1 /* 2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #include <net/busy_poll.h> 35 #include <linux/mlx4/cq.h> 36 #include <linux/slab.h> 37 #include <linux/mlx4/qp.h> 38 #include <linux/skbuff.h> 39 #include <linux/rculist.h> 40 #include <linux/if_ether.h> 41 #include <linux/if_vlan.h> 42 #include <linux/vmalloc.h> 43 #include <linux/irq.h> 44 45 #if IS_ENABLED(CONFIG_IPV6) 46 #include <net/ip6_checksum.h> 47 #endif 48 49 #include "mlx4_en.h" 50 51 static int mlx4_alloc_pages(struct mlx4_en_priv *priv, 52 struct mlx4_en_rx_alloc *page_alloc, 53 const struct mlx4_en_frag_info *frag_info, 54 gfp_t _gfp) 55 { 56 int order; 57 struct page *page; 58 dma_addr_t dma; 59 60 for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) { 61 gfp_t gfp = _gfp; 62 63 if (order) 64 gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NOMEMALLOC; 65 page = alloc_pages(gfp, order); 66 if (likely(page)) 67 break; 68 if (--order < 0 || 69 ((PAGE_SIZE << order) < frag_info->frag_size)) 70 return -ENOMEM; 71 } 72 dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order, 73 PCI_DMA_FROMDEVICE); 74 if (dma_mapping_error(priv->ddev, dma)) { 75 put_page(page); 76 return -ENOMEM; 77 } 78 page_alloc->page_size = PAGE_SIZE << order; 79 page_alloc->page = page; 80 page_alloc->dma = dma; 81 page_alloc->page_offset = 0; 82 /* Not doing get_page() for each frag is a big win 83 * on asymetric workloads. Note we can not use atomic_set(). 84 */ 85 page_ref_add(page, page_alloc->page_size / frag_info->frag_stride - 1); 86 return 0; 87 } 88 89 static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv, 90 struct mlx4_en_rx_desc *rx_desc, 91 struct mlx4_en_rx_alloc *frags, 92 struct mlx4_en_rx_alloc *ring_alloc, 93 gfp_t gfp) 94 { 95 struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS]; 96 const struct mlx4_en_frag_info *frag_info; 97 struct page *page; 98 dma_addr_t dma; 99 int i; 100 101 for (i = 0; i < priv->num_frags; i++) { 102 frag_info = &priv->frag_info[i]; 103 page_alloc[i] = ring_alloc[i]; 104 page_alloc[i].page_offset += frag_info->frag_stride; 105 106 if (page_alloc[i].page_offset + frag_info->frag_stride <= 107 ring_alloc[i].page_size) 108 continue; 109 110 if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp)) 111 goto out; 112 } 113 114 for (i = 0; i < priv->num_frags; i++) { 115 frags[i] = ring_alloc[i]; 116 dma = ring_alloc[i].dma + ring_alloc[i].page_offset; 117 ring_alloc[i] = page_alloc[i]; 118 rx_desc->data[i].addr = cpu_to_be64(dma); 119 } 120 121 return 0; 122 123 out: 124 while (i--) { 125 if (page_alloc[i].page != ring_alloc[i].page) { 126 dma_unmap_page(priv->ddev, page_alloc[i].dma, 127 page_alloc[i].page_size, PCI_DMA_FROMDEVICE); 128 page = page_alloc[i].page; 129 /* Revert changes done by mlx4_alloc_pages */ 130 page_ref_sub(page, page_alloc[i].page_size / 131 priv->frag_info[i].frag_stride - 1); 132 put_page(page); 133 } 134 } 135 return -ENOMEM; 136 } 137 138 static void mlx4_en_free_frag(struct mlx4_en_priv *priv, 139 struct mlx4_en_rx_alloc *frags, 140 int i) 141 { 142 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; 143 u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride; 144 145 146 if (next_frag_end > frags[i].page_size) 147 dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size, 148 PCI_DMA_FROMDEVICE); 149 150 if (frags[i].page) 151 put_page(frags[i].page); 152 } 153 154 static int mlx4_en_init_allocator(struct mlx4_en_priv *priv, 155 struct mlx4_en_rx_ring *ring) 156 { 157 int i; 158 struct mlx4_en_rx_alloc *page_alloc; 159 160 for (i = 0; i < priv->num_frags; i++) { 161 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; 162 163 if (mlx4_alloc_pages(priv, &ring->page_alloc[i], 164 frag_info, GFP_KERNEL | __GFP_COLD)) 165 goto out; 166 167 en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n", 168 i, ring->page_alloc[i].page_size, 169 page_ref_count(ring->page_alloc[i].page)); 170 } 171 return 0; 172 173 out: 174 while (i--) { 175 struct page *page; 176 177 page_alloc = &ring->page_alloc[i]; 178 dma_unmap_page(priv->ddev, page_alloc->dma, 179 page_alloc->page_size, PCI_DMA_FROMDEVICE); 180 page = page_alloc->page; 181 /* Revert changes done by mlx4_alloc_pages */ 182 page_ref_sub(page, page_alloc->page_size / 183 priv->frag_info[i].frag_stride - 1); 184 put_page(page); 185 page_alloc->page = NULL; 186 } 187 return -ENOMEM; 188 } 189 190 static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv, 191 struct mlx4_en_rx_ring *ring) 192 { 193 struct mlx4_en_rx_alloc *page_alloc; 194 int i; 195 196 for (i = 0; i < priv->num_frags; i++) { 197 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; 198 199 page_alloc = &ring->page_alloc[i]; 200 en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n", 