xref: /linux/drivers/net/ethernet/mellanox/mlxsw/cmd.h (revision bb118e86dfcc096b8a3889c1a5c88f214e1f65fa)
1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3 
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6 
7 #include "item.h"
8 
9 #define MLXSW_CMD_MBOX_SIZE	4096
10 
11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15 
16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 	kfree(mbox);
19 }
20 
21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25 
26 struct mlxsw_core;
27 
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 		   char *in_mbox, size_t in_mbox_size,
31 		   char *out_mbox, size_t out_mbox_size);
32 
33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
35 				    size_t in_mbox_size)
36 {
37 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 			      false, in_mbox, in_mbox_size, NULL, 0);
39 }
40 
41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 				     u8 opcode_mod, u32 in_mod,
43 				     bool out_mbox_direct,
44 				     char *out_mbox, size_t out_mbox_size)
45 {
46 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 			      out_mbox_direct, false, NULL, 0,
48 			      out_mbox, out_mbox_size);
49 }
50 
51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 				      u8 opcode_mod, u32 in_mod)
53 {
54 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 			      false, NULL, 0, NULL, 0);
56 }
57 
58 enum mlxsw_cmd_opcode {
59 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
60 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
61 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
62 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
63 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
64 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
65 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
66 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
67 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
68 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
69 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
70 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
71 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
72 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
73 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
74 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
75 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
76 	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
77 };
78 
79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 	switch (opcode) {
82 	case MLXSW_CMD_OPCODE_QUERY_FW:
83 		return "QUERY_FW";
84 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 		return "QUERY_BOARDINFO";
86 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 		return "QUERY_AQ_CAP";
88 	case MLXSW_CMD_OPCODE_MAP_FA:
89 		return "MAP_FA";
90 	case MLXSW_CMD_OPCODE_UNMAP_FA:
91 		return "UNMAP_FA";
92 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 		return "CONFIG_PROFILE";
94 	case MLXSW_CMD_OPCODE_ACCESS_REG:
95 		return "ACCESS_REG";
96 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 		return "SW2HW_DQ";
98 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 		return "HW2SW_DQ";
100 	case MLXSW_CMD_OPCODE_2ERR_DQ:
101 		return "2ERR_DQ";
102 	case MLXSW_CMD_OPCODE_QUERY_DQ:
103 		return "QUERY_DQ";
104 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 		return "SW2HW_CQ";
106 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 		return "HW2SW_CQ";
108 	case MLXSW_CMD_OPCODE_QUERY_CQ:
109 		return "QUERY_CQ";
110 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 		return "SW2HW_EQ";
112 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 		return "HW2SW_EQ";
114 	case MLXSW_CMD_OPCODE_QUERY_EQ:
115 		return "QUERY_EQ";
116 	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 		return "QUERY_RESOURCES";
118 	default:
119 		return "*UNKNOWN*";
120 	}
121 }
122 
123 enum mlxsw_cmd_status {
124 	/* Command execution succeeded. */
125 	MLXSW_CMD_STATUS_OK		= 0x00,
126 	/* Internal error (e.g. bus error) occurred while processing command. */
127 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
128 	/* Operation/command not supported or opcode modifier not supported. */
129 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
130 	/* Parameter not supported, parameter out of range. */
131 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
132 	/* System was not enabled or bad system state. */
133 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
134 	/* Attempt to access reserved or unallocated resource, or resource in
135 	 * inappropriate ownership.
136 	 */
137 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
138 	/* Requested resource is currently executing a command. */
139 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
140 	/* Required capability exceeds device limits. */
141 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
142 	/* Resource is not in the appropriate state or ownership. */
143 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
144 	/* Index out of range (might be beyond table size or attempt to
145 	 * access a reserved resource).
146 	 */
147 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
148 	/* NVMEM checksum/CRC failed. */
149 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
150 	/* Device is currently running reset */
151 	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
152 	/* Bad management packet (silently discarded). */
153 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
154 };
155 
156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 	switch (status) {
159 	case MLXSW_CMD_STATUS_OK:
160 		return "OK";
161 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 		return "INTERNAL_ERR";
163 	case MLXSW_CMD_STATUS_BAD_OP:
164 		return "BAD_OP";
165 	case MLXSW_CMD_STATUS_BAD_PARAM:
166 		return "BAD_PARAM";
167 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 		return "BAD_SYS_STATE";
169 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 		return "BAD_RESOURCE";
171 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 		return "RESOURCE_BUSY";
173 	case MLXSW_CMD_STATUS_EXCEED_LIM:
174 		return "EXCEED_LIM";
175 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 		return "BAD_RES_STATE";
177 	case MLXSW_CMD_STATUS_BAD_INDEX:
178 		return "BAD_INDEX";
179 	case MLXSW_CMD_STATUS_BAD_NVMEM:
180 		return "BAD_NVMEM";
181 	case MLXSW_CMD_STATUS_RUNNING_RESET:
182 		return "RUNNING_RESET";
183 	case MLXSW_CMD_STATUS_BAD_PKT:
184 		return "BAD_PKT";
185 	default:
186 		return "*UNKNOWN*";
187 	}
188 }
189 
190 /* QUERY_FW - Query Firmware
191  * -------------------------
192  * OpMod == 0, INMmod == 0
193  * -----------------------
194  * The QUERY_FW command retrieves information related to firmware, command
195  * interface version and the amount of resources that should be allocated to
196  * the firmware.
