1 /* 2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #include <linux/bpf.h> 35 #include <linux/bpf_trace.h> 36 #include <linux/mlx4/cq.h> 37 #include <linux/slab.h> 38 #include <linux/mlx4/qp.h> 39 #include <linux/skbuff.h> 40 #include <linux/rculist.h> 41 #include <linux/if_ether.h> 42 #include <linux/if_vlan.h> 43 #include <linux/vmalloc.h> 44 #include <linux/irq.h> 45 #include <linux/skbuff_ref.h> 46 47 #include <net/ip.h> 48 #if IS_ENABLED(CONFIG_IPV6) 49 #include <net/ip6_checksum.h> 50 #endif 51 52 #include "mlx4_en.h" 53 54 static int mlx4_alloc_page(struct mlx4_en_priv *priv, 55 struct mlx4_en_rx_alloc *frag, 56 gfp_t gfp) 57 { 58 struct page *page; 59 dma_addr_t dma; 60 61 page = alloc_page(gfp); 62 if (unlikely(!page)) 63 return -ENOMEM; 64 dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE, priv->dma_dir); 65 if (unlikely(dma_mapping_error(priv->ddev, dma))) { 66 __free_page(page); 67 return -ENOMEM; 68 } 69 frag->page = page; 70 frag->dma = dma; 71 frag->page_offset = priv->rx_headroom; 72 return 0; 73 } 74 75 static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv, 76 struct mlx4_en_rx_ring *ring, 77 struct mlx4_en_rx_desc *rx_desc, 78 struct mlx4_en_rx_alloc *frags, 79 gfp_t gfp) 80 { 81 int i; 82 83 for (i = 0; i < priv->num_frags; i++, frags++) { 84 if (!frags->page) { 85 if (mlx4_alloc_page(priv, frags, gfp)) 86 return -ENOMEM; 87 ring->rx_alloc_pages++; 88 } 89 rx_desc->data[i].addr = cpu_to_be64(frags->dma + 90 frags->page_offset); 91 } 92 return 0; 93 } 94 95 static void mlx4_en_free_frag(const struct mlx4_en_priv *priv, 96 struct mlx4_en_rx_alloc *frag) 97 { 98 if (frag->page) { 99 dma_unmap_page(priv->ddev, frag->dma, 100 PAGE_SIZE, priv->dma_dir); 101 __free_page(frag->page); 102 } 103 /* We need to clear all fields, otherwise a change of priv->log_rx_info 104 * could lead to see garbage later in frag->page. 105 */ 106 memset(frag, 0, sizeof(*frag)); 107 } 108 109 static void mlx4_en_init_rx_desc(const struct mlx4_en_priv *priv, 110 struct mlx4_en_rx_ring *ring, int index) 111 { 112 struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; 113 int possible_frags; 114 int i; 115 116 /* Set size and memtype fields */ 117 for (i = 0; i < priv->num_frags; i++) { 118 rx_desc->data[i].byte_count = 119 cpu_to_be32(priv->frag_info[i].frag_size); 120 rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); 121 } 122 123 /* If the number of used fragments does not fill up the ring stride, 124 * remaining (unused) fragments must be padded with null address/size 125 * and a special memory key */ 126 possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; 127 for (i = priv->num_frags; i < possible_frags; i++) { 128 rx_desc->data[i].byte_count = 0; 129 rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); 130 rx_desc->data[i].addr = 0; 131 } 132 } 133 134 static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, 135 struct mlx4_en_rx_ring *ring, int index, 136 gfp_t gfp) 137 { 138 struct mlx4_en_rx_desc *rx_desc = ring->buf + 139 (index << ring->log_stride); 140 struct mlx4_en_rx_alloc *frags = ring->rx_info + 141 (index << priv->log_rx_info); 142 if (likely(ring->page_cache.index > 0)) { 143 /* XDP uses a single page per frame */ 144 if (!frags->page) { 145 ring->page_cache.index--; 146 frags->page = ring->page_cache.buf[ring->page_cache.index].page; 147 frags->dma = ring->page_cache.buf[ring->page_cache.index].dma; 148 } 149 frags->page_offset = XDP_PACKET_HEADROOM; 150 rx_desc->data[0].addr = cpu_to_be64(frags->dma + 151 XDP_PACKET_HEADROOM); 152 return 0; 153 } 154 155 return mlx4_en_alloc_frags(priv, ring, rx_desc, frags, gfp); 156 } 157 158 static bool mlx4_en_is_ring_empty(const struct mlx4_en_rx_ring *ring) 159 { 160 return ring->prod == ring->cons; 161 } 162 163 static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) 164 { 165 *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); 166 } 167 168 /* slow path */ 169 static void mlx4_en_free_rx_desc(const struct mlx4_en_priv *priv, 170 struct mlx4_en_rx_ring *ring, 171 int index) 172 { 173 struct mlx4_en_rx_alloc *frags; 174 int nr; 175 176 frags = ring->rx_info + (index << priv->log_rx_info); 177 for (nr = 0; nr < priv->num_frags; nr++) { 178 en_dbg(DRV, priv, "Freeing fragment:%d\n", nr); 179 mlx4_en_free_frag(priv, frags + nr); 180 } 181 } 182 183 /* Function not in fast-path */ 184 static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) 185 { 186 struct mlx4_en_rx_ring *ring; 187 int ring_ind; 188 int buf_ind; 189 int new_size; 190 191 for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { 192 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 193 ring = priv->rx_ring[ring_ind]; 194 195 if (mlx4_en_prepare_rx_desc(priv, ring, 196 ring->actual_size, 197 GFP_KERNEL)) { 198 if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { 199 