1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */ 2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */ 3 4 #ifndef _MLXSW_CMD_H 5 #define _MLXSW_CMD_H 6 7 #include "item.h" 8 9 #define MLXSW_CMD_MBOX_SIZE 4096 10 11 static inline char *mlxsw_cmd_mbox_alloc(void) 12 { 13 return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL); 14 } 15 16 static inline void mlxsw_cmd_mbox_free(char *mbox) 17 { 18 kfree(mbox); 19 } 20 21 static inline void mlxsw_cmd_mbox_zero(char *mbox) 22 { 23 memset(mbox, 0, MLXSW_CMD_MBOX_SIZE); 24 } 25 26 struct mlxsw_core; 27 28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod, 29 u32 in_mod, bool out_mbox_direct, bool reset_ok, 30 char *in_mbox, size_t in_mbox_size, 31 char *out_mbox, size_t out_mbox_size); 32 33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode, 34 u8 opcode_mod, u32 in_mod, char *in_mbox, 35 size_t in_mbox_size) 36 { 37 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false, 38 false, in_mbox, in_mbox_size, NULL, 0); 39 } 40 41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode, 42 u8 opcode_mod, u32 in_mod, 43 bool out_mbox_direct, 44 char *out_mbox, size_t out_mbox_size) 45 { 46 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, 47 out_mbox_direct, false, NULL, 0, 48 out_mbox, out_mbox_size); 49 } 50 51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode, 52 u8 opcode_mod, u32 in_mod) 53 { 54 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false, 55 false, NULL, 0, NULL, 0); 56 } 57 58 enum mlxsw_cmd_opcode { 59 MLXSW_CMD_OPCODE_QUERY_FW = 0x004, 60 MLXSW_CMD_OPCODE_QUERY_BOARDINFO = 0x006, 61 MLXSW_CMD_OPCODE_QUERY_AQ_CAP = 0x003, 62 MLXSW_CMD_OPCODE_MAP_FA = 0xFFF, 63 MLXSW_CMD_OPCODE_UNMAP_FA = 0xFFE, 64 MLXSW_CMD_OPCODE_CONFIG_PROFILE = 0x100, 65 MLXSW_CMD_OPCODE_ACCESS_REG = 0x040, 66 MLXSW_CMD_OPCODE_SW2HW_DQ = 0x201, 67 MLXSW_CMD_OPCODE_HW2SW_DQ = 0x202, 68 MLXSW_CMD_OPCODE_2ERR_DQ = 0x01E, 69 MLXSW_CMD_OPCODE_QUERY_DQ = 0x022, 70 MLXSW_CMD_OPCODE_SW2HW_CQ = 0x016, 71 MLXSW_CMD_OPCODE_HW2SW_CQ = 0x017, 72 MLXSW_CMD_OPCODE_QUERY_CQ = 0x018, 73 MLXSW_CMD_OPCODE_SW2HW_EQ = 0x013, 74 MLXSW_CMD_OPCODE_HW2SW_EQ = 0x014, 75 MLXSW_CMD_OPCODE_QUERY_EQ = 0x015, 76 MLXSW_CMD_OPCODE_QUERY_RESOURCES = 0x101, 77 }; 78 79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode) 80 { 81 switch (opcode) { 82 case MLXSW_CMD_OPCODE_QUERY_FW: 83 return "QUERY_FW"; 84 case MLXSW_CMD_OPCODE_QUERY_BOARDINFO: 85 return "QUERY_BOARDINFO"; 86 case MLXSW_CMD_OPCODE_QUERY_AQ_CAP: 87 return "QUERY_AQ_CAP"; 88 case MLXSW_CMD_OPCODE_MAP_FA: 89 return "MAP_FA"; 90 case MLXSW_CMD_OPCODE_UNMAP_FA: 91 return "UNMAP_FA"; 92 case MLXSW_CMD_OPCODE_CONFIG_PROFILE: 93 return "CONFIG_PROFILE"; 94 case MLXSW_CMD_OPCODE_ACCESS_REG: 95 return "ACCESS_REG"; 96 case MLXSW_CMD_OPCODE_SW2HW_DQ: 97 return "SW2HW_DQ"; 98 case MLXSW_CMD_OPCODE_HW2SW_DQ: 99 return "HW2SW_DQ"; 100 case MLXSW_CMD_OPCODE_2ERR_DQ: 101 return "2ERR_DQ"; 102 case MLXSW_CMD_OPCODE_QUERY_DQ: 103 return "QUERY_DQ"; 104 case MLXSW_CMD_OPCODE_SW2HW_CQ: 105 return "SW2HW_CQ"; 106 case MLXSW_CMD_OPCODE_HW2SW_CQ: 107 return "HW2SW_CQ"; 108 case MLXSW_CMD_OPCODE_QUERY_CQ: 109 return "QUERY_CQ"; 110 case MLXSW_CMD_OPCODE_SW2HW_EQ: 111 return "SW2HW_EQ"; 112 case MLXSW_CMD_OPCODE_HW2SW_EQ: 113 return "HW2SW_EQ"; 114 case MLXSW_CMD_OPCODE_QUERY_EQ: 115 return "QUERY_EQ"; 116 case MLXSW_CMD_OPCODE_QUERY_RESOURCES: 117 return "QUERY_RESOURCES"; 118 default: 119 return "*UNKNOWN*"; 120 } 121 } 122 123 enum mlxsw_cmd_status { 124 /* Command execution succeeded. */ 125 MLXSW_CMD_STATUS_OK = 0x00, 126 /* Internal error (e.g. bus error) occurred while processing command. */ 127 MLXSW_CMD_STATUS_INTERNAL_ERR = 0x01, 128 /* Operation/command not supported or opcode modifier not supported. */ 129 MLXSW_CMD_STATUS_BAD_OP = 0x02, 130 /* Parameter not supported, parameter out of range. */ 131 MLXSW_CMD_STATUS_BAD_PARAM = 0x03, 132 /* System was not enabled or bad system state. */ 133 MLXSW_CMD_STATUS_BAD_SYS_STATE = 0x04, 134 /* Attempt to access reserved or unallocated resource, or resource in 135 * inappropriate ownership. 136 */ 137 MLXSW_CMD_STATUS_BAD_RESOURCE = 0x05, 138 /* Requested resource is currently executing a command. */ 139 MLXSW_CMD_STATUS_RESOURCE_BUSY = 0x06, 140 /* Required capability exceeds device limits. */ 141 MLXSW_CMD_STATUS_EXCEED_LIM = 0x08, 142 /* Resource is not in the appropriate state or ownership. */ 143 MLXSW_CMD_STATUS_BAD_RES_STATE = 0x09, 144 /* Index out of range (might be beyond table size or attempt to 145 * access a reserved resource). 146 */ 147 MLXSW_CMD_STATUS_BAD_INDEX = 0x0A, 148 /* NVMEM checksum/CRC failed. */ 149 MLXSW_CMD_STATUS_BAD_NVMEM = 0x0B, 150 /* Device is currently running reset */ 151 MLXSW_CMD_STATUS_RUNNING_RESET = 0x26, 152 /* Bad management packet (silently discarded). */ 153 MLXSW_CMD_STATUS_BAD_PKT = 0x30, 154 }; 155 156 static inline const char *mlxsw_cmd_status_str(u8 status) 157 { 158 switch (status) { 159 case MLXSW_CMD_STATUS_OK: 160 return "OK"; 161 case MLXSW_CMD_STATUS_INTERNAL_ERR: 162 return "INTERNAL_ERR"; 163 case MLXSW_CMD_STATUS_BAD_OP: 164 return "BAD_OP"; 165 case MLXSW_CMD_STATUS_BAD_PARAM: 166 return "BAD_PARAM"; 167 case MLXSW_CMD_STATUS_BAD_SYS_STATE: 168 return "BAD_SYS_STATE"; 169 case MLXSW_CMD_STATUS_BAD_RESOURCE: 170 return "BAD_RESOURCE"; 171 case MLXSW_CMD_STATUS_RESOURCE_BUSY: 172 return "RESOURCE_BUSY"; 173 case MLXSW_CMD_STATUS_EXCEED_LIM: 174 return "EXCEED_LIM"; 175 case MLXSW_CMD_STATUS_BAD_RES_STATE: 176 return "BAD_RES_STATE"; 177 case MLXSW_CMD_STATUS_BAD_INDEX: 178 return "BAD_INDEX"; 179 case MLXSW_CMD_STATUS_BAD_NVMEM: 180 return "BAD_NVMEM"; 181 case MLXSW_CMD_STATUS_RUNNING_RESET: 182 return "RUNNING_RESET"; 183 case MLXSW_CMD_STATUS_BAD_PKT: 184 return "BAD_PKT"; 185 default: 186 return "*UNKNOWN*"; 187 } 188 } 189 190 /* QUERY_FW - Query Firmware 191 * ------------------------- 192 * OpMod == 0, INMmod == 0 193 * ----------------------- 194 * The QUERY_FW command retrieves information related to firmware, command 195 * interface version and the amount of resources that should be allocated to 196 * the firmware. 