197  */
198 
199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 				     char *out_mbox)
201 {
202 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205 
206 /* cmd_mbox_query_fw_fw_pages
207  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208  */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210 
211 /* cmd_mbox_query_fw_fw_rev_major
212  * Firmware Revision - Major
213  */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215 
216 /* cmd_mbox_query_fw_fw_rev_subminor
217  * Firmware Sub-minor version (Patch level)
218  */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220 
221 /* cmd_mbox_query_fw_fw_rev_minor
222  * Firmware Revision - Minor
223  */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225 
226 /* cmd_mbox_query_fw_core_clk
227  * Internal Clock Frequency (in MHz)
228  */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230 
231 /* cmd_mbox_query_fw_cmd_interface_rev
232  * Command Interface Interpreter Revision ID. This number is bumped up
233  * every time a non-backward-compatible change is done for the command
234  * interface. The current cmd_interface_rev is 1.
235  */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237 
238 /* cmd_mbox_query_fw_dt
239  * If set, Debug Trace is supported
240  */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242 
243 /* cmd_mbox_query_fw_api_version
244  * Indicates the version of the API, to enable software querying
245  * for compatibility. The current api_version is 1.
246  */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248 
249 /* cmd_mbox_query_fw_fw_hour
250  * Firmware timestamp - hour
251  */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253 
254 /* cmd_mbox_query_fw_fw_minutes
255  * Firmware timestamp - minutes
256  */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258 
259 /* cmd_mbox_query_fw_fw_seconds
260  * Firmware timestamp - seconds
261  */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263 
264 /* cmd_mbox_query_fw_fw_year
265  * Firmware timestamp - year
266  */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268 
269 /* cmd_mbox_query_fw_fw_month
270  * Firmware timestamp - month
271  */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273 
274 /* cmd_mbox_query_fw_fw_day
275  * Firmware timestamp - day
276  */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278 
279 /* cmd_mbox_query_fw_lag_mode_support
280  * 0: CONFIG_PROFILE.lag_mode is not supported by FW
281  * 1: CONFIG_PROFILE.lag_mode is supported by FW
282  */
283 MLXSW_ITEM32(cmd_mbox, query_fw, lag_mode_support, 0x18, 1, 1);
284 
285 /* cmd_mbox_query_fw_clr_int_base_offset
286  * Clear Interrupt register's offset from clr_int_bar register
287  * in PCI address space.
288  */
289 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
290 
291 /* cmd_mbox_query_fw_clr_int_bar
292  * PCI base address register (BAR) where clr_int register is located.
293  * 00 - BAR 0-1 (64 bit BAR)
294  */
295 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
296 
297 /* cmd_mbox_query_fw_error_buf_offset
298  * Read Only buffer for internal error reports of offset
299  * from error_buf_bar register in PCI address space).
300  */
301 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
302 
303 /* cmd_mbox_query_fw_error_buf_size
304  * Internal error buffer size in DWORDs
305  */
306 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
307 
308 /* cmd_mbox_query_fw_error_int_bar
309  * PCI base address register (BAR) where error buffer
310  * register is located.
311  * 00 - BAR 0-1 (64 bit BAR)
312  */
313 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
314 
315 /* cmd_mbox_query_fw_doorbell_page_offset
316  * Offset of the doorbell page
317  */
318 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
319 
320 /* cmd_mbox_query_fw_doorbell_page_bar
321  * PCI base address register (BAR) of the doorbell page
322  * 00 - BAR 0-1 (64 bit BAR)
323  */
324 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
325 
326 /* cmd_mbox_query_fw_free_running_clock_offset
327  * The offset of the free running clock page
328  */
329 MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
330 
331 /* cmd_mbox_query_fw_fr_rn_clk_bar
332  * PCI base address register (BAR) of the free running clock page
333  * 0: BAR 0
334  * 1: 64 bit BAR
335  */
336 MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
337 
338 /* cmd_mbox_query_fw_utc_sec_offset
339  * The offset of the UTC_Sec page
340  */
341 MLXSW_ITEM64(cmd_mbox, query_fw, utc_sec_offset, 0x70, 0, 64);
342 
343 /* cmd_mbox_query_fw_utc_sec_bar
344  * PCI base address register (BAR) of the UTC_Sec page
345  * 0: BAR 0
346  * 1: 64 bit BAR
347  * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
348  */
349 MLXSW_ITEM32(cmd_mbox, query_fw, utc_sec_bar, 0x78, 30, 2);
350 
351 /* cmd_mbox_query_fw_utc_nsec_offset
352  * The offset of the UTC_nSec page
353  */
354 MLXSW_ITEM64(cmd_mbox, query_fw, utc_nsec_offset, 0x80, 0, 64);
355 
356 /* cmd_mbox_query_fw_utc_nsec_bar
357  * PCI base address register (BAR) of the UTC_nSec page
358  * 0: BAR 0
359  * 1: 64 bit BAR
360  * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
361  */
362 MLXSW_ITEM32(cmd_mbox, query_fw, utc_nsec_bar, 0x88, 30, 2);
363 
364 /* QUERY_BOARDINFO - Query Board Information
365  * -----------------------------------------
366  * OpMod == 0 (N/A), INMmod == 0 (N/A)
367  * -----------------------------------
368  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
369  */
370 
371 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
372 				      char *out_mbox)
373 {
374 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
375 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
376 }
377 
378 /* cmd_mbox_boardinfo_intapin
379  * When PCIe interrupt messages are being used, this value is used for clearing
380  * an interrupt. When using MSI-X, this register is not used.