en_err(priv, "Failed to allocate enough rx buffers\n"); 200 return -ENOMEM; 201 } else { 202 new_size = rounddown_pow_of_two(ring->actual_size); 203 en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n", 204 ring->actual_size, new_size); 205 goto reduce_rings; 206 } 207 } 208 ring->actual_size++; 209 ring->prod++; 210 } 211 } 212 return 0; 213 214 reduce_rings: 215 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 216 ring = priv->rx_ring[ring_ind]; 217 while (ring->actual_size > new_size) { 218 ring->actual_size--; 219 ring->prod--; 220 mlx4_en_free_rx_desc(priv, ring, ring->actual_size); 221 } 222 } 223 224 return 0; 225 } 226 227 static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, 228 struct mlx4_en_rx_ring *ring) 229 { 230 int index; 231 232 en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", 233 ring->cons, ring->prod); 234 235 /* Unmap and free Rx buffers */ 236 for (index = 0; index < ring->size; index++) { 237 en_dbg(DRV, priv, "Processing descriptor:%d\n", index); 238 mlx4_en_free_rx_desc(priv, ring, index); 239 } 240 ring->cons = 0; 241 ring->prod = 0; 242 } 243 244 void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev) 245 { 246 int i; 247 int num_of_eqs; 248 int num_rx_rings; 249 struct mlx4_dev *dev = mdev->dev; 250 251 mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) { 252 num_of_eqs = max_t(int, MIN_RX_RINGS, 253 min_t(int, 254 mlx4_get_eqs_per_port(mdev->dev, i), 255 DEF_RX_RINGS)); 256 257 num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS : 258 min_t(int, num_of_eqs, num_online_cpus()); 259 mdev->profile.prof[i].rx_ring_num = 260 rounddown_pow_of_two(num_rx_rings); 261 } 262 } 263 264 int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, 265 struct mlx4_en_rx_ring **pring, 266 u32 size, u16 stride, int node, int queue_index) 267 { 268 struct mlx4_en_dev *mdev = priv->mdev; 269 struct mlx4_en_rx_ring *ring; 270 int err = -ENOMEM; 271 int tmp; 272 273 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); 274 if (!ring) { 275 en_err(priv, "Failed to allocate RX ring structure\n"); 276 return -ENOMEM; 277 } 278 279 ring->prod = 0; 280 ring->cons = 0; 281 ring->size = size; 282 ring->size_mask = size - 1; 283 ring->stride = stride; 284 ring->log_stride = ffs(ring->stride) - 1; 285 ring->buf_size = ring->size * ring->stride + TXBB_SIZE; 286 287 if (xdp_rxq_info_reg(&ring->xdp_rxq, priv->dev, queue_index, 0) < 0) 288 goto err_ring; 289 290 tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * 291 sizeof(struct mlx4_en_rx_alloc)); 292 ring->rx_info = kvzalloc_node(tmp, GFP_KERNEL, node); 293 if (!ring->rx_info) { 294 err = -ENOMEM; 295 goto err_xdp_info; 296 } 297 298 en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", 299 ring->rx_info, tmp); 300 301 /* Allocate HW buffers on provided NUMA node */ 302 set_dev_node(&mdev->dev->persist->pdev->dev, node); 303 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 304 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); 305 if (err) 306 goto err_info; 307 308 ring->buf = ring->wqres.buf.direct.buf; 309 310 ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter; 311 312 *pring = ring; 313 return 0; 314 315 err_info: 316 kvfree(ring->rx_info); 317 ring->rx_info = NULL; 318 err_xdp_info: 319 xdp_rxq_info_unreg(&ring->xdp_rxq); 320 err_ring: 321 kfree(ring); 322 *pring = NULL; 323 324 return err; 325 } 326 327 int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) 328 { 329 struct mlx4_en_rx_ring *ring; 330 int i; 331 int ring_ind; 332 int err; 333 int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + 334 DS_SIZE * priv->num_frags); 335 336 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 337 ring = priv->rx_ring[ring_ind]; 338 339 ring->prod = 0; 340 ring->cons = 0; 341 ring->actual_size = 0; 342 ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn; 343 344 ring->stride = stride; 345 if (ring->stride <= TXBB_SIZE) { 346 /* Stamp first unused send wqe */ 347 __be32 *ptr = (__be32 *)ring->buf; 348 __be32 stamp = cpu_to_be32(1 << STAMP_SHIFT); 349 *ptr = stamp; 350 /* Move pointer to start of rx section */ 351 ring->buf += TXBB_SIZE; 352 } 353 354 ring->log_stride = ffs(ring->stride) - 1; 355 ring->buf_size = ring->size * ring->stride; 356 357 memset(ring->buf, 0, ring->buf_size); 358 mlx4_en_update_rx_prod_db(ring); 359 360 /* Initialize all descriptors */ 361 for (i = 0; i < ring->size; i++) 362 mlx4_en_init_rx_desc(priv, ring, i); 363 } 364 err = mlx4_en_fill_rx_buffers(priv); 365 if (err) 366 goto err_buffers; 367 368 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 369 ring = priv->rx_ring[ring_ind]; 370 371 ring->size_mask = ring->actual_size - 1; 372 mlx4_en_update_rx_prod_db(ring); 373 } 374 375 return 0; 376 377 err_buffers: 378 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) 379 mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]); 380 381 ring_ind = priv->rx_ring_num - 1; 382 while (ring_ind >= 0) { 383 if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE) 384 priv->rx_ring[ring_ind]->buf -= TXBB_SIZE; 385 ring_ind--; 386 } 387 return err; 388 } 389 390 /* We recover from out of memory by scheduling our napi poll 391 * function (mlx4_en_process_cq), which tries to allocate 392 * all missing RX buffers (call to mlx4_en_refill_rx_buffers). 