xref: /linux/drivers/net/ethernet/marvell/skge.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4  * Ethernet adapters. Based on earlier sk98lin, e100 and
5  * FreeBSD if_sk drivers.
6  *
7  * This driver intentionally does not support all the features
8  * of the original driver such as link fail-over and link management because
9  * those should be done at higher levels.
10  *
11  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37 
38 #include "skge.h"
39 
40 #define DRV_NAME		"skge"
41 #define DRV_VERSION		"1.14"
42 
43 #define DEFAULT_TX_RING_SIZE	128
44 #define DEFAULT_RX_RING_SIZE	512
45 #define MAX_TX_RING_SIZE	1024
46 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE	4096
48 #define RX_COPY_THRESHOLD	128
49 #define RX_BUF_SIZE		1536
50 #define PHY_RETRIES	        1000
51 #define ETH_JUMBO_MTU		9000
52 #define TX_WATCHDOG		(5 * HZ)
53 #define BLINK_MS		250
54 #define LINK_HZ			HZ
55 
56 #define SKGE_EEPROM_MAGIC	0x9933aabb
57 
58 
59 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
60 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
63 
64 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
65 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
66 				NETIF_MSG_IFDOWN);
67 
68 static int debug = -1;	/* defaults above */
69 module_param(debug, int, 0);
70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71 
72 static const struct pci_device_id skge_id_table[] = {
73 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
74 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
75 #ifdef CONFIG_SKGE_GENESIS
76 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
77 #endif
78 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
79 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
80 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
81 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
82 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
83 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
84 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
85 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
86 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
87 	{ 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90 
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102 static void skge_set_multicast(struct net_device *dev);
103 static irqreturn_t skge_intr(int irq, void *dev_id);
104 
105 /* Avoid conditionals by using array */
106 static const int txqaddr[] = { Q_XA1, Q_XA2 };
107 static const int rxqaddr[] = { Q_R1, Q_R2 };
108 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
109 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
110 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
111 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
112 
113 static inline bool is_genesis(const struct skge_hw *hw)
114 {
115 #ifdef CONFIG_SKGE_GENESIS
116 	return hw->chip_id == CHIP_ID_GENESIS;
117 #else
118 	return false;
119 #endif
120 }
121 
122 static int skge_get_regs_len(struct net_device *dev)
123 {
124 	return 0x4000;
125 }
126 
127 /*
128  * Returns copy of whole control register region
129  * Note: skip RAM address register because accessing it will
130  * 	 cause bus hangs!
131  */
132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
133 			  void *p)
134 {
135 	const struct skge_port *skge = netdev_priv(dev);
136 	const void __iomem *io = skge->hw->regs;
137 
138 	regs->version = 1;
139 	memset(p, 0, regs->len);
140 	memcpy_fromio(p, io, B3_RAM_ADDR);
141 
142 	if (regs->len > B3_RI_WTO_R1) {
143 		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
144 			      regs->len - B3_RI_WTO_R1);
145 	}
146 }
147 
148 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
149 static u32 wol_supported(const struct skge_hw *hw)
150 {
151 	if (is_genesis(hw))
152 		return 0;
153 
154 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
155 		return 0;
156 
157 	return WAKE_MAGIC | WAKE_PHY;
158 }
159 
160 static void skge_wol_init(struct skge_port *skge)
161 {
162 	struct skge_hw *hw = skge->hw;
163 	int port = skge->port;
164 	u16 ctrl;
165 
166 	skge_write16(hw, B0_CTST, CS_RST_CLR);
167 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
168 
169 	/* Turn on Vaux */
170 	skge_write8(hw, B0_POWER_CTRL,
171 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
172 
173 	/* WA code for COMA mode -- clear PHY reset */
174 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
175 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
176 		u32 reg = skge_read32(hw, B2_GP_IO);
177 		reg |= GP_DIR_9;
178 		reg &= ~GP_IO_9;
179 		skge_write32(hw, B2_GP_IO, reg);
180 	}
181 
182 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
183 		     GPC_DIS_SLEEP |
184 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
185 		     GPC_ANEG_1 | GPC_RST_SET);
186 
187 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
188 		     GPC_DIS_SLEEP |
189 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 		     GPC_ANEG_1 | GPC_RST_CLR);
191 
192 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
193 
194 	/* Force to 10/100 skge_reset will re-enable on resume	 */
195 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
196 		     (PHY_AN_100FULL | PHY_AN_100HALF |
197 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
198 	/* no 1000 HD/FD */
199 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
200 	gm_phy_write(hw, port, PHY_MARV_CTRL,
201 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
202 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
203 
204 
205 	/* Set GMAC to no flow control and auto update for speed/duplex */
206 	gma_write16(hw, port, GM_GP_CTRL,
207 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
208 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
209 
210 	/* Set WOL address */
211 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
212 		    skge->netdev->dev_addr, ETH_ALEN);
213 
214 	/* Turn on appropriate WOL control bits */
215 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
216 	ctrl = 0;
217 	if (skge->wol & WAKE_PHY)
218 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
219 	else
220 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
221 
222 	if (skge->wol & WAKE_MAGIC)
223 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
224 	else
225 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
226 
227 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
228 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
229 
230 	/* block receiver */
231 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
232 }
233 
234 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
235 {
236 	struct skge_port *skge = netdev_priv(dev);
237 
238 	wol->supported = wol_supported(skge->hw);
239 	wol->wolopts = skge->wol;
240 }
241 
242 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
243 {
244 	struct skge_port *skge = netdev_priv(dev);
245 	struct skge_hw *hw = skge->hw;
246 
247 	if ((wol->wolopts & ~wol_supported(hw)) ||
248 	    !device_can_wakeup(&hw->pdev->dev))
249 		return -EOPNOTSUPP;
250 
251 	skge->wol = wol->wolopts;
252 
253 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
254 
255 	return 0;
256 }
257 
258 /* Determine supported/advertised modes based on hardware.
