1 /* 2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #include <linux/bpf.h> 35 #include <linux/bpf_trace.h> 36 #include <linux/mlx4/cq.h> 37 #include <linux/slab.h> 38 #include <linux/mlx4/qp.h> 39 #include <linux/skbuff.h> 40 #include <linux/rculist.h> 41 #include <linux/if_ether.h> 42 #include <linux/if_vlan.h> 43 #include <linux/vmalloc.h> 44 #include <linux/irq.h> 45 46 #include <net/ip.h> 47 #if IS_ENABLED(CONFIG_IPV6) 48 #include <net/ip6_checksum.h> 49 #endif 50 51 #include "mlx4_en.h" 52 53 static int mlx4_alloc_page(struct mlx4_en_priv *priv, 54 struct mlx4_en_rx_alloc *frag, 55 gfp_t gfp) 56 { 57 struct page *page; 58 dma_addr_t dma; 59 60 page = alloc_page(gfp); 61 if (unlikely(!page)) 62 return -ENOMEM; 63 dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE, priv->dma_dir); 64 if (unlikely(dma_mapping_error(priv->ddev, dma))) { 65 __free_page(page); 66 return -ENOMEM; 67 } 68 frag->page = page; 69 frag->dma = dma; 70 frag->page_offset = priv->rx_headroom; 71 return 0; 72 } 73 74 static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv, 75 struct mlx4_en_rx_ring *ring, 76 struct mlx4_en_rx_desc *rx_desc, 77 struct mlx4_en_rx_alloc *frags, 78 gfp_t gfp) 79 { 80 int i; 81 82 for (i = 0; i < priv->num_frags; i++, frags++) { 83 if (!frags->page) { 84 if (mlx4_alloc_page(priv, frags, gfp)) 85 return -ENOMEM; 86 ring->rx_alloc_pages++; 87 } 88 rx_desc->data[i].addr = cpu_to_be64(frags->dma + 89 frags->page_offset); 90 } 91 return 0; 92 } 93 94 static void mlx4_en_free_frag(const struct mlx4_en_priv *priv, 95 struct mlx4_en_rx_alloc *frag) 96 { 97 if (frag->page) { 98 dma_unmap_page(priv->ddev, frag->dma, 99 PAGE_SIZE, priv->dma_dir); 100 __free_page(frag->page); 101 } 102 /* We need to clear all fields, otherwise a change of priv->log_rx_info 103 * could lead to see garbage later in frag->page. 104 */ 105 memset(frag, 0, sizeof(*frag)); 106 } 107 108 static void mlx4_en_init_rx_desc(const struct mlx4_en_priv *priv, 109 struct mlx4_en_rx_ring *ring, int index) 110 { 111 struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; 112 int possible_frags; 113 int i; 114 115 /* Set size and memtype fields */ 116 for (i = 0; i < priv->num_frags; i++) { 117 rx_desc->data[i].byte_count = 118 cpu_to_be32(priv->frag_info[i].frag_size); 119 rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); 120 } 121 122 /* If the number of used fragments does not fill up the ring stride, 123 * remaining (unused) fragments must be padded with null address/size 124 * and a special memory key */ 125 possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; 126 for (i = priv->num_frags; i < possible_frags; i++) { 127 rx_desc->data[i].byte_count = 0; 128 rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); 129 rx_desc->data[i].addr = 0; 130 } 131 } 132 133 static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, 134 struct mlx4_en_rx_ring *ring, int index, 135 gfp_t gfp) 136 { 137 struct mlx4_en_rx_desc *rx_desc = ring->buf + 138 (index << ring->log_stride); 139 struct mlx4_en_rx_alloc *frags = ring->rx_info + 140 (index << priv->log_rx_info); 141 if (likely(ring->page_cache.index > 0)) { 142 /* XDP uses a single page per frame */ 143 if (!frags->page) { 144 ring->page_cache.index--; 145 frags->page = ring->page_cache.buf[ring->page_cache.index].page; 146 frags->dma = ring->page_cache.buf[ring->page_cache.index].dma; 147 } 148 frags->page_offset = XDP_PACKET_HEADROOM; 149 rx_desc->data[0].addr = cpu_to_be64(frags->dma + 150 XDP_PACKET_HEADROOM); 151 return 0; 152 } 153 154 return mlx4_en_alloc_frags(priv, ring, rx_desc, frags, gfp); 155 } 156 157 static bool mlx4_en_is_ring_empty(const struct mlx4_en_rx_ring *ring) 158 { 159 return ring->prod == ring->cons; 160 } 161 162 static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) 163 { 164 *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); 165 } 166 167 /* slow path */ 168 static void mlx4_en_free_rx_desc(const struct mlx4_en_priv *priv, 169 struct mlx4_en_rx_ring *ring, 170 int index) 171 { 172 struct mlx4_en_rx_alloc *frags; 173 int nr; 174 175 frags = ring->rx_info + (index << priv->log_rx_info); 176 for (nr = 0; nr < priv->num_frags; nr++) { 177 en_dbg(DRV, priv, "Freeing fragment:%d\n", nr); 178 mlx4_en_free_frag(priv, frags + nr); 179 } 180 } 181 182 /* Function not in fast-path */ 183 static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) 184 { 185 struct mlx4_en_rx_ring *ring; 186 int ring_ind; 187 int buf_ind; 188 int new_size; 189 190 for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { 191 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 192 ring = priv->rx_ring[ring_ind]; 