1 /* 2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #include <net/busy_poll.h> 35 #include <linux/mlx4/cq.h> 36 #include <linux/slab.h> 37 #include <linux/mlx4/qp.h> 38 #include <linux/skbuff.h> 39 #include <linux/rculist.h> 40 #include <linux/if_ether.h> 41 #include <linux/if_vlan.h> 42 #include <linux/vmalloc.h> 43 #include <linux/irq.h> 44 45 #if IS_ENABLED(CONFIG_IPV6) 46 #include <net/ip6_checksum.h> 47 #endif 48 49 #include "mlx4_en.h" 50 51 static int mlx4_alloc_pages(struct mlx4_en_priv *priv, 52 struct mlx4_en_rx_alloc *page_alloc, 53 const struct mlx4_en_frag_info *frag_info, 54 gfp_t _gfp) 55 { 56 int order; 57 struct page *page; 58 dma_addr_t dma; 59 60 for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) { 61 gfp_t gfp = _gfp; 62 63 if (order) 64 gfp |= __GFP_COMP | __GFP_NOWARN; 65 page = alloc_pages(gfp, order); 66 if (likely(page)) 67 break; 68 if (--order < 0 || 69 ((PAGE_SIZE << order) < frag_info->frag_size)) 70 return -ENOMEM; 71 } 72 dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order, 73 PCI_DMA_FROMDEVICE); 74 if (dma_mapping_error(priv->ddev, dma)) { 75 put_page(page); 76 return -ENOMEM; 77 } 78 page_alloc->page_size = PAGE_SIZE << order; 79 page_alloc->page = page; 80 page_alloc->dma = dma; 81 page_alloc->page_offset = 0; 82 /* Not doing get_page() for each frag is a big win 83 * on asymetric workloads. Note we can not use atomic_set(). 84 */ 85 atomic_add(page_alloc->page_size / frag_info->frag_stride - 1, 86 &page->_count); 87 return 0; 88 } 89 90 static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv, 91 struct mlx4_en_rx_desc *rx_desc, 92 struct mlx4_en_rx_alloc *frags, 93 struct mlx4_en_rx_alloc *ring_alloc, 94 gfp_t gfp) 95 { 96 struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS]; 97 const struct mlx4_en_frag_info *frag_info; 98 struct page *page; 99 dma_addr_t dma; 100 int i; 101 102 for (i = 0; i < priv->num_frags; i++) { 103 frag_info = &priv->frag_info[i]; 104 page_alloc[i] = ring_alloc[i]; 105 page_alloc[i].page_offset += frag_info->frag_stride; 106 107 if (page_alloc[i].page_offset + frag_info->frag_stride <= 108 ring_alloc[i].page_size) 109 continue; 110 111 if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp)) 112 goto out; 113 } 114 115 for (i = 0; i < priv->num_frags; i++) { 116 frags[i] = ring_alloc[i]; 117 dma = ring_alloc[i].dma + ring_alloc[i].page_offset; 118 ring_alloc[i] = page_alloc[i]; 119 rx_desc->data[i].addr = cpu_to_be64(dma); 120 } 121 122 return 0; 123 124 out: 125 while (i--) { 126 if (page_alloc[i].page != ring_alloc[i].page) { 127 dma_unmap_page(priv->ddev, page_alloc[i].dma, 128 page_alloc[i].page_size, PCI_DMA_FROMDEVICE); 129 page = page_alloc[i].page; 130 atomic_set(&page->_count, 1); 131 put_page(page); 132 } 133 } 134 return -ENOMEM; 135 } 136 137 static void mlx4_en_free_frag(struct mlx4_en_priv *priv, 138 struct mlx4_en_rx_alloc *frags, 139 int i) 140 { 141 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; 142 u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride; 143 144 145 if (next_frag_end > frags[i].page_size) 146 dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size, 147 PCI_DMA_FROMDEVICE); 148 149 if (frags[i].page) 150 put_page(frags[i].page); 151 } 152 153 static int mlx4_en_init_allocator(struct mlx4_en_priv *priv, 154 struct mlx4_en_rx_ring *ring) 155 { 156 int i; 157 struct mlx4_en_rx_alloc *page_alloc; 158 159 for (i = 0; i < priv->num_frags; i++) { 160 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; 161 162 if (mlx4_alloc_pages(priv, &ring->page_alloc[i], 163 frag_info, GFP_KERNEL | __GFP_COLD)) 164 goto out; 165 166 en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n", 167 i, ring->page_alloc[i].page_size, 168 atomic_read(&ring->page_alloc[i].page->_count)); 169 } 170 return 0; 171 172 out: 173 while (i--) { 174 struct page *page; 175 176 page_alloc = &ring->page_alloc[i]; 177 dma_unmap_page(priv->ddev, page_alloc->dma, 178 page_alloc->page_size, PCI_DMA_FROMDEVICE); 179 page = page_alloc->page; 180 atomic_set(&page->_count, 1); 181 put_page(page); 182 page_alloc->page = NULL; 183 } 184 return -ENOMEM; 185 } 186 187 static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv, 188 struct mlx4_en_rx_ring *ring) 189 { 190 struct mlx4_en_rx_alloc *page_alloc; 191 int i; 192 193 for (i = 0; i < priv->num_frags; i++) { 194 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; 195 196 page_alloc = &ring->page_alloc[i]; 197 en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n", 198 i, page_count(page_alloc->page)); 199 200 dma_unmap_page(priv->ddev, page_alloc->dma, 201 page_alloc->page_size, PCI_DMA_FROMDEVICE); 202 while (page_alloc->page_offset + frag_info->frag_stride < 203 page_alloc->page_size) { 204 put_page(page_alloc->page); 205 page_alloc->page_offset += frag_info->frag_stride; 206 } 207 page_alloc->page = NULL; 208 } 209 } 210 211 static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv, 212 struct mlx4_en_rx_ring *ring, int index) 213 { 214 struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; 215 int possible_frags; 216 int i; 217 218 /* Set size and memtype fields */ 219 for (i = 0; i < priv->num_frags; i++) { 220 rx_desc->data[i].byte_count = 221 cpu_to_be32(priv->frag_info[i].frag_size); 222 rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); 223 } 224 225 /* If the number of used fragments does not fill up the ring stride, 226 * remaining (unused) fragments must be padded with null address/size 227 * and a special memory key */ 228 possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; 229 for (i = priv->num_frags; i < possible_frags; i++) { 230 rx_desc->data[i].byte_count = 0; 231 rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); 232 rx_desc->data[i].addr = 0; 233 } 234 } 235 236 static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, 237 struct mlx4_en_rx_ring *ring, int index, 238 gfp_t gfp) 239 { 240 struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride); 241 struct mlx4_en_rx_alloc *frags = ring->rx_info + 242 (index << priv->log_rx_info); 243 244 return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp); 245 } 246 247 static inline bool mlx4_en_is_ring_empty(struct mlx4_en_rx_ring *ring) 248 { 249 return ring->prod == ring->cons; 250 } 251 252 static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) 253 { 254 *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); 255 } 256 257 static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv, 258 struct mlx4_en_rx_ring *ring, 259 int index) 260 { 261 struct mlx4_en_rx_alloc *frags; 262 int nr; 263 264 frags = ring->rx_info + (index << priv->log_rx_info); 265 for (nr = 0; nr < priv->num_frags; nr++) { 266 en_dbg(DRV, priv, "Freeing fragment:%d\n", nr); 267 mlx4_en_free_frag(priv, frags, nr); 268 } 269 } 270 271 static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) 272 { 273 struct mlx4_en_rx_ring *ring; 274 int ring_ind; 275 int buf_ind; 276 int new_size; 277 278 for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { 279 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 280 ring = priv->rx_ring[ring_ind]; 281 282 if (mlx4_en_prepare_rx_desc(priv, ring, 283 ring->actual_size, 284 GFP_KERNEL | __GFP_COLD)) { 285 if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { 286 en_err(priv, "Failed to allocate enough rx buffers\n"); 287 return -ENOMEM; 288 } else { 289 new_size = rounddown_pow_of_two(ring->actual_size); 290 en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n", 291 ring->actual_size, new_size); 292 goto reduce_rings; 293 } 294 } 295 ring->actual_size++; 296 ring->prod++; 297 } 298 } 299 return 0; 300 301 reduce_rings: 302 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 303 ring = priv->rx_ring[ring_ind]; 304 while (ring->actual_size > new_size) { 305 ring->actual_size--; 306 ring->prod--; 307 mlx4_en_free_rx_desc(priv, ring, ring->actual_size); 308 } 309 } 310 311 return 0; 312 } 313 314 static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, 315 struct mlx4_en_rx_ring *ring) 316 { 317 int index; 318 319 en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", 320 ring->cons, ring->prod); 321 322 /* Unmap and free Rx buffers */ 323 while (!mlx4_en_is_ring_empty(ring)) { 324 index = ring->cons & ring->size_mask; 325 en_dbg(DRV, priv, "Processing descriptor:%d\n", index); 326 mlx4_en_free_rx_desc(priv, ring, index); 327 ++ring->cons; 328 } 329 } 330 331 void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev) 332 { 333 int i; 334 int num_of_eqs; 335 int num_rx_rings; 336 struct mlx4_dev *dev = mdev->dev; 337 338 mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) { 339 num_of_eqs = max_t(int, MIN_RX_RINGS, 340 min_t(int, 341 mlx4_get_eqs_per_port(mdev->dev, i), 342 DEF_RX_RINGS)); 343 344 num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS : 345 min_t(int, num_of_eqs, 346 netif_get_num_default_rss_queues()); 347 mdev->profile.prof[i].rx_ring_num = 348 rounddown_pow_of_two(num_rx_rings); 349 } 350 } 351 352 int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, 353 struct mlx4_en_rx_ring **pring, 354 u32 size, u16 stride, int node) 355 { 356 struct mlx4_en_dev *mdev = priv->mdev; 357 struct mlx4_en_rx_ring *ring; 358 int err = -ENOMEM; 359 int tmp; 360 361 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); 362 if (!ring) { 363 