393 */ 394 void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv) 395 { 396 int ring; 397 398 if (!priv->port_up) 399 return; 400 401 for (ring = 0; ring < priv->rx_ring_num; ring++) { 402 if (mlx4_en_is_ring_empty(priv->rx_ring[ring])) { 403 local_bh_disable(); 404 napi_schedule(&priv->rx_cq[ring]->napi); 405 local_bh_enable(); 406 } 407 } 408 } 409 410 /* When the rx ring is running in page-per-packet mode, a released frame can go 411 * directly into a small cache, to avoid unmapping or touching the page 412 * allocator. In bpf prog performance scenarios, buffers are either forwarded 413 * or dropped, never converted to skbs, so every page can come directly from 414 * this cache when it is sized to be a multiple of the napi budget. 415 */ 416 bool mlx4_en_rx_recycle(struct mlx4_en_rx_ring *ring, 417 struct mlx4_en_rx_alloc *frame) 418 { 419 struct mlx4_en_page_cache *cache = &ring->page_cache; 420 421 if (cache->index >= MLX4_EN_CACHE_SIZE) 422 return false; 423 424 cache->buf[cache->index].page = frame->page; 425 cache->buf[cache->index].dma = frame->dma; 426 cache->index++; 427 return true; 428 } 429 430 void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, 431 struct mlx4_en_rx_ring **pring, 432 u32 size, u16 stride) 433 { 434 struct mlx4_en_dev *mdev = priv->mdev; 435 struct mlx4_en_rx_ring *ring = *pring; 436 struct bpf_prog *old_prog; 437 438 old_prog = rcu_dereference_protected( 439 ring->xdp_prog, 440 lockdep_is_held(&mdev->state_lock)); 441 if (old_prog) 442 bpf_prog_put(old_prog); 443 xdp_rxq_info_unreg(&ring->xdp_rxq); 444 mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE); 445 kvfree(ring->rx_info); 446 ring->rx_info = NULL; 447 kfree(ring); 448 *pring = NULL; 449 } 450 451 void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, 452 struct mlx4_en_rx_ring *ring) 453 { 454 int i; 455 456 for (i = 0; i < ring->page_cache.index; i++) { 457 dma_unmap_page(priv->ddev, ring->page_cache.buf[i].dma, 458 PAGE_SIZE, priv->dma_dir); 459 put_page(ring->page_cache.buf[i].page); 460 } 461 ring->page_cache.index = 0; 462 mlx4_en_free_rx_buf(priv, ring); 463 if (ring->stride <= TXBB_SIZE) 464 ring->buf -= TXBB_SIZE; 465 } 466 467 468 static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, 469 struct mlx4_en_rx_alloc *frags, 470 struct sk_buff *skb, 471 int length) 472 { 473 const struct mlx4_en_frag_info *frag_info = priv->frag_info; 474 unsigned int truesize = 0; 475 bool release = true; 476 int nr, frag_size; 477 struct page *page; 478 dma_addr_t dma; 479 480 /* Collect used fragments while replacing them in the HW descriptors */ 481 for (nr = 0;; frags++) { 482 frag_size = min_t(int, length, frag_info->frag_size); 483 484 page = frags->page; 485 if (unlikely(!page)) 486 goto fail; 487 488 dma = frags->dma; 489 dma_sync_single_range_for_cpu(priv->ddev, dma, frags->page_offset, 490 frag_size, priv->dma_dir); 491 492 __skb_fill_page_desc(skb, nr, page, frags->page_offset, 493 frag_size); 494 495 truesize += frag_info->frag_stride; 496 if (frag_info->frag_stride == PAGE_SIZE / 2) { 497 frags->page_offset ^= PAGE_SIZE / 2; 498 release = page_count(page) != 1 || 499 page_is_pfmemalloc(page) || 500 page_to_nid(page) != numa_mem_id(); 501 } else if (!priv->rx_headroom) { 502 /* rx_headroom for non XDP setup is always 0. 503 * When XDP is set, the above condition will 504 * guarantee page is always released. 505 */ 506 u32 sz_align = ALIGN(frag_size, SMP_CACHE_BYTES); 507 508 frags->page_offset += sz_align; 509 release = frags->page_offset + frag_info->frag_size > PAGE_SIZE; 510 } 511 if (release) { 512 dma_unmap_page(priv->ddev, dma, PAGE_SIZE, priv->dma_dir); 513 frags->page = NULL; 514 } else { 515 page_ref_inc(page); 516 } 517 518 nr++; 519 length -= frag_size; 520 if (!length) 521 break; 522 frag_info++; 523 } 524 skb->truesize += truesize; 525 return nr; 526 527 fail: 528 while (nr > 0) { 529 nr--; 530 __skb_frag_unref(skb_shinfo(skb)->frags + nr, false); 531 } 532 return 0; 533 } 534 535 static void validate_loopback(struct mlx4_en_priv *priv, void *va) 536 { 537 const unsigned char *data = va + ETH_HLEN; 538 int i; 539 540 for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++) { 541 if (data[i] != (unsigned char)i) 542 return; 543 } 544 /* Loopback found */ 545 priv->loopback_ok = 1; 546 } 547 548 static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv, 549 struct