193 194 if (mlx4_en_prepare_rx_desc(priv, ring, 195 ring->actual_size, 196 GFP_KERNEL)) { 197 if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { 198 en_err(priv, "Failed to allocate enough rx buffers\n"); 199 return -ENOMEM; 200 } else { 201 new_size = rounddown_pow_of_two(ring->actual_size); 202 en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n", 203 ring->actual_size, new_size); 204 goto reduce_rings; 205 } 206 } 207 ring->actual_size++; 208 ring->prod++; 209 } 210 } 211 return 0; 212 213 reduce_rings: 214 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 215 ring = priv->rx_ring[ring_ind]; 216 while (ring->actual_size > new_size) { 217 ring->actual_size--; 218 ring->prod--; 219 mlx4_en_free_rx_desc(priv, ring, ring->actual_size); 220 } 221 } 222 223 return 0; 224 } 225 226 static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, 227 struct mlx4_en_rx_ring *ring) 228 { 229 int index; 230 231 en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", 232 ring->cons, ring->prod); 233 234 /* Unmap and free Rx buffers */ 235 for (index = 0; index < ring->size; index++) { 236 en_dbg(DRV, priv, "Processing descriptor:%d\n", index); 237 mlx4_en_free_rx_desc(priv, ring, index); 238 } 239 ring->cons = 0; 240 ring->prod = 0; 241 } 242 243 void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev) 244 { 245 int i; 246 int num_of_eqs; 247 int num_rx_rings; 248 struct mlx4_dev *dev = mdev->dev; 249 250 mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) { 251 num_of_eqs = max_t(int, MIN_RX_RINGS, 252 min_t(int, 253 mlx4_get_eqs_per_port(mdev->dev, i), 254 DEF_RX_RINGS)); 255 256 num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS : 257 min_t(int, num_of_eqs, num_online_cpus()); 258 mdev->profile.prof[i].rx_ring_num = 259 rounddown_pow_of_two(num_rx_rings); 260 } 261 } 262 263 int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, 264 struct mlx4_en_rx_ring **pring, 265 u32 size, u16 stride, int node, int queue_index) 266 { 267 struct mlx4_en_dev *mdev = priv->mdev; 268 struct mlx4_en_rx_ring *ring; 269 int err = -ENOMEM; 270 int tmp; 271 272 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); 273 if (!ring) { 274 en_err(priv, "Failed to allocate RX ring structure\n"); 275 return -ENOMEM; 276 } 277 278 ring->prod = 0; 279 ring->cons = 0; 280 ring->size = size; 281 ring->size_mask = size - 1; 282 ring->stride = stride; 283 ring->log_stride = ffs(ring->stride) - 1; 284 ring->buf_size = ring->size * ring->stride + TXBB_SIZE; 285 286 if (xdp_rxq_info_reg(&ring->xdp_rxq, priv->dev, queue_index) < 0) 287 goto err_ring; 288 289 tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * 290 sizeof(struct mlx4_en_rx_alloc)); 291 ring->rx_info = kvzalloc_node(tmp, GFP_KERNEL, node); 292 if (!ring->rx_info) { 293 err = -ENOMEM; 294 goto err_xdp_info; 295 } 296 297 en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", 298 ring->rx_info, tmp); 299 300 /* Allocate HW buffers on provided NUMA node */ 301 set_dev_node(&mdev->dev->persist->pdev->dev, node); 302 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 303 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); 304 if (err) 305 goto err_info; 306 307 ring->buf = ring->wqres.buf.direct.buf; 308 309 ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter; 310 311 *pring = ring; 312 return 0; 313 314 err_info: 315 kvfree(ring->rx_info); 316 ring->rx_info = NULL; 317 err_xdp_info: 318 xdp_rxq_info_unreg(&ring->xdp_rxq); 319 err_ring: 320 kfree(ring); 321 *pring = NULL; 322 323 return err; 324 } 325 326 int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) 327 { 328 struct mlx4_en_rx_ring *ring; 329 int i; 330 int ring_ind; 331 int err; 332 int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + 333 DS_SIZE * priv->num_frags); 334 335 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 336 ring = priv->rx_ring[ring_ind]; 337 338 ring->prod = 0; 339 ring->cons = 0; 340 ring->actual_size = 0; 341 ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn; 342 343 ring->stride = stride; 344 if (ring->stride <= TXBB_SIZE) { 345 /* Stamp first unused send wqe */ 346 __be32 *ptr = (__be32 *)ring->buf; 347 __be32 stamp = cpu_to_be32(1 << STAMP_SHIFT); 348 *ptr = stamp; 349 /* Move pointer to start of rx section */ 350 ring->buf += TXBB_SIZE; 351 } 352 353 ring->log_stride = ffs(ring->stride) - 1; 354 ring->buf_size = ring->size * ring->stride; 355 356 memset(ring->buf, 0, ring->buf_size); 357 mlx4_en_update_rx_prod_db(ring); 358 359 /* Initialize all descriptors */ 360 for (i = 0; i < ring->size; i++) 361 mlx4_en_init_rx_desc(priv, ring, i); 362 } 363 err = mlx4_en_fill_rx_buffers(priv); 364 if (err) 365 goto err_buffers; 366 367 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 368 ring = priv->rx_ring[ring_ind]; 369 370 ring->size_mask = ring->actual_size - 1; 371 mlx4_en_update_rx_prod_db(ring); 372 } 373 374 return 0; 375 376 err_buffers: 377 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) 378 mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]); 379 380 ring_ind = priv->rx_ring_num - 1; 381 while (ring_ind >= 0) { 382 if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE) 383 priv->rx_ring[ring_ind]->buf -= TXBB_SIZE; 384 ring_ind--; 385 } 386 return err; 387 } 388 389 /* We recover from out of memory by scheduling our napi poll 390 * function (mlx4_en_process_cq), which tries to allocate 391 * all missing RX buffers (call to mlx4_en_refill_rx_buffers). 392 */ 393 void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv) 394 { 395 int ring; 396 397 if (!priv->port_up) 398 return; 399 400 for (ring = 0; ring < priv->rx_ring_num; ring++) { 401 if (mlx4_en_is_ring_empty(priv->rx_ring[ring])) { 402 local_bh_disable(); 403 napi_reschedule(&priv->rx_cq[ring]->napi); 404 local_bh_enable(); 405 } 406 } 407 } 408 409 /* When the rx ring is running in page-per-packet mode, a released frame can go 410 * directly into a small cache, to avoid unmapping or touching the page 411 * allocator. In bpf prog performance scenarios, buffers are either forwarded 412 * or dropped, never converted to skbs, so every page can come directly from 413 * this cache when it is sized to be a multiple of the napi budget. 414 */ 415 bool mlx4_en_rx_recycle(struct mlx4_en_rx_ring *ring, 416 struct mlx4_en_rx_alloc *frame) 417 { 418 struct mlx4_en_page_cache *cache = &ring->page_cache; 419 420 if (cache->index >= MLX4_EN_CACHE_SIZE) 421 return false; 422 423 cache->buf[cache->index].page = frame->page; 424 cache->buf[cache->index].dma = frame->dma; 425 cache->index++; 426 return true; 427 } 428 429 void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, 430 struct mlx4_en_rx_ring **pring, 431 u32 size, u16 stride) 432 { 433 struct mlx4_en_dev *mdev = priv->mdev; 434 struct mlx4_en_rx_ring *ring = *pring; 435 struct bpf_prog *old_prog; 436 437 old_prog = rcu_dereference_protected( 438 ring->xdp_prog, 439 lockdep_is_held(&mdev->state_lock)); 440 if (old_prog) 441 bpf_prog_put(old_prog); 442 xdp_rxq_info_unreg(&ring->xdp_rxq); 443 mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE); 444 kvfree(ring->rx_info); 445 ring->rx_info = NULL; 446 kfree(ring); 447 *pring = NULL; 448 } 449 450 void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, 451 struct mlx4_en_rx_ring *ring) 452 { 453 int i; 454 455 for (i = 0; i < ring->page_cache.index; i++) { 456 dma_unmap_page(priv->ddev, ring->page_cache.buf[i].dma, 457 PAGE_SIZE, priv->dma_dir); 458 put_page(ring->page_cache.buf[i].page); 459 } 460 ring->page_cache.index = 0; 461 mlx4_en_free_rx_buf(priv, ring); 462 if (ring->stride <= TXBB_SIZE) 463 ring->buf -= TXBB_SIZE; 464 } 465 466 467 static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, 468 struct mlx4_en_rx_alloc *frags, 469 struct sk_buff *skb, 470 int length) 471 { 472 const struct mlx4_en_frag_info *frag_info = priv->frag_info; 473 unsigned int truesize = 0; 474 bool release = true; 475 int nr, frag_size; 476 struct page *page; 477 dma_addr_t dma; 478 479 /* Collect used fragments while replacing them in the HW descriptors */ 480 for (nr = 0;; frags++) { 481 frag_size = min_t(int, length, frag_info->frag_size); 482 483 page = frags->page; 484 if (unlikely(!page)) 485 goto fail; 486 487 dma = frags->dma; 488 dma_sync_single_range_for_cpu(priv->ddev, dma, frags->page_offset, 489 frag_size, priv->dma_dir); 490 491 __skb_fill_page_desc(skb, nr, page, frags->page_offset, 492 frag_size); 493 494 truesize += frag_info->frag_stride; 495 if (frag_info->frag_stride == PAGE_SIZE / 2) { 496 frags->page_offset ^= PAGE_SIZE / 2; 497 release = page_count(page) != 1 || 498 page_is_pfmemalloc(page) || 499 page_to_nid(page) != numa_mem_id(); 500 } else if (!priv->rx_headroom) { 501 /* rx_headroom for non XDP setup is always 0. 502 * When XDP is set, the above condition will 503 * guarantee page is always released. 