - Ports Module to Local Port Register 4613 * ------------------------------------------ 4614 * Configures the assignment of modules to local ports. 4615 */ 4616 #define MLXSW_REG_PMLP_ID 0x5002 4617 #define MLXSW_REG_PMLP_LEN 0x40 4618 4619 MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN); 4620 4621 /* reg_pmlp_rxtx 4622 * 0 - Tx value is used for both Tx and Rx. 4623 * 1 - Rx value is taken from a separte field. 4624 * Access: RW 4625 */ 4626 MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1); 4627 4628 /* reg_pmlp_local_port 4629 * Local port number. 4630 * Access: Index 4631 */ 4632 MLXSW_ITEM32_LP(reg, pmlp, 0x00, 16, 0x00, 12); 4633 4634 /* reg_pmlp_width 4635 * 0 - Unmap local port. 4636 * 1 - Lane 0 is used. 4637 * 2 - Lanes 0 and 1 are used. 4638 * 4 - Lanes 0, 1, 2 and 3 are used. 4639 * 8 - Lanes 0-7 are used. 4640 * Access: RW 4641 */ 4642 MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8); 4643 4644 /* reg_pmlp_module 4645 * Module number. 4646 * Access: RW 4647 */ 4648 MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false); 4649 4650 /* reg_pmlp_slot_index 4651 * Module number. 4652 * Slot_index 4653 * Slot_index = 0 represent the onboard (motherboard). 4654 * In case of non-modular system only slot_index = 0 is available. 4655 * Access: RW 4656 */ 4657 MLXSW_ITEM32_INDEXED(reg, pmlp, slot_index, 0x04, 8, 4, 0x04, 0x00, false); 4658 4659 /* reg_pmlp_tx_lane 4660 * Tx Lane. When rxtx field is cleared, this field is used for Rx as well. 4661 * Access: RW 4662 */ 4663 MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 4, 0x04, 0x00, false); 4664 4665 /* reg_pmlp_rx_lane 4666 * Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is 4667 * equal to Tx lane. 4668 * Access: RW 4669 */ 4670 MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 4, 0x04, 0x00, false); 4671 4672 static inline void mlxsw_reg_pmlp_pack(char *payload, u16 local_port) 4673 { 4674 MLXSW_REG_ZERO(pmlp, payload); 4675 mlxsw_reg_pmlp_local_port_set(payload, local_port); 4676 } 4677 4678 /* PMTU - Port MTU Register 4679 * ------------------------ 4680 * Configures and reports the port MTU. 4681 */ 4682 #define MLXSW_REG_PMTU_ID 0x5003 4683 #define MLXSW_REG_PMTU_LEN 0x10 4684 4685 MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN); 4686 4687 /* reg_pmtu_local_port 4688 * Local port number. 4689 * Access: Index 4690 */ 4691 MLXSW_ITEM32_LP(reg, pmtu, 0x00, 16, 0x00, 12); 4692 4693 /* reg_pmtu_max_mtu 4694 * Maximum MTU. 4695 * When port type (e.g. Ethernet) is configured, the relevant MTU is 4696 * reported, otherwise the minimum between the max_mtu of the different 4697 * types is reported. 4698 * Access: RO 4699 */ 4700 MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16); 4701 4702 /* reg_pmtu_admin_mtu 4703 * MTU value to set port to. Must be smaller or equal to max_mtu. 4704 * Note: If port type is Infiniband, then port must be disabled, when its 4705 * MTU is set. 4706 * Access: RW 4707 */ 4708 MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16); 4709 4710 /* reg_pmtu_oper_mtu 4711 * The actual MTU configured on the port. Packets exceeding this size 4712 * will be dropped. 4713 * Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband 4714 * oper_mtu might be smaller than admin_mtu. 4715 * Access: RO 4716 */ 4717 MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16); 4718 4719 static inline void mlxsw_reg_pmtu_pack(char *payload, u16 local_port, 4720 u16 new_mtu) 4721 { 4722 MLXSW_REG_ZERO(pmtu, payload); 4723 mlxsw_reg_pmtu_local_port_set(payload, local_port); 4724 mlxsw_reg_pmtu_max_mtu_set(payload, 0); 4725 mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu); 4726 mlxsw_reg_pmtu_oper_mtu_set(payload, 0); 4727 } 4728 4729 /* PTYS - Port Type and Speed Register 4730 * ----------------------------------- 4731 * Configures and reports the port speed type. 4732 * 4733 * Note: When set while the link is up, the changes will not take effect 4734 * until the port transitions from down to up state. 4735 */ 4736 #define MLXSW_REG_PTYS_ID 0x5004 4737 #define MLXSW_REG_PTYS_LEN 0x40 4738 4739 MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN); 4740 4741 /* an_disable_admin 4742 * Auto negotiation disable administrative configuration 4743 * 0 - Device doesn't support AN disable. 4744 * 1 - Device supports AN disable. 4745 * Access: RW 4746 */ 4747 MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1); 4748 4749 /* reg_ptys_local_port 4750 * Local port number. 4751 * Access: Index 4752 */ 4753 MLXSW_ITEM32_LP(reg, ptys, 0x00, 16, 0x00, 12); 4754 4755 #define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0) 4756 #define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2) 4757 4758 /* reg_ptys_proto_mask 4759 * Protocol mask. Indicates which protocol is used. 4760 * 0 - Infiniband. 4761 * 1 - Fibre Channel. 4762 * 2 - Ethernet. 4763 * Access: Index 4764 */ 4765 MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3); 4766 4767 enum { 4768 MLXSW_REG_PTYS_AN_STATUS_NA, 4769 MLXSW_REG_PTYS_AN_STATUS_OK, 4770 MLXSW_REG_PTYS_AN_STATUS_FAIL, 4771 }; 4772 4773 /* reg_ptys_an_status 4774 * Autonegotiation status. 4775 * Access: RO 4776 */ 4777 MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4); 4778 4779 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0) 4780 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1) 4781 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3) 4782 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4) 4783 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5) 4784 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6) 4785 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7) 4786 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8) 4787 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9) 4788 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10) 4789 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_1_100GBASE_CR_KR BIT(11) 4790 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12) 4791 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_2_200GBASE_CR2_KR2 BIT(13) 4792 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_8 BIT(15) 4793 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_4_400GBASE_CR4_KR4 BIT(16) 4794 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_800GAUI_8 BIT(19) 4795 4796 /* reg_ptys_ext_eth_proto_cap 4797 * Extended Ethernet port supported speeds and protocols. 4798 * Access: RO 4799 */ 4800 MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32); 4801 4802 #define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0) 4803 #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1) 4804 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2) 4805 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3) 4806 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4) 4807 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6) 4808 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7) 4809 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12) 4810 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13) 4811 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14) 4812 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15) 4813 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16) 4814 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18) 4815 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19) 4816 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20) 4817 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21) 4818 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22) 4819 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23) 4820 #define MLXSW_REG_PTYS_ETH_SPEED_100BASE_T BIT(24) 4821 #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_T BIT(25) 4822 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27) 4823 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28) 4824 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29) 4825 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30) 4826 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31) 4827 4828 /* reg_ptys_eth_proto_cap 4829 * Ethernet port supported speeds and protocols. 4830 * Access: RO 4831 */ 4832 MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32); 4833 4834 /* reg_ptys_ext_eth_proto_admin 4835 * Extended speed and protocol to set port to. 4836 * Access: RW 4837 */ 4838 MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32); 4839 4840 /* reg_ptys_eth_proto_admin 4841 * Speed and protocol to set port to. 4842 * Access: RW 4843 */ 4844 MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32); 4845 4846 /* reg_ptys_ext_eth_proto_oper 4847 * The extended current speed and protocol configured for the port. 4848 * Access: RO 4849 */ 4850 MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32); 4851 4852 /* reg_ptys_eth_proto_oper 4853 * The current speed and protocol configured for the port. 4854 * Access: RO 4855 */ 4856 MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32); 4857 4858 enum mlxsw_reg_ptys_connector_type { 4859 MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR, 4860 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE, 4861 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP, 4862 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI, 4863 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC, 4864 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII, 4865 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE, 4866 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA, 4867 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER, 4868 }; 4869 4870 /* reg_ptys_connector_type 4871 * Connector type indication. 4872 * Access: RO 4873 */ 4874 MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4); 4875 4876 static inline void mlxsw_reg_ptys_eth_pack(char *payload, u16 local_port, 4877 u32 proto_admin, bool autoneg) 4878 { 4879 MLXSW_REG_ZERO(ptys, payload); 4880 mlxsw_reg_ptys_local_port_set(payload, local_port); 4881 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); 4882 mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin); 4883 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); 4884 } 4885 4886 static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u16 local_port, 4887 u32 proto_admin, bool autoneg) 4888 { 4889 MLXSW_REG_ZERO(ptys, payload); 4890 mlxsw_reg_ptys_local_port_set(payload, local_port); 4891 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); 4892 mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin); 4893 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); 4894 } 4895 4896 static inline void mlxsw_reg_ptys_eth_unpack(char *payload, 4897 u32 *p_eth_proto_cap, 4898 u32 *p_eth_proto_admin, 4899 u32 *p_eth_proto_oper) 4900 { 4901 if (p_eth_proto_cap) 4902 *p_eth_proto_cap = 4903 mlxsw_reg_ptys_eth_proto_cap_get(payload); 4904 if (p_eth_proto_admin) 4905 *p_eth_proto_admin = 4906 mlxsw_reg_ptys_eth_proto_admin_get(payload); 4907 if (p_eth_proto_oper) 4908 *p_eth_proto_oper = 4909 mlxsw_reg_ptys_eth_proto_oper_get(payload); 4910 } 4911 4912 static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload, 4913 u32 *p_eth_proto_cap, 4914 u32 *p_eth_proto_admin, 4915 u32 *p_eth_proto_oper) 4916 { 4917 if (p_eth_proto_cap) 4918 *p_eth_proto_cap = 4919 mlxsw_reg_ptys_ext_eth_proto_cap_get(payload); 4920 if (p_eth_proto_admin) 4921 *p_eth_proto_admin = 4922 mlxsw_reg_ptys_ext_eth_proto_admin_get(payload); 4923 if (p_eth_proto_oper) 4924 *p_eth_proto_oper = 4925 mlxsw_reg_ptys_ext_eth_proto_oper_get(payload); 4926 } 4927 4928 /* PPAD - Port Physical Address Register 4929 * ------------------------------------- 4930 * The PPAD register configures the per port physical MAC address. 4931 */ 4932 #define MLXSW_REG_PPAD_ID 0x5005 4933 #define MLXSW_REG_PPAD_LEN 0x10 4934 4935 MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN); 4936 4937 /* reg_ppad_single_base_mac 4938 * 0: base_mac, local port should be 0 and mac[7:0] is 4939 * reserved. HW will set incremental 4940 * 1: single_mac - mac of the local_port 4941 * Access: RW 4942 */ 4943 MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1); 4944 4945 /* reg_ppad_local_port 4946 * port number, if single_base_mac = 0 then local_port is reserved 4947 * Access: RW 4948 */ 4949 MLXSW_ITEM32_LP(reg, ppad, 0x00, 16, 0x00, 24); 4950 4951 /* reg_ppad_mac 4952 * If single_base_mac = 0 - base MAC address, mac[7:0] is reserved. 4953 * If single_base_mac = 1 - the per port MAC address 4954 * Access: RW 4955 */ 4956 MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6); 4957 4958 static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac, 4959 u16 local_port) 4960 { 4961 MLXSW_REG_ZERO(ppad, payload); 4962 mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac); 4963 mlxsw_reg_ppad_local_port_set(payload, local_port); 4964 } 4965 4966 /* PAOS - Ports Administrative and Operational Status Register 4967 * ----------------------------------------------------------- 4968 * Configures and retrieves per port administrative and operational status. 4969 */ 4970 #define MLXSW_REG_PAOS_ID 0x5006 4971 #define MLXSW_REG_PAOS_LEN 0x10 4972 4973 MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN); 4974 4975 /* reg_paos_swid 4976 * Switch partition ID with which to associate the port. 4977 * Note: while external ports uses unique local port numbers (and thus swid is 4978 * redundant), router ports use the same local port number where swid is the 4979 * only indication for the relevant port. 4980 * Access: Index 4981 */ 4982 MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8); 4983 4984 /* reg_paos_local_port 4985 * Local port number. 4986 * Access: Index 4987 */ 4988 MLXSW_ITEM32_LP(reg, paos, 0x00, 16, 0x00, 12); 4989 4990 /* reg_paos_admin_status 4991 * Port administrative state (the desired state of the port): 4992 * 1 - Up. 4993 * 2 - Down. 4994 * 3 - Up once. This means that in case of link failure, the port won't go 4995 * into polling mode, but will wait to be re-enabled by software. 4996 * 4 - Disabled by system. Can only be set by hardware. 4997 * Access: RW 4998 */ 4999 MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4); 5000 5001 /* reg_paos_oper_status 5002 * Port operational state (the current state): 5003 * 1 - Up. 5004 * 2 - Down. 5005 * 3 - Down by port failure. This means that the device will not let the 5006 * port up again until explicitly specified by software. 5007 * Access: RO 5008 */ 5009 MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4); 5010 5011 /* reg_paos_ase 5012 * Admin state update enabled. 5013 * Access: WO 5014 */ 5015 MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1); 5016 5017 /* reg_paos_ee 5018 * Event update enable. If this bit is set, event generation will be 5019 * updated based on the e field. 5020 * Access: WO 5021 */ 5022 MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1); 5023 5024 /* reg_paos_e 5025 * Event generation on operational state change: 5026 * 0 - Do not generate event. 5027 * 1 - Generate Event. 5028 * 2 - Generate Single Event. 5029 * Access: RW 5030 */ 5031 MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2); 5032 5033 static inline void mlxsw_reg_paos_pack(char *payload, u16 local_port, 5034 enum mlxsw_port_admin_status status) 5035 { 5036 MLXSW_REG_ZERO(paos, payload); 5037 mlxsw_reg_paos_swid_set(payload, 0); 5038 mlxsw_reg_paos_local_port_set(payload, local_port); 5039 mlxsw_reg_paos_admin_status_set(payload, status); 5040 mlxsw_reg_paos_oper_status_set(payload, 0); 5041 mlxsw_reg_paos_ase_set(payload, 1); 5042 mlxsw_reg_paos_ee_set(payload, 1); 5043 mlxsw_reg_paos_e_set(payload, 1); 5044 } 5045 5046 /* PFCC - Ports Flow Control Configuration Register 5047 * ------------------------------------------------ 5048 * Configures and retrieves the per port flow control configuration. 5049 */ 5050 #define MLXSW_REG_PFCC_ID 0x5007 5051 #define MLXSW_REG_PFCC_LEN 0x20 5052 5053 MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN); 5054 5055 /* reg_pfcc_local_port 5056 * Local port number. 5057 * Access: Index 5058 */ 5059 MLXSW_ITEM32_LP(reg, pfcc, 0x00, 16, 0x00, 12); 5060 5061 /* reg_pfcc_pnat 5062 * Port number access type. Determines the way local_port is interpreted: 5063 * 0 - Local port number. 5064 * 1 - IB / label port number. 5065 * Access: Index 5066 */ 5067 MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2); 5068 5069 /* reg_pfcc_shl_cap 5070 * Send to higher layers capabilities: 5071 * 0 - No capability of sending Pause and PFC frames to higher layers. 5072 * 1 - Device has capability of sending Pause and PFC frames to higher 5073 * layers. 5074 * Access: RO 5075 */ 5076 MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1); 5077 5078 /* reg_pfcc_shl_opr 5079 * Send to higher layers operation: 5080 * 0 - Pause and PFC frames are handled by the port (default). 5081 * 1 - Pause and PFC frames are handled by the port and also sent to 5082 * higher layers. Only valid if shl_cap = 1. 5083 * Access: RW 5084 */ 5085 MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1); 5086 5087 /* reg_pfcc_ppan 5088 * Pause policy auto negotiation. 5089 * 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx. 5090 * 1 - Enabled. When auto-negotiation is performed, set the Pause policy 5091 * based on the auto-negotiation resolution. 5092 * Access: RW 5093 * 5094 * Note: The auto-negotiation advertisement is set according to pptx and 5095 * pprtx. When PFC is set on Tx / Rx, ppan must be set to 0. 5096 */ 5097 MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4); 5098 5099 /* reg_pfcc_prio_mask_tx 5100 * Bit per priority indicating if Tx flow control policy should be 5101 * updated based on bit pfctx. 5102 * Access: WO 5103 */ 5104 MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8); 5105 5106 /* reg_pfcc_prio_mask_rx 5107 * Bit per priority indicating if Rx flow control policy should be 5108 * updated based on bit pfcrx. 5109 * Access: WO 5110 */ 5111 MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8); 5112 5113 /* reg_pfcc_pptx 5114 * Admin Pause policy on Tx. 5115 * 0 - Never generate Pause frames (default). 5116 * 1 - Generate Pause frames according to Rx buffer threshold. 5117 * Access: RW 5118 */ 5119 MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1); 5120 5121 /* reg_pfcc_aptx 5122 * Active (operational) Pause policy on Tx. 5123 * 0 - Never generate Pause frames. 5124 * 1 - Generate Pause frames according to Rx buffer threshold. 5125 * Access: RO 5126 */ 5127 MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1); 5128 5129 /* reg_pfcc_pfctx 5130 * Priority based flow control policy on Tx[7:0]. Per-priority bit mask: 5131 * 0 - Never generate priority Pause frames on the specified priority 5132 * (default). 5133 * 1 - Generate priority Pause frames according to Rx buffer threshold on 5134 * the specified priority. 5135 * Access: RW 5136 * 5137 * Note: pfctx and pptx must be mutually exclusive. 5138 */ 5139 MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8); 5140 5141 /* reg_pfcc_pprx 5142 * Admin Pause policy on Rx. 5143 * 0 - Ignore received Pause frames (default). 5144 * 1 - Respect received Pause frames. 5145 * Access: RW 5146 */ 5147 MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1); 5148 5149 /* reg_pfcc_aprx 5150 * Active (operational) Pause policy on Rx. 5151 * 0 - Ignore received Pause frames. 5152 * 1 - Respect received Pause frames. 5153 * Access: RO 5154 */ 5155 MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1); 5156 5157 /* reg_pfcc_pfcrx 5158 * Priority based flow control policy on Rx[7:0]. Per-priority bit mask: 5159 * 0 - Ignore incoming priority Pause frames on the specified priority 5160 * (default). 5161 * 1 - Respect incoming priority Pause frames on the specified priority. 5162 * Access: RW 5163 */ 5164 MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8); 5165 5166 #define MLXSW_REG_PFCC_ALL_PRIO 0xFF 5167 5168 static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en) 5169 { 5170 mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); 5171 mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); 5172 mlxsw_reg_pfcc_pfctx_set(payload, pfc_en); 5173 mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en); 5174 } 5175 5176 static inline void mlxsw_reg_pfcc_pack(char *payload, u16 local_port) 5177 { 5178 MLXSW_REG_ZERO(pfcc, payload); 5179 mlxsw_reg_pfcc_local_port_set(payload, local_port); 5180 } 5181 5182 /* PPCNT - Ports Performance Counters Register 5183 * ------------------------------------------- 5184 * The PPCNT register retrieves per port performance counters. 5185 */ 5186 #define MLXSW_REG_PPCNT_ID 0x5008 5187 #define MLXSW_REG_PPCNT_LEN 0x100 5188 #define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08 5189 5190 MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN); 5191 5192 /* reg_ppcnt_swid 5193 * For HCA: must be always 0. 5194 * Switch partition ID to associate port with. 5195 * Switch partitions are numbered from 0 to 7 inclusively. 5196 * Switch partition 254 indicates stacking ports. 5197 * Switch partition 255 indicates all switch partitions. 5198 * Only valid on Set() operation with local_port=255. 5199 * Access: Index 5200 */ 5201 MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8); 5202 5203 /* reg_ppcnt_local_port 5204 * Local port number. 5205 * Access: Index 5206 */ 5207 MLXSW_ITEM32_LP(reg, ppcnt, 0x00, 16, 0x00, 12); 5208 5209 /* reg_ppcnt_pnat 5210 * Port number access type: 5211 * 0 - Local port number 5212 * 1 - IB port number 5213 * Access: Index 5214 */ 5215 MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2); 5216 5217 enum mlxsw_reg_ppcnt_grp { 5218 MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0, 5219 MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1, 5220 MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2, 5221 MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3, 5222 MLXSW_REG_PPCNT_EXT_CNT = 0x5, 5223 MLXSW_REG_PPCNT_DISCARD_CNT = 0x6, 5224 MLXSW_REG_PPCNT_PRIO_CNT = 0x10, 5225 MLXSW_REG_PPCNT_TC_CNT = 0x11, 5226 MLXSW_REG_PPCNT_TC_CONG_CNT = 0x13, 5227 }; 5228 5229 /* reg_ppcnt_grp 5230 * Performance counter group. 5231 * Group 63 indicates all groups. Only valid on Set() operation with 5232 * clr bit set. 5233 * 0x0: IEEE 802.3 Counters 5234 * 0x1: RFC 2863 Counters 5235 * 0x2: RFC 2819 Counters 5236 * 0x3: RFC 3635 Counters 5237 * 0x5: Ethernet Extended Counters 5238 * 0x6: Ethernet Discard Counters 5239 * 0x8: Link Level Retransmission Counters 5240 * 0x10: Per Priority Counters 5241 * 0x11: Per Traffic Class Counters 5242 * 0x12: Physical Layer Counters 5243 * 0x13: Per Traffic Class Congestion Counters 5244 * Access: Index 5245 */ 5246 MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6); 5247 5248 /* reg_ppcnt_clr 5249 * Clear counters. Setting the clr bit will reset the counter value 5250 * for all counters in the counter group. This bit can be set 5251 * for both Set() and Get() operation. 5252 * Access: OP 5253 */ 5254 MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1); 5255 5256 /* reg_ppcnt_lp_gl 5257 * Local port global variable. 5258 * 0: local_port 255 = all ports of the device. 5259 * 1: local_port indicates local port number for all ports. 5260 * Access: OP 5261 */ 5262 MLXSW_ITEM32(reg, ppcnt, lp_gl, 0x04, 30, 1); 5263 5264 /* reg_ppcnt_prio_tc 5265 * Priority for counter set that support per priority, valid values: 0-7. 5266 * Traffic class for counter set that support per traffic class, 5267 * valid values: 0- cap_max_tclass-1 . 5268 * For HCA: cap_max_tclass is always 8. 5269 * Otherwise must be 0. 5270 * Access: Index 5271 */ 5272 MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5); 5273 5274 /* Ethernet IEEE 802.3 Counter Group */ 5275 5276 /* reg_ppcnt_a_frames_transmitted_ok 5277 * Access: RO 5278 */ 5279 MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok, 5280 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5281 5282 /* reg_ppcnt_a_frames_received_ok 5283 * Access: RO 5284 */ 5285 MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok, 5286 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5287 5288 /* reg_ppcnt_a_frame_check_sequence_errors 5289 * Access: RO 5290 */ 5291 MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors, 5292 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 5293 5294 /* reg_ppcnt_a_alignment_errors 5295 * Access: RO 5296 */ 5297 MLXSW_ITEM64(reg, ppcnt, a_alignment_errors, 5298 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); 5299 5300 /* reg_ppcnt_a_octets_transmitted_ok 5301 * Access: RO 5302 */ 5303 MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok, 5304 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 5305 5306 /* reg_ppcnt_a_octets_received_ok 5307 * Access: RO 5308 */ 5309 MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok, 5310 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 5311 5312 /* reg_ppcnt_a_multicast_frames_xmitted_ok 5313 * Access: RO 5314 */ 5315 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok, 5316 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 5317 5318 /* reg_ppcnt_a_broadcast_frames_xmitted_ok 5319 * Access: RO 5320 */ 5321 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok, 5322 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 5323 5324 /* reg_ppcnt_a_multicast_frames_received_ok 5325 * Access: RO 5326 */ 5327 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok, 5328 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5329 5330 /* reg_ppcnt_a_broadcast_frames_received_ok 5331 * Access: RO 5332 */ 5333 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok, 5334 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); 5335 5336 /* reg_ppcnt_a_in_range_length_errors 5337 * Access: RO 5338 */ 5339 MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors, 5340 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 5341 5342 /* reg_ppcnt_a_out_of_range_length_field 5343 * Access: RO 5344 */ 5345 MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field, 5346 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5347 5348 /* reg_ppcnt_a_frame_too_long_errors 5349 * Access: RO 5350 */ 5351 MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors, 5352 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5353 5354 /* reg_ppcnt_a_symbol_error_during_carrier 5355 * Access: RO 5356 */ 5357 MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier, 5358 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5359 5360 /* reg_ppcnt_a_mac_control_frames_transmitted 5361 * Access: RO 5362 */ 5363 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted, 5364 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5365 5366 /* reg_ppcnt_a_mac_control_frames_received 5367 * Access: RO 5368 */ 5369 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received, 5370 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); 5371 5372 /* reg_ppcnt_a_unsupported_opcodes_received 5373 * Access: RO 5374 */ 5375 MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received, 5376 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); 5377 5378 /* reg_ppcnt_a_pause_mac_ctrl_frames_received 5379 * Access: RO 5380 */ 5381 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received, 5382 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); 5383 5384 /* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted 5385 * Access: RO 5386 */ 5387 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted, 5388 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); 5389 5390 /* Ethernet RFC 2863 Counter Group */ 5391 5392 /* reg_ppcnt_if_in_discards 5393 * Access: RO 5394 */ 5395 MLXSW_ITEM64(reg, ppcnt, if_in_discards, 5396 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 5397 5398 /* reg_ppcnt_if_out_discards 5399 * Access: RO 5400 */ 5401 MLXSW_ITEM64(reg, ppcnt, if_out_discards, 5402 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 5403 5404 /* reg_ppcnt_if_out_errors 5405 * Access: RO 5406 */ 5407 MLXSW_ITEM64(reg, ppcnt, if_out_errors, 5408 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5409 5410 /* Ethernet RFC 2819 Counter Group */ 5411 5412 /* reg_ppcnt_ether_stats_undersize_pkts 5413 * Access: RO 5414 */ 5415 MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts, 5416 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 5417 5418 /* reg_ppcnt_ether_stats_oversize_pkts 5419 * Access: RO 5420 */ 5421 MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts, 5422 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 5423 5424 /* reg_ppcnt_ether_stats_fragments 5425 * Access: RO 5426 */ 5427 MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments, 5428 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5429 5430 /* reg_ppcnt_ether_stats_pkts64octets 5431 * Access: RO 5432 */ 5433 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets, 5434 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5435 5436 /* reg_ppcnt_ether_stats_pkts65to127octets 5437 * Access: RO 5438 */ 5439 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets, 5440 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5441 5442 /* reg_ppcnt_ether_stats_pkts128to255octets 5443 * Access: RO 5444 */ 5445 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets, 5446 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5447 5448 /* reg_ppcnt_ether_stats_pkts256to511octets 5449 * Access: RO 5450 */ 5451 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets, 5452 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5453 5454 /* reg_ppcnt_ether_stats_pkts512to1023octets 5455 * Access: RO 5456 */ 5457 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets, 5458 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); 5459 5460 /* reg_ppcnt_ether_stats_pkts1024to1518octets 5461 * Access: RO 5462 */ 5463 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets, 5464 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); 5465 5466 /* reg_ppcnt_ether_stats_pkts1519to2047octets 5467 * Access: RO 5468 */ 5469 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets, 5470 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); 5471 5472 /* reg_ppcnt_ether_stats_pkts2048to4095octets 5473 * Access: RO 5474 */ 5475 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets, 5476 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); 5477 5478 /* reg_ppcnt_ether_stats_pkts4096to8191octets 5479 * Access: RO 5480 */ 5481 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets, 5482 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64); 5483 5484 /* reg_ppcnt_ether_stats_pkts8192to10239octets 5485 * Access: RO 5486 */ 5487 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets, 5488 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64); 5489 5490 /* Ethernet RFC 3635 Counter Group */ 5491 5492 /* reg_ppcnt_dot3stats_fcs_errors 5493 * Access: RO 5494 */ 5495 MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors, 5496 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5497 5498 /* reg_ppcnt_dot3stats_symbol_errors 5499 * Access: RO 5500 */ 5501 MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors, 5502 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5503 5504 /* reg_ppcnt_dot3control_in_unknown_opcodes 5505 * Access: RO 5506 */ 5507 MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes, 5508 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5509 5510 /* reg_ppcnt_dot3in_pause_frames 5511 * Access: RO 5512 */ 5513 MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames, 5514 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5515 5516 /* Ethernet Extended Counter Group Counters */ 5517 5518 /* reg_ppcnt_ecn_marked 5519 * Access: RO 5520 */ 5521 MLXSW_ITEM64(reg, ppcnt, ecn_marked, 5522 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5523 5524 /* Ethernet Discard Counter Group Counters */ 5525 5526 /* reg_ppcnt_ingress_general 5527 * Access: RO 5528 */ 5529 MLXSW_ITEM64(reg, ppcnt, ingress_general, 5530 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5531 5532 /* reg_ppcnt_ingress_policy_engine 5533 * Access: RO 5534 */ 5535 MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine, 5536 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5537 5538 /* reg_ppcnt_ingress_vlan_membership 5539 * Access: RO 5540 */ 5541 MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership, 5542 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 5543 5544 /* reg_ppcnt_ingress_tag_frame_type 5545 * Access: RO 5546 */ 5547 MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type, 5548 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); 5549 5550 /* reg_ppcnt_egress_vlan_membership 5551 * Access: RO 5552 */ 5553 MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership, 5554 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 5555 5556 /* reg_ppcnt_loopback_filter 5557 * Access: RO 5558 */ 5559 MLXSW_ITEM64(reg, ppcnt, loopback_filter, 5560 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 5561 5562 /* reg_ppcnt_egress_general 5563 * Access: RO 5564 */ 5565 MLXSW_ITEM64(reg, ppcnt, egress_general, 5566 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 5567 5568 /* reg_ppcnt_egress_hoq 5569 * Access: RO 5570 */ 5571 MLXSW_ITEM64(reg, ppcnt, egress_hoq, 5572 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5573 5574 /* reg_ppcnt_egress_policy_engine 5575 * Access: RO 5576 */ 5577 MLXSW_ITEM64(reg, ppcnt, egress_policy_engine, 5578 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 5579 5580 /* reg_ppcnt_ingress_tx_link_down 5581 * Access: RO 5582 */ 5583 MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down, 5584 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5585 5586 /* reg_ppcnt_egress_stp_filter 5587 * Access: RO 5588 */ 5589 MLXSW_ITEM64(reg, ppcnt, egress_stp_filter, 5590 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5591 5592 /* reg_ppcnt_egress_sll 5593 * Access: RO 5594 */ 5595 MLXSW_ITEM64(reg, ppcnt, egress_sll, 5596 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5597 5598 /* Ethernet Per Priority Group Counters */ 5599 5600 /* reg_ppcnt_rx_octets 5601 * Access: RO 5602 */ 5603 MLXSW_ITEM64(reg, ppcnt, rx_octets, 5604 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5605 5606 /* reg_ppcnt_rx_frames 5607 * Access: RO 5608 */ 5609 MLXSW_ITEM64(reg, ppcnt, rx_frames, 5610 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 5611 5612 /* reg_ppcnt_tx_octets 5613 * Access: RO 5614 */ 5615 MLXSW_ITEM64(reg, ppcnt, tx_octets, 5616 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 5617 5618 /* reg_ppcnt_tx_frames 5619 * Access: RO 5620 */ 5621 MLXSW_ITEM64(reg, ppcnt, tx_frames, 5622 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); 5623 5624 /* reg_ppcnt_rx_pause 5625 * Access: RO 5626 */ 5627 MLXSW_ITEM64(reg, ppcnt, rx_pause, 5628 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 5629 5630 /* reg_ppcnt_rx_pause_duration 5631 * Access: RO 5632 */ 5633 MLXSW_ITEM64(reg, ppcnt, rx_pause_duration, 5634 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5635 5636 /* reg_ppcnt_tx_pause 5637 * Access: RO 5638 */ 5639 MLXSW_ITEM64(reg, ppcnt, tx_pause, 5640 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5641 5642 /* reg_ppcnt_tx_pause_duration 5643 * Access: RO 5644 */ 5645 MLXSW_ITEM64(reg, ppcnt, tx_pause_duration, 5646 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5647 5648 /* reg_ppcnt_rx_pause_transition 5649 * Access: RO 5650 */ 5651 MLXSW_ITEM64(reg, ppcnt, tx_pause_transition, 5652 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5653 5654 /* Ethernet Per Traffic Class Counters */ 5655 5656 /* reg_ppcnt_tc_transmit_queue 5657 * Contains the transmit queue depth in cells of traffic class 5658 * selected by prio_tc and the port selected by local_port. 5659 * The field cannot be cleared. 5660 * Access: RO 5661 */ 5662 MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue, 5663 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5664 5665 /* reg_ppcnt_tc_no_buffer_discard_uc 5666 * The number of unicast packets dropped due to lack of shared 5667 * buffer resources. 5668 * Access: RO 5669 */ 5670 MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc, 5671 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5672 5673 /* Ethernet Per Traffic Class Congestion Group Counters */ 5674 5675 /* reg_ppcnt_wred_discard 5676 * Access: RO 5677 */ 5678 MLXSW_ITEM64(reg, ppcnt, wred_discard, 5679 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5680 5681 /* reg_ppcnt_ecn_marked_tc 5682 * Access: RO 5683 */ 5684 MLXSW_ITEM64(reg, ppcnt, ecn_marked_tc, 5685 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5686 5687 static inline void mlxsw_reg_ppcnt_pack(char *payload, u16 local_port, 5688 enum mlxsw_reg_ppcnt_grp grp, 5689 u8 prio_tc) 5690 { 5691 MLXSW_REG_ZERO(ppcnt, payload); 5692 mlxsw_reg_ppcnt_swid_set(payload, 0); 5693 mlxsw_reg_ppcnt_local_port_set(payload, local_port); 5694 mlxsw_reg_ppcnt_pnat_set(payload, 0); 5695 mlxsw_reg_ppcnt_grp_set(payload, grp); 5696 mlxsw_reg_ppcnt_clr_set(payload, 0); 5697 mlxsw_reg_ppcnt_lp_gl_set(payload, 1); 5698 mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc); 5699 } 5700 5701 /* PPTB - Port Prio To Buffer Register 5702 * ----------------------------------- 5703 * Configures the switch priority to buffer table. 