259  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
260  */
261 static u32 skge_supported_modes(const struct skge_hw *hw)
262 {
263 	u32 supported;
264 
265 	if (hw->copper) {
266 		supported = (SUPPORTED_10baseT_Half |
267 			     SUPPORTED_10baseT_Full |
268 			     SUPPORTED_100baseT_Half |
269 			     SUPPORTED_100baseT_Full |
270 			     SUPPORTED_1000baseT_Half |
271 			     SUPPORTED_1000baseT_Full |
272 			     SUPPORTED_Autoneg |
273 			     SUPPORTED_TP);
274 
275 		if (is_genesis(hw))
276 			supported &= ~(SUPPORTED_10baseT_Half |
277 				       SUPPORTED_10baseT_Full |
278 				       SUPPORTED_100baseT_Half |
279 				       SUPPORTED_100baseT_Full);
280 
281 		else if (hw->chip_id == CHIP_ID_YUKON)
282 			supported &= ~SUPPORTED_1000baseT_Half;
283 	} else
284 		supported = (SUPPORTED_1000baseT_Full |
285 			     SUPPORTED_1000baseT_Half |
286 			     SUPPORTED_FIBRE |
287 			     SUPPORTED_Autoneg);
288 
289 	return supported;
290 }
291 
292 static int skge_get_link_ksettings(struct net_device *dev,
293 				   struct ethtool_link_ksettings *cmd)
294 {
295 	struct skge_port *skge = netdev_priv(dev);
296 	struct skge_hw *hw = skge->hw;
297 	u32 supported, advertising;
298 
299 	supported = skge_supported_modes(hw);
300 
301 	if (hw->copper) {
302 		cmd->base.port = PORT_TP;
303 		cmd->base.phy_address = hw->phy_addr;
304 	} else
305 		cmd->base.port = PORT_FIBRE;
306 
307 	advertising = skge->advertising;
308 	cmd->base.autoneg = skge->autoneg;
309 	cmd->base.speed = skge->speed;
310 	cmd->base.duplex = skge->duplex;
311 
312 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
313 						supported);
314 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
315 						advertising);
316 
317 	return 0;
318 }
319 
320 static int skge_set_link_ksettings(struct net_device *dev,
321 				   const struct ethtool_link_ksettings *cmd)
322 {
323 	struct skge_port *skge = netdev_priv(dev);
324 	const struct skge_hw *hw = skge->hw;
325 	u32 supported = skge_supported_modes(hw);
326 	int err = 0;
327 	u32 advertising;
328 
329 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
330 						cmd->link_modes.advertising);
331 
332 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
333 		advertising = supported;
334 		skge->duplex = -1;
335 		skge->speed = -1;
336 	} else {
337 		u32 setting;
338 		u32 speed = cmd->base.speed;
339 
340 		switch (speed) {
341 		case SPEED_1000:
342 			if (cmd->base.duplex == DUPLEX_FULL)
343 				setting = SUPPORTED_1000baseT_Full;
344 			else if (cmd->base.duplex == DUPLEX_HALF)
345 				setting = SUPPORTED_1000baseT_Half;
346 			else
347 				return -EINVAL;
348 			break;
349 		case SPEED_100:
350 			if (cmd->base.duplex == DUPLEX_FULL)
351 				setting = SUPPORTED_100baseT_Full;
352 			else if (cmd->base.duplex == DUPLEX_HALF)
353 				setting = SUPPORTED_100baseT_Half;
354 			else
355 				return -EINVAL;
356 			break;
357 
358 		case SPEED_10:
359 			if (cmd->base.duplex == DUPLEX_FULL)
360 				setting = SUPPORTED_10baseT_Full;
361 			else if (cmd->base.duplex == DUPLEX_HALF)
362 				setting = SUPPORTED_10baseT_Half;
363 			else
364 				return -EINVAL;
365 			break;
366 		default:
367 			return -EINVAL;
368 		}
369 
370 		if ((setting & supported) == 0)
371 			return -EINVAL;
372 
373 		skge->speed = speed;
374 		skge->duplex = cmd->base.duplex;
375 	}
376 
377 	skge->autoneg = cmd->base.autoneg;
378 	skge->advertising = advertising;
379 
380 	if (netif_running(dev)) {
381 		skge_down(dev);
382 		err = skge_up(dev);
383 		if (err) {
384 			dev_close(dev);
385 			return err;
386 		}
387 	}
388 
389 	return 0;
390 }
391 
392 static void skge_get_drvinfo(struct net_device *dev,
393 			     struct ethtool_drvinfo *info)
394 {
395 	struct skge_port *skge = netdev_priv(dev);
396 
397 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
398 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
399 	strscpy(info->bus_info, pci_name(skge->hw->pdev),
400 		sizeof(info->bus_info));
401 }
402 
403 static const struct skge_stat {
404 	char 	   name[ETH_GSTRING_LEN];
405 	u16	   xmac_offset;
406 	u16	   gma_offset;
407 } skge_stats[] = {
408 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410 
411 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419 
420 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426 
427 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432 };
433 
434 static int skge_get_sset_count(struct net_device *dev, int sset)
435 {
436 	switch (sset) {
437 	case ETH_SS_STATS:
438 		return ARRAY_SIZE(skge_stats);
439 	default:
440 		return -EOPNOTSUPP;
441 	}
442 }
443 
444 static void skge_get_ethtool_stats(struct net_device *dev,
445 				   struct ethtool_stats *stats, u64 *data)
446 {
447 	struct skge_port *skge = netdev_priv(dev);
448 
449 	if (is_genesis(skge->hw))
450 		genesis_get_stats(skge, data);
451 	else
452 		yukon_get_stats(skge, data);
453 }
454 
455 /* Use hardware MIB variables for critical path statistics and
456  * transmit feedback not reported at interrupt.
457  * Other errors are accounted for in interrupt handler.
458  */
459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
460 {
461 	struct skge_port *skge = netdev_priv(dev);
462 	u64 data[ARRAY_SIZE(skge_stats)];
463 
464 	if (is_genesis(skge->hw))
465 		genesis_get_stats(skge, data);
466 	else
467 		yukon_get_stats(skge, data);
468 
469 	dev->stats.tx_bytes = data[0];
470 	dev->stats.rx_bytes = data[1];
471 	dev->stats.tx_packets = data[2] + data[4] + data[6];
472 	dev->stats.rx_packets = data[3] + data[5] + data[7];
473 	dev->stats.multicast = data[3] + data[5];
474 	dev->stats.collisions = data[10];
475 	dev->stats.tx_aborted_errors = data[12];
476 
477 	return &dev->stats;
478 }
479 
480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481 {
482 	int i;
483 
484 	switch (stringset) {
485 	case ETH_SS_STATS:
486 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 			memcpy(data + i * ETH_GSTRING_LEN,
488 			       skge_stats[i].name, ETH_GSTRING_LEN);
489 		break;
490 	}
491 }
492 
493 static void skge_get_ring_param(struct net_device *dev,
494 				struct ethtool_ringparam *p,
495 				struct kernel_ethtool_ringparam *kernel_p,
496 				struct netlink_ext_ack *extack)
497 {
498 	struct skge_port *skge = netdev_priv(dev);
499 
500 	p->rx_max_pending = MAX_RX_RING_SIZE;
501 	p->tx_max_pending = MAX_TX_RING_SIZE;
502 
503 	p->rx_pending = skge->rx_ring.count;
504 	p->tx_pending = skge->tx_ring.count;
505 }
506 
507 static int skge_set_ring_param(struct net_device *dev,
508 			       struct ethtool_ringparam *p,
509 			       struct kernel_ethtool_ringparam *kernel_p,
510 			       struct netlink_ext_ack *extack)
511 {
512 	struct skge_port *skge = netdev_priv(dev);
513 	int err = 0;
514 
515 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
516 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
517 		return -EINVAL;
518 
519 	skge->rx_ring.count = p->rx_pending;
520 	skge->tx_ring.count = p->tx_pending;
