xref: /linux/drivers/net/ethernet/marvell/skge.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4  * Ethernet adapters. Based on earlier sk98lin, e100 and
5  * FreeBSD if_sk drivers.
6  *
7  * This driver intentionally does not support all the features
8  * of the original driver such as link fail-over and link management because
9  * those should be done at higher levels.
10  *
11  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37 
38 #include "skge.h"
39 
40 #define DRV_NAME		"skge"
41 #define DRV_VERSION		"1.14"
42 
43 #define DEFAULT_TX_RING_SIZE	128
44 #define DEFAULT_RX_RING_SIZE	512
45 #define MAX_TX_RING_SIZE	1024
46 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE	4096
48 #define RX_COPY_THRESHOLD	128
49 #define RX_BUF_SIZE		1536
50 #define PHY_RETRIES	        1000
51 #define ETH_JUMBO_MTU		9000
52 #define TX_WATCHDOG		(5 * HZ)
53 #define BLINK_MS		250
54 #define LINK_HZ			HZ
55 
56 #define SKGE_EEPROM_MAGIC	0x9933aabb
57 
58 
59 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
60 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
63 
64 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
65 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
66 				NETIF_MSG_IFDOWN);
67 
68 static int debug = -1;	/* defaults above */
69 module_param(debug, int, 0);
70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71 
72 static const struct pci_device_id skge_id_table[] = {
73 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
74 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
75 #ifdef CONFIG_SKGE_GENESIS
76 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
77 #endif
78 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
79 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
80 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
81 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
82 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
83 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
84 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
85 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
86 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
87 	{ 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90 
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102 static void skge_set_multicast(struct net_device *dev);
103 static irqreturn_t skge_intr(int irq, void *dev_id);
104 
105 /* Avoid conditionals by using array */
106 static const int txqaddr[] = { Q_XA1, Q_XA2 };
107 static const int rxqaddr[] = { Q_R1, Q_R2 };
108 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
109 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
110 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
111 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
112 
113 static inline bool is_genesis(const struct skge_hw *hw)
114 {
115 #ifdef CONFIG_SKGE_GENESIS
116 	return hw->chip_id == CHIP_ID_GENESIS;
117 #else
118 	return false;
119 #endif
120 }
121 
122 static int skge_get_regs_len(struct net_device *dev)
123 {
124 	return 0x4000;
125 }
126 
127 /*
128  * Returns copy of whole control register region
129  * Note: skip RAM address register because accessing it will
130  * 	 cause bus hangs!
131  */
132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
133 			  void *p)
134 {
135 	const struct skge_port *skge = netdev_priv(dev);
136 	const void __iomem *io = skge->hw->regs;
137 
138 	regs->version = 1;
139 	memset(p, 0, regs->len);
140 	memcpy_fromio(p, io, B3_RAM_ADDR);
141 
142 	if (regs->len > B3_RI_WTO_R1) {
143 		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
144 			      regs->len - B3_RI_WTO_R1);
145 	}
146 }
147 
148 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
149 static u32 wol_supported(const struct skge_hw *hw)
150 {
151 	if (is_genesis(hw))
152 		return 0;
153 
154 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
155 		return 0;
156 
157 	return WAKE_MAGIC | WAKE_PHY;
158 }
159 
160 static void skge_wol_init(struct skge_port *skge)
161 {
162 	struct skge_hw *hw = skge->hw;
163 	int port = skge->port;
164 	u16 ctrl;
165 
166 	skge_write16(hw, B0_CTST, CS_RST_CLR);
167 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
168 
169 	/* Turn on Vaux */
170 	skge_write8(hw, B0_POWER_CTRL,
171 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
172 
173 	/* WA code for COMA mode -- clear PHY reset */
174 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
175 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
176 		u32 reg = skge_read32(hw, B2_GP_IO);
177 		reg |= GP_DIR_9;
178 		reg &= ~GP_IO_9;
179 		skge_write32(hw, B2_GP_IO, reg);
180 	}
181 
182 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
183 		     GPC_DIS_SLEEP |
184 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
185 		     GPC_ANEG_1 | GPC_RST_SET);
186 
187 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
188 		     GPC_DIS_SLEEP |
189 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 		     GPC_ANEG_1 | GPC_RST_CLR);
191 
192 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
193 
194 	/* Force to 10/100 skge_reset will re-enable on resume	 */
195 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
196 		     (PHY_AN_100FULL | PHY_AN_100HALF |
197 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
198 	/* no 1000 HD/FD */
199 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
200 	gm_phy_write(hw, port, PHY_MARV_CTRL,
201 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
202 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
203 
204 
205 	/* Set GMAC to no flow control and auto update for speed/duplex */
206 	gma_write16(hw, port, GM_GP_CTRL,
207 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
208 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
209 
210 	/* Set WOL address */
211 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
212 		    skge->netdev->dev_addr, ETH_ALEN);
213 
214 	/* Turn on appropriate WOL control bits */
215 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
216 	ctrl = 0;
217 	if (skge->wol & WAKE_PHY)
218 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
219 	else
220 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
221 
222 	if (skge->wol & WAKE_MAGIC)
223 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
224 	else
225 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
226 
227 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
228 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
229 
230 	/* block receiver */
231 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
232 }
233 
234 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
235 {
236 	struct skge_port *skge = netdev_priv(dev);
237 
238 	wol->supported = wol_supported(skge->hw);
239 	wol->wolopts = skge->wol;
240 }
241 
242 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
243 {
244 	struct skge_port *skge = netdev_priv(dev);
245 	struct skge_hw *hw = skge->hw;
246 
247 	if ((wol->wolopts & ~wol_supported(hw)) ||
248 	    !device_can_wakeup(&hw->pdev->dev))
249 		return -EOPNOTSUPP;
250 
251 	skge->wol = wol->wolopts;
252 
253 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
254 
255 	return 0;
256 }
257 
258 /* Determine supported/advertised modes based on hardware.
259  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
260  */
261 static u32 skge_supported_modes(const struct skge_hw *hw)
262 {
263 	u32 supported;
264 
265 	if (hw->copper) {
266 		supported = (SUPPORTED_10baseT_Half |
267 			     SUPPORTED_10baseT_Full |
268 			     SUPPORTED_100baseT_Half |
269 			     SUPPORTED_100baseT_Full |
270 			     SUPPORTED_1000baseT_Half |
271 			     SUPPORTED_1000baseT_Full |
272 			     SUPPORTED_Autoneg |
273 			     SUPPORTED_TP);
274 
275 		if (is_genesis(hw))
276 			supported &= ~(SUPPORTED_10baseT_Half |
277 				       SUPPORTED_10baseT_Full |
278 				       SUPPORTED_100baseT_Half |
279 				       SUPPORTED_100baseT_Full);
280 
281 		else if (hw->chip_id == CHIP_ID_YUKON)
282 			supported &= ~SUPPORTED_1000baseT_Half;
283 	} else
284 		supported = (SUPPORTED_1000baseT_Full |
285 			     SUPPORTED_1000baseT_Half |
286 			     SUPPORTED_FIBRE |
287 			     SUPPORTED_Autoneg);
288 
289 	return supported;
290 }
291 
292 static int skge_get_link_ksettings(struct net_device *dev,
293 				   struct ethtool_link_ksettings *cmd)
294 {
295 	struct skge_port *skge = netdev_priv(dev);
296 	struct skge_hw *hw = skge->hw;
297 	u32 supported, advertising;
298 
299 	supported = skge_supported_modes(hw);
300 
301 	if (hw->copper) {
302 		cmd->base.port = PORT_TP;
303 		cmd->base.phy_address = hw->phy_addr;
304 	} else
305 		cmd->base.port = PORT_FIBRE;
306 
307 	advertising = skge->advertising;
308 	cmd->base.autoneg = skge->autoneg;
309 	cmd->base.speed = skge->speed;
310 	cmd->base.duplex = skge->duplex;
311 
312 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
313 						supported);
314 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
315 						advertising);
316 
317 	return 0;
318 }
319 
320 static int skge_set_link_ksettings(struct net_device *dev,
321 				   const struct ethtool_link_ksettings *cmd)
322 {
323 	struct skge_port *skge = netdev_priv(dev);
324 	const struct skge_hw *hw = skge->hw;
325 	u32 supported = skge_supported_modes(hw);
326 	int err = 0;
327 	u32 advertising;
328 
329 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
330 						cmd->link_modes.advertising);
331 
332 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
333 		advertising = supported;
334 		skge->duplex = -1;
335 		skge->speed = -1;
336 	} else {
337 		u32 setting;
338 		u32 speed = cmd->base.speed;
339 
340 		switch (speed) {
341 		case SPEED_1000:
342 			if (cmd->base.duplex == DUPLEX_FULL)
343 				setting = SUPPORTED_1000baseT_Full;
344 			else if (cmd->base.duplex == DUPLEX_HALF)
345 				setting = SUPPORTED_1000baseT_Half;
346 			else
347 				return -EINVAL;
348 			break;
349 		case SPEED_100:
350 			if (cmd->base.duplex == DUPLEX_FULL)
351 				setting = SUPPORTED_100baseT_Full;
352 			else if (cmd->base.duplex == DUPLEX_HALF)
353 				setting = SUPPORTED_100baseT_Half;
354 			else
355 				return -EINVAL;
356 			break;
357 
358 		case SPEED_10:
359 			if (cmd->base.duplex == DUPLEX_FULL)
360 				setting = SUPPORTED_10baseT_Full;
361 			else if (cmd->base.duplex == DUPLEX_HALF)
362 				setting = SUPPORTED_10baseT_Half;
363 			else
364 				return -EINVAL;
365 			break;
366 		default:
367 			return -EINVAL;
368 		}
369 
370 		if ((setting & supported) == 0)
371 			return -EINVAL;
372 
373 		skge->speed = speed;
374 		skge->duplex = cmd->base.duplex;
375 	}
376 
377 	skge->autoneg = cmd->base.autoneg;
378 	skge->advertising = advertising;
379 
380 	if (netif_running(dev)) {
381 		skge_down(dev);
382 		err = skge_up(dev);
383 		if (err) {
384 			dev_close(dev);
385 			return err;
386 		}
387 	}
388 
389 	return 0;
390 }
391 
392 static void skge_get_drvinfo(struct net_device *dev,
393 			     struct ethtool_drvinfo *info)
394 {
395 	struct skge_port *skge = netdev_priv(dev);
396 
397 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
398 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
399 	strscpy(info->bus_info, pci_name(skge->hw->pdev),
400 		sizeof(info->bus_info));
401 }
402 
403 static const struct skge_stat {
404 	char 	   name[ETH_GSTRING_LEN];
405 	u16	   xmac_offset;
406 	u16	   gma_offset;
407 } skge_stats[] = {
408 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410 
411 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419 
420 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426 
427 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432 };
433 
434 static int skge_get_sset_count(struct net_device *dev, int sset)
435 {
436 	switch (sset) {
437 	case ETH_SS_STATS:
438 		return ARRAY_SIZE(skge_stats);
439 	default:
440 		return -EOPNOTSUPP;
441 	}
442 }
443 
444 static void skge_get_ethtool_stats(struct net_device *dev,
445 				   struct ethtool_stats *stats, u64 *data)
446 {
447 	struct skge_port *skge = netdev_priv(dev);
448 
449 	if (is_genesis(skge->hw))
450 		genesis_get_stats(skge, data);
451 	else
452 		yukon_get_stats(skge, data);
453 }
454 
455 /* Use hardware MIB variables for critical path statistics and
456  * transmit feedback not reported at interrupt.
457  * Other errors are accounted for in interrupt handler.