381  */
382 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
383 
384 /* cmd_mbox_boardinfo_vsd_vendor_id
385  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
386  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
387  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
388  * format and encoding as long as they use their assigned vsd_vendor_id.
389  */
390 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
391 
392 /* cmd_mbox_boardinfo_vsd
393  * Vendor Specific Data. The VSD string that is burnt to the Flash
394  * with the firmware.
395  */
396 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
397 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
398 
399 /* cmd_mbox_boardinfo_psid
400  * The PSID field is a 16-ascii (byte) character string which acts as
401  * the board ID. The PSID format is used in conjunction with
402  * Mellanox vsd_vendor_id (15B3h).
403  */
404 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
405 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
406 
407 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
408  * -----------------------------------------------------
409  * OpMod == 0 (N/A), INMmod == 0 (N/A)
410  * -----------------------------------
411  * The QUERY_AQ_CAP command returns the device asynchronous queues
412  * capabilities supported.
413  */
414 
415 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
416 					 char *out_mbox)
417 {
418 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
419 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
420 }
421 
422 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
423  * Log (base 2) of max WQEs allowed on SDQ.
424  */
425 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
426 
427 /* cmd_mbox_query_aq_cap_max_num_sdqs
428  * Maximum number of SDQs.
429  */
430 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
431 
432 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
433  * Log (base 2) of max WQEs allowed on RDQ.
434  */
435 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
436 
437 /* cmd_mbox_query_aq_cap_max_num_rdqs
438  * Maximum number of RDQs.
439  */
440 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
441 
442 /* cmd_mbox_query_aq_cap_log_max_cq_sz
443  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
444  */
445 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
446 
447 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
448  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
449  */
450 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
451 
452 /* cmd_mbox_query_aq_cap_max_num_cqs
453  * Maximum number of CQs.
454  */
455 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
456 
457 /* cmd_mbox_query_aq_cap_log_max_eq_sz
458  * Log (base 2) of max EQEs allowed on EQ.
459  */
460 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
461 
462 /* cmd_mbox_query_aq_cap_max_num_eqs
463  * Maximum number of EQs.
464  */
465 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
466 
467 /* cmd_mbox_query_aq_cap_max_sg_sq
468  * The maximum S/G list elements in an DSQ. DSQ must not contain
469  * more S/G entries than indicated here.
470  */
471 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
472 
473 /* cmd_mbox_query_aq_cap_
474  * The maximum S/G list elements in an DRQ. DRQ must not contain
475  * more S/G entries than indicated here.
476  */
477 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
478 
479 /* MAP_FA - Map Firmware Area
480  * --------------------------
481  * OpMod == 0 (N/A), INMmod == Number of VPM entries
482  * -------------------------------------------------
483  * The MAP_FA command passes physical pages to the switch. These pages
484  * are used to store the device firmware. MAP_FA can be executed multiple
485  * times until all the firmware area is mapped (the size that should be
486  * mapped is retrieved through the QUERY_FW command). All required pages
487  * must be mapped to finish the initialization phase. Physical memory
488  * passed in this command must be pinned.
489  */
490 
491 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
492 
493 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
494 				   char *in_mbox, u32 vpm_entries_count)
495 {
496 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
497 				 0, vpm_entries_count,
498 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
499 }
500 
501 /* cmd_mbox_map_fa_pa
502  * Physical Address.
503  */
504 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
505 
506 /* cmd_mbox_map_fa_log2size
507  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
508  * that starts at PA_L/H.
509  */
510 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
511 
512 /* UNMAP_FA - Unmap Firmware Area
513  * ------------------------------
514  * OpMod == 0 (N/A), INMmod == 0 (N/A)
515  * -----------------------------------
516  * The UNMAP_FA command unload the firmware and unmaps all the
517  * firmware area. After this command is completed the device will not access
518  * the pages that were mapped to the firmware area. After executing UNMAP_FA
519  * command, software reset must be done prior to execution of MAP_FW command.