5704 */ 5705 #define MLXSW_REG_PPTB_ID 0x500B 5706 #define MLXSW_REG_PPTB_LEN 0x10 5707 5708 MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN); 5709 5710 enum { 5711 MLXSW_REG_PPTB_MM_UM, 5712 MLXSW_REG_PPTB_MM_UNICAST, 5713 MLXSW_REG_PPTB_MM_MULTICAST, 5714 }; 5715 5716 /* reg_pptb_mm 5717 * Mapping mode. 5718 * 0 - Map both unicast and multicast packets to the same buffer. 5719 * 1 - Map only unicast packets. 5720 * 2 - Map only multicast packets. 5721 * Access: Index 5722 * 5723 * Note: SwitchX-2 only supports the first option. 5724 */ 5725 MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2); 5726 5727 /* reg_pptb_local_port 5728 * Local port number. 5729 * Access: Index 5730 */ 5731 MLXSW_ITEM32_LP(reg, pptb, 0x00, 16, 0x00, 12); 5732 5733 /* reg_pptb_um 5734 * Enables the update of the untagged_buf field. 5735 * Access: RW 5736 */ 5737 MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1); 5738 5739 /* reg_pptb_pm 5740 * Enables the update of the prio_to_buff field. 5741 * Bit <i> is a flag for updating the mapping for switch priority <i>. 5742 * Access: RW 5743 */ 5744 MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8); 5745 5746 /* reg_pptb_prio_to_buff 5747 * Mapping of switch priority <i> to one of the allocated receive port 5748 * buffers. 5749 * Access: RW 5750 */ 5751 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4); 5752 5753 /* reg_pptb_pm_msb 5754 * Enables the update of the prio_to_buff field. 5755 * Bit <i> is a flag for updating the mapping for switch priority <i+8>. 5756 * Access: RW 5757 */ 5758 MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8); 5759 5760 /* reg_pptb_untagged_buff 5761 * Mapping of untagged frames to one of the allocated receive port buffers. 5762 * Access: RW 5763 * 5764 * Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for 5765 * Spectrum, as it maps untagged packets based on the default switch priority. 5766 */ 5767 MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4); 5768 5769 /* reg_pptb_prio_to_buff_msb 5770 * Mapping of switch priority <i+8> to one of the allocated receive port 5771 * buffers. 5772 * Access: RW 5773 */ 5774 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4); 5775 5776 #define MLXSW_REG_PPTB_ALL_PRIO 0xFF 5777 5778 static inline void mlxsw_reg_pptb_pack(char *payload, u16 local_port) 5779 { 5780 MLXSW_REG_ZERO(pptb, payload); 5781 mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM); 5782 mlxsw_reg_pptb_local_port_set(payload, local_port); 5783 mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO); 5784 mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO); 5785 } 5786 5787 static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio, 5788 u8 buff) 5789 { 5790 mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff); 5791 mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff); 5792 } 5793 5794 /* PBMC - Port Buffer Management Control Register 5795 * ---------------------------------------------- 5796 * The PBMC register configures and retrieves the port packet buffer 5797 * allocation for different Prios, and the Pause threshold management. 5798 */ 5799 #define MLXSW_REG_PBMC_ID 0x500C 5800 #define MLXSW_REG_PBMC_LEN 0x6C 5801 5802 MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN); 5803 5804 /* reg_pbmc_local_port 5805 * Local port number. 5806 * Access: Index 5807 */ 5808 MLXSW_ITEM32_LP(reg, pbmc, 0x00, 16, 0x00, 12); 5809 5810 /* reg_pbmc_xoff_timer_value 5811 * When device generates a pause frame, it uses this value as the pause 5812 * timer (time for the peer port to pause in quota-512 bit time). 5813 * Access: RW 5814 */ 5815 MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16); 5816 5817 /* reg_pbmc_xoff_refresh 5818 * The time before a new pause frame should be sent to refresh the pause RW 5819 * state. Using the same units as xoff_timer_value above (in quota-512 bit 5820 * time). 5821 * Access: RW 5822 */ 5823 MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16); 5824 5825 #define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11 5826 5827 /* reg_pbmc_buf_lossy 5828 * The field indicates if the buffer is lossy. 5829 * 0 - Lossless 5830 * 1 - Lossy 5831 * Access: RW 5832 */ 5833 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false); 5834 5835 /* reg_pbmc_buf_epsb 5836 * Eligible for Port Shared buffer. 5837 * If epsb is set, packets assigned to buffer are allowed to insert the port 5838 * shared buffer. 5839 * When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved. 5840 * Access: RW 5841 */ 5842 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false); 5843 5844 /* reg_pbmc_buf_size 5845 * The part of the packet buffer array is allocated for the specific buffer. 5846 * Units are represented in cells. 5847 * Access: RW 5848 */ 5849 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false); 5850 5851 /* reg_pbmc_buf_xoff_threshold 5852 * Once the amount of data in the buffer goes above this value, device 5853 * starts sending PFC frames for all priorities associated with the 5854 * buffer. Units are represented in cells. Reserved in case of lossy 5855 * buffer. 5856 * Access: RW 5857 * 5858 * Note: In Spectrum, reserved for buffer[9]. 5859 */ 5860 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16, 5861 0x08, 0x04, false); 5862 5863 /* reg_pbmc_buf_xon_threshold 5864 * When the amount of data in the buffer goes below this value, device 5865 * stops sending PFC frames for the priorities associated with the 5866 * buffer. Units are represented in cells. Reserved in case of lossy 5867 * buffer. 5868 * Access: RW 5869 * 5870 * Note: In Spectrum, reserved for buffer[9]. 5871 */ 5872 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16, 5873 0x08, 0x04, false); 5874 5875 static inline void mlxsw_reg_pbmc_pack(char *payload, u16 local_port, 5876 u16 xoff_timer_value, u16 xoff_refresh) 5877 { 5878 MLXSW_REG_ZERO(pbmc, payload); 5879 mlxsw_reg_pbmc_local_port_set(payload, local_port); 5880 mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value); 5881 mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh); 5882 } 5883 5884 static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload, 5885 int buf_index, 5886 u16 size) 5887 { 5888 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1); 5889 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); 5890 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); 5891 } 5892 5893 static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload, 5894 int buf_index, u16 size, 5895 u16 threshold) 5896 { 5897 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0); 5898 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); 5899 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); 5900 mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold); 5901 mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold); 5902 } 5903 5904 /* PSPA - Port Switch Partition Allocation 5905 * --------------------------------------- 5906 * Controls the association of a port with a switch partition and enables 5907 * configuring ports as stacking ports. 5908 */ 5909 #define MLXSW_REG_PSPA_ID 0x500D 5910 #define MLXSW_REG_PSPA_LEN 0x8 5911 5912 MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN); 5913 5914 /* reg_pspa_swid 5915 * Switch partition ID. 5916 * Access: RW 5917 */ 5918 MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8); 5919 5920 /* reg_pspa_local_port 5921 * Local port number. 5922 * Access: Index 5923 */ 5924 MLXSW_ITEM32_LP(reg, pspa, 0x00, 16, 0x00, 0); 5925 5926 /* reg_pspa_sub_port 5927 * Virtual port within the local port. Set to 0 when virtual ports are 5928 * disabled on the local port. 5929 * Access: Index 5930 */ 5931 MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8); 5932 5933 static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u16 local_port) 5934 { 5935 MLXSW_REG_ZERO(pspa, payload); 5936 mlxsw_reg_pspa_swid_set(payload, swid); 5937 mlxsw_reg_pspa_local_port_set(payload, local_port); 5938 mlxsw_reg_pspa_sub_port_set(payload, 0); 5939 } 5940 5941 /* PMAOS - Ports Module Administrative and Operational Status 5942 * ---------------------------------------------------------- 5943 * This register configures and retrieves the per module status. 5944 */ 5945 #define MLXSW_REG_PMAOS_ID 0x5012 5946 #define MLXSW_REG_PMAOS_LEN 0x10 5947 5948 MLXSW_REG_DEFINE(pmaos, MLXSW_REG_PMAOS_ID, MLXSW_REG_PMAOS_LEN); 5949 5950 /* reg_pmaos_rst 5951 * Module reset toggle. 5952 * Note: Setting reset while module is plugged-in will result in transition to 5953 * "initializing" operational state. 5954 * Access: OP 5955 */ 5956 MLXSW_ITEM32(reg, pmaos, rst, 0x00, 31, 1); 5957 5958 /* reg_pmaos_slot_index 5959 * Slot index. 5960 * Access: Index 5961 */ 5962 MLXSW_ITEM32(reg, pmaos, slot_index, 0x00, 24, 4); 5963 5964 /* reg_pmaos_module 5965 * Module number. 5966 * Access: Index 5967 */ 5968 MLXSW_ITEM32(reg, pmaos, module, 0x00, 16, 8); 5969 5970 enum mlxsw_reg_pmaos_admin_status { 5971 MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED = 1, 5972 MLXSW_REG_PMAOS_ADMIN_STATUS_DISABLED = 2, 5973 /* If the module is active and then unplugged, or experienced an error 5974 * event, the operational status should go to "disabled" and can only 5975 * be enabled upon explicit enable command. 5976 */ 5977 MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED_ONCE = 3, 5978 }; 5979 5980 /* reg_pmaos_admin_status 5981 * Module administrative state (the desired state of the module). 5982 * Note: To disable a module, all ports associated with the port must be 5983 * administatively down first. 5984 * Access: RW 5985 */ 5986 MLXSW_ITEM32(reg, pmaos, admin_status, 0x00, 8, 4); 5987 5988 /* reg_pmaos_ase 5989 * Admin state update enable. 5990 * If this bit is set, admin state will be updated based on admin_state field. 5991 * Only relevant on Set() operations. 5992 * Access: WO 5993 */ 5994 MLXSW_ITEM32(reg, pmaos, ase, 0x04, 31, 1); 5995 5996 /* reg_pmaos_ee 5997 * Event update enable. 5998 * If this bit is set, event generation will be updated based on the e field. 5999 * Only relevant on Set operations. 6000 * Access: WO 6001 */ 6002 MLXSW_ITEM32(reg, pmaos, ee, 0x04, 30, 1); 6003 6004 enum mlxsw_reg_pmaos_e { 6005 MLXSW_REG_PMAOS_E_DO_NOT_GENERATE_EVENT, 6006 MLXSW_REG_PMAOS_E_GENERATE_EVENT, 6007 MLXSW_REG_PMAOS_E_GENERATE_SINGLE_EVENT, 6008 }; 6009 6010 /* reg_pmaos_e 6011 * Event Generation on operational state change. 6012 * Access: RW 6013 */ 6014 MLXSW_ITEM32(reg, pmaos, e, 0x04, 0, 2); 6015 6016 static inline void mlxsw_reg_pmaos_pack(char *payload, u8 slot_index, u8 module) 6017 { 6018 MLXSW_REG_ZERO(pmaos, payload); 6019 mlxsw_reg_pmaos_slot_index_set(payload, slot_index); 6020 mlxsw_reg_pmaos_module_set(payload, module); 6021 } 6022 6023 /* PPLR - Port Physical Loopback Register 6024 * -------------------------------------- 6025 * This register allows configuration of the port's loopback mode. 6026 */ 6027 #define MLXSW_REG_PPLR_ID 0x5018 6028 #define MLXSW_REG_PPLR_LEN 0x8 6029 6030 MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN); 6031 6032 /* reg_pplr_local_port 6033 * Local port number. 6034 * Access: Index 6035 */ 6036 MLXSW_ITEM32_LP(reg, pplr, 0x00, 16, 0x00, 12); 6037 6038 /* Phy local loopback. When set the port's egress traffic is looped back 6039 * to the receiver and the port transmitter is disabled. 6040 */ 6041 #define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1) 6042 6043 /* reg_pplr_lb_en 6044 * Loopback enable. 6045 * Access: RW 6046 */ 6047 MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8); 6048 6049 static inline void mlxsw_reg_pplr_pack(char *payload, u16 local_port, 6050 bool phy_local) 6051 { 6052 MLXSW_REG_ZERO(pplr, payload); 6053 mlxsw_reg_pplr_local_port_set(payload, local_port); 6054 mlxsw_reg_pplr_lb_en_set(payload, 6055 phy_local ? 6056 MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0); 6057 } 6058 6059 /* PMTDB - Port Module To local DataBase Register 6060 * ---------------------------------------------- 6061 * The PMTDB register allows to query the possible module<->local port 6062 * mapping than can be used in PMLP. It does not represent the actual/current 6063 * mapping of the local to module. Actual mapping is only defined by PMLP. 6064 */ 6065 #define MLXSW_REG_PMTDB_ID 0x501A 6066 #define MLXSW_REG_PMTDB_LEN 0x40 6067 6068 MLXSW_REG_DEFINE(pmtdb, MLXSW_REG_PMTDB_ID, MLXSW_REG_PMTDB_LEN); 6069 6070 /* reg_pmtdb_slot_index 6071 * Slot index (0: Main board). 6072 * Access: Index 6073 */ 6074 MLXSW_ITEM32(reg, pmtdb, slot_index, 0x00, 24, 4); 6075 6076 /* reg_pmtdb_module 6077 * Module number. 6078 * Access: Index 6079 */ 6080 MLXSW_ITEM32(reg, pmtdb, module, 0x00, 16, 8); 6081 6082 /* reg_pmtdb_ports_width 6083 * Port's width 6084 * Access: Index 6085 */ 6086 MLXSW_ITEM32(reg, pmtdb, ports_width, 0x00, 12, 4); 6087 6088 /* reg_pmtdb_num_ports 6089 * Number of ports in a single module (split/breakout) 6090 * Access: Index 6091 */ 6092 MLXSW_ITEM32(reg, pmtdb, num_ports, 0x00, 8, 4); 6093 6094 enum mlxsw_reg_pmtdb_status { 6095 MLXSW_REG_PMTDB_STATUS_SUCCESS, 6096 }; 6097 6098 /* reg_pmtdb_status 6099 * Status 6100 * Access: RO 6101 */ 6102 MLXSW_ITEM32(reg, pmtdb, status, 0x00, 0, 4); 6103 6104 /* reg_pmtdb_port_num 6105 * The local_port value which can be assigned to the module. 6106 * In case of more than one port, port<x> represent the /<x> port of 6107 * the module. 6108 * Access: RO 6109 */ 6110 MLXSW_ITEM16_INDEXED(reg, pmtdb, port_num, 0x04, 0, 10, 0x02, 0x00, false); 6111 6112 static inline void mlxsw_reg_pmtdb_pack(char *payload, u8 slot_index, u8 module, 6113 u8 ports_width, u8 num_ports) 6114 { 6115 MLXSW_REG_ZERO(pmtdb, payload); 6116 mlxsw_reg_pmtdb_slot_index_set(payload, slot_index); 6117 mlxsw_reg_pmtdb_module_set(payload, module); 6118 mlxsw_reg_pmtdb_ports_width_set(payload, ports_width); 6119 mlxsw_reg_pmtdb_num_ports_set(payload, num_ports); 6120 } 6121 6122 /* PMECR - Ports Mapping Event Configuration Register 6123 * -------------------------------------------------- 6124 * The PMECR register is used to enable/disable event triggering 6125 * in case of local port mapping change. 6126 */ 6127 #define MLXSW_REG_PMECR_ID 0x501B 6128 #define MLXSW_REG_PMECR_LEN 0x20 6129 6130 MLXSW_REG_DEFINE(pmecr, MLXSW_REG_PMECR_ID, MLXSW_REG_PMECR_LEN); 6131 6132 /* reg_pmecr_local_port 6133 * Local port number. 6134 * Access: Index 6135 */ 6136 MLXSW_ITEM32_LP(reg, pmecr, 0x00, 16, 0x00, 12); 6137 6138 /* reg_pmecr_ee 6139 * Event update enable. If this bit is set, event generation will be updated 6140 * based on the e field. Only relevant on Set operations. 6141 * Access: WO 6142 */ 6143 MLXSW_ITEM32(reg, pmecr, ee, 0x04, 30, 1); 6144 6145 /* reg_pmecr_eswi 6146 * Software ignore enable bit. If this bit is set, the value of swi is used. 6147 * If this bit is clear, the value of swi is ignored. 6148 * Only relevant on Set operations. 6149 * Access: WO 6150 */ 6151 MLXSW_ITEM32(reg, pmecr, eswi, 0x04, 24, 1); 6152 6153 /* reg_pmecr_swi 6154 * Software ignore. If this bit is set, the device shouldn't generate events 6155 * in case of PMLP SET operation but only upon self local port mapping change 6156 * (if applicable according to e configuration). This is supplementary 6157 * configuration on top of e value. 6158 * Access: RW 6159 */ 6160 MLXSW_ITEM32(reg, pmecr, swi, 0x04, 8, 1); 6161 6162 enum mlxsw_reg_pmecr_e { 6163 MLXSW_REG_PMECR_E_DO_NOT_GENERATE_EVENT, 6164 MLXSW_REG_PMECR_E_GENERATE_EVENT, 6165 MLXSW_REG_PMECR_E_GENERATE_SINGLE_EVENT, 6166 }; 6167 6168 /* reg_pmecr_e 6169 * Event generation on local port mapping change. 6170 * Access: RW 6171 */ 6172 MLXSW_ITEM32(reg, pmecr, e, 0x04, 0, 2); 6173 6174 static inline void mlxsw_reg_pmecr_pack(char *payload, u16 local_port, 6175 enum mlxsw_reg_pmecr_e e) 6176 { 6177 MLXSW_REG_ZERO(pmecr, payload); 6178 mlxsw_reg_pmecr_local_port_set(payload, local_port); 6179 mlxsw_reg_pmecr_e_set(payload, e); 6180 mlxsw_reg_pmecr_ee_set(payload, true); 6181 mlxsw_reg_pmecr_swi_set(payload, true); 6182 mlxsw_reg_pmecr_eswi_set(payload, true); 6183 } 6184 6185 /* PMPE - Port Module Plug/Unplug Event Register 6186 * --------------------------------------------- 6187 * This register reports any operational status change of a module. 6188 * A change in the module’s state will generate an event only if the change 6189 * happens after arming the event mechanism. Any changes to the module state 6190 * while the event mechanism is not armed will not be reported. Software can 6191 * query the PMPE register for module status. 6192 */ 6193 #define MLXSW_REG_PMPE_ID 0x5024 6194 #define MLXSW_REG_PMPE_LEN 0x10 6195 6196 MLXSW_REG_DEFINE(pmpe, MLXSW_REG_PMPE_ID, MLXSW_REG_PMPE_LEN); 6197 6198 /* reg_pmpe_slot_index 6199 * Slot index. 6200 * Access: Index 6201 */ 6202 MLXSW_ITEM32(reg, pmpe, slot_index, 0x00, 24, 4); 6203 6204 /* reg_pmpe_module 6205 * Module number. 6206 * Access: Index 6207 */ 6208 MLXSW_ITEM32(reg, pmpe, module, 0x00, 16, 8); 6209 6210 enum mlxsw_reg_pmpe_module_status { 6211 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ENABLED = 1, 6212 MLXSW_REG_PMPE_MODULE_STATUS_UNPLUGGED, 6213 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ERROR, 6214 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_DISABLED, 6215 }; 6216 6217 /* reg_pmpe_module_status 6218 * Module status. 6219 * Access: RO 6220 */ 6221 MLXSW_ITEM32(reg, pmpe, module_status, 0x00, 0, 4); 6222 6223 /* reg_pmpe_error_type 6224 * Module error details. 6225 * Access: RO 6226 */ 6227 MLXSW_ITEM32(reg, pmpe, error_type, 0x04, 8, 4); 6228 6229 /* PDDR - Port Diagnostics Database Register 6230 * ----------------------------------------- 6231 * The PDDR enables to read the Phy debug database 6232 */ 6233 #define MLXSW_REG_PDDR_ID 0x5031 6234 #define MLXSW_REG_PDDR_LEN 0x100 6235 6236 MLXSW_REG_DEFINE(pddr, MLXSW_REG_PDDR_ID, MLXSW_REG_PDDR_LEN); 6237 6238 /* reg_pddr_local_port 6239 * Local port number. 6240 * Access: Index 6241 */ 6242 MLXSW_ITEM32_LP(reg, pddr, 0x00, 16, 0x00, 12); 6243 6244 enum mlxsw_reg_pddr_page_select { 6245 MLXSW_REG_PDDR_PAGE_SELECT_TROUBLESHOOTING_INFO = 1, 6246 }; 6247 6248 /* reg_pddr_page_select 6249 * Page select index. 6250 * Access: Index 6251 */ 6252 MLXSW_ITEM32(reg, pddr, page_select, 0x04, 0, 8); 6253 6254 enum mlxsw_reg_pddr_trblsh_group_opcode { 6255 /* Monitor opcodes */ 6256 MLXSW_REG_PDDR_TRBLSH_GROUP_OPCODE_MONITOR, 6257 }; 6258 6259 /* reg_pddr_group_opcode 6260 * Group selector. 6261 * Access: Index 6262 */ 6263 MLXSW_ITEM32(reg, pddr, trblsh_group_opcode, 0x08, 0, 16); 6264 6265 /* reg_pddr_status_opcode 6266 * Group selector. 6267 * Access: RO 6268 */ 6269 MLXSW_ITEM32(reg, pddr, trblsh_status_opcode, 0x0C, 0, 16); 6270 6271 static inline void mlxsw_reg_pddr_pack(char *payload, u16 local_port, 6272 u8 page_select) 6273 { 6274 MLXSW_REG_ZERO(pddr, payload); 6275 mlxsw_reg_pddr_local_port_set(payload, local_port); 6276 mlxsw_reg_pddr_page_select_set(payload, page_select); 6277 } 6278 6279 /* PMMP - Port Module Memory Map Properties Register 6280 * ------------------------------------------------- 6281 * The PMMP register allows to override the module memory map advertisement. 6282 * The register can only be set when the module is disabled by PMAOS register. 6283 */ 6284 #define MLXSW_REG_PMMP_ID 0x5044 6285 #define MLXSW_REG_PMMP_LEN 0x2C 6286 6287 MLXSW_REG_DEFINE(pmmp, MLXSW_REG_PMMP_ID, MLXSW_REG_PMMP_LEN); 6288 6289 /* reg_pmmp_module 6290 * Module number. 6291 * Access: Index 6292 */ 6293 MLXSW_ITEM32(reg, pmmp, module, 0x00, 16, 8); 6294 6295 /* reg_pmmp_slot_index 6296 * Slot index. 6297 * Access: Index 6298 */ 6299 MLXSW_ITEM32(reg, pmmp, slot_index, 0x00, 24, 4); 6300 6301 /* reg_pmmp_sticky 6302 * When set, will keep eeprom_override values after plug-out event. 6303 * Access: OP 6304 */ 6305 MLXSW_ITEM32(reg, pmmp, sticky, 0x00, 0, 1); 6306 6307 /* reg_pmmp_eeprom_override_mask 6308 * Write mask bit (negative polarity). 6309 * 0 - Allow write 6310 * 1 - Ignore write 6311 * On write, indicates which of the bits from eeprom_override field are 6312 * updated. 6313 * Access: WO 6314 */ 6315 MLXSW_ITEM32(reg, pmmp, eeprom_override_mask, 0x04, 16, 16); 6316 6317 enum { 6318 /* Set module to low power mode */ 6319 MLXSW_REG_PMMP_EEPROM_OVERRIDE_LOW_POWER_MASK = BIT(8), 6320 }; 6321 6322 /* reg_pmmp_eeprom_override 6323 * Override / ignore EEPROM advertisement properties bitmask 6324 * Access: RW 6325 */ 6326 MLXSW_ITEM32(reg, pmmp, eeprom_override, 0x04, 0, 16); 6327 6328 static inline void mlxsw_reg_pmmp_pack(char *payload, u8 slot_index, u8 module) 6329 { 6330 MLXSW_REG_ZERO(pmmp, payload); 6331 mlxsw_reg_pmmp_slot_index_set(payload, slot_index); 6332 mlxsw_reg_pmmp_module_set(payload, module); 6333 } 6334 6335 /* PLLP - Port Local port to Label Port mapping Register 6336 * ----------------------------------------------------- 6337 * The PLLP register returns the mapping from Local Port into Label Port. 6338 */ 6339 #define MLXSW_REG_PLLP_ID 0x504A 6340 #define MLXSW_REG_PLLP_LEN 0x10 6341 6342 MLXSW_REG_DEFINE(pllp, MLXSW_REG_PLLP_ID, MLXSW_REG_PLLP_LEN); 6343 6344 /* reg_pllp_local_port 6345 * Local port number. 6346 * Access: Index 6347 */ 6348 MLXSW_ITEM32_LP(reg, pllp, 0x00, 16, 0x00, 12); 6349 6350 /* reg_pllp_label_port 6351 * Front panel label of the port. 6352 * Access: RO 6353 */ 6354 MLXSW_ITEM32(reg, pllp, label_port, 0x00, 0, 8); 6355 6356 /* reg_pllp_split_num 6357 * Label split mapping for local_port. 6358 * Access: RO 6359 */ 6360 MLXSW_ITEM32(reg, pllp, split_num, 0x04, 0, 4); 6361 6362 /* reg_pllp_slot_index 6363 * Slot index (0: Main board). 6364 * Access: RO 6365 */ 6366 MLXSW_ITEM32(reg, pllp, slot_index, 0x08, 0, 4); 6367 6368 static inline void mlxsw_reg_pllp_pack(char *payload, u16 local_port) 6369 { 6370 MLXSW_REG_ZERO(pllp, payload); 6371 mlxsw_reg_pllp_local_port_set(payload, local_port); 6372 } 6373 6374 static inline void mlxsw_reg_pllp_unpack(char *payload, u8 *label_port, 6375 u8 *split_num, u8 *slot_index) 6376 { 6377 *label_port = mlxsw_reg_pllp_label_port_get(payload); 6378 *split_num = mlxsw_reg_pllp_split_num_get(payload); 6379 *slot_index = mlxsw_reg_pllp_slot_index_get(payload); 6380 } 6381 6382 /* PMTM - Port Module Type Mapping Register 6383 * ---------------------------------------- 6384 * The PMTM register allows query or configuration of module types. 6385 * The register can only be set when the module is disabled by PMAOS register 6386 */ 6387 #define MLXSW_REG_PMTM_ID 0x5067 6388 #define MLXSW_REG_PMTM_LEN 0x10 6389 6390 MLXSW_REG_DEFINE(pmtm, MLXSW_REG_PMTM_ID, MLXSW_REG_PMTM_LEN); 6391 6392 /* reg_pmtm_slot_index 6393 * Slot index. 6394 * Access: Index 6395 */ 6396 MLXSW_ITEM32(reg, pmtm, slot_index, 0x00, 24, 4); 6397 6398 /* reg_pmtm_module 6399 * Module number. 6400 * Access: Index 6401 */ 6402 MLXSW_ITEM32(reg, pmtm, module, 0x00, 16, 8); 6403 6404 enum mlxsw_reg_pmtm_module_type { 6405 MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_4_LANES = 0, 6406 MLXSW_REG_PMTM_MODULE_TYPE_QSFP = 1, 6407 MLXSW_REG_PMTM_MODULE_TYPE_SFP = 2, 6408 MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_SINGLE_LANE = 4, 6409 MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_2_LANES = 8, 6410 MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP4X = 10, 6411 MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP2X = 11, 6412 MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP1X = 12, 6413 MLXSW_REG_PMTM_MODULE_TYPE_QSFP_DD = 14, 6414 MLXSW_REG_PMTM_MODULE_TYPE_OSFP = 15, 6415 MLXSW_REG_PMTM_MODULE_TYPE_SFP_DD = 16, 6416 MLXSW_REG_PMTM_MODULE_TYPE_DSFP = 17, 6417 MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP8X = 18, 6418 MLXSW_REG_PMTM_MODULE_TYPE_TWISTED_PAIR = 19, 6419 }; 6420 6421 /* reg_pmtm_module_type 6422 * Module type. 6423 * Access: RW 6424 */ 6425 MLXSW_ITEM32(reg, pmtm, module_type, 0x04, 0, 5); 6426 6427 static inline void mlxsw_reg_pmtm_pack(char *payload, u8 slot_index, u8 module) 6428 { 6429 MLXSW_REG_ZERO(pmtm, payload); 6430 mlxsw_reg_pmtm_slot_index_set(payload, slot_index); 6431 mlxsw_reg_pmtm_module_set(payload, module); 6432 } 6433 6434 /* HTGT - Host Trap Group Table 6435 * ---------------------------- 6436 * Configures the properties for forwarding to CPU. 6437 */ 6438 #define MLXSW_REG_HTGT_ID 0x7002 6439 #define MLXSW_REG_HTGT_LEN 0x20 6440 6441 MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN); 6442 6443 /* reg_htgt_swid 6444 * Switch partition ID. 6445 * Access: Index 6446 */ 6447 MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8); 6448 6449 #define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */ 6450 6451 /* reg_htgt_type 6452 * CPU path type. 6453 * Access: RW 6454 */ 6455 MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4); 6456 6457 enum mlxsw_reg_htgt_trap_group { 6458 MLXSW_REG_HTGT_TRAP_GROUP_EMAD, 6459 MLXSW_REG_HTGT_TRAP_GROUP_CORE_EVENT, 6460 MLXSW_REG_HTGT_TRAP_GROUP_SP_STP, 6461 MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP, 6462 MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP, 6463 MLXSW_REG_HTGT_TRAP_GROUP_SP_MC_SNOOPING, 6464 MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP, 6465 MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF, 6466 MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM, 6467 MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST, 6468 MLXSW_REG_HTGT_TRAP_GROUP_SP_NEIGH_DISCOVERY, 6469 MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP, 6470 MLXSW_REG_HTGT_TRAP_GROUP_SP_EXTERNAL_ROUTE, 6471 MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME, 6472 MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP, 6473 MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT, 6474 MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6, 6475 MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR, 6476 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0, 6477 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1, 6478 MLXSW_REG_HTGT_TRAP_GROUP_SP_VRRP, 6479 MLXSW_REG_HTGT_TRAP_GROUP_SP_PKT_SAMPLE, 6480 MLXSW_REG_HTGT_TRAP_GROUP_SP_FLOW_LOGGING, 6481 MLXSW_REG_HTGT_TRAP_GROUP_SP_FID_MISS, 6482 MLXSW_REG_HTGT_TRAP_GROUP_SP_BFD, 6483 MLXSW_REG_HTGT_TRAP_GROUP_SP_DUMMY, 6484 MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS, 6485 MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_DISCARDS, 6486 MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_EXCEPTIONS, 6487 MLXSW_REG_HTGT_TRAP_GROUP_SP_TUNNEL_DISCARDS, 6488 MLXSW_REG_HTGT_TRAP_GROUP_SP_ACL_DISCARDS, 6489 MLXSW_REG_HTGT_TRAP_GROUP_SP_BUFFER_DISCARDS, 6490 MLXSW_REG_HTGT_TRAP_GROUP_SP_EAPOL, 6491 6492 __MLXSW_REG_HTGT_TRAP_GROUP_MAX, 6493 MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1 6494 }; 6495 6496 /* reg_htgt_trap_group 6497 * Trap group number. User defined number specifying which trap groups 6498 * should be forwarded to the CPU. The mapping between trap IDs and trap 6499 * groups is configured using HPKT register. 6500 * Access: Index 6501 */ 6502 MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8); 6503 6504 enum { 6505 MLXSW_REG_HTGT_POLICER_DISABLE, 6506 MLXSW_REG_HTGT_POLICER_ENABLE, 6507 }; 6508 6509 /* reg_htgt_pide 6510 * Enable policer ID specified using 'pid' field. 6511 * Access: RW 6512 */ 6513 MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1); 6514 6515 #define MLXSW_REG_HTGT_INVALID_POLICER 0xff 6516 6517 /* reg_htgt_pid 6518 * Policer ID for the trap group. 6519 * Access: RW 6520 */ 6521 MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8); 6522 6523 #define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0 6524 6525 /* reg_htgt_mirror_action 6526 * Mirror action to use. 6527 * 0 - Trap to CPU. 6528 * 1 - Trap to CPU and mirror to a mirroring agent. 6529 * 2 - Mirror to a mirroring agent and do not trap to CPU. 6530 * Access: RW 6531 * 6532 * Note: Mirroring to a mirroring agent is only supported in Spectrum. 6533 */ 6534 MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2); 6535 6536 /* reg_htgt_mirroring_agent 6537 * Mirroring agent. 6538 * Access: RW 6539 */ 6540 MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3); 6541 6542 #define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0 6543 6544 /* reg_htgt_priority 6545 * Trap group priority. 6546 * In case a packet matches multiple classification rules, the packet will 6547 * only be trapped once, based on the trap ID associated with the group (via 6548 * register HPKT) with the highest priority. 6549 * Supported values are 0-7, with 7 represnting the highest priority. 6550 * Access: RW 6551 * 6552 * Note: In SwitchX-2 this field is ignored and the priority value is replaced 6553 * by the 'trap_group' field. 6554 */ 6555 MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4); 6556 6557 #define MLXSW_REG_HTGT_DEFAULT_TC 7 6558 6559 /* reg_htgt_local_path_cpu_tclass 6560 * CPU ingress traffic class for the trap group. 6561 * Access: RW 6562 */ 6563 MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6); 6564 6565 enum mlxsw_reg_htgt_local_path_rdq { 6566 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13, 6567 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14, 6568 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15, 6569 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15, 6570 }; 6571 /* reg_htgt_local_path_rdq 6572 * Receive descriptor queue (RDQ) to use for the trap group. 6573 * Access: RW 6574 */ 6575 MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6); 6576 6577 static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id, 6578 u8 priority, u8 tc) 6579 { 6580 MLXSW_REG_ZERO(htgt, payload); 6581 6582 if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) { 6583 mlxsw_reg_htgt_pide_set(payload, 6584 MLXSW_REG_HTGT_POLICER_DISABLE); 6585 } else { 6586 mlxsw_reg_htgt_pide_set(payload, 6587 MLXSW_REG_HTGT_POLICER_ENABLE); 6588 mlxsw_reg_htgt_pid_set(payload, policer_id); 6589 } 6590 6591 mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL); 6592 mlxsw_reg_htgt_trap_group_set(payload, group); 6593 mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU); 6594 mlxsw_reg_htgt_mirroring_agent_set(payload, 0); 6595 mlxsw_reg_htgt_priority_set(payload, priority); 6596 mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc); 6597 mlxsw_reg_htgt_local_path_rdq_set(payload, group); 6598 } 6599 6600 /* HPKT - Host Packet Trap 6601 * ----------------------- 6602 * Configures trap IDs inside trap groups. 6603 */ 6604 #define MLXSW_REG_HPKT_ID 0x7003 6605 #define MLXSW_REG_HPKT_LEN 0x10 6606 6607 MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN); 6608 6609 enum { 6610 MLXSW_REG_HPKT_ACK_NOT_REQUIRED, 6611 MLXSW_REG_HPKT_ACK_REQUIRED, 6612 }; 6613 6614 /* reg_hpkt_ack 6615 * Require acknowledgements from the host for events. 6616 * If set, then the device will wait for the event it sent to be acknowledged 6617 * by the host. This option is only relevant for event trap IDs. 6618 * Access: RW 6619 * 6620 * Note: Currently not supported by firmware. 6621 */ 6622 MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1); 6623 6624 enum mlxsw_reg_hpkt_action { 6625 MLXSW_REG_HPKT_ACTION_FORWARD, 6626 MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU, 6627 MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU, 6628 MLXSW_REG_HPKT_ACTION_DISCARD, 6629 MLXSW_REG_HPKT_ACTION_SOFT_DISCARD, 6630 MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD, 6631 MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU, 6632 MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15, 6633 }; 6634 6635 /* reg_hpkt_action 6636 * Action to perform on packet when trapped. 6637 * 0 - No action. Forward to CPU based on switching rules. 6638 * 1 - Trap to CPU (CPU receives sole copy). 6639 * 2 - Mirror to CPU (CPU receives a replica of the packet). 6640 * 3 - Discard. 6641 * 4 - Soft discard (allow other traps to act on the packet). 6642 * 5 - Trap and soft discard (allow other traps to overwrite this trap). 6643 * 6 - Trap to CPU (CPU receives sole copy) and count it as error. 6644 * 15 - Restore the firmware's default action. 6645 * Access: RW 6646 * 6647 * Note: Must be set to 0 (forward) for event trap IDs, as they are already 6648 * addressed to the CPU. 6649 */ 6650 MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3); 6651 6652 /* reg_hpkt_trap_group 6653 * Trap group to associate the trap with. 6654 * Access: RW 6655 */ 6656 MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6); 6657 6658 /* reg_hpkt_trap_id 6659 * Trap ID. 6660 * Access: Index 6661 * 6662 * Note: A trap ID can only be associated with a single trap group. The device 6663 * will associate the trap ID with the last trap group configured. 6664 */ 6665 MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 10); 6666 6667 enum { 6668 MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT, 6669 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER, 6670 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER, 6671 }; 6672 6673 /* reg_hpkt_ctrl 6674 * Configure dedicated buffer resources for control packets. 6675 * Ignored by SwitchX-2. 6676 * 0 - Keep factory defaults. 6677 * 1 - Do not use control buffer for this trap ID. 6678 * 2 - Use control buffer for this trap ID. 6679 * Access: RW 6680 */ 6681 MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2); 6682 6683 static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id, 6684 enum mlxsw_reg_htgt_trap_group trap_group, 6685 bool is_ctrl) 6686 { 6687 MLXSW_REG_ZERO(hpkt, payload); 6688 mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED); 6689 mlxsw_reg_hpkt_action_set(payload, action); 6690 mlxsw_reg_hpkt_trap_group_set(payload, trap_group); 6691 mlxsw_reg_hpkt_trap_id_set(payload, trap_id); 6692 mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ? 6693 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER : 6694 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER); 6695 } 6696 6697 /* RGCR - Router General Configuration Register 6698 * -------------------------------------------- 6699 * The register is used for setting up the router configuration. 6700 */ 6701 #define MLXSW_REG_RGCR_ID 0x8001 6702 #define MLXSW_REG_RGCR_LEN 0x28 6703 6704 MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN); 6705 6706 /* reg_rgcr_ipv4_en 6707 * IPv4 router enable. 6708 * Access: RW 6709 */ 6710 MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1); 6711 6712 /* reg_rgcr_ipv6_en 6713 * IPv6 router enable. 6714 * Access: RW 6715 */ 6716 MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1); 6717 6718 /* reg_rgcr_max_router_interfaces 6719 * Defines the maximum number of active router interfaces for all virtual 6720 * routers. 6721 * Access: RW 6722 */ 6723 MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16); 6724 6725 /* reg_rgcr_usp 6726 * Update switch priority and packet color. 6727 * 0 - Preserve the value of Switch Priority and packet color. 6728 * 1 - Recalculate the value of Switch Priority and packet color. 6729 * Access: RW 6730 * 6731 * Note: Not supported by SwitchX and SwitchX-2. 6732 */ 6733 MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1); 6734 6735 /* reg_rgcr_pcp_rw 6736 * Indicates how to handle the pcp_rewrite_en value: 6737 * 0 - Preserve the value of pcp_rewrite_en. 6738 * 2 - Disable PCP rewrite. 6739 * 3 - Enable PCP rewrite. 6740 * Access: RW 6741 * 6742 * Note: Not supported by SwitchX and SwitchX-2. 6743 */ 6744 MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2); 6745 6746 /* reg_rgcr_activity_dis 6747 * Activity disable: 6748 * 0 - Activity will be set when an entry is hit (default). 6749 * 1 - Activity will not be set when an entry is hit. 6750 * 6751 * Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry 6752 * (RALUE). 6753 * Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host 6754 * Entry (RAUHT). 6755 * Bits 2:7 are reserved. 6756 * Access: RW 6757 * 6758 * Note: Not supported by SwitchX, SwitchX-2 and Switch-IB. 6759 */ 6760 MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8); 6761 6762 static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en, 6763 bool ipv6_en) 6764 { 6765 MLXSW_REG_ZERO(rgcr, payload); 6766 mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en); 6767 mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en); 6768 } 6769 6770 /* RITR - Router Interface Table Register 6771 * -------------------------------------- 6772 * The register is used to configure the router interface table. 