458  */
459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
460 {
461 	struct skge_port *skge = netdev_priv(dev);
462 	u64 data[ARRAY_SIZE(skge_stats)];
463 
464 	if (is_genesis(skge->hw))
465 		genesis_get_stats(skge, data);
466 	else
467 		yukon_get_stats(skge, data);
468 
469 	dev->stats.tx_bytes = data[0];
470 	dev->stats.rx_bytes = data[1];
471 	dev->stats.tx_packets = data[2] + data[4] + data[6];
472 	dev->stats.rx_packets = data[3] + data[5] + data[7];
473 	dev->stats.multicast = data[3] + data[5];
474 	dev->stats.collisions = data[10];
475 	dev->stats.tx_aborted_errors = data[12];
476 
477 	return &dev->stats;
478 }
479 
480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481 {
482 	int i;
483 
484 	switch (stringset) {
485 	case ETH_SS_STATS:
486 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 			ethtool_puts(&data, skge_stats[i].name);
488 		break;
489 	}
490 }
491 
492 static void skge_get_ring_param(struct net_device *dev,
493 				struct ethtool_ringparam *p,
494 				struct kernel_ethtool_ringparam *kernel_p,
495 				struct netlink_ext_ack *extack)
496 {
497 	struct skge_port *skge = netdev_priv(dev);
498 
499 	p->rx_max_pending = MAX_RX_RING_SIZE;
500 	p->tx_max_pending = MAX_TX_RING_SIZE;
501 
502 	p->rx_pending = skge->rx_ring.count;
503 	p->tx_pending = skge->tx_ring.count;
504 }
505 
506 static int skge_set_ring_param(struct net_device *dev,
507 			       struct ethtool_ringparam *p,
508 			       struct kernel_ethtool_ringparam *kernel_p,
509 			       struct netlink_ext_ack *extack)
510 {
511 	struct skge_port *skge = netdev_priv(dev);
512 	int err = 0;
513 
514 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
515 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
516 		return -EINVAL;
517 
518 	skge->rx_ring.count = p->rx_pending;
519 	skge->tx_ring.count = p->tx_pending;
520 
521 	if (netif_running(dev)) {
522 		skge_down(dev);
523 		err = skge_up(dev);
524 		if (err)
525 			dev_close(dev);
526 	}
527 
528 	return err;
529 }
530 
531 static u32 skge_get_msglevel(struct net_device *netdev)
532 {
533 	struct skge_port *skge = netdev_priv(netdev);
534 	return skge->msg_enable;
535 }
536 
537 static void skge_set_msglevel(struct net_device *netdev, u32 value)
538 {
539 	struct skge_port *skge = netdev_priv(netdev);
540 	skge->msg_enable = value;
541 }
542 
543 static int skge_nway_reset(struct net_device *dev)
544 {
545 	struct skge_port *skge = netdev_priv(dev);
546 
547 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
548 		return -EINVAL;
549 
550 	skge_phy_reset(skge);
551 	return 0;
552 }
553 
554 static void skge_get_pauseparam(struct net_device *dev,
555 				struct ethtool_pauseparam *ecmd)
556 {
557 	struct skge_port *skge = netdev_priv(dev);
558 
559 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
560 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
561 	ecmd->tx_pause = (ecmd->rx_pause ||
562 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
563 
564 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
565 }
566 
567 static int skge_set_pauseparam(struct net_device *dev,
568 			       struct ethtool_pauseparam *ecmd)
569 {
570 	struct skge_port *skge = netdev_priv(dev);
571 	struct ethtool_pauseparam old;
572 	int err = 0;
573 
574 	skge_get_pauseparam(dev, &old);
575 
576 	if (ecmd->autoneg != old.autoneg)
577 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
578 	else {
579 		if (ecmd->rx_pause && ecmd->tx_pause)
580 			skge->flow_control = FLOW_MODE_SYMMETRIC;
581 		else if (ecmd->rx_pause && !ecmd->tx_pause)
582 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
583 		else if (!ecmd->rx_pause && ecmd->tx_pause)
584 			skge->flow_control = FLOW_MODE_LOC_SEND;
585 		else
586 			skge->flow_control = FLOW_MODE_NONE;
587 	}
588 
589 	if (netif_running(dev)) {
590 		skge_down(dev);
591 		err = skge_up(dev);
592 		if (err) {
593 			dev_close(dev);
594 			return err;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 /* Chip internal frequency for clock calculations */
602 static inline u32 hwkhz(const struct skge_hw *hw)
603 {
604 	return is_genesis(hw) ? 53125 : 78125;
605 }
606 
607 /* Chip HZ to microseconds */
608 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
609 {
610 	return (ticks * 1000) / hwkhz(hw);
611 }
612 
613 /* Microseconds to chip HZ */
614 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
615 {
616 	return hwkhz(hw) * usec / 1000;
617 }
618 
619 static int skge_get_coalesce(struct net_device *dev,
620 			     struct ethtool_coalesce *ecmd,
621 			     struct kernel_ethtool_coalesce *kernel_coal,
622 			     struct netlink_ext_ack *extack)
623 {
624 	struct skge_port *skge = netdev_priv(dev);
625 	struct skge_hw *hw = skge->hw;
626 	int port = skge->port;
627 
628 	ecmd->rx_coalesce_usecs = 0;
629 	ecmd->tx_coalesce_usecs = 0;
630 
631 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
632 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
633 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
634 
635 		if (msk & rxirqmask[port])
636 			ecmd->rx_coalesce_usecs = delay;
637 		if (msk & txirqmask[port])
638 			ecmd->tx_coalesce_usecs = delay;
639 	}
640 
641 	return 0;
642 }
643 
644 /* Note: interrupt timer is per board, but can turn on/off per port */
645 static int skge_set_coalesce(struct net_device *dev,
646 			     struct ethtool_coalesce *ecmd,
647 			     struct kernel_ethtool_coalesce *kernel_coal,
648 			     struct netlink_ext_ack *extack)
649 {
650 	struct skge_port *skge = netdev_priv(dev);
651 	struct skge_hw *hw = skge->hw;
652 	int port = skge->port;
653 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
654 	u32 delay = 25;
655 
656 	if (ecmd->rx_coalesce_usecs == 0)
657 		msk &= ~rxirqmask[port];
658 	else if (ecmd->rx_coalesce_usecs < 25 ||
659 		 ecmd->rx_coalesce_usecs > 33333)
660 		return -EINVAL;
661 	else {
662 		msk |= rxirqmask[port];
663 		delay = ecmd->rx_coalesce_usecs;
664 	}
665 
666 	if (ecmd->tx_coalesce_usecs == 0)
667 		msk &= ~txirqmask[port];
668 	else if (ecmd->tx_coalesce_usecs < 25 ||
669 		 ecmd->tx_coalesce_usecs > 33333)
670 		return -EINVAL;
671 	else {
672 		msk |= txirqmask[port];
673 		delay = min(delay, ecmd->rx_coalesce_usecs);
674 	}
675 
676 	skge_write32(hw, B2_IRQM_MSK, msk);
677 	if (msk == 0)
678 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
679 	else {
680 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
681 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
682 	}
683 	return 0;
684 }
685 
686 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
687 static void skge_led(struct skge_port *skge, enum led_mode mode)
688 {
689 	struct skge_hw *hw = skge->hw;
690 	int port = skge->port;
691 
692 	spin_lock_bh(&hw->phy_lock);
693 	if (is_genesis(hw)) {
694 		switch (mode) {
695 		case LED_MODE_OFF:
696 			if (hw->phy_type == SK_PHY_BCOM)
697 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
698 			else {
699 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
700 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
701 			}
702 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
703 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
704 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
705 			break;
706 
707 		case LED_MODE_ON:
708 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
709 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
710 
711 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
712 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
713 
714 			break;
715 
716 		case LED_MODE_TST:
717 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
718 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
719 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
720 
721 			if (hw->phy_type == SK_PHY_BCOM)
722 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
723 			else {
724 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
725 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
726 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
727 			}
728 
729 		}
730 	} else {
731 		switch (mode) {
732 		case LED_MODE_OFF:
733 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
734 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
735 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
736 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
737 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
738 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
739 				     PHY_M_LED_MO_RX(MO_LED_OFF));
740 			break;
741 		case LED_MODE_ON:
742 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
743 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
744 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
745 				     PHY_M_LEDC_TX_CTRL |
746 				     PHY_M_LEDC_DP_CTRL);
747 
748 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
750 				     (skge->speed == SPEED_100 ?
751 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
752 			break;
753 		case LED_MODE_TST:
754 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
755 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
756 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
757 				     PHY_M_LED_MO_10(MO_LED_ON)   |
758 				     PHY_M_LED_MO_100(MO_LED_ON)  |
759 				     PHY_M_LED_MO_1000(MO_LED_ON) |
760 				     PHY_M_LED_MO_RX(MO_LED_ON));
761 		}
762 	}
763 	spin_unlock_bh(&hw->phy_lock);
764 }
765 
766 /* blink LED's for finding board */
767 static int skge_set_phys_id(struct net_device *dev,
768 			    enum ethtool_phys_id_state state)
769 {
770 	struct skge_port *skge = netdev_priv(dev);
771 
772 	switch (state) {
773 	case ETHTOOL_ID_ACTIVE:
774 		return 2;	/* cycle on/off twice per second */
775 
776 	case ETHTOOL_ID_ON:
777 		skge_led(skge, LED_MODE_TST);
778 		break;
779 
780 	case ETHTOOL_ID_OFF:
781 		skge_led(skge, LED_MODE_OFF);
782 		break;
783 
784 	case ETHTOOL_ID_INACTIVE:
785 		/* back to regular LED state */
786 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
787 	}
788 
789 	return 0;
790 }
791 
792 static int skge_get_eeprom_len(struct net_device *dev)
793 {
794 	struct skge_port *skge = netdev_priv(dev);
795 	u32 reg2;
796 
797 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
798 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
799 }
800 
801 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
802 {
803 	u32 val;
804 
805 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
806 
807 	do {
808 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
809 	} while (!(offset & PCI_VPD_ADDR_F));
810 
811 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
812 	return val;
813 }
814 
815 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
816 {
817 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
818 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
819 			      offset | PCI_VPD_ADDR_F);
820 
821 	do {
822 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
823 	} while (offset & PCI_VPD_ADDR_F);
824 }
825 
826 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
827 			   u8 *data)
828 {
829 	struct skge_port *skge = netdev_priv(dev);
830 	struct pci_dev *pdev = skge->hw->pdev;
831 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
832 	int length = eeprom->len;
833 	u16 offset = eeprom->offset;
834 
835 	if (!cap)
836 		return -EINVAL;
837 
838 	eeprom->magic = SKGE_EEPROM_MAGIC;
839 
840 	while (length > 0) {
841 		u32 val = skge_vpd_read(pdev, cap, offset);
842 		int n = min_t(int, length, sizeof(val));
843 
844 		memcpy(data, &val, n);
845 		length -= n;
846 		data += n;
847 		offset += n;
848 	}
849 	return 0;
850 }
851 
852 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
853 			   u8 *data)
854 {
855 	struct skge_port *skge = netdev_priv(dev);
856 	struct pci_dev *pdev = skge->hw->pdev;
857 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
858 	int length = eeprom->len;
859 	u16 offset = eeprom->offset;
860 
861 	if (!cap)
862 		return -EINVAL;
863 
864 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
865 		return -EINVAL;
866 
867 	while (length > 0) {
868 		u32 val;
869 		int n = min_t(int, length, sizeof(val));
870 
871 		if (n < sizeof(val))
872 			val = skge_vpd_read(pdev, cap, offset);
873 		memcpy(&val, data, n);
874 
875 		skge_vpd_write(pdev, cap, offset, val);
876 
877 		length -= n;
878 		data += n;
879 		offset += n;
880 	}
881 	return 0;
882 }
883 
884 static const struct ethtool_ops skge_ethtool_ops = {
885 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
886 	.get_drvinfo	= skge_get_drvinfo,
887 	.get_regs_len	= skge_get_regs_len,
888 	.get_regs	= skge_get_regs,
889 	.get_wol	= skge_get_wol,
890 	.set_wol	= skge_set_wol,
891 	.get_msglevel	= skge_get_msglevel,
892 	.set_msglevel	= skge_set_msglevel,
893 	.nway_reset	= skge_nway_reset,
894 	.get_link	= ethtool_op_get_link,
895 	.get_eeprom_len	= skge_get_eeprom_len,
896 	.get_eeprom	= skge_get_eeprom,
897 	.set_eeprom	= skge_set_eeprom,
898 	.get_ringparam	= skge_get_ring_param,
899 	.set_ringparam	= skge_set_ring_param,
900 	.get_pauseparam = skge_get_pauseparam,
901 	.set_pauseparam = skge_set_pauseparam,
902 	.get_coalesce	= skge_get_coalesce,
903 	.set_coalesce	= skge_set_coalesce,
904 	.get_strings	= skge_get_strings,
905 	.set_phys_id	= skge_set_phys_id,
906 	.get_sset_count = skge_get_sset_count,
907 	.get_ethtool_stats = skge_get_ethtool_stats,
908 	.get_link_ksettings = skge_get_link_ksettings,
909 	.set_link_ksettings = skge_set_link_ksettings,
910 };
911 
912 /*
913  * Allocate ring elements and chain them together
914  * One-to-one association of board descriptors with ring elements
915  */
916 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
917 {
918 	struct skge_tx_desc *d;
919 	struct skge_element *e;
920 	int i;
921 
922 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
923 	if (!ring->start)
924 		return -ENOMEM;
925 
926 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
927 		e->desc = d;
928 		if (i == ring->count - 1) {
929 			e->next = ring->start;
930 			d->next_offset = base;
931 		} else {
932 			e->next = e + 1;
933 			d->next_offset = base + (i+1) * sizeof(*d);
934 		}
935 	}
936 	ring->to_use = ring->to_clean = ring->start;
937 
938 	return 0;
939 }
940 
941 /* Allocate and setup a new buffer for receiving */
942 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
943 			 struct sk_buff *skb, unsigned int bufsize)
944 {
945 	struct skge_rx_desc *rd = e->desc;
946 	dma_addr_t map;
947 
948 	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
949 			     DMA_FROM_DEVICE);
950 
951 	if (dma_mapping_error(&skge->hw->pdev->dev, map))
952 		return -1;
953 
954 	rd->dma_lo = lower_32_bits(map);
955 	rd->dma_hi = upper_32_bits(map);
956 	e->skb = skb;
957 	rd->csum1_start = ETH_HLEN;
958 	rd->csum2_start = ETH_HLEN;
959 	rd->csum1 = 0;
960 	rd->csum2 = 0;
961 
962 	wmb();
963 
964 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
965 	dma_unmap_addr_set(e, mapaddr, map);
966 	dma_unmap_len_set(e, maplen, bufsize);
967 	return 0;
968 }
969 
970 /* Resume receiving using existing skb,
971  * Note: DMA address is not changed by chip.
972  * 	 MTU not changed while receiver active.
973  */
974 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
975 {
976 	struct skge_rx_desc *rd = e->desc;
977 
978 	rd->csum2 = 0;
979 	rd->csum2_start = ETH_HLEN;
980 
981 	wmb();
982 
983 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
984 }
985 
986 
987 /* Free all  buffers in receive ring, assumes receiver stopped */
988 static void skge_rx_clean(struct skge_port *skge)
989 {
990 	struct skge_hw *hw = skge->hw;
991 	struct skge_ring *ring = &skge->rx_ring;
992 	struct skge_element *e;
993 
994 	e = ring->start;
995 	do {
996 		struct skge_rx_desc *rd = e->desc;
997 		rd->control = 0;
998 		if (e->skb) {
999 			dma_unmap_single(&hw->pdev->dev,
1000 					 dma_unmap_addr(e, mapaddr),
1001 					 dma_unmap_len(e, maplen),
1002 					 DMA_FROM_DEVICE);
1003 			dev_kfree_skb(e->skb);
1004 			e->skb = NULL;
1005 		}
1006 	} while ((e = e->next) != ring->start);
1007 }
1008 
1009 
1010 /* Allocate buffers for receive ring
1011  * For receive:  to_clean is next received frame.