197 */ 198 199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core, 200 char *out_mbox) 201 { 202 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW, 203 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE); 204 } 205 206 /* cmd_mbox_query_fw_fw_pages 207 * Amount of physical memory to be allocatedfor firmware usage in 4KB pages. 208 */ 209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16); 210 211 /* cmd_mbox_query_fw_fw_rev_major 212 * Firmware Revision - Major 213 */ 214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16); 215 216 /* cmd_mbox_query_fw_fw_rev_subminor 217 * Firmware Sub-minor version (Patch level) 218 */ 219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16); 220 221 /* cmd_mbox_query_fw_fw_rev_minor 222 * Firmware Revision - Minor 223 */ 224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16); 225 226 /* cmd_mbox_query_fw_core_clk 227 * Internal Clock Frequency (in MHz) 228 */ 229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16); 230 231 /* cmd_mbox_query_fw_cmd_interface_rev 232 * Command Interface Interpreter Revision ID. This number is bumped up 233 * every time a non-backward-compatible change is done for the command 234 * interface. The current cmd_interface_rev is 1. 235 */ 236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16); 237 238 /* cmd_mbox_query_fw_dt 239 * If set, Debug Trace is supported 240 */ 241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1); 242 243 /* cmd_mbox_query_fw_api_version 244 * Indicates the version of the API, to enable software querying 245 * for compatibility. The current api_version is 1. 246 */ 247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16); 248 249 /* cmd_mbox_query_fw_fw_hour 250 * Firmware timestamp - hour 251 */ 252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8); 253 254 /* cmd_mbox_query_fw_fw_minutes 255 * Firmware timestamp - minutes 256 */ 257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8); 258 259 /* cmd_mbox_query_fw_fw_seconds 260 * Firmware timestamp - seconds 261 */ 262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8); 263 264 /* cmd_mbox_query_fw_fw_year 265 * Firmware timestamp - year 266 */ 267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16); 268 269 /* cmd_mbox_query_fw_fw_month 270 * Firmware timestamp - month 271 */ 272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8); 273 274 /* cmd_mbox_query_fw_fw_day 275 * Firmware timestamp - day 276 */ 277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8); 278 279 /* cmd_mbox_query_fw_lag_mode_support 280 * 0: CONFIG_PROFILE.lag_mode is not supported by FW 281 * 1: CONFIG_PROFILE.lag_mode is supported by FW 282 */ 283 MLXSW_ITEM32(cmd_mbox, query_fw, lag_mode_support, 0x18, 1, 1); 284 285 /* cmd_mbox_query_fw_cff_support 286 * 0: CONFIG_PROFILE.flood_mode = 5 (CFF) is not supported by FW 287 * 1: CONFIG_PROFILE.flood_mode = 5 (CFF) is supported by FW 288 */ 289 MLXSW_ITEM32(cmd_mbox, query_fw, cff_support, 0x18, 2, 1); 290 291 /* cmd_mbox_query_fw_clr_int_base_offset 292 * Clear Interrupt register's offset from clr_int_bar register 293 * in PCI address space. 294 */ 295 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64); 296 297 /* cmd_mbox_query_fw_clr_int_bar 298 * PCI base address register (BAR) where clr_int register is located. 299 * 00 - BAR 0-1 (64 bit BAR) 300 */ 301 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2); 302 303 /* cmd_mbox_query_fw_error_buf_offset 304 * Read Only buffer for internal error reports of offset 305 * from error_buf_bar register in PCI address space). 306 */ 307 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64); 308 309 /* cmd_mbox_query_fw_error_buf_size 310 * Internal error buffer size in DWORDs 311 */ 312 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32); 313 314 /* cmd_mbox_query_fw_error_int_bar 315 * PCI base address register (BAR) where error buffer 316 * register is located. 317 * 00 - BAR 0-1 (64 bit BAR) 318 */ 319 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2); 320 321 /* cmd_mbox_query_fw_doorbell_page_offset 322 * Offset of the doorbell page 323 */ 324 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64); 325 326 /* cmd_mbox_query_fw_doorbell_page_bar 327 * PCI base address register (BAR) of the doorbell page 328 * 00 - BAR 0-1 (64 bit BAR) 329 */ 330 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2); 331 332 /* cmd_mbox_query_fw_free_running_clock_offset 333 * The offset of the free running clock page 334 */ 335 MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64); 336 337 /* cmd_mbox_query_fw_fr_rn_clk_bar 338 * PCI base address register (BAR) of the free running clock page 339 * 0: BAR 0 340 * 1: 64 bit BAR 341 */ 342 MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2); 343 344 /* cmd_mbox_query_fw_utc_sec_offset 345 * The offset of the UTC_Sec page 346 */ 347 MLXSW_ITEM64(cmd_mbox, query_fw, utc_sec_offset, 0x70, 0, 64); 348 349 /* cmd_mbox_query_fw_utc_sec_bar 350 * PCI base address register (BAR) of the UTC_Sec page 351 * 0: BAR 0 352 * 1: 64 bit BAR 353 * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1 354 */ 355 MLXSW_ITEM32(cmd_mbox, query_fw, utc_sec_bar, 0x78, 30, 2); 356 357 /* cmd_mbox_query_fw_utc_nsec_offset 358 * The offset of the UTC_nSec page 359 */ 360 MLXSW_ITEM64(cmd_mbox, query_fw, utc_nsec_offset, 0x80, 0, 64); 361 362 /* cmd_mbox_query_fw_utc_nsec_bar 363 * PCI base address register (BAR) of the UTC_nSec page 364 * 0: BAR 0 365 * 1: 64 bit BAR 366 * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1 367 */ 368 MLXSW_ITEM32(cmd_mbox, query_fw, utc_nsec_bar, 0x88, 30, 2); 369 370 /* QUERY_BOARDINFO - Query Board Information 371 * ----------------------------------------- 372 * OpMod == 0 (N/A), INMmod == 0 (N/A) 373 * ----------------------------------- 374 * The QUERY_BOARDINFO command retrieves adapter specific parameters. 