521 
522 	if (netif_running(dev)) {
523 		skge_down(dev);
524 		err = skge_up(dev);
525 		if (err)
526 			dev_close(dev);
527 	}
528 
529 	return err;
530 }
531 
532 static u32 skge_get_msglevel(struct net_device *netdev)
533 {
534 	struct skge_port *skge = netdev_priv(netdev);
535 	return skge->msg_enable;
536 }
537 
538 static void skge_set_msglevel(struct net_device *netdev, u32 value)
539 {
540 	struct skge_port *skge = netdev_priv(netdev);
541 	skge->msg_enable = value;
542 }
543 
544 static int skge_nway_reset(struct net_device *dev)
545 {
546 	struct skge_port *skge = netdev_priv(dev);
547 
548 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
549 		return -EINVAL;
550 
551 	skge_phy_reset(skge);
552 	return 0;
553 }
554 
555 static void skge_get_pauseparam(struct net_device *dev,
556 				struct ethtool_pauseparam *ecmd)
557 {
558 	struct skge_port *skge = netdev_priv(dev);
559 
560 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
561 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
562 	ecmd->tx_pause = (ecmd->rx_pause ||
563 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
564 
565 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
566 }
567 
568 static int skge_set_pauseparam(struct net_device *dev,
569 			       struct ethtool_pauseparam *ecmd)
570 {
571 	struct skge_port *skge = netdev_priv(dev);
572 	struct ethtool_pauseparam old;
573 	int err = 0;
574 
575 	skge_get_pauseparam(dev, &old);
576 
577 	if (ecmd->autoneg != old.autoneg)
578 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
579 	else {
580 		if (ecmd->rx_pause && ecmd->tx_pause)
581 			skge->flow_control = FLOW_MODE_SYMMETRIC;
582 		else if (ecmd->rx_pause && !ecmd->tx_pause)
583 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
584 		else if (!ecmd->rx_pause && ecmd->tx_pause)
585 			skge->flow_control = FLOW_MODE_LOC_SEND;
586 		else
587 			skge->flow_control = FLOW_MODE_NONE;
588 	}
589 
590 	if (netif_running(dev)) {
591 		skge_down(dev);
592 		err = skge_up(dev);
593 		if (err) {
594 			dev_close(dev);
595 			return err;
596 		}
597 	}
598 
599 	return 0;
600 }
601 
602 /* Chip internal frequency for clock calculations */
603 static inline u32 hwkhz(const struct skge_hw *hw)
604 {
605 	return is_genesis(hw) ? 53125 : 78125;
606 }
607 
608 /* Chip HZ to microseconds */
609 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
610 {
611 	return (ticks * 1000) / hwkhz(hw);
612 }
613 
614 /* Microseconds to chip HZ */
615 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
616 {
617 	return hwkhz(hw) * usec / 1000;
618 }
619 
620 static int skge_get_coalesce(struct net_device *dev,
621 			     struct ethtool_coalesce *ecmd,
622 			     struct kernel_ethtool_coalesce *kernel_coal,
623 			     struct netlink_ext_ack *extack)
624 {
625 	struct skge_port *skge = netdev_priv(dev);
626 	struct skge_hw *hw = skge->hw;
627 	int port = skge->port;
628 
629 	ecmd->rx_coalesce_usecs = 0;
630 	ecmd->tx_coalesce_usecs = 0;
631 
632 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
633 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
634 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
635 
636 		if (msk & rxirqmask[port])
637 			ecmd->rx_coalesce_usecs = delay;
638 		if (msk & txirqmask[port])
639 			ecmd->tx_coalesce_usecs = delay;
640 	}
641 
642 	return 0;
643 }
644 
645 /* Note: interrupt timer is per board, but can turn on/off per port */
646 static int skge_set_coalesce(struct net_device *dev,
647 			     struct ethtool_coalesce *ecmd,
648 			     struct kernel_ethtool_coalesce *kernel_coal,
649 			     struct netlink_ext_ack *extack)
650 {
651 	struct skge_port *skge = netdev_priv(dev);
652 	struct skge_hw *hw = skge->hw;
653 	int port = skge->port;
654 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
655 	u32 delay = 25;
656 
657 	if (ecmd->rx_coalesce_usecs == 0)
658 		msk &= ~rxirqmask[port];
659 	else if (ecmd->rx_coalesce_usecs < 25 ||
660 		 ecmd->rx_coalesce_usecs > 33333)
661 		return -EINVAL;
662 	else {
663 		msk |= rxirqmask[port];
664 		delay = ecmd->rx_coalesce_usecs;
665 	}
666 
667 	if (ecmd->tx_coalesce_usecs == 0)
668 		msk &= ~txirqmask[port];
669 	else if (ecmd->tx_coalesce_usecs < 25 ||
670 		 ecmd->tx_coalesce_usecs > 33333)
671 		return -EINVAL;
672 	else {
673 		msk |= txirqmask[port];
674 		delay = min(delay, ecmd->rx_coalesce_usecs);
675 	}
676 
677 	skge_write32(hw, B2_IRQM_MSK, msk);
678 	if (msk == 0)
679 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
680 	else {
681 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
682 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
683 	}
684 	return 0;
685 }
686 
687 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
688 static void skge_led(struct skge_port *skge, enum led_mode mode)
689 {
690 	struct skge_hw *hw = skge->hw;
691 	int port = skge->port;
692 
693 	spin_lock_bh(&hw->phy_lock);
694 	if (is_genesis(hw)) {
695 		switch (mode) {
696 		case LED_MODE_OFF:
697 			if (hw->phy_type == SK_PHY_BCOM)
698 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
699 			else {
700 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
701 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
702 			}
703 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
704 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
705 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
706 			break;
707 
708 		case LED_MODE_ON:
709 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
710 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
711 
712 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
714 
715 			break;
716 
717 		case LED_MODE_TST:
718 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
719 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
720 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
721 
722 			if (hw->phy_type == SK_PHY_BCOM)
723 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
724 			else {
725 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
726 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
727 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
728 			}
729 
730 		}
731 	} else {
732 		switch (mode) {
733 		case LED_MODE_OFF:
734 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
735 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
736 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
737 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
738 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
739 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
740 				     PHY_M_LED_MO_RX(MO_LED_OFF));
741 			break;
742 		case LED_MODE_ON:
743 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
744 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
745 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
746 				     PHY_M_LEDC_TX_CTRL |
747 				     PHY_M_LEDC_DP_CTRL);
748 
749 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
751 				     (skge->speed == SPEED_100 ?
