1 /* 2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #include <asm/page.h> 35 #include <linux/mlx4/cq.h> 36 #include <linux/slab.h> 37 #include <linux/mlx4/qp.h> 38 #include <linux/skbuff.h> 39 #include <linux/if_vlan.h> 40 #include <linux/prefetch.h> 41 #include <linux/vmalloc.h> 42 #include <linux/tcp.h> 43 #include <linux/ip.h> 44 #include <linux/moduleparam.h> 45 46 #include "mlx4_en.h" 47 48 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, 49 struct mlx4_en_tx_ring **pring, u32 size, 50 u16 stride, int node, int queue_index) 51 { 52 struct mlx4_en_dev *mdev = priv->mdev; 53 struct mlx4_en_tx_ring *ring; 54 int tmp; 55 int err; 56 57 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); 58 if (!ring) { 59 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 60 if (!ring) { 61 en_err(priv, "Failed allocating TX ring\n"); 62 return -ENOMEM; 63 } 64 } 65 66 ring->size = size; 67 ring->size_mask = size - 1; 68 ring->stride = stride; 69 ring->full_size = ring->size - HEADROOM - MAX_DESC_TXBBS; 70 71 tmp = size * sizeof(struct mlx4_en_tx_info); 72 ring->tx_info = kmalloc_node(tmp, GFP_KERNEL | __GFP_NOWARN, node); 73 if (!ring->tx_info) { 74 ring->tx_info = vmalloc(tmp); 75 if (!ring->tx_info) { 76 err = -ENOMEM; 77 goto err_ring; 78 } 79 } 80 81 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", 82 ring->tx_info, tmp); 83 84 ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node); 85 if (!ring->bounce_buf) { 86 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL); 87 if (!ring->bounce_buf) { 88 err = -ENOMEM; 89 goto err_info; 90 } 91 } 92 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); 93 94 /* Allocate HW buffers on provided NUMA node */ 95 set_dev_node(&mdev->dev->persist->pdev->dev, node); 96 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 97 2 * PAGE_SIZE); 98 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); 99 if (err) { 100 en_err(priv, "Failed allocating hwq resources\n"); 101 goto err_bounce; 102 } 103 104 err = mlx4_en_map_buffer(&ring->wqres.buf); 105 if (err) { 106 en_err(priv, "Failed to map TX buffer\n"); 107 goto err_hwq_res; 108 } 109 110 ring->buf = ring->wqres.buf.direct.buf; 111 112 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n", 113 ring, ring->buf, ring->size, ring->buf_size, 114 (unsigned long long) ring->wqres.buf.direct.map); 115 116 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, 117 MLX4_RESERVE_ETH_BF_QP); 118 if (err) { 119 en_err(priv, "failed reserving qp for TX ring\n"); 120 goto err_map; 121 } 122 123 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL); 124 if (err) { 125 en_err(priv, "Failed allocating qp %d\n", ring->qpn); 126 goto err_reserve; 127 } 128 ring->qp.event = mlx4_en_sqp_event; 129 130 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); 131 if (err) { 132 en_dbg(DRV, priv, "working without blueflame (%d)\n", err); 133 ring->bf.uar = &mdev->priv_uar; 134 ring->bf.uar->map = mdev->uar_map; 135 ring->bf_enabled = false; 136 ring->bf_alloced = false; 137 priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME; 138 } else { 139 ring->bf_alloced = true; 140 ring->bf_enabled = !!