504 */ 505 u32 sz_align = ALIGN(frag_size, SMP_CACHE_BYTES); 506 507 frags->page_offset += sz_align; 508 release = frags->page_offset + frag_info->frag_size > PAGE_SIZE; 509 } 510 if (release) { 511 dma_unmap_page(priv->ddev, dma, PAGE_SIZE, priv->dma_dir); 512 frags->page = NULL; 513 } else { 514 page_ref_inc(page); 515 } 516 517 nr++; 518 length -= frag_size; 519 if (!length) 520 break; 521 frag_info++; 522 } 523 skb->truesize += truesize; 524 return nr; 525 526 fail: 527 while (nr > 0) { 528 nr--; 529 __skb_frag_unref(skb_shinfo(skb)->frags + nr); 530 } 531 return 0; 532 } 533 534 static void validate_loopback(struct mlx4_en_priv *priv, void *va) 535 { 536 const unsigned char *data = va + ETH_HLEN; 537 int i; 538 539 for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++) { 540 if (data[i] != (unsigned char)i) 541 return; 542 } 543 /* Loopback found */ 544 priv->loopback_ok = 1; 545 } 546 547 static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv, 548 struct mlx4_en_rx_ring *ring) 549 { 550 u32 missing = ring->actual_size - (ring->prod - ring->cons); 551 552 /* Try to batch allocations, but not too much. */ 553 if (missing < 8) 554 return; 555 do { 556 if (mlx4_en_prepare_rx_desc(priv, ring, 557 ring->prod & ring->size_mask, 558 GFP_ATOMIC | __GFP_MEMALLOC)) 559 break; 560 ring->prod++; 561 } while (likely(--missing)); 562 563 mlx4_en_update_rx_prod_db(ring); 564 } 565 566 /* When hardware doesn't strip the vlan, we need to calculate the checksum 567 * over it and add it to the hardware's checksum calculation 568 */ 569 static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum, 570 struct vlan_hdr *vlanh) 571 { 572 return csum_add(hw_checksum, *(__wsum *)vlanh); 573 } 574 575 /* Although the stack expects checksum which doesn't include the pseudo 576 * header, the HW adds it. To address that, we are subtracting the pseudo 577 * header checksum from the checksum value provided by the HW. 578 */ 579 static int get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb, 580 struct iphdr *iph) 581 { 582 __u16 length_for_csum = 0; 583 __wsum csum_pseudo_header = 0; 584 __u8 ipproto = iph->protocol; 585 586 if (unlikely(ipproto == IPPROTO_SCTP)) 587 return -1; 588 589 length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2)); 590 csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr, 591 length_for_csum, ipproto, 0); 592 skb->csum = csum_sub(hw_checksum, csum_pseudo_header); 593 return 0; 594 } 595 596 #if IS_ENABLED(CONFIG_IPV6) 597 /* In IPv6 packets, hw_checksum lacks 6 bytes from IPv6 header: 598 * 4 first bytes : priority, version, flow_lbl 599 * and 2 additional bytes : nexthdr, hop_limit. 600 */ 601 static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb, 602 struct ipv6hdr *ipv6h) 603 { 604 __u8 nexthdr = ipv6h->nexthdr; 605 __wsum temp; 606 607 if (unlikely(nexthdr == IPPROTO_FRAGMENT || 608 nexthdr == IPPROTO_HOPOPTS || 609 nexthdr == IPPROTO_SCTP)) 610 return -1; 611 612 /* priority, version, flow_lbl */ 613 temp = csum_add(hw_checksum, *(__wsum *)ipv6h); 614 /* nexthdr and hop_limit */ 615 skb->csum = csum_add(temp, (__force __wsum)*(__be16 *)&ipv6h->nexthdr); 616 return 0; 617 } 618 #endif 619 620 #define short_frame(size) ((size) <= ETH_ZLEN + ETH_FCS_LEN) 621 622 /* We reach this function only after checking that any of 623 * the (IPv4 | IPv6) bits are set in cqe->status. 624 */ 625 static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va, 626 netdev_features_t dev_features) 627 { 628 __wsum hw_checksum = 0; 629 void *hdr; 630 631 /* CQE csum doesn't cover padding octets in short ethernet 632 * frames. And the pad field is appended prior to calculating 633 * and appending the FCS field. 634 * 635 * Detecting these padded frames requires to verify and parse 636 * IP headers, so we simply force all those small frames to skip 637 * checksum complete. 638 */ 639 if (short_frame(skb->len)) 640 return -EINVAL; 641 642 hdr = (u8 *)va + sizeof(struct ethhdr); 643 hw_checksum = csum_unfold((__force __sum16)cqe->checksum); 644 645 if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) && 646 !(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) { 647 hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr); 648 hdr += sizeof(struct vlan_hdr); 649 } 650 651 #if IS_ENABLED(CONFIG_IPV6) 652 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6)) 653 return get_fixed_ipv6_csum(hw_checksum, skb, hdr); 654 #endif 655 return get_fixed_ipv4_csum(hw_checksum, skb, hdr); 656 } 657 658 #if IS_ENABLED(CONFIG_IPV6) 659 #define MLX4_CQE_STATUS_IP_ANY (MLX4_CQE_STATUS_IPV4 | MLX4_CQE_STATUS_IPV6) 660 #else 661 #define MLX4_CQE_STATUS_IP_ANY (MLX4_CQE_STATUS_IPV4) 662 #endif 663 664 int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) 665 { 666 struct mlx4_en_priv *priv = netdev_priv(dev); 667 int factor = priv->cqe_factor; 668 struct mlx4_en_rx_ring *ring; 669 struct bpf_prog *xdp_prog; 670 int cq_ring = cq->ring; 671 bool doorbell_pending; 672 struct mlx4_cqe *cqe; 673 struct xdp_buff xdp; 674 int polled = 0; 675 int index; 676 677 