mlx4_en_rx_ring *ring) 550 { 551 u32 missing = ring->actual_size - (ring->prod - ring->cons); 552 553 /* Try to batch allocations, but not too much. */ 554 if (missing < 8) 555 return; 556 do { 557 if (mlx4_en_prepare_rx_desc(priv, ring, 558 ring->prod & ring->size_mask, 559 GFP_ATOMIC | __GFP_MEMALLOC)) 560 break; 561 ring->prod++; 562 } while (likely(--missing)); 563 564 mlx4_en_update_rx_prod_db(ring); 565 } 566 567 /* When hardware doesn't strip the vlan, we need to calculate the checksum 568 * over it and add it to the hardware's checksum calculation 569 */ 570 static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum, 571 struct vlan_hdr *vlanh) 572 { 573 return csum_add(hw_checksum, *(__wsum *)vlanh); 574 } 575 576 /* Although the stack expects checksum which doesn't include the pseudo 577 * header, the HW adds it. To address that, we are subtracting the pseudo 578 * header checksum from the checksum value provided by the HW. 579 */ 580 static int get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb, 581 struct iphdr *iph) 582 { 583 __u16 length_for_csum = 0; 584 __wsum csum_pseudo_header = 0; 585 __u8 ipproto = iph->protocol; 586 587 if (unlikely(ipproto == IPPROTO_SCTP)) 588 return -1; 589 590 length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2)); 591 csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr, 592 length_for_csum, ipproto, 0); 593 skb->csum = csum_sub(hw_checksum, csum_pseudo_header); 594 return 0; 595 } 596 597 #if IS_ENABLED(CONFIG_IPV6) 598 /* In IPv6 packets, hw_checksum lacks 6 bytes from IPv6 header: 599 * 4 first bytes : priority, version, flow_lbl 600 * and 2 additional bytes : nexthdr, hop_limit. 601 */ 602 static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb, 603 struct ipv6hdr *ipv6h) 604 { 605 __u8 nexthdr = ipv6h->nexthdr; 606 __wsum temp; 607 608 if (unlikely(nexthdr == IPPROTO_FRAGMENT || 609 nexthdr == IPPROTO_HOPOPTS || 610 nexthdr == IPPROTO_SCTP)) 611 return -1; 612 613 /* priority, version, flow_lbl */ 614 temp = csum_add(hw_checksum, *(__wsum *)ipv6h); 615 /* nexthdr and hop_limit */ 616 skb->csum = csum_add(temp, (__force __wsum)*(__be16 *)&ipv6h->nexthdr); 617 return 0; 618 } 619 #endif 620 621 #define short_frame(size) ((size) <= ETH_ZLEN + ETH_FCS_LEN) 622 623 /* We reach this function only after checking that any of 624 * the (IPv4 | IPv6) bits are set in cqe->status. 625 */ 626 static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va, 627 netdev_features_t dev_features) 628 { 629 __wsum hw_checksum = 0; 630 void *hdr; 631 632 /* CQE csum doesn't cover padding octets in short ethernet 633 * frames. And the pad field is appended prior to calculating 634 * and appending the FCS field. 635 * 636 * Detecting these padded frames requires to verify and parse 637 * IP headers, so we simply force all those small frames to skip 638 * checksum complete. 639 */ 640 if (short_frame(skb->len)) 641 return -EINVAL; 642 643 hdr = (u8 *)va + sizeof(struct ethhdr); 644 hw_checksum = csum_unfold((__force __sum16)cqe->checksum); 645 646 if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) && 647 !(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) { 648 hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr); 649 hdr += sizeof(struct vlan_hdr); 650 } 651 652 #if IS_ENABLED(CONFIG_IPV6) 653 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6)) 654 return get_fixed_ipv6_csum(hw_checksum, skb, hdr); 655 #endif 656 return get_fixed_ipv4_csum(hw_checksum, skb, hdr); 657 } 658 659 #if IS_ENABLED(CONFIG_IPV6) 660 #define MLX4_CQE_STATUS_IP_ANY (MLX4_CQE_STATUS_IPV4 | MLX4_CQE_STATUS_IPV6) 661 #else 662 #define MLX4_CQE_STATUS_IP_ANY (MLX4_CQE_STATUS_IPV4) 663 #endif 664 665 struct mlx4_en_xdp_buff { 666 struct xdp_buff xdp; 667 struct mlx4_cqe *cqe; 668 struct mlx4_en_dev *mdev; 669 struct mlx4_en_rx_ring *ring; 670 struct net_device *dev; 671 }; 672 673 int mlx4_en_xdp_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) 674 { 675 struct mlx4_en_xdp_buff *_ctx = (void *)ctx; 676 677 if (unlikely(_ctx->ring->hwtstamp_rx_filter != HWTSTAMP_FILTER_ALL)) 678 return -ENODATA; 679 680 *timestamp = mlx4_en_get_hwtstamp(_ctx->mdev, 681 mlx4_en_get_cqe_ts(_ctx->cqe)); 682 return 0; 683 } 684 685 int mlx4_en_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash, 686 enum xdp_rss_hash_type *rss_type) 687 { 688 struct mlx4_en_xdp_buff *_ctx = (void *)ctx; 689 struct mlx4_cqe *cqe = _ctx->cqe; 690 enum xdp_rss_hash_type xht = 0; 691 __be16 status; 692 693 if (unlikely(!