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 364 if (!ring) { 365 en_err(priv, "Failed to allocate RX ring structure\n"); 366 return -ENOMEM; 367 } 368 } 369 370 ring->prod = 0; 371 ring->cons = 0; 372 ring->size = size; 373 ring->size_mask = size - 1; 374 ring->stride = stride; 375 ring->log_stride = ffs(ring->stride) - 1; 376 ring->buf_size = ring->size * ring->stride + TXBB_SIZE; 377 378 tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * 379 sizeof(struct mlx4_en_rx_alloc)); 380 ring->rx_info = vmalloc_node(tmp, node); 381 if (!ring->rx_info) { 382 ring->rx_info = vmalloc(tmp); 383 if (!ring->rx_info) { 384 err = -ENOMEM; 385 goto err_ring; 386 } 387 } 388 389 en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", 390 ring->rx_info, tmp); 391 392 /* Allocate HW buffers on provided NUMA node */ 393 set_dev_node(&mdev->dev->persist->pdev->dev, node); 394 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, 395 ring->buf_size, 2 * PAGE_SIZE); 396 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); 397 if (err) 398 goto err_info; 399 400 err = mlx4_en_map_buffer(&ring->wqres.buf); 401 if (err) { 402 en_err(priv, "Failed to map RX buffer\n"); 403 goto err_hwq; 404 } 405 ring->buf = ring->wqres.buf.direct.buf; 406 407 ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter; 408 409 *pring = ring; 410 return 0; 411 412 err_hwq: 413 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 414 err_info: 415 vfree(ring->rx_info); 416 ring->rx_info = NULL; 417 err_ring: 418 kfree(ring); 419 *pring = NULL; 420 421 return err; 422 } 423 424 int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) 425 { 426 struct mlx4_en_rx_ring *ring; 427 int i; 428 int ring_ind; 429 int err; 430 int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + 431 DS_SIZE * priv->num_frags); 432 433 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 434 ring = priv->rx_ring[ring_ind]; 435 436 ring->prod = 0; 437 ring->cons = 0; 438 ring->actual_size = 0; 439 ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn; 440 441 ring->stride = stride; 442 if (ring->stride <= TXBB_SIZE) 443 ring->buf += TXBB_SIZE; 444 445 ring->log_stride = ffs(ring->stride) - 1; 446 ring->buf_size = ring->size * ring->stride; 447 448 memset(ring->buf, 0, ring->buf_size); 449 mlx4_en_update_rx_prod_db(ring); 450 451 /* Initialize all descriptors */ 452 for (i = 0; i < ring->size; i++) 453 mlx4_en_init_rx_desc(priv, ring, i); 454 455 /* Initialize page allocators */ 456 err = mlx4_en_init_allocator(priv, ring); 457 if (err) { 458 en_err(priv, "Failed initializing ring allocator\n"); 459 if (ring->stride <= TXBB_SIZE) 460 ring->buf -= TXBB_SIZE; 461 ring_ind--; 462 goto err_allocator; 463 } 464 } 465 err = mlx4_en_fill_rx_buffers(priv); 466 if (err) 467 goto err_buffers; 468 469 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 470 ring = priv->rx_ring[ring_ind]; 471 472 ring->size_mask = ring->actual_size - 1; 473 mlx4_en_update_rx_prod_db(ring); 474 } 475 476 return 0; 477 478 err_buffers: 479 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) 480 mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]); 481 482 ring_ind = priv->rx_ring_num - 1; 483 err_allocator: 484 while (ring_ind >= 0) { 485 if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE) 486 priv->rx_ring[ring_ind]->buf -= TXBB_SIZE; 487 mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]); 488 ring_ind--; 489 } 490 return err; 491 } 492 493 /* We recover from out of memory by scheduling our napi poll 494 * function (mlx4_en_process_cq), which tries to allocate 495 * all missing RX buffers (call to mlx4_en_refill_rx_buffers). 496 */ 497 void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv) 498 { 499 int ring; 500 501 if (!priv->port_up) 502 return; 503 504 for (ring = 0; ring < priv->rx_ring_num; ring++) { 505 if (mlx4_en_is_ring_empty(priv->rx_ring[ring])) 506 napi_reschedule(&priv->rx_cq[ring]->napi); 507 } 508 } 509 510 void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, 511 struct mlx4_en_rx_ring **pring, 512 u32 size, u16 stride) 513 { 514 struct mlx4_en_dev *mdev = priv->mdev; 515 struct mlx4_en_rx_ring *ring = *pring; 516 517 mlx4_en_unmap_buffer(&ring->wqres.buf); 518 mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE); 519 vfree(ring->rx_info); 520 ring->rx_info = NULL; 521 kfree(ring); 522 *pring = NULL; 523 #ifdef CONFIG_RFS_ACCEL 524 mlx4_en_cleanup_filters(priv); 525 #endif 526 } 527 528 void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, 529 struct mlx4_en_rx_ring *ring) 530 { 531 mlx4_en_free_rx_buf(priv, ring); 532 if (ring->stride <= TXBB_SIZE) 533 ring->buf -= TXBB_SIZE; 534 mlx4_en_destroy_allocator(priv, ring); 