1012  */
1013 static int skge_rx_fill(struct net_device *dev)
1014 {
1015 	struct skge_port *skge = netdev_priv(dev);
1016 	struct skge_ring *ring = &skge->rx_ring;
1017 	struct skge_element *e;
1018 
1019 	e = ring->start;
1020 	do {
1021 		struct sk_buff *skb;
1022 
1023 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1024 					 GFP_KERNEL);
1025 		if (!skb)
1026 			return -ENOMEM;
1027 
1028 		skb_reserve(skb, NET_IP_ALIGN);
1029 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1030 			dev_kfree_skb(skb);
1031 			return -EIO;
1032 		}
1033 	} while ((e = e->next) != ring->start);
1034 
1035 	ring->to_clean = ring->start;
1036 	return 0;
1037 }
1038 
1039 static const char *skge_pause(enum pause_status status)
1040 {
1041 	switch (status) {
1042 	case FLOW_STAT_NONE:
1043 		return "none";
1044 	case FLOW_STAT_REM_SEND:
1045 		return "rx only";
1046 	case FLOW_STAT_LOC_SEND:
1047 		return "tx_only";
1048 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1049 		return "both";
1050 	default:
1051 		return "indeterminated";
1052 	}
1053 }
1054 
1055 
1056 static void skge_link_up(struct skge_port *skge)
1057 {
1058 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1059 		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1060 
1061 	netif_carrier_on(skge->netdev);
1062 	netif_wake_queue(skge->netdev);
1063 
1064 	netif_info(skge, link, skge->netdev,
1065 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1066 		   skge->speed,
1067 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1068 		   skge_pause(skge->flow_status));
1069 }
1070 
1071 static void skge_link_down(struct skge_port *skge)
1072 {
1073 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1074 	netif_carrier_off(skge->netdev);
1075 	netif_stop_queue(skge->netdev);
1076 
1077 	netif_info(skge, link, skge->netdev, "Link is down\n");
1078 }
1079 
1080 static void xm_link_down(struct skge_hw *hw, int port)
1081 {
1082 	struct net_device *dev = hw->dev[port];
1083 	struct skge_port *skge = netdev_priv(dev);
1084 
1085 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1086 
1087 	if (netif_carrier_ok(dev))
1088 		skge_link_down(skge);
1089 }
1090 
1091 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1092 {
1093 	int i;
1094 
1095 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1096 	*val = xm_read16(hw, port, XM_PHY_DATA);
1097 
1098 	if (hw->phy_type == SK_PHY_XMAC)
1099 		goto ready;
1100 
1101 	for (i = 0; i < PHY_RETRIES; i++) {
1102 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1103 			goto ready;
1104 		udelay(1);
1105 	}
1106 
1107 	return -ETIMEDOUT;
1108  ready:
1109 	*val = xm_read16(hw, port, XM_PHY_DATA);
1110 
1111 	return 0;
1112 }
1113 
1114 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1115 {
1116 	u16 v = 0;
1117 	if (__xm_phy_read(hw, port, reg, &v))
1118 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1119 	return v;
1120 }
1121 
1122 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1123 {
1124 	int i;
1125 
1126 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1127 	for (i = 0; i < PHY_RETRIES; i++) {
1128 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1129 			goto ready;
1130 		udelay(1);
1131 	}
1132 	return -EIO;
1133 
1134  ready:
1135 	xm_write16(hw, port, XM_PHY_DATA, val);
1136 	for (i = 0; i < PHY_RETRIES; i++) {
1137 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1138 			return 0;
1139 		udelay(1);
1140 	}
1141 	return -ETIMEDOUT;
1142 }
1143 
1144 static void genesis_init(struct skge_hw *hw)
1145 {
1146 	/* set blink source counter */
1147 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1148 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1149 
1150 	/* configure mac arbiter */
1151 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1152 
1153 	/* configure mac arbiter timeout values */
1154 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1155 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1156 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1157 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1158 
1159 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1160 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1161 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1162 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1163 
1164 	/* configure packet arbiter timeout */
1165 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1166 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1167 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1168 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1169 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1170 }
1171 
1172 static void genesis_reset(struct skge_hw *hw, int port)
1173 {
1174 	static const u8 zero[8]  = { 0 };
1175 	u32 reg;
1176 
1177 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1178 
1179 	/* reset the statistics module */
1180 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1181 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1182 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1183 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1184 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1185 
1186 	/* disable Broadcom PHY IRQ */
1187 	if (hw->phy_type == SK_PHY_BCOM)
1188 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1189 
1190 	xm_outhash(hw, port, XM_HSM, zero);
1191 
1192 	/* Flush TX and RX fifo */
1193 	reg = xm_read32(hw, port, XM_MODE);
1194 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1195 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1196 }
1197 
1198 /* Convert mode to MII values  */
1199 static const u16 phy_pause_map[] = {
1200 	[FLOW_MODE_NONE] =	0,
1201 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1202 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1203 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1204 };
1205 
1206 /* special defines for FIBER (88E1011S only) */
1207 static const u16 fiber_pause_map[] = {
1208 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1209 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1210 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1211 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1212 };
1213 
1214 
1215 /* Check status of Broadcom phy link */
1216 static void bcom_check_link(struct skge_hw *hw, int port)
1217 {
1218 	struct net_device *dev = hw->dev[port];
1219 	struct skge_port *skge = netdev_priv(dev);
1220 	u16 status;
1221 
1222 	/* read twice because of latch */
1223 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1224 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1225 
1226 	if ((status & PHY_ST_LSYNC) == 0) {
1227 		xm_link_down(hw, port);
1228 		return;
1229 	}
1230 
1231 	if (skge->autoneg == AUTONEG_ENABLE) {
1232 		u16 lpa, aux;
1233 
1234 		if (!(status & PHY_ST_AN_OVER))
1235 			return;
1236 
1237 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1238 		if (lpa & PHY_B_AN_RF) {
1239 			netdev_notice(dev, "remote fault\n");
1240 			return;
1241 		}
1242 
1243 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1244 
1245 		/* Check Duplex mismatch */
1246 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1247 		case PHY_B_RES_1000FD:
1248 			skge->duplex = DUPLEX_FULL;
1249 			break;
1250 		case PHY_B_RES_1000HD:
1251 			skge->duplex = DUPLEX_HALF;
1252 			break;
1253 		default:
1254 			netdev_notice(dev, "duplex mismatch\n");
1255 			return;
1256 		}
1257 
1258 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1259 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1260 		case PHY_B_AS_PAUSE_MSK:
1261 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1262 			break;
1263 		case PHY_B_AS_PRR:
1264 			skge->flow_status = FLOW_STAT_REM_SEND;
1265 			break;
1266 		case PHY_B_AS_PRT:
1267 			skge->flow_status = FLOW_STAT_LOC_SEND;
1268 			break;
1269 		default:
1270 			skge->flow_status = FLOW_STAT_NONE;
1271 		}
1272 		skge->speed = SPEED_1000;
1273 	}
1274 
1275 	if (!netif_carrier_ok(dev))
1276 		genesis_link_up(skge);
1277 }
1278 
1279 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1280  * Phy on for 100 or 10Mbit operation
1281  */
1282 static void bcom_phy_init(struct skge_port *skge)
1283 {
1284 	struct skge_hw *hw = skge->hw;
1285 	int port = skge->port;
1286 	int i;
1287 	u16 id1, r, ext, ctl;
1288 
1289 	/* magic workaround patterns for Broadcom */
1290 	static const struct {
1291 		u16 reg;
1292 		u16 val;
1293 	} A1hack[] = {
1294 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1295 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1296 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1297 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1298 	}, C0hack[] = {
1299 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1300 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1301 	};
1302 
1303 	/* read Id from external PHY (all have the same address) */
1304 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1305 
1306 	/* Optimize MDIO transfer by suppressing preamble. */
1307 	r = xm_read16(hw, port, XM_MMU_CMD);
1308 	r |=  XM_MMU_NO_PRE;
1309 	xm_write16(hw, port, XM_MMU_CMD, r);
1310 
1311 	switch (id1) {
1312 	case PHY_BCOM_ID1_C0:
1313 		/*
1314 		 * Workaround BCOM Errata for the C0 type.
1315 		 * Write magic patterns to reserved registers.
1316 		 */
1317 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1318 			xm_phy_write(hw, port,
1319 				     C0hack[i].reg, C0hack[i].val);
1320 
1321 		break;
1322 	case PHY_BCOM_ID1_A1:
1323 		/*
1324 		 * Workaround BCOM Errata for the A1 type.
1325 		 * Write magic patterns to reserved registers.
1326 		 */
1327 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1328 			xm_phy_write(hw, port,
1329 				     A1hack[i].reg, A1hack[i].val);
1330 		break;
1331 	}
1332 
1333 	/*
1334 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1335 	 * Disable Power Management after reset.
1336 	 */
1337 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1338 	r |= PHY_B_AC_DIS_PM;
1339 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1340 
1341 	/* Dummy read */
1342 	xm_read16(hw, port, XM_ISRC);
1343 
1344 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1345 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1346 
1347 	if (skge->autoneg == AUTONEG_ENABLE) {
1348 		/*
1349 		 * Workaround BCOM Errata #1 for the C5 type.
1350 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1351 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1352 		 */
1353 		u16 adv = PHY_B_1000C_RD;
1354 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1355 			adv |= PHY_B_1000C_AHD;
1356 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1357 			adv |= PHY_B_1000C_AFD;
1358 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1359 
1360 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1361 	} else {
1362 		if (skge->duplex == DUPLEX_FULL)
1363 			ctl |= PHY_CT_DUP_MD;
1364 		/* Force to slave */
1365 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1366 	}
1367 
1368 	/* Set autonegotiation pause parameters */
1369 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1370 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1371 
1372 	/* Handle Jumbo frames */
1373 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1374 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1375 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1376 
1377 		ext |= PHY_B_PEC_HIGH_LA;
1378 
1379 	}
1380 
1381 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1382 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1383 
1384 	/* Use link status change interrupt */
1385 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1386 }
1387 
1388 static void xm_phy_init(struct skge_port *skge)
1389 {
1390 	struct skge_hw *hw = skge->hw;
1391 	int port = skge->port;
1392 	u16 ctrl = 0;
1393 
1394 	if (skge->autoneg == AUTONEG_ENABLE) {
1395 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1396 			ctrl |= PHY_X_AN_HD;
1397 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1398 			ctrl |= PHY_X_AN_FD;
1399 
1400 		ctrl |= fiber_pause_map[skge->flow_control];
1401 
1402 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1403 
1404 		/* Restart Auto-negotiation */
1405 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1406 	} else {
1407 		/* Set DuplexMode in Config register */
1408 		if (skge->duplex == DUPLEX_FULL)
1409 			ctrl |= PHY_CT_DUP_MD;
1410 		/*
1411 		 * Do NOT enable Auto-negotiation here. This would hold
1412 		 * the link down because no IDLEs are transmitted
1413 		 */
1414 	}
1415 
1416 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1417 
1418 	/* Poll PHY for status changes */
1419 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1420 }
1421 
1422 static int xm_check_link(struct net_device *dev)
1423 {
1424 	struct skge_port *skge = netdev_priv(dev);
1425 	struct skge_hw *hw = skge->hw;
1426 	int port = skge->port;
1427 	u16 status;
1428 
1429 	/* read twice because of latch */
1430 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1431 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1432 
1433 	if ((status & PHY_ST_LSYNC) == 0) {
1434 		xm_link_down(hw, port);
1435 		return 0;
1436 	}
1437 
1438 	if (skge->autoneg == AUTONEG_ENABLE) {
1439 		u16 lpa, res;
1440 
1441 		if (!(status & PHY_ST_AN_OVER))
1442 			return 0;
1443 
1444 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1445 		if (lpa & PHY_B_AN_RF) {
1446 			netdev_notice(dev, "remote fault\n");
1447 			return 0;
1448 		}
1449 
1450 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1451 
1452 		/* Check Duplex mismatch */
1453 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1454 		case PHY_X_RS_FD:
1455 			skge->duplex = DUPLEX_FULL;
1456 			break;
1457 		case PHY_X_RS_HD:
1458 			skge->duplex = DUPLEX_HALF;
1459 			break;
1460 		default:
1461 			netdev_notice(dev, "duplex mismatch\n");
1462 			return 0;
1463 		}
1464 
1465 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1466 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1467 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1468 		    (lpa & PHY_X_P_SYM_MD))
1469 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1470 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1471 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1472 			/* Enable PAUSE receive, disable PAUSE transmit */
1473 			skge->flow_status  = FLOW_STAT_REM_SEND;
1474 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1475 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1476 			/* Disable PAUSE receive, enable PAUSE transmit */
1477 			skge->flow_status = FLOW_STAT_LOC_SEND;
1478 		else
1479 			skge->flow_status = FLOW_STAT_NONE;
1480 
1481 		skge->speed = SPEED_1000;
1482 	}
1483 
1484 	if (!netif_carrier_ok(dev))
1485 		genesis_link_up(skge);
1486 	return 1;
1487 }
1488 
1489 /* Poll to check for link coming up.
1490  *
1491  * Since internal PHY is wired to a level triggered pin, can't
1492  * get an interrupt when carrier is detected, need to poll for
1493  * link coming up.
1494  */
1495 static void xm_link_timer(struct timer_list *t)
1496 {
1497 	struct skge_port *skge = from_timer(skge, t, link_timer);
1498 	struct net_device *dev = skge->netdev;
1499 	struct skge_hw *hw = skge->hw;
1500 	int port = skge->port;
1501 	int i;
1502 	unsigned long flags;
1503 
1504 	if (!netif_running(dev))
1505 		return;
1506 
1507 	spin_lock_irqsave(&hw->phy_lock, flags);
1508 
1509 	/*
1510 	 * Verify that the link by checking GPIO register three times.
1511 	 * This pin has the signal from the link_sync pin connected to it.
1512 	 */
1513 	for (i = 0; i < 3; i++) {
1514 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1515 			goto link_down;
1516 	}
1517 
1518 	/* Re-enable interrupt to detect link down */
1519 	if (xm_check_link(dev)) {
1520 		u16 msk = xm_read16(hw, port, XM_IMSK);
1521 		msk &= ~XM_IS_INP_ASS;
1522 		xm_write16(hw, port, XM_IMSK, msk);
1523 		xm_read16(hw, port, XM_ISRC);
1524 	} else {
1525 link_down:
1526 		mod_timer(&skge->link_timer,
1527 			  round_jiffies(jiffies + LINK_HZ));
1528 	}
1529 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1530 }
1531 
1532 static void genesis_mac_init(struct skge_hw *hw, int port)
1533 {
1534 	struct net_device *dev = hw->dev[port];
1535 	struct skge_port *skge = netdev_priv(dev);
1536 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1537 	int i;
1538 	u32 r;
1539 	static const u8 zero[6]  = { 0 };
1540 
1541 	for (i = 0; i < 10; i++) {
1542 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1543 			     MFF_SET_MAC_RST);
1544 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1545 			goto reset_ok;
1546 		udelay(1);
1547 	}
1548 
1549 	netdev_warn(dev, "genesis reset failed\n");
1550 
1551  reset_ok:
1552 	/* Unreset the XMAC. */
1553 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1554 
1555 	/*
1556 	 * Perform additional initialization for external PHYs,
1557 	 * namely for the 1000baseTX cards that use the XMAC's
1558 	 * GMII mode.
1559 	 */
1560 	if (hw->phy_type != SK_PHY_XMAC) {
1561 		/* Take external Phy out of reset */
1562 		r = skge_read32(hw, B2_GP_IO);
1563 		if (port == 0)
1564 			r |= GP_DIR_0|GP_IO_0;
1565 		else
1566 			r |= GP_DIR_2|GP_IO_2;
1567 
1568 		skge_write32(hw, B2_GP_IO, r);
1569 
1570 		/* Enable GMII interface */
1571 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1572 	}
1573 
1574 
1575 	switch (hw->phy_type) {
1576 	case SK_PHY_XMAC:
1577 		xm_phy_init(skge);
1578 		break;
1579 	case SK_PHY_BCOM:
1580 		bcom_phy_init(skge);
1581 		bcom_check_link(hw, port);
1582 	}
1583 
1584 	/* Set Station Address */
1585 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1586 
1587 	/* We don't use match addresses so clear */
1588 	for (i = 1; i < 16; i++)
1589 		xm_outaddr(hw, port, XM_EXM(i), zero);
1590 
1591 	/* Clear MIB counters */
1592 	xm_write16(hw, port, XM_STAT_CMD,
1593 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1594 	/* Clear two times according to Errata #3 */
1595 	xm_write16(hw, port, XM_STAT_CMD,
1596 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1597 
1598 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1599 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1600 
1601 	/* We don't need the FCS appended to the packet. */
1602 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1603 	if (jumbo)
1604 		r |= XM_RX_BIG_PK_OK;
1605 
1606 	if (skge->duplex == DUPLEX_HALF) {
1607 		/*
1608 		 * If in manual half duplex mode the other side might be in
1609 		 * full duplex mode, so ignore if a carrier extension is not seen
1610 		 * on frames received
1611 		 */
1612 		r |= XM_RX_DIS_CEXT;
1613 	}
1614 	xm_write16(hw, port, XM_RX_CMD, r);
1615 
1616 	/* We want short frames padded to 60 bytes. */
1617 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1618 
1619 	/* Increase threshold for jumbo frames on dual port */
1620 	if (hw->ports > 1 && jumbo)
1621 		xm_write16(hw, port, XM_TX_THR, 1020);
1622 	else
1623 		xm_write16(hw, port, XM_TX_THR, 512);
1624 
1625 	/*
1626 	 * Enable the reception of all error frames. This is
1627 	 * a necessary evil due to the design of the XMAC. The
1628 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1629 	 * frames can be up to 9000 bytes in length. When bad
1630 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1631 	 * in 'store and forward' mode. For this to work, the
1632 	 * entire frame has to fit into the FIFO, but that means
1633 	 * that jumbo frames larger than 8192 bytes will be
1634 	 * truncated. Disabling all bad frame filtering causes
1635 	 * the RX FIFO to operate in streaming mode, in which
1636 	 * case the XMAC will start transferring frames out of the
1637 	 * RX FIFO as soon as the FIFO threshold is reached.