if (unlikely(!priv->port_up || budget <= 0)) 678 return 0; 679 680 ring = priv->rx_ring[cq_ring]; 681 682 /* Protect accesses to: ring->xdp_prog, priv->mac_hash list */ 683 rcu_read_lock(); 684 xdp_prog = rcu_dereference(ring->xdp_prog); 685 xdp.rxq = &ring->xdp_rxq; 686 xdp.frame_sz = priv->frag_info[0].frag_stride; 687 doorbell_pending = false; 688 689 /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx 690 * descriptor offset can be deduced from the CQE index instead of 691 * reading 'cqe->index' */ 692 index = cq->mcq.cons_index & ring->size_mask; 693 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 694 695 /* Process all completed CQEs */ 696 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 697 cq->mcq.cons_index & cq->size)) { 698 struct mlx4_en_rx_alloc *frags; 699 enum pkt_hash_types hash_type; 700 struct sk_buff *skb; 701 unsigned int length; 702 int ip_summed; 703 void *va; 704 int nr; 705 706 frags = ring->rx_info + (index << priv->log_rx_info); 707 va = page_address(frags[0].page) + frags[0].page_offset; 708 net_prefetchw(va); 709 /* 710 * make sure we read the CQE after we read the ownership bit 711 */ 712 dma_rmb(); 713 714 /* Drop packet on bad receive or bad checksum */ 715 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 716 MLX4_CQE_OPCODE_ERROR)) { 717 en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n", 718 ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome, 719 ((struct mlx4_err_cqe *)cqe)->syndrome); 720 goto next; 721 } 722 if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { 723 en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); 724 goto next; 725 } 726 727 /* Check if we need to drop the packet if SRIOV is not enabled 728 * and not performing the selftest or flb disabled 729 */ 730 if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) { 731 const struct ethhdr *ethh = va; 732 dma_addr_t dma; 733 /* Get pointer to first fragment since we haven't 734 * skb yet and cast it to ethhdr struct 735 */ 736 dma = frags[0].dma + frags[0].page_offset; 737 dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh), 738 DMA_FROM_DEVICE); 739 740 if (is_multicast_ether_addr(ethh->h_dest)) { 741 struct mlx4_mac_entry *entry; 742 struct hlist_head *bucket; 743 unsigned int mac_hash; 744 745 /* Drop the packet, since HW loopback-ed it */ 746 mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX]; 747 bucket = &priv->mac_hash[mac_hash]; 748 hlist_for_each_entry_rcu(entry, bucket, hlist) { 749 if (ether_addr_equal_64bits(entry->mac, 750 ethh->h_source)) 751 goto next; 752 } 753 } 754 } 755 756 if (unlikely(priv->validate_loopback)) { 757 validate_loopback(priv, va); 758 goto next; 759 } 760 761 /* 762 * Packet is OK - process it. 763 */ 764 length = be32_to_cpu(cqe->byte_cnt); 765 length -= ring->fcs_del; 766 767 /* A bpf program gets first chance to drop the packet. It may 768 * read bytes but not past the end of the frag. 769 */ 770 if (xdp_prog) { 771 dma_addr_t dma; 772 void *orig_data; 773 u32 act; 774 775 dma = frags[0].dma + frags[0].page_offset; 776 dma_sync_single_for_cpu(priv->ddev, dma, 777 priv->frag_info[0].frag_size, 778 DMA_FROM_DEVICE); 779 780 xdp.data_hard_start = va - frags[0].page_offset; 781 xdp.data = va; 782 xdp_set_data_meta_invalid(&xdp); 783 xdp.data_end = xdp.data + length; 784 orig_data = xdp.data; 785 786 act = bpf_prog_run_xdp(xdp_prog, &xdp); 787 788 length = xdp.data_end - xdp.data; 789 if (xdp.data != orig_data) { 790 frags[0].page_offset = xdp.data - 791 xdp.data_hard_start; 792 va = xdp.data; 793 } 794 795 switch (act) { 796 case XDP_PASS: 797 break; 798 case XDP_TX: 799 if (likely(!mlx4_en_xmit_frame(ring, frags, priv, 800 length, cq_ring, 801 &doorbell_pending))) { 802 frags[0].page = NULL; 803 goto next; 804 } 805 trace_xdp_exception(dev, xdp_prog, act); 806 goto xdp_drop_no_cnt; /* Drop on xmit failure */ 807 default: 808 bpf_warn_invalid_xdp_action(act); 809 fallthrough; 810 case XDP_ABORTED: 811 trace_xdp_exception(dev, xdp_prog, act); 812 fallthrough; 813 case XDP_DROP: 814 ring->xdp_drop++; 815 xdp_drop_no_cnt: 816 goto next; 817 } 818 } 819 820 ring->bytes += length; 821 ring->packets++; 822 823 skb = napi_get_frags(&cq->napi); 824 if (unlikely(!skb)) 825 goto next; 826 827 if (unlikely(ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL)) { 828 u64 timestamp = mlx4_en_get_cqe_ts(cqe); 829 830 mlx4_en_fill_hwtstamps(priv->mdev, skb_hwtstamps(skb), 831 timestamp); 832 } 833 skb_record_rx_queue(skb, cq_ring); 834 835 if (likely(dev->features & NETIF_F_RXCSUM)) { 836 /* TODO: For IP non TCP/UDP packets when csum complete is 837 * not an option (not supported or any other reason) we can 838 * actually check cqe IPOK status bit and report 839 * CHECKSUM_UNNECESSARY rather than CHECKSUM_NONE 840 */ 841 if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP | 842 MLX4_CQE_STATUS_UDP)) && 843 (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && 844 cqe->checksum == cpu_to_be16(0xffff)) { 845 bool l2_tunnel; 846 847 l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) && 848 (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL)); 849 ip_summed = CHECKSUM_UNNECESSARY; 850 hash_type = PKT_HASH_TYPE_L4; 851 if (l2_tunnel) 852 skb->csum_level = 1; 853 ring->csum_ok++; 854 } else { 855 if (!(priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP && 856 (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IP_ANY)))) 857 goto csum_none; 858 if (check_csum(cqe, skb, va, dev->features)) 859 goto csum_none; 860 ip_summed = CHECKSUM_COMPLETE; 861 hash_type = PKT_HASH_TYPE_L3; 862 ring->csum_complete++; 863 } 864 } else { 865 csum_none: 866 ip_summed = CHECKSUM_NONE; 867 hash_type = PKT_HASH_TYPE_L3; 868 ring->csum_none++; 869 } 870 skb->ip_summed = ip_summed; 871 if (dev->features & NETIF_F_RXHASH) 872 skb_set_hash(skb, 873 be32_to_cpu(cqe->immed_rss_invalid), 874 hash_type); 875 876 if ((cqe->vlan_my_qpn & 877 cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) && 878 (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) 879 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 880 be16_to_cpu(cqe->sl_vid)); 881 else if ((cqe->vlan_my_qpn & 882 cpu_to_be32(MLX4_CQE_SVLAN_PRESENT_MASK)) && 883 (dev->features & NETIF_F_HW_VLAN_STAG_RX)) 884 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), 885 be16_to_cpu(cqe->sl_vid)); 886 887 nr = mlx4_en_complete_rx_desc(priv, frags, skb, length); 888 if (likely(nr)) { 889 skb_shinfo(skb)->nr_frags = nr; 890 skb->len = length; 891 skb->data_len = length; 892 napi_gro_frags(&cq->napi); 893 } else { 894 __vlan_hwaccel_clear_tag(skb); 895 skb_clear_hash(skb); 896 } 897 next: 898 ++cq->mcq.cons_index; 899 index = (cq->mcq.cons_index) & ring->size_mask; 900 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 901 if (unlikely(++polled == budget)) 902 break; 903 } 904 905 rcu_read_unlock(); 906 907 if (likely(polled)) { 908 if (doorbell_pending) { 909 priv->tx_cq[TX_XDP][cq_ring]->xdp_busy = true; 910 mlx4_en_xmit_doorbell(priv->tx_ring[TX_XDP][cq_ring]); 911 } 912 913 mlx4_cq_set_ci(&cq->mcq); 914 wmb(); /* ensure HW sees CQ consumer before we post new buffers */ 915 ring->cons = cq->mcq.cons_index; 916 } 917 AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled); 918 919 mlx4_en_refill_rx_buffers(priv, ring); 920 921 return polled; 922 } 923 924 925 void mlx4_en_rx_irq(struct mlx4_cq *mcq) 926 { 927 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 928 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 929 930 if (likely(priv->port_up)) 931 napi_schedule_irqoff(&cq->napi); 932 else 933 mlx4_en_arm_cq(priv, cq); 934 } 935 936 /* Rx CQ polling - called by NAPI */ 937 int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) 938 { 939 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); 940 struct net_device *dev = cq->dev; 941 struct mlx4_en_priv *priv = netdev_priv(dev); 942 struct mlx4_en_cq *xdp_tx_cq = NULL; 943 bool clean_complete = true; 944 int done; 945 946 if (!budget) 947 return 0; 948 949 if (priv->tx_ring_num[TX_XDP]) { 950 xdp_tx_cq = priv->tx_cq[TX_XDP][cq->ring]; 951 if (xdp_tx_cq->xdp_busy) { 952 clean_complete = mlx4_en_process_tx_cq(dev, xdp_tx_cq, 953 budget) < budget; 954 xdp_tx_cq->xdp_busy = !clean_complete; 955 } 956 } 957 958 done = mlx4_en_process_rx_cq(dev, cq, budget); 959 960 /* If we used up all the quota - we're probably not done yet... */ 961 if (done == budget || !clean_complete) { 962 const struct cpumask *aff; 963 struct irq_data *idata; 964 int cpu_curr; 965 966 /* in case we got here because of !clean_complete */ 967 done = budget; 968 969 INC_PERF_COUNTER(priv->pstats.napi_quota); 970 971 cpu_curr = smp_processor_id(); 972 idata = irq_desc_get_irq_data(cq->irq_desc); 973 aff = irq_data_get_affinity_mask(idata); 974 975 if (likely(cpumask_test_cpu(cpu_curr, aff))) 976 return budget; 977 978 /* Current cpu is not according to smp_irq_affinity - 979 * probably affinity changed. Need to stop this NAPI 980 * poll, and restart it on the right CPU. 981 * Try to avoid returning a too small value (like 0), 982 * to not fool net_rx_action() and its netdev_budget 983 */ 984 if (done) 985 done--; 986 } 987 /* Done for now */ 988 if (likely(napi_complete_done(napi, done))) 989 mlx4_en_arm_cq(priv, cq); 990 return done; 991 } 992 993 void mlx4_en_calc_rx_buf(struct net_device *dev) 994 { 995 struct mlx4_en_priv *priv = netdev_priv(dev); 996 int eff_mtu = MLX4_EN_EFF_MTU(dev->mtu); 997 int i = 0; 998 999 /* bpf requires buffers to be set up as 1 packet per page. 1000 * This only works when num_frags == 1. 