535 } 536 537 538 static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, 539 struct mlx4_en_rx_desc *rx_desc, 540 struct mlx4_en_rx_alloc *frags, 541 struct sk_buff *skb, 542 int length) 543 { 544 struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags; 545 struct mlx4_en_frag_info *frag_info; 546 int nr; 547 dma_addr_t dma; 548 549 /* Collect used fragments while replacing them in the HW descriptors */ 550 for (nr = 0; nr < priv->num_frags; nr++) { 551 frag_info = &priv->frag_info[nr]; 552 if (length <= frag_info->frag_prefix_size) 553 break; 554 if (!frags[nr].page) 555 goto fail; 556 557 dma = be64_to_cpu(rx_desc->data[nr].addr); 558 dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size, 559 DMA_FROM_DEVICE); 560 561 /* Save page reference in skb */ 562 __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page); 563 skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size); 564 skb_frags_rx[nr].page_offset = frags[nr].page_offset; 565 skb->truesize += frag_info->frag_stride; 566 frags[nr].page = NULL; 567 } 568 /* Adjust size of last fragment to match actual length */ 569 if (nr > 0) 570 skb_frag_size_set(&skb_frags_rx[nr - 1], 571 length - priv->frag_info[nr - 1].frag_prefix_size); 572 return nr; 573 574 fail: 575 while (nr > 0) { 576 nr--; 577 __skb_frag_unref(&skb_frags_rx[nr]); 578 } 579 return 0; 580 } 581 582 583 static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv, 584 struct mlx4_en_rx_desc *rx_desc, 585 struct mlx4_en_rx_alloc *frags, 586 unsigned int length) 587 { 588 struct sk_buff *skb; 589 void *va; 590 int used_frags; 591 dma_addr_t dma; 592 593 skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN); 594 if (!skb) { 595 en_dbg(RX_ERR, priv, "Failed allocating skb\n"); 596 return NULL; 597 } 598 skb_reserve(skb, NET_IP_ALIGN); 599 skb->len = length; 600 601 /* Get pointer to first fragment so we could copy the headers into the 602 * (linear part of the) skb */ 603 va = page_address(frags[0].page) + frags[0].page_offset; 604 605 if (length <= SMALL_PACKET_SIZE) { 606 /* We are copying all relevant data to the skb - temporarily 607 * sync buffers for the copy */ 608 dma = be64_to_cpu(rx_desc->data[0].addr); 609 dma_sync_single_for_cpu(priv->ddev, dma, length, 610 DMA_FROM_DEVICE); 611 skb_copy_to_linear_data(skb, va, length); 612 skb->tail += length; 613 } else { 614 unsigned int pull_len; 615 616 /* Move relevant fragments to skb */ 617 used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags, 618 skb, length); 619 if (unlikely(!used_frags)) { 620 kfree_skb(skb); 621 return NULL; 622 } 623 skb_shinfo(skb)->nr_frags = used_frags; 624 625 pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE); 626 /* Copy headers into the skb linear buffer */ 627 memcpy(skb->data, va, pull_len); 628 skb->tail += pull_len; 629 630 /* Skip headers in first fragment */ 631 skb_shinfo(skb)->frags[0].page_offset += pull_len; 632 633 /* Adjust size of first fragment */ 634 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len); 635 skb->data_len = length - pull_len; 636 } 637 return skb; 638 } 639 640 static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb) 641 { 642 int i; 643 int offset = ETH_HLEN; 644 645 for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) { 646 if (*(skb->data + offset) != (unsigned char) (i & 0xff)) 647 goto out_loopback; 648 } 649 /* Loopback found */ 650 priv->loopback_ok = 1; 651 652 out_loopback: 653 dev_kfree_skb_any(skb); 654 } 655 656 static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv, 657 struct mlx4_en_rx_ring *ring) 658 { 659 int index = ring->prod & ring->size_mask; 660 661 while ((u32) (ring->prod - ring->cons) < ring->actual_size) { 662 if (mlx4_en_prepare_rx_desc(priv, ring, index, 663 GFP_ATOMIC | __GFP_COLD)) 664 break; 665 ring->prod++; 666 index = ring->prod & ring->size_mask; 667 } 668 } 669 670 /* When hardware doesn't strip the vlan, we need to calculate the checksum 671 * over it and add it to the hardware's checksum calculation 672 */ 673 static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum, 674 struct vlan_hdr *vlanh) 675 { 676 return csum_add(hw_checksum, *(__wsum *)vlanh); 677 } 678 679 /* Although the stack expects checksum which doesn't include the pseudo 680 * header, the HW adds it. To address that, we are subtracting the pseudo 681 * header checksum from the checksum value provided by the HW. 682 */ 683 static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb, 684 struct iphdr *iph) 685 { 686 __u16 length_for_csum = 0; 687 __wsum csum_pseudo_header = 0; 688 689 length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2)); 690 csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr, 