375 */ 376 377 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core, 378 char *out_mbox) 379 { 380 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO, 381 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE); 382 } 383 384 /* cmd_mbox_boardinfo_intapin 385 * When PCIe interrupt messages are being used, this value is used for clearing 386 * an interrupt. When using MSI-X, this register is not used. 387 */ 388 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8); 389 390 /* cmd_mbox_boardinfo_vsd_vendor_id 391 * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor 392 * specifying/formatting the VSD. The vsd_vendor_id identifies the management 393 * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID 394 * format and encoding as long as they use their assigned vsd_vendor_id. 395 */ 396 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16); 397 398 /* cmd_mbox_boardinfo_vsd 399 * Vendor Specific Data. The VSD string that is burnt to the Flash 400 * with the firmware. 401 */ 402 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208 403 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN); 404 405 /* cmd_mbox_boardinfo_psid 406 * The PSID field is a 16-ascii (byte) character string which acts as 407 * the board ID. The PSID format is used in conjunction with 408 * Mellanox vsd_vendor_id (15B3h). 409 */ 410 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16 411 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN); 412 413 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities 414 * ----------------------------------------------------- 415 * OpMod == 0 (N/A), INMmod == 0 (N/A) 416 * ----------------------------------- 417 * The QUERY_AQ_CAP command returns the device asynchronous queues 418 * capabilities supported. 419 */ 420 421 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core, 422 char *out_mbox) 423 { 424 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP, 425 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE); 426 } 427 428 /* cmd_mbox_query_aq_cap_log_max_sdq_sz 429 * Log (base 2) of max WQEs allowed on SDQ. 430 */ 431 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8); 432 433 /* cmd_mbox_query_aq_cap_max_num_sdqs 434 * Maximum number of SDQs. 435 */ 436 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8); 437 438 /* cmd_mbox_query_aq_cap_log_max_rdq_sz 439 * Log (base 2) of max WQEs allowed on RDQ. 440 */ 441 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8); 442 443 /* cmd_mbox_query_aq_cap_max_num_rdqs 444 * Maximum number of RDQs. 445 */ 446 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8); 447 448 /* cmd_mbox_query_aq_cap_log_max_cq_sz 449 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1. 450 */ 451 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8); 452 453 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz 454 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2. 455 */ 456 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8); 457 458 /* cmd_mbox_query_aq_cap_max_num_cqs 459 * Maximum number of CQs. 460 */ 461 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8); 462 463 /* cmd_mbox_query_aq_cap_log_max_eq_sz 464 * Log (base 2) of max EQEs allowed on EQ. 465 */ 466 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8); 467 468 /* cmd_mbox_query_aq_cap_max_num_eqs 469 * Maximum number of EQs. 470 */ 471 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8); 472 473 /* cmd_mbox_query_aq_cap_max_sg_sq 474 * The maximum S/G list elements in an DSQ. DSQ must not contain 475 * more S/G entries than indicated here. 476 */ 477 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8); 478 479 /* cmd_mbox_query_aq_cap_ 480 * The maximum S/G list elements in an DRQ. DRQ must not contain 481 * more S/G entries than indicated here. 482 */ 483 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8); 484 485 /* MAP_FA - Map Firmware Area 486 * -------------------------- 487 * OpMod == 0 (N/A), INMmod == Number of VPM entries 488 * ------------------------------------------------- 489 * The MAP_FA command passes physical pages to the switch. These pages 490 * are used to store the device firmware. MAP_FA can be executed multiple 491 * times until all the firmware area is mapped (the size that should be 492 * mapped is retrieved through the QUERY_FW command). All required pages 493 * must be mapped to finish the initialization phase. Physical memory 494 * passed in this command must be pinned. 495 */ 496 497 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32 498 499 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core, 500 char *in_mbox, u32 vpm_entries_count) 501 { 502 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA, 503 0, vpm_entries_count, 504 in_mbox, MLXSW_CMD_MBOX_SIZE); 505 } 506 507 /* cmd_mbox_map_fa_pa 508 * Physical Address. 509 */ 510 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true); 511 512 /* cmd_mbox_map_fa_log2size 513 * Log (base 2) of the size in 4KB pages of the physical and contiguous memory 514 * that starts at PA_L/H. 515 */ 516 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false); 517 518 /* UNMAP_FA - Unmap Firmware Area 519 * ------------------------------ 520 * OpMod == 0 (N/A), INMmod == 0 (N/A) 521 * ----------------------------------- 522 * The UNMAP_FA command unload the firmware and unmaps all the 523 * firmware area. After this command is completed the device will not access 524 * the pages that were mapped to the firmware area. After executing UNMAP_FA 525 * command, software reset must be done prior to execution of MAP_FW command. 