1001 */ 1002 if (priv->tx_ring_num[TX_XDP]) { 1003 priv->frag_info[0].frag_size = eff_mtu; 1004 /* This will gain efficient xdp frame recycling at the 1005 * expense of more costly truesize accounting 1006 */ 1007 priv->frag_info[0].frag_stride = PAGE_SIZE; 1008 priv->dma_dir = PCI_DMA_BIDIRECTIONAL; 1009 priv->rx_headroom = XDP_PACKET_HEADROOM; 1010 i = 1; 1011 } else { 1012 int frag_size_max = 2048, buf_size = 0; 1013 1014 /* should not happen, right ? */ 1015 if (eff_mtu > PAGE_SIZE + (MLX4_EN_MAX_RX_FRAGS - 1) * 2048) 1016 frag_size_max = PAGE_SIZE; 1017 1018 while (buf_size < eff_mtu) { 1019 int frag_stride, frag_size = eff_mtu - buf_size; 1020 int pad, nb; 1021 1022 if (i < MLX4_EN_MAX_RX_FRAGS - 1) 1023 frag_size = min(frag_size, frag_size_max); 1024 1025 priv->frag_info[i].frag_size = frag_size; 1026 frag_stride = ALIGN(frag_size, SMP_CACHE_BYTES); 1027 /* We can only pack 2 1536-bytes frames in on 4K page 1028 * Therefore, each frame would consume more bytes (truesize) 1029 */ 1030 nb = PAGE_SIZE / frag_stride; 1031 pad = (PAGE_SIZE - nb * frag_stride) / nb; 1032 pad &= ~(SMP_CACHE_BYTES - 1); 1033 priv->frag_info[i].frag_stride = frag_stride + pad; 1034 1035 buf_size += frag_size; 1036 i++; 1037 } 1038 priv->dma_dir = PCI_DMA_FROMDEVICE; 1039 priv->rx_headroom = 0; 1040 } 1041 1042 priv->num_frags = i; 1043 priv->rx_skb_size = eff_mtu; 1044 priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc)); 1045 1046 en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n", 1047 eff_mtu, priv->num_frags); 1048 for (i = 0; i < priv->num_frags; i++) { 1049 en_dbg(DRV, 1050 priv, 1051 " frag:%d - size:%d stride:%d\n", 1052 i, 1053 priv->frag_info[i].frag_size, 1054 priv->frag_info[i].frag_stride); 1055 } 1056 } 1057 1058 /* RSS related functions */ 1059 1060 static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, 1061 struct mlx4_en_rx_ring *ring, 1062 enum mlx4_qp_state *state, 1063 struct mlx4_qp *qp) 1064 { 1065 struct mlx4_en_dev *mdev = priv->mdev; 1066 struct mlx4_qp_context *context; 1067 int err = 0; 1068 1069 context = kmalloc(sizeof(*context), GFP_KERNEL); 1070 if (!context) 1071 return -ENOMEM; 1072 1073 err = mlx4_qp_alloc(mdev->dev, qpn, qp); 1074 if (err) { 1075 en_err(priv, "Failed to allocate qp #%x\n", qpn); 1076 goto out; 1077 } 1078 qp->event = mlx4_en_sqp_event; 1079 1080 memset(context, 0, sizeof(*context)); 1081 mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0, 1082 qpn, ring->cqn, -1, context); 1083 context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma); 1084 1085 /* Cancel FCS removal if FW allows */ 1086 if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) { 1087 context->param3 |= cpu_to_be32(1 << 29); 1088 if (priv->dev->features & NETIF_F_RXFCS) 1089 ring->fcs_del = 0; 1090 else 1091 ring->fcs_del = ETH_FCS_LEN; 1092 } else 1093 ring->fcs_del = 0; 1094 1095 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state); 1096 if (err) { 1097 mlx4_qp_remove(mdev->dev, qp); 1098 mlx4_qp_free(mdev->dev, qp); 1099 } 1100 mlx4_en_update_rx_prod_db(ring); 1101 out: 1102 kfree(context); 1103 return err; 1104 } 1105 1106 int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv) 1107 { 1108 int err; 1109 u32 qpn; 1110 1111 err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn, 1112 MLX4_RESERVE_A0_QP, 1113 MLX4_RES_USAGE_DRIVER); 1114 if (err) { 1115 en_err(priv, "Failed reserving drop qpn\n"); 1116 return err; 1117 } 1118 err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp); 1119 if (err) { 1120 en_err(priv, "Failed allocating drop qp\n"); 1121 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1122 return err; 1123 } 1124 1125 return 0; 1126 } 1127 1128 void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv) 1129 { 1130 u32 qpn; 1131 1132 qpn = priv->drop_qp.qpn; 1133 mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp); 1134 mlx4_qp_free(priv->mdev->dev, &priv->drop_qp); 1135 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1136 } 1137 1138 /* Allocate rx qp's and configure them according to rss map */ 1139 int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) 1140 { 1141 struct mlx4_en_dev *mdev = priv->mdev; 1142 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1143 struct mlx4_qp_context context; 1144 struct mlx4_rss_context *rss_context; 1145 int rss_rings; 1146 void *ptr; 1147 