691 length_for_csum, iph->protocol, 0); 692 skb->csum = csum_sub(hw_checksum, csum_pseudo_header); 693 } 694 695 #if IS_ENABLED(CONFIG_IPV6) 696 /* In IPv6 packets, besides subtracting the pseudo header checksum, 697 * we also compute/add the IP header checksum which 698 * is not added by the HW. 699 */ 700 static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb, 701 struct ipv6hdr *ipv6h) 702 { 703 __wsum csum_pseudo_hdr = 0; 704 705 if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS) 706 return -1; 707 hw_checksum = csum_add(hw_checksum, (__force __wsum)(ipv6h->nexthdr << 8)); 708 709 csum_pseudo_hdr = csum_partial(&ipv6h->saddr, 710 sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0); 711 csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len); 712 csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr)); 713 714 skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr); 715 skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0)); 716 return 0; 717 } 718 #endif 719 static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va, 720 netdev_features_t dev_features) 721 { 722 __wsum hw_checksum = 0; 723 724 void *hdr = (u8 *)va + sizeof(struct ethhdr); 725 726 hw_checksum = csum_unfold((__force __sum16)cqe->checksum); 727 728 if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK) && 729 !(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) { 730 hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr); 731 hdr += sizeof(struct vlan_hdr); 732 } 733 734 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4)) 735 get_fixed_ipv4_csum(hw_checksum, skb, hdr); 736 #if IS_ENABLED(CONFIG_IPV6) 737 else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6)) 738 if (get_fixed_ipv6_csum(hw_checksum, skb, hdr)) 739 return -1; 740 #endif 741 return 0; 742 } 743 744 int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) 745 { 746 struct mlx4_en_priv *priv = netdev_priv(dev); 747 struct mlx4_en_dev *mdev = priv->mdev; 748 struct mlx4_cqe *cqe; 749 struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring]; 750 struct mlx4_en_rx_alloc *frags; 751 struct mlx4_en_rx_desc *rx_desc; 752 struct sk_buff *skb; 753 int index; 754 int nr; 755 unsigned int length; 756 int polled = 0; 757 int ip_summed; 758 int factor = priv->cqe_factor; 759 u64 timestamp; 760 bool l2_tunnel; 761 762 if (!priv->port_up) 763 return 0; 764 765 if (budget <= 0) 766 return polled; 767 768 /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx 769 * descriptor offset can be deduced from the CQE index instead of 770 * reading 'cqe->index' */ 771 index = cq->mcq.cons_index & ring->size_mask; 772 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 773 774 /* Process all completed CQEs */ 775 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 776 cq->mcq.cons_index & cq->size)) { 777 778 frags = ring->rx_info + (index << priv->log_rx_info); 779 rx_desc = ring->buf + (index << ring->log_stride); 780 781 /* 782 * make sure we read the CQE after we read the ownership bit 783 */ 784 dma_rmb(); 785 786 /* Drop packet on bad receive or bad checksum */ 787 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 788 MLX4_CQE_OPCODE_ERROR)) { 789 en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n", 790 ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome, 791 ((struct mlx4_err_cqe *)cqe)->syndrome); 792 goto next; 793 } 794 if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { 795 en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); 796 goto next; 797 } 798 799 /* Check if we need to drop the packet if SRIOV is not enabled 800 * and not performing the selftest or flb disabled 801 */ 802 if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) { 803 struct ethhdr *ethh; 804 dma_addr_t dma; 805 /* Get pointer to first fragment since we haven't 806 * skb yet and cast it to ethhdr struct 807 */ 808 dma = be64_to_cpu(rx_desc->data[0].addr); 809 dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh), 810 DMA_FROM_DEVICE); 811 ethh = (struct ethhdr *)(page_address(frags[0].page) + 812 frags[0].page_offset); 813 814 if (is_multicast_ether_addr(ethh->h_dest)) { 815 struct mlx4_mac_entry *entry; 816 struct hlist_head *bucket; 817 unsigned int mac_hash; 818 819 /* Drop the packet, since HW loopback-ed it */ 820 mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX]; 821 bucket = &priv->mac_hash[mac_hash]; 822 rcu_read_lock(); 823 hlist_for_each_entry_rcu(entry, bucket, hlist) { 824 if (ether_addr_equal_64bits(entry->mac, 825 ethh->h_source)) { 826 rcu_read_unlock(); 827 goto next; 828 } 829 } 830 rcu_read_unlock(); 831 } 832 } 833 834 /* 835 * Packet is OK - process