1638 	 */
1639 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1640 
1641 
1642 	/*
1643 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1644 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1645 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1646 	 */
1647 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1648 
1649 	/*
1650 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1651 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1652 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1653 	 */
1654 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1655 
1656 	/* Configure MAC arbiter */
1657 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1658 
1659 	/* configure timeout values */
1660 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1661 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1662 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1663 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1664 
1665 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1666 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1667 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1668 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1669 
1670 	/* Configure Rx MAC FIFO */
1671 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1672 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1673 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1674 
1675 	/* Configure Tx MAC FIFO */
1676 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1677 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1678 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1679 
1680 	if (jumbo) {
1681 		/* Enable frame flushing if jumbo frames used */
1682 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1683 	} else {
1684 		/* enable timeout timers if normal frames */
1685 		skge_write16(hw, B3_PA_CTRL,
1686 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1687 	}
1688 }
1689 
1690 static void genesis_stop(struct skge_port *skge)
1691 {
1692 	struct skge_hw *hw = skge->hw;
1693 	int port = skge->port;
1694 	unsigned retries = 1000;
1695 	u16 cmd;
1696 
1697 	/* Disable Tx and Rx */
1698 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1699 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1700 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1701 
1702 	genesis_reset(hw, port);
1703 
1704 	/* Clear Tx packet arbiter timeout IRQ */
1705 	skge_write16(hw, B3_PA_CTRL,
1706 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1707 
1708 	/* Reset the MAC */
1709 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1710 	do {
1711 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1712 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1713 			break;
1714 	} while (--retries > 0);
1715 
1716 	/* For external PHYs there must be special handling */
1717 	if (hw->phy_type != SK_PHY_XMAC) {
1718 		u32 reg = skge_read32(hw, B2_GP_IO);
1719 		if (port == 0) {
1720 			reg |= GP_DIR_0;
1721 			reg &= ~GP_IO_0;
1722 		} else {
1723 			reg |= GP_DIR_2;
1724 			reg &= ~GP_IO_2;
1725 		}
1726 		skge_write32(hw, B2_GP_IO, reg);
1727 		skge_read32(hw, B2_GP_IO);
1728 	}
1729 
1730 	xm_write16(hw, port, XM_MMU_CMD,
1731 			xm_read16(hw, port, XM_MMU_CMD)
1732 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1733 
1734 	xm_read16(hw, port, XM_MMU_CMD);
1735 }
1736 
1737 
1738 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1739 {
1740 	struct skge_hw *hw = skge->hw;
1741 	int port = skge->port;
1742 	int i;
1743 	unsigned long timeout = jiffies + HZ;
1744 
1745 	xm_write16(hw, port,
1746 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1747 
1748 	/* wait for update to complete */
1749 	while (xm_read16(hw, port, XM_STAT_CMD)
1750 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1751 		if (time_after(jiffies, timeout))
1752 			break;
1753 		udelay(10);
1754 	}
1755 
1756 	/* special case for 64 bit octet counter */
1757 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1758 		| xm_read32(hw, port, XM_TXO_OK_LO);
1759 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1760 		| xm_read32(hw, port, XM_RXO_OK_LO);
1761 
1762 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1763 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1764 }
1765 
1766 static void genesis_mac_intr(struct skge_hw *hw, int port)
1767 {
1768 	struct net_device *dev = hw->dev[port];
1769 	struct skge_port *skge = netdev_priv(dev);
1770 	u16 status = xm_read16(hw, port, XM_ISRC);
1771 
1772 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1773 		     "mac interrupt status 0x%x\n", status);
1774 
1775 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1776 		xm_link_down(hw, port);
1777 		mod_timer(&skge->link_timer, jiffies + 1);
1778 	}
1779 
1780 	if (status & XM_IS_TXF_UR) {
1781 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1782 		++dev->stats.tx_fifo_errors;
1783 	}
1784 }
1785 
1786 static void genesis_link_up(struct skge_port *skge)
1787 {
1788 	struct skge_hw *hw = skge->hw;
1789 	int port = skge->port;
1790 	u16 cmd, msk;
1791 	u32 mode;
1792 
1793 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1794 
1795 	/*
1796 	 * enabling pause frame reception is required for 1000BT
1797 	 * because the XMAC is not reset if the link is going down
1798 	 */
1799 	if (skge->flow_status == FLOW_STAT_NONE ||
1800 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1801 		/* Disable Pause Frame Reception */
1802 		cmd |= XM_MMU_IGN_PF;
1803 	else
1804 		/* Enable Pause Frame Reception */
1805 		cmd &= ~XM_MMU_IGN_PF;
1806 
1807 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1808 
1809 	mode = xm_read32(hw, port, XM_MODE);
1810 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1811 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1812 		/*
1813 		 * Configure Pause Frame Generation
1814 		 * Use internal and external Pause Frame Generation.
1815 		 * Sending pause frames is edge triggered.
1816 		 * Send a Pause frame with the maximum pause time if
1817 		 * internal oder external FIFO full condition occurs.
1818 		 * Send a zero pause time frame to re-start transmission.
1819 		 */
1820 		/* XM_PAUSE_DA = '010000C28001' (default) */
1821 		/* XM_MAC_PTIME = 0xffff (maximum) */
1822 		/* remember this value is defined in big endian (!) */
1823 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1824 
1825 		mode |= XM_PAUSE_MODE;
1826 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1827 	} else {
1828 		/*
1829 		 * disable pause frame generation is required for 1000BT
1830 		 * because the XMAC is not reset if the link is going down
1831 		 */
1832 		/* Disable Pause Mode in Mode Register */
1833 		mode &= ~XM_PAUSE_MODE;
1834 
1835 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1836 	}
1837 
1838 	xm_write32(hw, port, XM_MODE, mode);
1839 
1840 	/* Turn on detection of Tx underrun */
1841 	msk = xm_read16(hw, port, XM_IMSK);
1842 	msk &= ~XM_IS_TXF_UR;
1843 	xm_write16(hw, port, XM_IMSK, msk);
1844 
1845 	xm_read16(hw, port, XM_ISRC);
1846 
1847 	/* get MMU Command Reg. */
1848 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1849 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1850 		cmd |= XM_MMU_GMII_FD;
1851 
1852 	/*
1853 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1854 	 * Enable Power Management after link up
1855 	 */
1856 	if (hw->phy_type == SK_PHY_BCOM) {
1857 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1858 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1859 			     & ~PHY_B_AC_DIS_PM);
1860 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1861 	}
1862 
1863 	/* enable Rx/Tx */
1864 	xm_write16(hw, port, XM_MMU_CMD,
1865 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1866 	skge_link_up(skge);
1867 }
1868 
1869 
1870 static inline void bcom_phy_intr(struct skge_port *skge)
1871 {
1872 	struct skge_hw *hw = skge->hw;
1873 	int port = skge->port;
1874 	u16 isrc;
1875 
1876 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1877 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1878 		     "phy interrupt status 0x%x\n", isrc);
1879 
1880 	if (isrc & PHY_B_IS_PSE)
1881 		pr_err("%s: uncorrectable pair swap error\n",
1882 		       hw->dev[port]->name);
1883 
1884 	/* Workaround BCom Errata:
1885 	 *	enable and disable loopback mode if "NO HCD" occurs.
1886 	 */
1887 	if (isrc & PHY_B_IS_NO_HDCL) {
1888 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1889 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1890 				  ctrl | PHY_CT_LOOP);
1891 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1892 				  ctrl & ~PHY_CT_LOOP);
1893 	}
1894 
1895 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1896 		bcom_check_link(hw, port);
1897 
1898 }
1899 
1900 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1901 {
1902 	int i;
1903 
1904 	gma_write16(hw, port, GM_SMI_DATA, val);
1905 	gma_write16(hw, port, GM_SMI_CTRL,
1906 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1907 	for (i = 0; i < PHY_RETRIES; i++) {
1908 		udelay(1);
1909 
1910 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1911 			return 0;
1912 	}
1913 
1914 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1915 	return -EIO;
1916 }
1917 
1918 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1919 {
1920 	int i;
1921 
1922 	gma_write16(hw, port, GM_SMI_CTRL,
1923 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1924 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1925 
1926 	for (i = 0; i < PHY_RETRIES; i++) {
1927 		udelay(1);
1928 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1929 			goto ready;
1930 	}
1931 
1932 	return -ETIMEDOUT;
1933  ready:
1934 	*val = gma_read16(hw, port, GM_SMI_DATA);
1935 	return 0;
1936 }
1937 
1938 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1939 {
1940 	u16 v = 0;
1941 	if (__gm_phy_read(hw, port, reg, &v))
1942 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1943 	return v;
1944 }
1945 
1946 /* Marvell Phy Initialization */
1947 static void yukon_init(struct skge_hw *hw, int port)
1948 {
1949 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1950 	u16 ctrl, ct1000, adv;
1951 
1952 	if (skge->autoneg == AUTONEG_ENABLE) {
1953 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1954 
1955 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1956 			  PHY_M_EC_MAC_S_MSK);
1957 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1958 
1959 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1960 
1961 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1962 	}
1963 
1964 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1965 	if (skge->autoneg == AUTONEG_DISABLE)
1966 		ctrl &= ~PHY_CT_ANE;
1967 
1968 	ctrl |= PHY_CT_RESET;
1969 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1970 
1971 	ctrl = 0;
1972 	ct1000 = 0;
1973 	adv = PHY_AN_CSMA;
1974 
1975 	if (skge->autoneg == AUTONEG_ENABLE) {
1976 		if (hw->copper) {
1977 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1978 				ct1000 |= PHY_M_1000C_AFD;
1979 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1980 				ct1000 |= PHY_M_1000C_AHD;
1981 			if (skge->advertising & ADVERTISED_100baseT_Full)
1982 				adv |= PHY_M_AN_100_FD;
1983 			if (skge->advertising & ADVERTISED_100baseT_Half)
1984 				adv |= PHY_M_AN_100_HD;
1985 			if (skge->advertising & ADVERTISED_10baseT_Full)
1986 				adv |= PHY_M_AN_10_FD;
1987 			if (skge->advertising & ADVERTISED_10baseT_Half)
1988 				adv |= PHY_M_AN_10_HD;
1989 
1990 			/* Set Flow-control capabilities */
1991 			adv |= phy_pause_map[skge->flow_control];
1992 		} else {
1993 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1994 				adv |= PHY_M_AN_1000X_AFD;
1995 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1996 				adv |= PHY_M_AN_1000X_AHD;
1997 
1998 			adv |= fiber_pause_map[skge->flow_control];
1999 		}
2000 
2001 		/* Restart Auto-negotiation */
2002 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2003 	} else {
2004 		/* forced speed/duplex settings */
2005 		ct1000 = PHY_M_1000C_MSE;
2006 
2007 		if (skge->duplex == DUPLEX_FULL)
2008 			ctrl |= PHY_CT_DUP_MD;
2009 
2010 		switch (skge->speed) {
2011 		case SPEED_1000:
2012 			ctrl |= PHY_CT_SP1000;
2013 			break;
2014 		case SPEED_100:
2015 			ctrl |= PHY_CT_SP100;
2016 			break;
2017 		}
2018 
2019 		ctrl |= PHY_CT_RESET;
2020 	}
2021 
2022 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2023 
2024 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2025 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2026 
2027 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2028 	if (skge->autoneg == AUTONEG_ENABLE)
2029 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2030 	else
2031 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2032 }
2033 
2034 static void yukon_reset(struct skge_hw *hw, int port)
2035 {
2036 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2037 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2038 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2039 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2040 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2041 
2042 	gma_write16(hw, port, GM_RX_CTRL,
2043 			 gma_read16(hw, port, GM_RX_CTRL)
2044 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2045 }
2046 
2047 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2048 static int is_yukon_lite_a0(struct skge_hw *hw)
2049 {
2050 	u32 reg;
2051 	int ret;
2052 
2053 	if (hw->chip_id != CHIP_ID_YUKON)
2054 		return 0;
2055 
2056 	reg = skge_read32(hw, B2_FAR);
2057 	skge_write8(hw, B2_FAR + 3, 0xff);
2058 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2059 	skge_write32(hw, B2_FAR, reg);
2060 	return ret;
2061 }
2062 
2063 static void yukon_mac_init(struct skge_hw *hw, int port)
2064 {
2065 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2066 	int i;
2067 	u32 reg;
2068 	const u8 *addr = hw->dev[port]->dev_addr;
2069 
2070 	/* WA code for COMA mode -- set PHY reset */
2071 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2072 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2073 		reg = skge_read32(hw, B2_GP_IO);
2074 		reg |= GP_DIR_9 | GP_IO_9;
2075 		skge_write32(hw, B2_GP_IO, reg);
2076 	}
2077 
2078 	/* hard reset */
2079 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2080 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2081 
2082 	/* WA code for COMA mode -- clear PHY reset */
2083 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2084 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2085 		reg = skge_read32(hw, B2_GP_IO);
2086 		reg |= GP_DIR_9;
2087 		reg &= ~GP_IO_9;
2088 		skge_write32(hw, B2_GP_IO, reg);
2089 	}
2090 
2091 	/* Set hardware config mode */
2092 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2093 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2094 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2095 
2096 	/* Clear GMC reset */
2097 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2098 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2099 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2100 
2101 	if (skge->autoneg == AUTONEG_DISABLE) {
2102 		reg = GM_GPCR_AU_ALL_DIS;
2103 		gma_write16(hw, port, GM_GP_CTRL,
2104 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2105 
2106 		switch (skge->speed) {
2107 		case SPEED_1000:
2108 			reg &= ~GM_GPCR_SPEED_100;
2109 			reg |= GM_GPCR_SPEED_1000;
2110 			break;
2111 		case SPEED_100:
2112 			reg &= ~GM_GPCR_SPEED_1000;
2113 			reg |= GM_GPCR_SPEED_100;
2114 			break;
2115 		case SPEED_10:
2116 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2117 			break;
2118 		}
2119 
2120 		if (skge->duplex == DUPLEX_FULL)
2121 			reg |= GM_GPCR_DUP_FULL;
2122 	} else
2123 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2124 
2125 	switch (skge->flow_control) {
2126 	case FLOW_MODE_NONE:
2127 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2128 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2129 		break;
2130 	case FLOW_MODE_LOC_SEND:
2131 		/* disable Rx flow-control */
2132 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2133 		break;
2134 	case FLOW_MODE_SYMMETRIC:
2135 	case FLOW_MODE_SYM_OR_REM:
2136 		/* enable Tx & Rx flow-control */
2137 		break;
2138 	}
2139 
2140 	gma_write16(hw, port, GM_GP_CTRL, reg);
2141 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2142 
2143 	yukon_init(hw, port);
2144 
2145 	/* MIB clear */
2146 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2147 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2148 
2149 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2150 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2151 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2152 
2153 	/* transmit control */
2154 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2155 
2156 	/* receive control reg: unicast + multicast + no FCS  */
2157 	gma_write16(hw, port, GM_RX_CTRL,
2158 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2159 
2160 	/* transmit flow control */
2161 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2162 
2163 	/* transmit parameter */
2164 	gma_write16(hw, port, GM_TX_PARAM,
2165 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2166 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2167 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2168 
2169 	/* configure the Serial Mode Register */
2170 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2171 		| GM_SMOD_VLAN_ENA
2172 		| IPG_DATA_VAL(IPG_DATA_DEF);
2173 
2174 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2175 		reg |= GM_SMOD_JUMBO_ENA;
2176 
2177 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2178 
2179 	/* physical address: used for pause frames */
2180 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2181 	/* virtual address for data */
2182 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2183 
2184 	/* enable interrupt mask for counter overflows */