6773 */ 6774 #define MLXSW_REG_RITR_ID 0x8002 6775 #define MLXSW_REG_RITR_LEN 0x40 6776 6777 MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN); 6778 6779 /* reg_ritr_enable 6780 * Enables routing on the router interface. 6781 * Access: RW 6782 */ 6783 MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1); 6784 6785 /* reg_ritr_ipv4 6786 * IPv4 routing enable. Enables routing of IPv4 traffic on the router 6787 * interface. 6788 * Access: RW 6789 */ 6790 MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1); 6791 6792 /* reg_ritr_ipv6 6793 * IPv6 routing enable. Enables routing of IPv6 traffic on the router 6794 * interface. 6795 * Access: RW 6796 */ 6797 MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1); 6798 6799 /* reg_ritr_ipv4_mc 6800 * IPv4 multicast routing enable. 6801 * Access: RW 6802 */ 6803 MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1); 6804 6805 /* reg_ritr_ipv6_mc 6806 * IPv6 multicast routing enable. 6807 * Access: RW 6808 */ 6809 MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1); 6810 6811 enum mlxsw_reg_ritr_if_type { 6812 /* VLAN interface. */ 6813 MLXSW_REG_RITR_VLAN_IF, 6814 /* FID interface. */ 6815 MLXSW_REG_RITR_FID_IF, 6816 /* Sub-port interface. */ 6817 MLXSW_REG_RITR_SP_IF, 6818 /* Loopback Interface. */ 6819 MLXSW_REG_RITR_LOOPBACK_IF, 6820 }; 6821 6822 /* reg_ritr_type 6823 * Router interface type as per enum mlxsw_reg_ritr_if_type. 6824 * Access: RW 6825 */ 6826 MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3); 6827 6828 enum { 6829 MLXSW_REG_RITR_RIF_CREATE, 6830 MLXSW_REG_RITR_RIF_DEL, 6831 }; 6832 6833 /* reg_ritr_op 6834 * Opcode: 6835 * 0 - Create or edit RIF. 6836 * 1 - Delete RIF. 6837 * Reserved for SwitchX-2. For Spectrum, editing of interface properties 6838 * is not supported. An interface must be deleted and re-created in order 6839 * to update properties. 6840 * Access: WO 6841 */ 6842 MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2); 6843 6844 /* reg_ritr_rif 6845 * Router interface index. A pointer to the Router Interface Table. 6846 * Access: Index 6847 */ 6848 MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16); 6849 6850 /* reg_ritr_ipv4_fe 6851 * IPv4 Forwarding Enable. 6852 * Enables routing of IPv4 traffic on the router interface. When disabled, 6853 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. 6854 * Not supported in SwitchX-2. 6855 * Access: RW 6856 */ 6857 MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1); 6858 6859 /* reg_ritr_ipv6_fe 6860 * IPv6 Forwarding Enable. 6861 * Enables routing of IPv6 traffic on the router interface. When disabled, 6862 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. 6863 * Not supported in SwitchX-2. 6864 * Access: RW 6865 */ 6866 MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1); 6867 6868 /* reg_ritr_ipv4_mc_fe 6869 * IPv4 Multicast Forwarding Enable. 6870 * When disabled, forwarding is blocked but local traffic (traps and IP to me) 6871 * will be enabled. 6872 * Access: RW 6873 */ 6874 MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1); 6875 6876 /* reg_ritr_ipv6_mc_fe 6877 * IPv6 Multicast Forwarding Enable. 6878 * When disabled, forwarding is blocked but local traffic (traps and IP to me) 6879 * will be enabled. 6880 * Access: RW 6881 */ 6882 MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1); 6883 6884 /* reg_ritr_lb_en 6885 * Loop-back filter enable for unicast packets. 6886 * If the flag is set then loop-back filter for unicast packets is 6887 * implemented on the RIF. Multicast packets are always subject to 6888 * loop-back filtering. 6889 * Access: RW 6890 */ 6891 MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1); 6892 6893 /* reg_ritr_virtual_router 6894 * Virtual router ID associated with the router interface. 6895 * Access: RW 6896 */ 6897 MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16); 6898 6899 /* reg_ritr_mtu 6900 * Router interface MTU. 6901 * Access: RW 6902 */ 6903 MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16); 6904 6905 /* reg_ritr_if_swid 6906 * Switch partition ID. 6907 * Access: RW 6908 */ 6909 MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8); 6910 6911 /* reg_ritr_if_mac_profile_id 6912 * MAC msb profile ID. 6913 * Access: RW 6914 */ 6915 MLXSW_ITEM32(reg, ritr, if_mac_profile_id, 0x10, 16, 4); 6916 6917 /* reg_ritr_if_mac 6918 * Router interface MAC address. 6919 * In Spectrum, all MAC addresses must have the same 38 MSBits. 6920 * Access: RW 6921 */ 6922 MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6); 6923 6924 /* reg_ritr_if_vrrp_id_ipv6 6925 * VRRP ID for IPv6 6926 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. 6927 * Access: RW 6928 */ 6929 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8); 6930 6931 /* reg_ritr_if_vrrp_id_ipv4 6932 * VRRP ID for IPv4 6933 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. 6934 * Access: RW 6935 */ 6936 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8); 6937 6938 /* VLAN Interface */ 6939 6940 /* reg_ritr_vlan_if_vlan_id 6941 * VLAN ID. 6942 * Access: RW 6943 */ 6944 MLXSW_ITEM32(reg, ritr, vlan_if_vlan_id, 0x08, 0, 12); 6945 6946 /* reg_ritr_vlan_if_efid 6947 * Egress FID. 6948 * Used to connect the RIF to a bridge. 6949 * Access: RW 6950 * 6951 * Note: Reserved when legacy bridge model is used and on Spectrum-1. 6952 */ 6953 MLXSW_ITEM32(reg, ritr, vlan_if_efid, 0x0C, 0, 16); 6954 6955 /* FID Interface */ 6956 6957 /* reg_ritr_fid_if_fid 6958 * Filtering ID. Used to connect a bridge to the router. 6959 * When legacy bridge model is used, only FIDs from the vFID range are 6960 * supported. When unified bridge model is used, this is the egress FID for 6961 * router to bridge. 6962 * Access: RW 6963 */ 6964 MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16); 6965 6966 /* Sub-port Interface */ 6967 6968 /* reg_ritr_sp_if_lag 6969 * LAG indication. When this bit is set the system_port field holds the 6970 * LAG identifier. 6971 * Access: RW 6972 */ 6973 MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1); 6974 6975 /* reg_ritr_sp_system_port 6976 * Port unique indentifier. When lag bit is set, this field holds the 6977 * lag_id in bits 0:9. 6978 * Access: RW 6979 */ 6980 MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16); 6981 6982 /* reg_ritr_sp_if_efid 6983 * Egress filtering ID. 6984 * Used to connect the eRIF to a bridge if eRIF-ACL has modified the DMAC or 6985 * the VID. 6986 * Access: RW 6987 * 6988 * Note: Reserved when legacy bridge model is used. 6989 */ 6990 MLXSW_ITEM32(reg, ritr, sp_if_efid, 0x0C, 0, 16); 6991 6992 /* reg_ritr_sp_if_vid 6993 * VLAN ID. 6994 * Access: RW 6995 */ 6996 MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12); 6997 6998 /* Loopback Interface */ 6999 7000 enum mlxsw_reg_ritr_loopback_protocol { 7001 /* IPinIP IPv4 underlay Unicast */ 7002 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4, 7003 /* IPinIP IPv6 underlay Unicast */ 7004 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6, 7005 /* IPinIP generic - used for Spectrum-2 underlay RIF */ 7006 MLXSW_REG_RITR_LOOPBACK_GENERIC, 7007 }; 7008 7009 /* reg_ritr_loopback_protocol 7010 * Access: RW 7011 */ 7012 MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4); 7013 7014 enum mlxsw_reg_ritr_loopback_ipip_type { 7015 /* Tunnel is IPinIP. */ 7016 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP, 7017 /* Tunnel is GRE, no key. */ 7018 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP, 7019 /* Tunnel is GRE, with a key. */ 7020 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP, 7021 }; 7022 7023 /* reg_ritr_loopback_ipip_type 7024 * Encapsulation type. 7025 * Access: RW 7026 */ 7027 MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4); 7028 7029 enum mlxsw_reg_ritr_loopback_ipip_options { 7030 /* The key is defined by gre_key. */ 7031 MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET, 7032 }; 7033 7034 /* reg_ritr_loopback_ipip_options 7035 * Access: RW 7036 */ 7037 MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4); 7038 7039 /* reg_ritr_loopback_ipip_uvr 7040 * Underlay Virtual Router ID. 7041 * Range is 0..cap_max_virtual_routers-1. 7042 * Reserved for Spectrum-2. 7043 * Access: RW 7044 */ 7045 MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16); 7046 7047 /* reg_ritr_loopback_ipip_underlay_rif 7048 * Underlay ingress router interface. 7049 * Reserved for Spectrum. 7050 * Access: RW 7051 */ 7052 MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16); 7053 7054 /* reg_ritr_loopback_ipip_usip* 7055 * Encapsulation Underlay source IP. 7056 * Access: RW 7057 */ 7058 MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16); 7059 MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32); 7060 7061 /* reg_ritr_loopback_ipip_gre_key 7062 * GRE Key. 7063 * Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP. 7064 * Access: RW 7065 */ 7066 MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32); 7067 7068 /* Shared between ingress/egress */ 7069 enum mlxsw_reg_ritr_counter_set_type { 7070 /* No Count. */ 7071 MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0, 7072 /* Basic. Used for router interfaces, counting the following: 7073 * - Error and Discard counters. 7074 * - Unicast, Multicast and Broadcast counters. Sharing the 7075 * same set of counters for the different type of traffic 7076 * (IPv4, IPv6 and mpls). 7077 */ 7078 MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9, 7079 }; 7080 7081 /* reg_ritr_ingress_counter_index 7082 * Counter Index for flow counter. 7083 * Access: RW 7084 */ 7085 MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24); 7086 7087 /* reg_ritr_ingress_counter_set_type 7088 * Igress Counter Set Type for router interface counter. 7089 * Access: RW 7090 */ 7091 MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8); 7092 7093 /* reg_ritr_egress_counter_index 7094 * Counter Index for flow counter. 7095 * Access: RW 7096 */ 7097 MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24); 7098 7099 /* reg_ritr_egress_counter_set_type 7100 * Egress Counter Set Type for router interface counter. 7101 * Access: RW 7102 */ 7103 MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8); 7104 7105 static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index, 7106 bool enable, bool egress) 7107 { 7108 enum mlxsw_reg_ritr_counter_set_type set_type; 7109 7110 if (enable) 7111 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC; 7112 else 7113 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT; 7114 7115 if (egress) { 7116 mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type); 7117 mlxsw_reg_ritr_egress_counter_index_set(payload, index); 7118 } else { 7119 mlxsw_reg_ritr_ingress_counter_set_type_set(payload, set_type); 7120 mlxsw_reg_ritr_ingress_counter_index_set(payload, index); 7121 } 7122 } 7123 7124 static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif) 7125 { 7126 MLXSW_REG_ZERO(ritr, payload); 7127 mlxsw_reg_ritr_rif_set(payload, rif); 7128 } 7129 7130 static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag, 7131 u16 system_port, u16 efid, u16 vid) 7132 { 7133 mlxsw_reg_ritr_sp_if_lag_set(payload, lag); 7134 mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port); 7135 mlxsw_reg_ritr_sp_if_efid_set(payload, efid); 7136 mlxsw_reg_ritr_sp_if_vid_set(payload, vid); 7137 } 7138 7139 static inline void mlxsw_reg_ritr_pack(char *payload, bool enable, 7140 enum mlxsw_reg_ritr_if_type type, 7141 u16 rif, u16 vr_id, u16 mtu) 7142 { 7143 bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL; 7144 7145 MLXSW_REG_ZERO(ritr, payload); 7146 mlxsw_reg_ritr_enable_set(payload, enable); 7147 mlxsw_reg_ritr_ipv4_set(payload, 1); 7148 mlxsw_reg_ritr_ipv6_set(payload, 1); 7149 mlxsw_reg_ritr_ipv4_mc_set(payload, 1); 7150 mlxsw_reg_ritr_ipv6_mc_set(payload, 1); 7151 mlxsw_reg_ritr_type_set(payload, type); 7152 mlxsw_reg_ritr_op_set(payload, op); 7153 mlxsw_reg_ritr_rif_set(payload, rif); 7154 mlxsw_reg_ritr_ipv4_fe_set(payload, 1); 7155 mlxsw_reg_ritr_ipv6_fe_set(payload, 1); 7156 mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1); 7157 mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1); 7158 mlxsw_reg_ritr_lb_en_set(payload, 1); 7159 mlxsw_reg_ritr_virtual_router_set(payload, vr_id); 7160 mlxsw_reg_ritr_mtu_set(payload, mtu); 7161 } 7162 7163 static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac) 7164 { 7165 mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac); 7166 } 7167 7168 static inline void 7169 mlxsw_reg_ritr_vlan_if_pack(char *payload, bool enable, u16 rif, u16 vr_id, 7170 u16 mtu, const char *mac, u8 mac_profile_id, 7171 u16 vlan_id, u16 efid) 7172 { 7173 enum mlxsw_reg_ritr_if_type type = MLXSW_REG_RITR_VLAN_IF; 7174 7175 mlxsw_reg_ritr_pack(payload, enable, type, rif, vr_id, mtu); 7176 mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac); 7177 mlxsw_reg_ritr_if_mac_profile_id_set(payload, mac_profile_id); 7178 mlxsw_reg_ritr_vlan_if_vlan_id_set(payload, vlan_id); 7179 mlxsw_reg_ritr_vlan_if_efid_set(payload, efid); 7180 } 7181 7182 static inline void 7183 mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload, 7184 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 7185 enum mlxsw_reg_ritr_loopback_ipip_options options, 7186 u16 uvr_id, u16 underlay_rif, u32 gre_key) 7187 { 7188 mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type); 7189 mlxsw_reg_ritr_loopback_ipip_options_set(payload, options); 7190 mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id); 7191 mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif); 7192 mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key); 7193 } 7194 7195 static inline void 7196 mlxsw_reg_ritr_loopback_ipip4_pack(char *payload, 7197 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 7198 enum mlxsw_reg_ritr_loopback_ipip_options options, 7199 u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key) 7200 { 7201 mlxsw_reg_ritr_loopback_protocol_set(payload, 7202 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4); 7203 mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options, 7204 uvr_id, underlay_rif, gre_key); 7205 mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip); 7206 } 7207 7208 static inline void 7209 mlxsw_reg_ritr_loopback_ipip6_pack(char *payload, 7210 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 7211 enum mlxsw_reg_ritr_loopback_ipip_options options, 7212 u16 uvr_id, u16 underlay_rif, 7213 const struct in6_addr *usip, u32 gre_key) 7214 { 7215 enum mlxsw_reg_ritr_loopback_protocol protocol = 7216 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6; 7217 7218 mlxsw_reg_ritr_loopback_protocol_set(payload, protocol); 7219 mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options, 7220 uvr_id, underlay_rif, gre_key); 7221 mlxsw_reg_ritr_loopback_ipip_usip6_memcpy_to(payload, 7222 (const char *)usip); 7223 } 7224 7225 /* RTAR - Router TCAM Allocation Register 7226 * -------------------------------------- 7227 * This register is used for allocation of regions in the TCAM table. 7228 */ 7229 #define MLXSW_REG_RTAR_ID 0x8004 7230 #define MLXSW_REG_RTAR_LEN 0x20 7231 7232 MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN); 7233 7234 enum mlxsw_reg_rtar_op { 7235 MLXSW_REG_RTAR_OP_ALLOCATE, 7236 MLXSW_REG_RTAR_OP_RESIZE, 7237 MLXSW_REG_RTAR_OP_DEALLOCATE, 7238 }; 7239 7240 /* reg_rtar_op 7241 * Access: WO 7242 */ 7243 MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4); 7244 7245 enum mlxsw_reg_rtar_key_type { 7246 MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1, 7247 MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3 7248 }; 7249 7250 /* reg_rtar_key_type 7251 * TCAM key type for the region. 7252 * Access: WO 7253 */ 7254 MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8); 7255 7256 /* reg_rtar_region_size 7257 * TCAM region size. When allocating/resizing this is the requested 7258 * size, the response is the actual size. 7259 * Note: Actual size may be larger than requested. 7260 * Reserved for op = Deallocate 7261 * Access: WO 7262 */ 7263 MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16); 7264 7265 static inline void mlxsw_reg_rtar_pack(char *payload, 7266 enum mlxsw_reg_rtar_op op, 7267 enum mlxsw_reg_rtar_key_type key_type, 7268 u16 region_size) 7269 { 7270 MLXSW_REG_ZERO(rtar, payload); 7271 mlxsw_reg_rtar_op_set(payload, op); 7272 mlxsw_reg_rtar_key_type_set(payload, key_type); 7273 mlxsw_reg_rtar_region_size_set(payload, region_size); 7274 } 7275 7276 /* RATR - Router Adjacency Table Register 7277 * -------------------------------------- 7278 * The RATR register is used to configure the Router Adjacency (next-hop) 7279 * Table. 7280 */ 7281 #define MLXSW_REG_RATR_ID 0x8008 7282 #define MLXSW_REG_RATR_LEN 0x2C 7283 7284 MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN); 7285 7286 enum mlxsw_reg_ratr_op { 7287 /* Read */ 7288 MLXSW_REG_RATR_OP_QUERY_READ = 0, 7289 /* Read and clear activity */ 7290 MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2, 7291 /* Write Adjacency entry */ 7292 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1, 7293 /* Write Adjacency entry only if the activity is cleared. 7294 * The write may not succeed if the activity is set. There is not 7295 * direct feedback if the write has succeeded or not, however 7296 * the get will reveal the actual entry (SW can compare the get 7297 * response to the set command). 7298 */ 7299 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3, 7300 }; 7301 7302 /* reg_ratr_op 7303 * Note that Write operation may also be used for updating 7304 * counter_set_type and counter_index. In this case all other 7305 * fields must not be updated. 7306 * Access: OP 7307 */ 7308 MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4); 7309 7310 /* reg_ratr_v 7311 * Valid bit. Indicates if the adjacency entry is valid. 7312 * Note: the device may need some time before reusing an invalidated 7313 * entry. During this time the entry can not be reused. It is 7314 * recommended to use another entry before reusing an invalidated 7315 * entry (e.g. software can put it at the end of the list for 7316 * reusing). Trying to access an invalidated entry not yet cleared 7317 * by the device results with failure indicating "Try Again" status. 7318 * When valid is '0' then egress_router_interface,trap_action, 7319 * adjacency_parameters and counters are reserved 7320 * Access: RW 7321 */ 7322 MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1); 7323 7324 /* reg_ratr_a 7325 * Activity. Set for new entries. Set if a packet lookup has hit on 7326 * the specific entry. To clear the a bit, use "clear activity". 7327 * Access: RO 7328 */ 7329 MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1); 7330 7331 enum mlxsw_reg_ratr_type { 7332 /* Ethernet */ 7333 MLXSW_REG_RATR_TYPE_ETHERNET, 7334 /* IPoIB Unicast without GRH. 7335 * Reserved for Spectrum. 7336 */ 7337 MLXSW_REG_RATR_TYPE_IPOIB_UC, 7338 /* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast 7339 * adjacency). 7340 * Reserved for Spectrum. 7341 */ 7342 MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH, 7343 /* IPoIB Multicast. 7344 * Reserved for Spectrum. 7345 */ 7346 MLXSW_REG_RATR_TYPE_IPOIB_MC, 7347 /* MPLS. 7348 * Reserved for SwitchX/-2. 7349 */ 7350 MLXSW_REG_RATR_TYPE_MPLS, 7351 /* IPinIP Encap. 7352 * Reserved for SwitchX/-2. 7353 */ 7354 MLXSW_REG_RATR_TYPE_IPIP, 7355 }; 7356 7357 /* reg_ratr_type 7358 * Adjacency entry type. 7359 * Access: RW 7360 */ 7361 MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4); 7362 7363 /* reg_ratr_adjacency_index_low 7364 * Bits 15:0 of index into the adjacency table. 7365 * For SwitchX and SwitchX-2, the adjacency table is linear and 7366 * used for adjacency entries only. 7367 * For Spectrum, the index is to the KVD linear. 7368 * Access: Index 7369 */ 7370 MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16); 7371 7372 /* reg_ratr_egress_router_interface 7373 * Range is 0 .. cap_max_router_interfaces - 1 7374 * Access: RW 7375 */ 7376 MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16); 7377 7378 enum mlxsw_reg_ratr_trap_action { 7379 MLXSW_REG_RATR_TRAP_ACTION_NOP, 7380 MLXSW_REG_RATR_TRAP_ACTION_TRAP, 7381 MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU, 7382 MLXSW_REG_RATR_TRAP_ACTION_MIRROR, 7383 MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS, 7384 }; 7385 7386 /* reg_ratr_trap_action 7387 * see mlxsw_reg_ratr_trap_action 7388 * Access: RW 7389 */ 7390 MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4); 7391 7392 /* reg_ratr_adjacency_index_high 7393 * Bits 23:16 of the adjacency_index. 7394 * Access: Index 7395 */ 7396 MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8); 7397 7398 enum mlxsw_reg_ratr_trap_id { 7399 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0, 7400 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1, 7401 }; 7402 7403 /* reg_ratr_trap_id 7404 * Trap ID to be reported to CPU. 7405 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. 7406 * For trap_action of NOP, MIRROR and DISCARD_ERROR 7407 * Access: RW 7408 */ 7409 MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8); 7410 7411 /* reg_ratr_eth_destination_mac 7412 * MAC address of the destination next-hop. 7413 * Access: RW 7414 */ 7415 MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6); 7416 7417 enum mlxsw_reg_ratr_ipip_type { 7418 /* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */ 7419 MLXSW_REG_RATR_IPIP_TYPE_IPV4, 7420 /* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */ 7421 MLXSW_REG_RATR_IPIP_TYPE_IPV6, 7422 }; 7423 7424 /* reg_ratr_ipip_type 7425 * Underlay destination ip type. 7426 * Note: the type field must match the protocol of the router interface. 7427 * Access: RW 7428 */ 7429 MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4); 7430 7431 /* reg_ratr_ipip_ipv4_udip 7432 * Underlay ipv4 dip. 7433 * Reserved when ipip_type is IPv6. 7434 * Access: RW 7435 */ 7436 MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32); 7437 7438 /* reg_ratr_ipip_ipv6_ptr 7439 * Pointer to IPv6 underlay destination ip address. 7440 * For Spectrum: Pointer to KVD linear space. 7441 * Access: RW 7442 */ 7443 MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24); 7444 7445 enum mlxsw_reg_flow_counter_set_type { 7446 /* No count */ 7447 MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00, 7448 /* Count packets and bytes */ 7449 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03, 7450 /* Count only packets */ 7451 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05, 7452 }; 7453 7454 /* reg_ratr_counter_set_type 7455 * Counter set type for flow counters 7456 * Access: RW 7457 */ 7458 MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8); 7459 7460 /* reg_ratr_counter_index 7461 * Counter index for flow counters 7462 * Access: RW 7463 */ 7464 MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24); 7465 7466 static inline void 7467 mlxsw_reg_ratr_pack(char *payload, 7468 enum mlxsw_reg_ratr_op op, bool valid, 7469 enum mlxsw_reg_ratr_type type, 7470 u32 adjacency_index, u16 egress_rif) 7471 { 7472 MLXSW_REG_ZERO(ratr, payload); 7473 mlxsw_reg_ratr_op_set(payload, op); 7474 mlxsw_reg_ratr_v_set(payload, valid); 7475 mlxsw_reg_ratr_type_set(payload, type); 7476 mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index); 7477 mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16); 7478 mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif); 7479 } 7480 7481 static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload, 7482 const char *dest_mac) 7483 { 7484 mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac); 7485 } 7486 7487 static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip) 7488 { 7489 mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4); 7490 mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip); 7491 } 7492 7493 static inline void mlxsw_reg_ratr_ipip6_entry_pack(char *payload, u32 ipv6_ptr) 7494 { 7495 mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV6); 7496 mlxsw_reg_ratr_ipip_ipv6_ptr_set(payload, ipv6_ptr); 7497 } 7498 7499 static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index, 7500 bool counter_enable) 7501 { 7502 enum mlxsw_reg_flow_counter_set_type set_type; 7503 7504 if (counter_enable) 7505 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES; 7506 else 7507 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT; 7508 7509 mlxsw_reg_ratr_counter_index_set(payload, counter_index); 7510 mlxsw_reg_ratr_counter_set_type_set(payload, set_type); 7511 } 7512 7513 /* RDPM - Router DSCP to Priority Mapping 7514 * -------------------------------------- 7515 * Controls the mapping from DSCP field to switch priority on routed packets 7516 */ 7517 #define MLXSW_REG_RDPM_ID 0x8009 7518 #define MLXSW_REG_RDPM_BASE_LEN 0x00 7519 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01 7520 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64 7521 #define MLXSW_REG_RDPM_LEN 0x40 7522 #define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \ 7523 MLXSW_REG_RDPM_LEN - \ 7524 MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN) 7525 7526 MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN); 7527 7528 /* reg_dscp_entry_e 7529 * Enable update of the specific entry 7530 * Access: Index 7531 */ 7532 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1, 7533 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 7534 7535 /* reg_dscp_entry_prio 7536 * Switch Priority 7537 * Access: RW 7538 */ 7539 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4, 7540 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 7541 7542 static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index, 7543 u8 prio) 7544 { 7545 mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1); 7546 mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio); 7547 } 7548 7549 /* RICNT - Router Interface Counter Register 7550 * ----------------------------------------- 7551 * The RICNT register retrieves per port performance counters 7552 */ 7553 #define MLXSW_REG_RICNT_ID 0x800B 7554 #define MLXSW_REG_RICNT_LEN 0x100 7555 7556 MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN); 7557 7558 /* reg_ricnt_counter_index 7559 * Counter index 7560 * Access: RW 7561 */ 7562 MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24); 7563 7564 enum mlxsw_reg_ricnt_counter_set_type { 7565 /* No Count. */ 7566 MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00, 7567 /* Basic. Used for router interfaces, counting the following: 7568 * - Error and Discard counters. 7569 * - Unicast, Multicast and Broadcast counters. Sharing the 7570 * same set of counters for the different type of traffic 7571 * (IPv4, IPv6 and mpls). 7572 */ 7573 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09, 7574 }; 7575 7576 /* reg_ricnt_counter_set_type 7577 * Counter Set Type for router interface counter 7578 * Access: RW 7579 */ 7580 MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8); 7581 7582 enum mlxsw_reg_ricnt_opcode { 7583 /* Nop. Supported only for read access*/ 7584 MLXSW_REG_RICNT_OPCODE_NOP = 0x00, 7585 /* Clear. Setting the clr bit will reset the counter value for 7586 * all counters of the specified Router Interface. 7587 */ 7588 MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08, 7589 }; 7590 7591 /* reg_ricnt_opcode 7592 * Opcode 7593 * Access: RW 7594 */ 7595 MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4); 7596 7597 /* reg_ricnt_good_unicast_packets 7598 * good unicast packets. 7599 * Access: RW 7600 */ 7601 MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64); 7602 7603 /* reg_ricnt_good_multicast_packets 7604 * good multicast packets. 7605 * Access: RW 7606 */ 7607 MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64); 7608 7609 /* reg_ricnt_good_broadcast_packets 7610 * good broadcast packets 7611 * Access: RW 7612 */ 7613 MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64); 7614 7615 /* reg_ricnt_good_unicast_bytes 7616 * A count of L3 data and padding octets not including L2 headers 7617 * for good unicast frames. 7618 * Access: RW 7619 */ 7620 MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64); 7621 7622 /* reg_ricnt_good_multicast_bytes 7623 * A count of L3 data and padding octets not including L2 headers 7624 * for good multicast frames. 7625 * Access: RW 7626 */ 7627 MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64); 7628 7629 /* reg_ritr_good_broadcast_bytes 7630 * A count of L3 data and padding octets not including L2 headers 7631 * for good broadcast frames. 7632 * Access: RW 7633 */ 7634 MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64); 7635 7636 /* reg_ricnt_error_packets 7637 * A count of errored frames that do not pass the router checks. 7638 * Access: RW 7639 */ 7640 MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64); 7641 7642 /* reg_ricnt_discrad_packets 7643 * A count of non-errored frames that do not pass the router checks. 7644 * Access: RW 7645 */ 7646 MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64); 7647 7648 /* reg_ricnt_error_bytes 7649 * A count of L3 data and padding octets not including L2 headers 7650 * for errored frames. 7651 * Access: RW 7652 */ 7653 MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64); 7654 7655 /* reg_ricnt_discard_bytes 7656 * A count of L3 data and padding octets not including L2 headers 7657 * for non-errored frames that do not pass the router checks. 7658 * Access: RW 7659 */ 7660 MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64); 7661 7662 static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index, 7663 enum mlxsw_reg_ricnt_opcode op) 7664 { 7665 MLXSW_REG_ZERO(ricnt, payload); 7666 mlxsw_reg_ricnt_op_set(payload, op); 7667 mlxsw_reg_ricnt_counter_index_set(payload, index); 7668 mlxsw_reg_ricnt_counter_set_type_set(payload, 7669 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC); 7670 } 7671 7672 /* RRCR - Router Rules Copy Register Layout 7673 * ---------------------------------------- 7674 * This register is used for moving and copying route entry rules. 7675 */ 7676 #define MLXSW_REG_RRCR_ID 0x800F 7677 #define MLXSW_REG_RRCR_LEN 0x24 7678 7679 MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN); 7680 7681 enum mlxsw_reg_rrcr_op { 7682 /* Move rules */ 7683 MLXSW_REG_RRCR_OP_MOVE, 7684 /* Copy rules */ 7685 MLXSW_REG_RRCR_OP_COPY, 7686 }; 7687 7688 /* reg_rrcr_op 7689 * Access: WO 7690 */ 7691 MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4); 7692 7693 /* reg_rrcr_offset 7694 * Offset within the region from which to copy/move. 7695 * Access: Index 7696 */ 7697 MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16); 7698 7699 /* reg_rrcr_size 7700 * The number of rules to copy/move. 7701 * Access: WO 7702 */ 7703 MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16); 7704 7705 /* reg_rrcr_table_id 7706 * Identifier of the table on which to perform the operation. Encoding is the 7707 * same as in RTAR.key_type 7708 * Access: Index 7709 */ 7710 MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4); 7711 7712 /* reg_rrcr_dest_offset 7713 * Offset within the region to which to copy/move 7714 * Access: Index 7715 */ 7716 MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16); 7717 7718 static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op, 7719 u16 offset, u16 size, 7720 enum mlxsw_reg_rtar_key_type table_id, 7721 u16 dest_offset) 7722 { 7723 MLXSW_REG_ZERO(rrcr, payload); 7724 mlxsw_reg_rrcr_op_set(payload, op); 7725 mlxsw_reg_rrcr_offset_set(payload, offset); 7726 mlxsw_reg_rrcr_size_set(payload, size); 7727 mlxsw_reg_rrcr_table_id_set(payload, table_id); 7728 mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset); 7729 } 7730 7731 /* RALTA - Router Algorithmic LPM Tree Allocation Register 7732 * ------------------------------------------------------- 7733 * RALTA is used to allocate the LPM trees of the SHSPM method. 7734 */ 7735 #define MLXSW_REG_RALTA_ID 0x8010 7736 #define MLXSW_REG_RALTA_LEN 0x04 7737 7738 MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN); 7739 7740 /* reg_ralta_op 7741 * opcode (valid for Write, must be 0 on Read) 7742 * 0 - allocate a tree 7743 * 1 - deallocate a tree 7744 * Access: OP 7745 */ 7746 MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2); 7747 7748 enum mlxsw_reg_ralxx_protocol { 7749 MLXSW_REG_RALXX_PROTOCOL_IPV4, 7750 MLXSW_REG_RALXX_PROTOCOL_IPV6, 7751 }; 7752 7753 /* reg_ralta_protocol 7754 * Protocol. 7755 * Deallocation opcode: Reserved. 7756 * Access: RW 7757 */ 7758 MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4); 7759 7760 /* reg_ralta_tree_id 7761 * An identifier (numbered from 1..cap_shspm_max_trees-1) representing 7762 * the tree identifier (managed by software). 7763 * Note that tree_id 0 is allocated for a default-route tree. 7764 * Access: Index 7765 */ 7766 MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8); 7767 7768 static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc, 7769 enum mlxsw_reg_ralxx_protocol protocol, 7770 u8 tree_id) 7771 { 7772 MLXSW_REG_ZERO(ralta, payload); 7773 mlxsw_reg_ralta_op_set(payload, !alloc); 7774 mlxsw_reg_ralta_protocol_set(payload, protocol); 7775 mlxsw_reg_ralta_tree_id_set(payload, tree_id); 7776 } 7777 7778 /* RALST - Router Algorithmic LPM Structure Tree Register 7779 * ------------------------------------------------------ 7780 * RALST is used to set and query the structure of an LPM tree. 7781 * The structure of the tree must be sorted as a sorted binary tree, while 7782 * each node is a bin that is tagged as the length of the prefixes the lookup 7783 * will refer to. Therefore, bin X refers to a set of entries with prefixes 7784 * of X bits to match with the destination address. The bin 0 indicates 7785 * the default action, when there is no match of any prefix. 7786 */ 7787 #define MLXSW_REG_RALST_ID 0x8011 7788 #define MLXSW_REG_RALST_LEN 0x104 7789 7790 MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN); 7791 7792 /* reg_ralst_root_bin 7793 * The bin number of the root bin. 7794 * 0<root_bin=<(length of IP address) 7795 * For a default-route tree configure 0xff 7796 * Access: RW 7797 */ 7798 MLXSW_ITEM32(reg, ralst, root_bin, 0x00, 16, 8); 7799 7800 /* reg_ralst_tree_id 7801 * Tree identifier numbered from 1..(cap_shspm_max_trees-1). 7802 * Access: Index 7803 */ 7804 MLXSW_ITEM32(reg, ralst, tree_id, 0x00, 0, 8); 7805 7806 #define MLXSW_REG_RALST_BIN_NO_CHILD 0xff 7807 #define MLXSW_REG_RALST_BIN_OFFSET 0x04 7808 #define MLXSW_REG_RALST_BIN_COUNT 128 7809 7810 /* reg_ralst_left_child_bin 7811 * Holding the children of the bin according to the stored tree's structure. 7812 * For trees composed of less than 4 blocks, the bins in excess are reserved. 7813 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff 7814 * Access: RW 7815 */ 7816 MLXSW_ITEM16_INDEXED(reg, ralst, left_child_bin, 0x04, 8, 8, 0x02, 0x00, false); 7817 7818 /* reg_ralst_right_child_bin 7819 * Holding the children of the bin according to the stored tree's structure. 7820 * For trees composed of less than 4 blocks, the bins in excess are reserved. 7821 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff 7822 * Access: RW 7823 */ 7824 MLXSW_ITEM16_INDEXED(reg, ralst, right_child_bin, 0x04, 0, 8, 0x02, 0x00, 7825 false); 7826 7827 static inline void mlxsw_reg_ralst_pack(char *payload, u8 root_bin, u8 tree_id) 7828 { 7829 MLXSW_REG_ZERO(ralst, payload); 7830 7831 /* Initialize all bins to have no left or right child */ 7832 memset(payload + MLXSW_REG_RALST_BIN_OFFSET, 7833 MLXSW_REG_RALST_BIN_NO_CHILD, MLXSW_REG_RALST_BIN_COUNT * 2); 7834 7835 mlxsw_reg_ralst_root_bin_set(payload, root_bin); 7836 mlxsw_reg_ralst_tree_id_set(payload, tree_id); 7837 } 7838 7839 static inline void mlxsw_reg_ralst_bin_pack(char *payload, u8 bin_number, 7840 u8 left_child_bin, 7841 u8 right_child_bin) 7842 { 7843 int bin_index = bin_number - 1; 7844 7845 mlxsw_reg_ralst_left_child_bin_set(payload, bin_index, left_child_bin); 7846 mlxsw_reg_ralst_right_child_bin_set(payload, bin_index, 7847 right_child_bin); 7848 } 7849 7850 /* RALTB - Router Algorithmic LPM Tree Binding Register 7851 * ---------------------------------------------------- 7852 * RALTB is used to bind virtual router and protocol to an allocated LPM tree. 7853 */ 7854 #define MLXSW_REG_RALTB_ID 0x8012 7855 #define MLXSW_REG_RALTB_LEN 0x04 7856 7857 MLXSW_REG_DEFINE(raltb, MLXSW_REG_RALTB_ID, MLXSW_REG_RALTB_LEN); 7858 7859 /* reg_raltb_virtual_router 7860 * Virtual Router ID 7861 * Range is 0..cap_max_virtual_routers-1 7862 * Access: Index 7863 */ 7864 MLXSW_ITEM32(reg, raltb, virtual_router, 0x00, 16, 16); 7865 7866 /* reg_raltb_protocol 7867 * Protocol. 