201 i, page_count(page_alloc->page)); 202 203 dma_unmap_page(priv->ddev, page_alloc->dma, 204 page_alloc->page_size, PCI_DMA_FROMDEVICE); 205 while (page_alloc->page_offset + frag_info->frag_stride < 206 page_alloc->page_size) { 207 put_page(page_alloc->page); 208 page_alloc->page_offset += frag_info->frag_stride; 209 } 210 page_alloc->page = NULL; 211 } 212 } 213 214 static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv, 215 struct mlx4_en_rx_ring *ring, int index) 216 { 217 struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; 218 int possible_frags; 219 int i; 220 221 /* Set size and memtype fields */ 222 for (i = 0; i < priv->num_frags; i++) { 223 rx_desc->data[i].byte_count = 224 cpu_to_be32(priv->frag_info[i].frag_size); 225 rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); 226 } 227 228 /* If the number of used fragments does not fill up the ring stride, 229 * remaining (unused) fragments must be padded with null address/size 230 * and a special memory key */ 231 possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; 232 for (i = priv->num_frags; i < possible_frags; i++) { 233 rx_desc->data[i].byte_count = 0; 234 rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); 235 rx_desc->data[i].addr = 0; 236 } 237 } 238 239 static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, 240 struct mlx4_en_rx_ring *ring, int index, 241 gfp_t gfp) 242 { 243 struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride); 244 struct mlx4_en_rx_alloc *frags = ring->rx_info + 245 (index << priv->log_rx_info); 246 247 return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp); 248 } 249 250 static inline bool mlx4_en_is_ring_empty(struct mlx4_en_rx_ring *ring) 251 { 252 return ring->prod == ring->cons; 253 } 254 255 static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) 256 { 257 *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); 258 } 259 260 static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv, 261 struct mlx4_en_rx_ring *ring, 262 int index) 263 { 264 struct mlx4_en_rx_alloc *frags; 265 int nr; 266 267 frags = ring->rx_info + (index << priv->log_rx_info); 268 for (nr = 0; nr < priv->num_frags; nr++) { 269 en_dbg(DRV, priv, "Freeing fragment:%d\n", nr); 270 mlx4_en_free_frag(priv, frags, nr); 271 } 272 } 273 274 static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) 275 { 276 struct mlx4_en_rx_ring *ring; 277 int ring_ind; 278 int buf_ind; 279 int new_size; 280 281 for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { 282 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 283 ring = priv->rx_ring[ring_ind]; 284 285 if (mlx4_en_prepare_rx_desc(priv, ring, 286 ring->actual_size, 287 GFP_KERNEL | __GFP_COLD)) { 288 if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { 289 en_err(priv, "Failed to allocate enough rx buffers\n"); 290 return -ENOMEM; 291 } else { 292 new_size = rounddown_pow_of_two(ring->actual_size); 293 en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n", 294 ring->actual_size, new_size); 295 goto reduce_rings; 296 } 297 } 298 ring->actual_size++; 299 ring->prod++; 300 } 301 } 302 return 0; 303 304 reduce_rings: 305 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 306 ring = priv->rx_ring[ring_ind]; 307 while (ring->actual_size > new_size) { 308 ring->actual_size--; 309 ring->prod--; 310 mlx4_en_free_rx_desc(priv, ring, ring->actual_size); 311 } 312 } 313 314 return 0; 315 } 316 317 static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, 318 struct mlx4_en_rx_ring *ring) 319 { 320 int index; 321 322 en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", 323 ring->cons, ring->prod); 324 325 /* Unmap and free Rx buffers */ 326 while (!mlx4_en_is_ring_empty(ring)) { 327 index = ring->cons & ring->size_mask; 328 en_dbg(DRV, priv, "Processing descriptor:%d\n", index); 329 mlx4_en_free_rx_desc(priv, ring, index); 330 ++ring->cons; 331 } 332 } 333 334 void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev) 335 { 336 int i; 337 int num_of_eqs; 338 int num_rx_rings; 339 struct mlx4_dev *dev = mdev->dev; 340 341 mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) { 342 num_of_eqs = max_t(int, MIN_RX_RINGS, 343 min_t(int, 344 mlx4_get_eqs_per_port(mdev->dev, i), 345 DEF_RX_RINGS)); 346 347 num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS : 348 min_t(int, num_of_eqs, 349 netif_get_num_default_rss_queues()); 350 mdev->profile.prof[i].rx_ring_num = 351 rounddown_pow_of_two(num_rx_rings); 352 } 353 } 354 355 int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, 356 struct mlx4_en_rx_ring **pring, 357 u32 size, u16 stride, int node) 358 { 359 struct mlx4_en_dev *mdev = priv->mdev; 360 struct