526 */ 527 528 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core) 529 { 530 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0); 531 } 532 533 /* QUERY_RESOURCES - Query chip resources 534 * -------------------------------------- 535 * OpMod == 0 (N/A) , INMmod is index 536 * ---------------------------------- 537 * The QUERY_RESOURCES command retrieves information related to chip resources 538 * by resource ID. Every command returns 32 entries. INmod is being use as base. 539 * for example, index 1 will return entries 32-63. When the tables end and there 540 * are no more sources in the table, will return resource id 0xFFF to indicate 541 * it. 542 */ 543 544 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff 545 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100 546 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32 547 548 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core, 549 char *out_mbox, int index) 550 { 551 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES, 552 0, index, false, out_mbox, 553 MLXSW_CMD_MBOX_SIZE); 554 } 555 556 /* cmd_mbox_query_resource_id 557 * The resource id. 0xFFFF indicates table's end. 558 */ 559 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false); 560 561 /* cmd_mbox_query_resource_data 562 * The resource 563 */ 564 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data, 565 0x00, 0, 40, 0x8, 0, false); 566 567 /* CONFIG_PROFILE (Set) - Configure Switch Profile 568 * ------------------------------ 569 * OpMod == 1 (Set), INMmod == 0 (N/A) 570 * ----------------------------------- 571 * The CONFIG_PROFILE command sets the switch profile. The command can be 572 * executed on the device only once at startup in order to allocate and 573 * configure all switch resources and prepare it for operational mode. 574 * It is not possible to change the device profile after the chip is 575 * in operational mode. 576 * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate 577 * state therefore it is required to perform software reset to the device 578 * following an unsuccessful completion of the command. It is required 579 * to perform software reset to the device to change an existing profile. 580 */ 581 582 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core, 583 char *in_mbox) 584 { 585 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE, 586 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE); 587 } 588 589 /* cmd_mbox_config_profile_set_max_vepa_channels 590 * Capability bit. Setting a bit to 1 configures the profile 591 * according to the mailbox contents. 592 */ 593 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1); 594 595 /* cmd_mbox_config_profile_set_max_lag 596 * Capability bit. Setting a bit to 1 configures the profile 597 * according to the mailbox contents. 598 */ 599 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1); 600 601 /* cmd_mbox_config_profile_set_max_port_per_lag 602 * Capability bit. Setting a bit to 1 configures the profile 603 * according to the mailbox contents. 604 */ 605 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1); 606 607 /* cmd_mbox_config_profile_set_max_mid 608 * Capability bit. Setting a bit to 1 configures the profile 609 * according to the mailbox contents. 610 */ 611 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1); 612 613 /* cmd_mbox_config_profile_set_max_pgt 614 * Capability bit. Setting a bit to 1 configures the profile 615 * according to the mailbox contents. 616 */ 617 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1); 618 619 /* cmd_mbox_config_profile_set_max_system_port 620 * Capability bit. Setting a bit to 1 configures the profile 621 * according to the mailbox contents. 622 */ 623 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1); 624 625 /* cmd_mbox_config_profile_set_max_vlan_groups 626 * Capability bit. Setting a bit to 1 configures the profile 627 * according to the mailbox contents. 628 */ 629 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1); 630 631 /* cmd_mbox_config_profile_set_max_regions 632 * Capability bit. Setting a bit to 1 configures the profile 633 * according to the mailbox contents. 634 */ 635 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1); 636 637 /* cmd_mbox_config_profile_set_flood_mode 638 * Capability bit. Setting a bit to 1 configures the profile 639 * according to the mailbox contents. 640 */ 641 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1); 642 643 /* cmd_mbox_config_profile_set_max_flood_tables 644 * Capability bit. Setting a bit to 1 configures the profile 645 * according to the mailbox contents. 646 */ 647 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1); 648 649 /* cmd_mbox_config_profile_set_max_ib_mc 650 * Capability bit. Setting a bit to 1 configures the profile 651 * according to the mailbox contents. 652 */ 653 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1); 654 655 /* cmd_mbox_config_profile_set_max_pkey 656 * Capability bit. Setting a bit to 1 configures the profile 657 * according to the mailbox contents. 658 */ 659 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1); 660 661 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap 662 * Capability bit. Setting a bit to 1 configures the profile 663 * according to the mailbox contents. 664 */ 665 MLXSW_ITEM32(cmd_mbox, config_profile, 666 set_adaptive_routing_group_cap, 0x0C, 14, 1); 667 668 /* cmd_mbox_config_profile_set_ar_sec 669 * Capability bit. Setting a bit to 1 configures the profile 670 * according to the mailbox contents. 