7868 * Access: Index 7869 */ 7870 MLXSW_ITEM32(reg, raltb, protocol, 0x00, 12, 4); 7871 7872 /* reg_raltb_tree_id 7873 * Tree to be used for the {virtual_router, protocol} 7874 * Tree identifier numbered from 1..(cap_shspm_max_trees-1). 7875 * By default, all Unicast IPv4 and IPv6 are bound to tree_id 0. 7876 * Access: RW 7877 */ 7878 MLXSW_ITEM32(reg, raltb, tree_id, 0x00, 0, 8); 7879 7880 static inline void mlxsw_reg_raltb_pack(char *payload, u16 virtual_router, 7881 enum mlxsw_reg_ralxx_protocol protocol, 7882 u8 tree_id) 7883 { 7884 MLXSW_REG_ZERO(raltb, payload); 7885 mlxsw_reg_raltb_virtual_router_set(payload, virtual_router); 7886 mlxsw_reg_raltb_protocol_set(payload, protocol); 7887 mlxsw_reg_raltb_tree_id_set(payload, tree_id); 7888 } 7889 7890 /* RALUE - Router Algorithmic LPM Unicast Entry Register 7891 * ----------------------------------------------------- 7892 * RALUE is used to configure and query LPM entries that serve 7893 * the Unicast protocols. 7894 */ 7895 #define MLXSW_REG_RALUE_ID 0x8013 7896 #define MLXSW_REG_RALUE_LEN 0x38 7897 7898 MLXSW_REG_DEFINE(ralue, MLXSW_REG_RALUE_ID, MLXSW_REG_RALUE_LEN); 7899 7900 /* reg_ralue_protocol 7901 * Protocol. 7902 * Access: Index 7903 */ 7904 MLXSW_ITEM32(reg, ralue, protocol, 0x00, 24, 4); 7905 7906 enum mlxsw_reg_ralue_op { 7907 /* Read operation. If entry doesn't exist, the operation fails. */ 7908 MLXSW_REG_RALUE_OP_QUERY_READ = 0, 7909 /* Clear on read operation. Used to read entry and 7910 * clear Activity bit. 7911 */ 7912 MLXSW_REG_RALUE_OP_QUERY_CLEAR = 1, 7913 /* Write operation. Used to write a new entry to the table. All RW 7914 * fields are written for new entry. Activity bit is set 7915 * for new entries. 7916 */ 7917 MLXSW_REG_RALUE_OP_WRITE_WRITE = 0, 7918 /* Update operation. Used to update an existing route entry and 7919 * only update the RW fields that are detailed in the field 7920 * op_u_mask. If entry doesn't exist, the operation fails. 7921 */ 7922 MLXSW_REG_RALUE_OP_WRITE_UPDATE = 1, 7923 /* Clear activity. The Activity bit (the field a) is cleared 7924 * for the entry. 7925 */ 7926 MLXSW_REG_RALUE_OP_WRITE_CLEAR = 2, 7927 /* Delete operation. Used to delete an existing entry. If entry 7928 * doesn't exist, the operation fails. 7929 */ 7930 MLXSW_REG_RALUE_OP_WRITE_DELETE = 3, 7931 }; 7932 7933 /* reg_ralue_op 7934 * Operation. 7935 * Access: OP 7936 */ 7937 MLXSW_ITEM32(reg, ralue, op, 0x00, 20, 3); 7938 7939 /* reg_ralue_a 7940 * Activity. Set for new entries. Set if a packet lookup has hit on the 7941 * specific entry, only if the entry is a route. To clear the a bit, use 7942 * "clear activity" op. 7943 * Enabled by activity_dis in RGCR 7944 * Access: RO 7945 */ 7946 MLXSW_ITEM32(reg, ralue, a, 0x00, 16, 1); 7947 7948 /* reg_ralue_virtual_router 7949 * Virtual Router ID 7950 * Range is 0..cap_max_virtual_routers-1 7951 * Access: Index 7952 */ 7953 MLXSW_ITEM32(reg, ralue, virtual_router, 0x04, 16, 16); 7954 7955 #define MLXSW_REG_RALUE_OP_U_MASK_ENTRY_TYPE BIT(0) 7956 #define MLXSW_REG_RALUE_OP_U_MASK_BMP_LEN BIT(1) 7957 #define MLXSW_REG_RALUE_OP_U_MASK_ACTION BIT(2) 7958 7959 /* reg_ralue_op_u_mask 7960 * opcode update mask. 7961 * On read operation, this field is reserved. 7962 * This field is valid for update opcode, otherwise - reserved. 7963 * This field is a bitmask of the fields that should be updated. 7964 * Access: WO 7965 */ 7966 MLXSW_ITEM32(reg, ralue, op_u_mask, 0x04, 8, 3); 7967 7968 /* reg_ralue_prefix_len 7969 * Number of bits in the prefix of the LPM route. 7970 * Note that for IPv6 prefixes, if prefix_len>64 the entry consumes 7971 * two entries in the physical HW table. 7972 * Access: Index 7973 */ 7974 MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8); 7975 7976 /* reg_ralue_dip* 7977 * The prefix of the route or of the marker that the object of the LPM 7978 * is compared with. The most significant bits of the dip are the prefix. 7979 * The least significant bits must be '0' if the prefix_len is smaller 7980 * than 128 for IPv6 or smaller than 32 for IPv4. 7981 * IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved. 7982 * Access: Index 7983 */ 7984 MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32); 7985 MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16); 7986 7987 enum mlxsw_reg_ralue_entry_type { 7988 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1, 7989 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2, 7990 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3, 7991 }; 7992 7993 /* reg_ralue_entry_type 7994 * Entry type. 7995 * Note - for Marker entries, the action_type and action fields are reserved. 7996 * Access: RW 7997 */ 7998 MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2); 7999 8000 /* reg_ralue_bmp_len 8001 * The best match prefix length in the case that there is no match for 8002 * longer prefixes. 8003 * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len 8004 * Note for any update operation with entry_type modification this 8005 * field must be set. 8006 * Access: RW 8007 */ 8008 MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8); 8009 8010 enum mlxsw_reg_ralue_action_type { 8011 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE, 8012 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL, 8013 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME, 8014 }; 8015 8016 /* reg_ralue_action_type 8017 * Action Type 8018 * Indicates how the IP address is connected. 8019 * It can be connected to a local subnet through local_erif or can be 8020 * on a remote subnet connected through a next-hop router, 8021 * or transmitted to the CPU. 8022 * Reserved when entry_type = MARKER_ENTRY 8023 * Access: RW 8024 */ 8025 MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2); 8026 8027 enum mlxsw_reg_ralue_trap_action { 8028 MLXSW_REG_RALUE_TRAP_ACTION_NOP, 8029 MLXSW_REG_RALUE_TRAP_ACTION_TRAP, 8030 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU, 8031 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR, 8032 MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR, 8033 }; 8034 8035 /* reg_ralue_trap_action 8036 * Trap action. 8037 * For IP2ME action, only NOP and MIRROR are possible. 8038 * Access: RW 8039 */ 8040 MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4); 8041 8042 /* reg_ralue_trap_id 8043 * Trap ID to be reported to CPU. 8044 * Trap ID is RTR_INGRESS0 or RTR_INGRESS1. 8045 * For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved. 8046 * Access: RW 8047 */ 8048 MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9); 8049 8050 /* reg_ralue_adjacency_index 8051 * Points to the first entry of the group-based ECMP. 8052 * Only relevant in case of REMOTE action. 8053 * Access: RW 8054 */ 8055 MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24); 8056 8057 /* reg_ralue_ecmp_size 8058 * Amount of sequential entries starting 8059 * from the adjacency_index (the number of ECMPs). 8060 * The valid range is 1-64, 512, 1024, 2048 and 4096. 8061 * Reserved when trap_action is TRAP or DISCARD_ERROR. 8062 * Only relevant in case of REMOTE action. 8063 * Access: RW 8064 */ 8065 MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13); 8066 8067 /* reg_ralue_local_erif 8068 * Egress Router Interface. 8069 * Only relevant in case of LOCAL action. 8070 * Access: RW 8071 */ 8072 MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16); 8073 8074 /* reg_ralue_ip2me_v 8075 * Valid bit for the tunnel_ptr field. 8076 * If valid = 0 then trap to CPU as IP2ME trap ID. 8077 * If valid = 1 and the packet format allows NVE or IPinIP tunnel 8078 * decapsulation then tunnel decapsulation is done. 8079 * If valid = 1 and packet format does not allow NVE or IPinIP tunnel 8080 * decapsulation then trap as IP2ME trap ID. 8081 * Only relevant in case of IP2ME action. 8082 * Access: RW 8083 */ 8084 MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1); 8085 8086 /* reg_ralue_ip2me_tunnel_ptr 8087 * Tunnel Pointer for NVE or IPinIP tunnel decapsulation. 8088 * For Spectrum, pointer to KVD Linear. 8089 * Only relevant in case of IP2ME action. 8090 * Access: RW 8091 */ 8092 MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24); 8093 8094 static inline void mlxsw_reg_ralue_pack(char *payload, 8095 enum mlxsw_reg_ralxx_protocol protocol, 8096 enum mlxsw_reg_ralue_op op, 8097 u16 virtual_router, u8 prefix_len) 8098 { 8099 MLXSW_REG_ZERO(ralue, payload); 8100 mlxsw_reg_ralue_protocol_set(payload, protocol); 8101 mlxsw_reg_ralue_op_set(payload, op); 8102 mlxsw_reg_ralue_virtual_router_set(payload, virtual_router); 8103 mlxsw_reg_ralue_prefix_len_set(payload, prefix_len); 8104 mlxsw_reg_ralue_entry_type_set(payload, 8105 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY); 8106 mlxsw_reg_ralue_bmp_len_set(payload, prefix_len); 8107 } 8108 8109 static inline void mlxsw_reg_ralue_pack4(char *payload, 8110 enum mlxsw_reg_ralxx_protocol protocol, 8111 enum mlxsw_reg_ralue_op op, 8112 u16 virtual_router, u8 prefix_len, 8113 u32 dip) 8114 { 8115 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); 8116 mlxsw_reg_ralue_dip4_set(payload, dip); 8117 } 8118 8119 static inline void mlxsw_reg_ralue_pack6(char *payload, 8120 enum mlxsw_reg_ralxx_protocol protocol, 8121 enum mlxsw_reg_ralue_op op, 8122 u16 virtual_router, u8 prefix_len, 8123 const void *dip) 8124 { 8125 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); 8126 mlxsw_reg_ralue_dip6_memcpy_to(payload, dip); 8127 } 8128 8129 static inline void 8130 mlxsw_reg_ralue_act_remote_pack(char *payload, 8131 enum mlxsw_reg_ralue_trap_action trap_action, 8132 u16 trap_id, u32 adjacency_index, u16 ecmp_size) 8133 { 8134 mlxsw_reg_ralue_action_type_set(payload, 8135 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE); 8136 mlxsw_reg_ralue_trap_action_set(payload, trap_action); 8137 mlxsw_reg_ralue_trap_id_set(payload, trap_id); 8138 mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index); 8139 mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size); 8140 } 8141 8142 static inline void 8143 mlxsw_reg_ralue_act_local_pack(char *payload, 8144 enum mlxsw_reg_ralue_trap_action trap_action, 8145 u16 trap_id, u16 local_erif) 8146 { 8147 mlxsw_reg_ralue_action_type_set(payload, 8148 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL); 8149 mlxsw_reg_ralue_trap_action_set(payload, trap_action); 8150 mlxsw_reg_ralue_trap_id_set(payload, trap_id); 8151 mlxsw_reg_ralue_local_erif_set(payload, local_erif); 8152 } 8153 8154 static inline void 8155 mlxsw_reg_ralue_act_ip2me_pack(char *payload) 8156 { 8157 mlxsw_reg_ralue_action_type_set(payload, 8158 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); 8159 } 8160 8161 static inline void 8162 mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr) 8163 { 8164 mlxsw_reg_ralue_action_type_set(payload, 8165 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); 8166 mlxsw_reg_ralue_ip2me_v_set(payload, 1); 8167 mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr); 8168 } 8169 8170 /* RAUHT - Router Algorithmic LPM Unicast Host Table Register 8171 * ---------------------------------------------------------- 8172 * The RAUHT register is used to configure and query the Unicast Host table in 8173 * devices that implement the Algorithmic LPM. 8174 */ 8175 #define MLXSW_REG_RAUHT_ID 0x8014 8176 #define MLXSW_REG_RAUHT_LEN 0x74 8177 8178 MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN); 8179 8180 enum mlxsw_reg_rauht_type { 8181 MLXSW_REG_RAUHT_TYPE_IPV4, 8182 MLXSW_REG_RAUHT_TYPE_IPV6, 8183 }; 8184 8185 /* reg_rauht_type 8186 * Access: Index 8187 */ 8188 MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2); 8189 8190 enum mlxsw_reg_rauht_op { 8191 MLXSW_REG_RAUHT_OP_QUERY_READ = 0, 8192 /* Read operation */ 8193 MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1, 8194 /* Clear on read operation. Used to read entry and clear 8195 * activity bit. 8196 */ 8197 MLXSW_REG_RAUHT_OP_WRITE_ADD = 0, 8198 /* Add. Used to write a new entry to the table. All R/W fields are 8199 * relevant for new entry. Activity bit is set for new entries. 8200 */ 8201 MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1, 8202 /* Update action. Used to update an existing route entry and 8203 * only update the following fields: 8204 * trap_action, trap_id, mac, counter_set_type, counter_index 8205 */ 8206 MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2, 8207 /* Clear activity. A bit is cleared for the entry. */ 8208 MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3, 8209 /* Delete entry */ 8210 MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4, 8211 /* Delete all host entries on a RIF. In this command, dip 8212 * field is reserved. 8213 */ 8214 }; 8215 8216 /* reg_rauht_op 8217 * Access: OP 8218 */ 8219 MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3); 8220 8221 /* reg_rauht_a 8222 * Activity. Set for new entries. Set if a packet lookup has hit on 8223 * the specific entry. 8224 * To clear the a bit, use "clear activity" op. 8225 * Enabled by activity_dis in RGCR 8226 * Access: RO 8227 */ 8228 MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1); 8229 8230 /* reg_rauht_rif 8231 * Router Interface 8232 * Access: Index 8233 */ 8234 MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16); 8235 8236 /* reg_rauht_dip* 8237 * Destination address. 8238 * Access: Index 8239 */ 8240 MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32); 8241 MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16); 8242 8243 enum mlxsw_reg_rauht_trap_action { 8244 MLXSW_REG_RAUHT_TRAP_ACTION_NOP, 8245 MLXSW_REG_RAUHT_TRAP_ACTION_TRAP, 8246 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU, 8247 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR, 8248 MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS, 8249 }; 8250 8251 /* reg_rauht_trap_action 8252 * Access: RW 8253 */ 8254 MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4); 8255 8256 enum mlxsw_reg_rauht_trap_id { 8257 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0, 8258 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1, 8259 }; 8260 8261 /* reg_rauht_trap_id 8262 * Trap ID to be reported to CPU. 8263 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. 8264 * For trap_action of NOP, MIRROR and DISCARD_ERROR, 8265 * trap_id is reserved. 8266 * Access: RW 8267 */ 8268 MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9); 8269 8270 /* reg_rauht_counter_set_type 8271 * Counter set type for flow counters 8272 * Access: RW 8273 */ 8274 MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8); 8275 8276 /* reg_rauht_counter_index 8277 * Counter index for flow counters 8278 * Access: RW 8279 */ 8280 MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24); 8281 8282 /* reg_rauht_mac 8283 * MAC address. 8284 * Access: RW 8285 */ 8286 MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6); 8287 8288 static inline void mlxsw_reg_rauht_pack(char *payload, 8289 enum mlxsw_reg_rauht_op op, u16 rif, 8290 const char *mac) 8291 { 8292 MLXSW_REG_ZERO(rauht, payload); 8293 mlxsw_reg_rauht_op_set(payload, op); 8294 mlxsw_reg_rauht_rif_set(payload, rif); 8295 mlxsw_reg_rauht_mac_memcpy_to(payload, mac); 8296 } 8297 8298 static inline void mlxsw_reg_rauht_pack4(char *payload, 8299 enum mlxsw_reg_rauht_op op, u16 rif, 8300 const char *mac, u32 dip) 8301 { 8302 mlxsw_reg_rauht_pack(payload, op, rif, mac); 8303 mlxsw_reg_rauht_dip4_set(payload, dip); 8304 } 8305 8306 static inline void mlxsw_reg_rauht_pack6(char *payload, 8307 enum mlxsw_reg_rauht_op op, u16 rif, 8308 const char *mac, const char *dip) 8309 { 8310 mlxsw_reg_rauht_pack(payload, op, rif, mac); 8311 mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6); 8312 mlxsw_reg_rauht_dip6_memcpy_to(payload, dip); 8313 } 8314 8315 static inline void mlxsw_reg_rauht_pack_counter(char *payload, 8316 u64 counter_index) 8317 { 8318 mlxsw_reg_rauht_counter_index_set(payload, counter_index); 8319 mlxsw_reg_rauht_counter_set_type_set(payload, 8320 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES); 8321 } 8322 8323 /* RALEU - Router Algorithmic LPM ECMP Update Register 8324 * --------------------------------------------------- 8325 * The register enables updating the ECMP section in the action for multiple 8326 * LPM Unicast entries in a single operation. The update is executed to 8327 * all entries of a {virtual router, protocol} tuple using the same ECMP group. 8328 */ 8329 #define MLXSW_REG_RALEU_ID 0x8015 8330 #define MLXSW_REG_RALEU_LEN 0x28 8331 8332 MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN); 8333 8334 /* reg_raleu_protocol 8335 * Protocol. 8336 * Access: Index 8337 */ 8338 MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4); 8339 8340 /* reg_raleu_virtual_router 8341 * Virtual Router ID 8342 * Range is 0..cap_max_virtual_routers-1 8343 * Access: Index 8344 */ 8345 MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16); 8346 8347 /* reg_raleu_adjacency_index 8348 * Adjacency Index used for matching on the existing entries. 8349 * Access: Index 8350 */ 8351 MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24); 8352 8353 /* reg_raleu_ecmp_size 8354 * ECMP Size used for matching on the existing entries. 8355 * Access: Index 8356 */ 8357 MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13); 8358 8359 /* reg_raleu_new_adjacency_index 8360 * New Adjacency Index. 8361 * Access: WO 8362 */ 8363 MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24); 8364 8365 /* reg_raleu_new_ecmp_size 8366 * New ECMP Size. 8367 * Access: WO 8368 */ 8369 MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13); 8370 8371 static inline void mlxsw_reg_raleu_pack(char *payload, 8372 enum mlxsw_reg_ralxx_protocol protocol, 8373 u16 virtual_router, 8374 u32 adjacency_index, u16 ecmp_size, 8375 u32 new_adjacency_index, 8376 u16 new_ecmp_size) 8377 { 8378 MLXSW_REG_ZERO(raleu, payload); 8379 mlxsw_reg_raleu_protocol_set(payload, protocol); 8380 mlxsw_reg_raleu_virtual_router_set(payload, virtual_router); 8381 mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index); 8382 mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size); 8383 mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index); 8384 mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size); 8385 } 8386 8387 /* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register 8388 * ---------------------------------------------------------------- 8389 * The RAUHTD register allows dumping entries from the Router Unicast Host 8390 * Table. For a given session an entry is dumped no more than one time. The 8391 * first RAUHTD access after reset is a new session. A session ends when the 8392 * num_rec response is smaller than num_rec request or for IPv4 when the 8393 * num_entries is smaller than 4. The clear activity affect the current session 8394 * or the last session if a new session has not started. 8395 */ 8396 #define MLXSW_REG_RAUHTD_ID 0x8018 8397 #define MLXSW_REG_RAUHTD_BASE_LEN 0x20 8398 #define MLXSW_REG_RAUHTD_REC_LEN 0x20 8399 #define MLXSW_REG_RAUHTD_REC_MAX_NUM 32 8400 #define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \ 8401 MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN) 8402 #define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4 8403 8404 MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN); 8405 8406 #define MLXSW_REG_RAUHTD_FILTER_A BIT(0) 8407 #define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3) 8408 8409 /* reg_rauhtd_filter_fields 8410 * if a bit is '0' then the relevant field is ignored and dump is done 8411 * regardless of the field value 8412 * Bit0 - filter by activity: entry_a 8413 * Bit3 - filter by entry rip: entry_rif 8414 * Access: Index 8415 */ 8416 MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8); 8417 8418 enum mlxsw_reg_rauhtd_op { 8419 MLXSW_REG_RAUHTD_OP_DUMP, 8420 MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR, 8421 }; 8422 8423 /* reg_rauhtd_op 8424 * Access: OP 8425 */ 8426 MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2); 8427 8428 /* reg_rauhtd_num_rec 8429 * At request: number of records requested 8430 * At response: number of records dumped 8431 * For IPv4, each record has 4 entries at request and up to 4 entries 8432 * at response 8433 * Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM 8434 * Access: Index 8435 */ 8436 MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8); 8437 8438 /* reg_rauhtd_entry_a 8439 * Dump only if activity has value of entry_a 8440 * Reserved if filter_fields bit0 is '0' 8441 * Access: Index 8442 */ 8443 MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1); 8444 8445 enum mlxsw_reg_rauhtd_type { 8446 MLXSW_REG_RAUHTD_TYPE_IPV4, 8447 MLXSW_REG_RAUHTD_TYPE_IPV6, 8448 }; 8449 8450 /* reg_rauhtd_type 8451 * Dump only if record type is: 8452 * 0 - IPv4 8453 * 1 - IPv6 8454 * Access: Index 8455 */ 8456 MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4); 8457 8458 /* reg_rauhtd_entry_rif 8459 * Dump only if RIF has value of entry_rif 8460 * Reserved if filter_fields bit3 is '0' 8461 * Access: Index 8462 */ 8463 MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16); 8464 8465 static inline void mlxsw_reg_rauhtd_pack(char *payload, 8466 enum mlxsw_reg_rauhtd_type type) 8467 { 8468 MLXSW_REG_ZERO(rauhtd, payload); 8469 mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A); 8470 mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR); 8471 mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM); 8472 mlxsw_reg_rauhtd_entry_a_set(payload, 1); 8473 mlxsw_reg_rauhtd_type_set(payload, type); 8474 } 8475 8476 /* reg_rauhtd_ipv4_rec_num_entries 8477 * Number of valid entries in this record: 8478 * 0 - 1 valid entry 8479 * 1 - 2 valid entries 8480 * 2 - 3 valid entries 8481 * 3 - 4 valid entries 8482 * Access: RO 8483 */ 8484 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries, 8485 MLXSW_REG_RAUHTD_BASE_LEN, 28, 2, 8486 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); 8487 8488 /* reg_rauhtd_rec_type 8489 * Record type. 8490 * 0 - IPv4 8491 * 1 - IPv6 8492 * Access: RO 8493 */ 8494 MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2, 8495 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); 8496 8497 #define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8 8498 8499 /* reg_rauhtd_ipv4_ent_a 8500 * Activity. Set for new entries. Set if a packet lookup has hit on the 8501 * specific entry. 8502 * Access: RO 8503 */ 8504 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, 8505 MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); 8506 8507 /* reg_rauhtd_ipv4_ent_rif 8508 * Router interface. 8509 * Access: RO 8510 */ 8511 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 8512 16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); 8513 8514 /* reg_rauhtd_ipv4_ent_dip 8515 * Destination IPv4 address. 8516 * Access: RO 8517 */ 8518 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0, 8519 32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false); 8520 8521 #define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20 8522 8523 /* reg_rauhtd_ipv6_ent_a 8524 * Activity. Set for new entries. Set if a packet lookup has hit on the 8525 * specific entry. 8526 * Access: RO 8527 */ 8528 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, 8529 MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); 8530 8531 /* reg_rauhtd_ipv6_ent_rif 8532 * Router interface. 8533 * Access: RO 8534 */ 8535 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 8536 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); 8537 8538 /* reg_rauhtd_ipv6_ent_dip 8539 * Destination IPv6 address. 8540 * Access: RO 8541 */ 8542 MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 8543 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10); 8544 8545 static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload, 8546 int ent_index, u16 *p_rif, 8547 u32 *p_dip) 8548 { 8549 *p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index); 8550 *p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index); 8551 } 8552 8553 static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload, 8554 int rec_index, u16 *p_rif, 8555 char *p_dip) 8556 { 8557 *p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index); 8558 mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip); 8559 } 8560 8561 /* RTDP - Routing Tunnel Decap Properties Register 8562 * ----------------------------------------------- 8563 * The RTDP register is used for configuring the tunnel decap properties of NVE 8564 * and IPinIP. 8565 */ 8566 #define MLXSW_REG_RTDP_ID 0x8020 8567 #define MLXSW_REG_RTDP_LEN 0x44 8568 8569 MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN); 8570 8571 enum mlxsw_reg_rtdp_type { 8572 MLXSW_REG_RTDP_TYPE_NVE, 8573 MLXSW_REG_RTDP_TYPE_IPIP, 8574 }; 8575 8576 /* reg_rtdp_type 8577 * Type of the RTDP entry as per enum mlxsw_reg_rtdp_type. 8578 * Access: RW 8579 */ 8580 MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4); 8581 8582 /* reg_rtdp_tunnel_index 8583 * Index to the Decap entry. 8584 * For Spectrum, Index to KVD Linear. 8585 * Access: Index 8586 */ 8587 MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24); 8588 8589 /* reg_rtdp_egress_router_interface 8590 * Underlay egress router interface. 8591 * Valid range is from 0 to cap_max_router_interfaces - 1 8592 * Access: RW 8593 */ 8594 MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16); 8595 8596 /* IPinIP */ 8597 8598 /* reg_rtdp_ipip_irif 8599 * Ingress Router Interface for the overlay router 8600 * Access: RW 8601 */ 8602 MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16); 8603 8604 enum mlxsw_reg_rtdp_ipip_sip_check { 8605 /* No sip checks. */ 8606 MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO, 8607 /* Filter packet if underlay is not IPv4 or if underlay SIP does not 8608 * equal ipv4_usip. 8609 */ 8610 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4, 8611 /* Filter packet if underlay is not IPv6 or if underlay SIP does not 8612 * equal ipv6_usip. 8613 */ 8614 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3, 8615 }; 8616 8617 /* reg_rtdp_ipip_sip_check 8618 * SIP check to perform. If decapsulation failed due to these configurations 8619 * then trap_id is IPIP_DECAP_ERROR. 8620 * Access: RW 8621 */ 8622 MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3); 8623 8624 /* If set, allow decapsulation of IPinIP (without GRE). */ 8625 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0) 8626 /* If set, allow decapsulation of IPinGREinIP without a key. */ 8627 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1) 8628 /* If set, allow decapsulation of IPinGREinIP with a key. */ 8629 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2) 8630 8631 /* reg_rtdp_ipip_type_check 8632 * Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to 8633 * these configurations then trap_id is IPIP_DECAP_ERROR. 8634 * Access: RW 8635 */ 8636 MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3); 8637 8638 /* reg_rtdp_ipip_gre_key_check 8639 * Whether GRE key should be checked. When check is enabled: 8640 * - A packet received as IPinIP (without GRE) will always pass. 8641 * - A packet received as IPinGREinIP without a key will not pass the check. 8642 * - A packet received as IPinGREinIP with a key will pass the check only if the 8643 * key in the packet is equal to expected_gre_key. 8644 * If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR. 8645 * Access: RW 8646 */ 8647 MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1); 8648 8649 /* reg_rtdp_ipip_ipv4_usip 8650 * Underlay IPv4 address for ipv4 source address check. 8651 * Reserved when sip_check is not '1'. 8652 * Access: RW 8653 */ 8654 MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32); 8655 8656 /* reg_rtdp_ipip_ipv6_usip_ptr 8657 * This field is valid when sip_check is "sipv6 check explicitly". This is a 8658 * pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index 8659 * is to the KVD linear. 8660 * Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6. 8661 * Access: RW 8662 */ 8663 MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24); 8664 8665 /* reg_rtdp_ipip_expected_gre_key 8666 * GRE key for checking. 8667 * Reserved when gre_key_check is '0'. 8668 * Access: RW 8669 */ 8670 MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32); 8671 8672 static inline void mlxsw_reg_rtdp_pack(char *payload, 8673 enum mlxsw_reg_rtdp_type type, 8674 u32 tunnel_index) 8675 { 8676 MLXSW_REG_ZERO(rtdp, payload); 8677 mlxsw_reg_rtdp_type_set(payload, type); 8678 mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index); 8679 } 8680 8681 static inline void 8682 mlxsw_reg_rtdp_ipip_pack(char *payload, u16 irif, 8683 enum mlxsw_reg_rtdp_ipip_sip_check sip_check, 8684 unsigned int type_check, bool gre_key_check, 8685 u32 expected_gre_key) 8686 { 8687 mlxsw_reg_rtdp_ipip_irif_set(payload, irif); 8688 mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check); 8689 mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check); 8690 mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check); 8691 mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key); 8692 } 8693 8694 static inline void 8695 mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif, 8696 enum mlxsw_reg_rtdp_ipip_sip_check sip_check, 8697 unsigned int type_check, bool gre_key_check, 8698 u32 ipv4_usip, u32 expected_gre_key) 8699 { 8700 mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check, 8701 gre_key_check, expected_gre_key); 8702 mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip); 8703 } 8704 8705 static inline void 8706 mlxsw_reg_rtdp_ipip6_pack(char *payload, u16 irif, 8707 enum mlxsw_reg_rtdp_ipip_sip_check sip_check, 8708 unsigned int type_check, bool gre_key_check, 8709 u32 ipv6_usip_ptr, u32 expected_gre_key) 8710 { 8711 mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check, 8712 gre_key_check, expected_gre_key); 8713 mlxsw_reg_rtdp_ipip_ipv6_usip_ptr_set(payload, ipv6_usip_ptr); 8714 } 8715 8716 /* RIPS - Router IP version Six Register 8717 * ------------------------------------- 8718 * The RIPS register is used to store IPv6 addresses for use by the NVE and 8719 * IPinIP 8720 */ 8721 #define MLXSW_REG_RIPS_ID 0x8021 8722 #define MLXSW_REG_RIPS_LEN 0x14 8723 8724 MLXSW_REG_DEFINE(rips, MLXSW_REG_RIPS_ID, MLXSW_REG_RIPS_LEN); 8725 8726 /* reg_rips_index 8727 * Index to IPv6 address. 8728 * For Spectrum, the index is to the KVD linear. 8729 * Access: Index 8730 */ 8731 MLXSW_ITEM32(reg, rips, index, 0x00, 0, 24); 8732 8733 /* reg_rips_ipv6 8734 * IPv6 address 8735 * Access: RW 8736 */ 8737 MLXSW_ITEM_BUF(reg, rips, ipv6, 0x04, 16); 8738 8739 static inline void mlxsw_reg_rips_pack(char *payload, u32 index, 8740 const struct in6_addr *ipv6) 8741 { 8742 MLXSW_REG_ZERO(rips, payload); 8743 mlxsw_reg_rips_index_set(payload, index); 8744 mlxsw_reg_rips_ipv6_memcpy_to(payload, (const char *)ipv6); 8745 } 8746 8747 /* RATRAD - Router Adjacency Table Activity Dump Register 8748 * ------------------------------------------------------ 8749 * The RATRAD register is used to dump and optionally clear activity bits of 8750 * router adjacency table entries. 8751 */ 8752 #define MLXSW_REG_RATRAD_ID 0x8022 8753 #define MLXSW_REG_RATRAD_LEN 0x210 8754 8755 MLXSW_REG_DEFINE(ratrad, MLXSW_REG_RATRAD_ID, MLXSW_REG_RATRAD_LEN); 8756 8757 enum { 8758 /* Read activity */ 8759 MLXSW_REG_RATRAD_OP_READ_ACTIVITY, 8760 /* Read and clear activity */ 8761 MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY, 8762 }; 8763 8764 /* reg_ratrad_op 8765 * Access: Operation 8766 */ 8767 MLXSW_ITEM32(reg, ratrad, op, 0x00, 30, 2); 8768 8769 /* reg_ratrad_ecmp_size 8770 * ecmp_size is the amount of sequential entries from adjacency_index. Valid 8771 * ranges: 8772 * Spectrum-1: 32-64, 512, 1024, 2048, 4096 8773 * Spectrum-2/3: 32-128, 256, 512, 1024, 2048, 4096 8774 * Access: Index 8775 */ 8776 MLXSW_ITEM32(reg, ratrad, ecmp_size, 0x00, 0, 13); 8777 8778 /* reg_ratrad_adjacency_index 8779 * Index into the adjacency table. 8780 * Access: Index 8781 */ 8782 MLXSW_ITEM32(reg, ratrad, adjacency_index, 0x04, 0, 24); 8783 8784 /* reg_ratrad_activity_vector 8785 * Activity bit per adjacency index. 8786 * Bits higher than ecmp_size are reserved. 8787 * Access: RO 8788 */ 8789 MLXSW_ITEM_BIT_ARRAY(reg, ratrad, activity_vector, 0x10, 0x200, 1); 8790 8791 static inline void mlxsw_reg_ratrad_pack(char *payload, u32 adjacency_index, 8792 u16 ecmp_size) 8793 { 8794 MLXSW_REG_ZERO(ratrad, payload); 8795 mlxsw_reg_ratrad_op_set(payload, 8796 MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY); 8797 mlxsw_reg_ratrad_ecmp_size_set(payload, ecmp_size); 8798 mlxsw_reg_ratrad_adjacency_index_set(payload, adjacency_index); 8799 } 8800 8801 /* RIGR-V2 - Router Interface Group Register Version 2 8802 * --------------------------------------------------- 8803 * The RIGR_V2 register is used to add, remove and query egress interface list 8804 * of a multicast forwarding entry. 8805 */ 8806 #define MLXSW_REG_RIGR2_ID 0x8023 8807 #define MLXSW_REG_RIGR2_LEN 0xB0 8808 8809 #define MLXSW_REG_RIGR2_MAX_ERIFS 32 8810 8811 MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN); 8812 8813 /* reg_rigr2_rigr_index 8814 * KVD Linear index. 8815 * Access: Index 8816 */ 8817 MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24); 8818 8819 /* reg_rigr2_vnext 8820 * Next RIGR Index is valid. 8821 * Access: RW 8822 */ 8823 MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1); 8824 8825 /* reg_rigr2_next_rigr_index 8826 * Next RIGR Index. The index is to the KVD linear. 8827 * Reserved when vnxet = '0'. 8828 * Access: RW 8829 */ 8830 MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24); 8831 8832 /* reg_rigr2_vrmid 8833 * RMID Index is valid. 8834 * Access: RW 8835 */ 8836 MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1); 8837 8838 /* reg_rigr2_rmid_index 8839 * RMID Index. 8840 * Range 0 .. max_mid - 1 8841 * Reserved when vrmid = '0'. 8842 * The index is to the Port Group Table (PGT) 8843 * Access: RW 8844 */ 8845 MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16); 8846 8847 /* reg_rigr2_erif_entry_v 8848 * Egress Router Interface is valid. 8849 * Note that low-entries must be set if high-entries are set. For 8850 * example: if erif_entry[2].v is set then erif_entry[1].v and 8851 * erif_entry[0].v must be set. 8852 * Index can be from 0 to cap_mc_erif_list_entries-1 8853 * Access: RW 8854 */ 8855 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false); 8856 8857 /* reg_rigr2_erif_entry_erif 8858 * Egress Router Interface. 8859 * Valid range is from 0 to cap_max_router_interfaces - 1 8860 * Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1 8861 * Access: RW 8862 */ 8863 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false); 8864 8865 static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index, 8866 bool vnext, u32 next_rigr_index) 8867 { 8868 MLXSW_REG_ZERO(rigr2, payload); 8869 mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index); 8870 mlxsw_reg_rigr2_vnext_set(payload, vnext); 8871 mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index); 8872 mlxsw_reg_rigr2_vrmid_set(payload, 0); 8873 mlxsw_reg_rigr2_rmid_index_set(payload, 0); 8874 } 8875 8876 static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index, 8877 bool v, u16 erif) 8878 { 8879 mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v); 8880 mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif); 8881 } 8882 8883 /* RECR-V2 - Router ECMP Configuration Version 2 Register 8884 * ------------------------------------------------------ 8885 */ 8886 #define MLXSW_REG_RECR2_ID 0x8025 8887 #define MLXSW_REG_RECR2_LEN 0x38 8888 8889 MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN); 8890 8891 /* reg_recr2_pp 8892 * Per-port configuration 8893 * Access: Index 8894 */ 8895 MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1); 8896 8897 /* reg_recr2_sh 8898 * Symmetric hash 8899 * Access: RW 8900 */ 8901 MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1); 8902 8903 /* reg_recr2_seed 8904 * Seed 8905 * Access: RW 8906 */ 8907 MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32); 8908 8909 enum { 8910 /* Enable IPv4 fields if packet is not TCP and not UDP */ 8911 MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3, 8912 /* Enable IPv4 fields if packet is TCP or UDP */ 8913 MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4, 8914 /* Enable IPv6 fields if packet is not TCP and not UDP */ 8915 MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5, 8916 /* Enable IPv6 fields if packet is TCP or UDP */ 8917 MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6, 8918 /* Enable TCP/UDP header fields if packet is IPv4 */ 8919 MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7, 8920 /* Enable TCP/UDP header fields if packet is IPv6 */ 8921 MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8, 8922 8923 __MLXSW_REG_RECR2_HEADER_CNT, 8924 }; 8925 8926 /* reg_recr2_outer_header_enables 8927 * Bit mask where each bit enables a specific layer to be included in 8928 * the hash calculation. 