2185 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2186 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2187 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2188 
2189 	/* Initialize Mac Fifo */
2190 
2191 	/* Configure Rx MAC FIFO */
2192 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2193 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2194 
2195 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2196 	if (is_yukon_lite_a0(hw))
2197 		reg &= ~GMF_RX_F_FL_ON;
2198 
2199 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2200 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2201 	/*
2202 	 * because Pause Packet Truncation in GMAC is not working
2203 	 * we have to increase the Flush Threshold to 64 bytes
2204 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2205 	 */
2206 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2207 
2208 	/* Configure Tx MAC FIFO */
2209 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2210 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2211 }
2212 
2213 /* Go into power down mode */
2214 static void yukon_suspend(struct skge_hw *hw, int port)
2215 {
2216 	u16 ctrl;
2217 
2218 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2219 	ctrl |= PHY_M_PC_POL_R_DIS;
2220 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2221 
2222 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2223 	ctrl |= PHY_CT_RESET;
2224 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2225 
2226 	/* switch IEEE compatible power down mode on */
2227 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2228 	ctrl |= PHY_CT_PDOWN;
2229 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2230 }
2231 
2232 static void yukon_stop(struct skge_port *skge)
2233 {
2234 	struct skge_hw *hw = skge->hw;
2235 	int port = skge->port;
2236 
2237 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2238 	yukon_reset(hw, port);
2239 
2240 	gma_write16(hw, port, GM_GP_CTRL,
2241 			 gma_read16(hw, port, GM_GP_CTRL)
2242 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2243 	gma_read16(hw, port, GM_GP_CTRL);
2244 
2245 	yukon_suspend(hw, port);
2246 
2247 	/* set GPHY Control reset */
2248 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2249 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2250 }
2251 
2252 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2253 {
2254 	struct skge_hw *hw = skge->hw;
2255 	int port = skge->port;
2256 	int i;
2257 
2258 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2259 		| gma_read32(hw, port, GM_TXO_OK_LO);
2260 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2261 		| gma_read32(hw, port, GM_RXO_OK_LO);
2262 
2263 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2264 		data[i] = gma_read32(hw, port,
2265 					  skge_stats[i].gma_offset);
2266 }
2267 
2268 static void yukon_mac_intr(struct skge_hw *hw, int port)
2269 {
2270 	struct net_device *dev = hw->dev[port];
2271 	struct skge_port *skge = netdev_priv(dev);
2272 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2273 
2274 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2275 		     "mac interrupt status 0x%x\n", status);
2276 
2277 	if (status & GM_IS_RX_FF_OR) {
2278 		++dev->stats.rx_fifo_errors;
2279 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2280 	}
2281 
2282 	if (status & GM_IS_TX_FF_UR) {
2283 		++dev->stats.tx_fifo_errors;
2284 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2285 	}
2286 
2287 }
2288 
2289 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2290 {
2291 	switch (aux & PHY_M_PS_SPEED_MSK) {
2292 	case PHY_M_PS_SPEED_1000:
2293 		return SPEED_1000;
2294 	case PHY_M_PS_SPEED_100:
2295 		return SPEED_100;
2296 	default:
2297 		return SPEED_10;
2298 	}
2299 }
2300 
2301 static void yukon_link_up(struct skge_port *skge)
2302 {
2303 	struct skge_hw *hw = skge->hw;
2304 	int port = skge->port;
2305 	u16 reg;
2306 
2307 	/* Enable Transmit FIFO Underrun */
2308 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2309 
2310 	reg = gma_read16(hw, port, GM_GP_CTRL);
2311 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2312 		reg |= GM_GPCR_DUP_FULL;
2313 
2314 	/* enable Rx/Tx */
2315 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2316 	gma_write16(hw, port, GM_GP_CTRL, reg);
2317 
2318 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2319 	skge_link_up(skge);
2320 }
2321 
2322 static void yukon_link_down(struct skge_port *skge)
2323 {
2324 	struct skge_hw *hw = skge->hw;
2325 	int port = skge->port;
2326 	u16 ctrl;
2327 
2328 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2329 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2330 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2331 
2332 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2333 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2334 		ctrl |= PHY_M_AN_ASP;
2335 		/* restore Asymmetric Pause bit */
2336 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2337 	}
2338 
2339 	skge_link_down(skge);
2340 
2341 	yukon_init(hw, port);
2342 }
2343 
2344 static void yukon_phy_intr(struct skge_port *skge)
2345 {
2346 	struct skge_hw *hw = skge->hw;
2347 	int port = skge->port;
2348 	const char *reason = NULL;
2349 	u16 istatus, phystat;
2350 
2351 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2352 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2353 
2354 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2355 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2356 
2357 	if (istatus & PHY_M_IS_AN_COMPL) {
2358 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2359 		    & PHY_M_AN_RF) {
2360 			reason = "remote fault";
2361 			goto failed;
2362 		}
2363 
2364 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2365 			reason = "master/slave fault";
2366 			goto failed;
2367 		}
2368 
2369 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2370 			reason = "speed/duplex";
2371 			goto failed;
2372 		}
2373 
2374 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2375 			? DUPLEX_FULL : DUPLEX_HALF;
2376 		skge->speed = yukon_speed(hw, phystat);
2377 
2378 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2379 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2380 		case PHY_M_PS_PAUSE_MSK:
2381 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2382 			break;
2383 		case PHY_M_PS_RX_P_EN:
2384 			skge->flow_status = FLOW_STAT_REM_SEND;
2385 			break;
2386 		case PHY_M_PS_TX_P_EN:
2387 			skge->flow_status = FLOW_STAT_LOC_SEND;
2388 			break;
2389 		default:
2390 			skge->flow_status = FLOW_STAT_NONE;
2391 		}
2392 
2393 		if (skge->flow_status == FLOW_STAT_NONE ||
2394 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2395 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2396 		else
2397 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2398 		yukon_link_up(skge);
2399 		return;
2400 	}
2401 
2402 	if (istatus & PHY_M_IS_LSP_CHANGE)
2403 		skge->speed = yukon_speed(hw, phystat);
2404 
2405 	if (istatus & PHY_M_IS_DUP_CHANGE)
2406 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2407 	if (istatus & PHY_M_IS_LST_CHANGE) {
2408 		if (phystat & PHY_M_PS_LINK_UP)
2409 			yukon_link_up(skge);
2410 		else
2411 			yukon_link_down(skge);
2412 	}
2413 	return;
2414  failed:
2415 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2416 
2417 	/* XXX restart autonegotiation? */
2418 }
2419 
2420 static void skge_phy_reset(struct skge_port *skge)
2421 {
2422 	struct skge_hw *hw = skge->hw;
2423 	int port = skge->port;
2424 	struct net_device *dev = hw->dev[port];
2425 
2426 	netif_stop_queue(skge->netdev);
2427 	netif_carrier_off(skge->netdev);
2428 
2429 	spin_lock_bh(&hw->phy_lock);
2430 	if (is_genesis(hw)) {
2431 		genesis_reset(hw, port);
2432 		genesis_mac_init(hw, port);
2433 	} else {
2434 		yukon_reset(hw, port);
2435 		yukon_init(hw, port);
2436 	}
2437 	spin_unlock_bh(&hw->phy_lock);
2438 
2439 	skge_set_multicast(dev);
2440 }
2441 
2442 /* Basic MII support */
2443 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2444 {
2445 	struct mii_ioctl_data *data = if_mii(ifr);
2446 	struct skge_port *skge = netdev_priv(dev);
2447 	struct skge_hw *hw = skge->hw;
2448 	int err = -EOPNOTSUPP;
2449 
2450 	if (!netif_running(dev))
2451 		return -ENODEV;	/* Phy still in reset */
2452 
2453 	switch (cmd) {
2454 	case SIOCGMIIPHY:
2455 		data->phy_id = hw->phy_addr;
2456 
2457 		fallthrough;
2458 	case SIOCGMIIREG: {
2459 		u16 val = 0;
2460 		spin_lock_bh(&hw->phy_lock);
2461 
2462 		if (is_genesis(hw))
2463 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2464 		else
2465 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2466 		spin_unlock_bh(&hw->phy_lock);
2467 		data->val_out = val;
2468 		break;
2469 	}
2470 
2471 	case SIOCSMIIREG:
2472 		spin_lock_bh(&hw->phy_lock);
2473 		if (is_genesis(hw))
2474 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2475 				   data->val_in);
2476 		else
2477 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2478 				   data->val_in);
2479 		spin_unlock_bh(&hw->phy_lock);
2480 		break;
2481 	}
2482 	return err;
2483 }
2484 
2485 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2486 {
2487 	u32 end;
2488 
2489 	start /= 8;
2490 	len /= 8;
2491 	end = start + len - 1;
2492 
2493 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2494 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2495 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2496 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2497 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2498 
2499 	if (q == Q_R1 || q == Q_R2) {
2500 		/* Set thresholds on receive queue's */
2501 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2502 			     start + (2*len)/3);
2503 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2504 			     start + (len/3));
2505 	} else {
2506 		/* Enable store & forward on Tx queue's because
2507 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2508 		 */
2509 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2510 	}
2511 
2512 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2513 }
2514 
2515 /* Setup Bus Memory Interface */
2516 static void skge_qset(struct skge_port *skge, u16 q,
2517 		      const struct skge_element *e)
2518 {
2519 	struct skge_hw *hw = skge->hw;
2520 	u32 watermark = 0x600;
2521 	u64 base = skge->dma + (e->desc - skge->mem);
2522 
2523 	/* optimization to reduce window on 32bit/33mhz */
2524 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2525 		watermark /= 2;
2526 
2527 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2528 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2529 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2530 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2531 }
2532 
2533 static int skge_up(struct net_device *dev)
2534 {
2535 	struct skge_port *skge = netdev_priv(dev);
2536 	struct skge_hw *hw = skge->hw;
2537 	int port = skge->port;
2538 	u32 chunk, ram_addr;
2539 	size_t rx_size, tx_size;
2540 	int err;
2541 
2542 	if (!is_valid_ether_addr(dev->dev_addr))
2543 		return -EINVAL;
2544 
2545 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2546 
2547 	if (dev->mtu > RX_BUF_SIZE)
2548 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2549 	else
2550 		skge->rx_buf_size = RX_BUF_SIZE;
2551 
2552 
2553 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2554 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2555 	skge->mem_size = tx_size + rx_size;
2556 	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2557 				       &skge->dma, GFP_KERNEL);
2558 	if (!skge->mem)
2559 		return -ENOMEM;
2560 
2561 	BUG_ON(skge->dma & 7);
2562 
2563 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2564 		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2565 		err = -EINVAL;
2566 		goto free_pci_mem;
2567 	}
2568 
2569 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2570 	if (err)
2571 		goto free_pci_mem;
2572 
2573 	err = skge_rx_fill(dev);
2574 	if (err)
2575 		goto free_rx_ring;
2576 
2577 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2578 			      skge->dma + rx_size);
2579 	if (err)
2580 		goto free_rx_ring;
2581 
2582 	if (hw->ports == 1) {
2583 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2584 				  dev->name, hw);
2585 		if (err) {
2586 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2587 				   hw->pdev->irq, err);
2588 			goto free_tx_ring;
2589 		}
2590 	}
2591 
2592 	/* Initialize MAC */
2593 	netif_carrier_off(dev);
2594 	spin_lock_bh(&hw->phy_lock);
2595 	if (is_genesis(hw))
2596 		genesis_mac_init(hw, port);
2597 	else
2598 		yukon_mac_init(hw, port);
2599 	spin_unlock_bh(&hw->phy_lock);
2600 
2601 	/* Configure RAMbuffers - equally between ports and tx/rx */
2602 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2603 	ram_addr = hw->ram_offset + 2 * chunk * port;
2604 
2605 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2606 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2607 
2608 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2609 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2610 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2611 
2612 	/* Start receiver BMU */
2613 	wmb();
2614 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2615 	skge_led(skge, LED_MODE_ON);
2616 
2617 	spin_lock_irq(&hw->hw_lock);
2618 	hw->intr_mask |= portmask[port];
2619 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2620 	skge_read32(hw, B0_IMSK);
2621 	spin_unlock_irq(&hw->hw_lock);
2622 
2623 	napi_enable(&skge->napi);
2624 
2625 	skge_set_multicast(dev);
2626 
2627 	return 0;
2628 
2629  free_tx_ring:
2630 	kfree(skge->tx_ring.start);
2631  free_rx_ring:
2632 	skge_rx_clean(skge);
2633 	kfree(skge->rx_ring.start);
2634  free_pci_mem:
2635 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2636 			  skge->dma);
2637 	skge->mem = NULL;
2638 
2639 	return err;
2640 }
2641 
2642 /* stop receiver */
2643 static void skge_rx_stop(struct skge_hw *hw, int port)
2644 {
2645 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2646 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2647 		     RB_RST_SET|RB_DIS_OP_MD);
2648 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2649 }
2650 
2651 static int skge_down(struct net_device *dev)
2652 {
2653 	struct skge_port *skge = netdev_priv(dev);
2654 	struct skge_hw *hw = skge->hw;
2655 	int port = skge->port;
2656 
2657 	if (!skge->mem)
2658 		return 0;
2659 
2660 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2661 
2662 	netif_tx_disable(dev);
2663 
2664 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2665 		del_timer_sync(&skge->link_timer);
2666 
2667 	napi_disable(&skge->napi);
2668 	netif_carrier_off(dev);
2669 
2670 	spin_lock_irq(&hw->hw_lock);
2671 	hw->intr_mask &= ~portmask[port];
2672 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2673 	skge_read32(hw, B0_IMSK);
2674 	spin_unlock_irq(&hw->hw_lock);
2675 
2676 	if (hw->ports == 1)
2677 		free_irq(hw->pdev->irq, hw);
2678 
2679 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2680 	if (is_genesis(hw))
2681 		genesis_stop(skge);
2682 	else
2683 		yukon_stop(skge);
2684 
2685 	/* Stop transmitter */
2686 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2687 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2688 		     RB_RST_SET|RB_DIS_OP_MD);
2689 
2690 
2691 	/* Disable Force Sync bit and Enable Alloc bit */
2692 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2693 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2694 
2695 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2696 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2697 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2698 
2699 	/* Reset PCI FIFO */
2700 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2701 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2702 
2703 	/* Reset the RAM Buffer async Tx queue */
2704 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2705 
2706 	skge_rx_stop(hw, port);
2707 
2708 	if (is_genesis(hw)) {
2709 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2710 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2711 	} else {
2712 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2713 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2714 	}
2715 
2716 	skge_led(skge, LED_MODE_OFF);
2717 
2718 	netif_tx_lock_bh(dev);
2719 	skge_tx_clean(dev);
2720 	netif_tx_unlock_bh(dev);
2721 
2722 	skge_rx_clean(skge);
2723 
2724 	kfree(skge->rx_ring.start);
2725 	kfree(skge->tx_ring.start);
2726 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2727 			  skge->dma);
2728 	skge->mem = NULL;
2729 	return 0;
2730 }
2731 
2732 static inline int skge_avail(const struct skge_ring *ring)
2733 {
2734 	smp_mb();
2735 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2736 		+ (ring->to_clean - ring->to_use) - 1;
2737 }
2738 
2739 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2740 				   struct net_device *dev)
2741 {
2742 	struct skge_port *skge = netdev_priv(dev);
2743 	struct skge_hw *hw = skge->hw;
2744 	struct skge_element *e;
2745 	struct skge_tx_desc *td;
2746 	int i;
2747 	u32 control, len;
2748 	dma_addr_t map;
2749 
2750 	if (skb_padto(skb, ETH_ZLEN))
2751 		return NETDEV_TX_OK;
2752 
2753 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2754 		return NETDEV_TX_BUSY;
2755 
2756 	e = skge->tx_ring.to_use;
2757 	td = e->desc;
2758 	BUG_ON(td->control & BMU_OWN);
2759 	e->skb = skb;
2760 	len = skb_headlen(skb);
2761 	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2762 	if (dma_mapping_error(&hw->pdev->dev, map))
2763 		goto mapping_error;
2764 
2765 	dma_unmap_addr_set(e, mapaddr, map);
2766 	dma_unmap_len_set(e, maplen, len);
2767 
2768 	td->dma_lo = lower_32_bits(map);
2769 	td->dma_hi = upper_32_bits(map);
2770 
2771 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2772 		const int offset = skb_checksum_start_offset(skb);
2773 
2774 		/* This seems backwards, but it is what the sk98lin
2775 		 * does.  Looks like hardware is wrong?