671 */ 672 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1); 673 674 /* cmd_mbox_config_profile_set_ubridge 675 * Capability bit. Setting a bit to 1 configures the profile 676 * according to the mailbox contents. 677 */ 678 MLXSW_ITEM32(cmd_mbox, config_profile, set_ubridge, 0x0C, 22, 1); 679 680 /* cmd_mbox_config_profile_set_kvd_linear_size 681 * Capability bit. Setting a bit to 1 configures the profile 682 * according to the mailbox contents. 683 */ 684 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1); 685 686 /* cmd_mbox_config_profile_set_kvd_hash_single_size 687 * Capability bit. Setting a bit to 1 configures the profile 688 * according to the mailbox contents. 689 */ 690 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1); 691 692 /* cmd_mbox_config_profile_set_kvd_hash_double_size 693 * Capability bit. Setting a bit to 1 configures the profile 694 * according to the mailbox contents. 695 */ 696 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1); 697 698 /* cmd_mbox_config_profile_set_cqe_version 699 * Capability bit. Setting a bit to 1 configures the profile 700 * according to the mailbox contents. 701 */ 702 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1); 703 704 /* cmd_mbox_config_profile_set_cqe_time_stamp_type 705 * Capability bit. Setting a bit to 1 configures the profile 706 * according to the mailbox contents. 707 */ 708 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_time_stamp_type, 0x08, 2, 1); 709 710 /* cmd_mbox_config_profile_set_lag_mode 711 * Capability bit. Setting a bit to 1 configures the lag_mode 712 * according to the mailbox contents. 713 */ 714 MLXSW_ITEM32(cmd_mbox, config_profile, set_lag_mode, 0x08, 7, 1); 715 716 /* cmd_mbox_config_profile_max_vepa_channels 717 * Maximum number of VEPA channels per port (0 through 16) 718 * 0 - multi-channel VEPA is disabled 719 */ 720 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8); 721 722 /* cmd_mbox_config_profile_max_lag 723 * Maximum number of LAG IDs requested. 724 * Reserved when Spectrum-1/2/3, supported from Spectrum-4 and above. 725 * For Spectrum-4, firmware sets 128 for values between 1-128 and 256 for values 726 * between 129-256. 727 */ 728 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16); 729 730 /* cmd_mbox_config_profile_max_port_per_lag 731 * Maximum number of ports per LAG requested. 732 */ 733 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16); 734 735 /* cmd_mbox_config_profile_max_mid 736 * Maximum Multicast IDs. 737 * Multicast IDs are allocated from 0 to max_mid-1 738 */ 739 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16); 740 741 /* cmd_mbox_config_profile_max_pgt 742 * Maximum records in the Port Group Table per Switch Partition. 743 * Port Group Table indexes are from 0 to max_pgt-1 744 */ 745 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16); 746 747 /* cmd_mbox_config_profile_max_system_port 748 * The maximum number of system ports that can be allocated. 749 */ 750 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16); 751 752 /* cmd_mbox_config_profile_max_vlan_groups 753 * Maximum number VLAN Groups for VLAN binding. 754 */ 755 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12); 756 757 /* cmd_mbox_config_profile_max_regions 758 * Maximum number of TCAM Regions. 759 */ 760 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16); 761 762 /* cmd_mbox_config_profile_max_flood_tables 763 * Maximum number of single-entry flooding tables. Different flooding tables 764 * can be associated with different packet types. 765 */ 766 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4); 767 768 /* cmd_mbox_config_profile_max_vid_flood_tables 769 * Maximum number of per-vid flooding tables. Flooding tables are associated 770 * to the different packet types for the different switch partitions. 771 * Table size is 4K entries covering all VID space. 772 */ 773 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4); 774 775 enum mlxsw_cmd_mbox_config_profile_flood_mode { 776 /* Mixed mode, where: 777 * max_flood_tables indicates the number of single-entry tables. 778 * max_vid_flood_tables indicates the number of per-VID tables. 779 * max_fid_offset_flood_tables indicates the number of FID-offset 780 * tables. max_fid_flood_tables indicates the number of per-FID tables. 781 * Reserved when unified bridge model is used. 782 */ 783 MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_MIXED = 3, 784 /* Controlled flood tables. Reserved when legacy bridge model is 785 * used. 786 */ 787 MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_CONTROLLED = 4, 788 /* CFF - Compressed FID Flood (CFF) mode. 789 * Reserved when legacy bridge model is used. 790 * Supported only by Spectrum-2+. 791 */ 792 MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_CFF = 5, 793 }; 794 795 /* cmd_mbox_config_profile_flood_mode 796 * Flooding mode to use. 797 */ 798 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 3); 799 800 /* cmd_mbox_config_profile_max_fid_offset_flood_tables 801 * Maximum number of FID-offset flooding tables. 802 */ 803 MLXSW_ITEM32(cmd_mbox, config_profile, 804 max_fid_offset_flood_tables, 0x34, 24, 4); 805 806 /* cmd_mbox_config_profile_fid_offset_flood_table_size 807 * The size (number of entries) of each FID-offset flood table. 808 */ 809 MLXSW_ITEM32(cmd_mbox, config_profile, 810 fid_offset_flood_table_size, 0x34, 0, 16); 811 812 /* cmd_mbox_config_profile_max_fid_flood_tables 813 * Maximum number of per-FID flooding tables. 814 * 815 * Note: This flooding tables cover special FIDs only (vFIDs), starting at 816 * FID value 4K and higher. 817 */ 818 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4); 819 820 /* cmd_mbox_config_profile_fid_flood_table_size 821 * The size (number of entries) of each per-FID table. 