mlx4_en_rx_ring *ring; 361 int err = -ENOMEM; 362 int tmp; 363 364 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); 365 if (!ring) { 366 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 367 if (!ring) { 368 en_err(priv, "Failed to allocate RX ring structure\n"); 369 return -ENOMEM; 370 } 371 } 372 373 ring->prod = 0; 374 ring->cons = 0; 375 ring->size = size; 376 ring->size_mask = size - 1; 377 ring->stride = stride; 378 ring->log_stride = ffs(ring->stride) - 1; 379 ring->buf_size = ring->size * ring->stride + TXBB_SIZE; 380 381 tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * 382 sizeof(struct mlx4_en_rx_alloc)); 383 ring->rx_info = vmalloc_node(tmp, node); 384 if (!ring->rx_info) { 385 ring->rx_info = vmalloc(tmp); 386 if (!ring->rx_info) { 387 err = -ENOMEM; 388 goto err_ring; 389 } 390 } 391 392 en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", 393 ring->rx_info, tmp); 394 395 /* Allocate HW buffers on provided NUMA node */ 396 set_dev_node(&mdev->dev->persist->pdev->dev, node); 397 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 398 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); 399 if (err) 400 goto err_info; 401 402 ring->buf = ring->wqres.buf.direct.buf; 403 404 ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter; 405 406 *pring = ring; 407 return 0; 408 409 err_info: 410 vfree(ring->rx_info); 411 ring->rx_info = NULL; 412 err_ring: 413 kfree(ring); 414 *pring = NULL; 415 416 return err; 417 } 418 419 int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) 420 { 421 struct mlx4_en_rx_ring *ring; 422 int i; 423 int ring_ind; 424 int err; 425 int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + 426 DS_SIZE * priv->num_frags); 427 428 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 429 ring = priv->rx_ring[ring_ind]; 430 431 ring->prod = 0; 432 ring->cons = 0; 433 ring->actual_size = 0; 434 ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn; 435 436 ring->stride = stride; 437 if (ring->stride <= TXBB_SIZE) 438 ring->buf += TXBB_SIZE; 439 440 ring->log_stride = ffs(ring->stride) - 1; 441 ring->buf_size = ring->size * ring->stride; 442 443 memset(ring->buf, 0, ring->buf_size); 444 mlx4_en_update_rx_prod_db(ring); 445 446 /* Initialize all descriptors */ 447 for (i = 0; i < ring->size; i++) 448 mlx4_en_init_rx_desc(priv, ring, i); 449 450 /* Initialize page allocators */ 451 err = mlx4_en_init_allocator(priv, ring); 452 if (err) { 453 en_err(priv, "Failed initializing ring allocator\n"); 454 if (ring->stride <= TXBB_SIZE) 455 ring->buf -= TXBB_SIZE; 456 ring_ind--; 457 goto err_allocator; 458 } 459 } 460 err = mlx4_en_fill_rx_buffers(priv); 461 if (err) 462 goto err_buffers; 463 464 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { 465 ring = priv->rx_ring[ring_ind]; 466 467 ring->size_mask = ring->actual_size - 1; 468 mlx4_en_update_rx_prod_db(ring); 469 } 470 471 return 0; 472 473 err_buffers: 474 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) 475 mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]); 476 477 ring_ind = priv->rx_ring_num - 1; 478 err_allocator: 479 while (ring_ind >= 0) { 480 if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE) 481 priv->rx_ring[ring_ind]->buf -= TXBB_SIZE; 482 mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]); 483 ring_ind--; 484 } 485 return err; 486 } 487 488 /* We recover from out of memory by scheduling our napi poll 489 * function (mlx4_en_process_cq), which tries to allocate 490 * all missing RX buffers (call to mlx4_en_refill_rx_buffers). 491 */ 492 void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv) 493 { 494 int ring; 495 496 if (!priv->port_up) 497 return; 498 499 for (ring = 0; ring < priv->rx_ring_num; ring++) { 500 if (mlx4_en_is_ring_empty(priv->rx_ring[ring])) 501 napi_reschedule(&priv->rx_cq[ring]->napi); 502 } 503 } 504 505 void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, 506 struct mlx4_en_rx_ring **pring, 507 u32 size, u16 stride) 508 { 509 struct mlx4_en_dev *mdev = priv->mdev; 510 struct mlx4_en_rx_ring *ring = *pring; 511 512 mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE); 513 vfree(ring->rx_info); 514 ring->rx_info = NULL; 515 kfree(ring); 516 *pring = NULL; 517 #ifdef CONFIG_RFS_ACCEL 518 mlx4_en_cleanup_filters(priv); 519 #endif 520 } 521 522 void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, 523 struct mlx4_en_rx_ring *ring) 524 { 525 mlx4_en_free_rx_buf(priv, ring); 526 if (ring->stride <= TXBB_SIZE) 527 ring->buf -= TXBB_SIZE; 528 mlx4_en_destroy_allocator(priv, ring); 529 } 530 531 532 static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, 533 struct mlx4_en_rx_desc *rx_desc, 534 struct mlx4_en_rx_alloc *frags, 535 struct