2776 		 */
2777 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2778 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2779 			control = BMU_TCP_CHECK;
2780 		else
2781 			control = BMU_UDP_CHECK;
2782 
2783 		td->csum_offs = 0;
2784 		td->csum_start = offset;
2785 		td->csum_write = offset + skb->csum_offset;
2786 	} else
2787 		control = BMU_CHECK;
2788 
2789 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2790 		control |= BMU_EOF | BMU_IRQ_EOF;
2791 	else {
2792 		struct skge_tx_desc *tf = td;
2793 
2794 		control |= BMU_STFWD;
2795 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2796 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2797 
2798 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2799 					       skb_frag_size(frag), DMA_TO_DEVICE);
2800 			if (dma_mapping_error(&hw->pdev->dev, map))
2801 				goto mapping_unwind;
2802 
2803 			e = e->next;
2804 			e->skb = skb;
2805 			tf = e->desc;
2806 			BUG_ON(tf->control & BMU_OWN);
2807 
2808 			tf->dma_lo = lower_32_bits(map);
2809 			tf->dma_hi = upper_32_bits(map);
2810 			dma_unmap_addr_set(e, mapaddr, map);
2811 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2812 
2813 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2814 		}
2815 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2816 	}
2817 	/* Make sure all the descriptors written */
2818 	wmb();
2819 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2820 	wmb();
2821 
2822 	netdev_sent_queue(dev, skb->len);
2823 
2824 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2825 
2826 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2827 		     "tx queued, slot %td, len %d\n",
2828 		     e - skge->tx_ring.start, skb->len);
2829 
2830 	skge->tx_ring.to_use = e->next;
2831 	smp_wmb();
2832 
2833 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2834 		netdev_dbg(dev, "transmit queue full\n");
2835 		netif_stop_queue(dev);
2836 	}
2837 
2838 	return NETDEV_TX_OK;
2839 
2840 mapping_unwind:
2841 	e = skge->tx_ring.to_use;
2842 	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2843 			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2844 	while (i-- > 0) {
2845 		e = e->next;
2846 		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2847 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2848 	}
2849 
2850 mapping_error:
2851 	if (net_ratelimit())
2852 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2853 	dev_kfree_skb_any(skb);
2854 	return NETDEV_TX_OK;
2855 }
2856 
2857 
2858 /* Free resources associated with this reing element */
2859 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2860 				 u32 control)
2861 {
2862 	/* skb header vs. fragment */
2863 	if (control & BMU_STF)
2864 		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2865 				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2866 	else
2867 		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2868 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2869 }
2870 
2871 /* Free all buffers in transmit ring */
2872 static void skge_tx_clean(struct net_device *dev)
2873 {
2874 	struct skge_port *skge = netdev_priv(dev);
2875 	struct skge_element *e;
2876 
2877 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2878 		struct skge_tx_desc *td = e->desc;
2879 
2880 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2881 
2882 		if (td->control & BMU_EOF)
2883 			dev_kfree_skb(e->skb);
2884 		td->control = 0;
2885 	}
2886 
2887 	netdev_reset_queue(dev);
2888 	skge->tx_ring.to_clean = e;
2889 }
2890 
2891 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2892 {
2893 	struct skge_port *skge = netdev_priv(dev);
2894 
2895 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2896 
2897 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2898 	skge_tx_clean(dev);
2899 	netif_wake_queue(dev);
2900 }
2901 
2902 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2903 {
2904 	int err;
2905 
2906 	if (!netif_running(dev)) {
2907 		WRITE_ONCE(dev->mtu, new_mtu);
2908 		return 0;
2909 	}
2910 
2911 	skge_down(dev);
2912 
2913 	WRITE_ONCE(dev->mtu, new_mtu);
2914 
2915 	err = skge_up(dev);
2916 	if (err)
2917 		dev_close(dev);
2918 
2919 	return err;
2920 }
2921 
2922 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2923 
2924 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2925 {
2926 	u32 crc, bit;
2927 
2928 	crc = ether_crc_le(ETH_ALEN, addr);
2929 	bit = ~crc & 0x3f;
2930 	filter[bit/8] |= 1 << (bit%8);
2931 }
2932 
2933 static void genesis_set_multicast(struct net_device *dev)
2934 {
2935 	struct skge_port *skge = netdev_priv(dev);
2936 	struct skge_hw *hw = skge->hw;
2937 	int port = skge->port;
2938 	struct netdev_hw_addr *ha;
2939 	u32 mode;
2940 	u8 filter[8];
2941 
2942 	mode = xm_read32(hw, port, XM_MODE);
2943 	mode |= XM_MD_ENA_HASH;
2944 	if (dev->flags & IFF_PROMISC)
2945 		mode |= XM_MD_ENA_PROM;
2946 	else
2947 		mode &= ~XM_MD_ENA_PROM;
2948 
2949 	if (dev->flags & IFF_ALLMULTI)
2950 		memset(filter, 0xff, sizeof(filter));
2951 	else {
2952 		memset(filter, 0, sizeof(filter));
2953 
2954 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2955 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2956 			genesis_add_filter(filter, pause_mc_addr);
2957 
2958 		netdev_for_each_mc_addr(ha, dev)
2959 			genesis_add_filter(filter, ha->addr);
2960 	}
2961 
2962 	xm_write32(hw, port, XM_MODE, mode);
2963 	xm_outhash(hw, port, XM_HSM, filter);
2964 }
2965 
2966 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2967 {
2968 	u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2969 
2970 	filter[bit / 8] |= 1 << (bit % 8);
2971 }
2972 
2973 static void yukon_set_multicast(struct net_device *dev)
2974 {
2975 	struct skge_port *skge = netdev_priv(dev);
2976 	struct skge_hw *hw = skge->hw;
2977 	int port = skge->port;
2978 	struct netdev_hw_addr *ha;
2979 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2980 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2981 	u16 reg;
2982 	u8 filter[8];
2983 
2984 	memset(filter, 0, sizeof(filter));
2985 
2986 	reg = gma_read16(hw, port, GM_RX_CTRL);
2987 	reg |= GM_RXCR_UCF_ENA;
2988 
2989 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2990 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2991 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2992 		memset(filter, 0xff, sizeof(filter));
2993 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2994 		reg &= ~GM_RXCR_MCF_ENA;
2995 	else {
2996 		reg |= GM_RXCR_MCF_ENA;
2997 
2998 		if (rx_pause)
2999 			yukon_add_filter(filter, pause_mc_addr);
3000 
3001 		netdev_for_each_mc_addr(ha, dev)
3002 			yukon_add_filter(filter, ha->addr);
3003 	}
3004 
3005 
3006 	gma_write16(hw, port, GM_MC_ADDR_H1,
3007 			 (u16)filter[0] | ((u16)filter[1] << 8));
3008 	gma_write16(hw, port, GM_MC_ADDR_H2,
3009 			 (u16)filter[2] | ((u16)filter[3] << 8));
3010 	gma_write16(hw, port, GM_MC_ADDR_H3,
3011 			 (u16)filter[4] | ((u16)filter[5] << 8));
3012 	gma_write16(hw, port, GM_MC_ADDR_H4,
3013 			 (u16)filter[6] | ((u16)filter[7] << 8));
3014 
3015 	gma_write16(hw, port, GM_RX_CTRL, reg);
3016 }
3017 
3018 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3019 {
3020 	if (is_genesis(hw))
3021 		return status >> XMR_FS_LEN_SHIFT;
3022 	else
3023 		return status >> GMR_FS_LEN_SHIFT;
3024 }
3025 
3026 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3027 {
3028 	if (is_genesis(hw))
3029 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3030 	else
3031 		return (status & GMR_FS_ANY_ERR) ||
3032 			(status & GMR_FS_RX_OK) == 0;
3033 }
3034 
3035 static void skge_set_multicast(struct net_device *dev)
3036 {
3037 	struct skge_port *skge = netdev_priv(dev);
3038 
3039 	if (is_genesis(skge->hw))
3040 		genesis_set_multicast(dev);
3041 	else
3042 		yukon_set_multicast(dev);
3043 
3044 }
3045 
3046 
3047 /* Get receive buffer from descriptor.
3048  * Handles copy of small buffers and reallocation failures
3049  */
3050 static struct sk_buff *skge_rx_get(struct net_device *dev,
3051 				   struct skge_element *e,
3052 				   u32 control, u32 status, u16 csum)
3053 {
3054 	struct skge_port *skge = netdev_priv(dev);
3055 	struct sk_buff *skb;
3056 	u16 len = control & BMU_BBC;
3057 
3058 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3059 		     "rx slot %td status 0x%x len %d\n",
3060 		     e - skge->rx_ring.start, status, len);
3061 
3062 	if (len > skge->rx_buf_size)
3063 		goto error;
3064 
3065 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3066 		goto error;
3067 
3068 	if (bad_phy_status(skge->hw, status))
3069 		goto error;
3070 
3071 	if (phy_length(skge->hw, status) != len)
3072 		goto error;
3073 
3074 	if (len < RX_COPY_THRESHOLD) {
3075 		skb = netdev_alloc_skb_ip_align(dev, len);
3076 		if (!skb)
3077 			goto resubmit;
3078 
3079 		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3080 					dma_unmap_addr(e, mapaddr),
3081 					dma_unmap_len(e, maplen),
3082 					DMA_FROM_DEVICE);
3083 		skb_copy_from_linear_data(e->skb, skb->data, len);
3084 		dma_sync_single_for_device(&skge->hw->pdev->dev,
3085 					   dma_unmap_addr(e, mapaddr),
3086 					   dma_unmap_len(e, maplen),
3087 					   DMA_FROM_DEVICE);
3088 		skge_rx_reuse(e, skge->rx_buf_size);
3089 	} else {
3090 		struct skge_element ee;
3091 		struct sk_buff *nskb;
3092 
3093 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3094 		if (!nskb)
3095 			goto resubmit;
3096 
3097 		ee = *e;
3098 
3099 		skb = ee.skb;
3100 		prefetch(skb->data);
3101 
3102 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3103 			dev_kfree_skb(nskb);
3104 			goto resubmit;
3105 		}
3106 
3107 		dma_unmap_single(&skge->hw->pdev->dev,
3108 				 dma_unmap_addr(&ee, mapaddr),
3109 				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3110 	}
3111 
3112 	skb_put(skb, len);
3113 
3114 	if (dev->features & NETIF_F_RXCSUM) {
3115 		skb->csum = le16_to_cpu(csum);
3116 		skb->ip_summed = CHECKSUM_COMPLETE;
3117 	}
3118 
3119 	skb->protocol = eth_type_trans(skb, dev);
3120 
3121 	return skb;
3122 error:
3123 
3124 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3125 		     "rx err, slot %td control 0x%x status 0x%x\n",
3126 		     e - skge->rx_ring.start, control, status);
3127 
3128 	if (is_genesis(skge->hw)) {
3129 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3130 			dev->stats.rx_length_errors++;
3131 		if (status & XMR_FS_FRA_ERR)
3132 			dev->stats.rx_frame_errors++;
3133 		if (status & XMR_FS_FCS_ERR)
3134 			dev->stats.rx_crc_errors++;
3135 	} else {
3136 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3137 			dev->stats.rx_length_errors++;
3138 		if (status & GMR_FS_FRAGMENT)
3139 			dev->stats.rx_frame_errors++;
3140 		if (status & GMR_FS_CRC_ERR)
3141 			dev->stats.rx_crc_errors++;
3142 	}
3143 
3144 resubmit:
3145 	skge_rx_reuse(e, skge->rx_buf_size);
3146 	return NULL;
3147 }
3148 
3149 /* Free all buffers in Tx ring which are no longer owned by device */
3150 static void skge_tx_done(struct net_device *dev)
3151 {
3152 	struct skge_port *skge = netdev_priv(dev);
3153 	struct skge_ring *ring = &skge->tx_ring;
3154 	struct skge_element *e;
3155 	unsigned int bytes_compl = 0, pkts_compl = 0;
3156 
3157 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3158 
3159 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3160 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3161 
3162 		if (control & BMU_OWN)
3163 			break;
3164 
3165 		skge_tx_unmap(skge->hw->pdev, e, control);
3166 
3167 		if (control & BMU_EOF) {
3168 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3169 				     "tx done slot %td\n",
3170 				     e - skge->tx_ring.start);
3171 
3172 			pkts_compl++;
3173 			bytes_compl += e->skb->len;
3174 
3175 			dev_consume_skb_any(e->skb);
3176 		}
3177 	}
3178 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3179 	skge->tx_ring.to_clean = e;
3180 
3181 	/* Can run lockless until we need to synchronize to restart queue. */
3182 	smp_mb();
3183 
3184 	if (unlikely(netif_queue_stopped(dev) &&
3185 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186 		netif_tx_lock(dev);
3187 		if (unlikely(netif_queue_stopped(dev) &&
3188 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3189 			netif_wake_queue(dev);
3190 
3191 		}
3192 		netif_tx_unlock(dev);
3193 	}
3194 }
3195 
3196 static int skge_poll(struct napi_struct *napi, int budget)
3197 {
3198 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3199 	struct net_device *dev = skge->netdev;
3200 	struct skge_hw *hw = skge->hw;
3201 	struct skge_ring *ring = &skge->rx_ring;
3202 	struct skge_element *e;
3203 	int work_done = 0;
3204 
3205 	skge_tx_done(dev);
3206 
3207 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3208 
3209 	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3210 		struct skge_rx_desc *rd = e->desc;
3211 		struct sk_buff *skb;
3212 		u32 control;
3213 
3214 		rmb();
3215 		control = rd->control;
3216 		if (control & BMU_OWN)
3217 			break;
3218 
3219 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3220 		if (likely(skb)) {
3221 			napi_gro_receive(napi, skb);
3222 			++work_done;
3223 		}
3224 	}
3225 	ring->to_clean = e;
3226 
3227 	/* restart receiver */
3228 	wmb();
3229 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3230 
3231 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3232 		unsigned long flags;
3233 
3234 		spin_lock_irqsave(&hw->hw_lock, flags);
3235 		hw->intr_mask |= napimask[skge->port];
3236 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3237 		skge_read32(hw, B0_IMSK);
3238 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3239 	}
3240 
3241 	return work_done;
3242 }
3243 
3244 /* Parity errors seem to happen when Genesis is connected to a switch
3245  * with no other ports present. Heartbeat error??