(_ctx->dev->features & NETIF_F_RXHASH))) 694 return -ENODATA; 695 696 *hash = be32_to_cpu(cqe->immed_rss_invalid); 697 status = cqe->status; 698 if (status & cpu_to_be16(MLX4_CQE_STATUS_TCP)) 699 xht = XDP_RSS_L4_TCP; 700 if (status & cpu_to_be16(MLX4_CQE_STATUS_UDP)) 701 xht = XDP_RSS_L4_UDP; 702 if (status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 | MLX4_CQE_STATUS_IPV4F)) 703 xht |= XDP_RSS_L3_IPV4; 704 if (status & cpu_to_be16(MLX4_CQE_STATUS_IPV6)) { 705 xht |= XDP_RSS_L3_IPV6; 706 if (cqe->ipv6_ext_mask) 707 xht |= XDP_RSS_L3_DYNHDR; 708 } 709 *rss_type = xht; 710 711 return 0; 712 } 713 714 int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) 715 { 716 struct mlx4_en_priv *priv = netdev_priv(dev); 717 struct mlx4_en_xdp_buff mxbuf = {}; 718 int factor = priv->cqe_factor; 719 struct mlx4_en_rx_ring *ring; 720 struct bpf_prog *xdp_prog; 721 int cq_ring = cq->ring; 722 bool doorbell_pending; 723 bool xdp_redir_flush; 724 struct mlx4_cqe *cqe; 725 int polled = 0; 726 int index; 727 728 if (unlikely(!priv->port_up || budget <= 0)) 729 return 0; 730 731 ring = priv->rx_ring[cq_ring]; 732 733 xdp_prog = rcu_dereference_bh(ring->xdp_prog); 734 xdp_init_buff(&mxbuf.xdp, priv->frag_info[0].frag_stride, &ring->xdp_rxq); 735 doorbell_pending = false; 736 xdp_redir_flush = false; 737 738 /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx 739 * descriptor offset can be deduced from the CQE index instead of 740 * reading 'cqe->index' */ 741 index = cq->mcq.cons_index & ring->size_mask; 742 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 743 744 /* Process all completed CQEs */ 745 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 746 cq->mcq.cons_index & cq->size)) { 747 struct mlx4_en_rx_alloc *frags; 748 enum pkt_hash_types hash_type; 749 struct sk_buff *skb; 750 unsigned int length; 751 int ip_summed; 752 void *va; 753 int nr; 754 755 frags = ring->rx_info + (index << priv->log_rx_info); 756 va = page_address(frags[0].page) + frags[0].page_offset; 757 net_prefetchw(va); 758 /* 759 * make sure we read the CQE after we read the ownership bit 760 */ 761 dma_rmb(); 762 763 /* Drop packet on bad receive or bad checksum */ 764 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 765 MLX4_CQE_OPCODE_ERROR)) { 766 en_err(priv, "CQE completed in error - vendor syndrome:%d syndrome:%d\n", 767 ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome, 768 ((struct mlx4_err_cqe *)cqe)->syndrome); 769 goto next; 770 } 771 if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { 772 en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); 773 goto next; 774 } 775 776 /* Check if we need to drop the packet if SRIOV is not enabled 777 * and not performing the selftest or flb disabled 778 */ 779 if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) { 780 const struct ethhdr *ethh = va; 781 dma_addr_t dma; 782 /* Get pointer to first fragment since we haven't 783 * skb yet and cast it to ethhdr struct 784 */ 785 dma = frags[0].dma + frags[0].page_offset; 786 dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh), 787 DMA_FROM_DEVICE); 788 789 if (is_multicast_ether_addr(ethh->h_dest)) { 790 struct mlx4_mac_entry *entry; 791 struct hlist_head *bucket; 792 unsigned int mac_hash; 793 794 /* Drop the packet, since HW loopback-ed it */ 795 mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX]; 796 bucket = &priv->mac_hash[mac_hash]; 797 hlist_for_each_entry_rcu_bh(entry, bucket, hlist) { 798 if (ether_addr_equal_64bits(entry->mac, 799 ethh->h_source)) 800 goto next; 801 } 802 } 803 } 804 805 if (unlikely(priv->validate_loopback)) { 806 validate_loopback(priv, va); 807 goto next; 808 } 809 810 /* 811 * Packet is OK - process it. 812 */ 813 length = be32_to_cpu(cqe->byte_cnt); 814 length -= ring->fcs_del; 815 816 /* A bpf program gets first chance to drop the packet. It may 817 * read bytes but not past the end of the frag. 818 */ 819 if (xdp_prog) { 820 dma_addr_t dma; 821 void *orig_data; 822 u32 act; 823 824 dma = frags[0].dma + frags[0].page_offset; 825 dma_sync_single_for_cpu(priv->ddev, dma, 826 priv->frag_info[0].frag_size, 827 DMA_FROM_DEVICE); 828 829 xdp_prepare_buff(&mxbuf.xdp, va - frags[0].page_offset, 830 frags[0].page_offset, length, true); 831 orig_data = mxbuf.xdp.data; 832 mxbuf.cqe = cqe; 833 mxbuf.mdev = priv->mdev; 834 mxbuf.ring = ring; 835 mxbuf.dev = dev; 836 837 act = bpf_prog_run_xdp(xdp_prog, &mxbuf.xdp); 838 839 length = mxbuf.xdp.data_end - mxbuf.xdp.data; 840 if (mxbuf.xdp.data != orig_data) { 841 frags[0].page_offset = mxbuf.xdp.data - 842 mxbuf.xdp.data_hard_start; 843 va = mxbuf.xdp.data; 844 } 845 846 switch (act) { 847 case XDP_PASS: 848 break; 849 case XDP_REDIRECT: 850 if (likely(!xdp_do_redirect(dev, &mxbuf.xdp, xdp_prog))) { 851 ring->xdp_redirect++; 852 xdp_redir_flush = true; 853 frags[0].page = NULL; 854 goto next; 855 } 856 ring->xdp_redirect_fail++; 857 trace_xdp_exception(dev, xdp_prog, act); 858 goto xdp_drop_no_cnt; 859 case XDP_TX: 860 if (likely(!mlx4_en_xmit_frame(ring, frags, priv, 861 length, cq_ring, 862 &doorbell_pending))) { 863 frags[0].page = NULL; 864 goto next; 865 } 866 trace_xdp_exception(dev, xdp_prog, act); 