752 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
753 			break;
754 		case LED_MODE_TST:
755 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
756 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
757 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
758 				     PHY_M_LED_MO_10(MO_LED_ON)   |
759 				     PHY_M_LED_MO_100(MO_LED_ON)  |
760 				     PHY_M_LED_MO_1000(MO_LED_ON) |
761 				     PHY_M_LED_MO_RX(MO_LED_ON));
762 		}
763 	}
764 	spin_unlock_bh(&hw->phy_lock);
765 }
766 
767 /* blink LED's for finding board */
768 static int skge_set_phys_id(struct net_device *dev,
769 			    enum ethtool_phys_id_state state)
770 {
771 	struct skge_port *skge = netdev_priv(dev);
772 
773 	switch (state) {
774 	case ETHTOOL_ID_ACTIVE:
775 		return 2;	/* cycle on/off twice per second */
776 
777 	case ETHTOOL_ID_ON:
778 		skge_led(skge, LED_MODE_TST);
779 		break;
780 
781 	case ETHTOOL_ID_OFF:
782 		skge_led(skge, LED_MODE_OFF);
783 		break;
784 
785 	case ETHTOOL_ID_INACTIVE:
786 		/* back to regular LED state */
787 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
788 	}
789 
790 	return 0;
791 }
792 
793 static int skge_get_eeprom_len(struct net_device *dev)
794 {
795 	struct skge_port *skge = netdev_priv(dev);
796 	u32 reg2;
797 
798 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
799 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
800 }
801 
802 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
803 {
804 	u32 val;
805 
806 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
807 
808 	do {
809 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
810 	} while (!(offset & PCI_VPD_ADDR_F));
811 
812 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
813 	return val;
814 }
815 
816 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
817 {
818 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
819 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
820 			      offset | PCI_VPD_ADDR_F);
821 
822 	do {
823 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
824 	} while (offset & PCI_VPD_ADDR_F);
825 }
826 
827 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
828 			   u8 *data)
829 {
830 	struct skge_port *skge = netdev_priv(dev);
831 	struct pci_dev *pdev = skge->hw->pdev;
832 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
833 	int length = eeprom->len;
834 	u16 offset = eeprom->offset;
835 
836 	if (!cap)
837 		return -EINVAL;
838 
839 	eeprom->magic = SKGE_EEPROM_MAGIC;
840 
841 	while (length > 0) {
842 		u32 val = skge_vpd_read(pdev, cap, offset);
843 		int n = min_t(int, length, sizeof(val));
844 
845 		memcpy(data, &val, n);
846 		length -= n;
847 		data += n;
848 		offset += n;
849 	}
850 	return 0;
851 }
852 
853 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
854 			   u8 *data)
855 {
856 	struct skge_port *skge = netdev_priv(dev);
857 	struct pci_dev *pdev = skge->hw->pdev;
858 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
859 	int length = eeprom->len;
860 	u16 offset = eeprom->offset;
861 
862 	if (!cap)
863 		return -EINVAL;
864 
865 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
866 		return -EINVAL;
867 
868 	while (length > 0) {
869 		u32 val;
870 		int n = min_t(int, length, sizeof(val));
871 
872 		if (n < sizeof(val))
873 			val = skge_vpd_read(pdev, cap, offset);
874 		memcpy(&val, data, n);
875 
876 		skge_vpd_write(pdev, cap, offset, val);
877 
878 		length -= n;
879 		data += n;
880 		offset += n;
881 	}
882 	return 0;
883 }
884 
885 static const struct ethtool_ops skge_ethtool_ops = {
886 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
887 	.get_drvinfo	= skge_get_drvinfo,
888 	.get_regs_len	= skge_get_regs_len,
889 	.get_regs	= skge_get_regs,
890 	.get_wol	= skge_get_wol,
891 	.set_wol	= skge_set_wol,
892 	.get_msglevel	= skge_get_msglevel,
893 	.set_msglevel	= skge_set_msglevel,
894 	.nway_reset	= skge_nway_reset,
895 	.get_link	= ethtool_op_get_link,
896 	.get_eeprom_len	= skge_get_eeprom_len,
897 	.get_eeprom	= skge_get_eeprom,
898 	.set_eeprom	= skge_set_eeprom,
899 	.get_ringparam	= skge_get_ring_param,
900 	.set_ringparam	= skge_set_ring_param,
901 	.get_pauseparam = skge_get_pauseparam,
902 	.set_pauseparam = skge_set_pauseparam,
903 	.get_coalesce	= skge_get_coalesce,
904 	.set_coalesce	= skge_set_coalesce,
905 	.get_strings	= skge_get_strings,
906 	.set_phys_id	= skge_set_phys_id,
907 	.get_sset_count = skge_get_sset_count,
908 	.get_ethtool_stats = skge_get_ethtool_stats,
909 	.get_link_ksettings = skge_get_link_ksettings,
910 	.set_link_ksettings = skge_set_link_ksettings,
911 };
912 
913 /*
914  * Allocate ring elements and chain them together
915  * One-to-one association of board descriptors with ring elements
916  */
917 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
918 {
919 	struct skge_tx_desc *d;
920 	struct skge_element *e;
921 	int i;
922 
923 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
924 	if (!ring->start)
925 		return -ENOMEM;
926 
927 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
928 		e->desc = d;
929 		if (i == ring->count - 1) {
930 			e->next = ring->start;
931 			d->next_offset = base;
932 		} else {
933 			e->next = e + 1;
934 			d->next_offset = base + (i+1) * sizeof(*d);
935 		}
936 	}
937 	ring->to_use = ring->to_clean = ring->start;
938 
939 	return 0;
940 }
941 
942 /* Allocate and setup a new buffer for receiving */
943 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
944 			 struct sk_buff *skb, unsigned int bufsize)
945 {
946 	struct skge_rx_desc *rd = e->desc;
947 	dma_addr_t map;
948 
949 	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
950 			     DMA_FROM_DEVICE);
951 
952 	if (dma_mapping_error(&skge->hw->pdev->dev, map))
953 		return -1;
954 
955 	rd->dma_lo = lower_32_bits(map);
956 	rd->dma_hi = upper_32_bits(map);
957 	e->skb = skb;
958 	rd->csum1_start = ETH_HLEN;
959 	rd->csum2_start = ETH_HLEN;
960 	rd->csum1 = 0;
961 	rd->csum2 = 0;
962 
963 	wmb();
964 
965 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
966 	dma_unmap_addr_set(e, mapaddr, map);
967 	dma_unmap_len_set(e, maplen, bufsize);
968 	return 0;
969 }
970 
971 /* Resume receiving using existing skb,
972  * Note: DMA address is not changed by chip.
973  * 	 MTU not changed while receiver active.
974  */
975 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
976 {
977 	struct skge_rx_desc *rd = e->desc;
978 
979 	rd->csum2 = 0;
980 	rd->csum2_start = ETH_HLEN;
981 
982 	wmb();
983 
984 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
985 }
986 
987 
988 /* Free all  buffers in receive ring, assumes receiver stopped */
989 static void skge_rx_clean(struct skge_port *skge)
990 {
991 	struct skge_hw *hw = skge->hw;
992 	struct skge_ring *ring = &skge->rx_ring;
993 	struct skge_element *e;
994 
995 	e = ring->start;
996 	do {
997 		struct skge_rx_desc *rd = e->desc;
998 		rd->control = 0;
999 		if (e->skb) {
1000 			dma_unmap_single(&hw->pdev->dev,
1001 					 dma_unmap_addr(e, mapaddr),
1002 					 dma_unmap_len(e, maplen),
1003 					 DMA_FROM_DEVICE);
1004 			dev_kfree_skb(e->skb);
1005 			e->skb = NULL;
1006 		}
1007 	} while ((e = e->next) != ring->start);
1008 }
1009 
1010 
1011 /* Allocate buffers for receive ring
1012  * For receive:  to_clean is next received frame.