8929 * Access: RW 8930 */ 8931 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1); 8932 8933 enum { 8934 /* IPv4 Source IP */ 8935 MLXSW_REG_RECR2_IPV4_SIP0 = 9, 8936 MLXSW_REG_RECR2_IPV4_SIP3 = 12, 8937 /* IPv4 Destination IP */ 8938 MLXSW_REG_RECR2_IPV4_DIP0 = 13, 8939 MLXSW_REG_RECR2_IPV4_DIP3 = 16, 8940 /* IP Protocol */ 8941 MLXSW_REG_RECR2_IPV4_PROTOCOL = 17, 8942 /* IPv6 Source IP */ 8943 MLXSW_REG_RECR2_IPV6_SIP0_7 = 21, 8944 MLXSW_REG_RECR2_IPV6_SIP8 = 29, 8945 MLXSW_REG_RECR2_IPV6_SIP15 = 36, 8946 /* IPv6 Destination IP */ 8947 MLXSW_REG_RECR2_IPV6_DIP0_7 = 37, 8948 MLXSW_REG_RECR2_IPV6_DIP8 = 45, 8949 MLXSW_REG_RECR2_IPV6_DIP15 = 52, 8950 /* IPv6 Next Header */ 8951 MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53, 8952 /* IPv6 Flow Label */ 8953 MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57, 8954 /* TCP/UDP Source Port */ 8955 MLXSW_REG_RECR2_TCP_UDP_SPORT = 74, 8956 /* TCP/UDP Destination Port */ 8957 MLXSW_REG_RECR2_TCP_UDP_DPORT = 75, 8958 8959 __MLXSW_REG_RECR2_FIELD_CNT, 8960 }; 8961 8962 /* reg_recr2_outer_header_fields_enable 8963 * Packet fields to enable for ECMP hash subject to outer_header_enable. 8964 * Access: RW 8965 */ 8966 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1); 8967 8968 /* reg_recr2_inner_header_enables 8969 * Bit mask where each bit enables a specific inner layer to be included in the 8970 * hash calculation. Same values as reg_recr2_outer_header_enables. 8971 * Access: RW 8972 */ 8973 MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_enables, 0x2C, 0x04, 1); 8974 8975 enum { 8976 /* Inner IPv4 Source IP */ 8977 MLXSW_REG_RECR2_INNER_IPV4_SIP0 = 3, 8978 MLXSW_REG_RECR2_INNER_IPV4_SIP3 = 6, 8979 /* Inner IPv4 Destination IP */ 8980 MLXSW_REG_RECR2_INNER_IPV4_DIP0 = 7, 8981 MLXSW_REG_RECR2_INNER_IPV4_DIP3 = 10, 8982 /* Inner IP Protocol */ 8983 MLXSW_REG_RECR2_INNER_IPV4_PROTOCOL = 11, 8984 /* Inner IPv6 Source IP */ 8985 MLXSW_REG_RECR2_INNER_IPV6_SIP0_7 = 12, 8986 MLXSW_REG_RECR2_INNER_IPV6_SIP8 = 20, 8987 MLXSW_REG_RECR2_INNER_IPV6_SIP15 = 27, 8988 /* Inner IPv6 Destination IP */ 8989 MLXSW_REG_RECR2_INNER_IPV6_DIP0_7 = 28, 8990 MLXSW_REG_RECR2_INNER_IPV6_DIP8 = 36, 8991 MLXSW_REG_RECR2_INNER_IPV6_DIP15 = 43, 8992 /* Inner IPv6 Next Header */ 8993 MLXSW_REG_RECR2_INNER_IPV6_NEXT_HEADER = 44, 8994 /* Inner IPv6 Flow Label */ 8995 MLXSW_REG_RECR2_INNER_IPV6_FLOW_LABEL = 45, 8996 /* Inner TCP/UDP Source Port */ 8997 MLXSW_REG_RECR2_INNER_TCP_UDP_SPORT = 46, 8998 /* Inner TCP/UDP Destination Port */ 8999 MLXSW_REG_RECR2_INNER_TCP_UDP_DPORT = 47, 9000 9001 __MLXSW_REG_RECR2_INNER_FIELD_CNT, 9002 }; 9003 9004 /* reg_recr2_inner_header_fields_enable 9005 * Inner packet fields to enable for ECMP hash subject to inner_header_enables. 9006 * Access: RW 9007 */ 9008 MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_fields_enable, 0x30, 0x08, 1); 9009 9010 static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed) 9011 { 9012 MLXSW_REG_ZERO(recr2, payload); 9013 mlxsw_reg_recr2_pp_set(payload, false); 9014 mlxsw_reg_recr2_sh_set(payload, true); 9015 mlxsw_reg_recr2_seed_set(payload, seed); 9016 } 9017 9018 /* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register 9019 * -------------------------------------------------------------- 9020 * The RMFT_V2 register is used to configure and query the multicast table. 9021 */ 9022 #define MLXSW_REG_RMFT2_ID 0x8027 9023 #define MLXSW_REG_RMFT2_LEN 0x174 9024 9025 MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN); 9026 9027 /* reg_rmft2_v 9028 * Valid 9029 * Access: RW 9030 */ 9031 MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1); 9032 9033 enum mlxsw_reg_rmft2_type { 9034 MLXSW_REG_RMFT2_TYPE_IPV4, 9035 MLXSW_REG_RMFT2_TYPE_IPV6 9036 }; 9037 9038 /* reg_rmft2_type 9039 * Access: Index 9040 */ 9041 MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2); 9042 9043 enum mlxsw_sp_reg_rmft2_op { 9044 /* For Write: 9045 * Write operation. Used to write a new entry to the table. All RW 9046 * fields are relevant for new entry. Activity bit is set for new 9047 * entries - Note write with v (Valid) 0 will delete the entry. 9048 * For Query: 9049 * Read operation 9050 */ 9051 MLXSW_REG_RMFT2_OP_READ_WRITE, 9052 }; 9053 9054 /* reg_rmft2_op 9055 * Operation. 9056 * Access: OP 9057 */ 9058 MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2); 9059 9060 /* reg_rmft2_a 9061 * Activity. Set for new entries. Set if a packet lookup has hit on the specific 9062 * entry. 9063 * Access: RO 9064 */ 9065 MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1); 9066 9067 /* reg_rmft2_offset 9068 * Offset within the multicast forwarding table to write to. 9069 * Access: Index 9070 */ 9071 MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16); 9072 9073 /* reg_rmft2_virtual_router 9074 * Virtual Router ID. Range from 0..cap_max_virtual_routers-1 9075 * Access: RW 9076 */ 9077 MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16); 9078 9079 enum mlxsw_reg_rmft2_irif_mask { 9080 MLXSW_REG_RMFT2_IRIF_MASK_IGNORE, 9081 MLXSW_REG_RMFT2_IRIF_MASK_COMPARE 9082 }; 9083 9084 /* reg_rmft2_irif_mask 9085 * Ingress RIF mask. 9086 * Access: RW 9087 */ 9088 MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1); 9089 9090 /* reg_rmft2_irif 9091 * Ingress RIF index. 9092 * Access: RW 9093 */ 9094 MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16); 9095 9096 /* reg_rmft2_dip{4,6} 9097 * Destination IPv4/6 address 9098 * Access: RW 9099 */ 9100 MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16); 9101 MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32); 9102 9103 /* reg_rmft2_dip{4,6}_mask 9104 * A bit that is set directs the TCAM to compare the corresponding bit in key. A 9105 * bit that is clear directs the TCAM to ignore the corresponding bit in key. 9106 * Access: RW 9107 */ 9108 MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16); 9109 MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32); 9110 9111 /* reg_rmft2_sip{4,6} 9112 * Source IPv4/6 address 9113 * Access: RW 9114 */ 9115 MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16); 9116 MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32); 9117 9118 /* reg_rmft2_sip{4,6}_mask 9119 * A bit that is set directs the TCAM to compare the corresponding bit in key. A 9120 * bit that is clear directs the TCAM to ignore the corresponding bit in key. 9121 * Access: RW 9122 */ 9123 MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16); 9124 MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32); 9125 9126 /* reg_rmft2_flexible_action_set 9127 * ACL action set. The only supported action types in this field and in any 9128 * action-set pointed from here are as follows: 9129 * 00h: ACTION_NULL 9130 * 01h: ACTION_MAC_TTL, only TTL configuration is supported. 9131 * 03h: ACTION_TRAP 9132 * 06h: ACTION_QOS 9133 * 08h: ACTION_POLICING_MONITORING 9134 * 10h: ACTION_ROUTER_MC 9135 * Access: RW 9136 */ 9137 MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80, 9138 MLXSW_REG_FLEX_ACTION_SET_LEN); 9139 9140 static inline void 9141 mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset, 9142 u16 virtual_router, 9143 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 9144 const char *flex_action_set) 9145 { 9146 MLXSW_REG_ZERO(rmft2, payload); 9147 mlxsw_reg_rmft2_v_set(payload, v); 9148 mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE); 9149 mlxsw_reg_rmft2_offset_set(payload, offset); 9150 mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router); 9151 mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask); 9152 mlxsw_reg_rmft2_irif_set(payload, irif); 9153 if (flex_action_set) 9154 mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload, 9155 flex_action_set); 9156 } 9157 9158 static inline void 9159 mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router, 9160 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 9161 u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask, 9162 const char *flexible_action_set) 9163 { 9164 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, 9165 irif_mask, irif, flexible_action_set); 9166 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4); 9167 mlxsw_reg_rmft2_dip4_set(payload, dip4); 9168 mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask); 9169 mlxsw_reg_rmft2_sip4_set(payload, sip4); 9170 mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask); 9171 } 9172 9173 static inline void 9174 mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router, 9175 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 9176 struct in6_addr dip6, struct in6_addr dip6_mask, 9177 struct in6_addr sip6, struct in6_addr sip6_mask, 9178 const char *flexible_action_set) 9179 { 9180 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, 9181 irif_mask, irif, flexible_action_set); 9182 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6); 9183 mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6); 9184 mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask); 9185 mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6); 9186 mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask); 9187 } 9188 9189 /* REIV - Router Egress Interface to VID Register 9190 * ---------------------------------------------- 9191 * The REIV register maps {eRIF, egress_port} -> VID. 9192 * This mapping is done at the egress, after the ACLs. 9193 * This mapping always takes effect after router, regardless of cast 9194 * (for unicast/multicast/port-base multicast), regardless of eRIF type and 9195 * regardless of bridge decisions (e.g. SFD for unicast or SMPE). 9196 * Reserved when the RIF is a loopback RIF. 9197 * 9198 * Note: Reserved when legacy bridge model is used. 9199 */ 9200 #define MLXSW_REG_REIV_ID 0x8034 9201 #define MLXSW_REG_REIV_BASE_LEN 0x20 /* base length, without records */ 9202 #define MLXSW_REG_REIV_REC_LEN 0x04 /* record length */ 9203 #define MLXSW_REG_REIV_REC_MAX_COUNT 256 /* firmware limitation */ 9204 #define MLXSW_REG_REIV_LEN (MLXSW_REG_REIV_BASE_LEN + \ 9205 MLXSW_REG_REIV_REC_LEN * \ 9206 MLXSW_REG_REIV_REC_MAX_COUNT) 9207 9208 MLXSW_REG_DEFINE(reiv, MLXSW_REG_REIV_ID, MLXSW_REG_REIV_LEN); 9209 9210 /* reg_reiv_port_page 9211 * Port page - elport_record[0] is 256*port_page. 9212 * Access: Index 9213 */ 9214 MLXSW_ITEM32(reg, reiv, port_page, 0x00, 0, 4); 9215 9216 /* reg_reiv_erif 9217 * Egress RIF. 9218 * Range is 0..cap_max_router_interfaces-1. 9219 * Access: Index 9220 */ 9221 MLXSW_ITEM32(reg, reiv, erif, 0x04, 0, 16); 9222 9223 /* reg_reiv_rec_update 9224 * Update enable (when write): 9225 * 0 - Do not update the entry. 9226 * 1 - Update the entry. 9227 * Access: OP 9228 */ 9229 MLXSW_ITEM32_INDEXED(reg, reiv, rec_update, MLXSW_REG_REIV_BASE_LEN, 31, 1, 9230 MLXSW_REG_REIV_REC_LEN, 0x00, false); 9231 9232 /* reg_reiv_rec_evid 9233 * Egress VID. 9234 * Range is 0..4095. 9235 * Access: RW 9236 */ 9237 MLXSW_ITEM32_INDEXED(reg, reiv, rec_evid, MLXSW_REG_REIV_BASE_LEN, 0, 12, 9238 MLXSW_REG_REIV_REC_LEN, 0x00, false); 9239 9240 static inline void mlxsw_reg_reiv_pack(char *payload, u8 port_page, u16 erif) 9241 { 9242 MLXSW_REG_ZERO(reiv, payload); 9243 mlxsw_reg_reiv_port_page_set(payload, port_page); 9244 mlxsw_reg_reiv_erif_set(payload, erif); 9245 } 9246 9247 /* MFCR - Management Fan Control Register 9248 * -------------------------------------- 9249 * This register controls the settings of the Fan Speed PWM mechanism. 9250 */ 9251 #define MLXSW_REG_MFCR_ID 0x9001 9252 #define MLXSW_REG_MFCR_LEN 0x08 9253 9254 MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN); 9255 9256 enum mlxsw_reg_mfcr_pwm_frequency { 9257 MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00, 9258 MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01, 9259 MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02, 9260 MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40, 9261 MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41, 9262 MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42, 9263 MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43, 9264 MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44, 9265 }; 9266 9267 /* reg_mfcr_pwm_frequency 9268 * Controls the frequency of the PWM signal. 9269 * Access: RW 9270 */ 9271 MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7); 9272 9273 #define MLXSW_MFCR_TACHOS_MAX 10 9274 9275 /* reg_mfcr_tacho_active 9276 * Indicates which of the tachometer is active (bit per tachometer). 9277 * Access: RO 9278 */ 9279 MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX); 9280 9281 #define MLXSW_MFCR_PWMS_MAX 5 9282 9283 /* reg_mfcr_pwm_active 9284 * Indicates which of the PWM control is active (bit per PWM). 9285 * Access: RO 9286 */ 9287 MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX); 9288 9289 static inline void 9290 mlxsw_reg_mfcr_pack(char *payload, 9291 enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency) 9292 { 9293 MLXSW_REG_ZERO(mfcr, payload); 9294 mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency); 9295 } 9296 9297 static inline void 9298 mlxsw_reg_mfcr_unpack(char *payload, 9299 enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency, 9300 u16 *p_tacho_active, u8 *p_pwm_active) 9301 { 9302 *p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload); 9303 *p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload); 9304 *p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload); 9305 } 9306 9307 /* MFSC - Management Fan Speed Control Register 9308 * -------------------------------------------- 9309 * This register controls the settings of the Fan Speed PWM mechanism. 9310 */ 9311 #define MLXSW_REG_MFSC_ID 0x9002 9312 #define MLXSW_REG_MFSC_LEN 0x08 9313 9314 MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN); 9315 9316 /* reg_mfsc_pwm 9317 * Fan pwm to control / monitor. 9318 * Access: Index 9319 */ 9320 MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3); 9321 9322 /* reg_mfsc_pwm_duty_cycle 9323 * Controls the duty cycle of the PWM. Value range from 0..255 to 9324 * represent duty cycle of 0%...100%. 9325 * Access: RW 9326 */ 9327 MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8); 9328 9329 static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm, 9330 u8 pwm_duty_cycle) 9331 { 9332 MLXSW_REG_ZERO(mfsc, payload); 9333 mlxsw_reg_mfsc_pwm_set(payload, pwm); 9334 mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle); 9335 } 9336 9337 /* MFSM - Management Fan Speed Measurement 9338 * --------------------------------------- 9339 * This register controls the settings of the Tacho measurements and 9340 * enables reading the Tachometer measurements. 9341 */ 9342 #define MLXSW_REG_MFSM_ID 0x9003 9343 #define MLXSW_REG_MFSM_LEN 0x08 9344 9345 MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN); 9346 9347 /* reg_mfsm_tacho 9348 * Fan tachometer index. 9349 * Access: Index 9350 */ 9351 MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4); 9352 9353 /* reg_mfsm_rpm 9354 * Fan speed (round per minute). 9355 * Access: RO 9356 */ 9357 MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16); 9358 9359 static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho) 9360 { 9361 MLXSW_REG_ZERO(mfsm, payload); 9362 mlxsw_reg_mfsm_tacho_set(payload, tacho); 9363 } 9364 9365 /* MFSL - Management Fan Speed Limit Register 9366 * ------------------------------------------ 9367 * The Fan Speed Limit register is used to configure the fan speed 9368 * event / interrupt notification mechanism. Fan speed threshold are 9369 * defined for both under-speed and over-speed. 9370 */ 9371 #define MLXSW_REG_MFSL_ID 0x9004 9372 #define MLXSW_REG_MFSL_LEN 0x0C 9373 9374 MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN); 9375 9376 /* reg_mfsl_tacho 9377 * Fan tachometer index. 9378 * Access: Index 9379 */ 9380 MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4); 9381 9382 /* reg_mfsl_tach_min 9383 * Tachometer minimum value (minimum RPM). 9384 * Access: RW 9385 */ 9386 MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16); 9387 9388 /* reg_mfsl_tach_max 9389 * Tachometer maximum value (maximum RPM). 9390 * Access: RW 9391 */ 9392 MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16); 9393 9394 static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho, 9395 u16 tach_min, u16 tach_max) 9396 { 9397 MLXSW_REG_ZERO(mfsl, payload); 9398 mlxsw_reg_mfsl_tacho_set(payload, tacho); 9399 mlxsw_reg_mfsl_tach_min_set(payload, tach_min); 9400 mlxsw_reg_mfsl_tach_max_set(payload, tach_max); 9401 } 9402 9403 static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho, 9404 u16 *p_tach_min, u16 *p_tach_max) 9405 { 9406 if (p_tach_min) 9407 *p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload); 9408 9409 if (p_tach_max) 9410 *p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload); 9411 } 9412 9413 /* FORE - Fan Out of Range Event Register 9414 * -------------------------------------- 9415 * This register reports the status of the controlled fans compared to the 9416 * range defined by the MFSL register. 9417 */ 9418 #define MLXSW_REG_FORE_ID 0x9007 9419 #define MLXSW_REG_FORE_LEN 0x0C 9420 9421 MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN); 9422 9423 /* fan_under_limit 9424 * Fan speed is below the low limit defined in MFSL register. Each bit relates 9425 * to a single tachometer and indicates the specific tachometer reading is 9426 * below the threshold. 9427 * Access: RO 9428 */ 9429 MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10); 9430 9431 static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho, 9432 bool *fault) 9433 { 9434 u16 limit; 9435 9436 if (fault) { 9437 limit = mlxsw_reg_fore_fan_under_limit_get(payload); 9438 *fault = limit & BIT(tacho); 9439 } 9440 } 9441 9442 /* MTCAP - Management Temperature Capabilities 9443 * ------------------------------------------- 9444 * This register exposes the capabilities of the device and 9445 * system temperature sensing. 9446 */ 9447 #define MLXSW_REG_MTCAP_ID 0x9009 9448 #define MLXSW_REG_MTCAP_LEN 0x08 9449 9450 MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN); 9451 9452 /* reg_mtcap_sensor_count 9453 * Number of sensors supported by the device. 9454 * This includes the QSFP module sensors (if exists in the QSFP module). 9455 * Access: RO 9456 */ 9457 MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7); 9458 9459 /* MTMP - Management Temperature 9460 * ----------------------------- 9461 * This register controls the settings of the temperature measurements 9462 * and enables reading the temperature measurements. Note that temperature 9463 * is in 0.125 degrees Celsius. 9464 */ 9465 #define MLXSW_REG_MTMP_ID 0x900A 9466 #define MLXSW_REG_MTMP_LEN 0x20 9467 9468 MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN); 9469 9470 /* reg_mtmp_slot_index 9471 * Slot index (0: Main board). 9472 * Access: Index 9473 */ 9474 MLXSW_ITEM32(reg, mtmp, slot_index, 0x00, 16, 4); 9475 9476 #define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64 9477 #define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256 9478 /* reg_mtmp_sensor_index 9479 * Sensors index to access. 9480 * 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially 9481 * (module 0 is mapped to sensor_index 64). 9482 * Access: Index 9483 */ 9484 MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12); 9485 9486 /* Convert to milli degrees Celsius */ 9487 #define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \ 9488 ((v_) >= 0) ? ((v_) * 125) : \ 9489 ((s16)((GENMASK(15, 0) + (v_) + 1) \ 9490 * 125)); }) 9491 9492 /* reg_mtmp_max_operational_temperature 9493 * The highest temperature in the nominal operational range. Reading is in 9494 * 0.125 Celsius degrees units. 9495 * In case of module this is SFF critical temperature threshold. 9496 * Access: RO 9497 */ 9498 MLXSW_ITEM32(reg, mtmp, max_operational_temperature, 0x04, 16, 16); 9499 9500 /* reg_mtmp_temperature 9501 * Temperature reading from the sensor. Reading is in 0.125 Celsius 9502 * degrees units. 9503 * Access: RO 9504 */ 9505 MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16); 9506 9507 /* reg_mtmp_mte 9508 * Max Temperature Enable - enables measuring the max temperature on a sensor. 9509 * Access: RW 9510 */ 9511 MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1); 9512 9513 /* reg_mtmp_mtr 9514 * Max Temperature Reset - clears the value of the max temperature register. 9515 * Access: WO 9516 */ 9517 MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1); 9518 9519 /* reg_mtmp_max_temperature 9520 * The highest measured temperature from the sensor. 9521 * When the bit mte is cleared, the field max_temperature is reserved. 9522 * Access: RO 9523 */ 9524 MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16); 9525 9526 /* reg_mtmp_tee 9527 * Temperature Event Enable. 9528 * 0 - Do not generate event 9529 * 1 - Generate event 9530 * 2 - Generate single event 9531 * Access: RW 9532 */ 9533 9534 enum mlxsw_reg_mtmp_tee { 9535 MLXSW_REG_MTMP_TEE_NO_EVENT, 9536 MLXSW_REG_MTMP_TEE_GENERATE_EVENT, 9537 MLXSW_REG_MTMP_TEE_GENERATE_SINGLE_EVENT, 9538 }; 9539 9540 MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2); 9541 9542 #define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */ 9543 9544 /* reg_mtmp_temperature_threshold_hi 9545 * High threshold for Temperature Warning Event. In 0.125 Celsius. 9546 * Access: RW 9547 */ 9548 MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16); 9549 9550 #define MLXSW_REG_MTMP_HYSTERESIS_TEMP 0x28 /* 5 Celsius */ 9551 /* reg_mtmp_temperature_threshold_lo 9552 * Low threshold for Temperature Warning Event. In 0.125 Celsius. 9553 * Access: RW 9554 */ 9555 MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16); 9556 9557 #define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8 9558 9559 /* reg_mtmp_sensor_name 9560 * Sensor Name 9561 * Access: RO 9562 */ 9563 MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE); 9564 9565 static inline void mlxsw_reg_mtmp_pack(char *payload, u8 slot_index, 9566 u16 sensor_index, bool max_temp_enable, 9567 bool max_temp_reset) 9568 { 9569 MLXSW_REG_ZERO(mtmp, payload); 9570 mlxsw_reg_mtmp_slot_index_set(payload, slot_index); 9571 mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index); 9572 mlxsw_reg_mtmp_mte_set(payload, max_temp_enable); 9573 mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset); 9574 mlxsw_reg_mtmp_temperature_threshold_hi_set(payload, 9575 MLXSW_REG_MTMP_THRESH_HI); 9576 } 9577 9578 static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp, 9579 int *p_max_temp, int *p_temp_hi, 9580 int *p_max_oper_temp, 9581 char *sensor_name) 9582 { 9583 s16 temp; 9584 9585 if (p_temp) { 9586 temp = mlxsw_reg_mtmp_temperature_get(payload); 9587 *p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9588 } 9589 if (p_max_temp) { 9590 temp = mlxsw_reg_mtmp_max_temperature_get(payload); 9591 *p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9592 } 9593 if (p_temp_hi) { 9594 temp = mlxsw_reg_mtmp_temperature_threshold_hi_get(payload); 9595 *p_temp_hi = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9596 } 9597 if (p_max_oper_temp) { 9598 temp = mlxsw_reg_mtmp_max_operational_temperature_get(payload); 9599 *p_max_oper_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9600 } 9601 if (sensor_name) 9602 mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name); 9603 } 9604 9605 /* MTWE - Management Temperature Warning Event 9606 * ------------------------------------------- 9607 * This register is used for over temperature warning. 9608 */ 9609 #define MLXSW_REG_MTWE_ID 0x900B 9610 #define MLXSW_REG_MTWE_LEN 0x10 9611 9612 MLXSW_REG_DEFINE(mtwe, MLXSW_REG_MTWE_ID, MLXSW_REG_MTWE_LEN); 9613 9614 /* reg_mtwe_sensor_warning 9615 * Bit vector indicating which of the sensor reading is above threshold. 9616 * Address 00h bit31 is sensor_warning[127]. 9617 * Address 0Ch bit0 is sensor_warning[0]. 9618 * Access: RO 9619 */ 9620 MLXSW_ITEM_BIT_ARRAY(reg, mtwe, sensor_warning, 0x0, 0x10, 1); 9621 9622 /* MTBR - Management Temperature Bulk Register 9623 * ------------------------------------------- 9624 * This register is used for bulk temperature reading. 9625 */ 9626 #define MLXSW_REG_MTBR_ID 0x900F 9627 #define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */ 9628 #define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */ 9629 #define MLXSW_REG_MTBR_REC_MAX_COUNT 1 9630 #define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \ 9631 MLXSW_REG_MTBR_REC_LEN * \ 9632 MLXSW_REG_MTBR_REC_MAX_COUNT) 9633 9634 MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN); 9635 9636 /* reg_mtbr_slot_index 9637 * Slot index (0: Main board). 9638 * Access: Index 9639 */ 9640 MLXSW_ITEM32(reg, mtbr, slot_index, 0x00, 16, 4); 9641 9642 /* reg_mtbr_base_sensor_index 9643 * Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors, 9644 * 64-127 are mapped to the SFP+/QSFP modules sequentially). 9645 * Access: Index 9646 */ 9647 MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12); 9648 9649 /* reg_mtbr_num_rec 9650 * Request: Number of records to read 9651 * Response: Number of records read 9652 * See above description for more details. 9653 * Range 1..255 9654 * Access: RW 9655 */ 9656 MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8); 9657 9658 /* reg_mtbr_rec_max_temp 9659 * The highest measured temperature from the sensor. 9660 * When the bit mte is cleared, the field max_temperature is reserved. 9661 * Access: RO 9662 */ 9663 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16, 9664 16, MLXSW_REG_MTBR_REC_LEN, 0x00, false); 9665 9666 /* reg_mtbr_rec_temp 9667 * Temperature reading from the sensor. Reading is in 0..125 Celsius 9668 * degrees units. 9669 * Access: RO 9670 */ 9671 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16, 9672 MLXSW_REG_MTBR_REC_LEN, 0x00, false); 9673 9674 static inline void mlxsw_reg_mtbr_pack(char *payload, u8 slot_index, 9675 u16 base_sensor_index) 9676 { 9677 MLXSW_REG_ZERO(mtbr, payload); 9678 mlxsw_reg_mtbr_slot_index_set(payload, slot_index); 9679 mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index); 9680 mlxsw_reg_mtbr_num_rec_set(payload, 1); 9681 } 9682 9683 /* Error codes from temperatute reading */ 9684 enum mlxsw_reg_mtbr_temp_status { 9685 MLXSW_REG_MTBR_NO_CONN = 0x8000, 9686 MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001, 9687 MLXSW_REG_MTBR_INDEX_NA = 0x8002, 9688 MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003, 9689 }; 9690 9691 /* Base index for reading modules temperature */ 9692 #define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64 9693 9694 static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind, 9695 u16 *p_temp, u16 *p_max_temp) 9696 { 9697 if (p_temp) 9698 *p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind); 9699 if (p_max_temp) 9700 *p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind); 9701 } 9702 9703 /* MCIA - Management Cable Info Access 9704 * ----------------------------------- 9705 * MCIA register is used to access the SFP+ and QSFP connector's EPROM. 9706 */ 9707 9708 #define MLXSW_REG_MCIA_ID 0x9014 9709 #define MLXSW_REG_MCIA_LEN 0x94 9710 9711 MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN); 9712 9713 /* reg_mcia_module 9714 * Module number. 9715 * Access: Index 9716 */ 9717 MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8); 9718 9719 /* reg_mcia_slot_index 9720 * Slot index (0: Main board) 9721 * Access: Index 9722 */ 9723 MLXSW_ITEM32(reg, mcia, slot, 0x00, 12, 4); 9724 9725 enum { 9726 MLXSW_REG_MCIA_STATUS_GOOD = 0, 9727 /* No response from module's EEPROM. */ 9728 MLXSW_REG_MCIA_STATUS_NO_EEPROM_MODULE = 1, 9729 /* Module type not supported by the device. */ 9730 MLXSW_REG_MCIA_STATUS_MODULE_NOT_SUPPORTED = 2, 9731 /* No module present indication. */ 9732 MLXSW_REG_MCIA_STATUS_MODULE_NOT_CONNECTED = 3, 9733 /* Error occurred while trying to access module's EEPROM using I2C. */ 9734 MLXSW_REG_MCIA_STATUS_I2C_ERROR = 9, 9735 /* Module is disabled. */ 9736 MLXSW_REG_MCIA_STATUS_MODULE_DISABLED = 16, 9737 }; 9738 9739 /* reg_mcia_status 9740 * Module status. 9741 * Access: RO 9742 */ 9743 MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8); 9744 9745 /* reg_mcia_i2c_device_address 9746 * I2C device address. 9747 * Access: RW 9748 */ 9749 MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8); 9750 9751 /* reg_mcia_page_number 9752 * Page number. 9753 * Access: RW 9754 */ 9755 MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8); 9756 9757 /* reg_mcia_device_address 9758 * Device address. 9759 * Access: RW 9760 */ 9761 MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16); 9762 9763 /* reg_mcia_bank_number 9764 * Bank number. 9765 * Access: Index 9766 */ 9767 MLXSW_ITEM32(reg, mcia, bank_number, 0x08, 16, 8); 9768 9769 /* reg_mcia_size 9770 * Number of bytes to read/write (up to 48 bytes). 9771 * Access: RW 9772 */ 9773 MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16); 9774 9775 #define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256 9776 #define MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH 128 9777 #define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50 9778 #define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51 9779 #define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0 9780 #define MLXSW_REG_MCIA_TH_ITEM_SIZE 2 9781 #define MLXSW_REG_MCIA_TH_PAGE_NUM 3 9782 #define MLXSW_REG_MCIA_TH_PAGE_CMIS_NUM 2 9783 #define MLXSW_REG_MCIA_PAGE0_LO 0 9784 #define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80 9785 #define MLXSW_REG_MCIA_EEPROM_CMIS_FLAT_MEMORY BIT(7) 9786 9787 enum mlxsw_reg_mcia_eeprom_module_info_rev_id { 9788 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00, 9789 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01, 9790 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03, 9791 }; 9792 9793 enum mlxsw_reg_mcia_eeprom_module_info_id { 9794 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03, 9795 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C, 9796 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D, 9797 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11, 9798 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18, 9799 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_OSFP = 0x19, 9800 }; 9801 9802 enum mlxsw_reg_mcia_eeprom_module_info { 9803 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID, 9804 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID, 9805 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_TYPE_ID, 9806 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE, 9807 }; 9808 9809 /* reg_mcia_eeprom 9810 * Bytes to read/write. 9811 * Access: RW 9812 */ 9813 MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, 128); 9814 9815 /* This is used to access the optional upper pages (1-3) in the QSFP+ 9816 * memory map. Page 1 is available on offset 256 through 383, page 2 - 9817 * on offset 384 through 511, page 3 - on offset 512 through 639. 9818 */ 9819 #define MLXSW_REG_MCIA_PAGE_GET(off) (((off) - \ 9820 MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH) / \ 9821 MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH + 1) 9822 9823 static inline void mlxsw_reg_mcia_pack(char *payload, u8 slot_index, u8 module, 9824 u8 page_number, u16 device_addr, u8 size, 9825 u8 i2c_device_addr) 9826 { 9827 MLXSW_REG_ZERO(mcia, payload); 9828 mlxsw_reg_mcia_slot_set(payload, slot_index); 9829 mlxsw_reg_mcia_module_set(payload, module); 9830 mlxsw_reg_mcia_page_number_set(payload, page_number); 9831 mlxsw_reg_mcia_device_address_set(payload, device_addr); 9832 mlxsw_reg_mcia_size_set(payload, size); 9833 mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr); 9834 } 9835 9836 /* MPAT - Monitoring Port Analyzer Table 9837 * ------------------------------------- 9838 * MPAT Register is used to query and configure the Switch PortAnalyzer Table. 9839 * For an enabled analyzer, all fields except e (enable) cannot be modified. 9840 */ 9841 #define MLXSW_REG_MPAT_ID 0x901A 9842 #define MLXSW_REG_MPAT_LEN 0x78 9843 9844 MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN); 9845 9846 /* reg_mpat_pa_id 9847 * Port Analyzer ID. 9848 * Access: Index 9849 */ 9850 MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4); 9851 9852 /* reg_mpat_session_id 9853 * Mirror Session ID. 9854 * Used for MIRROR_SESSION<i> trap. 9855 * Access: RW 9856 */ 9857 MLXSW_ITEM32(reg, mpat, session_id, 0x00, 24, 4); 9858 9859 /* reg_mpat_system_port 9860 * A unique port identifier for the final destination of the packet. 9861 * Access: RW 9862 */ 9863 MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16); 9864 9865 /* reg_mpat_e 9866 * Enable. Indicating the Port Analyzer is enabled. 9867 * Access: RW 9868 */ 9869 MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1); 9870 9871 /* reg_mpat_qos 9872 * Quality Of Service Mode. 9873 * 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation 9874 * PCP, DEI, DSCP or VL) are configured. 9875 * 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the 9876 * same as in the original packet that has triggered the mirroring. For 9877 * SPAN also the pcp,dei are maintained. 9878 * Access: RW 9879 */ 9880 MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1); 9881 9882 /* reg_mpat_be 9883 * Best effort mode. Indicates mirroring traffic should not cause packet 9884 * drop or back pressure, but will discard the mirrored packets. Mirrored 9885 * packets will be forwarded on a best effort manner. 9886 * 0: Do not discard mirrored packets 9887 * 1: Discard mirrored packets if causing congestion 9888 * Access: RW 9889 */ 9890 MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1); 9891 9892 enum mlxsw_reg_mpat_span_type { 9893 /* Local SPAN Ethernet. 9894 * The original packet is not encapsulated. 9895 */ 9896 MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0, 9897 9898 /* Remote SPAN Ethernet VLAN. 9899 * The packet is forwarded to the monitoring port on the monitoring 9900 * VLAN. 9901 */ 9902 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1, 9903 9904 /* Encapsulated Remote SPAN Ethernet L3 GRE. 9905 * The packet is encapsulated with GRE header. 9906 */ 9907 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3, 9908 }; 9909 9910 /* reg_mpat_span_type 9911 * SPAN type. 9912 * Access: RW 9913 */ 9914 MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4); 9915 9916 /* reg_mpat_pide 9917 * Policer enable. 9918 * Access: RW 9919 */ 9920 MLXSW_ITEM32(reg, mpat, pide, 0x0C, 15, 1); 9921 9922 /* reg_mpat_pid 9923 * Policer ID. 9924 * Access: RW 9925 */ 9926 MLXSW_ITEM32(reg, mpat, pid, 0x0C, 0, 14); 9927 9928 /* Remote SPAN - Ethernet VLAN 9929 * - - - - - - - - - - - - - - 9930 */ 9931 9932 /* reg_mpat_eth_rspan_vid 9933 * Encapsulation header VLAN ID. 9934 * Access: RW 9935 */ 9936 MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12); 9937 9938 /* Encapsulated Remote SPAN - Ethernet L2 9939 * - - - - - - - - - - - - - - - - - - - 9940 */ 9941 9942 enum mlxsw_reg_mpat_eth_rspan_version { 9943 MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15, 9944 }; 9945 9946 /* reg_mpat_eth_rspan_version 9947 * RSPAN mirror header version. 9948 * Access: RW 9949 */ 9950 MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4); 9951 9952 /* reg_mpat_eth_rspan_mac 9953 * Destination MAC address. 9954 * Access: RW 9955 */ 9956 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6); 9957 9958 /* reg_mpat_eth_rspan_tp 9959 * Tag Packet. Indicates whether the mirroring header should be VLAN tagged. 9960 * Access: RW 9961 */ 9962 MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1); 9963 9964 /* Encapsulated Remote SPAN - Ethernet L3 9965 * - - - - - - - - - - - - - - - - - - - 9966 */ 9967 9968 enum mlxsw_reg_mpat_eth_rspan_protocol { 9969 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4, 9970 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6, 9971 }; 9972 9973 /* reg_mpat_eth_rspan_protocol 9974 * SPAN encapsulation protocol. 9975 * Access: RW 9976 */ 9977 MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4); 9978 9979 /* reg_mpat_eth_rspan_ttl 9980 * Encapsulation header Time-to-Live/HopLimit. 9981 * Access: RW 9982 */ 9983 MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8); 9984 9985 /* reg_mpat_eth_rspan_smac 9986 * Source MAC address 9987 * Access: RW 9988 */ 9989 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6); 9990 9991 /* reg_mpat_eth_rspan_dip* 9992 * Destination IP address. The IP version is configured by protocol. 