867 goto xdp_drop_no_cnt; /* Drop on xmit failure */ 868 default: 869 bpf_warn_invalid_xdp_action(dev, xdp_prog, act); 870 fallthrough; 871 case XDP_ABORTED: 872 trace_xdp_exception(dev, xdp_prog, act); 873 fallthrough; 874 case XDP_DROP: 875 ring->xdp_drop++; 876 xdp_drop_no_cnt: 877 goto next; 878 } 879 } 880 881 ring->bytes += length; 882 ring->packets++; 883 884 skb = napi_get_frags(&cq->napi); 885 if (unlikely(!skb)) 886 goto next; 887 888 if (unlikely(ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL)) { 889 u64 timestamp = mlx4_en_get_cqe_ts(cqe); 890 891 mlx4_en_fill_hwtstamps(priv->mdev, skb_hwtstamps(skb), 892 timestamp); 893 } 894 skb_record_rx_queue(skb, cq_ring); 895 896 if (likely(dev->features & NETIF_F_RXCSUM)) { 897 /* TODO: For IP non TCP/UDP packets when csum complete is 898 * not an option (not supported or any other reason) we can 899 * actually check cqe IPOK status bit and report 900 * CHECKSUM_UNNECESSARY rather than CHECKSUM_NONE 901 */ 902 if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP | 903 MLX4_CQE_STATUS_UDP)) && 904 (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && 905 cqe->checksum == cpu_to_be16(0xffff)) { 906 bool l2_tunnel; 907 908 l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) && 909 (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL)); 910 ip_summed = CHECKSUM_UNNECESSARY; 911 hash_type = PKT_HASH_TYPE_L4; 912 if (l2_tunnel) 913 skb->csum_level = 1; 914 ring->csum_ok++; 915 } else { 916 if (!(priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP && 917 (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IP_ANY)))) 918 goto csum_none; 919 if (check_csum(cqe, skb, va, dev->features)) 920 goto csum_none; 921 ip_summed = CHECKSUM_COMPLETE; 922 hash_type = PKT_HASH_TYPE_L3; 923 ring->csum_complete++; 924 } 925 } else { 926 csum_none: 927 ip_summed = CHECKSUM_NONE; 928 hash_type = PKT_HASH_TYPE_L3; 929 ring->csum_none++; 930 } 931 skb->ip_summed = ip_summed; 932 if (dev->features & NETIF_F_RXHASH) 933 skb_set_hash(skb, 934 be32_to_cpu(cqe->immed_rss_invalid), 935 hash_type); 936 937 if ((cqe->vlan_my_qpn & 938 cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) && 939 (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) 940 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 941 be16_to_cpu(cqe->sl_vid)); 942 else if ((cqe->vlan_my_qpn & 943 cpu_to_be32(MLX4_CQE_SVLAN_PRESENT_MASK)) && 944 (dev->features & NETIF_F_HW_VLAN_STAG_RX)) 945 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), 946 be16_to_cpu(cqe->sl_vid)); 947 948 nr = mlx4_en_complete_rx_desc(priv, frags, skb, length); 949 if (likely(nr)) { 950 skb_shinfo(skb)->nr_frags = nr; 951 skb->len = length; 952 skb->data_len = length; 953 napi_gro_frags(&cq->napi); 954 } else { 955 __vlan_hwaccel_clear_tag(skb); 956 skb_clear_hash(skb); 957 } 958 next: 959 ++cq->mcq.cons_index; 960 index = (cq->mcq.cons_index) & ring->size_mask; 961 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 962 if (unlikely(++polled == budget)) 963 break; 964 } 965 966 if (xdp_redir_flush) 967 xdp_do_flush(); 968 969 if (likely(polled)) { 970 if (doorbell_pending) { 971 priv->tx_cq[TX_XDP][cq_ring]->xdp_busy = true; 972 mlx4_en_xmit_doorbell(priv->tx_ring[TX_XDP][cq_ring]); 973 } 974 975 mlx4_cq_set_ci(&cq->mcq); 976 wmb(); /* ensure HW sees CQ consumer before we post new buffers */ 977 ring->cons = cq->mcq.cons_index; 978 } 979 980 mlx4_en_refill_rx_buffers(priv, ring); 981 982 return polled; 983 } 984 985 986 void mlx4_en_rx_irq(struct mlx4_cq *mcq) 987 { 988 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 989 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 990 991 if (likely(priv->port_up)) 992 napi_schedule_irqoff(&cq->napi); 993 else 994 mlx4_en_arm_cq(priv, cq); 995 } 996 997 /* Rx CQ polling - called by NAPI */ 998 int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) 999 { 1000 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); 1001 struct net_device *dev = cq->dev; 1002 struct mlx4_en_priv *priv = netdev_priv(dev); 1003 struct mlx4_en_cq *xdp_tx_cq = NULL; 1004 bool clean_complete = true; 1005 int done; 1006 1007 if (!budget) 1008 return 0; 1009 1010 if (priv->tx_ring_num[TX_XDP]) { 1011 xdp_tx_cq = priv->tx_cq[TX_XDP][cq->ring]; 1012 if (xdp_tx_cq->xdp_busy) { 1013 clean_complete = mlx4_en_process_tx_cq(dev, xdp_tx_cq, 1014 budget) < budget; 1015 xdp_tx_cq->xdp_busy = !clean_complete; 1016 } 1017 } 1018 1019 done = mlx4_en_process_rx_cq(dev, cq, budget); 1020 1021 /* If we used up all the quota - we're probably not done yet... */ 1022 if (done == budget || !clean_complete) { 1023 int cpu_curr; 1024 1025 /* in case we got here because of !clean_complete */ 1026 done = budget; 1027 1028 cpu_curr = smp_processor_id(); 1029 1030 if (likely(cpumask_test_cpu(cpu_curr, cq->aff_mask))) 1031 return budget; 