520  */
521 
522 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
523 {
524 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
525 }
526 
527 /* QUERY_RESOURCES - Query chip resources
528  * --------------------------------------
529  * OpMod == 0 (N/A) , INMmod is index
530  * ----------------------------------
531  * The QUERY_RESOURCES command retrieves information related to chip resources
532  * by resource ID. Every command returns 32 entries. INmod is being use as base.
533  * for example, index 1 will return entries 32-63. When the tables end and there
534  * are no more sources in the table, will return resource id 0xFFF to indicate
535  * it.
536  */
537 
538 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
539 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
540 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
541 
542 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
543 					    char *out_mbox, int index)
544 {
545 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
546 				  0, index, false, out_mbox,
547 				  MLXSW_CMD_MBOX_SIZE);
548 }
549 
550 /* cmd_mbox_query_resource_id
551  * The resource id. 0xFFFF indicates table's end.
552  */
553 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
554 
555 /* cmd_mbox_query_resource_data
556  * The resource
557  */
558 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
559 		     0x00, 0, 40, 0x8, 0, false);
560 
561 /* CONFIG_PROFILE (Set) - Configure Switch Profile
562  * ------------------------------
563  * OpMod == 1 (Set), INMmod == 0 (N/A)
564  * -----------------------------------
565  * The CONFIG_PROFILE command sets the switch profile. The command can be
566  * executed on the device only once at startup in order to allocate and
567  * configure all switch resources and prepare it for operational mode.
568  * It is not possible to change the device profile after the chip is
569  * in operational mode.
570  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
571  * state therefore it is required to perform software reset to the device
572  * following an unsuccessful completion of the command. It is required
573  * to perform software reset to the device to change an existing profile.
574  */
575 
576 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
577 					       char *in_mbox)
578 {
579 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
580 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
581 }
582 
583 /* cmd_mbox_config_profile_set_max_vepa_channels
584  * Capability bit. Setting a bit to 1 configures the profile
585  * according to the mailbox contents.
586  */
587 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
588 
589 /* cmd_mbox_config_profile_set_max_lag
590  * Capability bit. Setting a bit to 1 configures the profile
591  * according to the mailbox contents.
592  */
593 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
594 
595 /* cmd_mbox_config_profile_set_max_port_per_lag
596  * Capability bit. Setting a bit to 1 configures the profile
597  * according to the mailbox contents.
598  */
599 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
600 
601 /* cmd_mbox_config_profile_set_max_mid
602  * Capability bit. Setting a bit to 1 configures the profile
603  * according to the mailbox contents.
604  */
605 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
606 
607 /* cmd_mbox_config_profile_set_max_pgt
608  * Capability bit. Setting a bit to 1 configures the profile
609  * according to the mailbox contents.
610  */
611 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
612 
613 /* cmd_mbox_config_profile_set_max_system_port
614  * Capability bit. Setting a bit to 1 configures the profile
615  * according to the mailbox contents.
616  */
617 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
618 
619 /* cmd_mbox_config_profile_set_max_vlan_groups
620  * Capability bit. Setting a bit to 1 configures the profile
621  * according to the mailbox contents.
622  */
623 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
624 
625 /* cmd_mbox_config_profile_set_max_regions
626  * Capability bit. Setting a bit to 1 configures the profile
627  * according to the mailbox contents.
628  */
629 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
630 
631 /* cmd_mbox_config_profile_set_flood_mode
632  * Capability bit. Setting a bit to 1 configures the profile
633  * according to the mailbox contents.
634  */
635 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
636 
637 /* cmd_mbox_config_profile_set_max_flood_tables
638  * Capability bit. Setting a bit to 1 configures the profile
639  * according to the mailbox contents.
640  */
641 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
642 
643 /* cmd_mbox_config_profile_set_max_ib_mc
644  * Capability bit. Setting a bit to 1 configures the profile
645  * according to the mailbox contents.
646  */
647 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
648 
649 /* cmd_mbox_config_profile_set_max_pkey
650  * Capability bit. Setting a bit to 1 configures the profile
651  * according to the mailbox contents.
652  */
653 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
654 
655 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
656  * Capability bit. Setting a bit to 1 configures the profile
657  * according to the mailbox contents.
658  */
659 MLXSW_ITEM32(cmd_mbox, config_profile,
660 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
661 
662 /* cmd_mbox_config_profile_set_ar_sec
663  * Capability bit. Setting a bit to 1 configures the profile
664  * according to the mailbox contents.
665  */
666 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
667 
668 /* cmd_mbox_config_profile_set_ubridge
669  * Capability bit. Setting a bit to 1 configures the profile
670  * according to the mailbox contents.
671  */
672 MLXSW_ITEM32(cmd_mbox, config_profile, set_ubridge, 0x0C, 22, 1);
673 
674 /* cmd_mbox_config_profile_set_kvd_linear_size
675  * Capability bit. Setting a bit to 1 configures the profile
676  * according to the mailbox contents.
677  */
678 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
679 
680 /* cmd_mbox_config_profile_set_kvd_hash_single_size
681  * Capability bit. Setting a bit to 1 configures the profile
682  * according to the mailbox contents.