(priv->pflags & 141 MLX4_EN_PRIV_FLAGS_BLUEFLAME); 142 } 143 144 ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type; 145 ring->queue_index = queue_index; 146 147 if (queue_index < priv->num_tx_rings_p_up) 148 cpumask_set_cpu(cpumask_local_spread(queue_index, 149 priv->mdev->dev->numa_node), 150 &ring->affinity_mask); 151 152 *pring = ring; 153 return 0; 154 155 err_reserve: 156 mlx4_qp_release_range(mdev->dev, ring->qpn, 1); 157 err_map: 158 mlx4_en_unmap_buffer(&ring->wqres.buf); 159 err_hwq_res: 160 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 161 err_bounce: 162 kfree(ring->bounce_buf); 163 ring->bounce_buf = NULL; 164 err_info: 165 kvfree(ring->tx_info); 166 ring->tx_info = NULL; 167 err_ring: 168 kfree(ring); 169 *pring = NULL; 170 return err; 171 } 172 173 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, 174 struct mlx4_en_tx_ring **pring) 175 { 176 struct mlx4_en_dev *mdev = priv->mdev; 177 struct mlx4_en_tx_ring *ring = *pring; 178 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); 179 180 if (ring->bf_alloced) 181 mlx4_bf_free(mdev->dev, &ring->bf); 182 mlx4_qp_remove(mdev->dev, &ring->qp); 183 mlx4_qp_free(mdev->dev, &ring->qp); 184 mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); 185 mlx4_en_unmap_buffer(&ring->wqres.buf); 186 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 187 kfree(ring->bounce_buf); 188 ring->bounce_buf = NULL; 189 kvfree(ring->tx_info); 190 ring->tx_info = NULL; 191 kfree(ring); 192 *pring = NULL; 193 } 194 195 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, 196 struct mlx4_en_tx_ring *ring, 197 int cq, int user_prio) 198 { 199 struct mlx4_en_dev *mdev = priv->mdev; 200 int err; 201 202 ring->cqn = cq; 203 ring->prod = 0; 204 ring->cons = 0xffffffff; 205 ring->last_nr_txbb = 1; 206 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info)); 207 memset(ring->buf, 0, ring->buf_size); 208 209 ring->qp_state = MLX4_QP_STATE_RST; 210 ring->doorbell_qpn = cpu_to_be32(ring->qp.qpn << 8); 211 ring->mr_key = cpu_to_be32(mdev->mr.key); 212 213 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, 214 ring->cqn, user_prio, &ring->context); 215 if (ring->bf_alloced) 216 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); 217 218 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, 219 &ring->qp, &ring->qp_state); 220 if (!cpumask_empty(&ring->affinity_mask)) 221 netif_set_xps_queue(priv->dev, &ring->affinity_mask, 222 ring->queue_index); 223 224 return err; 225 } 226 227 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, 228 struct mlx4_en_tx_ring *ring) 229 { 230 struct mlx4_en_dev *mdev = priv->mdev; 231 232 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, 233 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); 234 } 235 236 static inline bool mlx4_en_is_tx_ring_full(struct mlx4_en_tx_ring *ring) 237 { 238 return ring->prod - ring->cons > ring->full_size; 239 } 240 241 static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, 242 struct mlx4_en_tx_ring *ring, int index, 243 u8 owner) 244 { 245 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT)); 246 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; 247 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 248 void *end = ring->buf + ring->buf_size; 249 __be32 *ptr = (__be32 *)tx_desc; 250 int i; 251 252 /* Optimize the common case when there are no wraparounds */ 253 if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { 254 /* Stamp the freed descriptor */ 255 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; 256 i += STAMP_STRIDE) { 257 *ptr = stamp; 258 ptr += STAMP_DWORDS; 259 } 260 } else { 261 /* Stamp the freed descriptor */ 262 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; 263 i += STAMP_STRIDE) { 264 *ptr = stamp; 265 ptr += STAMP_DWORDS; 266 if ((void *)ptr >= end) { 267 ptr = ring->buf; 268 stamp ^= cpu_to_be32(0x80000000); 269 } 270 } 271 } 272 } 273 274 275 static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, 276 struct mlx4_en_tx_ring *ring, 277 