sk_buff *skb, 536 int length) 537 { 538 struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags; 539 struct mlx4_en_frag_info *frag_info; 540 int nr; 541 dma_addr_t dma; 542 543 /* Collect used fragments while replacing them in the HW descriptors */ 544 for (nr = 0; nr < priv->num_frags; nr++) { 545 frag_info = &priv->frag_info[nr]; 546 if (length <= frag_info->frag_prefix_size) 547 break; 548 if (!frags[nr].page) 549 goto fail; 550 551 dma = be64_to_cpu(rx_desc->data[nr].addr); 552 dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size, 553 DMA_FROM_DEVICE); 554 555 /* Save page reference in skb */ 556 __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page); 557 skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size); 558 skb_frags_rx[nr].page_offset = frags[nr].page_offset; 559 skb->truesize += frag_info->frag_stride; 560 frags[nr].page = NULL; 561 } 562 /* Adjust size of last fragment to match actual length */ 563 if (nr > 0) 564 skb_frag_size_set(&skb_frags_rx[nr - 1], 565 length - priv->frag_info[nr - 1].frag_prefix_size); 566 return nr; 567 568 fail: 569 while (nr > 0) { 570 nr--; 571 __skb_frag_unref(&skb_frags_rx[nr]); 572 } 573 return 0; 574 } 575 576 577 static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv, 578 struct mlx4_en_rx_desc *rx_desc, 579 struct mlx4_en_rx_alloc *frags, 580 unsigned int length) 581 { 582 struct sk_buff *skb; 583 void *va; 584 int used_frags; 585 dma_addr_t dma; 586 587 skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN); 588 if (!skb) { 589 en_dbg(RX_ERR, priv, "Failed allocating skb\n"); 590 return NULL; 591 } 592 skb_reserve(skb, NET_IP_ALIGN); 593 skb->len = length; 594 595 /* Get pointer to first fragment so we could copy the headers into the 596 * (linear part of the) skb */ 597 va = page_address(frags[0].page) + frags[0].page_offset; 598 599 if (length <= SMALL_PACKET_SIZE) { 600 /* We are copying all relevant data to the skb - temporarily 601 * sync buffers for the copy */ 602 dma = be64_to_cpu(rx_desc->data[0].addr); 603 dma_sync_single_for_cpu(priv->ddev, dma, length, 604 DMA_FROM_DEVICE); 605 skb_copy_to_linear_data(skb, va, length); 606 skb->tail += length; 607 } else { 608 unsigned int pull_len; 609 610 /* Move relevant fragments to skb */ 611 used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags, 612 skb, length); 613 if (unlikely(!used_frags)) { 614 kfree_skb(skb); 615 return NULL; 616 } 617 skb_shinfo(skb)->nr_frags = used_frags; 618 619 pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE); 620 /* Copy headers into the skb linear buffer */ 621 memcpy(skb->data, va, pull_len); 622 skb->tail += pull_len; 623 624 /* Skip headers in first fragment */ 625 skb_shinfo(skb)->frags[0].page_offset += pull_len; 626 627 /* Adjust size of first fragment */ 628 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len); 629 skb->data_len = length - pull_len; 630 } 631 return skb; 632 } 633 634 static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb) 635 { 636 int i; 637 int offset = ETH_HLEN; 638 639 for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) { 640 if (*(skb->data + offset) != (unsigned char) (i & 0xff)) 641 goto out_loopback; 642 } 643 /* Loopback found */ 644 priv->loopback_ok = 1; 645 646 out_loopback: 647 dev_kfree_skb_any(skb); 648 } 649 650 static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv, 651 struct mlx4_en_rx_ring *ring) 652 { 653 int index = ring->prod & ring->size_mask; 654 655 while ((u32) (ring->prod - ring->cons) < ring->actual_size) { 656 if (mlx4_en_prepare_rx_desc(priv, ring, index, 657 GFP_ATOMIC | __GFP_COLD)) 658 break; 659 ring->prod++; 660 index = ring->prod & ring->size_mask; 661 } 662 } 663 664 /* When hardware doesn't strip the vlan, we need to calculate the checksum 665 * over it and add it to the hardware's checksum calculation 666 */ 667 static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum, 668 struct vlan_hdr *vlanh) 669 { 670 return csum_add(hw_checksum, *(__wsum *)vlanh); 671 } 672 673 /* Although the stack expects checksum which doesn't include the pseudo 674 * header, the HW adds it. To address that, we are subtracting the pseudo 675 * header checksum from the checksum value provided by the HW. 676 */ 677 static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb, 678 struct iphdr *iph) 679 { 680 __u16 length_for_csum = 0; 681 __wsum csum_pseudo_header = 0; 682 683 length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2)); 684 csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr, 685 length_for_csum, iph->protocol, 0); 686 skb->csum = csum_sub(hw_checksum, csum_pseudo_header); 687 } 688 689 #if IS_ENABLED(CONFIG_IPV6) 690 /* In IPv6 packets, besides subtracting