1013  */
1014 static int skge_rx_fill(struct net_device *dev)
1015 {
1016 	struct skge_port *skge = netdev_priv(dev);
1017 	struct skge_ring *ring = &skge->rx_ring;
1018 	struct skge_element *e;
1019 
1020 	e = ring->start;
1021 	do {
1022 		struct sk_buff *skb;
1023 
1024 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1025 					 GFP_KERNEL);
1026 		if (!skb)
1027 			return -ENOMEM;
1028 
1029 		skb_reserve(skb, NET_IP_ALIGN);
1030 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1031 			dev_kfree_skb(skb);
1032 			return -EIO;
1033 		}
1034 	} while ((e = e->next) != ring->start);
1035 
1036 	ring->to_clean = ring->start;
1037 	return 0;
1038 }
1039 
1040 static const char *skge_pause(enum pause_status status)
1041 {
1042 	switch (status) {
1043 	case FLOW_STAT_NONE:
1044 		return "none";
1045 	case FLOW_STAT_REM_SEND:
1046 		return "rx only";
1047 	case FLOW_STAT_LOC_SEND:
1048 		return "tx_only";
1049 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1050 		return "both";
1051 	default:
1052 		return "indeterminated";
1053 	}
1054 }
1055 
1056 
1057 static void skge_link_up(struct skge_port *skge)
1058 {
1059 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1060 		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1061 
1062 	netif_carrier_on(skge->netdev);
1063 	netif_wake_queue(skge->netdev);
1064 
1065 	netif_info(skge, link, skge->netdev,
1066 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1067 		   skge->speed,
1068 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1069 		   skge_pause(skge->flow_status));
1070 }
1071 
1072 static void skge_link_down(struct skge_port *skge)
1073 {
1074 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1075 	netif_carrier_off(skge->netdev);
1076 	netif_stop_queue(skge->netdev);
1077 
1078 	netif_info(skge, link, skge->netdev, "Link is down\n");
1079 }
1080 
1081 static void xm_link_down(struct skge_hw *hw, int port)
1082 {
1083 	struct net_device *dev = hw->dev[port];
1084 	struct skge_port *skge = netdev_priv(dev);
1085 
1086 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1087 
1088 	if (netif_carrier_ok(dev))
1089 		skge_link_down(skge);
1090 }
1091 
1092 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1093 {
1094 	int i;
1095 
1096 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1097 	*val = xm_read16(hw, port, XM_PHY_DATA);
1098 
1099 	if (hw->phy_type == SK_PHY_XMAC)
1100 		goto ready;
1101 
1102 	for (i = 0; i < PHY_RETRIES; i++) {
1103 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1104 			goto ready;
1105 		udelay(1);
1106 	}
1107 
1108 	return -ETIMEDOUT;
1109  ready:
1110 	*val = xm_read16(hw, port, XM_PHY_DATA);
1111 
1112 	return 0;
1113 }
1114 
1115 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1116 {
1117 	u16 v = 0;
1118 	if (__xm_phy_read(hw, port, reg, &v))
1119 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1120 	return v;
1121 }
1122 
1123 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1124 {
1125 	int i;
1126 
1127 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1128 	for (i = 0; i < PHY_RETRIES; i++) {
1129 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130 			goto ready;
1131 		udelay(1);
1132 	}
1133 	return -EIO;
1134 
1135  ready:
1136 	xm_write16(hw, port, XM_PHY_DATA, val);
1137 	for (i = 0; i < PHY_RETRIES; i++) {
1138 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1139 			return 0;
1140 		udelay(1);
1141 	}
1142 	return -ETIMEDOUT;
1143 }
1144 
1145 static void genesis_init(struct skge_hw *hw)
1146 {
1147 	/* set blink source counter */
1148 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1149 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1150 
1151 	/* configure mac arbiter */
1152 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1153 
1154 	/* configure mac arbiter timeout values */
1155 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1156 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1157 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1158 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1159 
1160 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1161 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1162 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1163 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1164 
1165 	/* configure packet arbiter timeout */
1166 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1167 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1168 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1169 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1170 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1171 }
1172 
1173 static void genesis_reset(struct skge_hw *hw, int port)
1174 {
1175 	static const u8 zero[8]  = { 0 };
1176 	u32 reg;
1177 
1178 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1179 
1180 	/* reset the statistics module */
1181 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1182 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1183 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1184 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1185 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1186 
1187 	/* disable Broadcom PHY IRQ */
1188 	if (hw->phy_type == SK_PHY_BCOM)
1189 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1190 
1191 	xm_outhash(hw, port, XM_HSM, zero);
1192 
1193 	/* Flush TX and RX fifo */
1194 	reg = xm_read32(hw, port, XM_MODE);
1195 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1196 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1197 }
1198 
1199 /* Convert mode to MII values  */
1200 static const u16 phy_pause_map[] = {
1201 	[FLOW_MODE_NONE] =	0,
1202 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1203 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1204 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1205 };
1206 
1207 /* special defines for FIBER (88E1011S only) */
1208 static const u16 fiber_pause_map[] = {
1209 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1210 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1211 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1212 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1213 };
1214 
1215 
1216 /* Check status of Broadcom phy link */
1217 static void bcom_check_link(struct skge_hw *hw, int port)
1218 {
1219 	struct net_device *dev = hw->dev[port];
1220 	struct skge_port *skge = netdev_priv(dev);
1221 	u16 status;
1222 
1223 	/* read twice because of latch */
1224 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1225 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1226 
1227 	if ((status & PHY_ST_LSYNC) == 0) {
1228 		xm_link_down(hw, port);
1229 		return;
1230 	}
1231 
1232 	if (skge->autoneg == AUTONEG_ENABLE) {
1233 		u16 lpa, aux;
1234 
1235 		if (!(status & PHY_ST_AN_OVER))
1236 			return;
1237 
1238 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1239 		if (lpa & PHY_B_AN_RF) {
1240 			netdev_notice(dev, "remote fault\n");
1241 			return;
1242 		}
1243 
1244 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1245 
1246 		/* Check Duplex mismatch */
1247 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1248 		case PHY_B_RES_1000FD:
1249 			skge->duplex = DUPLEX_FULL;
1250 			break;
1251 		case PHY_B_RES_1000HD:
1252 			skge->duplex = DUPLEX_HALF;
1253 			break;
1254 		default:
1255 			netdev_notice(dev, "duplex mismatch\n");
1256 			return;
1257 		}
1258 
1259 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1260 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1261 		case PHY_B_AS_PAUSE_MSK:
1262 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1263 			break;
1264 		case PHY_B_AS_PRR:
1265 			skge->flow_status = FLOW_STAT_REM_SEND;
1266 			break;
1267 		case PHY_B_AS_PRT:
1268 			skge->flow_status = FLOW_STAT_LOC_SEND;
1269 			break;
1270 		default:
1271 			skge->flow_status = FLOW_STAT_NONE;
1272 		}
1273 		skge->speed = SPEED_1000;
1274 	}
1275 
1276 	if (!netif_carrier_ok(dev))
1277 		genesis_link_up(skge);
1278 }
1279 
1280 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1281  * Phy on for 100 or 10Mbit operation
1282  */
1283 static void bcom_phy_init(struct skge_port *skge)
1284 {
1285 	struct skge_hw *hw = skge->hw;
1286 	int port = skge->port;
1287 	int i;
1288 	u16 id1, r, ext, ctl;
1289 
1290 	/* magic workaround patterns for Broadcom */
1291 	static const struct {
1292 		u16 reg;
1293 		u16 val;
1294 	} A1hack[] = {
1295 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1296 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1297 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1298 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1299 	}, C0hack[] = {
1300 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1301 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1302 	};
1303 
1304 	/* read Id from external PHY (all have the same address) */
1305 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1306 
1307 	/* Optimize MDIO transfer by suppressing preamble. */
1308 	r = xm_read16(hw, port, XM_MMU_CMD);
1309 	r |=  XM_MMU_NO_PRE;
1310 	xm_write16(hw, port, XM_MMU_CMD, r);
1311 
1312 	switch (id1) {
1313 	case PHY_BCOM_ID1_C0:
1314 		/*
1315 		 * Workaround BCOM Errata for the C0 type.
1316 		 * Write magic patterns to reserved registers.
1317 		 */
1318 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1319 			xm_phy_write(hw, port,
1320 				     C0hack[i].reg, C0hack[i].val);
1321 
1322 		break;
1323 	case PHY_BCOM_ID1_A1:
1324 		/*
1325 		 * Workaround BCOM Errata for the A1 type.