9993 * Access: RW 9994 */ 9995 MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32); 9996 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16); 9997 9998 /* reg_mpat_eth_rspan_sip* 9999 * Source IP address. The IP version is configured by protocol. 10000 * Access: RW 10001 */ 10002 MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32); 10003 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16); 10004 10005 static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id, 10006 u16 system_port, bool e, 10007 enum mlxsw_reg_mpat_span_type span_type) 10008 { 10009 MLXSW_REG_ZERO(mpat, payload); 10010 mlxsw_reg_mpat_pa_id_set(payload, pa_id); 10011 mlxsw_reg_mpat_system_port_set(payload, system_port); 10012 mlxsw_reg_mpat_e_set(payload, e); 10013 mlxsw_reg_mpat_qos_set(payload, 1); 10014 mlxsw_reg_mpat_be_set(payload, 1); 10015 mlxsw_reg_mpat_span_type_set(payload, span_type); 10016 } 10017 10018 static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid) 10019 { 10020 mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid); 10021 } 10022 10023 static inline void 10024 mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload, 10025 enum mlxsw_reg_mpat_eth_rspan_version version, 10026 const char *mac, 10027 bool tp) 10028 { 10029 mlxsw_reg_mpat_eth_rspan_version_set(payload, version); 10030 mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac); 10031 mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp); 10032 } 10033 10034 static inline void 10035 mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl, 10036 const char *smac, 10037 u32 sip, u32 dip) 10038 { 10039 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); 10040 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); 10041 mlxsw_reg_mpat_eth_rspan_protocol_set(payload, 10042 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4); 10043 mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip); 10044 mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip); 10045 } 10046 10047 static inline void 10048 mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl, 10049 const char *smac, 10050 struct in6_addr sip, struct in6_addr dip) 10051 { 10052 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); 10053 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); 10054 mlxsw_reg_mpat_eth_rspan_protocol_set(payload, 10055 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6); 10056 mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip); 10057 mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip); 10058 } 10059 10060 /* MPAR - Monitoring Port Analyzer Register 10061 * ---------------------------------------- 10062 * MPAR register is used to query and configure the port analyzer port mirroring 10063 * properties. 10064 */ 10065 #define MLXSW_REG_MPAR_ID 0x901B 10066 #define MLXSW_REG_MPAR_LEN 0x0C 10067 10068 MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN); 10069 10070 /* reg_mpar_local_port 10071 * The local port to mirror the packets from. 10072 * Access: Index 10073 */ 10074 MLXSW_ITEM32_LP(reg, mpar, 0x00, 16, 0x00, 4); 10075 10076 enum mlxsw_reg_mpar_i_e { 10077 MLXSW_REG_MPAR_TYPE_EGRESS, 10078 MLXSW_REG_MPAR_TYPE_INGRESS, 10079 }; 10080 10081 /* reg_mpar_i_e 10082 * Ingress/Egress 10083 * Access: Index 10084 */ 10085 MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4); 10086 10087 /* reg_mpar_enable 10088 * Enable mirroring 10089 * By default, port mirroring is disabled for all ports. 10090 * Access: RW 10091 */ 10092 MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1); 10093 10094 /* reg_mpar_pa_id 10095 * Port Analyzer ID. 10096 * Access: RW 10097 */ 10098 MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4); 10099 10100 #define MLXSW_REG_MPAR_RATE_MAX 3500000000UL 10101 10102 /* reg_mpar_probability_rate 10103 * Sampling rate. 10104 * Valid values are: 1 to 3.5*10^9 10105 * Value of 1 means "sample all". Default is 1. 10106 * Reserved when Spectrum-1. 10107 * Access: RW 10108 */ 10109 MLXSW_ITEM32(reg, mpar, probability_rate, 0x08, 0, 32); 10110 10111 static inline void mlxsw_reg_mpar_pack(char *payload, u16 local_port, 10112 enum mlxsw_reg_mpar_i_e i_e, 10113 bool enable, u8 pa_id, 10114 u32 probability_rate) 10115 { 10116 MLXSW_REG_ZERO(mpar, payload); 10117 mlxsw_reg_mpar_local_port_set(payload, local_port); 10118 mlxsw_reg_mpar_enable_set(payload, enable); 10119 mlxsw_reg_mpar_i_e_set(payload, i_e); 10120 mlxsw_reg_mpar_pa_id_set(payload, pa_id); 10121 mlxsw_reg_mpar_probability_rate_set(payload, probability_rate); 10122 } 10123 10124 /* MGIR - Management General Information Register 10125 * ---------------------------------------------- 10126 * MGIR register allows software to query the hardware and firmware general 10127 * information. 10128 */ 10129 #define MLXSW_REG_MGIR_ID 0x9020 10130 #define MLXSW_REG_MGIR_LEN 0x9C 10131 10132 MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN); 10133 10134 /* reg_mgir_hw_info_device_hw_revision 10135 * Access: RO 10136 */ 10137 MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16); 10138 10139 /* reg_mgir_fw_info_latency_tlv 10140 * When set, latency-TLV is supported. 10141 * Access: RO 10142 */ 10143 MLXSW_ITEM32(reg, mgir, fw_info_latency_tlv, 0x20, 29, 1); 10144 10145 /* reg_mgir_fw_info_string_tlv 10146 * When set, string-TLV is supported. 10147 * Access: RO 10148 */ 10149 MLXSW_ITEM32(reg, mgir, fw_info_string_tlv, 0x20, 28, 1); 10150 10151 #define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16 10152 10153 /* reg_mgir_fw_info_psid 10154 * PSID (ASCII string). 10155 * Access: RO 10156 */ 10157 MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE); 10158 10159 /* reg_mgir_fw_info_extended_major 10160 * Access: RO 10161 */ 10162 MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32); 10163 10164 /* reg_mgir_fw_info_extended_minor 10165 * Access: RO 10166 */ 10167 MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32); 10168 10169 /* reg_mgir_fw_info_extended_sub_minor 10170 * Access: RO 10171 */ 10172 MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32); 10173 10174 static inline void mlxsw_reg_mgir_pack(char *payload) 10175 { 10176 MLXSW_REG_ZERO(mgir, payload); 10177 } 10178 10179 static inline void 10180 mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid, 10181 u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor) 10182 { 10183 *hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload); 10184 mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid); 10185 *fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload); 10186 *fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload); 10187 *fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload); 10188 } 10189 10190 /* MRSR - Management Reset and Shutdown Register 10191 * --------------------------------------------- 10192 * MRSR register is used to reset or shutdown the switch or 10193 * the entire system (when applicable). 10194 */ 10195 #define MLXSW_REG_MRSR_ID 0x9023 10196 #define MLXSW_REG_MRSR_LEN 0x08 10197 10198 MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN); 10199 10200 enum mlxsw_reg_mrsr_command { 10201 /* Switch soft reset, does not reset PCI firmware. */ 10202 MLXSW_REG_MRSR_COMMAND_SOFTWARE_RESET = 1, 10203 /* Reset will be done when PCI link will be disabled. 10204 * This command will reset PCI firmware also. 10205 */ 10206 MLXSW_REG_MRSR_COMMAND_RESET_AT_PCI_DISABLE = 6, 10207 }; 10208 10209 /* reg_mrsr_command 10210 * Reset/shutdown command 10211 * 0 - do nothing 10212 * 1 - software reset 10213 * Access: WO 10214 */ 10215 MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4); 10216 10217 static inline void mlxsw_reg_mrsr_pack(char *payload, 10218 enum mlxsw_reg_mrsr_command command) 10219 { 10220 MLXSW_REG_ZERO(mrsr, payload); 10221 mlxsw_reg_mrsr_command_set(payload, command); 10222 } 10223 10224 /* MLCR - Management LED Control Register 10225 * -------------------------------------- 10226 * Controls the system LEDs. 10227 */ 10228 #define MLXSW_REG_MLCR_ID 0x902B 10229 #define MLXSW_REG_MLCR_LEN 0x0C 10230 10231 MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN); 10232 10233 /* reg_mlcr_local_port 10234 * Local port number. 10235 * Access: RW 10236 */ 10237 MLXSW_ITEM32_LP(reg, mlcr, 0x00, 16, 0x00, 24); 10238 10239 #define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF 10240 10241 /* reg_mlcr_beacon_duration 10242 * Duration of the beacon to be active, in seconds. 10243 * 0x0 - Will turn off the beacon. 10244 * 0xFFFF - Will turn on the beacon until explicitly turned off. 10245 * Access: RW 10246 */ 10247 MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16); 10248 10249 /* reg_mlcr_beacon_remain 10250 * Remaining duration of the beacon, in seconds. 10251 * 0xFFFF indicates an infinite amount of time. 10252 * Access: RO 10253 */ 10254 MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16); 10255 10256 static inline void mlxsw_reg_mlcr_pack(char *payload, u16 local_port, 10257 bool active) 10258 { 10259 MLXSW_REG_ZERO(mlcr, payload); 10260 mlxsw_reg_mlcr_local_port_set(payload, local_port); 10261 mlxsw_reg_mlcr_beacon_duration_set(payload, active ? 10262 MLXSW_REG_MLCR_DURATION_MAX : 0); 10263 } 10264 10265 /* MCION - Management Cable IO and Notifications Register 10266 * ------------------------------------------------------ 10267 * The MCION register is used to query transceiver modules' IO pins and other 10268 * notifications. 10269 */ 10270 #define MLXSW_REG_MCION_ID 0x9052 10271 #define MLXSW_REG_MCION_LEN 0x18 10272 10273 MLXSW_REG_DEFINE(mcion, MLXSW_REG_MCION_ID, MLXSW_REG_MCION_LEN); 10274 10275 /* reg_mcion_module 10276 * Module number. 10277 * Access: Index 10278 */ 10279 MLXSW_ITEM32(reg, mcion, module, 0x00, 16, 8); 10280 10281 /* reg_mcion_slot_index 10282 * Slot index. 10283 * Access: Index 10284 */ 10285 MLXSW_ITEM32(reg, mcion, slot_index, 0x00, 12, 4); 10286 10287 enum { 10288 MLXSW_REG_MCION_MODULE_STATUS_BITS_PRESENT_MASK = BIT(0), 10289 MLXSW_REG_MCION_MODULE_STATUS_BITS_LOW_POWER_MASK = BIT(8), 10290 }; 10291 10292 /* reg_mcion_module_status_bits 10293 * Module IO status as defined by SFF. 10294 * Access: RO 10295 */ 10296 MLXSW_ITEM32(reg, mcion, module_status_bits, 0x04, 0, 16); 10297 10298 static inline void mlxsw_reg_mcion_pack(char *payload, u8 slot_index, u8 module) 10299 { 10300 MLXSW_REG_ZERO(mcion, payload); 10301 mlxsw_reg_mcion_slot_index_set(payload, slot_index); 10302 mlxsw_reg_mcion_module_set(payload, module); 10303 } 10304 10305 /* MTPPS - Management Pulse Per Second Register 10306 * -------------------------------------------- 10307 * This register provides the device PPS capabilities, configure the PPS in and 10308 * out modules and holds the PPS in time stamp. 10309 */ 10310 #define MLXSW_REG_MTPPS_ID 0x9053 10311 #define MLXSW_REG_MTPPS_LEN 0x3C 10312 10313 MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN); 10314 10315 /* reg_mtpps_enable 10316 * Enables the PPS functionality the specific pin. 10317 * A boolean variable. 10318 * Access: RW 10319 */ 10320 MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1); 10321 10322 enum mlxsw_reg_mtpps_pin_mode { 10323 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2, 10324 }; 10325 10326 /* reg_mtpps_pin_mode 10327 * Pin mode to be used. The mode must comply with the supported modes of the 10328 * requested pin. 10329 * Access: RW 10330 */ 10331 MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4); 10332 10333 #define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7 10334 10335 /* reg_mtpps_pin 10336 * Pin to be configured or queried out of the supported pins. 10337 * Access: Index 10338 */ 10339 MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8); 10340 10341 /* reg_mtpps_time_stamp 10342 * When pin_mode = pps_in, the latched device time when it was triggered from 10343 * the external GPIO pin. 10344 * When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target 10345 * time to generate next output signal. 10346 * Time is in units of device clock. 10347 * Access: RW 10348 */ 10349 MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64); 10350 10351 static inline void 10352 mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp) 10353 { 10354 MLXSW_REG_ZERO(mtpps, payload); 10355 mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN); 10356 mlxsw_reg_mtpps_pin_mode_set(payload, 10357 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN); 10358 mlxsw_reg_mtpps_enable_set(payload, true); 10359 mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp); 10360 } 10361 10362 /* MTUTC - Management UTC Register 10363 * ------------------------------- 10364 * Configures the HW UTC counter. 10365 */ 10366 #define MLXSW_REG_MTUTC_ID 0x9055 10367 #define MLXSW_REG_MTUTC_LEN 0x1C 10368 10369 MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN); 10370 10371 enum mlxsw_reg_mtutc_operation { 10372 MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0, 10373 MLXSW_REG_MTUTC_OPERATION_SET_TIME_IMMEDIATE = 1, 10374 MLXSW_REG_MTUTC_OPERATION_ADJUST_TIME = 2, 10375 MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3, 10376 }; 10377 10378 /* reg_mtutc_operation 10379 * Operation. 10380 * Access: OP 10381 */ 10382 MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4); 10383 10384 /* reg_mtutc_freq_adjustment 10385 * Frequency adjustment: Every PPS the HW frequency will be 10386 * adjusted by this value. Units of HW clock, where HW counts 10387 * 10^9 HW clocks for 1 HW second. Range is from -50,000,000 to +50,000,000. 10388 * In Spectrum-2, the field is reversed, positive values mean to decrease the 10389 * frequency. 10390 * Access: RW 10391 */ 10392 MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32); 10393 10394 #define MLXSW_REG_MTUTC_MAX_FREQ_ADJ (50 * 1000 * 1000) 10395 10396 /* reg_mtutc_utc_sec 10397 * UTC seconds. 10398 * Access: WO 10399 */ 10400 MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32); 10401 10402 /* reg_mtutc_utc_nsec 10403 * UTC nSecs. 10404 * Range 0..(10^9-1) 10405 * Updated when operation is SET_TIME_IMMEDIATE. 10406 * Reserved on Spectrum-1. 10407 * Access: WO 10408 */ 10409 MLXSW_ITEM32(reg, mtutc, utc_nsec, 0x14, 0, 30); 10410 10411 /* reg_mtutc_time_adjustment 10412 * Time adjustment. 10413 * Units of nSec. 10414 * Range is from -32768 to +32767. 10415 * Updated when operation is ADJUST_TIME. 10416 * Reserved on Spectrum-1. 10417 * Access: WO 10418 */ 10419 MLXSW_ITEM32(reg, mtutc, time_adjustment, 0x18, 0, 32); 10420 10421 static inline void 10422 mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper, 10423 u32 freq_adj, u32 utc_sec, u32 utc_nsec, u32 time_adj) 10424 { 10425 MLXSW_REG_ZERO(mtutc, payload); 10426 mlxsw_reg_mtutc_operation_set(payload, oper); 10427 mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj); 10428 mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec); 10429 mlxsw_reg_mtutc_utc_nsec_set(payload, utc_nsec); 10430 mlxsw_reg_mtutc_time_adjustment_set(payload, time_adj); 10431 } 10432 10433 /* MCQI - Management Component Query Information 10434 * --------------------------------------------- 10435 * This register allows querying information about firmware components. 10436 */ 10437 #define MLXSW_REG_MCQI_ID 0x9061 10438 #define MLXSW_REG_MCQI_BASE_LEN 0x18 10439 #define MLXSW_REG_MCQI_CAP_LEN 0x14 10440 #define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN) 10441 10442 MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN); 10443 10444 /* reg_mcqi_component_index 10445 * Index of the accessed component. 10446 * Access: Index 10447 */ 10448 MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16); 10449 10450 enum mlxfw_reg_mcqi_info_type { 10451 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES, 10452 }; 10453 10454 /* reg_mcqi_info_type 10455 * Component properties set. 10456 * Access: RW 10457 */ 10458 MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5); 10459 10460 /* reg_mcqi_offset 10461 * The requested/returned data offset from the section start, given in bytes. 10462 * Must be DWORD aligned. 10463 * Access: RW 10464 */ 10465 MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32); 10466 10467 /* reg_mcqi_data_size 10468 * The requested/returned data size, given in bytes. If data_size is not DWORD 10469 * aligned, the last bytes are zero padded. 10470 * Access: RW 10471 */ 10472 MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16); 10473 10474 /* reg_mcqi_cap_max_component_size 10475 * Maximum size for this component, given in bytes. 10476 * Access: RO 10477 */ 10478 MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32); 10479 10480 /* reg_mcqi_cap_log_mcda_word_size 10481 * Log 2 of the access word size in bytes. Read and write access must be aligned 10482 * to the word size. Write access must be done for an integer number of words. 10483 * Access: RO 10484 */ 10485 MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4); 10486 10487 /* reg_mcqi_cap_mcda_max_write_size 10488 * Maximal write size for MCDA register 10489 * Access: RO 10490 */ 10491 MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16); 10492 10493 static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index) 10494 { 10495 MLXSW_REG_ZERO(mcqi, payload); 10496 mlxsw_reg_mcqi_component_index_set(payload, component_index); 10497 mlxsw_reg_mcqi_info_type_set(payload, 10498 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES); 10499 mlxsw_reg_mcqi_offset_set(payload, 0); 10500 mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN); 10501 } 10502 10503 static inline void mlxsw_reg_mcqi_unpack(char *payload, 10504 u32 *p_cap_max_component_size, 10505 u8 *p_cap_log_mcda_word_size, 10506 u16 *p_cap_mcda_max_write_size) 10507 { 10508 *p_cap_max_component_size = 10509 mlxsw_reg_mcqi_cap_max_component_size_get(payload); 10510 *p_cap_log_mcda_word_size = 10511 mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload); 10512 *p_cap_mcda_max_write_size = 10513 mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload); 10514 } 10515 10516 /* MCC - Management Component Control 10517 * ---------------------------------- 10518 * Controls the firmware component and updates the FSM. 10519 */ 10520 #define MLXSW_REG_MCC_ID 0x9062 10521 #define MLXSW_REG_MCC_LEN 0x1C 10522 10523 MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN); 10524 10525 enum mlxsw_reg_mcc_instruction { 10526 MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01, 10527 MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02, 10528 MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03, 10529 MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04, 10530 MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06, 10531 MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08, 10532 }; 10533 10534 /* reg_mcc_instruction 10535 * Command to be executed by the FSM. 10536 * Applicable for write operation only. 10537 * Access: RW 10538 */ 10539 MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8); 10540 10541 /* reg_mcc_component_index 10542 * Index of the accessed component. Applicable only for commands that 10543 * refer to components. Otherwise, this field is reserved. 10544 * Access: Index 10545 */ 10546 MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16); 10547 10548 /* reg_mcc_update_handle 10549 * Token representing the current flow executed by the FSM. 10550 * Access: WO 10551 */ 10552 MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24); 10553 10554 /* reg_mcc_error_code 10555 * Indicates the successful completion of the instruction, or the reason it 10556 * failed 10557 * Access: RO 10558 */ 10559 MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8); 10560 10561 /* reg_mcc_control_state 10562 * Current FSM state 10563 * Access: RO 10564 */ 10565 MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4); 10566 10567 /* reg_mcc_component_size 10568 * Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying 10569 * the size may shorten the update time. Value 0x0 means that size is 10570 * unspecified. 10571 * Access: WO 10572 */ 10573 MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32); 10574 10575 static inline void mlxsw_reg_mcc_pack(char *payload, 10576 enum mlxsw_reg_mcc_instruction instr, 10577 u16 component_index, u32 update_handle, 10578 u32 component_size) 10579 { 10580 MLXSW_REG_ZERO(mcc, payload); 10581 mlxsw_reg_mcc_instruction_set(payload, instr); 10582 mlxsw_reg_mcc_component_index_set(payload, component_index); 10583 mlxsw_reg_mcc_update_handle_set(payload, update_handle); 10584 mlxsw_reg_mcc_component_size_set(payload, component_size); 10585 } 10586 10587 static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle, 10588 u8 *p_error_code, u8 *p_control_state) 10589 { 10590 if (p_update_handle) 10591 *p_update_handle = mlxsw_reg_mcc_update_handle_get(payload); 10592 if (p_error_code) 10593 *p_error_code = mlxsw_reg_mcc_error_code_get(payload); 10594 if (p_control_state) 10595 *p_control_state = mlxsw_reg_mcc_control_state_get(payload); 10596 } 10597 10598 /* MCDA - Management Component Data Access 10599 * --------------------------------------- 10600 * This register allows reading and writing a firmware component. 10601 */ 10602 #define MLXSW_REG_MCDA_ID 0x9063 10603 #define MLXSW_REG_MCDA_BASE_LEN 0x10 10604 #define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80 10605 #define MLXSW_REG_MCDA_LEN \ 10606 (MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN) 10607 10608 MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN); 10609 10610 /* reg_mcda_update_handle 10611 * Token representing the current flow executed by the FSM. 10612 * Access: RW 10613 */ 10614 MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24); 10615 10616 /* reg_mcda_offset 10617 * Offset of accessed address relative to component start. Accesses must be in 10618 * accordance to log_mcda_word_size in MCQI reg. 10619 * Access: RW 10620 */ 10621 MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32); 10622 10623 /* reg_mcda_size 10624 * Size of the data accessed, given in bytes. 10625 * Access: RW 10626 */ 10627 MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16); 10628 10629 /* reg_mcda_data 10630 * Data block accessed. 10631 * Access: RW 10632 */ 10633 MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false); 10634 10635 static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle, 10636 u32 offset, u16 size, u8 *data) 10637 { 10638 int i; 10639 10640 MLXSW_REG_ZERO(mcda, payload); 10641 mlxsw_reg_mcda_update_handle_set(payload, update_handle); 10642 mlxsw_reg_mcda_offset_set(payload, offset); 10643 mlxsw_reg_mcda_size_set(payload, size); 10644 10645 for (i = 0; i < size / 4; i++) 10646 mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]); 10647 } 10648 10649 /* MCAM - Management Capabilities Mask Register 10650 * -------------------------------------------- 10651 * Reports the device supported management features. 10652 */ 10653 #define MLXSW_REG_MCAM_ID 0x907F 10654 #define MLXSW_REG_MCAM_LEN 0x48 10655 10656 MLXSW_REG_DEFINE(mcam, MLXSW_REG_MCAM_ID, MLXSW_REG_MCAM_LEN); 10657 10658 enum mlxsw_reg_mcam_feature_group { 10659 /* Enhanced features. */ 10660 MLXSW_REG_MCAM_FEATURE_GROUP_ENHANCED_FEATURES, 10661 }; 10662 10663 /* reg_mcam_feature_group 10664 * Feature list mask index. 10665 * Access: Index 10666 */ 10667 MLXSW_ITEM32(reg, mcam, feature_group, 0x00, 16, 8); 10668 10669 enum mlxsw_reg_mcam_mng_feature_cap_mask_bits { 10670 /* If set, MCIA supports 128 bytes payloads. Otherwise, 48 bytes. */ 10671 MLXSW_REG_MCAM_MCIA_128B = 34, 10672 /* If set, MRSR.command=6 is supported. */ 10673 MLXSW_REG_MCAM_PCI_RESET = 48, 10674 }; 10675 10676 #define MLXSW_REG_BYTES_PER_DWORD 0x4 10677 10678 /* reg_mcam_mng_feature_cap_mask 10679 * Supported port's enhanced features. 10680 * Based on feature_group index. 10681 * When bit is set, the feature is supported in the device. 10682 * Access: RO 10683 */ 10684 #define MLXSW_REG_MCAM_MNG_FEATURE_CAP_MASK_DWORD(_dw_num, _offset) \ 10685 MLXSW_ITEM_BIT_ARRAY(reg, mcam, mng_feature_cap_mask_dw##_dw_num, \ 10686 _offset, MLXSW_REG_BYTES_PER_DWORD, 1) 10687 10688 /* The access to the bits in the field 'mng_feature_cap_mask' is not same to 10689 * other mask fields in other registers. In most of the cases bit #0 is the 10690 * first one in the last dword. In MCAM register, the first dword contains bits 10691 * #0-#31 and so on, so the access to the bits is simpler using bit array per 10692 * dword. Declare each dword of 'mng_feature_cap_mask' field separately. 10693 */ 10694 MLXSW_REG_MCAM_MNG_FEATURE_CAP_MASK_DWORD(0, 0x28); 10695 MLXSW_REG_MCAM_MNG_FEATURE_CAP_MASK_DWORD(1, 0x2C); 10696 MLXSW_REG_MCAM_MNG_FEATURE_CAP_MASK_DWORD(2, 0x30); 10697 MLXSW_REG_MCAM_MNG_FEATURE_CAP_MASK_DWORD(3, 0x34); 10698 10699 static inline void 10700 mlxsw_reg_mcam_pack(char *payload, enum mlxsw_reg_mcam_feature_group feat_group) 10701 { 10702 MLXSW_REG_ZERO(mcam, payload); 10703 mlxsw_reg_mcam_feature_group_set(payload, feat_group); 10704 } 10705 10706 static inline void 10707 mlxsw_reg_mcam_unpack(char *payload, 10708 enum mlxsw_reg_mcam_mng_feature_cap_mask_bits bit, 10709 bool *p_mng_feature_cap_val) 10710 { 10711 int offset = bit % (MLXSW_REG_BYTES_PER_DWORD * BITS_PER_BYTE); 10712 int dword = bit / (MLXSW_REG_BYTES_PER_DWORD * BITS_PER_BYTE); 10713 u8 (*getters[])(const char *, u16) = { 10714 mlxsw_reg_mcam_mng_feature_cap_mask_dw0_get, 10715 mlxsw_reg_mcam_mng_feature_cap_mask_dw1_get, 10716 mlxsw_reg_mcam_mng_feature_cap_mask_dw2_get, 10717 mlxsw_reg_mcam_mng_feature_cap_mask_dw3_get, 10718 }; 10719 10720 if (!WARN_ON_ONCE(dword >= ARRAY_SIZE(getters))) 10721 *p_mng_feature_cap_val = getters[dword](payload, offset); 10722 } 10723 10724 /* MPSC - Monitoring Packet Sampling Configuration Register 10725 * -------------------------------------------------------- 10726 * MPSC Register is used to configure the Packet Sampling mechanism. 10727 */ 10728 #define MLXSW_REG_MPSC_ID 0x9080 10729 #define MLXSW_REG_MPSC_LEN 0x1C 10730 10731 MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN); 10732 10733 /* reg_mpsc_local_port 10734 * Local port number 10735 * Not supported for CPU port 10736 * Access: Index 10737 */ 10738 MLXSW_ITEM32_LP(reg, mpsc, 0x00, 16, 0x00, 12); 10739 10740 /* reg_mpsc_e 10741 * Enable sampling on port local_port 10742 * Access: RW 10743 */ 10744 MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1); 10745 10746 #define MLXSW_REG_MPSC_RATE_MAX 3500000000UL 10747 10748 /* reg_mpsc_rate 10749 * Sampling rate = 1 out of rate packets (with randomization around 10750 * the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX 10751 * Access: RW 10752 */ 10753 MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32); 10754 10755 static inline void mlxsw_reg_mpsc_pack(char *payload, u16 local_port, bool e, 10756 u32 rate) 10757 { 10758 MLXSW_REG_ZERO(mpsc, payload); 10759 mlxsw_reg_mpsc_local_port_set(payload, local_port); 10760 mlxsw_reg_mpsc_e_set(payload, e); 10761 mlxsw_reg_mpsc_rate_set(payload, rate); 10762 } 10763 10764 /* MGPC - Monitoring General Purpose Counter Set Register 10765 * The MGPC register retrieves and sets the General Purpose Counter Set. 10766 */ 10767 #define MLXSW_REG_MGPC_ID 0x9081 10768 #define MLXSW_REG_MGPC_LEN 0x18 10769 10770 MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN); 10771 10772 /* reg_mgpc_counter_set_type 10773 * Counter set type. 10774 * Access: OP 10775 */ 10776 MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8); 10777 10778 /* reg_mgpc_counter_index 10779 * Counter index. 10780 * Access: Index 10781 */ 10782 MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24); 10783 10784 enum mlxsw_reg_mgpc_opcode { 10785 /* Nop */ 10786 MLXSW_REG_MGPC_OPCODE_NOP = 0x00, 10787 /* Clear counters */ 10788 MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08, 10789 }; 10790 10791 /* reg_mgpc_opcode 10792 * Opcode. 10793 * Access: OP 10794 */ 10795 MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4); 10796 10797 /* reg_mgpc_byte_counter 10798 * Byte counter value. 10799 * Access: RW 10800 */ 10801 MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64); 10802 10803 /* reg_mgpc_packet_counter 10804 * Packet counter value. 10805 * Access: RW 10806 */ 10807 MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64); 10808 10809 static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index, 10810 enum mlxsw_reg_mgpc_opcode opcode, 10811 enum mlxsw_reg_flow_counter_set_type set_type) 10812 { 10813 MLXSW_REG_ZERO(mgpc, payload); 10814 mlxsw_reg_mgpc_counter_index_set(payload, counter_index); 10815 mlxsw_reg_mgpc_counter_set_type_set(payload, set_type); 10816 mlxsw_reg_mgpc_opcode_set(payload, opcode); 10817 } 10818 10819 /* MPRS - Monitoring Parsing State Register 10820 * ---------------------------------------- 10821 * The MPRS register is used for setting up the parsing for hash, 10822 * policy-engine and routing. 10823 */ 10824 #define MLXSW_REG_MPRS_ID 0x9083 10825 #define MLXSW_REG_MPRS_LEN 0x14 10826 10827 MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN); 10828 10829 /* reg_mprs_parsing_depth 10830 * Minimum parsing depth. 10831 * Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL 10832 * rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2. 10833 * Access: RW 10834 */ 10835 MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16); 10836 10837 /* reg_mprs_parsing_en 10838 * Parsing enable. 10839 * Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and 10840 * NVGRE. Default is enabled. Reserved when SwitchX-2. 10841 * Access: RW 10842 */ 10843 MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16); 10844 10845 /* reg_mprs_vxlan_udp_dport 10846 * VxLAN UDP destination port. 10847 * Used for identifying VxLAN packets and for dport field in 10848 * encapsulation. Default is 4789. 10849 * Access: RW 10850 */ 10851 MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16); 10852 10853 static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth, 10854 u16 vxlan_udp_dport) 10855 { 10856 MLXSW_REG_ZERO(mprs, payload); 10857 mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth); 10858 mlxsw_reg_mprs_parsing_en_set(payload, true); 10859 mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport); 10860 } 10861 10862 /* MOGCR - Monitoring Global Configuration Register 10863 * ------------------------------------------------ 10864 */ 10865 #define MLXSW_REG_MOGCR_ID 0x9086 10866 #define MLXSW_REG_MOGCR_LEN 0x20 10867 10868 MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN); 10869 10870 /* reg_mogcr_ptp_iftc 10871 * PTP Ingress FIFO Trap Clear 10872 * The PTP_ING_FIFO trap provides MTPPTR with clr according 10873 * to this value. Default 0. 10874 * Reserved when IB switches and when SwitchX/-2, Spectrum-2 10875 * Access: RW 10876 */ 10877 MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1); 10878 10879 /* reg_mogcr_ptp_eftc 10880 * PTP Egress FIFO Trap Clear 10881 * The PTP_EGR_FIFO trap provides MTPPTR with clr according 10882 * to this value. Default 0. 10883 * Reserved when IB switches and when SwitchX/-2, Spectrum-2 10884 * Access: RW 10885 */ 10886 MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1); 10887 10888 /* reg_mogcr_mirroring_pid_base 10889 * Base policer id for mirroring policers. 10890 * Must have an even value (e.g. 1000, not 1001). 10891 * Reserved when SwitchX/-2, Switch-IB/2, Spectrum-1 and Quantum. 10892 * Access: RW 10893 */ 10894 MLXSW_ITEM32(reg, mogcr, mirroring_pid_base, 0x0C, 0, 14); 10895 10896 /* MPAGR - Monitoring Port Analyzer Global Register 10897 * ------------------------------------------------ 10898 * This register is used for global port analyzer configurations. 10899 * Note: This register is not supported by current FW versions for Spectrum-1. 10900 */ 10901 #define MLXSW_REG_MPAGR_ID 0x9089 10902 #define MLXSW_REG_MPAGR_LEN 0x0C 10903 10904 MLXSW_REG_DEFINE(mpagr, MLXSW_REG_MPAGR_ID, MLXSW_REG_MPAGR_LEN); 10905 10906 enum mlxsw_reg_mpagr_trigger { 10907 MLXSW_REG_MPAGR_TRIGGER_EGRESS, 10908 MLXSW_REG_MPAGR_TRIGGER_INGRESS, 10909 MLXSW_REG_MPAGR_TRIGGER_INGRESS_WRED, 10910 MLXSW_REG_MPAGR_TRIGGER_INGRESS_SHARED_BUFFER, 10911 MLXSW_REG_MPAGR_TRIGGER_INGRESS_ING_CONG, 10912 MLXSW_REG_MPAGR_TRIGGER_INGRESS_EGR_CONG, 10913 MLXSW_REG_MPAGR_TRIGGER_EGRESS_ECN, 10914 MLXSW_REG_MPAGR_TRIGGER_EGRESS_HIGH_LATENCY, 10915 }; 10916 10917 /* reg_mpagr_trigger 10918 * Mirror trigger. 10919 * Access: Index 10920 */ 10921 MLXSW_ITEM32(reg, mpagr, trigger, 0x00, 0, 4); 10922 10923 /* reg_mpagr_pa_id 10924 * Port analyzer ID. 10925 * Access: RW 10926 */ 10927 MLXSW_ITEM32(reg, mpagr, pa_id, 0x04, 0, 4); 10928 10929 #define MLXSW_REG_MPAGR_RATE_MAX 3500000000UL 10930 10931 /* reg_mpagr_probability_rate 10932 * Sampling rate. 10933 * Valid values are: 1 to 3.5*10^9 10934 * Value of 1 means "sample all". Default is 1. 10935 * Access: RW 10936 */ 10937 MLXSW_ITEM32(reg, mpagr, probability_rate, 0x08, 0, 32); 10938 10939 static inline void mlxsw_reg_mpagr_pack(char *payload, 10940 enum mlxsw_reg_mpagr_trigger trigger, 10941 u8 pa_id, u32 probability_rate) 10942 { 10943 MLXSW_REG_ZERO(mpagr, payload); 10944 mlxsw_reg_mpagr_trigger_set(payload, trigger); 10945 mlxsw_reg_mpagr_pa_id_set(payload, pa_id); 10946 mlxsw_reg_mpagr_probability_rate_set(payload, probability_rate); 10947 } 10948 10949 /* MOMTE - Monitoring Mirror Trigger Enable Register 10950 * ------------------------------------------------- 10951 * This register is used to configure the mirror enable for different mirror 10952 * reasons. 10953 */ 10954 #define MLXSW_REG_MOMTE_ID 0x908D 10955 #define MLXSW_REG_MOMTE_LEN 0x10 10956 10957 MLXSW_REG_DEFINE(momte, MLXSW_REG_MOMTE_ID, MLXSW_REG_MOMTE_LEN); 10958 10959 /* reg_momte_local_port 10960 * Local port number. 10961 * Access: Index 10962 */ 10963 MLXSW_ITEM32_LP(reg, momte, 0x00, 16, 0x00, 12); 10964 10965 enum mlxsw_reg_momte_type { 10966 MLXSW_REG_MOMTE_TYPE_WRED = 0x20, 10967 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS = 0x31, 10968 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS_DESCRIPTORS = 0x32, 10969 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_EGRESS_PORT = 0x33, 10970 MLXSW_REG_MOMTE_TYPE_ING_CONG = 0x40, 10971 MLXSW_REG_MOMTE_TYPE_EGR_CONG = 0x50, 10972 MLXSW_REG_MOMTE_TYPE_ECN = 0x60, 10973 MLXSW_REG_MOMTE_TYPE_HIGH_LATENCY = 0x70, 10974 }; 10975 10976 /* reg_momte_type 10977 * Type of mirroring. 10978 * Access: Index 10979 */ 10980 MLXSW_ITEM32(reg, momte, type, 0x04, 0, 8); 10981 10982 /* reg_momte_tclass_en 10983 * TClass/PG mirror enable. Each bit represents corresponding tclass. 10984 * 0: disable (default) 10985 * 1: enable 10986 * Access: RW 10987 */ 10988 MLXSW_ITEM_BIT_ARRAY(reg, momte, tclass_en, 0x08, 0x08, 1); 10989 10990 static inline void mlxsw_reg_momte_pack(char *payload, u16 local_port, 10991 enum mlxsw_reg_momte_type type) 10992 { 10993 MLXSW_REG_ZERO(momte, payload); 10994 mlxsw_reg_momte_local_port_set(payload, local_port); 10995 mlxsw_reg_momte_type_set(payload, type); 10996 } 10997 10998 /* MTPPPC - Time Precision Packet Port Configuration 10999 * ------------------------------------------------- 11000 * This register serves for configuration of which PTP messages should be 11001 * timestamped. This is a global configuration, despite the register name. 11002 * 11003 * Reserved when Spectrum-2. 11004 */ 11005 #define MLXSW_REG_MTPPPC_ID 0x9090 11006 #define MLXSW_REG_MTPPPC_LEN 0x28 11007 11008 MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN); 11009 11010 /* reg_mtpppc_ing_timestamp_message_type 11011 * Bitwise vector of PTP message types to timestamp at ingress. 11012 * MessageType field as defined by IEEE 1588 11013 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) 11014 * Default all 0 11015 * Access: RW 11016 */ 11017 MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16); 11018 11019 /* reg_mtpppc_egr_timestamp_message_type 11020 * Bitwise vector of PTP message types to timestamp at egress. 11021 * MessageType field as defined by IEEE 1588 11022 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) 11023 * Default all 0 11024 * Access: RW 11025 */ 11026 MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16); 11027 11028 static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr) 11029 { 11030 MLXSW_REG_ZERO(mtpppc, payload); 11031 mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing); 11032 mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr); 11033 } 11034 11035 /* MTPPTR - Time Precision Packet Timestamping Reading 11036 * --------------------------------------------------- 11037 * The MTPPTR is used for reading the per port PTP timestamp FIFO. 11038 * There is a trap for packets which are latched to the timestamp FIFO, thus the 11039 * SW knows which FIFO to read. Note that packets enter the FIFO before been 11040 * trapped. The sequence number is used to synchronize the timestamp FIFO 11041 * entries and the trapped packets. 