822 */ 823 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16); 824 825 /* cmd_mbox_config_profile_max_ib_mc 826 * Maximum number of multicast FDB records for InfiniBand 827 * FDB (in 512 chunks) per InfiniBand switch partition. 828 */ 829 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15); 830 831 /* cmd_mbox_config_profile_max_pkey 832 * Maximum per port PKEY table size (for PKEY enforcement) 833 */ 834 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15); 835 836 /* cmd_mbox_config_profile_ar_sec 837 * Primary/secondary capability 838 * Describes the number of adaptive routing sub-groups 839 * 0 - disable primary/secondary (single group) 840 * 1 - enable primary/secondary (2 sub-groups) 841 * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2 842 * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2 843 */ 844 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2); 845 846 /* cmd_mbox_config_profile_adaptive_routing_group_cap 847 * Adaptive Routing Group Capability. Indicates the number of AR groups 848 * supported. Note that when Primary/secondary is enabled, each 849 * primary/secondary couple consumes 2 adaptive routing entries. 850 */ 851 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16); 852 853 /* cmd_mbox_config_profile_arn 854 * Adaptive Routing Notification Enable 855 * Not supported in SwitchX, SwitchX-2 856 */ 857 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1); 858 859 /* cmd_mbox_config_profile_ubridge 860 * Unified Bridge 861 * 0 - non unified bridge 862 * 1 - unified bridge 863 */ 864 MLXSW_ITEM32(cmd_mbox, config_profile, ubridge, 0x50, 4, 1); 865 866 enum mlxsw_cmd_mbox_config_profile_lag_mode { 867 /* FW manages PGT LAG table */ 868 MLXSW_CMD_MBOX_CONFIG_PROFILE_LAG_MODE_FW, 869 /* SW manages PGT LAG table */ 870 MLXSW_CMD_MBOX_CONFIG_PROFILE_LAG_MODE_SW, 871 }; 872 873 /* cmd_mbox_config_profile_lag_mode 874 * LAG mode 875 * Configured if set_lag_mode is set 876 * Supported from Spectrum-2 and above. 877 * Supported only when ubridge = 1 878 */ 879 MLXSW_ITEM32(cmd_mbox, config_profile, lag_mode, 0x50, 3, 1); 880 881 /* cmd_mbox_config_kvd_linear_size 882 * KVD Linear Size 883 * Valid for Spectrum only 884 * Allowed values are 128*N where N=0 or higher 885 */ 886 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24); 887 888 /* cmd_mbox_config_profile_kvd_hash_single_size 889 * KVD Hash single-entries size 890 * Valid for Spectrum only 891 * Allowed values are 128*N where N=0 or higher 892 * Must be greater or equal to cap_min_kvd_hash_single_size 893 * Must be smaller or equal to cap_kvd_size - kvd_linear_size 894 */ 895 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24); 896 897 /* cmd_mbox_config_profile_kvd_hash_double_size 898 * KVD Hash double-entries size (units of single-size entries) 899 * Valid for Spectrum only 900 * Allowed values are 128*N where N=0 or higher 901 * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size 902 * Must be smaller or equal to cap_kvd_size - kvd_linear_size 903 */ 904 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24); 905 906 /* cmd_mbox_config_profile_swid_config_mask 907 * Modify Switch Partition Configuration mask. When set, the configu- 908 * ration value for the Switch Partition are taken from the mailbox. 909 * When clear, the current configuration values are used. 910 * Bit 0 - set type 911 * Bit 1 - properties 912 * Other - reserved 913 */ 914 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask, 915 0x60, 24, 8, 0x08, 0x00, false); 916 917 /* cmd_mbox_config_profile_swid_config_type 918 * Switch Partition type. 919 * 0000 - disabled (Switch Partition does not exist) 920 * 0001 - InfiniBand 921 * 0010 - Ethernet 922 * 1000 - router port (SwitchX-2 only) 923 * Other - reserved 924 */ 925 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type, 926 0x60, 20, 4, 0x08, 0x00, false); 927 928 /* cmd_mbox_config_profile_swid_config_properties 929 * Switch Partition properties. 930 */ 931 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties, 932 0x60, 0, 8, 0x08, 0x00, false); 933 934 enum mlxsw_cmd_mbox_config_profile_cqe_time_stamp_type { 935 /* uSec - 1.024uSec (default). Only bits 15:0 are valid. */ 936 MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_USEC, 937 /* FRC - Free Running Clock, units of 1nSec. 938 * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1. 939 */ 940 MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_FRC, 941 /* UTC. time_stamp[37:30] = Sec, time_stamp[29:0] = nSec. 942 * Reserved when SwitchX/2, Switch-IB/2 and Spectrum-1. 943 */ 944 MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_UTC, 945 }; 946 947 /* cmd_mbox_config_profile_cqe_time_stamp_type 948 * CQE time_stamp_type for non-mirror-packets. 949 * Configured if set_cqe_time_stamp_type is set. 950 * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1. 951 */ 952 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_time_stamp_type, 0xB0, 8, 2); 953 954 /* cmd_mbox_config_profile_cqe_version 955 * CQE version: 956 * 0: CQE version is 0 957 * 1: CQE version is either 1 or 2 958 * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver. 959 */ 960 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8); 961 962 /* ACCESS_REG - Access EMAD Supported Register 963 * ---------------------------------- 964 * OpMod == 0 (N/A), INMmod == 0 (N/A) 965 * ------------------------------------- 966 * The ACCESS_REG command supports accessing device registers. This access 967 * is mainly used for bootstrapping. 968 */ 969 970 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core, 971 bool reset_ok, 972 char *in_mbox, char *out_mbox) 973 { 974 return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG, 975 0, 0, false, reset_ok, 976 in_mbox, MLXSW_CMD_MBOX_SIZE, 977 out_mbox, MLXSW_CMD_MBOX_SIZE); 978 } 979 980 /* SW2HW_DQ - Software to Hardware DQ 981 * ---------------------------------- 982 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 983 * INMmod == DQ number 984 * ---------------------------------------------- 985 * The SW2HW_DQ command transitions a descriptor queue from software to 986 * hardware ownership. The command enables posting WQEs and ringing DoorBells 987 * on the descriptor queue. 