int index, u8 owner, u64 timestamp) 278 { 279 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 280 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; 281 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset; 282 void *end = ring->buf + ring->buf_size; 283 struct sk_buff *skb = tx_info->skb; 284 int nr_maps = tx_info->nr_maps; 285 int i; 286 287 /* We do not touch skb here, so prefetch skb->users location 288 * to speedup consume_skb() 289 */ 290 prefetchw(&skb->users); 291 292 if (unlikely(timestamp)) { 293 struct skb_shared_hwtstamps hwts; 294 295 mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp); 296 skb_tstamp_tx(skb, &hwts); 297 } 298 299 /* Optimize the common case when there are no wraparounds */ 300 if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { 301 if (!tx_info->inl) { 302 if (tx_info->linear) 303 dma_unmap_single(priv->ddev, 304 tx_info->map0_dma, 305 tx_info->map0_byte_count, 306 PCI_DMA_TODEVICE); 307 else 308 dma_unmap_page(priv->ddev, 309 tx_info->map0_dma, 310 tx_info->map0_byte_count, 311 PCI_DMA_TODEVICE); 312 for (i = 1; i < nr_maps; i++) { 313 data++; 314 dma_unmap_page(priv->ddev, 315 (dma_addr_t)be64_to_cpu(data->addr), 316 be32_to_cpu(data->byte_count), 317 PCI_DMA_TODEVICE); 318 } 319 } 320 } else { 321 if (!tx_info->inl) { 322 if ((void *) data >= end) { 323 data = ring->buf + ((void *)data - end); 324 } 325 326 if (tx_info->linear) 327 dma_unmap_single(priv->ddev, 328 tx_info->map0_dma, 329 tx_info->map0_byte_count, 330 PCI_DMA_TODEVICE); 331 else 332 dma_unmap_page(priv->ddev, 333 tx_info->map0_dma, 334 tx_info->map0_byte_count, 335 PCI_DMA_TODEVICE); 336 for (i = 1; i < nr_maps; i++) { 337 data++; 338 /* Check for wraparound before unmapping */ 339 if ((void *) data >= end) 340 data = ring->buf; 341 dma_unmap_page(priv->ddev, 342 (dma_addr_t)be64_to_cpu(data->addr), 343 be32_to_cpu(data->byte_count), 344 PCI_DMA_TODEVICE); 345 } 346 } 347 } 348 dev_consume_skb_any(skb); 349 return tx_info->nr_txbb; 350 } 351 352 353 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) 354 { 355 struct mlx4_en_priv *priv = netdev_priv(dev); 356 int cnt = 0; 357 358 /* Skip last polled descriptor */ 359 ring->cons += ring->last_nr_txbb; 360 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", 361 ring->cons, ring->prod); 362 363 if ((u32) (ring->prod - ring->cons) > ring->size) { 364 if (netif_msg_tx_err(priv)) 365 en_warn(priv, "Tx consumer passed producer!\n"); 366 return 0; 367 } 368 369 while (ring->cons != ring->prod) { 370 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, 371 ring->cons & ring->size_mask, 372 !!(ring->cons & ring->size), 0); 373 ring->cons += ring->last_nr_txbb; 374 cnt++; 375 } 376 377 netdev_tx_reset_queue(ring->tx_queue); 378 379 if (cnt) 380 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); 381 382 return cnt; 383 } 384 385 static bool mlx4_en_process_tx_cq(struct net_device *dev, 386 struct mlx4_en_cq *cq) 387 { 388 struct mlx4_en_priv *priv = netdev_priv(dev); 389 struct mlx4_cq *mcq = &cq->mcq; 390 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 391 struct mlx4_cqe *cqe; 392 u16 index; 393 u16 new_index, ring_index, stamp_index; 394 u32 txbbs_skipped = 0; 395 u32 txbbs_stamp = 0; 396 u32 cons_index = mcq->cons_index; 397 int size = cq->size; 398 u32 size_mask = ring->size_mask; 399 struct mlx4_cqe *buf = cq->buf; 400 u32 packets = 0; 401 u32 bytes = 0; 402 int factor = priv->cqe_factor; 403 u64 timestamp = 0; 404 int done = 0; 405 int budget = priv->tx_work_limit; 406 u32 last_nr_txbb; 407 u32 ring_cons; 408 409 if (!priv->port_up) 410 return true; 411 412 netdev_txq_bql_complete_prefetchw(ring->tx_queue); 413 414 index = cons_index & size_mask; 415 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; 416 last_nr_txbb = ACCESS_ONCE(ring->last_nr_txbb); 417 ring_cons = ACCESS_ONCE(ring->cons); 418 ring_index = ring_cons & size_mask; 419 stamp_index = ring_index; 420 421 /* Process all completed CQEs */ 422 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 423 cons_index & size) && (done < budget)) { 424 /* 425 * make sure we read the CQE after we read the 426 * ownership bit 427 */ 428 dma_rmb(); 429 430 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 431 MLX4_CQE_OPCODE_ERROR)) { 432 struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe; 433 434 en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n", 435 cqe_err->vendor_err_syndrome, 436 cqe_err->syndrome); 437 } 438 439 /* Skip over last polled CQE */ 440 new_index = be16_to_cpu(cqe->wqe_index) & size_mask; 441 442 do { 443 txbbs_skipped += last_nr_txbb; 444 ring_index = (ring_index + last_nr_txbb) & size_mask; 445 if (ring->tx_info[ring_index].ts_requested) 446 timestamp = mlx4_en_get_cqe_ts(cqe); 447 448 /* free next descriptor */ 449 last_nr_txbb = mlx4_en_free_tx_desc( 450 priv, ring, ring_index, 451 !!((ring_cons + txbbs_skipped) & 452 ring->size), timestamp); 453 454 mlx4_en_stamp_wqe(priv, ring, stamp_index, 455 !!((ring_cons + txbbs_stamp) & 456 ring->size)); 457 stamp_index = ring_index; 458 txbbs_stamp = txbbs_skipped; 459 packets++; 460 bytes += ring->tx_info[ring_index].nr_bytes; 461 } while ((++done < budget) && (ring_index != new_index)); 462 463 ++cons_index; 464 index = cons_index & size_mask; 465 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; 466 } 467 468 469 /* 470 * To prevent CQ overflow we first update CQ consumer and only then 471 * the ring consumer. 472 */ 473 mcq->cons_index = cons_index; 474 mlx4_cq_set_ci(mcq); 475 wmb(); 476 477 /* we want to dirty this cache line once */ 478 ACCESS_ONCE(ring->last_nr_txbb) = last_nr_txbb; 479 ACCESS_ONCE(ring->cons) = ring_cons + txbbs_skipped; 480 481 netdev_tx_completed_queue(ring->tx_queue, packets, bytes); 482 483 /* Wakeup Tx queue if this stopped, and ring is not full. 484 */ 485 if (netif_tx_queue_stopped(ring->tx_queue) && 486 !mlx4_en_is_tx_ring_full(ring)) { 487 netif_tx_wake_queue(ring->tx_queue); 488 ring->wake_queue++; 489 } 490 return done < budget; 491 } 492 493 void mlx4_en_tx_irq(struct mlx4_cq *mcq) 494 { 495 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 496 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 497 498 if (likely(priv->port_up)) 499 napi_schedule_irqoff(&cq->napi); 500 else 501 mlx4_en_arm_cq(priv, cq); 502 } 503 504 /* TX CQ polling - called by NAPI */ 505 int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget) 506 { 507 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); 508 struct net_device *dev = cq->dev; 509 struct mlx4_en_priv *priv = netdev_priv(dev); 510 int clean_complete; 511 512 clean_complete = mlx4_en_process_tx_cq(dev, cq); 513 if (!clean_complete) 514 return budget; 515 516 napi_complete(napi); 517 mlx4_en_arm_cq(priv, cq); 518 519 return 0; 520 } 521 522 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv, 523 struct mlx4_en_tx_ring *ring, 524 u32 index, 525 unsigned int desc_size) 526 { 527 u32 copy = (ring->size - index) * TXBB_SIZE; 528 int i; 529 530 for (i = desc_size - copy - 4; i >= 0; i -= 4) { 531 if ((i & (TXBB_SIZE - 1)) == 0) 532 wmb(); 533 534 *((u32 *) (ring->buf + i)) = 535 *((u32 *) (ring->bounce_buf + copy + i)); 536 } 537 538 for (i = copy - 4; i >= 4 ; i -= 4) { 539 if ((i & (TXBB_SIZE - 1)) == 0) 540 wmb(); 541 542 *((u32 *) (ring->buf + index * TXBB_SIZE + i)) = 543 *((u32 *) (ring->bounce_buf + i)); 544 } 545 546 /* Return real descriptor location */ 547 return ring->buf + index * TXBB_SIZE; 548 } 549 550 /* Decide if skb can be inlined in tx descriptor to avoid dma mapping 551 * 552 * It seems strange we do not simply use skb_copy_bits(). 