1326 		 * Write magic patterns to reserved registers.
1327 		 */
1328 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1329 			xm_phy_write(hw, port,
1330 				     A1hack[i].reg, A1hack[i].val);
1331 		break;
1332 	}
1333 
1334 	/*
1335 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1336 	 * Disable Power Management after reset.
1337 	 */
1338 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1339 	r |= PHY_B_AC_DIS_PM;
1340 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1341 
1342 	/* Dummy read */
1343 	xm_read16(hw, port, XM_ISRC);
1344 
1345 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1346 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1347 
1348 	if (skge->autoneg == AUTONEG_ENABLE) {
1349 		/*
1350 		 * Workaround BCOM Errata #1 for the C5 type.
1351 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1352 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1353 		 */
1354 		u16 adv = PHY_B_1000C_RD;
1355 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1356 			adv |= PHY_B_1000C_AHD;
1357 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1358 			adv |= PHY_B_1000C_AFD;
1359 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1360 
1361 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1362 	} else {
1363 		if (skge->duplex == DUPLEX_FULL)
1364 			ctl |= PHY_CT_DUP_MD;
1365 		/* Force to slave */
1366 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1367 	}
1368 
1369 	/* Set autonegotiation pause parameters */
1370 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1371 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1372 
1373 	/* Handle Jumbo frames */
1374 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1375 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1376 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1377 
1378 		ext |= PHY_B_PEC_HIGH_LA;
1379 
1380 	}
1381 
1382 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1383 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1384 
1385 	/* Use link status change interrupt */
1386 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1387 }
1388 
1389 static void xm_phy_init(struct skge_port *skge)
1390 {
1391 	struct skge_hw *hw = skge->hw;
1392 	int port = skge->port;
1393 	u16 ctrl = 0;
1394 
1395 	if (skge->autoneg == AUTONEG_ENABLE) {
1396 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1397 			ctrl |= PHY_X_AN_HD;
1398 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1399 			ctrl |= PHY_X_AN_FD;
1400 
1401 		ctrl |= fiber_pause_map[skge->flow_control];
1402 
1403 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1404 
1405 		/* Restart Auto-negotiation */
1406 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1407 	} else {
1408 		/* Set DuplexMode in Config register */
1409 		if (skge->duplex == DUPLEX_FULL)
1410 			ctrl |= PHY_CT_DUP_MD;
1411 		/*
1412 		 * Do NOT enable Auto-negotiation here. This would hold
1413 		 * the link down because no IDLEs are transmitted
1414 		 */
1415 	}
1416 
1417 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1418 
1419 	/* Poll PHY for status changes */
1420 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1421 }
1422 
1423 static int xm_check_link(struct net_device *dev)
1424 {
1425 	struct skge_port *skge = netdev_priv(dev);
1426 	struct skge_hw *hw = skge->hw;
1427 	int port = skge->port;
1428 	u16 status;
1429 
1430 	/* read twice because of latch */
1431 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1432 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1433 
1434 	if ((status & PHY_ST_LSYNC) == 0) {
1435 		xm_link_down(hw, port);
1436 		return 0;
1437 	}
1438 
1439 	if (skge->autoneg == AUTONEG_ENABLE) {
1440 		u16 lpa, res;
1441 
1442 		if (!(status & PHY_ST_AN_OVER))
1443 			return 0;
1444 
1445 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1446 		if (lpa & PHY_B_AN_RF) {
1447 			netdev_notice(dev, "remote fault\n");
1448 			return 0;
1449 		}
1450 
1451 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1452 
1453 		/* Check Duplex mismatch */
1454 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1455 		case PHY_X_RS_FD:
1456 			skge->duplex = DUPLEX_FULL;
1457 			break;
1458 		case PHY_X_RS_HD:
1459 			skge->duplex = DUPLEX_HALF;
1460 			break;
1461 		default:
1462 			netdev_notice(dev, "duplex mismatch\n");
1463 			return 0;
1464 		}
1465 
1466 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1467 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1468 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1469 		    (lpa & PHY_X_P_SYM_MD))
1470 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1471 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1472 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1473 			/* Enable PAUSE receive, disable PAUSE transmit */
1474 			skge->flow_status  = FLOW_STAT_REM_SEND;
1475 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1476 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1477 			/* Disable PAUSE receive, enable PAUSE transmit */
1478 			skge->flow_status = FLOW_STAT_LOC_SEND;
1479 		else
1480 			skge->flow_status = FLOW_STAT_NONE;
1481 
1482 		skge->speed = SPEED_1000;
1483 	}
1484 
1485 	if (!netif_carrier_ok(dev))
1486 		genesis_link_up(skge);
1487 	return 1;
1488 }
1489 
1490 /* Poll to check for link coming up.
1491  *
1492  * Since internal PHY is wired to a level triggered pin, can't
1493  * get an interrupt when carrier is detected, need to poll for
1494  * link coming up.
1495  */
1496 static void xm_link_timer(struct timer_list *t)
1497 {
1498 	struct skge_port *skge = from_timer(skge, t, link_timer);
1499 	struct net_device *dev = skge->netdev;
1500 	struct skge_hw *hw = skge->hw;
1501 	int port = skge->port;
1502 	int i;
1503 	unsigned long flags;
1504 
1505 	if (!netif_running(dev))
1506 		return;
1507 
1508 	spin_lock_irqsave(&hw->phy_lock, flags);
1509 
1510 	/*
1511 	 * Verify that the link by checking GPIO register three times.
1512 	 * This pin has the signal from the link_sync pin connected to it.
1513 	 */
1514 	for (i = 0; i < 3; i++) {
1515 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1516 			goto link_down;
1517 	}
1518 
1519 	/* Re-enable interrupt to detect link down */
1520 	if (xm_check_link(dev)) {
1521 		u16 msk = xm_read16(hw, port, XM_IMSK);
1522 		msk &= ~XM_IS_INP_ASS;
1523 		xm_write16(hw, port, XM_IMSK, msk);
1524 		xm_read16(hw, port, XM_ISRC);
1525 	} else {
1526 link_down:
1527 		mod_timer(&skge->link_timer,
1528 			  round_jiffies(jiffies + LINK_HZ));
1529 	}
1530 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1531 }
1532 
1533 static void genesis_mac_init(struct skge_hw *hw, int port)
1534 {
1535 	struct net_device *dev = hw->dev[port];
1536 	struct skge_port *skge = netdev_priv(dev);
1537 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1538 	int i;
1539 	u32 r;
1540 	static const u8 zero[6]  = { 0 };
1541 
1542 	for (i = 0; i < 10; i++) {
1543 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1544 			     MFF_SET_MAC_RST);
1545 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1546 			goto reset_ok;
1547 		udelay(1);
1548 	}
1549 
1550 	netdev_warn(dev, "genesis reset failed\n");
1551 
1552  reset_ok:
1553 	/* Unreset the XMAC. */
1554 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1555 
1556 	/*
1557 	 * Perform additional initialization for external PHYs,
1558 	 * namely for the 1000baseTX cards that use the XMAC's
1559 	 * GMII mode.