988 */ 989 990 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core, 991 char *in_mbox, u32 dq_number, 992 u8 opcode_mod) 993 { 994 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ, 995 opcode_mod, dq_number, 996 in_mbox, MLXSW_CMD_MBOX_SIZE); 997 } 998 999 enum { 1000 MLXSW_CMD_OPCODE_MOD_SDQ = 0, 1001 MLXSW_CMD_OPCODE_MOD_RDQ = 1, 1002 }; 1003 1004 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core, 1005 char *in_mbox, u32 dq_number) 1006 { 1007 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number, 1008 MLXSW_CMD_OPCODE_MOD_SDQ); 1009 } 1010 1011 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core, 1012 char *in_mbox, u32 dq_number) 1013 { 1014 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number, 1015 MLXSW_CMD_OPCODE_MOD_RDQ); 1016 } 1017 1018 /* cmd_mbox_sw2hw_dq_cq 1019 * Number of the CQ that this Descriptor Queue reports completions to. 1020 */ 1021 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8); 1022 1023 enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp { 1024 MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE, 1025 MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE, 1026 }; 1027 1028 /* cmd_mbox_sw2hw_dq_sdq_lp 1029 * SDQ local Processing 1030 * 0: local processing by wqe.lp 1031 * 1: local processing (ignoring wqe.lp) 1032 */ 1033 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1); 1034 1035 /* cmd_mbox_sw2hw_dq_sdq_tclass 1036 * SDQ: CPU Egress TClass 1037 * RDQ: Reserved 1038 */ 1039 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6); 1040 1041 /* cmd_mbox_sw2hw_dq_log2_dq_sz 1042 * Log (base 2) of the Descriptor Queue size in 4KB pages. 1043 */ 1044 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6); 1045 1046 /* cmd_mbox_sw2hw_dq_pa 1047 * Physical Address. 1048 */ 1049 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true); 1050 1051 /* HW2SW_DQ - Hardware to Software DQ 1052 * ---------------------------------- 1053 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 1054 * INMmod == DQ number 1055 * ---------------------------------------------- 1056 * The HW2SW_DQ command transitions a descriptor queue from hardware to 1057 * software ownership. Incoming packets on the DQ are silently discarded, 1058 * SW should not post descriptors on nonoperational DQs. 1059 */ 1060 1061 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core, 1062 u32 dq_number, u8 opcode_mod) 1063 { 1064 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ, 1065 opcode_mod, dq_number); 1066 } 1067 1068 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core, 1069 u32 dq_number) 1070 { 1071 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number, 1072 MLXSW_CMD_OPCODE_MOD_SDQ); 1073 } 1074 1075 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core, 1076 u32 dq_number) 1077 { 1078 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number, 1079 MLXSW_CMD_OPCODE_MOD_RDQ); 1080 } 1081 1082 /* 2ERR_DQ - To Error DQ 1083 * --------------------- 1084 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 1085 * INMmod == DQ number 1086 * ---------------------------------------------- 1087 * The 2ERR_DQ command transitions the DQ into the error state from the state 1088 * in which it has been. While the command is executed, some in-process 1089 * descriptors may complete. Once the DQ transitions into the error state, 1090 * if there are posted descriptors on the RDQ/SDQ, the hardware writes 1091 * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ. 1092 * When the command is completed successfully, the DQ is already in 1093 * the error state. 1094 */ 1095 1096 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core, 1097 u32 dq_number, u8 opcode_mod) 1098 { 1099 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ, 1100 opcode_mod, dq_number); 1101 } 1102 1103 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core, 1104 u32 dq_number) 1105 { 1106 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number, 1107 MLXSW_CMD_OPCODE_MOD_SDQ); 1108 } 1109 1110 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core, 1111 u32 dq_number) 1112 { 1113 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number, 1114 MLXSW_CMD_OPCODE_MOD_RDQ); 1115 } 1116 1117 /* QUERY_DQ - Query DQ 1118 * --------------------- 1119 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 1120 * INMmod == DQ number 1121 * ---------------------------------------------- 1122 * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware. 1123 * 1124 * Note: Output mailbox has the same format as SW2HW_DQ. 1125 */ 1126 1127 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core, 1128 char *out_mbox, u32 dq_number, 1129 u8 opcode_mod) 1130 { 1131 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ, 1132 opcode_mod, dq_number, false, 1133 out_mbox, MLXSW_CMD_MBOX_SIZE); 1134 } 1135 1136 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core, 1137 char *out_mbox, u32 dq_number) 1138 { 1139 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number, 1140 MLXSW_CMD_OPCODE_MOD_SDQ); 1141 } 1142 1143 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core, 1144 char *out_mbox, u32 dq_number) 1145 { 1146 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number, 1147 MLXSW_CMD_OPCODE_MOD_RDQ); 1148 } 1149 1150 /* SW2HW_CQ - Software to Hardware CQ 1151 * ---------------------------------- 1152 * OpMod == 0 (N/A), INMmod == CQ number 1153 * ------------------------------------- 1154 * The SW2HW_CQ command transfers ownership of a CQ context entry from software 1155 * to hardware. The command takes the CQ context entry from the input mailbox 1156 * and stores it in the CQC in the ownership of the hardware. The command fails 1157 * if the requested CQC entry is already in the ownership of the hardware. 