553 * This would allow to inline all skbs iff skb->len <= inline_thold 554 * 555 * Note that caller already checked skb was not a gso packet 556 */ 557 static bool is_inline(int inline_thold, const struct sk_buff *skb, 558 const struct skb_shared_info *shinfo, 559 void **pfrag) 560 { 561 void *ptr; 562 563 if (skb->len > inline_thold || !inline_thold) 564 return false; 565 566 if (shinfo->nr_frags == 1) { 567 ptr = skb_frag_address_safe(&shinfo->frags[0]); 568 if (unlikely(!ptr)) 569 return false; 570 *pfrag = ptr; 571 return true; 572 } 573 if (shinfo->nr_frags) 574 return false; 575 return true; 576 } 577 578 static int inline_size(const struct sk_buff *skb) 579 { 580 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg) 581 <= MLX4_INLINE_ALIGN) 582 return ALIGN(skb->len + CTRL_SIZE + 583 sizeof(struct mlx4_wqe_inline_seg), 16); 584 else 585 return ALIGN(skb->len + CTRL_SIZE + 2 * 586 sizeof(struct mlx4_wqe_inline_seg), 16); 587 } 588 589 static int get_real_size(const struct sk_buff *skb, 590 const struct skb_shared_info *shinfo, 591 struct net_device *dev, 592 int *lso_header_size, 593 bool *inline_ok, 594 void **pfrag) 595 { 596 struct mlx4_en_priv *priv = netdev_priv(dev); 597 int real_size; 598 599 if (shinfo->gso_size) { 600 *inline_ok = false; 601 if (skb->encapsulation) 602 *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb); 603 else 604 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb); 605 real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE + 606 ALIGN(*lso_header_size + 4, DS_SIZE); 607 if (unlikely(*lso_header_size != skb_headlen(skb))) { 608 /* We add a segment for the skb linear buffer only if 609 * it contains data */ 610 if (*lso_header_size < skb_headlen(skb)) 611 real_size += DS_SIZE; 612 else { 613 if (netif_msg_tx_err(priv)) 614 en_warn(priv, "Non-linear headers\n"); 615 return 0; 616 } 617 } 618 } else { 619 *lso_header_size = 0; 620 *inline_ok = is_inline(priv->prof->inline_thold, skb, 621 shinfo, pfrag); 622 623 if (*inline_ok) 624 real_size = inline_size(skb); 625 else 626 real_size = CTRL_SIZE + 627 (shinfo->nr_frags + 1) * DS_SIZE; 628 } 629 630 return real_size; 631 } 632 633 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, 634 const struct sk_buff *skb, 635 const struct skb_shared_info *shinfo, 636 int real_size, u16 *vlan_tag, 637 int tx_ind, void *fragptr) 638 { 639 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl; 640 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl; 641 unsigned int hlen = skb_headlen(skb); 642 643 if (skb->len <= spc) { 644 if (likely(skb->len >= MIN_PKT_LEN)) { 645 inl->byte_count = cpu_to_be32(1 << 31 | skb->len); 646 } else { 647 inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN); 648 memset(((void *)(inl + 1)) + skb->len, 0, 649 MIN_PKT_LEN - skb->len); 650 } 651 skb_copy_from_linear_data(skb, inl + 1, hlen); 652 if (shinfo->nr_frags) 653 memcpy(((void *)(inl + 1)) + hlen, fragptr, 654 skb_frag_size(&shinfo->frags[0])); 655 656 } else { 657 inl->byte_count = cpu_to_be32(1 << 31 | spc); 658 if (hlen <= spc) { 659 skb_copy_from_linear_data(skb, inl + 1, hlen); 660 if (hlen < spc) { 661 memcpy(((void *)(inl + 1)) + hlen, 662 fragptr, spc - hlen); 663 fragptr += spc - hlen; 664 } 665 inl = (void *) (inl + 1) + spc; 666 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc); 667 } else { 668 skb_copy_from_linear_data(skb, inl + 1, spc); 669 inl = (void *) (inl + 1) + spc; 670 skb_copy_from_linear_data_offset(skb, spc, inl + 1, 671 hlen - spc); 672 if (shinfo->nr_frags) 673 memcpy(((void *)(inl + 1)) + hlen - spc, 674 fragptr, 675 skb_frag_size(&shinfo->frags[0])); 676 } 677 678 dma_wmb(); 679 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc)); 680 } 681 } 682 683 u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb, 684 void *accel_priv, select_queue_fallback_t fallback) 685 { 686 struct mlx4_en_priv *priv = netdev_priv(dev); 687 u16 rings_p_up = priv->num_tx_rings_p_up; 688 u8 up = 0; 689 690 if (dev->num_tc) 691 return skb_tx_hash(dev, skb); 692 693 if (skb_vlan_tag_present(skb)) 694 up = skb_vlan_tag_get(skb) >> VLAN_PRIO_SHIFT; 695 696 return fallback(dev, skb) % rings_p_up + up * rings_p_up; 697 } 698 699 static void mlx4_bf_copy(void __iomem *dst, const void *src, 700 unsigned int bytecnt) 701 { 702 __iowrite64_copy(dst, src, bytecnt / 8); 703 } 704 705 netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev) 706 { 707 struct skb_shared_info *shinfo = skb_shinfo(skb); 708 struct mlx4_en_priv *priv = netdev_priv(dev); 709 struct device *ddev = priv->ddev; 710 struct mlx4_en_tx_ring *ring; 711 struct mlx4_en_tx_desc *tx_desc; 712 struct mlx4_wqe_data_seg *data; 713 struct mlx4_en_tx_info *tx_info; 714 int tx_ind = 0; 715 int nr_txbb; 716 int desc_size; 717 int real_size; 718 u32 index, bf_index; 719 __be32 op_own; 720 u16 vlan_tag = 0; 721 int i_frag; 722 int lso_header_size; 723 void *fragptr = NULL; 724 bool bounce = false; 725 bool send_doorbell; 726 bool stop_queue; 727 bool inline_ok; 728 u32 ring_cons; 729 730 if (!priv->port_up) 731 goto tx_drop; 732 733 tx_ind = skb_get_queue_mapping(skb); 734 ring = priv->tx_ring[tx_ind]; 735 736 /* fetch ring->cons far ahead before needing it to avoid stall */ 737 ring_cons = ACCESS_ONCE(ring->cons); 738 739 real_size = get_real_size(skb, shinfo, dev, &lso_header_size, 740 &inline_ok, &fragptr); 741 if (unlikely(!real_size)) 742 goto tx_drop; 743 744 /* Align descriptor to TXBB size */ 745 desc_size = ALIGN(real_size, TXBB_SIZE); 746 nr_txbb = desc_size / TXBB_SIZE; 747 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) { 748 if (netif_msg_tx_err(priv)) 749 en_warn(priv, "Oversized header or SG list\n"); 750 goto tx_drop; 751 } 752 753 if (skb_vlan_tag_present(skb)) 754 vlan_tag = skb_vlan_tag_get(skb); 755 756 757 netdev_txq_bql_enqueue_prefetchw(ring->tx_queue); 758 759 /* Track current inflight packets for performance analysis */ 760 AVG_PERF_COUNTER(priv->pstats.inflight_avg, 761 (u32)(ring->prod - ring_cons - 1)); 762 763 /* Packet is good - grab an index and transmit it */ 764 index = ring->prod & ring->size_mask; 765 bf_index = ring->prod; 766 767 /* See if we have enough space for whole descriptor TXBB for setting 768 * SW ownership on next descriptor; if not, use a bounce buffer. */ 769 if (likely(index + nr_txbb <= ring->size)) 770 tx_desc = ring->buf + index * TXBB_SIZE; 771 else { 772 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf; 773 bounce = true; 774 } 775 776 /* Save skb in tx_info ring */ 777 tx_info = &ring->tx_info[index]; 778 tx_info->skb = skb; 779 tx_info->nr_txbb = nr_txbb; 780 781 data = &tx_desc->data; 782 if (lso_header_size) 783 data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4, 784 DS_SIZE)); 785 786 /* valid only for none inline segments */ 787 tx_info->data_offset = (void *)data - (void *)tx_desc; 788 789 tx_info->inl = inline_ok; 790 791 tx_info->linear = (lso_header_size < skb_headlen(skb) && 792 !inline_ok) ? 