1032 1033 /* Current cpu is not according to smp_irq_affinity - 1034 * probably affinity changed. Need to stop this NAPI 1035 * poll, and restart it on the right CPU. 1036 * Try to avoid returning a too small value (like 0), 1037 * to not fool net_rx_action() and its netdev_budget 1038 */ 1039 if (done) 1040 done--; 1041 } 1042 /* Done for now */ 1043 if (likely(napi_complete_done(napi, done))) 1044 mlx4_en_arm_cq(priv, cq); 1045 return done; 1046 } 1047 1048 void mlx4_en_calc_rx_buf(struct net_device *dev) 1049 { 1050 struct mlx4_en_priv *priv = netdev_priv(dev); 1051 int eff_mtu = MLX4_EN_EFF_MTU(dev->mtu); 1052 int i = 0; 1053 1054 /* bpf requires buffers to be set up as 1 packet per page. 1055 * This only works when num_frags == 1. 1056 */ 1057 if (priv->tx_ring_num[TX_XDP]) { 1058 priv->frag_info[0].frag_size = eff_mtu; 1059 /* This will gain efficient xdp frame recycling at the 1060 * expense of more costly truesize accounting 1061 */ 1062 priv->frag_info[0].frag_stride = PAGE_SIZE; 1063 priv->dma_dir = DMA_BIDIRECTIONAL; 1064 priv->rx_headroom = XDP_PACKET_HEADROOM; 1065 i = 1; 1066 } else { 1067 int frag_size_max = 2048, buf_size = 0; 1068 1069 /* should not happen, right ? */ 1070 if (eff_mtu > PAGE_SIZE + (MLX4_EN_MAX_RX_FRAGS - 1) * 2048) 1071 frag_size_max = PAGE_SIZE; 1072 1073 while (buf_size < eff_mtu) { 1074 int frag_stride, frag_size = eff_mtu - buf_size; 1075 int pad, nb; 1076 1077 if (i < MLX4_EN_MAX_RX_FRAGS - 1) 1078 frag_size = min(frag_size, frag_size_max); 1079 1080 priv->frag_info[i].frag_size = frag_size; 1081 frag_stride = ALIGN(frag_size, SMP_CACHE_BYTES); 1082 /* We can only pack 2 1536-bytes frames in on 4K page 1083 * Therefore, each frame would consume more bytes (truesize) 1084 */ 1085 nb = PAGE_SIZE / frag_stride; 1086 pad = (PAGE_SIZE - nb * frag_stride) / nb; 1087 pad &= ~(SMP_CACHE_BYTES - 1); 1088 priv->frag_info[i].frag_stride = frag_stride + pad; 1089 1090 buf_size += frag_size; 1091 i++; 1092 } 1093 priv->dma_dir = DMA_FROM_DEVICE; 1094 priv->rx_headroom = 0; 1095 } 1096 1097 priv->num_frags = i; 1098 priv->rx_skb_size = eff_mtu; 1099 priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc)); 1100 1101 en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n", 1102 eff_mtu, priv->num_frags); 1103 for (i = 0; i < priv->num_frags; i++) { 1104 en_dbg(DRV, 1105 priv, 1106 " frag:%d - size:%d stride:%d\n", 1107 i, 1108 priv->frag_info[i].frag_size, 1109 priv->frag_info[i].frag_stride); 1110 } 1111 } 1112 1113 /* RSS related functions */ 1114 1115 static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, 1116 struct mlx4_en_rx_ring *ring, 1117 enum mlx4_qp_state *state, 1118 struct mlx4_qp *qp) 1119 { 1120 struct mlx4_en_dev *mdev = priv->mdev; 1121 struct mlx4_qp_context *context; 1122 int err = 0; 1123 1124 context = kzalloc(sizeof(*context), GFP_KERNEL); 1125 if (!context) 1126 return -ENOMEM; 1127 1128 err = mlx4_qp_alloc(mdev->dev, qpn, qp); 1129 if (err) { 1130 en_err(priv, "Failed to allocate qp #%x\n", qpn); 1131 goto out; 1132 } 1133 qp->event = mlx4_en_sqp_event; 1134 1135 mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0, 1136 qpn, ring->cqn, -1, context); 1137 context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma); 1138 1139 /* Cancel FCS removal if FW allows */ 1140 if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) { 1141 context->param3 |= cpu_to_be32(1 << 29); 1142 if (priv->dev->features & NETIF_F_RXFCS) 1143 ring->fcs_del = 0; 1144 else 1145 ring->fcs_del = ETH_FCS_LEN; 1146 } else 1147 ring->fcs_del = 0; 1148 1149 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state); 1150 if (err) { 1151 mlx4_qp_remove(mdev->dev, qp); 1152 mlx4_qp_free(mdev->dev, qp); 1153 } 1154 mlx4_en_update_rx_prod_db(ring); 1155 out: 1156 kfree(context); 1157 return err; 1158 } 1159 1160 int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv) 1161 { 1162 int err; 1163 u32 qpn; 1164 1165 err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn, 1166 MLX4_RESERVE_A0_QP, 1167 MLX4_RES_USAGE_DRIVER); 1168 if (err) { 1169 en_err(priv, "Failed reserving drop qpn\n"); 1170 return err; 1171 } 1172 err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp); 1173 if (err) { 1174 en_err(priv, "Failed allocating drop qp\n"); 1175 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1176 return err; 1177 } 1178 1179 return 0; 1180 } 1181 1182 void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv) 1183 { 1184 u32 qpn; 1185 1186 qpn = priv->drop_qp.qpn; 1187 mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp); 1188 mlx4_qp_free(priv->mdev->dev, &priv->drop_qp); 1189 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1190 } 1191 1192 /* Allocate rx qp's and configure them according to rss map */ 1193 int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) 1194 { 1195 struct mlx4_en_dev *mdev = priv->mdev; 1196 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1197 struct mlx4_qp_context context; 1198 struct mlx4_rss_context *rss_context; 1199 int rss_rings; 1200 void *ptr; 1201 u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 | 1202 MLX4_RSS_TCP_IPV6); 1203 int i, qpn; 1204 int err = 0; 1205 int good_qps = 0; 1206 u8 flags; 1207 1208 en_dbg(DRV, priv, "Configuring rss steering\n"); 1209 1210 flags = priv->rx_ring_num == 1 ? MLX4_RESERVE_A0_QP : 0; 1211 err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num, 1212 priv->rx_ring_num, 1213 &rss_map->base_qpn, flags, 1214 MLX4_RES_USAGE_DRIVER); 1215 if (err) { 1216 en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num); 1217 return err; 1218 } 1219 1220 for (i = 0; i < priv->rx_ring_num; i++) { 1221 qpn = rss_map->base_qpn + i; 1222 err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i], 1223 &rss_map->state[i], 1224 &rss_map->qps[i]); 1225 if (err) 1226 goto rss_err; 1227 1228 ++good_qps; 1229 } 1230 1231 if (priv->rx_ring_num == 1) { 1232 rss_map->indir_qp = &rss_map->qps[0]; 1233 priv->base_qpn = rss_map->indir_qp->qpn; 1234 en_info(priv, "Optimized Non-RSS steering\n"); 1235 return 0; 1236 } 1237 1238 rss_map->indir_qp = kzalloc(sizeof(*rss_map->indir_qp), GFP_KERNEL); 1239 if (!rss_map->indir_qp) { 1240 err = -ENOMEM; 1241 goto rss_err; 1242 } 1243 1244 /* Configure RSS indirection qp */ 1245 err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, rss_map->indir_qp); 1246 if (err) { 1247 en_err(priv, "Failed to allocate RSS indirection QP\n"); 1248 goto qp_alloc_err; 1249 } 1250 1251 rss_map->indir_qp->event = mlx4_en_sqp_event; 1252 mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, 1253 priv->rx_ring[0]->cqn, -1, &context); 1254 1255 if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num) 1256 rss_rings = priv->rx_ring_num; 1257 else 1258 rss_rings = priv->prof->rss_rings; 1259 1260 ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path) 1261 + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH; 1262 rss_context = ptr; 1263 rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 | 1264 (rss_map->base_qpn)); 1265 rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); 1266 if (priv->mdev->profile.udp_rss) { 1267 rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6; 1268 rss_context->base_qpn_udp = rss_context->default_qpn; 1269 } 1270 1271 if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) { 1272 en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n"); 1273 rss_mask |= MLX4_RSS_BY_INNER_HEADERS; 1274 } 1275 1276 rss_context->flags = rss_mask; 1277 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1278 if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) { 1279 rss_context->hash_fn = MLX4_RSS_HASH_XOR; 1280 } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) { 1281 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1282 memcpy(rss_context->rss_key, priv->rss_key, 1283 MLX4_EN_RSS_KEY_SIZE); 1284 } else { 1285 en_err(priv, "Unknown RSS hash function requested\n"); 1286 err = -EINVAL; 1287 goto indir_err; 1288 } 1289 1290 err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, 1291 rss_map->indir_qp, &rss_map->indir_state); 1292 if (err) 1293 goto indir_err; 1294 1295 return 0; 1296 1297 indir_err: 1298 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1299 MLX4_QP_STATE_RST, NULL, 0, 0, rss_map->indir_qp); 1300 mlx4_qp_remove(mdev->dev, rss_map->indir_qp); 1301 mlx4_qp_free(mdev->dev, rss_map->indir_qp); 1302 qp_alloc_err: 1303 kfree(rss_map->indir_qp); 1304 rss_map->indir_qp = NULL; 1305 rss_err: 1306 for (i = 0; i < good_qps; i++) { 1307 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1308 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1309 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1310 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1311 } 1312 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1313 return err; 1314 } 1315 1316 void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) 1317 { 1318 struct mlx4_en_dev *mdev = priv->mdev; 1319 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1320 int i; 1321 1322 if (priv->rx_ring_num > 1) { 1323 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1324 MLX4_QP_STATE_RST, NULL, 0, 0, 1325 rss_map->indir_qp); 1326 mlx4_qp_remove(mdev->dev, rss_map->indir_qp); 1327 mlx4_qp_free(mdev->dev, rss_map->indir_qp); 1328 kfree(rss_map->indir_qp); 1329 rss_map->indir_qp = NULL; 1330 } 1331 1332 for (i = 0; i < priv->rx_ring_num; i++) { 1333 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1334 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1335 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1336 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1337 } 1338 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1339 } 1340