11042 * Reserved when Spectrum-2. 11043 */ 11044 11045 #define MLXSW_REG_MTPPTR_ID 0x9091 11046 #define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */ 11047 #define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */ 11048 #define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4 11049 #define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \ 11050 MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT) 11051 11052 MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN); 11053 11054 /* reg_mtpptr_local_port 11055 * Not supported for CPU port. 11056 * Access: Index 11057 */ 11058 MLXSW_ITEM32_LP(reg, mtpptr, 0x00, 16, 0x00, 12); 11059 11060 enum mlxsw_reg_mtpptr_dir { 11061 MLXSW_REG_MTPPTR_DIR_INGRESS, 11062 MLXSW_REG_MTPPTR_DIR_EGRESS, 11063 }; 11064 11065 /* reg_mtpptr_dir 11066 * Direction. 11067 * Access: Index 11068 */ 11069 MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1); 11070 11071 /* reg_mtpptr_clr 11072 * Clear the records. 11073 * Access: OP 11074 */ 11075 MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1); 11076 11077 /* reg_mtpptr_num_rec 11078 * Number of valid records in the response 11079 * Range 0.. cap_ptp_timestamp_fifo 11080 * Access: RO 11081 */ 11082 MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4); 11083 11084 /* reg_mtpptr_rec_message_type 11085 * MessageType field as defined by IEEE 1588 Each bit corresponds to a value 11086 * (e.g. Bit0: Sync, Bit1: Delay_Req) 11087 * Access: RO 11088 */ 11089 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type, 11090 MLXSW_REG_MTPPTR_BASE_LEN, 8, 4, 11091 MLXSW_REG_MTPPTR_REC_LEN, 0, false); 11092 11093 /* reg_mtpptr_rec_domain_number 11094 * DomainNumber field as defined by IEEE 1588 11095 * Access: RO 11096 */ 11097 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number, 11098 MLXSW_REG_MTPPTR_BASE_LEN, 0, 8, 11099 MLXSW_REG_MTPPTR_REC_LEN, 0, false); 11100 11101 /* reg_mtpptr_rec_sequence_id 11102 * SequenceId field as defined by IEEE 1588 11103 * Access: RO 11104 */ 11105 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id, 11106 MLXSW_REG_MTPPTR_BASE_LEN, 0, 16, 11107 MLXSW_REG_MTPPTR_REC_LEN, 0x4, false); 11108 11109 /* reg_mtpptr_rec_timestamp_high 11110 * Timestamp of when the PTP packet has passed through the port Units of PLL 11111 * clock time. 11112 * For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec. 11113 * Access: RO 11114 */ 11115 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high, 11116 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, 11117 MLXSW_REG_MTPPTR_REC_LEN, 0x8, false); 11118 11119 /* reg_mtpptr_rec_timestamp_low 11120 * See rec_timestamp_high. 11121 * Access: RO 11122 */ 11123 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low, 11124 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, 11125 MLXSW_REG_MTPPTR_REC_LEN, 0xC, false); 11126 11127 static inline void mlxsw_reg_mtpptr_unpack(const char *payload, 11128 unsigned int rec, 11129 u8 *p_message_type, 11130 u8 *p_domain_number, 11131 u16 *p_sequence_id, 11132 u64 *p_timestamp) 11133 { 11134 u32 timestamp_high, timestamp_low; 11135 11136 *p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec); 11137 *p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec); 11138 *p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec); 11139 timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec); 11140 timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec); 11141 *p_timestamp = (u64)timestamp_high << 32 | timestamp_low; 11142 } 11143 11144 /* MTPTPT - Monitoring Precision Time Protocol Trap Register 11145 * --------------------------------------------------------- 11146 * This register is used for configuring under which trap to deliver PTP 11147 * packets depending on type of the packet. 11148 */ 11149 #define MLXSW_REG_MTPTPT_ID 0x9092 11150 #define MLXSW_REG_MTPTPT_LEN 0x08 11151 11152 MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN); 11153 11154 enum mlxsw_reg_mtptpt_trap_id { 11155 MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 11156 MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 11157 }; 11158 11159 /* reg_mtptpt_trap_id 11160 * Trap id. 11161 * Access: Index 11162 */ 11163 MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4); 11164 11165 /* reg_mtptpt_message_type 11166 * Bitwise vector of PTP message types to trap. This is a necessary but 11167 * non-sufficient condition since need to enable also per port. See MTPPPC. 11168 * Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g. 11169 * Bit0: Sync, Bit1: Delay_Req) 11170 */ 11171 MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16); 11172 11173 static inline void mlxsw_reg_mtptpt_pack(char *payload, 11174 enum mlxsw_reg_mtptpt_trap_id trap_id, 11175 u16 message_type) 11176 { 11177 MLXSW_REG_ZERO(mtptpt, payload); 11178 mlxsw_reg_mtptpt_trap_id_set(payload, trap_id); 11179 mlxsw_reg_mtptpt_message_type_set(payload, message_type); 11180 } 11181 11182 /* MTPCPC - Monitoring Time Precision Correction Port Configuration Register 11183 * ------------------------------------------------------------------------- 11184 */ 11185 #define MLXSW_REG_MTPCPC_ID 0x9093 11186 #define MLXSW_REG_MTPCPC_LEN 0x2C 11187 11188 MLXSW_REG_DEFINE(mtpcpc, MLXSW_REG_MTPCPC_ID, MLXSW_REG_MTPCPC_LEN); 11189 11190 /* reg_mtpcpc_pport 11191 * Per port: 11192 * 0: config is global. When reading - the local_port is 1. 11193 * 1: config is per port. 11194 * Access: Index 11195 */ 11196 MLXSW_ITEM32(reg, mtpcpc, pport, 0x00, 31, 1); 11197 11198 /* reg_mtpcpc_local_port 11199 * Local port number. 11200 * Supported to/from CPU port. 11201 * Reserved when pport = 0. 11202 * Access: Index 11203 */ 11204 MLXSW_ITEM32_LP(reg, mtpcpc, 0x00, 16, 0x00, 12); 11205 11206 /* reg_mtpcpc_ptp_trap_en 11207 * Enable PTP traps. 11208 * The trap_id is configured by MTPTPT. 11209 * Access: RW 11210 */ 11211 MLXSW_ITEM32(reg, mtpcpc, ptp_trap_en, 0x04, 0, 1); 11212 11213 /* reg_mtpcpc_ing_correction_message_type 11214 * Bitwise vector of PTP message types to update correction-field at ingress. 11215 * MessageType field as defined by IEEE 1588 Each bit corresponds to a value 11216 * (e.g. Bit0: Sync, Bit1: Delay_Req). Supported also from CPU port. 11217 * Default all 0 11218 * Access: RW 11219 */ 11220 MLXSW_ITEM32(reg, mtpcpc, ing_correction_message_type, 0x10, 0, 16); 11221 11222 /* reg_mtpcpc_egr_correction_message_type 11223 * Bitwise vector of PTP message types to update correction-field at egress. 11224 * MessageType field as defined by IEEE 1588 Each bit corresponds to a value 11225 * (e.g. Bit0: Sync, Bit1: Delay_Req). Supported also from CPU port. 11226 * Default all 0 11227 * Access: RW 11228 */ 11229 MLXSW_ITEM32(reg, mtpcpc, egr_correction_message_type, 0x14, 0, 16); 11230 11231 static inline void mlxsw_reg_mtpcpc_pack(char *payload, bool pport, 11232 u16 local_port, bool ptp_trap_en, 11233 u16 ing, u16 egr) 11234 { 11235 MLXSW_REG_ZERO(mtpcpc, payload); 11236 mlxsw_reg_mtpcpc_pport_set(payload, pport); 11237 mlxsw_reg_mtpcpc_local_port_set(payload, pport ? local_port : 0); 11238 mlxsw_reg_mtpcpc_ptp_trap_en_set(payload, ptp_trap_en); 11239 mlxsw_reg_mtpcpc_ing_correction_message_type_set(payload, ing); 11240 mlxsw_reg_mtpcpc_egr_correction_message_type_set(payload, egr); 11241 } 11242 11243 /* MFGD - Monitoring FW General Debug Register 11244 * ------------------------------------------- 11245 */ 11246 #define MLXSW_REG_MFGD_ID 0x90F0 11247 #define MLXSW_REG_MFGD_LEN 0x0C 11248 11249 MLXSW_REG_DEFINE(mfgd, MLXSW_REG_MFGD_ID, MLXSW_REG_MFGD_LEN); 11250 11251 /* reg_mfgd_fw_fatal_event_mode 11252 * 0 - don't check FW fatal (default) 11253 * 1 - check FW fatal - enable MFDE trap 11254 * Access: RW 11255 */ 11256 MLXSW_ITEM32(reg, mfgd, fatal_event_mode, 0x00, 9, 2); 11257 11258 /* reg_mfgd_trigger_test 11259 * Access: WO 11260 */ 11261 MLXSW_ITEM32(reg, mfgd, trigger_test, 0x00, 11, 1); 11262 11263 /* MGPIR - Management General Peripheral Information Register 11264 * ---------------------------------------------------------- 11265 * MGPIR register allows software to query the hardware and 11266 * firmware general information of peripheral entities. 11267 */ 11268 #define MLXSW_REG_MGPIR_ID 0x9100 11269 #define MLXSW_REG_MGPIR_LEN 0xA0 11270 11271 MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN); 11272 11273 enum mlxsw_reg_mgpir_device_type { 11274 MLXSW_REG_MGPIR_DEVICE_TYPE_NONE, 11275 MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE, 11276 }; 11277 11278 /* mgpir_slot_index 11279 * Slot index (0: Main board). 11280 * Access: Index 11281 */ 11282 MLXSW_ITEM32(reg, mgpir, slot_index, 0x00, 28, 4); 11283 11284 /* mgpir_device_type 11285 * Access: RO 11286 */ 11287 MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4); 11288 11289 /* mgpir_devices_per_flash 11290 * Number of devices of device_type per flash (can be shared by few devices). 11291 * Access: RO 11292 */ 11293 MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8); 11294 11295 /* mgpir_num_of_devices 11296 * Number of devices of device_type. 11297 * Access: RO 11298 */ 11299 MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8); 11300 11301 /* max_modules_per_slot 11302 * Maximum number of modules that can be connected per slot. 11303 * Access: RO 11304 */ 11305 MLXSW_ITEM32(reg, mgpir, max_modules_per_slot, 0x04, 16, 8); 11306 11307 /* mgpir_num_of_slots 11308 * Number of slots in the system. 11309 * Access: RO 11310 */ 11311 MLXSW_ITEM32(reg, mgpir, num_of_slots, 0x04, 8, 8); 11312 11313 /* mgpir_num_of_modules 11314 * Number of modules. 11315 * Access: RO 11316 */ 11317 MLXSW_ITEM32(reg, mgpir, num_of_modules, 0x04, 0, 8); 11318 11319 static inline void mlxsw_reg_mgpir_pack(char *payload, u8 slot_index) 11320 { 11321 MLXSW_REG_ZERO(mgpir, payload); 11322 mlxsw_reg_mgpir_slot_index_set(payload, slot_index); 11323 } 11324 11325 static inline void 11326 mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices, 11327 enum mlxsw_reg_mgpir_device_type *device_type, 11328 u8 *devices_per_flash, u8 *num_of_modules, 11329 u8 *num_of_slots) 11330 { 11331 if (num_of_devices) 11332 *num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload); 11333 if (device_type) 11334 *device_type = mlxsw_reg_mgpir_device_type_get(payload); 11335 if (devices_per_flash) 11336 *devices_per_flash = 11337 mlxsw_reg_mgpir_devices_per_flash_get(payload); 11338 if (num_of_modules) 11339 *num_of_modules = mlxsw_reg_mgpir_num_of_modules_get(payload); 11340 if (num_of_slots) 11341 *num_of_slots = mlxsw_reg_mgpir_num_of_slots_get(payload); 11342 } 11343 11344 /* MBCT - Management Binary Code Transfer Register 11345 * ----------------------------------------------- 11346 * This register allows to transfer binary codes from the host to 11347 * the management FW by transferring it by chunks of maximum 1KB. 11348 */ 11349 #define MLXSW_REG_MBCT_ID 0x9120 11350 #define MLXSW_REG_MBCT_LEN 0x420 11351 11352 MLXSW_REG_DEFINE(mbct, MLXSW_REG_MBCT_ID, MLXSW_REG_MBCT_LEN); 11353 11354 /* reg_mbct_slot_index 11355 * Slot index. 0 is reserved. 11356 * Access: Index 11357 */ 11358 MLXSW_ITEM32(reg, mbct, slot_index, 0x00, 0, 4); 11359 11360 /* reg_mbct_data_size 11361 * Actual data field size in bytes for the current data transfer. 11362 * Access: WO 11363 */ 11364 MLXSW_ITEM32(reg, mbct, data_size, 0x04, 0, 11); 11365 11366 enum mlxsw_reg_mbct_op { 11367 MLXSW_REG_MBCT_OP_ERASE_INI_IMAGE = 1, 11368 MLXSW_REG_MBCT_OP_DATA_TRANSFER, /* Download */ 11369 MLXSW_REG_MBCT_OP_ACTIVATE, 11370 MLXSW_REG_MBCT_OP_CLEAR_ERRORS = 6, 11371 MLXSW_REG_MBCT_OP_QUERY_STATUS, 11372 }; 11373 11374 /* reg_mbct_op 11375 * Access: WO 11376 */ 11377 MLXSW_ITEM32(reg, mbct, op, 0x08, 28, 4); 11378 11379 /* reg_mbct_last 11380 * Indicates that the current data field is the last chunk of the INI. 11381 * Access: WO 11382 */ 11383 MLXSW_ITEM32(reg, mbct, last, 0x08, 26, 1); 11384 11385 /* reg_mbct_oee 11386 * Opcode Event Enable. When set a BCTOE event will be sent once the opcode 11387 * was executed and the fsm_state has changed. 11388 * Access: WO 11389 */ 11390 MLXSW_ITEM32(reg, mbct, oee, 0x08, 25, 1); 11391 11392 enum mlxsw_reg_mbct_status { 11393 /* Partial data transfer completed successfully and ready for next 11394 * data transfer. 11395 */ 11396 MLXSW_REG_MBCT_STATUS_PART_DATA = 2, 11397 MLXSW_REG_MBCT_STATUS_LAST_DATA, 11398 MLXSW_REG_MBCT_STATUS_ERASE_COMPLETE, 11399 /* Error - trying to erase INI while it being used. */ 11400 MLXSW_REG_MBCT_STATUS_ERROR_INI_IN_USE, 11401 /* Last data transfer completed, applying magic pattern. */ 11402 MLXSW_REG_MBCT_STATUS_ERASE_FAILED = 7, 11403 MLXSW_REG_MBCT_STATUS_INI_ERROR, 11404 MLXSW_REG_MBCT_STATUS_ACTIVATION_FAILED, 11405 MLXSW_REG_MBCT_STATUS_ILLEGAL_OPERATION = 11, 11406 }; 11407 11408 /* reg_mbct_status 11409 * Status. 11410 * Access: RO 11411 */ 11412 MLXSW_ITEM32(reg, mbct, status, 0x0C, 24, 5); 11413 11414 enum mlxsw_reg_mbct_fsm_state { 11415 MLXSW_REG_MBCT_FSM_STATE_INI_IN_USE = 5, 11416 MLXSW_REG_MBCT_FSM_STATE_ERROR, 11417 }; 11418 11419 /* reg_mbct_fsm_state 11420 * FSM state. 11421 * Access: RO 11422 */ 11423 MLXSW_ITEM32(reg, mbct, fsm_state, 0x0C, 16, 4); 11424 11425 #define MLXSW_REG_MBCT_DATA_LEN 1024 11426 11427 /* reg_mbct_data 11428 * Up to 1KB of data. 11429 * Access: WO 11430 */ 11431 MLXSW_ITEM_BUF(reg, mbct, data, 0x20, MLXSW_REG_MBCT_DATA_LEN); 11432 11433 static inline void mlxsw_reg_mbct_pack(char *payload, u8 slot_index, 11434 enum mlxsw_reg_mbct_op op, bool oee) 11435 { 11436 MLXSW_REG_ZERO(mbct, payload); 11437 mlxsw_reg_mbct_slot_index_set(payload, slot_index); 11438 mlxsw_reg_mbct_op_set(payload, op); 11439 mlxsw_reg_mbct_oee_set(payload, oee); 11440 } 11441 11442 static inline void mlxsw_reg_mbct_dt_pack(char *payload, 11443 u16 data_size, bool last, 11444 const char *data) 11445 { 11446 if (WARN_ON(data_size > MLXSW_REG_MBCT_DATA_LEN)) 11447 return; 11448 mlxsw_reg_mbct_data_size_set(payload, data_size); 11449 mlxsw_reg_mbct_last_set(payload, last); 11450 mlxsw_reg_mbct_data_memcpy_to(payload, data); 11451 } 11452 11453 static inline void 11454 mlxsw_reg_mbct_unpack(const char *payload, u8 *p_slot_index, 11455 enum mlxsw_reg_mbct_status *p_status, 11456 enum mlxsw_reg_mbct_fsm_state *p_fsm_state) 11457 { 11458 if (p_slot_index) 11459 *p_slot_index = mlxsw_reg_mbct_slot_index_get(payload); 11460 *p_status = mlxsw_reg_mbct_status_get(payload); 11461 if (p_fsm_state) 11462 *p_fsm_state = mlxsw_reg_mbct_fsm_state_get(payload); 11463 } 11464 11465 /* MDDT - Management DownStream Device Tunneling Register 11466 * ------------------------------------------------------ 11467 * This register allows to deliver query and request messages (PRM registers, 11468 * commands) to a DownStream device. 11469 */ 11470 #define MLXSW_REG_MDDT_ID 0x9160 11471 #define MLXSW_REG_MDDT_LEN 0x110 11472 11473 MLXSW_REG_DEFINE(mddt, MLXSW_REG_MDDT_ID, MLXSW_REG_MDDT_LEN); 11474 11475 /* reg_mddt_slot_index 11476 * Slot index. 11477 * Access: Index 11478 */ 11479 MLXSW_ITEM32(reg, mddt, slot_index, 0x00, 8, 4); 11480 11481 /* reg_mddt_device_index 11482 * Device index. 11483 * Access: Index 11484 */ 11485 MLXSW_ITEM32(reg, mddt, device_index, 0x00, 0, 8); 11486 11487 /* reg_mddt_read_size 11488 * Read size in D-Words. 11489 * Access: OP 11490 */ 11491 MLXSW_ITEM32(reg, mddt, read_size, 0x04, 24, 8); 11492 11493 /* reg_mddt_write_size 11494 * Write size in D-Words. 11495 * Access: OP 11496 */ 11497 MLXSW_ITEM32(reg, mddt, write_size, 0x04, 16, 8); 11498 11499 enum mlxsw_reg_mddt_status { 11500 MLXSW_REG_MDDT_STATUS_OK, 11501 }; 11502 11503 /* reg_mddt_status 11504 * Return code of the Downstream Device to the register that was sent. 11505 * Access: RO 11506 */ 11507 MLXSW_ITEM32(reg, mddt, status, 0x0C, 24, 8); 11508 11509 enum mlxsw_reg_mddt_method { 11510 MLXSW_REG_MDDT_METHOD_QUERY, 11511 MLXSW_REG_MDDT_METHOD_WRITE, 11512 }; 11513 11514 /* reg_mddt_method 11515 * Access: OP 11516 */ 11517 MLXSW_ITEM32(reg, mddt, method, 0x0C, 22, 2); 11518 11519 /* reg_mddt_register_id 11520 * Access: Index 11521 */ 11522 MLXSW_ITEM32(reg, mddt, register_id, 0x0C, 0, 16); 11523 11524 #define MLXSW_REG_MDDT_PAYLOAD_OFFSET 0x0C 11525 #define MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN 4 11526 11527 static inline char *mlxsw_reg_mddt_inner_payload(char *payload) 11528 { 11529 return payload + MLXSW_REG_MDDT_PAYLOAD_OFFSET + 11530 MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN; 11531 } 11532 11533 static inline void mlxsw_reg_mddt_pack(char *payload, u8 slot_index, 11534 u8 device_index, 11535 enum mlxsw_reg_mddt_method method, 11536 const struct mlxsw_reg_info *reg, 11537 char **inner_payload) 11538 { 11539 int len = reg->len + MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN; 11540 11541 if (WARN_ON(len + MLXSW_REG_MDDT_PAYLOAD_OFFSET > MLXSW_REG_MDDT_LEN)) 11542 len = MLXSW_REG_MDDT_LEN - MLXSW_REG_MDDT_PAYLOAD_OFFSET; 11543 11544 MLXSW_REG_ZERO(mddt, payload); 11545 mlxsw_reg_mddt_slot_index_set(payload, slot_index); 11546 mlxsw_reg_mddt_device_index_set(payload, device_index); 11547 mlxsw_reg_mddt_method_set(payload, method); 11548 mlxsw_reg_mddt_register_id_set(payload, reg->id); 11549 mlxsw_reg_mddt_read_size_set(payload, len / 4); 11550 mlxsw_reg_mddt_write_size_set(payload, len / 4); 11551 *inner_payload = mlxsw_reg_mddt_inner_payload(payload); 11552 } 11553 11554 /* MDDQ - Management DownStream Device Query Register 11555 * -------------------------------------------------- 11556 * This register allows to query the DownStream device properties. The desired 11557 * information is chosen upon the query_type field and is delivered by 32B 11558 * of data blocks. 11559 */ 11560 #define MLXSW_REG_MDDQ_ID 0x9161 11561 #define MLXSW_REG_MDDQ_LEN 0x30 11562 11563 MLXSW_REG_DEFINE(mddq, MLXSW_REG_MDDQ_ID, MLXSW_REG_MDDQ_LEN); 11564 11565 /* reg_mddq_sie 11566 * Slot info event enable. 11567 * When set to '1', each change in the slot_info.provisioned / sr_valid / 11568 * active / ready will generate a DSDSC event. 11569 * Access: RW 11570 */ 11571 MLXSW_ITEM32(reg, mddq, sie, 0x00, 31, 1); 11572 11573 enum mlxsw_reg_mddq_query_type { 11574 MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_INFO = 1, 11575 MLXSW_REG_MDDQ_QUERY_TYPE_DEVICE_INFO, /* If there are no devices 11576 * on the slot, data_valid 11577 * will be '0'. 11578 */ 11579 MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_NAME, 11580 }; 11581 11582 /* reg_mddq_query_type 11583 * Access: Index 11584 */ 11585 MLXSW_ITEM32(reg, mddq, query_type, 0x00, 16, 8); 11586 11587 /* reg_mddq_slot_index 11588 * Slot index. 0 is reserved. 11589 * Access: Index 11590 */ 11591 MLXSW_ITEM32(reg, mddq, slot_index, 0x00, 0, 4); 11592 11593 /* reg_mddq_response_msg_seq 11594 * Response message sequential number. For a specific request, the response 11595 * message sequential number is the following one. In addition, the last 11596 * message should be 0. 11597 * Access: RO 11598 */ 11599 MLXSW_ITEM32(reg, mddq, response_msg_seq, 0x04, 16, 8); 11600 11601 /* reg_mddq_request_msg_seq 11602 * Request message sequential number. 11603 * The first message number should be 0. 11604 * Access: Index 11605 */ 11606 MLXSW_ITEM32(reg, mddq, request_msg_seq, 0x04, 0, 8); 11607 11608 /* reg_mddq_data_valid 11609 * If set, the data in the data field is valid and contain the information 11610 * for the queried index. 11611 * Access: RO 11612 */ 11613 MLXSW_ITEM32(reg, mddq, data_valid, 0x08, 31, 1); 11614 11615 /* reg_mddq_slot_info_provisioned 11616 * If set, the INI file is applied and the card is provisioned. 11617 * Access: RO 11618 */ 11619 MLXSW_ITEM32(reg, mddq, slot_info_provisioned, 0x10, 31, 1); 11620 11621 /* reg_mddq_slot_info_sr_valid 11622 * If set, Shift Register is valid (after being provisioned) and data 11623 * can be sent from the switch ASIC to the line-card CPLD over Shift-Register. 11624 * Access: RO 11625 */ 11626 MLXSW_ITEM32(reg, mddq, slot_info_sr_valid, 0x10, 30, 1); 11627 11628 enum mlxsw_reg_mddq_slot_info_ready { 11629 MLXSW_REG_MDDQ_SLOT_INFO_READY_NOT_READY, 11630 MLXSW_REG_MDDQ_SLOT_INFO_READY_READY, 11631 MLXSW_REG_MDDQ_SLOT_INFO_READY_ERROR, 11632 }; 11633 11634 /* reg_mddq_slot_info_lc_ready 11635 * If set, the LC is powered on, matching the INI version and a new FW 11636 * version can be burnt (if necessary). 11637 * Access: RO 11638 */ 11639 MLXSW_ITEM32(reg, mddq, slot_info_lc_ready, 0x10, 28, 2); 11640 11641 /* reg_mddq_slot_info_active 11642 * If set, the FW has completed the MDDC.device_enable command. 11643 * Access: RO 11644 */ 11645 MLXSW_ITEM32(reg, mddq, slot_info_active, 0x10, 27, 1); 11646 11647 /* reg_mddq_slot_info_hw_revision 11648 * Major user-configured version number of the current INI file. 11649 * Valid only when active or ready are '1'. 11650 * Access: RO 11651 */ 11652 MLXSW_ITEM32(reg, mddq, slot_info_hw_revision, 0x14, 16, 16); 11653 11654 /* reg_mddq_slot_info_ini_file_version 11655 * User-configured version number of the current INI file. 11656 * Valid only when active or lc_ready are '1'. 11657 * Access: RO 11658 */ 11659 MLXSW_ITEM32(reg, mddq, slot_info_ini_file_version, 0x14, 0, 16); 11660 11661 /* reg_mddq_slot_info_card_type 11662 * Access: RO 11663 */ 11664 MLXSW_ITEM32(reg, mddq, slot_info_card_type, 0x18, 0, 8); 11665 11666 static inline void 11667 __mlxsw_reg_mddq_pack(char *payload, u8 slot_index, 11668 enum mlxsw_reg_mddq_query_type query_type) 11669 { 11670 MLXSW_REG_ZERO(mddq, payload); 11671 mlxsw_reg_mddq_slot_index_set(payload, slot_index); 11672 mlxsw_reg_mddq_query_type_set(payload, query_type); 11673 } 11674 11675 static inline void 11676 mlxsw_reg_mddq_slot_info_pack(char *payload, u8 slot_index, bool sie) 11677 { 11678 __mlxsw_reg_mddq_pack(payload, slot_index, 11679 MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_INFO); 11680 mlxsw_reg_mddq_sie_set(payload, sie); 11681 } 11682 11683 static inline void 11684 mlxsw_reg_mddq_slot_info_unpack(const char *payload, u8 *p_slot_index, 11685 bool *p_provisioned, bool *p_sr_valid, 11686 enum mlxsw_reg_mddq_slot_info_ready *p_lc_ready, 11687 bool *p_active, u16 *p_hw_revision, 11688 u16 *p_ini_file_version, 11689 u8 *p_card_type) 11690 { 11691 *p_slot_index = mlxsw_reg_mddq_slot_index_get(payload); 11692 *p_provisioned = mlxsw_reg_mddq_slot_info_provisioned_get(payload); 11693 *p_sr_valid = mlxsw_reg_mddq_slot_info_sr_valid_get(payload); 11694 *p_lc_ready = mlxsw_reg_mddq_slot_info_lc_ready_get(payload); 11695 *p_active = mlxsw_reg_mddq_slot_info_active_get(payload); 11696 *p_hw_revision = mlxsw_reg_mddq_slot_info_hw_revision_get(payload); 11697 *p_ini_file_version = mlxsw_reg_mddq_slot_info_ini_file_version_get(payload); 11698 *p_card_type = mlxsw_reg_mddq_slot_info_card_type_get(payload); 11699 } 11700 11701 /* reg_mddq_device_info_flash_owner 11702 * If set, the device is the flash owner. Otherwise, a shared flash 11703 * is used by this device (another device is the flash owner). 11704 * Access: RO 11705 */ 11706 MLXSW_ITEM32(reg, mddq, device_info_flash_owner, 0x10, 30, 1); 11707 11708 /* reg_mddq_device_info_device_index 11709 * Device index. The first device should number 0. 11710 * Access: RO 11711 */ 11712 MLXSW_ITEM32(reg, mddq, device_info_device_index, 0x10, 0, 8); 11713 11714 /* reg_mddq_device_info_fw_major 11715 * Major FW version number. 11716 * Access: RO 11717 */ 11718 MLXSW_ITEM32(reg, mddq, device_info_fw_major, 0x14, 16, 16); 11719 11720 /* reg_mddq_device_info_fw_minor 11721 * Minor FW version number. 11722 * Access: RO 11723 */ 11724 MLXSW_ITEM32(reg, mddq, device_info_fw_minor, 0x18, 16, 16); 11725 11726 /* reg_mddq_device_info_fw_sub_minor 11727 * Sub-minor FW version number. 11728 * Access: RO 11729 */ 11730 MLXSW_ITEM32(reg, mddq, device_info_fw_sub_minor, 0x18, 0, 16); 11731 11732 static inline void 11733 mlxsw_reg_mddq_device_info_pack(char *payload, u8 slot_index, 11734 u8 request_msg_seq) 11735 { 11736 __mlxsw_reg_mddq_pack(payload, slot_index, 11737 MLXSW_REG_MDDQ_QUERY_TYPE_DEVICE_INFO); 11738 mlxsw_reg_mddq_request_msg_seq_set(payload, request_msg_seq); 11739 } 11740 11741 static inline void 11742 mlxsw_reg_mddq_device_info_unpack(const char *payload, u8 *p_response_msg_seq, 11743 bool *p_data_valid, bool *p_flash_owner, 11744 u8 *p_device_index, u16 *p_fw_major, 11745 u16 *p_fw_minor, u16 *p_fw_sub_minor) 11746 { 11747 *p_response_msg_seq = mlxsw_reg_mddq_response_msg_seq_get(payload); 11748 *p_data_valid = mlxsw_reg_mddq_data_valid_get(payload); 11749 *p_flash_owner = mlxsw_reg_mddq_device_info_flash_owner_get(payload); 11750 *p_device_index = mlxsw_reg_mddq_device_info_device_index_get(payload); 11751 *p_fw_major = mlxsw_reg_mddq_device_info_fw_major_get(payload); 11752 *p_fw_minor = mlxsw_reg_mddq_device_info_fw_minor_get(payload); 11753 *p_fw_sub_minor = mlxsw_reg_mddq_device_info_fw_sub_minor_get(payload); 11754 } 11755 11756 #define MLXSW_REG_MDDQ_SLOT_ASCII_NAME_LEN 20 11757 11758 /* reg_mddq_slot_ascii_name 11759 * Slot's ASCII name. 11760 * Access: RO 11761 */ 11762 MLXSW_ITEM_BUF(reg, mddq, slot_ascii_name, 0x10, 11763 MLXSW_REG_MDDQ_SLOT_ASCII_NAME_LEN); 11764 11765 static inline void 11766 mlxsw_reg_mddq_slot_name_pack(char *payload, u8 slot_index) 11767 { 11768 __mlxsw_reg_mddq_pack(payload, slot_index, 11769 MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_NAME); 11770 } 11771 11772 static inline void 11773 mlxsw_reg_mddq_slot_name_unpack(const char *payload, char *slot_ascii_name) 11774 { 11775 mlxsw_reg_mddq_slot_ascii_name_memcpy_from(payload, slot_ascii_name); 11776 } 11777 11778 /* MDDC - Management DownStream Device Control Register 11779 * ---------------------------------------------------- 11780 * This register allows to control downstream devices and line cards. 11781 */ 11782 #define MLXSW_REG_MDDC_ID 0x9163 11783 #define MLXSW_REG_MDDC_LEN 0x30 11784 11785 MLXSW_REG_DEFINE(mddc, MLXSW_REG_MDDC_ID, MLXSW_REG_MDDC_LEN); 11786 11787 /* reg_mddc_slot_index 11788 * Slot index. 0 is reserved. 11789 * Access: Index 11790 */ 11791 MLXSW_ITEM32(reg, mddc, slot_index, 0x00, 0, 4); 11792 11793 /* reg_mddc_rst 11794 * Reset request. 11795 * Access: OP 11796 */ 11797 MLXSW_ITEM32(reg, mddc, rst, 0x04, 29, 1); 11798 11799 /* reg_mddc_device_enable 11800 * When set, FW is the manager and allowed to program the downstream device. 11801 * Access: RW 11802 */ 11803 MLXSW_ITEM32(reg, mddc, device_enable, 0x04, 28, 1); 11804 11805 static inline void mlxsw_reg_mddc_pack(char *payload, u8 slot_index, bool rst, 11806 bool device_enable) 11807 { 11808 MLXSW_REG_ZERO(mddc, payload); 11809 mlxsw_reg_mddc_slot_index_set(payload, slot_index); 11810 mlxsw_reg_mddc_rst_set(payload, rst); 11811 mlxsw_reg_mddc_device_enable_set(payload, device_enable); 11812 } 11813 11814 /* MFDE - Monitoring FW Debug Register 11815 * ----------------------------------- 11816 */ 11817 #define MLXSW_REG_MFDE_ID 0x9200 11818 #define MLXSW_REG_MFDE_LEN 0x30 11819 11820 MLXSW_REG_DEFINE(mfde, MLXSW_REG_MFDE_ID, MLXSW_REG_MFDE_LEN); 11821 11822 /* reg_mfde_irisc_id 11823 * Which irisc triggered the event 11824 * Access: RO 11825 */ 11826 MLXSW_ITEM32(reg, mfde, irisc_id, 0x00, 24, 8); 11827 11828 enum mlxsw_reg_mfde_severity { 11829 /* Unrecoverable switch behavior */ 11830 MLXSW_REG_MFDE_SEVERITY_FATL = 2, 11831 /* Unexpected state with possible systemic failure */ 11832 MLXSW_REG_MFDE_SEVERITY_NRML = 3, 11833 /* Unexpected state without systemic failure */ 11834 MLXSW_REG_MFDE_SEVERITY_INTR = 5, 11835 }; 11836 11837 /* reg_mfde_severity 11838 * The severity of the event. 11839 * Access: RO 11840 */ 11841 MLXSW_ITEM32(reg, mfde, severity, 0x00, 16, 8); 11842 11843 enum mlxsw_reg_mfde_event_id { 11844 /* CRspace timeout */ 11845 MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO = 1, 11846 /* KVD insertion machine stopped */ 11847 MLXSW_REG_MFDE_EVENT_ID_KVD_IM_STOP, 11848 /* Triggered by MFGD.trigger_test */ 11849 MLXSW_REG_MFDE_EVENT_ID_TEST, 11850 /* Triggered when firmware hits an assert */ 11851 MLXSW_REG_MFDE_EVENT_ID_FW_ASSERT, 11852 /* Fatal error interrupt from hardware */ 11853 MLXSW_REG_MFDE_EVENT_ID_FATAL_CAUSE, 11854 }; 11855 11856 /* reg_mfde_event_id 11857 * Access: RO 11858 */ 11859 MLXSW_ITEM32(reg, mfde, event_id, 0x00, 0, 16); 11860 11861 enum mlxsw_reg_mfde_method { 11862 MLXSW_REG_MFDE_METHOD_QUERY, 11863 MLXSW_REG_MFDE_METHOD_WRITE, 11864 }; 11865 11866 /* reg_mfde_method 11867 * Access: RO 11868 */ 11869 MLXSW_ITEM32(reg, mfde, method, 0x04, 29, 1); 11870 11871 /* reg_mfde_long_process 11872 * Indicates if the command is in long_process mode. 11873 * Access: RO 11874 */ 11875 MLXSW_ITEM32(reg, mfde, long_process, 0x04, 28, 1); 11876 11877 enum mlxsw_reg_mfde_command_type { 11878 MLXSW_REG_MFDE_COMMAND_TYPE_MAD, 11879 MLXSW_REG_MFDE_COMMAND_TYPE_EMAD, 11880 MLXSW_REG_MFDE_COMMAND_TYPE_CMDIF, 11881 }; 11882 11883 /* reg_mfde_command_type 11884 * Access: RO 11885 */ 11886 MLXSW_ITEM32(reg, mfde, command_type, 0x04, 24, 2); 11887 11888 /* reg_mfde_reg_attr_id 11889 * EMAD - register id, MAD - attibute id 11890 * Access: RO 11891 */ 11892 MLXSW_ITEM32(reg, mfde, reg_attr_id, 0x04, 0, 16); 11893 11894 /* reg_mfde_crspace_to_log_address 11895 * crspace address accessed, which resulted in timeout. 11896 * Access: RO 11897 */ 11898 MLXSW_ITEM32(reg, mfde, crspace_to_log_address, 0x10, 0, 32); 11899 11900 /* reg_mfde_crspace_to_oe 11901 * 0 - New event 11902 * 1 - Old event, occurred before MFGD activation. 11903 * Access: RO 11904 */ 11905 MLXSW_ITEM32(reg, mfde, crspace_to_oe, 0x14, 24, 1); 11906 11907 /* reg_mfde_crspace_to_log_id 11908 * Which irisc triggered the timeout. 11909 * Access: RO 11910 */ 11911 MLXSW_ITEM32(reg, mfde, crspace_to_log_id, 0x14, 0, 4); 11912 11913 /* reg_mfde_crspace_to_log_ip 11914 * IP (instruction pointer) that triggered the timeout. 11915 * Access: RO 11916 */ 11917 MLXSW_ITEM64(reg, mfde, crspace_to_log_ip, 0x18, 0, 64); 11918 11919 /* reg_mfde_kvd_im_stop_oe 11920 * 0 - New event 11921 * 1 - Old event, occurred before MFGD activation. 11922 * Access: RO 11923 */ 11924 MLXSW_ITEM32(reg, mfde, kvd_im_stop_oe, 0x10, 24, 1); 11925 11926 /* reg_mfde_kvd_im_stop_pipes_mask 11927 * Bit per kvh pipe. 11928 * Access: RO 11929 */ 11930 MLXSW_ITEM32(reg, mfde, kvd_im_stop_pipes_mask, 0x10, 0, 16); 11931 11932 /* reg_mfde_fw_assert_var0-4 11933 * Variables passed to assert. 11934 * Access: RO 11935 */ 11936 MLXSW_ITEM32(reg, mfde, fw_assert_var0, 0x10, 0, 32); 11937 MLXSW_ITEM32(reg, mfde, fw_assert_var1, 0x14, 0, 32); 11938 MLXSW_ITEM32(reg, mfde, fw_assert_var2, 0x18, 0, 32); 11939 MLXSW_ITEM32(reg, mfde, fw_assert_var3, 0x1C, 0, 32); 11940 MLXSW_ITEM32(reg, mfde, fw_assert_var4, 0x20, 0, 32); 11941 11942 /* reg_mfde_fw_assert_existptr 11943 * The instruction pointer when assert was triggered. 11944 * Access: RO 11945 */ 11946 MLXSW_ITEM32(reg, mfde, fw_assert_existptr, 0x24, 0, 32); 11947 11948 /* reg_mfde_fw_assert_callra 11949 * The return address after triggering assert. 11950 * Access: RO 11951 */ 11952 MLXSW_ITEM32(reg, mfde, fw_assert_callra, 0x28, 0, 32); 11953 11954 /* reg_mfde_fw_assert_oe 11955 * 0 - New event 11956 * 1 - Old event, occurred before MFGD activation. 11957 * Access: RO 11958 */ 11959 MLXSW_ITEM32(reg, mfde, fw_assert_oe, 0x2C, 24, 1); 11960 11961 /* reg_mfde_fw_assert_tile_v 11962 * 0: The assert was from main 11963 * 1: The assert was from a tile 11964 * Access: RO 11965 */ 11966 MLXSW_ITEM32(reg, mfde, fw_assert_tile_v, 0x2C, 23, 1); 11967 11968 /* reg_mfde_fw_assert_tile_index 11969 * When tile_v=1, the tile_index that caused the assert. 11970 * Access: RO 11971 */ 11972 MLXSW_ITEM32(reg, mfde, fw_assert_tile_index, 0x2C, 16, 6); 11973 11974 /* reg_mfde_fw_assert_ext_synd 11975 * A generated one-to-one identifier which is specific per-assert. 11976 * Access: RO 11977 */ 11978 MLXSW_ITEM32(reg, mfde, fw_assert_ext_synd, 0x2C, 0, 16); 11979 11980 /* reg_mfde_fatal_cause_id 11981 * HW interrupt cause id. 11982 * Access: RO 11983 */ 11984 MLXSW_ITEM32(reg, mfde, fatal_cause_id, 0x10, 0, 18); 11985 11986 /* reg_mfde_fatal_cause_tile_v 11987 * 0: The assert was from main 11988 * 1: The assert was from a tile 11989 * Access: RO 11990 */ 11991 MLXSW_ITEM32(reg, mfde, fatal_cause_tile_v, 0x14, 23, 1); 11992 11993 /* reg_mfde_fatal_cause_tile_index 11994 * When tile_v=1, the tile_index that caused the assert. 11995 * Access: RO 11996 */ 11997 MLXSW_ITEM32(reg, mfde, fatal_cause_tile_index, 0x14, 16, 6); 11998 11999 /* TNGCR - Tunneling NVE General Configuration Register 12000 * ---------------------------------------------------- 12001 * The TNGCR register is used for setting up the NVE Tunneling configuration. 12002 */ 12003 #define MLXSW_REG_TNGCR_ID 0xA001 12004 #define MLXSW_REG_TNGCR_LEN 0x44 12005 12006 MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN); 12007 12008 enum mlxsw_reg_tngcr_type { 12009 MLXSW_REG_TNGCR_TYPE_VXLAN, 12010 MLXSW_REG_TNGCR_TYPE_VXLAN_GPE, 12011 MLXSW_REG_TNGCR_TYPE_GENEVE, 12012 MLXSW_REG_TNGCR_TYPE_NVGRE, 12013 }; 12014 12015 /* reg_tngcr_type 12016 * Tunnel type for encapsulation and decapsulation. The types are mutually 12017 * exclusive. 12018 * Note: For Spectrum the NVE parsing must be enabled in MPRS. 12019 * Access: RW 12020 */ 12021 MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4); 12022 12023 /* reg_tngcr_nve_valid 12024 * The VTEP is valid. Allows adding FDB entries for tunnel encapsulation. 12025 * Access: RW 12026 */ 12027 MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1); 12028 12029 /* reg_tngcr_nve_ttl_uc 12030 * The TTL for NVE tunnel encapsulation underlay unicast packets. 12031 * Access: RW 12032 */ 12033 MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8); 12034 12035 /* reg_tngcr_nve_ttl_mc 12036 * The TTL for NVE tunnel encapsulation underlay multicast packets. 12037 * Access: RW 12038 */ 12039 MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8); 12040 12041 enum { 12042 /* Do not copy flow label. Calculate flow label using nve_flh. */ 12043 MLXSW_REG_TNGCR_FL_NO_COPY, 12044 /* Copy flow label from inner packet if packet is IPv6 and 12045 * encapsulation is by IPv6. Otherwise, calculate flow label using 12046 * nve_flh. 12047 */ 12048 MLXSW_REG_TNGCR_FL_COPY, 12049 }; 12050 12051 /* reg_tngcr_nve_flc 12052 * For NVE tunnel encapsulation: Flow label copy from inner packet. 12053 * Access: RW 12054 */ 12055 MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1); 12056 12057 enum { 12058 /* Flow label is static. In Spectrum this means '0'. Spectrum-2 12059 * uses {nve_fl_prefix, nve_fl_suffix}. 12060 */ 12061 MLXSW_REG_TNGCR_FL_NO_HASH, 12062 /* 8 LSBs of the flow label are calculated from ECMP hash of the 12063 * inner packet. 12 MSBs are configured by nve_fl_prefix. 12064 */ 12065 MLXSW_REG_TNGCR_FL_HASH, 12066 }; 12067 12068 /* reg_tngcr_nve_flh 12069 * NVE flow label hash. 12070 * Access: RW 12071 */ 12072 MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1); 12073 12074 /* reg_tngcr_nve_fl_prefix 12075 * NVE flow label prefix. Constant 12 MSBs of the flow label. 12076 * Access: RW 12077 */ 12078 MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12); 12079 12080 /* reg_tngcr_nve_fl_suffix 12081 * NVE flow label suffix. Constant 8 LSBs of the flow label. 12082 * Reserved when nve_flh=1 and for Spectrum. 12083 * Access: RW 12084 */ 12085 MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8); 12086 12087 enum { 12088 /* Source UDP port is fixed (default '0') */ 12089 MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH, 12090 /* Source UDP port is calculated based on hash */ 12091 MLXSW_REG_TNGCR_UDP_SPORT_HASH, 12092 }; 12093 12094 /* reg_tngcr_nve_udp_sport_type 12095 * NVE UDP source port type. 12096 * Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2). 12097 * When the source UDP port is calculated based on hash, then the 8 LSBs 12098 * are calculated from hash the 8 MSBs are configured by 12099 * nve_udp_sport_prefix. 12100 * Access: RW 12101 */ 12102 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1); 12103 12104 /* reg_tngcr_nve_udp_sport_prefix 12105 * NVE UDP source port prefix. Constant 8 MSBs of the UDP source port. 12106 * Reserved when NVE type is NVGRE. 12107 * Access: RW 12108 */ 12109 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8); 12110 12111 /* reg_tngcr_nve_group_size_mc 12112 * The amount of sequential linked lists of MC entries. The first linked 12113 * list is configured by SFD.underlay_mc_ptr. 12114 * Valid values: 1, 2, 4, 8, 16, 32, 64 12115 * The linked list are configured by TNUMT. 