683  */
684 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
685 
686 /* cmd_mbox_config_profile_set_kvd_hash_double_size
687  * Capability bit. Setting a bit to 1 configures the profile
688  * according to the mailbox contents.
689  */
690 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
691 
692 /* cmd_mbox_config_profile_set_cqe_version
693  * Capability bit. Setting a bit to 1 configures the profile
694  * according to the mailbox contents.
695  */
696 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
697 
698 /* cmd_mbox_config_profile_set_cqe_time_stamp_type
699  * Capability bit. Setting a bit to 1 configures the profile
700  * according to the mailbox contents.
701  */
702 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_time_stamp_type, 0x08, 2, 1);
703 
704 /* cmd_mbox_config_profile_set_lag_mode
705  * Capability bit. Setting a bit to 1 configures the lag_mode
706  * according to the mailbox contents.
707  */
708 MLXSW_ITEM32(cmd_mbox, config_profile, set_lag_mode, 0x08, 7, 1);
709 
710 /* cmd_mbox_config_profile_max_vepa_channels
711  * Maximum number of VEPA channels per port (0 through 16)
712  * 0 - multi-channel VEPA is disabled
713  */
714 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
715 
716 /* cmd_mbox_config_profile_max_lag
717  * Maximum number of LAG IDs requested.
718  * Reserved when Spectrum-1/2/3, supported from Spectrum-4 and above.
719  * For Spectrum-4, firmware sets 128 for values between 1-128 and 256 for values
720  * between 129-256.
721  */
722 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
723 
724 /* cmd_mbox_config_profile_max_port_per_lag
725  * Maximum number of ports per LAG requested.
726  */
727 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
728 
729 /* cmd_mbox_config_profile_max_mid
730  * Maximum Multicast IDs.
731  * Multicast IDs are allocated from 0 to max_mid-1
732  */
733 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
734 
735 /* cmd_mbox_config_profile_max_pgt
736  * Maximum records in the Port Group Table per Switch Partition.
737  * Port Group Table indexes are from 0 to max_pgt-1
738  */
739 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
740 
741 /* cmd_mbox_config_profile_max_system_port
742  * The maximum number of system ports that can be allocated.
743  */
744 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
745 
746 /* cmd_mbox_config_profile_max_vlan_groups
747  * Maximum number VLAN Groups for VLAN binding.
748  */
749 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
750 
751 /* cmd_mbox_config_profile_max_regions
752  * Maximum number of TCAM Regions.
753  */
754 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
755 
756 /* cmd_mbox_config_profile_max_flood_tables
757  * Maximum number of single-entry flooding tables. Different flooding tables
758  * can be associated with different packet types.
759  */
760 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
761 
762 /* cmd_mbox_config_profile_max_vid_flood_tables
763  * Maximum number of per-vid flooding tables. Flooding tables are associated
764  * to the different packet types for the different switch partitions.
765  * Table size is 4K entries covering all VID space.
766  */
767 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
768 
769 enum mlxsw_cmd_mbox_config_profile_flood_mode {
770 	/* Mixed mode, where:
771 	 * max_flood_tables indicates the number of single-entry tables.
772 	 * max_vid_flood_tables indicates the number of per-VID tables.
773 	 * max_fid_offset_flood_tables indicates the number of FID-offset
774 	 * tables. max_fid_flood_tables indicates the number of per-FID tables.
775 	 * Reserved when unified bridge model is used.
776 	 */
777 	MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_MIXED = 3,
778 	/* Controlled flood tables. Reserved when legacy bridge model is
779 	 * used.
780 	 */
781 	MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_CONTROLLED = 4,
782 };
783 
784 /* cmd_mbox_config_profile_flood_mode
785  * Flooding mode to use.
786  */
787 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 3);
788 
789 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
790  * Maximum number of FID-offset flooding tables.
791  */
792 MLXSW_ITEM32(cmd_mbox, config_profile,
793 	     max_fid_offset_flood_tables, 0x34, 24, 4);
794 
795 /* cmd_mbox_config_profile_fid_offset_flood_table_size
796  * The size (number of entries) of each FID-offset flood table.
797  */
798 MLXSW_ITEM32(cmd_mbox, config_profile,
799 	     fid_offset_flood_table_size, 0x34, 0, 16);
800 
801 /* cmd_mbox_config_profile_max_fid_flood_tables
802  * Maximum number of per-FID flooding tables.
803  *
804  * Note: This flooding tables cover special FIDs only (vFIDs), starting at
805  * FID value 4K and higher.
806  */
807 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
808 
809 /* cmd_mbox_config_profile_fid_flood_table_size
810  * The size (number of entries) of each per-FID table.
811  */
812 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
813 
814 /* cmd_mbox_config_profile_max_ib_mc
815  * Maximum number of multicast FDB records for InfiniBand
816  * FDB (in 512 chunks) per InfiniBand switch partition.