the pseudo header checksum, 691 * we also compute/add the IP header checksum which 692 * is not added by the HW. 693 */ 694 static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb, 695 struct ipv6hdr *ipv6h) 696 { 697 __wsum csum_pseudo_hdr = 0; 698 699 if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS) 700 return -1; 701 hw_checksum = csum_add(hw_checksum, (__force __wsum)htons(ipv6h->nexthdr)); 702 703 csum_pseudo_hdr = csum_partial(&ipv6h->saddr, 704 sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0); 705 csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len); 706 csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr)); 707 708 skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr); 709 skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0)); 710 return 0; 711 } 712 #endif 713 static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va, 714 netdev_features_t dev_features) 715 { 716 __wsum hw_checksum = 0; 717 718 void *hdr = (u8 *)va + sizeof(struct ethhdr); 719 720 hw_checksum = csum_unfold((__force __sum16)cqe->checksum); 721 722 if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) && 723 !(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) { 724 hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr); 725 hdr += sizeof(struct vlan_hdr); 726 } 727 728 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4)) 729 get_fixed_ipv4_csum(hw_checksum, skb, hdr); 730 #if IS_ENABLED(CONFIG_IPV6) 731 else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6)) 732 if (get_fixed_ipv6_csum(hw_checksum, skb, hdr)) 733 return -1; 734 #endif 735 return 0; 736 } 737 738 int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) 739 { 740 struct mlx4_en_priv *priv = netdev_priv(dev); 741 struct mlx4_en_dev *mdev = priv->mdev; 742 struct mlx4_cqe *cqe; 743 struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring]; 744 struct mlx4_en_rx_alloc *frags; 745 struct mlx4_en_rx_desc *rx_desc; 746 struct sk_buff *skb; 747 int index; 748 int nr; 749 unsigned int length; 750 int polled = 0; 751 int ip_summed; 752 int factor = priv->cqe_factor; 753 u64 timestamp; 754 bool l2_tunnel; 755 756 if (!priv->port_up) 757 return 0; 758 759 if (budget <= 0) 760 return polled; 761 762 /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx 763 * descriptor offset can be deduced from the CQE index instead of 764 * reading 'cqe->index' */ 765 index = cq->mcq.cons_index & ring->size_mask; 766 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 767 768 /* Process all completed CQEs */ 769 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 770 cq->mcq.cons_index & cq->size)) { 771 772 frags = ring->rx_info + (index << priv->log_rx_info); 773 rx_desc = ring->buf + (index << ring->log_stride); 774 775 /* 776 * make sure we read the CQE after we read the ownership bit 777 */ 778 dma_rmb(); 779 780 /* Drop packet on bad receive or bad checksum */ 781 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 782 MLX4_CQE_OPCODE_ERROR)) { 783 en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n", 784 ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome, 785 ((struct mlx4_err_cqe *)cqe)->syndrome); 786 goto next; 787 } 788 if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { 789 en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); 790 goto next; 791 } 792 793 /* Check if we need to drop the packet if SRIOV is not enabled 794 * and not performing the selftest or flb disabled 795 */ 796 if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) { 797 struct ethhdr *ethh; 798 dma_addr_t dma; 799 /* Get pointer to first fragment since we haven't 800 * skb yet and cast it to ethhdr struct 801 */ 802 dma = be64_to_cpu(rx_desc->data[0].addr); 803 dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh), 804 DMA_FROM_DEVICE); 805 ethh = (struct ethhdr *)(page_address(frags[0].page) + 806 frags[0].page_offset); 807 808 if (is_multicast_ether_addr(ethh->h_dest)) { 809 struct mlx4_mac_entry *entry; 810 struct hlist_head *bucket; 811 unsigned int mac_hash; 812 813 /* Drop the packet, since HW loopback-ed it */ 814 mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX]; 815 bucket = &priv->mac_hash[mac_hash]; 816 rcu_read_lock(); 817 hlist_for_each_entry_rcu(entry, bucket, hlist) { 818 if (ether_addr_equal_64bits(entry->mac, 819 ethh->h_source)) { 820 rcu_read_unlock(); 821 goto next; 822 } 823 } 824 rcu_read_unlock(); 825 } 826 } 827 828 /* 829 * Packet is OK - process it. 830 */ 831 length = be32_to_cpu(cqe->byte_cnt); 832 length -= ring->fcs_del; 833 ring->bytes += length; 834 ring->packets++; 835 l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) && 836 (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL)); 