1560 	 */
1561 	if (hw->phy_type != SK_PHY_XMAC) {
1562 		/* Take external Phy out of reset */
1563 		r = skge_read32(hw, B2_GP_IO);
1564 		if (port == 0)
1565 			r |= GP_DIR_0|GP_IO_0;
1566 		else
1567 			r |= GP_DIR_2|GP_IO_2;
1568 
1569 		skge_write32(hw, B2_GP_IO, r);
1570 
1571 		/* Enable GMII interface */
1572 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1573 	}
1574 
1575 
1576 	switch (hw->phy_type) {
1577 	case SK_PHY_XMAC:
1578 		xm_phy_init(skge);
1579 		break;
1580 	case SK_PHY_BCOM:
1581 		bcom_phy_init(skge);
1582 		bcom_check_link(hw, port);
1583 	}
1584 
1585 	/* Set Station Address */
1586 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1587 
1588 	/* We don't use match addresses so clear */
1589 	for (i = 1; i < 16; i++)
1590 		xm_outaddr(hw, port, XM_EXM(i), zero);
1591 
1592 	/* Clear MIB counters */
1593 	xm_write16(hw, port, XM_STAT_CMD,
1594 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1595 	/* Clear two times according to Errata #3 */
1596 	xm_write16(hw, port, XM_STAT_CMD,
1597 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1598 
1599 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1600 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1601 
1602 	/* We don't need the FCS appended to the packet. */
1603 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1604 	if (jumbo)
1605 		r |= XM_RX_BIG_PK_OK;
1606 
1607 	if (skge->duplex == DUPLEX_HALF) {
1608 		/*
1609 		 * If in manual half duplex mode the other side might be in
1610 		 * full duplex mode, so ignore if a carrier extension is not seen
1611 		 * on frames received
1612 		 */
1613 		r |= XM_RX_DIS_CEXT;
1614 	}
1615 	xm_write16(hw, port, XM_RX_CMD, r);
1616 
1617 	/* We want short frames padded to 60 bytes. */
1618 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1619 
1620 	/* Increase threshold for jumbo frames on dual port */
1621 	if (hw->ports > 1 && jumbo)
1622 		xm_write16(hw, port, XM_TX_THR, 1020);
1623 	else
1624 		xm_write16(hw, port, XM_TX_THR, 512);
1625 
1626 	/*
1627 	 * Enable the reception of all error frames. This is
1628 	 * a necessary evil due to the design of the XMAC. The
1629 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1630 	 * frames can be up to 9000 bytes in length. When bad
1631 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1632 	 * in 'store and forward' mode. For this to work, the
1633 	 * entire frame has to fit into the FIFO, but that means
1634 	 * that jumbo frames larger than 8192 bytes will be
1635 	 * truncated. Disabling all bad frame filtering causes
1636 	 * the RX FIFO to operate in streaming mode, in which
1637 	 * case the XMAC will start transferring frames out of the
1638 	 * RX FIFO as soon as the FIFO threshold is reached.
1639 	 */
1640 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1641 
1642 
1643 	/*
1644 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1645 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1646 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1647 	 */
1648 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1649 
1650 	/*
1651 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1652 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1653 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1654 	 */
1655 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1656 
1657 	/* Configure MAC arbiter */
1658 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1659 
1660 	/* configure timeout values */
1661 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1662 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1663 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1664 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1665 
1666 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1667 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1668 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1669 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1670 
1671 	/* Configure Rx MAC FIFO */
1672 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1673 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1674 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1675 
1676 	/* Configure Tx MAC FIFO */
1677 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1678 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1679 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1680 
1681 	if (jumbo) {
1682 		/* Enable frame flushing if jumbo frames used */
1683 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1684 	} else {
1685 		/* enable timeout timers if normal frames */
1686 		skge_write16(hw, B3_PA_CTRL,
1687 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1688 	}
1689 }
1690 
1691 static void genesis_stop(struct skge_port *skge)
1692 {
1693 	struct skge_hw *hw = skge->hw;
1694 	int port = skge->port;
1695 	unsigned retries = 1000;
1696 	u16 cmd;
1697 
1698 	/* Disable Tx and Rx */
1699 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1700 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1701 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1702 
1703 	genesis_reset(hw, port);
1704 
1705 	/* Clear Tx packet arbiter timeout IRQ */
1706 	skge_write16(hw, B3_PA_CTRL,
1707 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1708 
1709 	/* Reset the MAC */
1710 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1711 	do {
1712 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1713 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1714 			break;
1715 	} while (--retries > 0);
1716 
1717 	/* For external PHYs there must be special handling */
1718 	if (hw->phy_type != SK_PHY_XMAC) {
1719 		u32 reg = skge_read32(hw, B2_GP_IO);
1720 		if (port == 0) {
1721 			reg |= GP_DIR_0;
1722 			reg &= ~GP_IO_0;
1723 		} else {
1724 			reg |= GP_DIR_2;
1725 			reg &= ~GP_IO_2;
1726 		}
1727 		skge_write32(hw, B2_GP_IO, reg);
1728 		skge_read32(hw, B2_GP_IO);
1729 	}
1730 
1731 	xm_write16(hw, port, XM_MMU_CMD,
1732 			xm_read16(hw, port, XM_MMU_CMD)
1733 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1734 
1735 	xm_read16(hw, port, XM_MMU_CMD);
1736 }
1737 
1738 
1739 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1740 {
1741 	struct skge_hw *hw = skge->hw;
1742 	int port = skge->port;
1743 	int i;
1744 	unsigned long timeout = jiffies + HZ;
1745 
1746 	xm_write16(hw, port,
1747 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1748 
1749 	/* wait for update to complete */
1750 	while (xm_read16(hw, port, XM_STAT_CMD)
1751 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1752 		if (time_after(jiffies, timeout))
1753 			break;
1754 		udelay(10);
1755 	}
1756 
1757 	/* special case for 64 bit octet counter */
1758 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1759 		| xm_read32(hw, port, XM_TXO_OK_LO);
1760 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1761 		| xm_read32(hw, port, XM_RXO_OK_LO);
1762 
1763 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1764 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1765 }
1766 
1767 static void genesis_mac_intr(struct skge_hw *hw, int port)
1768 {
1769 	struct net_device *dev = hw->dev[port];
1770 	struct skge_port *skge = netdev_priv(dev);
1771 	u16 status = xm_read16(hw, port, XM_ISRC);
1772 
1773 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1774 		     "mac interrupt status 0x%x\n", status);
1775 
1776 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1777 		xm_link_down(hw, port);
1778 		mod_timer(&skge->link_timer, jiffies + 1);
1779 	}
1780 
1781 	if (status & XM_IS_TXF_UR) {
1782 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1783 		++dev->stats.tx_fifo_errors;
1784 	}
1785 }
1786 
1787 static void genesis_link_up(struct skge_port *skge)
1788 {
1789 	struct skge_hw *hw = skge->hw;
1790 	int port = skge->port;
1791 	u16 cmd, msk;
1792 	u32 mode;
1793 
1794 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1795 
1796 	/*
1797 	 * enabling pause frame reception is required for 1000BT
1798 	 * because the XMAC is not reset if the link is going down
1799 	 */
1800 	if (skge->flow_status == FLOW_STAT_NONE ||
1801 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1802 		/* Disable Pause Frame Reception */
1803 		cmd |= XM_MMU_IGN_PF;
1804 	else
1805 		/* Enable Pause Frame Reception */
1806 		cmd &= ~XM_MMU_IGN_PF;
1807 
1808 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1809 
1810 	mode = xm_read32(hw, port, XM_MODE);
1811 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1812 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1813 		/*
1814 		 * Configure Pause Frame Generation
1815 		 * Use internal and external Pause Frame Generation.