it. 836 */ 837 length = be32_to_cpu(cqe->byte_cnt); 838 length -= ring->fcs_del; 839 ring->bytes += length; 840 ring->packets++; 841 l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) && 842 (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL)); 843 844 if (likely(dev->features & NETIF_F_RXCSUM)) { 845 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP | 846 MLX4_CQE_STATUS_UDP)) { 847 if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && 848 cqe->checksum == cpu_to_be16(0xffff)) { 849 ip_summed = CHECKSUM_UNNECESSARY; 850 ring->csum_ok++; 851 } else { 852 ip_summed = CHECKSUM_NONE; 853 ring->csum_none++; 854 } 855 } else { 856 if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP && 857 (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 | 858 MLX4_CQE_STATUS_IPV6))) { 859 ip_summed = CHECKSUM_COMPLETE; 860 ring->csum_complete++; 861 } else { 862 ip_summed = CHECKSUM_NONE; 863 ring->csum_none++; 864 } 865 } 866 } else { 867 ip_summed = CHECKSUM_NONE; 868 ring->csum_none++; 869 } 870 871 /* This packet is eligible for GRO if it is: 872 * - DIX Ethernet (type interpretation) 873 * - TCP/IP (v4) 874 * - without IP options 875 * - not an IP fragment 876 * - no LLS polling in progress 877 */ 878 if (!mlx4_en_cq_busy_polling(cq) && 879 (dev->features & NETIF_F_GRO)) { 880 struct sk_buff *gro_skb = napi_get_frags(&cq->napi); 881 if (!gro_skb) 882 goto next; 883 884 nr = mlx4_en_complete_rx_desc(priv, 885 rx_desc, frags, gro_skb, 886 length); 887 if (!nr) 888 goto next; 889 890 if (ip_summed == CHECKSUM_COMPLETE) { 891 void *va = skb_frag_address(skb_shinfo(gro_skb)->frags); 892 if (check_csum(cqe, gro_skb, va, 893 dev->features)) { 894 ip_summed = CHECKSUM_NONE; 895 ring->csum_none++; 896 ring->csum_complete--; 897 } 898 } 899 900 skb_shinfo(gro_skb)->nr_frags = nr; 901 gro_skb->len = length; 902 gro_skb->data_len = length; 903 gro_skb->ip_summed = ip_summed; 904 905 if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) 906 gro_skb->csum_level = 1; 907 908 if ((cqe->vlan_my_qpn & 909 cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK)) && 910 (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 911 u16 vid = be16_to_cpu(cqe->sl_vid); 912 913 __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid); 914 } 915 916 if (dev->features & NETIF_F_RXHASH) 917 skb_set_hash(gro_skb, 918 be32_to_cpu(cqe->immed_rss_invalid), 919 PKT_HASH_TYPE_L3); 920 921 skb_record_rx_queue(gro_skb, cq->ring); 922 skb_mark_napi_id(gro_skb, &cq->napi); 923 924 if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { 925 timestamp = mlx4_en_get_cqe_ts(cqe); 926 mlx4_en_fill_hwtstamps(mdev, 927 skb_hwtstamps(gro_skb), 928 timestamp); 929 } 930 931 napi_gro_frags(&cq->napi); 932 goto next; 933 } 934 935 /* GRO not possible, complete processing here */ 936 skb = mlx4_en_rx_skb(priv, rx_desc, frags, length); 937 if (!skb) { 938 priv->stats.rx_dropped++; 939 goto next; 940 } 941 942 if (unlikely(priv->validate_loopback)) { 943 validate_loopback(priv, skb); 944 goto next; 945 } 946 947 if (ip_summed == CHECKSUM_COMPLETE) { 948 if (check_csum(cqe, skb, skb->data, dev->features)) { 949 ip_summed = CHECKSUM_NONE; 950 ring->csum_complete--; 951 ring->csum_none++; 952 } 953 } 954 955 skb->ip_summed = ip_summed; 956 skb->protocol = eth_type_trans(skb, dev); 957 skb_record_rx_queue(skb, cq->ring); 958 959 if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) 960 skb->csum_level = 1; 961 962 if (dev->features & NETIF_F_RXHASH) 963 skb_set_hash(skb, 964 be32_to_cpu(cqe->immed_rss_invalid), 965 PKT_HASH_TYPE_L3); 966 967 if ((be32_to_cpu(cqe->vlan_my_qpn) & 968 MLX4_CQE_VLAN_PRESENT_MASK) && 969 (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) 970 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid)); 971 972 if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { 973 timestamp = mlx4_en_get_cqe_ts(cqe); 974 mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb), 975 timestamp); 976 } 977 978 skb_mark_napi_id(skb, &cq->napi); 979 980 if (!mlx4_en_cq_busy_polling(cq)) 981 napi_gro_receive(&cq->napi, skb); 982 else 983 netif_receive_skb(skb); 984 985 next: 986 for (nr = 0; nr < priv->num_frags; nr++) 987 mlx4_en_free_frag(priv, frags, nr); 988 989 ++cq->mcq.cons_index; 990 index = (cq->mcq.cons_index) & ring->size_mask; 991 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 992 if (++polled == budget) 993 goto out; 994 } 995 996 out: 997 AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled); 998 mlx4_cq_set_ci(&cq->mcq); 999 wmb(); /* ensure HW sees CQ consumer before we post new buffers */ 1000 ring->cons = cq->mcq.cons_index; 1001 mlx4_en_refill_rx_buffers(priv, ring); 