u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 | 1148 MLX4_RSS_TCP_IPV6); 1149 int i, qpn; 1150 int err = 0; 1151 int good_qps = 0; 1152 u8 flags; 1153 1154 en_dbg(DRV, priv, "Configuring rss steering\n"); 1155 1156 flags = priv->rx_ring_num == 1 ? MLX4_RESERVE_A0_QP : 0; 1157 err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num, 1158 priv->rx_ring_num, 1159 &rss_map->base_qpn, flags, 1160 MLX4_RES_USAGE_DRIVER); 1161 if (err) { 1162 en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num); 1163 return err; 1164 } 1165 1166 for (i = 0; i < priv->rx_ring_num; i++) { 1167 qpn = rss_map->base_qpn + i; 1168 err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i], 1169 &rss_map->state[i], 1170 &rss_map->qps[i]); 1171 if (err) 1172 goto rss_err; 1173 1174 ++good_qps; 1175 } 1176 1177 if (priv->rx_ring_num == 1) { 1178 rss_map->indir_qp = &rss_map->qps[0]; 1179 priv->base_qpn = rss_map->indir_qp->qpn; 1180 en_info(priv, "Optimized Non-RSS steering\n"); 1181 return 0; 1182 } 1183 1184 rss_map->indir_qp = kzalloc(sizeof(*rss_map->indir_qp), GFP_KERNEL); 1185 if (!rss_map->indir_qp) { 1186 err = -ENOMEM; 1187 goto rss_err; 1188 } 1189 1190 /* Configure RSS indirection qp */ 1191 err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, rss_map->indir_qp); 1192 if (err) { 1193 en_err(priv, "Failed to allocate RSS indirection QP\n"); 1194 goto qp_alloc_err; 1195 } 1196 1197 rss_map->indir_qp->event = mlx4_en_sqp_event; 1198 mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, 1199 priv->rx_ring[0]->cqn, -1, &context); 1200 1201 if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num) 1202 rss_rings = priv->rx_ring_num; 1203 else 1204 rss_rings = priv->prof->rss_rings; 1205 1206 ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path) 1207 + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH; 1208 rss_context = ptr; 1209 rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 | 1210 (rss_map->base_qpn)); 1211 rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); 1212 if (priv->mdev->profile.udp_rss) { 1213 rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6; 1214 rss_context->base_qpn_udp = rss_context->default_qpn; 1215 } 1216 1217 if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) { 1218 en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n"); 1219 rss_mask |= MLX4_RSS_BY_INNER_HEADERS; 1220 } 1221 1222 rss_context->flags = rss_mask; 1223 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1224 if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) { 1225 rss_context->hash_fn = MLX4_RSS_HASH_XOR; 1226 } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) { 1227 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1228 memcpy(rss_context->rss_key, priv->rss_key, 1229 MLX4_EN_RSS_KEY_SIZE); 1230 } else { 1231 en_err(priv, "Unknown RSS hash function requested\n"); 1232 err = -EINVAL; 1233 goto indir_err; 1234 } 1235 1236 err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, 1237 rss_map->indir_qp, &rss_map->indir_state); 1238 if (err) 1239 goto indir_err; 1240 1241 return 0; 1242 1243 indir_err: 1244 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1245 MLX4_QP_STATE_RST, NULL, 0, 0, rss_map->indir_qp); 1246 mlx4_qp_remove(mdev->dev, rss_map->indir_qp); 1247 mlx4_qp_free(mdev->dev, rss_map->indir_qp); 1248 qp_alloc_err: 1249 kfree(rss_map->indir_qp); 1250 rss_map->indir_qp = NULL; 1251 rss_err: 1252 for (i = 0; i < good_qps; i++) { 1253 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1254 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1255 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1256 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1257 } 1258 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1259 return err; 1260 } 1261 1262 void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) 1263 { 1264 struct mlx4_en_dev *mdev = priv->mdev; 1265 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1266 int i; 1267 1268 if (priv->rx_ring_num > 1) { 1269 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1270 MLX4_QP_STATE_RST, NULL, 0, 0, 1271 rss_map->indir_qp); 1272 mlx4_qp_remove(mdev->dev, rss_map->indir_qp); 1273 mlx4_qp_free(mdev->dev, rss_map->indir_qp); 1274 kfree(rss_map->indir_qp); 1275 rss_map->indir_qp = NULL; 1276 } 1277 1278 for (i = 0; i < priv->rx_ring_num; i++) { 1279 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1280 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1281 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1282 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1283 } 1284 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1285 } 1286