817  */
818 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
819 
820 /* cmd_mbox_config_profile_max_pkey
821  * Maximum per port PKEY table size (for PKEY enforcement)
822  */
823 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
824 
825 /* cmd_mbox_config_profile_ar_sec
826  * Primary/secondary capability
827  * Describes the number of adaptive routing sub-groups
828  * 0 - disable primary/secondary (single group)
829  * 1 - enable primary/secondary (2 sub-groups)
830  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
831  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
832  */
833 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
834 
835 /* cmd_mbox_config_profile_adaptive_routing_group_cap
836  * Adaptive Routing Group Capability. Indicates the number of AR groups
837  * supported. Note that when Primary/secondary is enabled, each
838  * primary/secondary couple consumes 2 adaptive routing entries.
839  */
840 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
841 
842 /* cmd_mbox_config_profile_arn
843  * Adaptive Routing Notification Enable
844  * Not supported in SwitchX, SwitchX-2
845  */
846 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
847 
848 /* cmd_mbox_config_profile_ubridge
849  * Unified Bridge
850  * 0 - non unified bridge
851  * 1 - unified bridge
852  */
853 MLXSW_ITEM32(cmd_mbox, config_profile, ubridge, 0x50, 4, 1);
854 
855 enum mlxsw_cmd_mbox_config_profile_lag_mode {
856 	/* FW manages PGT LAG table */
857 	MLXSW_CMD_MBOX_CONFIG_PROFILE_LAG_MODE_FW,
858 	/* SW manages PGT LAG table */
859 	MLXSW_CMD_MBOX_CONFIG_PROFILE_LAG_MODE_SW,
860 };
861 
862 /* cmd_mbox_config_profile_lag_mode
863  * LAG mode
864  * Configured if set_lag_mode is set
865  * Supported from Spectrum-2 and above.
866  * Supported only when ubridge = 1
867  */
868 MLXSW_ITEM32(cmd_mbox, config_profile, lag_mode, 0x50, 3, 1);
869 
870 /* cmd_mbox_config_kvd_linear_size
871  * KVD Linear Size
872  * Valid for Spectrum only
873  * Allowed values are 128*N where N=0 or higher
874  */
875 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
876 
877 /* cmd_mbox_config_profile_kvd_hash_single_size
878  * KVD Hash single-entries size
879  * Valid for Spectrum only
880  * Allowed values are 128*N where N=0 or higher
881  * Must be greater or equal to cap_min_kvd_hash_single_size
882  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
883  */
884 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
885 
886 /* cmd_mbox_config_profile_kvd_hash_double_size
887  * KVD Hash double-entries size (units of single-size entries)
888  * Valid for Spectrum only
889  * Allowed values are 128*N where N=0 or higher
890  * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
891  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
892  */
893 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
894 
895 /* cmd_mbox_config_profile_swid_config_mask
896  * Modify Switch Partition Configuration mask. When set, the configu-
897  * ration value for the Switch Partition are taken from the mailbox.
898  * When clear, the current configuration values are used.
899  * Bit 0 - set type
900  * Bit 1 - properties
901  * Other - reserved
902  */
903 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
904 		     0x60, 24, 8, 0x08, 0x00, false);
905 
906 /* cmd_mbox_config_profile_swid_config_type
907  * Switch Partition type.
908  * 0000 - disabled (Switch Partition does not exist)
909  * 0001 - InfiniBand
910  * 0010 - Ethernet
911  * 1000 - router port (SwitchX-2 only)
912  * Other - reserved
913  */
914 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
915 		     0x60, 20, 4, 0x08, 0x00, false);
916 
917 /* cmd_mbox_config_profile_swid_config_properties
918  * Switch Partition properties.
919  */
920 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
921 		     0x60, 0, 8, 0x08, 0x00, false);
922 
923 enum mlxsw_cmd_mbox_config_profile_cqe_time_stamp_type {
924 	/* uSec - 1.024uSec (default). Only bits 15:0 are valid. */
925 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_USEC,
926 	/* FRC - Free Running Clock, units of 1nSec.
927 	 * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
928 	 */
929 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_FRC,
930 	/* UTC. time_stamp[37:30] = Sec, time_stamp[29:0] = nSec.
931 	 * Reserved when SwitchX/2, Switch-IB/2 and Spectrum-1.
932 	 */
933 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_UTC,
934 };
935 
936 /* cmd_mbox_config_profile_cqe_time_stamp_type
937  * CQE time_stamp_type for non-mirror-packets.
938  * Configured if set_cqe_time_stamp_type is set.
939  * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
940  */
941 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_time_stamp_type, 0xB0, 8, 2);
942 
943 /* cmd_mbox_config_profile_cqe_version
944  * CQE version:
945  * 0: CQE version is 0
946  * 1: CQE version is either 1 or 2
947  * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
948  */
949 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
950 
951 /* ACCESS_REG - Access EMAD Supported Register
952  * ----------------------------------
953  * OpMod == 0 (N/A), INMmod == 0 (N/A)
954  * -------------------------------------
955  * The ACCESS_REG command supports accessing device registers. This access
956  * is mainly used for bootstrapping.