3246  */
3247 static void skge_mac_parity(struct skge_hw *hw, int port)
3248 {
3249 	struct net_device *dev = hw->dev[port];
3250 
3251 	++dev->stats.tx_heartbeat_errors;
3252 
3253 	if (is_genesis(hw))
3254 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3255 			     MFF_CLR_PERR);
3256 	else
3257 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3258 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3259 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3260 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3261 }
3262 
3263 static void skge_mac_intr(struct skge_hw *hw, int port)
3264 {
3265 	if (is_genesis(hw))
3266 		genesis_mac_intr(hw, port);
3267 	else
3268 		yukon_mac_intr(hw, port);
3269 }
3270 
3271 /* Handle device specific framing and timeout interrupts */
3272 static void skge_error_irq(struct skge_hw *hw)
3273 {
3274 	struct pci_dev *pdev = hw->pdev;
3275 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3276 
3277 	if (is_genesis(hw)) {
3278 		/* clear xmac errors */
3279 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3280 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3281 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3282 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3283 	} else {
3284 		/* Timestamp (unused) overflow */
3285 		if (hwstatus & IS_IRQ_TIST_OV)
3286 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3287 	}
3288 
3289 	if (hwstatus & IS_RAM_RD_PAR) {
3290 		dev_err(&pdev->dev, "Ram read data parity error\n");
3291 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3292 	}
3293 
3294 	if (hwstatus & IS_RAM_WR_PAR) {
3295 		dev_err(&pdev->dev, "Ram write data parity error\n");
3296 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3297 	}
3298 
3299 	if (hwstatus & IS_M1_PAR_ERR)
3300 		skge_mac_parity(hw, 0);
3301 
3302 	if (hwstatus & IS_M2_PAR_ERR)
3303 		skge_mac_parity(hw, 1);
3304 
3305 	if (hwstatus & IS_R1_PAR_ERR) {
3306 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3307 			hw->dev[0]->name);
3308 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3309 	}
3310 
3311 	if (hwstatus & IS_R2_PAR_ERR) {
3312 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3313 			hw->dev[1]->name);
3314 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3315 	}
3316 
3317 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3318 		u16 pci_status, pci_cmd;
3319 
3320 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3321 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3322 
3323 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3324 			pci_cmd, pci_status);
3325 
3326 		/* Write the error bits back to clear them. */
3327 		pci_status &= PCI_STATUS_ERROR_BITS;
3328 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3329 		pci_write_config_word(pdev, PCI_COMMAND,
3330 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3331 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3332 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3333 
3334 		/* if error still set then just ignore it */
3335 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3336 		if (hwstatus & IS_IRQ_STAT) {
3337 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3338 			hw->intr_mask &= ~IS_HW_ERR;
3339 		}
3340 	}
3341 }
3342 
3343 /*
3344  * Interrupt from PHY are handled in tasklet (softirq)
3345  * because accessing phy registers requires spin wait which might
3346  * cause excess interrupt latency.
3347  */
3348 static void skge_extirq(struct tasklet_struct *t)
3349 {
3350 	struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3351 	int port;
3352 
3353 	for (port = 0; port < hw->ports; port++) {
3354 		struct net_device *dev = hw->dev[port];
3355 
3356 		if (netif_running(dev)) {
3357 			struct skge_port *skge = netdev_priv(dev);
3358 
3359 			spin_lock(&hw->phy_lock);
3360 			if (!is_genesis(hw))
3361 				yukon_phy_intr(skge);
3362 			else if (hw->phy_type == SK_PHY_BCOM)
3363 				bcom_phy_intr(skge);
3364 			spin_unlock(&hw->phy_lock);
3365 		}
3366 	}
3367 
3368 	spin_lock_irq(&hw->hw_lock);
3369 	hw->intr_mask |= IS_EXT_REG;
3370 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3371 	skge_read32(hw, B0_IMSK);
3372 	spin_unlock_irq(&hw->hw_lock);
3373 }
3374 
3375 static irqreturn_t skge_intr(int irq, void *dev_id)
3376 {
3377 	struct skge_hw *hw = dev_id;
3378 	u32 status;
3379 	int handled = 0;
3380 
3381 	spin_lock(&hw->hw_lock);
3382 	/* Reading this register masks IRQ */
3383 	status = skge_read32(hw, B0_SP_ISRC);
3384 	if (status == 0 || status == ~0)
3385 		goto out;
3386 
3387 	handled = 1;
3388 	status &= hw->intr_mask;
3389 	if (status & IS_EXT_REG) {
3390 		hw->intr_mask &= ~IS_EXT_REG;
3391 		tasklet_schedule(&hw->phy_task);
3392 	}
3393 
3394 	if (status & (IS_XA1_F|IS_R1_F)) {
3395 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3396 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3397 		napi_schedule(&skge->napi);
3398 	}
3399 
3400 	if (status & IS_PA_TO_TX1)
3401 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3402 
3403 	if (status & IS_PA_TO_RX1) {
3404 		++hw->dev[0]->stats.rx_over_errors;
3405 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3406 	}
3407 
3408 
3409 	if (status & IS_MAC1)
3410 		skge_mac_intr(hw, 0);
3411 
3412 	if (hw->dev[1]) {
3413 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3414 
3415 		if (status & (IS_XA2_F|IS_R2_F)) {
3416 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3417 			napi_schedule(&skge->napi);
3418 		}
3419 
3420 		if (status & IS_PA_TO_RX2) {
3421 			++hw->dev[1]->stats.rx_over_errors;
3422 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3423 		}
3424 
3425 		if (status & IS_PA_TO_TX2)
3426 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3427 
3428 		if (status & IS_MAC2)
3429 			skge_mac_intr(hw, 1);
3430 	}
3431 
3432 	if (status & IS_HW_ERR)
3433 		skge_error_irq(hw);
3434 out:
3435 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3436 	skge_read32(hw, B0_IMSK);
3437 	spin_unlock(&hw->hw_lock);
3438 
3439 	return IRQ_RETVAL(handled);
3440 }
3441 
3442 #ifdef CONFIG_NET_POLL_CONTROLLER
3443 static void skge_netpoll(struct net_device *dev)
3444 {
3445 	struct skge_port *skge = netdev_priv(dev);
3446 
3447 	disable_irq(dev->irq);
3448 	skge_intr(dev->irq, skge->hw);
3449 	enable_irq(dev->irq);
3450 }
3451 #endif
3452 
3453 static int skge_set_mac_address(struct net_device *dev, void *p)
3454 {
3455 	struct skge_port *skge = netdev_priv(dev);
3456 	struct skge_hw *hw = skge->hw;
3457 	unsigned port = skge->port;
3458 	const struct sockaddr *addr = p;
3459 	u16 ctrl;
3460 
3461 	if (!is_valid_ether_addr(addr->sa_data))
3462 		return -EADDRNOTAVAIL;
3463 
3464 	eth_hw_addr_set(dev, addr->sa_data);
3465 
3466 	if (!netif_running(dev)) {
3467 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3468 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3469 	} else {
3470 		/* disable Rx */
3471 		spin_lock_bh(&hw->phy_lock);
3472 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3473 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3474 
3475 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3476 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3477 
3478 		if (is_genesis(hw))
3479 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3480 		else {
3481 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3482 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3483 		}
3484 
3485 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3486 		spin_unlock_bh(&hw->phy_lock);
3487 	}
3488 
3489 	return 0;
3490 }
3491 
3492 static const struct {
3493 	u8 id;
3494 	const char *name;
3495 } skge_chips[] = {
3496 	{ CHIP_ID_GENESIS,	"Genesis" },
3497 	{ CHIP_ID_YUKON,	 "Yukon" },
3498 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3499 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3500 };
3501 
3502 static const char *skge_board_name(const struct skge_hw *hw)
3503 {
3504 	int i;
3505 	static char buf[16];
3506 
3507 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3508 		if (skge_chips[i].id == hw->chip_id)
3509 			return skge_chips[i].name;
3510 
3511 	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3512 	return buf;
3513 }
3514 
3515 
3516 /*
3517  * Setup the board data structure, but don't bring up
3518  * the port(s)
3519  */
3520 static int skge_reset(struct skge_hw *hw)
3521 {
3522 	u32 reg;
3523 	u16 ctst, pci_status;
3524 	u8 t8, mac_cfg, pmd_type;
3525 	int i;
3526 
3527 	ctst = skge_read16(hw, B0_CTST);
3528 
3529 	/* do a SW reset */
3530 	skge_write8(hw, B0_CTST, CS_RST_SET);
3531 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3532 
3533 	/* clear PCI errors, if any */
3534 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3535 	skge_write8(hw, B2_TST_CTRL2, 0);
3536 
3537 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3538 	pci_write_config_word(hw->pdev, PCI_STATUS,
3539 			      pci_status | PCI_STATUS_ERROR_BITS);
3540 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3541 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3542 
3543 	/* restore CLK_RUN bits (for Yukon-Lite) */
3544 	skge_write16(hw, B0_CTST,
3545 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3546 
3547 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3548 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3549 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3550 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3551 
3552 	switch (hw->chip_id) {
3553 	case CHIP_ID_GENESIS:
3554 #ifdef CONFIG_SKGE_GENESIS
3555 		switch (hw->phy_type) {
3556 		case SK_PHY_XMAC:
3557 			hw->phy_addr = PHY_ADDR_XMAC;
3558 			break;
3559 		case SK_PHY_BCOM:
3560 			hw->phy_addr = PHY_ADDR_BCOM;
3561 			break;
3562 		default:
3563 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3564 			       hw->phy_type);
3565 			return -EOPNOTSUPP;
3566 		}
3567 		break;
3568 #else
3569 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3570 		return -EOPNOTSUPP;
3571 #endif
3572 
3573 	case CHIP_ID_YUKON:
3574 	case CHIP_ID_YUKON_LITE:
3575 	case CHIP_ID_YUKON_LP:
3576 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3577 			hw->copper = 1;
3578 
3579 		hw->phy_addr = PHY_ADDR_MARV;
3580 		break;
3581 
3582 	default:
3583 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3584 		       hw->chip_id);
3585 		return -EOPNOTSUPP;
3586 	}
3587 
3588 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3589 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3590 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3591 
3592 	/* read the adapters RAM size */
3593 	t8 = skge_read8(hw, B2_E_0);
3594 	if (is_genesis(hw)) {
3595 		if (t8 == 3) {
3596 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3597 			hw->ram_size = 0x100000;
3598 			hw->ram_offset = 0x80000;
3599 		} else
3600 			hw->ram_size = t8 * 512;
3601 	} else if (t8 == 0)
3602 		hw->ram_size = 0x20000;
3603 	else
3604 		hw->ram_size = t8 * 4096;
3605 
3606 	hw->intr_mask = IS_HW_ERR;
3607 
3608 	/* Use PHY IRQ for all but fiber based Genesis board */
3609 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3610 		hw->intr_mask |= IS_EXT_REG;
3611 
3612 	if (is_genesis(hw))
3613 		genesis_init(hw);
3614 	else {
3615 		/* switch power to VCC (WA for VAUX problem) */
3616 		skge_write8(hw, B0_POWER_CTRL,
3617 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3618 
3619 		/* avoid boards with stuck Hardware error bits */
3620 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3621 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3622 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3623 			hw->intr_mask &= ~IS_HW_ERR;
3624 		}
3625 
3626 		/* Clear PHY COMA */
3627 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3628 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3629 		reg &= ~PCI_PHY_COMA;
3630 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3631 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3632 
3633 
3634 		for (i = 0; i < hw->ports; i++) {
3635 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3636 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3637 		}
3638 	}
3639 
3640 	/* turn off hardware timer (unused) */
3641 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3642 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3643 	skge_write8(hw, B0_LED, LED_STAT_ON);
3644 
3645 	/* enable the Tx Arbiters */
3646 	for (i = 0; i < hw->ports; i++)
3647 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3648 
3649 	/* Initialize ram interface */
3650 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3651 
3652 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3653 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3654 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3655 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3656 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3657 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3658 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3659 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3660 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3661 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3662 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3663 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3664 
3665 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3666 
3667 	/* Set interrupt moderation for Transmit only
3668 	 * Receive interrupts avoided by NAPI
3669 	 */
3670 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3671 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3672 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3673 
3674 	/* Leave irq disabled until first port is brought up. */
3675 	skge_write32(hw, B0_IMSK, 0);
3676 