1002 mlx4_en_update_rx_prod_db(ring); 1003 return polled; 1004 } 1005 1006 1007 void mlx4_en_rx_irq(struct mlx4_cq *mcq) 1008 { 1009 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 1010 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 1011 1012 if (likely(priv->port_up)) 1013 napi_schedule_irqoff(&cq->napi); 1014 else 1015 mlx4_en_arm_cq(priv, cq); 1016 } 1017 1018 /* Rx CQ polling - called by NAPI */ 1019 int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) 1020 { 1021 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); 1022 struct net_device *dev = cq->dev; 1023 struct mlx4_en_priv *priv = netdev_priv(dev); 1024 int done; 1025 1026 if (!mlx4_en_cq_lock_napi(cq)) 1027 return budget; 1028 1029 done = mlx4_en_process_rx_cq(dev, cq, budget); 1030 1031 mlx4_en_cq_unlock_napi(cq); 1032 1033 /* If we used up all the quota - we're probably not done yet... */ 1034 if (done == budget) { 1035 int cpu_curr; 1036 const struct cpumask *aff; 1037 1038 INC_PERF_COUNTER(priv->pstats.napi_quota); 1039 1040 cpu_curr = smp_processor_id(); 1041 aff = irq_desc_get_irq_data(cq->irq_desc)->affinity; 1042 1043 if (likely(cpumask_test_cpu(cpu_curr, aff))) 1044 return budget; 1045 1046 /* Current cpu is not according to smp_irq_affinity - 1047 * probably affinity changed. need to stop this NAPI 1048 * poll, and restart it on the right CPU 1049 */ 1050 done = 0; 1051 } 1052 /* Done for now */ 1053 napi_complete_done(napi, done); 1054 mlx4_en_arm_cq(priv, cq); 1055 return done; 1056 } 1057 1058 static const int frag_sizes[] = { 1059 FRAG_SZ0, 1060 FRAG_SZ1, 1061 FRAG_SZ2, 1062 FRAG_SZ3 1063 }; 1064 1065 void mlx4_en_calc_rx_buf(struct net_device *dev) 1066 { 1067 struct mlx4_en_priv *priv = netdev_priv(dev); 1068 int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN; 1069 int buf_size = 0; 1070 int i = 0; 1071 1072 while (buf_size < eff_mtu) { 1073 priv->frag_info[i].frag_size = 1074 (eff_mtu > buf_size + frag_sizes[i]) ? 1075 frag_sizes[i] : eff_mtu - buf_size; 1076 priv->frag_info[i].frag_prefix_size = buf_size; 1077 priv->frag_info[i].frag_stride = 1078 ALIGN(priv->frag_info[i].frag_size, 1079 SMP_CACHE_BYTES); 1080 buf_size += priv->frag_info[i].frag_size; 1081 i++; 1082 } 1083 1084 priv->num_frags = i; 1085 priv->rx_skb_size = eff_mtu; 1086 priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc)); 1087 1088 en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n", 1089 eff_mtu, priv->num_frags); 1090 for (i = 0; i < priv->num_frags; i++) { 1091 en_err(priv, 1092 " frag:%d - size:%d prefix:%d stride:%d\n", 1093 i, 1094 priv->frag_info[i].frag_size, 1095 priv->frag_info[i].frag_prefix_size, 1096 priv->frag_info[i].frag_stride); 1097 } 1098 } 1099 1100 /* RSS related functions */ 1101 1102 static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, 1103 struct mlx4_en_rx_ring *ring, 1104 enum mlx4_qp_state *state, 1105 struct mlx4_qp *qp) 1106 { 1107 struct mlx4_en_dev *mdev = priv->mdev; 1108 struct mlx4_qp_context *context; 1109 int err = 0; 1110 1111 context = kmalloc(sizeof(*context), GFP_KERNEL); 1112 if (!context) 1113 return -ENOMEM; 1114 1115 err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL); 1116 if (err) { 1117 en_err(priv, "Failed to allocate qp #%x\n", qpn); 1118 goto out; 1119 } 1120 qp->event = mlx4_en_sqp_event; 1121 1122 memset(context, 0, sizeof *context); 1123 mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0, 1124 qpn, ring->cqn, -1, context); 1125 context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma); 1126 1127 /* Cancel FCS removal if FW allows */ 1128 if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) { 1129 context->param3 |= cpu_to_be32(1 << 29); 1130 if (priv->dev->features & NETIF_F_RXFCS) 1131 ring->fcs_del = 0; 1132 else 1133 ring->fcs_del = ETH_FCS_LEN; 1134 } else 1135 ring->fcs_del = 0; 1136 1137 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state); 1138 if (err) { 1139 mlx4_qp_remove(mdev->dev, qp); 1140 mlx4_qp_free(mdev->dev, qp); 1141 } 1142 mlx4_en_update_rx_prod_db(ring); 1143 out: 1144 kfree(context); 1145 return err; 1146 } 1147 1148 int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv) 1149 { 1150 int err; 1151 u32 qpn; 1152 1153 err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn, 1154 MLX4_RESERVE_A0_QP); 1155 if (err) { 1156 en_err(priv, "Failed reserving drop qpn\n"); 1157 return err; 1158 } 1159 err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL); 1160 if (err) { 1161 en_err(priv, "Failed allocating drop qp\n"); 1162 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1163 return err; 1164 } 1165 1166 return 0; 1167 } 1168 1169 void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv) 