1158 */ 1159 1160 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core, 1161 char *in_mbox, u32 cq_number) 1162 { 1163 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ, 1164 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE); 1165 } 1166 1167 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver { 1168 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1, 1169 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2, 1170 }; 1171 1172 /* cmd_mbox_sw2hw_cq_cqe_ver 1173 * CQE Version. 1174 */ 1175 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4); 1176 1177 /* cmd_mbox_sw2hw_cq_c_eqn 1178 * Event Queue this CQ reports completion events to. 1179 */ 1180 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1); 1181 1182 /* cmd_mbox_sw2hw_cq_st 1183 * Event delivery state machine 1184 * 0x0 - FIRED 1185 * 0x1 - ARMED (Request for Notification) 1186 */ 1187 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1); 1188 1189 /* cmd_mbox_sw2hw_cq_log_cq_size 1190 * Log (base 2) of the CQ size (in entries). 1191 */ 1192 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4); 1193 1194 /* cmd_mbox_sw2hw_cq_producer_counter 1195 * Producer Counter. The counter is incremented for each CQE that is 1196 * written by the HW to the CQ. 1197 * Maintained by HW (valid for the QUERY_CQ command only) 1198 */ 1199 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16); 1200 1201 /* cmd_mbox_sw2hw_cq_pa 1202 * Physical Address. 1203 */ 1204 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true); 1205 1206 /* HW2SW_CQ - Hardware to Software CQ 1207 * ---------------------------------- 1208 * OpMod == 0 (N/A), INMmod == CQ number 1209 * ------------------------------------- 1210 * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware 1211 * to software. The CQC entry is invalidated as a result of this command. 1212 */ 1213 1214 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core, 1215 u32 cq_number) 1216 { 1217 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ, 1218 0, cq_number); 1219 } 1220 1221 /* QUERY_CQ - Query CQ 1222 * ---------------------------------- 1223 * OpMod == 0 (N/A), INMmod == CQ number 1224 * ------------------------------------- 1225 * The QUERY_CQ command retrieves a snapshot of the current CQ context entry. 1226 * The command stores the snapshot in the output mailbox in the software format. 1227 * Note that the CQ context state and values are not affected by the QUERY_CQ 1228 * command. The QUERY_CQ command is for debug purposes only. 1229 * 1230 * Note: Output mailbox has the same format as SW2HW_CQ. 1231 */ 1232 1233 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core, 1234 char *out_mbox, u32 cq_number) 1235 { 1236 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ, 1237 0, cq_number, false, 1238 out_mbox, MLXSW_CMD_MBOX_SIZE); 1239 } 1240 1241 /* SW2HW_EQ - Software to Hardware EQ 1242 * ---------------------------------- 1243 * OpMod == 0 (N/A), INMmod == EQ number 1244 * ------------------------------------- 1245 * The SW2HW_EQ command transfers ownership of an EQ context entry from software 1246 * to hardware. The command takes the EQ context entry from the input mailbox 1247 * and stores it in the EQC in the ownership of the hardware. The command fails 1248 * if the requested EQC entry is already in the ownership of the hardware. 1249 */ 1250 1251 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core, 1252 char *in_mbox, u32 eq_number) 1253 { 1254 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ, 1255 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE); 1256 } 1257 1258 /* cmd_mbox_sw2hw_eq_int_msix 1259 * When set, MSI-X cycles will be generated by this EQ. 1260 * When cleared, an interrupt will be generated by this EQ. 1261 */ 1262 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1); 1263 1264 /* cmd_mbox_sw2hw_eq_st 1265 * Event delivery state machine 1266 * 0x0 - FIRED 1267 * 0x1 - ARMED (Request for Notification) 1268 * 0x11 - Always ARMED 1269 * other - reserved 1270 */ 1271 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2); 1272 1273 /* cmd_mbox_sw2hw_eq_log_eq_size 1274 * Log (base 2) of the EQ size (in entries). 1275 */ 1276 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4); 1277 1278 /* cmd_mbox_sw2hw_eq_producer_counter 1279 * Producer Counter. The counter is incremented for each EQE that is written 1280 * by the HW to the EQ. 1281 * Maintained by HW (valid for the QUERY_EQ command only) 1282 */ 1283 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16); 1284 1285 /* cmd_mbox_sw2hw_eq_pa 1286 * Physical Address. 1287 */ 1288 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true); 1289 1290 /* HW2SW_EQ - Hardware to Software EQ 1291 * ---------------------------------- 1292 * OpMod == 0 (N/A), INMmod == EQ number 1293 * ------------------------------------- 1294 */ 1295 1296 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core, 1297 u32 eq_number) 1298 { 1299 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ, 1300 0, eq_number); 1301 } 1302 1303 /* QUERY_EQ - Query EQ 1304 * ---------------------------------- 1305 * OpMod == 0 (N/A), INMmod == EQ number 1306 * ------------------------------------- 1307 * 1308 * Note: Output mailbox has the same format as SW2HW_EQ. 1309 */ 1310 1311 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core, 1312 char *out_mbox, u32 eq_number) 1313 { 1314 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ, 1315 0, eq_number, false, 1316 out_mbox, MLXSW_CMD_MBOX_SIZE); 1317 } 1318 1319 #endif 1320