837 838 if (likely(dev->features & NETIF_F_RXCSUM)) { 839 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP | 840 MLX4_CQE_STATUS_UDP)) { 841 if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && 842 cqe->checksum == cpu_to_be16(0xffff)) { 843 ip_summed = CHECKSUM_UNNECESSARY; 844 ring->csum_ok++; 845 } else { 846 ip_summed = CHECKSUM_NONE; 847 ring->csum_none++; 848 } 849 } else { 850 if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP && 851 (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 | 852 MLX4_CQE_STATUS_IPV6))) { 853 ip_summed = CHECKSUM_COMPLETE; 854 ring->csum_complete++; 855 } else { 856 ip_summed = CHECKSUM_NONE; 857 ring->csum_none++; 858 } 859 } 860 } else { 861 ip_summed = CHECKSUM_NONE; 862 ring->csum_none++; 863 } 864 865 /* This packet is eligible for GRO if it is: 866 * - DIX Ethernet (type interpretation) 867 * - TCP/IP (v4) 868 * - without IP options 869 * - not an IP fragment 870 */ 871 if (dev->features & NETIF_F_GRO) { 872 struct sk_buff *gro_skb = napi_get_frags(&cq->napi); 873 if (!gro_skb) 874 goto next; 875 876 nr = mlx4_en_complete_rx_desc(priv, 877 rx_desc, frags, gro_skb, 878 length); 879 if (!nr) 880 goto next; 881 882 if (ip_summed == CHECKSUM_COMPLETE) { 883 void *va = skb_frag_address(skb_shinfo(gro_skb)->frags); 884 if (check_csum(cqe, gro_skb, va, 885 dev->features)) { 886 ip_summed = CHECKSUM_NONE; 887 ring->csum_none++; 888 ring->csum_complete--; 889 } 890 } 891 892 skb_shinfo(gro_skb)->nr_frags = nr; 893 gro_skb->len = length; 894 gro_skb->data_len = length; 895 gro_skb->ip_summed = ip_summed; 896 897 if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) 898 gro_skb->csum_level = 1; 899 900 if ((cqe->vlan_my_qpn & 901 cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) && 902 (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 903 u16 vid = be16_to_cpu(cqe->sl_vid); 904 905 __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid); 906 } else if ((be32_to_cpu(cqe->vlan_my_qpn) & 907 MLX4_CQE_SVLAN_PRESENT_MASK) && 908 (dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 909 __vlan_hwaccel_put_tag(gro_skb, 910 htons(ETH_P_8021AD), 911 be16_to_cpu(cqe->sl_vid)); 912 } 913 914 if (dev->features & NETIF_F_RXHASH) 915 skb_set_hash(gro_skb, 916 be32_to_cpu(cqe->immed_rss_invalid), 917 (ip_summed == CHECKSUM_UNNECESSARY) ? 918 PKT_HASH_TYPE_L4 : 919 PKT_HASH_TYPE_L3); 920 921 skb_record_rx_queue(gro_skb, cq->ring); 922 923 if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { 924 timestamp = mlx4_en_get_cqe_ts(cqe); 925 mlx4_en_fill_hwtstamps(mdev, 926 skb_hwtstamps(gro_skb), 927 timestamp); 928 } 929 930 napi_gro_frags(&cq->napi); 931 goto next; 932 } 933 934 /* GRO not possible, complete processing here */ 935 skb = mlx4_en_rx_skb(priv, rx_desc, frags, length); 936 if (!skb) { 937 ring->dropped++; 938 goto next; 939 } 940 941 if (unlikely(priv->validate_loopback)) { 942 validate_loopback(priv, skb); 943 goto next; 944 } 945 946 if (ip_summed == CHECKSUM_COMPLETE) { 947 if (check_csum(cqe, skb, skb->data, dev->features)) { 948 ip_summed = CHECKSUM_NONE; 949 ring->csum_complete--; 950 ring->csum_none++; 951 } 952 } 953 954 skb->ip_summed = ip_summed; 955 skb->protocol = eth_type_trans(skb, dev); 956 skb_record_rx_queue(skb, cq->ring); 957 958 if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) 959 skb->csum_level = 1; 960 961 if (dev->features & NETIF_F_RXHASH) 962 skb_set_hash(skb, 963 be32_to_cpu(cqe->immed_rss_invalid), 964 (ip_summed == CHECKSUM_UNNECESSARY) ? 965 PKT_HASH_TYPE_L4 : 966 PKT_HASH_TYPE_L3); 967 968 if ((be32_to_cpu(cqe->vlan_my_qpn) & 969 MLX4_CQE_CVLAN_PRESENT_MASK) && 970 (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) 971 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid)); 972 else if ((be32_to_cpu(cqe->vlan_my_qpn) & 973 MLX4_CQE_SVLAN_PRESENT_MASK) && 974 (dev->features & NETIF_F_HW_VLAN_STAG_RX)) 975 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), 976 be16_to_cpu(cqe->sl_vid)); 977 978 if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { 979 timestamp = mlx4_en_get_cqe_ts(cqe); 980 mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb), 981 timestamp); 982 } 983 984 napi_gro_receive(&cq->napi, skb); 985 next: 986 for (nr = 0; nr < priv->num_frags; nr++) 987 mlx4_en_free_frag(priv, frags, nr); 988 989 ++cq->mcq.cons_index; 990 index = (cq->mcq.cons_index) & ring->size_mask; 991 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; 992 if (++polled == budget) 993 goto out; 994 } 995 996 out: 997 AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled); 998 mlx4_cq_set_ci(&cq->mcq); 999 wmb(); /* ensure HW sees CQ consumer before we post new buffers */ 1000 ring->cons = cq->mcq.cons_index; 1001 mlx4_en_refill_rx_buffers(priv, ring); 1002 mlx4_en_update_rx_prod_db(ring); 1003 return polled; 1004 } 1005 1006 1007 void mlx4_en_rx_irq(struct mlx4_cq *mcq) 1008 { 1009 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 1010 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 1011 1012 if (likely(priv->port_up)) 1013 napi_schedule_irqoff(&cq->napi); 1014 else 1015 mlx4_en_arm_cq(priv, cq); 1016 } 1017 1018 /* Rx CQ polling - called by NAPI */ 1019 int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) 1020 { 1021 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); 1022 struct net_device *dev = cq->dev; 1023 struct mlx4_en_priv *priv = netdev_priv(dev); 1024 int done; 1025 1026 done = mlx4_en_process_rx_cq(dev, cq, budget); 1027 1028 /* If we used up all the quota - we're probably not done yet... */ 1029 if (done == budget) { 1030 const struct cpumask *aff; 1031 struct irq_data *idata; 1032 int cpu_curr; 1033 1034 INC_PERF_COUNTER(priv->pstats.napi_quota); 1035 1036 cpu_curr = smp_processor_id(); 1037 idata = irq_desc_get_irq_data(cq->irq_desc); 1038 aff = irq_data_get_affinity_mask(idata); 1039 1040 if (likely(cpumask_test_cpu(cpu_curr, aff))) 1041 return budget; 1042 1043 /* Current cpu is not according to smp_irq_affinity - 1044 * probably affinity changed. need to stop this NAPI 1045 * poll, and restart it on the right CPU 1046 */ 1047 done = 0; 1048 } 1049 /* Done for now */ 1050 napi_complete_done(napi, done); 1051 mlx4_en_arm_cq(priv, cq); 1052 return done; 1053 } 1054 1055 static const int frag_sizes[] = { 1056 FRAG_SZ0, 1057 FRAG_SZ1, 1058 FRAG_SZ2, 1059 FRAG_SZ3 1060 }; 1061 1062 void mlx4_en_calc_rx_buf(struct net_device *dev) 1063 { 1064 struct mlx4_en_priv *priv = netdev_priv(dev); 1065 /* VLAN_HLEN is added twice,to support skb vlan tagged with multiple 1066 * headers. (For example: ETH_P_8021Q and ETH_P_8021AD). 1067 */ 1068 int eff_mtu = dev->mtu + ETH_HLEN + (2 * VLAN_HLEN); 1069 int buf_size = 0; 1070 int i = 0; 1071 1072 while (buf_size < eff_mtu) { 1073 priv->frag_info[i].frag_size = 1074 (eff_mtu > buf_size + frag_sizes[i]) ? 1075 frag_sizes[i] : eff_mtu - buf_size; 1076 priv->frag_info[i].frag_prefix_size = buf_size; 1077 priv->frag_info[i].frag_stride = 1078 ALIGN(priv->frag_info[i].frag_size, 1079 SMP_CACHE_BYTES); 1080 buf_size += priv->frag_info[i].frag_size; 1081 i++; 1082 } 1083 1084 priv->num_frags = i; 1085 priv->rx_skb_size = eff_mtu; 1086 priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc)); 1087 1088 en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n", 1089 eff_mtu, priv->num_frags); 1090 for (i = 0; i < priv->num_frags; i++) { 1091 en_err(priv, 1092 " frag:%d - size:%d prefix:%d stride:%d\n", 1093 i, 1094 priv->frag_info[i].frag_size, 1095 priv->frag_info[i].frag_prefix_size, 1096 priv->frag_info[i].frag_stride); 1097 } 1098 } 1099 1100 /* RSS related functions */ 1101 1102 static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, 1103 struct mlx4_en_rx_ring *ring, 1104 enum mlx4_qp_state *state, 1105 struct mlx4_qp *qp) 1106 { 1107 struct mlx4_en_dev *mdev = priv->mdev; 1108 struct mlx4_qp_context *context; 1109 int err = 0; 1110 1111 context = kmalloc(sizeof(*context), GFP_KERNEL); 1112 if (!context) 1113 return -ENOMEM; 1114 1115 err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL); 1116 if (err) { 1117 en_err(priv, "Failed to allocate qp #%x\n", qpn); 1118 goto out; 1119 } 1120 qp->event = mlx4_en_sqp_event; 1121 1122 memset(context, 0, sizeof *context); 1123 mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0, 1124 qpn, ring->cqn, -1, context); 1125 context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma); 1126 1127 /* Cancel FCS removal if FW allows */ 1128 if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) { 1129 context->param3 |= cpu_to_be32(1 << 29); 1130 if (priv->dev->features & NETIF_F_RXFCS) 1131 ring->fcs_del = 0; 1132 else 1133 ring->fcs_del = ETH_FCS_LEN; 1134 } else 1135 ring->fcs_del = 0; 1136 1137 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state); 1138 if (err) { 1139 mlx4_qp_remove(mdev->dev, qp); 1140 mlx4_qp_free(mdev->dev, qp); 1141 } 1142 mlx4_en_update_rx_prod_db(ring); 1143 out: 1144 kfree(context); 1145 return err; 1146 } 1147 1148 int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv) 1149 { 1150 int err; 1151 u32 qpn; 1152 1153 err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn, 1154 MLX4_RESERVE_A0_QP); 1155 if (err) { 1156 en_err(priv, "Failed reserving drop qpn\n"); 1157 return err; 1158 } 1159 err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL); 1160 if (err) { 1161 en_err(priv, "Failed allocating drop qp\n"); 1162 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1163 