12116 * The hash is set by LAG hash. 12117 * Access: RW 12118 */ 12119 MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8); 12120 12121 /* reg_tngcr_nve_group_size_flood 12122 * The amount of sequential linked lists of flooding entries. The first 12123 * linked list is configured by SFMR.nve_tunnel_flood_ptr 12124 * Valid values: 1, 2, 4, 8, 16, 32, 64 12125 * The linked list are configured by TNUMT. 12126 * The hash is set by LAG hash. 12127 * Access: RW 12128 */ 12129 MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8); 12130 12131 /* reg_tngcr_learn_enable 12132 * During decapsulation, whether to learn from NVE port. 12133 * Reserved when Spectrum-2. See TNPC. 12134 * Access: RW 12135 */ 12136 MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1); 12137 12138 /* reg_tngcr_underlay_virtual_router 12139 * Underlay virtual router. 12140 * Reserved when Spectrum-2. 12141 * Access: RW 12142 */ 12143 MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16); 12144 12145 /* reg_tngcr_underlay_rif 12146 * Underlay ingress router interface. RIF type should be loopback generic. 12147 * Reserved when Spectrum. 12148 * Access: RW 12149 */ 12150 MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16); 12151 12152 /* reg_tngcr_usipv4 12153 * Underlay source IPv4 address of the NVE. 12154 * Access: RW 12155 */ 12156 MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32); 12157 12158 /* reg_tngcr_usipv6 12159 * Underlay source IPv6 address of the NVE. For Spectrum, must not be 12160 * modified under traffic of NVE tunneling encapsulation. 12161 * Access: RW 12162 */ 12163 MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16); 12164 12165 static inline void mlxsw_reg_tngcr_pack(char *payload, 12166 enum mlxsw_reg_tngcr_type type, 12167 bool valid, u8 ttl) 12168 { 12169 MLXSW_REG_ZERO(tngcr, payload); 12170 mlxsw_reg_tngcr_type_set(payload, type); 12171 mlxsw_reg_tngcr_nve_valid_set(payload, valid); 12172 mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl); 12173 mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl); 12174 mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY); 12175 mlxsw_reg_tngcr_nve_flh_set(payload, 0); 12176 mlxsw_reg_tngcr_nve_udp_sport_type_set(payload, 12177 MLXSW_REG_TNGCR_UDP_SPORT_HASH); 12178 mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0); 12179 mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1); 12180 mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1); 12181 } 12182 12183 /* TNUMT - Tunneling NVE Underlay Multicast Table Register 12184 * ------------------------------------------------------- 12185 * The TNUMT register is for building the underlay MC table. It is used 12186 * for MC, flooding and BC traffic into the NVE tunnel. 12187 */ 12188 #define MLXSW_REG_TNUMT_ID 0xA003 12189 #define MLXSW_REG_TNUMT_LEN 0x20 12190 12191 MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN); 12192 12193 enum mlxsw_reg_tnumt_record_type { 12194 MLXSW_REG_TNUMT_RECORD_TYPE_IPV4, 12195 MLXSW_REG_TNUMT_RECORD_TYPE_IPV6, 12196 MLXSW_REG_TNUMT_RECORD_TYPE_LABEL, 12197 }; 12198 12199 /* reg_tnumt_record_type 12200 * Record type. 12201 * Access: RW 12202 */ 12203 MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4); 12204 12205 /* reg_tnumt_tunnel_port 12206 * Tunnel port. 12207 * Access: RW 12208 */ 12209 MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4); 12210 12211 /* reg_tnumt_underlay_mc_ptr 12212 * Index to the underlay multicast table. 12213 * For Spectrum the index is to the KVD linear. 12214 * Access: Index 12215 */ 12216 MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24); 12217 12218 /* reg_tnumt_vnext 12219 * The next_underlay_mc_ptr is valid. 12220 * Access: RW 12221 */ 12222 MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1); 12223 12224 /* reg_tnumt_next_underlay_mc_ptr 12225 * The next index to the underlay multicast table. 12226 * Access: RW 12227 */ 12228 MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24); 12229 12230 /* reg_tnumt_record_size 12231 * Number of IP addresses in the record. 12232 * Range is 1..cap_max_nve_mc_entries_ipv{4,6} 12233 * Access: RW 12234 */ 12235 MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3); 12236 12237 /* reg_tnumt_udip 12238 * The underlay IPv4 addresses. udip[i] is reserved if i >= size 12239 * Access: RW 12240 */ 12241 MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false); 12242 12243 /* reg_tnumt_udip_ptr 12244 * The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if 12245 * i >= size. The IPv6 addresses are configured by RIPS. 12246 * Access: RW 12247 */ 12248 MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false); 12249 12250 static inline void mlxsw_reg_tnumt_pack(char *payload, 12251 enum mlxsw_reg_tnumt_record_type type, 12252 enum mlxsw_reg_tunnel_port tport, 12253 u32 underlay_mc_ptr, bool vnext, 12254 u32 next_underlay_mc_ptr, 12255 u8 record_size) 12256 { 12257 MLXSW_REG_ZERO(tnumt, payload); 12258 mlxsw_reg_tnumt_record_type_set(payload, type); 12259 mlxsw_reg_tnumt_tunnel_port_set(payload, tport); 12260 mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr); 12261 mlxsw_reg_tnumt_vnext_set(payload, vnext); 12262 mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr); 12263 mlxsw_reg_tnumt_record_size_set(payload, record_size); 12264 } 12265 12266 /* TNQCR - Tunneling NVE QoS Configuration Register 12267 * ------------------------------------------------ 12268 * The TNQCR register configures how QoS is set in encapsulation into the 12269 * underlay network. 12270 */ 12271 #define MLXSW_REG_TNQCR_ID 0xA010 12272 #define MLXSW_REG_TNQCR_LEN 0x0C 12273 12274 MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN); 12275 12276 /* reg_tnqcr_enc_set_dscp 12277 * For encapsulation: How to set DSCP field: 12278 * 0 - Copy the DSCP from the overlay (inner) IP header to the underlay 12279 * (outer) IP header. If there is no IP header, use TNQDR.dscp 12280 * 1 - Set the DSCP field as TNQDR.dscp 12281 * Access: RW 12282 */ 12283 MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1); 12284 12285 static inline void mlxsw_reg_tnqcr_pack(char *payload) 12286 { 12287 MLXSW_REG_ZERO(tnqcr, payload); 12288 mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0); 12289 } 12290 12291 /* TNQDR - Tunneling NVE QoS Default Register 12292 * ------------------------------------------ 12293 * The TNQDR register configures the default QoS settings for NVE 12294 * encapsulation. 12295 */ 12296 #define MLXSW_REG_TNQDR_ID 0xA011 12297 #define MLXSW_REG_TNQDR_LEN 0x08 12298 12299 MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN); 12300 12301 /* reg_tnqdr_local_port 12302 * Local port number (receive port). CPU port is supported. 12303 * Access: Index 12304 */ 12305 MLXSW_ITEM32_LP(reg, tnqdr, 0x00, 16, 0x00, 12); 12306 12307 /* reg_tnqdr_dscp 12308 * For encapsulation, the default DSCP. 12309 * Access: RW 12310 */ 12311 MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6); 12312 12313 static inline void mlxsw_reg_tnqdr_pack(char *payload, u16 local_port) 12314 { 12315 MLXSW_REG_ZERO(tnqdr, payload); 12316 mlxsw_reg_tnqdr_local_port_set(payload, local_port); 12317 mlxsw_reg_tnqdr_dscp_set(payload, 0); 12318 } 12319 12320 /* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register 12321 * -------------------------------------------------------- 12322 * The TNEEM register maps ECN of the IP header at the ingress to the 12323 * encapsulation to the ECN of the underlay network. 12324 */ 12325 #define MLXSW_REG_TNEEM_ID 0xA012 12326 #define MLXSW_REG_TNEEM_LEN 0x0C 12327 12328 MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN); 12329 12330 /* reg_tneem_overlay_ecn 12331 * ECN of the IP header in the overlay network. 12332 * Access: Index 12333 */ 12334 MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2); 12335 12336 /* reg_tneem_underlay_ecn 12337 * ECN of the IP header in the underlay network. 12338 * Access: RW 12339 */ 12340 MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2); 12341 12342 static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn, 12343 u8 underlay_ecn) 12344 { 12345 MLXSW_REG_ZERO(tneem, payload); 12346 mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn); 12347 mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn); 12348 } 12349 12350 /* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register 12351 * -------------------------------------------------------- 12352 * The TNDEM register configures the actions that are done in the 12353 * decapsulation. 12354 */ 12355 #define MLXSW_REG_TNDEM_ID 0xA013 12356 #define MLXSW_REG_TNDEM_LEN 0x0C 12357 12358 MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN); 12359 12360 /* reg_tndem_underlay_ecn 12361 * ECN field of the IP header in the underlay network. 12362 * Access: Index 12363 */ 12364 MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2); 12365 12366 /* reg_tndem_overlay_ecn 12367 * ECN field of the IP header in the overlay network. 12368 * Access: Index 12369 */ 12370 MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2); 12371 12372 /* reg_tndem_eip_ecn 12373 * Egress IP ECN. ECN field of the IP header of the packet which goes out 12374 * from the decapsulation. 12375 * Access: RW 12376 */ 12377 MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2); 12378 12379 /* reg_tndem_trap_en 12380 * Trap enable: 12381 * 0 - No trap due to decap ECN 12382 * 1 - Trap enable with trap_id 12383 * Access: RW 12384 */ 12385 MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4); 12386 12387 /* reg_tndem_trap_id 12388 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1. 12389 * Reserved when trap_en is '0'. 12390 * Access: RW 12391 */ 12392 MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9); 12393 12394 static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn, 12395 u8 overlay_ecn, u8 ecn, bool trap_en, 12396 u16 trap_id) 12397 { 12398 MLXSW_REG_ZERO(tndem, payload); 12399 mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn); 12400 mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn); 12401 mlxsw_reg_tndem_eip_ecn_set(payload, ecn); 12402 mlxsw_reg_tndem_trap_en_set(payload, trap_en); 12403 mlxsw_reg_tndem_trap_id_set(payload, trap_id); 12404 } 12405 12406 /* TNPC - Tunnel Port Configuration Register 12407 * ----------------------------------------- 12408 * The TNPC register is used for tunnel port configuration. 12409 * Reserved when Spectrum. 12410 */ 12411 #define MLXSW_REG_TNPC_ID 0xA020 12412 #define MLXSW_REG_TNPC_LEN 0x18 12413 12414 MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN); 12415 12416 /* reg_tnpc_tunnel_port 12417 * Tunnel port. 12418 * Access: Index 12419 */ 12420 MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4); 12421 12422 /* reg_tnpc_learn_enable_v6 12423 * During IPv6 underlay decapsulation, whether to learn from tunnel port. 12424 * Access: RW 12425 */ 12426 MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1); 12427 12428 /* reg_tnpc_learn_enable_v4 12429 * During IPv4 underlay decapsulation, whether to learn from tunnel port. 12430 * Access: RW 12431 */ 12432 MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1); 12433 12434 static inline void mlxsw_reg_tnpc_pack(char *payload, 12435 enum mlxsw_reg_tunnel_port tport, 12436 bool learn_enable) 12437 { 12438 MLXSW_REG_ZERO(tnpc, payload); 12439 mlxsw_reg_tnpc_tunnel_port_set(payload, tport); 12440 mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable); 12441 mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable); 12442 } 12443 12444 /* TIGCR - Tunneling IPinIP General Configuration Register 12445 * ------------------------------------------------------- 12446 * The TIGCR register is used for setting up the IPinIP Tunnel configuration. 12447 */ 12448 #define MLXSW_REG_TIGCR_ID 0xA801 12449 #define MLXSW_REG_TIGCR_LEN 0x10 12450 12451 MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN); 12452 12453 /* reg_tigcr_ipip_ttlc 12454 * For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet 12455 * header. 12456 * Access: RW 12457 */ 12458 MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1); 12459 12460 /* reg_tigcr_ipip_ttl_uc 12461 * The TTL for IPinIP Tunnel encapsulation of unicast packets if 12462 * reg_tigcr_ipip_ttlc is unset. 12463 * Access: RW 12464 */ 12465 MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8); 12466 12467 static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc) 12468 { 12469 MLXSW_REG_ZERO(tigcr, payload); 12470 mlxsw_reg_tigcr_ttlc_set(payload, ttlc); 12471 mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc); 12472 } 12473 12474 /* TIEEM - Tunneling IPinIP Encapsulation ECN Mapping Register 12475 * ----------------------------------------------------------- 12476 * The TIEEM register maps ECN of the IP header at the ingress to the 12477 * encapsulation to the ECN of the underlay network. 12478 */ 12479 #define MLXSW_REG_TIEEM_ID 0xA812 12480 #define MLXSW_REG_TIEEM_LEN 0x0C 12481 12482 MLXSW_REG_DEFINE(tieem, MLXSW_REG_TIEEM_ID, MLXSW_REG_TIEEM_LEN); 12483 12484 /* reg_tieem_overlay_ecn 12485 * ECN of the IP header in the overlay network. 12486 * Access: Index 12487 */ 12488 MLXSW_ITEM32(reg, tieem, overlay_ecn, 0x04, 24, 2); 12489 12490 /* reg_tineem_underlay_ecn 12491 * ECN of the IP header in the underlay network. 12492 * Access: RW 12493 */ 12494 MLXSW_ITEM32(reg, tieem, underlay_ecn, 0x04, 16, 2); 12495 12496 static inline void mlxsw_reg_tieem_pack(char *payload, u8 overlay_ecn, 12497 u8 underlay_ecn) 12498 { 12499 MLXSW_REG_ZERO(tieem, payload); 12500 mlxsw_reg_tieem_overlay_ecn_set(payload, overlay_ecn); 12501 mlxsw_reg_tieem_underlay_ecn_set(payload, underlay_ecn); 12502 } 12503 12504 /* TIDEM - Tunneling IPinIP Decapsulation ECN Mapping Register 12505 * ----------------------------------------------------------- 12506 * The TIDEM register configures the actions that are done in the 12507 * decapsulation. 12508 */ 12509 #define MLXSW_REG_TIDEM_ID 0xA813 12510 #define MLXSW_REG_TIDEM_LEN 0x0C 12511 12512 MLXSW_REG_DEFINE(tidem, MLXSW_REG_TIDEM_ID, MLXSW_REG_TIDEM_LEN); 12513 12514 /* reg_tidem_underlay_ecn 12515 * ECN field of the IP header in the underlay network. 12516 * Access: Index 12517 */ 12518 MLXSW_ITEM32(reg, tidem, underlay_ecn, 0x04, 24, 2); 12519 12520 /* reg_tidem_overlay_ecn 12521 * ECN field of the IP header in the overlay network. 12522 * Access: Index 12523 */ 12524 MLXSW_ITEM32(reg, tidem, overlay_ecn, 0x04, 16, 2); 12525 12526 /* reg_tidem_eip_ecn 12527 * Egress IP ECN. ECN field of the IP header of the packet which goes out 12528 * from the decapsulation. 12529 * Access: RW 12530 */ 12531 MLXSW_ITEM32(reg, tidem, eip_ecn, 0x04, 8, 2); 12532 12533 /* reg_tidem_trap_en 12534 * Trap enable: 12535 * 0 - No trap due to decap ECN 12536 * 1 - Trap enable with trap_id 12537 * Access: RW 12538 */ 12539 MLXSW_ITEM32(reg, tidem, trap_en, 0x08, 28, 4); 12540 12541 /* reg_tidem_trap_id 12542 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1. 12543 * Reserved when trap_en is '0'. 12544 * Access: RW 12545 */ 12546 MLXSW_ITEM32(reg, tidem, trap_id, 0x08, 0, 9); 12547 12548 static inline void mlxsw_reg_tidem_pack(char *payload, u8 underlay_ecn, 12549 u8 overlay_ecn, u8 eip_ecn, 12550 bool trap_en, u16 trap_id) 12551 { 12552 MLXSW_REG_ZERO(tidem, payload); 12553 mlxsw_reg_tidem_underlay_ecn_set(payload, underlay_ecn); 12554 mlxsw_reg_tidem_overlay_ecn_set(payload, overlay_ecn); 12555 mlxsw_reg_tidem_eip_ecn_set(payload, eip_ecn); 12556 mlxsw_reg_tidem_trap_en_set(payload, trap_en); 12557 mlxsw_reg_tidem_trap_id_set(payload, trap_id); 12558 } 12559 12560 /* SBPR - Shared Buffer Pools Register 12561 * ----------------------------------- 12562 * The SBPR configures and retrieves the shared buffer pools and configuration. 12563 */ 12564 #define MLXSW_REG_SBPR_ID 0xB001 12565 #define MLXSW_REG_SBPR_LEN 0x14 12566 12567 MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN); 12568 12569 /* reg_sbpr_desc 12570 * When set, configures descriptor buffer. 12571 * Access: Index 12572 */ 12573 MLXSW_ITEM32(reg, sbpr, desc, 0x00, 31, 1); 12574 12575 /* shared direstion enum for SBPR, SBCM, SBPM */ 12576 enum mlxsw_reg_sbxx_dir { 12577 MLXSW_REG_SBXX_DIR_INGRESS, 12578 MLXSW_REG_SBXX_DIR_EGRESS, 12579 }; 12580 12581 /* reg_sbpr_dir 12582 * Direction. 12583 * Access: Index 12584 */ 12585 MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2); 12586 12587 /* reg_sbpr_pool 12588 * Pool index. 12589 * Access: Index 12590 */ 12591 MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4); 12592 12593 /* reg_sbpr_infi_size 12594 * Size is infinite. 12595 * Access: RW 12596 */ 12597 MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1); 12598 12599 /* reg_sbpr_size 12600 * Pool size in buffer cells. 12601 * Reserved when infi_size = 1. 12602 * Access: RW 12603 */ 12604 MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24); 12605 12606 enum mlxsw_reg_sbpr_mode { 12607 MLXSW_REG_SBPR_MODE_STATIC, 12608 MLXSW_REG_SBPR_MODE_DYNAMIC, 12609 }; 12610 12611 /* reg_sbpr_mode 12612 * Pool quota calculation mode. 12613 * Access: RW 12614 */ 12615 MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4); 12616 12617 static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool, 12618 enum mlxsw_reg_sbxx_dir dir, 12619 enum mlxsw_reg_sbpr_mode mode, u32 size, 12620 bool infi_size) 12621 { 12622 MLXSW_REG_ZERO(sbpr, payload); 12623 mlxsw_reg_sbpr_pool_set(payload, pool); 12624 mlxsw_reg_sbpr_dir_set(payload, dir); 12625 mlxsw_reg_sbpr_mode_set(payload, mode); 12626 mlxsw_reg_sbpr_size_set(payload, size); 12627 mlxsw_reg_sbpr_infi_size_set(payload, infi_size); 12628 } 12629 12630 /* SBCM - Shared Buffer Class Management Register 12631 * ---------------------------------------------- 12632 * The SBCM register configures and retrieves the shared buffer allocation 12633 * and configuration according to Port-PG, including the binding to pool 12634 * and definition of the associated quota. 12635 */ 12636 #define MLXSW_REG_SBCM_ID 0xB002 12637 #define MLXSW_REG_SBCM_LEN 0x28 12638 12639 MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN); 12640 12641 /* reg_sbcm_local_port 12642 * Local port number. 12643 * For Ingress: excludes CPU port and Router port 12644 * For Egress: excludes IP Router 12645 * Access: Index 12646 */ 12647 MLXSW_ITEM32_LP(reg, sbcm, 0x00, 16, 0x00, 4); 12648 12649 /* reg_sbcm_pg_buff 12650 * PG buffer - Port PG (dir=ingress) / traffic class (dir=egress) 12651 * For PG buffer: range is 0..cap_max_pg_buffers - 1 12652 * For traffic class: range is 0..cap_max_tclass - 1 12653 * Note that when traffic class is in MC aware mode then the traffic 12654 * classes which are MC aware cannot be configured. 12655 * Access: Index 12656 */ 12657 MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6); 12658 12659 /* reg_sbcm_dir 12660 * Direction. 12661 * Access: Index 12662 */ 12663 MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2); 12664 12665 /* reg_sbcm_min_buff 12666 * Minimum buffer size for the limiter, in cells. 12667 * Access: RW 12668 */ 12669 MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24); 12670 12671 /* shared max_buff limits for dynamic threshold for SBCM, SBPM */ 12672 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1 12673 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14 12674 12675 /* reg_sbcm_infi_max 12676 * Max buffer is infinite. 12677 * Access: RW 12678 */ 12679 MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1); 12680 12681 /* reg_sbcm_max_buff 12682 * When the pool associated to the port-pg/tclass is configured to 12683 * static, Maximum buffer size for the limiter configured in cells. 12684 * When the pool associated to the port-pg/tclass is configured to 12685 * dynamic, the max_buff holds the "alpha" parameter, supporting 12686 * the following values: 12687 * 0: 0 12688 * i: (1/128)*2^(i-1), for i=1..14 12689 * 0xFF: Infinity 12690 * Reserved when infi_max = 1. 12691 * Access: RW 12692 */ 12693 MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24); 12694 12695 /* reg_sbcm_pool 12696 * Association of the port-priority to a pool. 12697 * Access: RW 12698 */ 12699 MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4); 12700 12701 static inline void mlxsw_reg_sbcm_pack(char *payload, u16 local_port, u8 pg_buff, 12702 enum mlxsw_reg_sbxx_dir dir, 12703 u32 min_buff, u32 max_buff, 12704 bool infi_max, u8 pool) 12705 { 12706 MLXSW_REG_ZERO(sbcm, payload); 12707 mlxsw_reg_sbcm_local_port_set(payload, local_port); 12708 mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff); 12709 mlxsw_reg_sbcm_dir_set(payload, dir); 12710 mlxsw_reg_sbcm_min_buff_set(payload, min_buff); 12711 mlxsw_reg_sbcm_max_buff_set(payload, max_buff); 12712 mlxsw_reg_sbcm_infi_max_set(payload, infi_max); 12713 mlxsw_reg_sbcm_pool_set(payload, pool); 12714 } 12715 12716 /* SBPM - Shared Buffer Port Management Register 12717 * --------------------------------------------- 12718 * The SBPM register configures and retrieves the shared buffer allocation 12719 * and configuration according to Port-Pool, including the definition 12720 * of the associated quota. 12721 */ 12722 #define MLXSW_REG_SBPM_ID 0xB003 12723 #define MLXSW_REG_SBPM_LEN 0x28 12724 12725 MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN); 12726 12727 /* reg_sbpm_local_port 12728 * Local port number. 12729 * For Ingress: excludes CPU port and Router port 12730 * For Egress: excludes IP Router 12731 * Access: Index 12732 */ 12733 MLXSW_ITEM32_LP(reg, sbpm, 0x00, 16, 0x00, 12); 12734 12735 /* reg_sbpm_pool 12736 * The pool associated to quota counting on the local_port. 12737 * Access: Index 12738 */ 12739 MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4); 12740 12741 /* reg_sbpm_dir 12742 * Direction. 12743 * Access: Index 12744 */ 12745 MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2); 12746 12747 /* reg_sbpm_buff_occupancy 12748 * Current buffer occupancy in cells. 12749 * Access: RO 12750 */ 12751 MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24); 12752 12753 /* reg_sbpm_clr 12754 * Clear Max Buffer Occupancy 12755 * When this bit is set, max_buff_occupancy field is cleared (and a 12756 * new max value is tracked from the time the clear was performed). 12757 * Access: OP 12758 */ 12759 MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1); 12760 12761 /* reg_sbpm_max_buff_occupancy 12762 * Maximum value of buffer occupancy in cells monitored. Cleared by 12763 * writing to the clr field. 12764 * Access: RO 12765 */ 12766 MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24); 12767 12768 /* reg_sbpm_min_buff 12769 * Minimum buffer size for the limiter, in cells. 12770 * Access: RW 12771 */ 12772 MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24); 12773 12774 /* reg_sbpm_max_buff 12775 * When the pool associated to the port-pg/tclass is configured to 12776 * static, Maximum buffer size for the limiter configured in cells. 12777 * When the pool associated to the port-pg/tclass is configured to 12778 * dynamic, the max_buff holds the "alpha" parameter, supporting 12779 * the following values: 12780 * 0: 0 12781 * i: (1/128)*2^(i-1), for i=1..14 12782 * 0xFF: Infinity 12783 * Access: RW 12784 */ 12785 MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24); 12786 12787 static inline void mlxsw_reg_sbpm_pack(char *payload, u16 local_port, u8 pool, 12788 enum mlxsw_reg_sbxx_dir dir, bool clr, 12789 u32 min_buff, u32 max_buff) 12790 { 12791 MLXSW_REG_ZERO(sbpm, payload); 12792 mlxsw_reg_sbpm_local_port_set(payload, local_port); 12793 mlxsw_reg_sbpm_pool_set(payload, pool); 12794 mlxsw_reg_sbpm_dir_set(payload, dir); 12795 mlxsw_reg_sbpm_clr_set(payload, clr); 12796 mlxsw_reg_sbpm_min_buff_set(payload, min_buff); 12797 mlxsw_reg_sbpm_max_buff_set(payload, max_buff); 12798 } 12799 12800 static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy, 12801 u32 *p_max_buff_occupancy) 12802 { 12803 *p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload); 12804 *p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload); 12805 } 12806 12807 /* SBMM - Shared Buffer Multicast Management Register 12808 * -------------------------------------------------- 12809 * The SBMM register configures and retrieves the shared buffer allocation 12810 * and configuration for MC packets according to Switch-Priority, including 12811 * the binding to pool and definition of the associated quota. 12812 */ 12813 #define MLXSW_REG_SBMM_ID 0xB004 12814 #define MLXSW_REG_SBMM_LEN 0x28 12815 12816 MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN); 12817 12818 /* reg_sbmm_prio 12819 * Switch Priority. 12820 * Access: Index 12821 */ 12822 MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4); 12823 12824 /* reg_sbmm_min_buff 12825 * Minimum buffer size for the limiter, in cells. 12826 * Access: RW 12827 */ 12828 MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24); 12829 12830 /* reg_sbmm_max_buff 12831 * When the pool associated to the port-pg/tclass is configured to 12832 * static, Maximum buffer size for the limiter configured in cells. 12833 * When the pool associated to the port-pg/tclass is configured to 12834 * dynamic, the max_buff holds the "alpha" parameter, supporting 12835 * the following values: 12836 * 0: 0 12837 * i: (1/128)*2^(i-1), for i=1..14 12838 * 0xFF: Infinity 12839 * Access: RW 12840 */ 12841 MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24); 12842 12843 /* reg_sbmm_pool 12844 * Association of the port-priority to a pool. 12845 * Access: RW 12846 */ 12847 MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4); 12848 12849 static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff, 12850 u32 max_buff, u8 pool) 12851 { 12852 MLXSW_REG_ZERO(sbmm, payload); 12853 mlxsw_reg_sbmm_prio_set(payload, prio); 12854 mlxsw_reg_sbmm_min_buff_set(payload, min_buff); 12855 mlxsw_reg_sbmm_max_buff_set(payload, max_buff); 12856 mlxsw_reg_sbmm_pool_set(payload, pool); 12857 } 12858 12859 /* SBSR - Shared Buffer Status Register 12860 * ------------------------------------ 12861 * The SBSR register retrieves the shared buffer occupancy according to 12862 * Port-Pool. Note that this register enables reading a large amount of data. 12863 * It is the user's responsibility to limit the amount of data to ensure the 12864 * response can match the maximum transfer unit. In case the response exceeds 12865 * the maximum transport unit, it will be truncated with no special notice. 12866 */ 12867 #define MLXSW_REG_SBSR_ID 0xB005 12868 #define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */ 12869 #define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */ 12870 #define MLXSW_REG_SBSR_REC_MAX_COUNT 120 12871 #define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \ 12872 MLXSW_REG_SBSR_REC_LEN * \ 12873 MLXSW_REG_SBSR_REC_MAX_COUNT) 12874 12875 MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN); 12876 12877 /* reg_sbsr_clr 12878 * Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy 12879 * field is cleared (and a new max value is tracked from the time the clear 12880 * was performed). 12881 * Access: OP 12882 */ 12883 MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1); 12884 12885 #define MLXSW_REG_SBSR_NUM_PORTS_IN_PAGE 256 12886 12887 /* reg_sbsr_port_page 12888 * Determines the range of the ports specified in the 'ingress_port_mask' 12889 * and 'egress_port_mask' bit masks. 12890 * {ingress,egress}_port_mask[x] is (256 * port_page) + x 12891 * Access: Index 12892 */ 12893 MLXSW_ITEM32(reg, sbsr, port_page, 0x04, 0, 4); 12894 12895 /* reg_sbsr_ingress_port_mask 12896 * Bit vector for all ingress network ports. 12897 * Indicates which of the ports (for which the relevant bit is set) 12898 * are affected by the set operation. Configuration of any other port 12899 * does not change. 12900 * Access: Index 12901 */ 12902 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1); 12903 12904 /* reg_sbsr_pg_buff_mask 12905 * Bit vector for all switch priority groups. 12906 * Indicates which of the priorities (for which the relevant bit is set) 12907 * are affected by the set operation. Configuration of any other priority 12908 * does not change. 12909 * Range is 0..cap_max_pg_buffers - 1 12910 * Access: Index 12911 */ 12912 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1); 12913 12914 /* reg_sbsr_egress_port_mask 12915 * Bit vector for all egress network ports. 12916 * Indicates which of the ports (for which the relevant bit is set) 12917 * are affected by the set operation. Configuration of any other port 12918 * does not change. 12919 * Access: Index 12920 */ 12921 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1); 12922 12923 /* reg_sbsr_tclass_mask 12924 * Bit vector for all traffic classes. 12925 * Indicates which of the traffic classes (for which the relevant bit is 12926 * set) are affected by the set operation. Configuration of any other 12927 * traffic class does not change. 12928 * Range is 0..cap_max_tclass - 1 12929 * Access: Index 12930 */ 12931 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1); 12932 12933 static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr) 12934 { 12935 MLXSW_REG_ZERO(sbsr, payload); 12936 mlxsw_reg_sbsr_clr_set(payload, clr); 12937 } 12938 12939 /* reg_sbsr_rec_buff_occupancy 12940 * Current buffer occupancy in cells. 12941 * Access: RO 12942 */ 12943 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 12944 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false); 12945 12946 /* reg_sbsr_rec_max_buff_occupancy 12947 * Maximum value of buffer occupancy in cells monitored. Cleared by 12948 * writing to the clr field. 12949 * Access: RO 12950 */ 12951 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 12952 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false); 12953 12954 static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index, 12955 u32 *p_buff_occupancy, 12956 u32 *p_max_buff_occupancy) 12957 { 12958 *p_buff_occupancy = 12959 mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index); 12960 *p_max_buff_occupancy = 12961 mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index); 12962 } 12963 12964 /* SBIB - Shared Buffer Internal Buffer Register 12965 * --------------------------------------------- 12966 * The SBIB register configures per port buffers for internal use. The internal 12967 * buffers consume memory on the port buffers (note that the port buffers are 12968 * used also by PBMC). 12969 * 12970 * For Spectrum this is used for egress mirroring. 12971 */ 12972 #define MLXSW_REG_SBIB_ID 0xB006 12973 #define MLXSW_REG_SBIB_LEN 0x10 12974 12975 MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN); 12976 12977 /* reg_sbib_local_port 12978 * Local port number 12979 * Not supported for CPU port and router port 12980 * Access: Index 12981 */ 12982 MLXSW_ITEM32_LP(reg, sbib, 0x00, 16, 0x00, 12); 12983 12984 /* reg_sbib_buff_size 12985 * Units represented in cells 12986 * Allowed range is 0 to (cap_max_headroom_size - 1) 12987 * Default is 0 12988 * Access: RW 12989 */ 12990 MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24); 12991 12992 static inline void mlxsw_reg_sbib_pack(char *payload, u16 local_port, 12993 u32 buff_size) 12994 { 12995 MLXSW_REG_ZERO(sbib, payload); 12996 mlxsw_reg_sbib_local_port_set(payload, local_port); 12997 mlxsw_reg_sbib_buff_size_set(payload, buff_size); 12998 } 12999 13000 static const struct mlxsw_reg_info *mlxsw_reg_infos[] = { 13001 MLXSW_REG(sgcr), 13002 MLXSW_REG(spad), 13003 MLXSW_REG(sspr), 13004 MLXSW_REG(sfdat), 13005 MLXSW_REG(sfd), 13006 MLXSW_REG(sfn), 13007 MLXSW_REG(spms), 13008 MLXSW_REG(spvid), 13009 MLXSW_REG(spvm), 13010 MLXSW_REG(spaft), 13011 MLXSW_REG(sfgc), 13012 MLXSW_REG(sfdf), 13013 MLXSW_REG(sldr), 13014 MLXSW_REG(slcr), 13015 MLXSW_REG(slcor), 13016 MLXSW_REG(spmlr), 13017 MLXSW_REG(svfa), 13018 MLXSW_REG(spvtr), 13019 MLXSW_REG(svpe), 13020 MLXSW_REG(sfmr), 13021 MLXSW_REG(spvmlr), 13022 MLXSW_REG(spfsr), 13023 MLXSW_REG(spvc), 13024 MLXSW_REG(sffp), 13025 MLXSW_REG(spevet), 13026 MLXSW_REG(smpe), 13027 MLXSW_REG(smid2), 13028 MLXSW_REG(cwtp), 13029 MLXSW_REG(cwtpm), 13030 MLXSW_REG(pgcr), 13031 MLXSW_REG(ppbt), 13032 MLXSW_REG(pacl), 13033 MLXSW_REG(pagt), 13034 MLXSW_REG(ptar), 13035 MLXSW_REG(pprr), 13036 MLXSW_REG(ppbs), 13037 MLXSW_REG(prcr), 13038 MLXSW_REG(pefa), 13039 MLXSW_REG(pemrbt), 13040 MLXSW_REG(ptce2), 13041 MLXSW_REG(perpt), 13042 MLXSW_REG(peabfe), 13043 MLXSW_REG(perar), 13044 MLXSW_REG(ptce3), 13045 MLXSW_REG(percr), 13046 MLXSW_REG(pererp), 13047 MLXSW_REG(iedr), 13048 MLXSW_REG(qpts), 13049 MLXSW_REG(qpcr), 13050 MLXSW_REG(qtct), 13051 MLXSW_REG(qeec), 13052 MLXSW_REG(qrwe), 13053 MLXSW_REG(qpdsm), 13054 MLXSW_REG(qpdp), 13055 MLXSW_REG(qpdpm), 13056 MLXSW_REG(qtctm), 13057 MLXSW_REG(qpsc), 13058 MLXSW_REG(pmlp), 13059 MLXSW_REG(pmtu), 13060 MLXSW_REG(ptys), 13061 MLXSW_REG(ppad), 13062 MLXSW_REG(paos), 13063 MLXSW_REG(pfcc), 13064 MLXSW_REG(ppcnt), 13065 MLXSW_REG(pptb), 13066 MLXSW_REG(pbmc), 13067 MLXSW_REG(pspa), 13068 MLXSW_REG(pmaos), 13069 MLXSW_REG(pplr), 13070 MLXSW_REG(pmtdb), 13071 MLXSW_REG(pmecr), 13072 MLXSW_REG(pmpe), 13073 MLXSW_REG(pddr), 13074 MLXSW_REG(pmmp), 13075 MLXSW_REG(pllp), 13076 MLXSW_REG(pmtm), 13077 MLXSW_REG(htgt), 13078 MLXSW_REG(hpkt), 13079 MLXSW_REG(rgcr), 13080 MLXSW_REG(ritr), 13081 MLXSW_REG(rtar), 13082 MLXSW_REG(ratr), 13083 MLXSW_REG(rtdp), 13084 MLXSW_REG(rips), 13085 MLXSW_REG(ratrad), 13086 MLXSW_REG(rdpm), 13087 MLXSW_REG(ricnt), 13088 MLXSW_REG(rrcr), 13089 MLXSW_REG(ralta), 13090 MLXSW_REG(ralst), 13091 MLXSW_REG(raltb), 13092 MLXSW_REG(ralue), 13093 MLXSW_REG(rauht), 13094 MLXSW_REG(raleu), 13095 MLXSW_REG(rauhtd), 13096 MLXSW_REG(rigr2), 13097 MLXSW_REG(recr2), 13098 MLXSW_REG(rmft2), 13099 MLXSW_REG(reiv), 13100 MLXSW_REG(mfcr), 13101 MLXSW_REG(mfsc), 13102 MLXSW_REG(mfsm), 13103 MLXSW_REG(mfsl), 13104 MLXSW_REG(fore), 13105 MLXSW_REG(mtcap), 13106 MLXSW_REG(mtmp), 13107 MLXSW_REG(mtwe), 13108 MLXSW_REG(mtbr), 13109 MLXSW_REG(mcia), 13110 MLXSW_REG(mpat), 13111 MLXSW_REG(mpar), 13112 MLXSW_REG(mgir), 13113 MLXSW_REG(mrsr), 13114 MLXSW_REG(mlcr), 13115 MLXSW_REG(mcion), 13116 MLXSW_REG(mtpps), 13117 MLXSW_REG(mtutc), 13118 MLXSW_REG(mcqi), 13119 MLXSW_REG(mcc), 13120 MLXSW_REG(mcda), 13121 MLXSW_REG(mcam), 13122 MLXSW_REG(mpsc), 13123 MLXSW_REG(mgpc), 13124 MLXSW_REG(mprs), 13125 MLXSW_REG(mogcr), 13126 MLXSW_REG(mpagr), 13127 MLXSW_REG(momte), 13128 MLXSW_REG(mtpppc), 13129 MLXSW_REG(mtpptr), 13130 MLXSW_REG(mtptpt), 13131 MLXSW_REG(mtpcpc), 13132 MLXSW_REG(mfgd), 13133 MLXSW_REG(mgpir), 13134 MLXSW_REG(mbct), 13135 MLXSW_REG(mddt), 13136 MLXSW_REG(mddq), 13137 MLXSW_REG(mddc), 13138 MLXSW_REG(mfde), 13139 MLXSW_REG(tngcr), 13140 MLXSW_REG(tnumt), 13141 MLXSW_REG(tnqcr), 13142 MLXSW_REG(tnqdr), 13143 MLXSW_REG(tneem), 13144 MLXSW_REG(tndem), 13145 MLXSW_REG(tnpc), 13146 MLXSW_REG(tigcr), 13147 MLXSW_REG(tieem), 13148 MLXSW_REG(tidem), 13149 MLXSW_REG(sbpr), 13150 MLXSW_REG(sbcm), 13151 MLXSW_REG(sbpm), 13152 MLXSW_REG(sbmm), 13153 MLXSW_REG(sbsr), 13154 MLXSW_REG(sbib), 13155 }; 13156 13157 static inline const char *mlxsw_reg_id_str(u16 reg_id) 13158 { 13159 const struct mlxsw_reg_info *reg_info; 13160 int i; 13161 13162 for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) { 13163 reg_info = mlxsw_reg_infos[i]; 13164 if (reg_info->id == reg_id) 13165 return reg_info->name; 13166 } 13167 return "*UNKNOWN*"; 13168 } 13169 13170 /* PUDE - Port Up / Down Event 13171 * --------------------------- 13172 * Reports the operational state change of a port. 13173 */ 13174 #define MLXSW_REG_PUDE_LEN 0x10 13175 13176 /* reg_pude_swid 13177 * Switch partition ID with which to associate the port. 13178 * Access: Index 13179 */ 13180 MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8); 13181 13182 /* reg_pude_local_port 13183 * Local port number. 13184 * Access: Index 13185 */ 13186 MLXSW_ITEM32_LP(reg, pude, 0x00, 16, 0x00, 12); 13187 13188 /* reg_pude_admin_status 13189 * Port administrative state (the desired state). 13190 * 1 - Up. 13191 * 2 - Down. 13192 * 3 - Up once. This means that in case of link failure, the port won't go 13193 * into polling mode, but will wait to be re-enabled by software. 13194 * 4 - Disabled by system. Can only be set by hardware. 13195 * Access: RO 13196 */ 13197 MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4); 13198 13199 /* reg_pude_oper_status 13200 * Port operatioanl state. 13201 * 1 - Up. 13202 * 2 - Down. 13203 * 3 - Down by port failure. This means that the device will not let the 13204 * port up again until explicitly specified by software. 13205 * Access: RO 13206 */ 13207 MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4); 13208 13209 #endif 13210