957  */
958 
959 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
960 				       bool reset_ok,
961 				       char *in_mbox, char *out_mbox)
962 {
963 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
964 			      0, 0, false, reset_ok,
965 			      in_mbox, MLXSW_CMD_MBOX_SIZE,
966 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
967 }
968 
969 /* SW2HW_DQ - Software to Hardware DQ
970  * ----------------------------------
971  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
972  * INMmod == DQ number
973  * ----------------------------------------------
974  * The SW2HW_DQ command transitions a descriptor queue from software to
975  * hardware ownership. The command enables posting WQEs and ringing DoorBells
976  * on the descriptor queue.
977  */
978 
979 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
980 				       char *in_mbox, u32 dq_number,
981 				       u8 opcode_mod)
982 {
983 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
984 				 opcode_mod, dq_number,
985 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
986 }
987 
988 enum {
989 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
990 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
991 };
992 
993 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
994 				      char *in_mbox, u32 dq_number)
995 {
996 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
997 				    MLXSW_CMD_OPCODE_MOD_SDQ);
998 }
999 
1000 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
1001 				      char *in_mbox, u32 dq_number)
1002 {
1003 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
1004 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1005 }
1006 
1007 /* cmd_mbox_sw2hw_dq_cq
1008  * Number of the CQ that this Descriptor Queue reports completions to.
1009  */
1010 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
1011 
1012 enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp {
1013 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE,
1014 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE,
1015 };
1016 
1017 /* cmd_mbox_sw2hw_dq_sdq_lp
1018  * SDQ local Processing
1019  * 0: local processing by wqe.lp
1020  * 1: local processing (ignoring wqe.lp)
1021  */
1022 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1);
1023 
1024 /* cmd_mbox_sw2hw_dq_sdq_tclass
1025  * SDQ: CPU Egress TClass
1026  * RDQ: Reserved
1027  */
1028 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
1029 
1030 /* cmd_mbox_sw2hw_dq_log2_dq_sz
1031  * Log (base 2) of the Descriptor Queue size in 4KB pages.
1032  */
1033 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
1034 
1035 /* cmd_mbox_sw2hw_dq_pa
1036  * Physical Address.
1037  */
1038 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
1039 
1040 /* HW2SW_DQ - Hardware to Software DQ
1041  * ----------------------------------
1042  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1043  * INMmod == DQ number
1044  * ----------------------------------------------
1045  * The HW2SW_DQ command transitions a descriptor queue from hardware to
1046  * software ownership. Incoming packets on the DQ are silently discarded,
1047  * SW should not post descriptors on nonoperational DQs.
1048  */
1049 
1050 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
1051 				       u32 dq_number, u8 opcode_mod)
1052 {
1053 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
1054 				   opcode_mod, dq_number);
1055 }
1056 
1057 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
1058 				      u32 dq_number)
1059 {
1060 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1061 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1062 }
1063 
1064 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
1065 				      u32 dq_number)
1066 {
1067 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1068 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1069 }
1070 
1071 /* 2ERR_DQ - To Error DQ
1072  * ---------------------
1073  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1074  * INMmod == DQ number
1075  * ----------------------------------------------
1076  * The 2ERR_DQ command transitions the DQ into the error state from the state
1077  * in which it has been. While the command is executed, some in-process
1078  * descriptors may complete. Once the DQ transitions into the error state,
1079  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
1080  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
1081  * When the command is completed successfully, the DQ is already in
1082  * the error state.
1083  */
1084 
1085 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
1086 				      u32 dq_number, u8 opcode_mod)
1087 {
1088 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1089 				   opcode_mod, dq_number);
1090 }
1091 
1092 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
1093 				     u32 dq_number)
1094 {
1095 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1096 				   MLXSW_CMD_OPCODE_MOD_SDQ);
1097 }
1098 
1099 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
1100 				     u32 dq_number)
1101 {
1102 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1103 				   MLXSW_CMD_OPCODE_MOD_RDQ);
1104 }
1105 
1106 /* QUERY_DQ - Query DQ
1107  * ---------------------
1108  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1109  * INMmod == DQ number
1110  * ----------------------------------------------
1111  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1112  *
1113  * Note: Output mailbox has the same format as SW2HW_DQ.
1114  */
1115 
1116 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1117 				       char *out_mbox, u32 dq_number,
1118 				       u8 opcode_mod)
1119 {
1120 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1121 				  opcode_mod, dq_number, false,
1122 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1123 }
1124 
1125 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1126 				      char *out_mbox, u32 dq_number)
1127 {
1128 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1129 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1130 }
1131 
1132 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1133 				      char *out_mbox, u32 dq_number)
1134 {
1135 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1136 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1137 }
1138 
1139 /* SW2HW_CQ - Software to Hardware CQ
1140  * ----------------------------------
1141  * OpMod == 0 (N/A), INMmod == CQ number
1142  * -------------------------------------
1143  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1144  * to hardware. The command takes the CQ context entry from the input mailbox
1145  * and stores it in the CQC in the ownership of the hardware. The command fails
1146  * if the requested CQC entry is already in the ownership of the hardware.