return err; 1164 } 1165 1166 return 0; 1167 } 1168 1169 void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv) 1170 { 1171 u32 qpn; 1172 1173 qpn = priv->drop_qp.qpn; 1174 mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp); 1175 mlx4_qp_free(priv->mdev->dev, &priv->drop_qp); 1176 mlx4_qp_release_range(priv->mdev->dev, qpn, 1); 1177 } 1178 1179 /* Allocate rx qp's and configure them according to rss map */ 1180 int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) 1181 { 1182 struct mlx4_en_dev *mdev = priv->mdev; 1183 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1184 struct mlx4_qp_context context; 1185 struct mlx4_rss_context *rss_context; 1186 int rss_rings; 1187 void *ptr; 1188 u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 | 1189 MLX4_RSS_TCP_IPV6); 1190 int i, qpn; 1191 int err = 0; 1192 int good_qps = 0; 1193 1194 en_dbg(DRV, priv, "Configuring rss steering\n"); 1195 err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num, 1196 priv->rx_ring_num, 1197 &rss_map->base_qpn, 0); 1198 if (err) { 1199 en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num); 1200 return err; 1201 } 1202 1203 for (i = 0; i < priv->rx_ring_num; i++) { 1204 qpn = rss_map->base_qpn + i; 1205 err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i], 1206 &rss_map->state[i], 1207 &rss_map->qps[i]); 1208 if (err) 1209 goto rss_err; 1210 1211 ++good_qps; 1212 } 1213 1214 /* Configure RSS indirection qp */ 1215 err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL); 1216 if (err) { 1217 en_err(priv, "Failed to allocate RSS indirection QP\n"); 1218 goto rss_err; 1219 } 1220 rss_map->indir_qp.event = mlx4_en_sqp_event; 1221 mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, 1222 priv->rx_ring[0]->cqn, -1, &context); 1223 1224 if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num) 1225 rss_rings = priv->rx_ring_num; 1226 else 1227 rss_rings = priv->prof->rss_rings; 1228 1229 ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path) 1230 + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH; 1231 rss_context = ptr; 1232 rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 | 1233 (rss_map->base_qpn)); 1234 rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); 1235 if (priv->mdev->profile.udp_rss) { 1236 rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6; 1237 rss_context->base_qpn_udp = rss_context->default_qpn; 1238 } 1239 1240 if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) { 1241 en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n"); 1242 rss_mask |= MLX4_RSS_BY_INNER_HEADERS; 1243 } 1244 1245 rss_context->flags = rss_mask; 1246 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1247 if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) { 1248 rss_context->hash_fn = MLX4_RSS_HASH_XOR; 1249 } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) { 1250 rss_context->hash_fn = MLX4_RSS_HASH_TOP; 1251 memcpy(rss_context->rss_key, priv->rss_key, 1252 MLX4_EN_RSS_KEY_SIZE); 1253 } else { 1254 en_err(priv, "Unknown RSS hash function requested\n"); 1255 err = -EINVAL; 1256 goto indir_err; 1257 } 1258 err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, 1259 &rss_map->indir_qp, &rss_map->indir_state); 1260 if (err) 1261 goto indir_err; 1262 1263 return 0; 1264 1265 indir_err: 1266 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1267 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); 1268 mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); 1269 mlx4_qp_free(mdev->dev, &rss_map->indir_qp); 1270 rss_err: 1271 for (i = 0; i < good_qps; i++) { 1272 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1273 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1274 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1275 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1276 } 1277 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1278 return err; 1279 } 1280 1281 void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) 1282 { 1283 struct mlx4_en_dev *mdev = priv->mdev; 1284 struct mlx4_en_rss_map *rss_map = &priv->rss_map; 1285 int i; 1286 1287 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, 1288 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); 1289 mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); 1290 mlx4_qp_free(mdev->dev, &rss_map->indir_qp); 1291 1292 for (i = 0; i < priv->rx_ring_num; i++) { 1293 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], 1294 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); 1295 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); 1296 mlx4_qp_free(mdev->dev, &rss_map->qps[i]); 1297 } 1298 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); 1299 } 1300