1 : 0; 793 794 tx_info->nr_maps = shinfo->nr_frags + tx_info->linear; 795 data += tx_info->nr_maps - 1; 796 797 if (!tx_info->inl) { 798 dma_addr_t dma = 0; 799 u32 byte_count = 0; 800 801 /* Map fragments if any */ 802 for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) { 803 const struct skb_frag_struct *frag; 804 805 frag = &shinfo->frags[i_frag]; 806 byte_count = skb_frag_size(frag); 807 dma = skb_frag_dma_map(ddev, frag, 808 0, byte_count, 809 DMA_TO_DEVICE); 810 if (dma_mapping_error(ddev, dma)) 811 goto tx_drop_unmap; 812 813 data->addr = cpu_to_be64(dma); 814 data->lkey = ring->mr_key; 815 dma_wmb(); 816 data->byte_count = cpu_to_be32(byte_count); 817 --data; 818 } 819 820 /* Map linear part if needed */ 821 if (tx_info->linear) { 822 byte_count = skb_headlen(skb) - lso_header_size; 823 824 dma = dma_map_single(ddev, skb->data + 825 lso_header_size, byte_count, 826 PCI_DMA_TODEVICE); 827 if (dma_mapping_error(ddev, dma)) 828 goto tx_drop_unmap; 829 830 data->addr = cpu_to_be64(dma); 831 data->lkey = ring->mr_key; 832 dma_wmb(); 833 data->byte_count = cpu_to_be32(byte_count); 834 } 835 /* tx completion can avoid cache line miss for common cases */ 836 tx_info->map0_dma = dma; 837 tx_info->map0_byte_count = byte_count; 838 } 839 840 /* 841 * For timestamping add flag to skb_shinfo and 842 * set flag for further reference 843 */ 844 tx_info->ts_requested = 0; 845 if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON && 846 shinfo->tx_flags & SKBTX_HW_TSTAMP)) { 847 shinfo->tx_flags |= SKBTX_IN_PROGRESS; 848 tx_info->ts_requested = 1; 849 } 850 851 /* Prepare ctrl segement apart opcode+ownership, which depends on 852 * whether LSO is used */ 853 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; 854 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 855 if (!skb->encapsulation) 856 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | 857 MLX4_WQE_CTRL_TCP_UDP_CSUM); 858 else 859 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); 860 ring->tx_csum++; 861 } 862 863 if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) { 864 struct ethhdr *ethh; 865 866 /* Copy dst mac address to wqe. This allows loopback in eSwitch, 867 * so that VFs and PF can communicate with each other 868 */ 869 ethh = (struct ethhdr *)skb->data; 870 tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest); 871 tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2)); 872 } 873 874 /* Handle LSO (TSO) packets */ 875 if (lso_header_size) { 876 int i; 877 878 /* Mark opcode as LSO */ 879 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) | 880 ((ring->prod & ring->size) ? 881 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 882 883 /* Fill in the LSO prefix */ 884 tx_desc->lso.mss_hdr_size = cpu_to_be32( 885 shinfo->gso_size << 16 | lso_header_size); 886 887 /* Copy headers; 888 * note that we already verified that it is linear */ 889 memcpy(tx_desc->lso.header, skb->data, lso_header_size); 890 891 ring->tso_packets++; 892 893 i = ((skb->len - lso_header_size) / shinfo->gso_size) + 894 !!((skb->len - lso_header_size) % shinfo->gso_size); 895 tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size; 896 ring->packets += i; 897 } else { 898 /* Normal (Non LSO) packet */ 899 op_own = cpu_to_be32(MLX4_OPCODE_SEND) | 900 ((ring->prod & ring->size) ? 