1147  */
1148 
1149 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1150 				     char *in_mbox, u32 cq_number)
1151 {
1152 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1153 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1154 }
1155 
1156 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1157 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1158 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1159 };
1160 
1161 /* cmd_mbox_sw2hw_cq_cqe_ver
1162  * CQE Version.
1163  */
1164 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1165 
1166 /* cmd_mbox_sw2hw_cq_c_eqn
1167  * Event Queue this CQ reports completion events to.
1168  */
1169 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1170 
1171 /* cmd_mbox_sw2hw_cq_st
1172  * Event delivery state machine
1173  * 0x0 - FIRED
1174  * 0x1 - ARMED (Request for Notification)
1175  */
1176 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1177 
1178 /* cmd_mbox_sw2hw_cq_log_cq_size
1179  * Log (base 2) of the CQ size (in entries).
1180  */
1181 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1182 
1183 /* cmd_mbox_sw2hw_cq_producer_counter
1184  * Producer Counter. The counter is incremented for each CQE that is
1185  * written by the HW to the CQ.
1186  * Maintained by HW (valid for the QUERY_CQ command only)
1187  */
1188 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1189 
1190 /* cmd_mbox_sw2hw_cq_pa
1191  * Physical Address.
1192  */
1193 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1194 
1195 /* HW2SW_CQ - Hardware to Software CQ
1196  * ----------------------------------
1197  * OpMod == 0 (N/A), INMmod == CQ number
1198  * -------------------------------------
1199  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1200  * to software. The CQC entry is invalidated as a result of this command.
1201  */
1202 
1203 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1204 				     u32 cq_number)
1205 {
1206 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1207 				   0, cq_number);
1208 }
1209 
1210 /* QUERY_CQ - Query CQ
1211  * ----------------------------------
1212  * OpMod == 0 (N/A), INMmod == CQ number
1213  * -------------------------------------
1214  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1215  * The command stores the snapshot in the output mailbox in the software format.
1216  * Note that the CQ context state and values are not affected by the QUERY_CQ
1217  * command. The QUERY_CQ command is for debug purposes only.
1218  *
1219  * Note: Output mailbox has the same format as SW2HW_CQ.
1220  */
1221 
1222 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1223 				     char *out_mbox, u32 cq_number)
1224 {
1225 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1226 				  0, cq_number, false,
1227 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1228 }
1229 
1230 /* SW2HW_EQ - Software to Hardware EQ
1231  * ----------------------------------
1232  * OpMod == 0 (N/A), INMmod == EQ number
1233  * -------------------------------------
1234  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1235  * to hardware. The command takes the EQ context entry from the input mailbox
1236  * and stores it in the EQC in the ownership of the hardware. The command fails
1237  * if the requested EQC entry is already in the ownership of the hardware.
1238  */
1239 
1240 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1241 				     char *in_mbox, u32 eq_number)
1242 {
1243 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1244 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1245 }
1246 
1247 /* cmd_mbox_sw2hw_eq_int_msix
1248  * When set, MSI-X cycles will be generated by this EQ.
1249  * When cleared, an interrupt will be generated by this EQ.
1250  */
1251 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1252 
1253 /* cmd_mbox_sw2hw_eq_st
1254  * Event delivery state machine
1255  * 0x0 - FIRED
1256  * 0x1 - ARMED (Request for Notification)
1257  * 0x11 - Always ARMED
1258  * other - reserved
1259  */
1260 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1261 
1262 /* cmd_mbox_sw2hw_eq_log_eq_size
1263  * Log (base 2) of the EQ size (in entries).
1264  */
1265 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1266 
1267 /* cmd_mbox_sw2hw_eq_producer_counter
1268  * Producer Counter. The counter is incremented for each EQE that is written
1269  * by the HW to the EQ.
1270  * Maintained by HW (valid for the QUERY_EQ command only)
1271  */
1272 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1273 
1274 /* cmd_mbox_sw2hw_eq_pa
1275  * Physical Address.
1276  */
1277 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1278 
1279 /* HW2SW_EQ - Hardware to Software EQ
1280  * ----------------------------------
1281  * OpMod == 0 (N/A), INMmod == EQ number
1282  * -------------------------------------
1283  */
1284 
1285 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1286 				     u32 eq_number)
1287 {
1288 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1289 				   0, eq_number);
1290 }
1291 
1292 /* QUERY_EQ - Query EQ
1293  * ----------------------------------
1294  * OpMod == 0 (N/A), INMmod == EQ number
1295  * -------------------------------------
1296  *
1297  * Note: Output mailbox has the same format as SW2HW_EQ.
1298  */
1299 
1300 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1301 				     char *out_mbox, u32 eq_number)
1302 {
1303 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1304 				  0, eq_number, false,
1305 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1306 }
1307 
1308 #endif
1309