3677 	for (i = 0; i < hw->ports; i++) {
3678 		if (is_genesis(hw))
3679 			genesis_reset(hw, i);
3680 		else
3681 			yukon_reset(hw, i);
3682 	}
3683 
3684 	return 0;
3685 }
3686 
3687 
3688 #ifdef CONFIG_SKGE_DEBUG
3689 
3690 static struct dentry *skge_debug;
3691 
3692 static int skge_debug_show(struct seq_file *seq, void *v)
3693 {
3694 	struct net_device *dev = seq->private;
3695 	const struct skge_port *skge = netdev_priv(dev);
3696 	const struct skge_hw *hw = skge->hw;
3697 	const struct skge_element *e;
3698 
3699 	if (!netif_running(dev))
3700 		return -ENETDOWN;
3701 
3702 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3703 		   skge_read32(hw, B0_IMSK));
3704 
3705 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3706 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3707 		const struct skge_tx_desc *t = e->desc;
3708 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3709 			   t->control, t->dma_hi, t->dma_lo, t->status,
3710 			   t->csum_offs, t->csum_write, t->csum_start);
3711 	}
3712 
3713 	seq_puts(seq, "\nRx Ring:\n");
3714 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3715 		const struct skge_rx_desc *r = e->desc;
3716 
3717 		if (r->control & BMU_OWN)
3718 			break;
3719 
3720 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3721 			   r->control, r->dma_hi, r->dma_lo, r->status,
3722 			   r->timestamp, r->csum1, r->csum1_start);
3723 	}
3724 
3725 	return 0;
3726 }
3727 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3728 
3729 /*
3730  * Use network device events to create/remove/rename
3731  * debugfs file entries
3732  */
3733 static int skge_device_event(struct notifier_block *unused,
3734 			     unsigned long event, void *ptr)
3735 {
3736 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3737 	struct skge_port *skge;
3738 
3739 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3740 		goto done;
3741 
3742 	skge = netdev_priv(dev);
3743 	switch (event) {
3744 	case NETDEV_CHANGENAME:
3745 		if (skge->debugfs)
3746 			skge->debugfs = debugfs_rename(skge_debug,
3747 						       skge->debugfs,
3748 						       skge_debug, dev->name);
3749 		break;
3750 
3751 	case NETDEV_GOING_DOWN:
3752 		debugfs_remove(skge->debugfs);
3753 		skge->debugfs = NULL;
3754 		break;
3755 
3756 	case NETDEV_UP:
3757 		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3758 						    dev, &skge_debug_fops);
3759 		break;
3760 	}
3761 
3762 done:
3763 	return NOTIFY_DONE;
3764 }
3765 
3766 static struct notifier_block skge_notifier = {
3767 	.notifier_call = skge_device_event,
3768 };
3769 
3770 
3771 static __init void skge_debug_init(void)
3772 {
3773 	skge_debug = debugfs_create_dir("skge", NULL);
3774 
3775 	register_netdevice_notifier(&skge_notifier);
3776 }
3777 
3778 static __exit void skge_debug_cleanup(void)
3779 {
3780 	if (skge_debug) {
3781 		unregister_netdevice_notifier(&skge_notifier);
3782 		debugfs_remove(skge_debug);
3783 		skge_debug = NULL;
3784 	}
3785 }
3786 
3787 #else
3788 #define skge_debug_init()
3789 #define skge_debug_cleanup()
3790 #endif
3791 
3792 static const struct net_device_ops skge_netdev_ops = {
3793 	.ndo_open		= skge_up,
3794 	.ndo_stop		= skge_down,
3795 	.ndo_start_xmit		= skge_xmit_frame,
3796 	.ndo_eth_ioctl		= skge_ioctl,
3797 	.ndo_get_stats		= skge_get_stats,
3798 	.ndo_tx_timeout		= skge_tx_timeout,
3799 	.ndo_change_mtu		= skge_change_mtu,
3800 	.ndo_validate_addr	= eth_validate_addr,
3801 	.ndo_set_rx_mode	= skge_set_multicast,
3802 	.ndo_set_mac_address	= skge_set_mac_address,
3803 #ifdef CONFIG_NET_POLL_CONTROLLER
3804 	.ndo_poll_controller	= skge_netpoll,
3805 #endif
3806 };
3807 
3808 
3809 /* Initialize network device */
3810 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3811 				       int highmem)
3812 {
3813 	struct skge_port *skge;
3814 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3815 	u8 addr[ETH_ALEN];
3816 
3817 	if (!dev)
3818 		return NULL;
3819 
3820 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3821 	dev->netdev_ops = &skge_netdev_ops;
3822 	dev->ethtool_ops = &skge_ethtool_ops;
3823 	dev->watchdog_timeo = TX_WATCHDOG;
3824 	dev->irq = hw->pdev->irq;
3825 
3826 	/* MTU range: 60 - 9000 */
3827 	dev->min_mtu = ETH_ZLEN;
3828 	dev->max_mtu = ETH_JUMBO_MTU;
3829 
3830 	if (highmem)
3831 		dev->features |= NETIF_F_HIGHDMA;
3832 
3833 	skge = netdev_priv(dev);
3834 	netif_napi_add(dev, &skge->napi, skge_poll);
3835 	skge->netdev = dev;
3836 	skge->hw = hw;
3837 	skge->msg_enable = netif_msg_init(debug, default_msg);
3838 
3839 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3840 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3841 
3842 	/* Auto speed and flow control */
3843 	skge->autoneg = AUTONEG_ENABLE;
3844 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3845 	skge->duplex = -1;
3846 	skge->speed = -1;
3847 	skge->advertising = skge_supported_modes(hw);
3848 
3849 	if (device_can_wakeup(&hw->pdev->dev)) {
3850 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3851 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3852 	}
3853 
3854 	hw->dev[port] = dev;
3855 
3856 	skge->port = port;
3857 
3858 	/* Only used for Genesis XMAC */
3859 	if (is_genesis(hw))
3860 		timer_setup(&skge->link_timer, xm_link_timer, 0);
3861 	else {
3862 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3863 		                   NETIF_F_RXCSUM;
3864 		dev->features |= dev->hw_features;
3865 	}
3866 
3867 	/* read the mac address */
3868 	memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3869 	eth_hw_addr_set(dev, addr);
3870 
3871 	return dev;
3872 }
3873 
3874 static void skge_show_addr(struct net_device *dev)
3875 {
3876 	const struct skge_port *skge = netdev_priv(dev);
3877 
3878 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3879 }
3880 
3881 static int only_32bit_dma;
3882 
3883 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3884 {
3885 	struct net_device *dev, *dev1;
3886 	struct skge_hw *hw;
3887 	int err, using_dac = 0;
3888 
3889 	err = pci_enable_device(pdev);
3890 	if (err) {
3891 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3892 		goto err_out;
3893 	}
3894 
3895 	err = pci_request_regions(pdev, DRV_NAME);
3896 	if (err) {
3897 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3898 		goto err_out_disable_pdev;
3899 	}
3900 
3901 	pci_set_master(pdev);
3902 
3903 	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3904 		using_dac = 1;
3905 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3906 	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3907 		using_dac = 0;
3908 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3909 	}
3910 
3911 	if (err) {
3912 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3913 		goto err_out_free_regions;
3914 	}
3915 
3916 #ifdef __BIG_ENDIAN
3917 	/* byte swap descriptors in hardware */
3918 	{
3919 		u32 reg;
3920 
3921 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3922 		reg |= PCI_REV_DESC;
3923 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3924 	}
3925 #endif
3926 
3927 	err = -ENOMEM;
3928 	/* space for skge@pci:0000:04:00.0 */
3929 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3930 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3931 	if (!hw)
3932 		goto err_out_free_regions;
3933 
3934 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3935 
3936 	hw->pdev = pdev;
3937 	spin_lock_init(&hw->hw_lock);
3938 	spin_lock_init(&hw->phy_lock);
3939 	tasklet_setup(&hw->phy_task, skge_extirq);
3940 
3941 	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3942 	if (!hw->regs) {
3943 		dev_err(&pdev->dev, "cannot map device registers\n");
3944 		goto err_out_free_hw;
3945 	}
3946 
3947 	err = skge_reset(hw);
3948 	if (err)
3949 		goto err_out_iounmap;
3950 
3951 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3952 		DRV_VERSION,
3953 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3954 		skge_board_name(hw), hw->chip_rev);
3955 
3956 	dev = skge_devinit(hw, 0, using_dac);
3957 	if (!dev) {
3958 		err = -ENOMEM;
3959 		goto err_out_led_off;
3960 	}
3961 
3962 	/* Some motherboards are broken and has zero in ROM. */
3963 	if (!is_valid_ether_addr(dev->dev_addr))
3964 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3965 
3966 	err = register_netdev(dev);
3967 	if (err) {
3968 		dev_err(&pdev->dev, "cannot register net device\n");
3969 		goto err_out_free_netdev;
3970 	}
3971 
3972 	skge_show_addr(dev);
3973 
3974 	if (hw->ports > 1) {
3975 		dev1 = skge_devinit(hw, 1, using_dac);
3976 		if (!dev1) {
3977 			err = -ENOMEM;
3978 			goto err_out_unregister;
3979 		}
3980 
3981 		err = register_netdev(dev1);
3982 		if (err) {
3983 			dev_err(&pdev->dev, "cannot register second net device\n");
3984 			goto err_out_free_dev1;
3985 		}
3986 
3987 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3988 				  hw->irq_name, hw);
3989 		if (err) {
3990 			dev_err(&pdev->dev, "cannot assign irq %d\n",
3991 				pdev->irq);
3992 			goto err_out_unregister_dev1;
3993 		}
3994 
3995 		skge_show_addr(dev1);
3996 	}
3997 	pci_set_drvdata(pdev, hw);
3998 
3999 	return 0;
4000 
4001 err_out_unregister_dev1:
4002 	unregister_netdev(dev1);
4003 err_out_free_dev1:
4004 	free_netdev(dev1);
4005 err_out_unregister:
4006 	unregister_netdev(dev);
4007 err_out_free_netdev:
4008 	free_netdev(dev);
4009 err_out_led_off:
4010 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4011 err_out_iounmap:
4012 	iounmap(hw->regs);
4013 err_out_free_hw:
4014 	kfree(hw);
4015 err_out_free_regions:
4016 	pci_release_regions(pdev);
4017 err_out_disable_pdev:
4018 	pci_disable_device(pdev);
4019 err_out:
4020 	return err;
4021 }
4022 
4023 static void skge_remove(struct pci_dev *pdev)
4024 {
4025 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4026 	struct net_device *dev0, *dev1;
4027 
4028 	if (!hw)
4029 		return;
4030 
4031 	dev1 = hw->dev[1];
4032 	if (dev1)
4033 		unregister_netdev(dev1);
4034 	dev0 = hw->dev[0];
4035 	unregister_netdev(dev0);
4036 
4037 	tasklet_kill(&hw->phy_task);
4038 
4039 	spin_lock_irq(&hw->hw_lock);
4040 	hw->intr_mask = 0;
4041 
4042 	if (hw->ports > 1) {
4043 		skge_write32(hw, B0_IMSK, 0);
4044 		skge_read32(hw, B0_IMSK);
4045 	}
4046 	spin_unlock_irq(&hw->hw_lock);
4047 
4048 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4049 	skge_write8(hw, B0_CTST, CS_RST_SET);
4050 
4051 	if (hw->ports > 1)
4052 		free_irq(pdev->irq, hw);
4053 	pci_release_regions(pdev);
4054 	pci_disable_device(pdev);
4055 	if (dev1)
4056 		free_netdev(dev1);
4057 	free_netdev(dev0);
4058 
4059 	iounmap(hw->regs);
4060 	kfree(hw);
4061 }
4062 
4063 #ifdef CONFIG_PM_SLEEP
4064 static int skge_suspend(struct device *dev)
4065 {
4066 	struct skge_hw *hw  = dev_get_drvdata(dev);
4067 	int i;
4068 
4069 	if (!hw)
4070 		return 0;
4071 
4072 	for (i = 0; i < hw->ports; i++) {
4073 		struct net_device *dev = hw->dev[i];
4074 		struct skge_port *skge = netdev_priv(dev);
4075 
4076 		if (netif_running(dev))
4077 			skge_down(dev);
4078 
4079 		if (skge->wol)
4080 			skge_wol_init(skge);
4081 	}
4082 
4083 	skge_write32(hw, B0_IMSK, 0);
4084 
4085 	return 0;
4086 }
4087 
4088 static int skge_resume(struct device *dev)
4089 {
4090 	struct skge_hw *hw  = dev_get_drvdata(dev);
4091 	int i, err;
4092 
4093 	if (!hw)
4094 		return 0;
4095 
4096 	err = skge_reset(hw);
4097 	if (err)
4098 		goto out;
4099 
4100 	for (i = 0; i < hw->ports; i++) {
4101 		struct net_device *dev = hw->dev[i];
4102 
4103 		if (netif_running(dev)) {
4104 			err = skge_up(dev);
4105 
4106 			if (err) {
4107 				netdev_err(dev, "could not up: %d\n", err);
4108 				dev_close(dev);
4109 				goto out;
4110 			}
4111 		}
4112 	}
4113 out:
4114 	return err;
4115 }
4116 
4117 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4118 #define SKGE_PM_OPS (&skge_pm_ops)
4119 
4120 #else
4121 
4122 #define SKGE_PM_OPS NULL
4123 #endif /* CONFIG_PM_SLEEP */
4124 
4125 static void skge_shutdown(struct pci_dev *pdev)
4126 {
4127 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4128 	int i;
4129 
4130 	if (!hw)
4131 		return;
4132 
4133 	for (i = 0; i < hw->ports; i++) {
4134 		struct net_device *dev = hw->dev[i];
4135 		struct skge_port *skge = netdev_priv(dev);
4136 
4137 		if (skge->wol)
4138 			skge_wol_init(skge);
4139 	}
4140 
4141 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4142 	pci_set_power_state(pdev, PCI_D3hot);
4143 }
4144 
4145 static struct pci_driver skge_driver = {
4146 	.name =         DRV_NAME,
4147 	.id_table =     skge_id_table,
4148 	.probe =        skge_probe,
4149 	.remove =       skge_remove,
4150 	.shutdown =	skge_shutdown,
4151 	.driver.pm =	SKGE_PM_OPS,
4152 };
4153 
4154 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4155 	{
4156 		.ident = "Gigabyte nForce boards",
4157 		.matches = {
4158 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4159 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4160 		},
4161 	},
4162 	{
4163 		.ident = "ASUS P5NSLI",
4164 		.matches = {
4165 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4166 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4167 		},
4168 	},
4169 	{
4170 		.ident = "FUJITSU SIEMENS A8NE-FM",
4171 		.matches = {
4172 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4173 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4174 		},
4175 	},
4176 	{}
4177 };
4178 
4179 static int __init skge_init_module(void)
4180 {
4181 	if (dmi_check_system(skge_32bit_dma_boards))
4182 		only_32bit_dma = 1;
4183 	skge_debug_init();
4184 	return pci_register_driver(&skge_driver);
4185 }
4186 
4187 static void __exit skge_cleanup_module(void)
4188 {
4189 	pci_unregister_driver(&skge_driver);
4190 	skge_debug_cleanup();
4191 }
4192 
4193 module_init(skge_init_module);
4194 module_exit(skge_cleanup_module);
4195