901 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 902 tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN); 903 ring->packets++; 904 } 905 ring->bytes += tx_info->nr_bytes; 906 netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes); 907 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len); 908 909 if (tx_info->inl) 910 build_inline_wqe(tx_desc, skb, shinfo, real_size, &vlan_tag, 911 tx_ind, fragptr); 912 913 if (skb->encapsulation) { 914 struct iphdr *ipv4 = (struct iphdr *)skb_inner_network_header(skb); 915 if (ipv4->protocol == IPPROTO_TCP || ipv4->protocol == IPPROTO_UDP) 916 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP); 917 else 918 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP); 919 } 920 921 ring->prod += nr_txbb; 922 923 /* If we used a bounce buffer then copy descriptor back into place */ 924 if (unlikely(bounce)) 925 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size); 926 927 skb_tx_timestamp(skb); 928 929 /* Check available TXBBs And 2K spare for prefetch */ 930 stop_queue = mlx4_en_is_tx_ring_full(ring); 931 if (unlikely(stop_queue)) { 932 netif_tx_stop_queue(ring->tx_queue); 933 ring->queue_stopped++; 934 } 935 send_doorbell = !skb->xmit_more || netif_xmit_stopped(ring->tx_queue); 936 937 real_size = (real_size / 16) & 0x3f; 938 939 if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && 940 !skb_vlan_tag_present(skb) && send_doorbell) { 941 tx_desc->ctrl.bf_qpn = ring->doorbell_qpn | 942 cpu_to_be32(real_size); 943 944 op_own |= htonl((bf_index & 0xffff) << 8); 945 /* Ensure new descriptor hits memory 946 * before setting ownership of this descriptor to HW 947 */ 948 dma_wmb(); 949 tx_desc->ctrl.owner_opcode = op_own; 950 951 wmb(); 952 953 mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl, 954 desc_size); 955 956 wmb(); 957 958 ring->bf.offset ^= ring->bf.buf_size; 959 } else { 960 tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag); 961 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * 962 !!skb_vlan_tag_present(skb); 963 tx_desc->ctrl.fence_size = real_size; 964 965 /* Ensure new descriptor hits memory 966 * before setting ownership of this descriptor to HW 967 */ 968 dma_wmb(); 969 tx_desc->ctrl.owner_opcode = op_own; 970 if (send_doorbell) { 971 wmb(); 972 /* Since there is no iowrite*_native() that writes the 973 * value as is, without byteswapping - using the one 974 * the doesn't do byteswapping in the relevant arch 975 * endianness. 976 */ 977 #if defined(__LITTLE_ENDIAN) 978 iowrite32( 979 #else 980 iowrite32be( 981 #endif 982 ring->doorbell_qpn, 983 ring->bf.uar->map + MLX4_SEND_DOORBELL); 984 } else { 985 ring->xmit_more++; 986 } 987 } 988 989 if (unlikely(stop_queue)) { 990 /* If queue was emptied after the if (stop_queue) , and before 991 * the netif_tx_stop_queue() - need to wake the queue, 992 * or else it will remain stopped forever. 993 * Need a memory barrier to make sure ring->cons was not 994 * updated before queue was stopped. 995 */ 996 smp_rmb(); 997 998 ring_cons = ACCESS_ONCE(ring->cons); 999 if (unlikely(!mlx4_en_is_tx_ring_full(ring))) { 1000 netif_tx_wake_queue(ring->tx_queue); 1001 ring->wake_queue++; 1002 } 1003 } 1004 return NETDEV_TX_OK; 1005 1006 tx_drop_unmap: 1007 en_err(priv, "DMA mapping error\n"); 1008 1009 while (++i_frag < shinfo->nr_frags) { 1010 ++data; 1011 dma_unmap_page(ddev, (dma_addr_t) be64_to_cpu(data->addr), 1012 be32_to_cpu(data->byte_count), 1013 PCI_DMA_TODEVICE); 1014 } 1015 1016 tx_drop: 1017 dev_kfree_skb_any(skb); 1018 priv->stats.tx_dropped++; 1019 return NETDEV_TX_OK; 1020 } 1021 1022