1170 { 1171 u32 qpn; 1172 1173 qpn = priv->drop_qp.qpn; 1174 mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp); 1175 mlx4_qp_free(priv->mdev->dev, &priv->drop_qp); 1176 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1177 } 1178 1179 /* Allocate rx qp's and configure them according to rss map */ 1180 int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) 1181 { 1182 struct mlx4_en_dev *mdev = priv->mdev; 1183 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1184 struct mlx4_qp_context context; 1185 struct mlx4_rss_context *rss_context; 1186 int rss_rings; 1187 void *ptr; 1188 u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 | 1189 MLX4_RSS_TCP_IPV6); 1190 int i, qpn; 1191 int err = 0; 1192 int good_qps = 0; 1193 1194 en_dbg(DRV, priv, "Configuring rss steering\n"); 1195 err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num, 1196 priv->rx_ring_num, 1197 &rss_map->base_qpn, 0); 1198 if (err) { 1199 en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num); 1200 return err; 1201 } 1202 1203 for (i = 0; i < priv->rx_ring_num; i++) { 1204 qpn = rss_map->base_qpn + i; 1205 err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i], 1206 &rss_map->state[i], 1207 &rss_map->qps[i]); 1208 if (err) 1209 goto rss_err; 1210 1211 ++good_qps; 1212 } 1213 1214 /* Configure RSS indirection qp */ 1215 err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL); 1216 if (err) { 1217 en_err(priv, "Failed to allocate RSS indirection QP\n"); 1218 goto rss_err; 1219 } 1220 rss_map->indir_qp.event = mlx4_en_sqp_event; 1221 mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, 1222 priv->rx_ring[0]->cqn, -1, &context); 1223 1224 if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num) 1225 rss_rings = priv->rx_ring_num; 1226 else 1227 rss_rings = priv->prof->rss_rings; 1228 1229 ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path) 1230 + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH; 1231 rss_context = ptr; 1232 rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 | 1233 (rss_map->base_qpn)); 1234 rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); 1235 if (priv->mdev->profile.udp_rss) { 1236 rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6; 1237 rss_context->base_qpn_udp = rss_context->default_qpn; 1238 } 1239 1240 if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) { 1241 en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n"); 1242 rss_mask |= MLX4_RSS_BY_INNER_HEADERS; 1243 } 1244 1245 rss_context->flags = rss_mask; 1246 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1247 if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) { 1248 rss_context->hash_fn = MLX4_RSS_HASH_XOR; 1249 } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) { 1250 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1251 memcpy(rss_context->rss_key, priv->rss_key, 1252 MLX4_EN_RSS_KEY_SIZE); 1253 netdev_rss_key_fill(rss_context->rss_key, 1254 MLX4_EN_RSS_KEY_SIZE); 1255 } else { 1256 en_err(priv, "Unknown RSS hash function requested\n"); 1257 err = -EINVAL; 1258 goto indir_err; 1259 } 1260 err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, 1261 &rss_map->indir_qp, &rss_map->indir_state); 1262 if (err) 1263 goto indir_err; 1264 1265 return 0; 1266 1267 indir_err: 1268 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1269 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); 1270 mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); 1271 mlx4_qp_free(mdev->dev, &rss_map->indir_qp); 1272 rss_err: 1273 for (i = 0; i < good_qps; i++) { 1274 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1275 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1276 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1277 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1278 } 1279 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1280 return err; 1281 } 1282 1283 void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) 1284 { 1285 struct mlx4_en_dev *mdev = priv->mdev; 1286 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1287 int i; 1288 1289 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1290 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); 1291 mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); 1292 mlx4_qp_free(mdev->dev, &rss_map->indir_qp); 1293 1294 for (i = 0; i < priv->rx_ring_num; i++) { 1295 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1296 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1297 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1298 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1299 } 1300 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1301 } 1302