1816 		 * Sending pause frames is edge triggered.
1817 		 * Send a Pause frame with the maximum pause time if
1818 		 * internal oder external FIFO full condition occurs.
1819 		 * Send a zero pause time frame to re-start transmission.
1820 		 */
1821 		/* XM_PAUSE_DA = '010000C28001' (default) */
1822 		/* XM_MAC_PTIME = 0xffff (maximum) */
1823 		/* remember this value is defined in big endian (!) */
1824 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1825 
1826 		mode |= XM_PAUSE_MODE;
1827 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1828 	} else {
1829 		/*
1830 		 * disable pause frame generation is required for 1000BT
1831 		 * because the XMAC is not reset if the link is going down
1832 		 */
1833 		/* Disable Pause Mode in Mode Register */
1834 		mode &= ~XM_PAUSE_MODE;
1835 
1836 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1837 	}
1838 
1839 	xm_write32(hw, port, XM_MODE, mode);
1840 
1841 	/* Turn on detection of Tx underrun */
1842 	msk = xm_read16(hw, port, XM_IMSK);
1843 	msk &= ~XM_IS_TXF_UR;
1844 	xm_write16(hw, port, XM_IMSK, msk);
1845 
1846 	xm_read16(hw, port, XM_ISRC);
1847 
1848 	/* get MMU Command Reg. */
1849 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1850 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1851 		cmd |= XM_MMU_GMII_FD;
1852 
1853 	/*
1854 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1855 	 * Enable Power Management after link up
1856 	 */
1857 	if (hw->phy_type == SK_PHY_BCOM) {
1858 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1859 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1860 			     & ~PHY_B_AC_DIS_PM);
1861 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1862 	}
1863 
1864 	/* enable Rx/Tx */
1865 	xm_write16(hw, port, XM_MMU_CMD,
1866 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1867 	skge_link_up(skge);
1868 }
1869 
1870 
1871 static inline void bcom_phy_intr(struct skge_port *skge)
1872 {
1873 	struct skge_hw *hw = skge->hw;
1874 	int port = skge->port;
1875 	u16 isrc;
1876 
1877 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1878 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1879 		     "phy interrupt status 0x%x\n", isrc);
1880 
1881 	if (isrc & PHY_B_IS_PSE)
1882 		pr_err("%s: uncorrectable pair swap error\n",
1883 		       hw->dev[port]->name);
1884 
1885 	/* Workaround BCom Errata:
1886 	 *	enable and disable loopback mode if "NO HCD" occurs.
1887 	 */
1888 	if (isrc & PHY_B_IS_NO_HDCL) {
1889 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1890 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1891 				  ctrl | PHY_CT_LOOP);
1892 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1893 				  ctrl & ~PHY_CT_LOOP);
1894 	}
1895 
1896 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1897 		bcom_check_link(hw, port);
1898 
1899 }
1900 
1901 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1902 {
1903 	int i;
1904 
1905 	gma_write16(hw, port, GM_SMI_DATA, val);
1906 	gma_write16(hw, port, GM_SMI_CTRL,
1907 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1908 	for (i = 0; i < PHY_RETRIES; i++) {
1909 		udelay(1);
1910 
1911 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1912 			return 0;
1913 	}
1914 
1915 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1916 	return -EIO;
1917 }
1918 
1919 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1920 {
1921 	int i;
1922 
1923 	gma_write16(hw, port, GM_SMI_CTRL,
1924 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1925 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1926 
1927 	for (i = 0; i < PHY_RETRIES; i++) {
1928 		udelay(1);
1929 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1930 			goto ready;
1931 	}
1932 
1933 	return -ETIMEDOUT;
1934  ready:
1935 	*val = gma_read16(hw, port, GM_SMI_DATA);
1936 	return 0;
1937 }
1938 
1939 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1940 {
1941 	u16 v = 0;
1942 	if (__gm_phy_read(hw, port, reg, &v))
1943 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1944 	return v;
1945 }
1946 
1947 /* Marvell Phy Initialization */
1948 static void yukon_init(struct skge_hw *hw, int port)
1949 {
1950 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1951 	u16 ctrl, ct1000, adv;
1952 
1953 	if (skge->autoneg == AUTONEG_ENABLE) {
1954 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1955 
1956 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1957 			  PHY_M_EC_MAC_S_MSK);
1958 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1959 
1960 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1961 
1962 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1963 	}
1964 
1965 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1966 	if (skge->autoneg == AUTONEG_DISABLE)
1967 		ctrl &= ~PHY_CT_ANE;
1968 
1969 	ctrl |= PHY_CT_RESET;
1970 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1971 
1972 	ctrl = 0;
1973 	ct1000 = 0;
1974 	adv = PHY_AN_CSMA;
1975 
1976 	if (skge->autoneg == AUTONEG_ENABLE) {
1977 		if (hw->copper) {
1978 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1979 				ct1000 |= PHY_M_1000C_AFD;
1980 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1981 				ct1000 |= PHY_M_1000C_AHD;
1982 			if (skge->advertising & ADVERTISED_100baseT_Full)
1983 				adv |= PHY_M_AN_100_FD;
1984 			if (skge->advertising & ADVERTISED_100baseT_Half)
1985 				adv |= PHY_M_AN_100_HD;
1986 			if (skge->advertising & ADVERTISED_10baseT_Full)
1987 				adv |= PHY_M_AN_10_FD;
1988 			if (skge->advertising & ADVERTISED_10baseT_Half)
1989 				adv |= PHY_M_AN_10_HD;
1990 
1991 			/* Set Flow-control capabilities */
1992 			adv |= phy_pause_map[skge->flow_control];
1993 		} else {
1994 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1995 				adv |= PHY_M_AN_1000X_AFD;
1996 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1997 				adv |= PHY_M_AN_1000X_AHD;
1998 
1999 			adv |= fiber_pause_map[skge->flow_control];
2000 		}
2001 
2002 		/* Restart Auto-negotiation */
2003 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2004 	} else {
2005 		/* forced speed/duplex settings */
2006 		ct1000 = PHY_M_1000C_MSE;
2007 
2008 		if (skge->duplex == DUPLEX_FULL)
2009 			ctrl |= PHY_CT_DUP_MD;
2010 
2011 		switch (skge->speed) {
2012 		case SPEED_1000:
2013 			ctrl |= PHY_CT_SP1000;
2014 			break;
2015 		case SPEED_100:
2016 			ctrl |= PHY_CT_SP100;
2017 			break;
2018 		}
2019 
2020 		ctrl |= PHY_CT_RESET;
2021 	}
2022 
2023 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2024 
2025 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2026 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2027 
2028 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2029 	if (skge->autoneg == AUTONEG_ENABLE)
2030 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2031 	else
2032 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2033 }
2034 
2035 static void yukon_reset(struct skge_hw *hw, int port)
2036 {
2037 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2038 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2039 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2040 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2041 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2042 
2043 	gma_write16(hw, port, GM_RX_CTRL,
2044 			 gma_read16(hw, port, GM_RX_CTRL)
2045 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2046 }
2047 
2048 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2049 static int is_yukon_lite_a0(struct skge_hw *hw)
2050 {
2051 	u32 reg;
2052 	int ret;
2053 
2054 	if (hw->chip_id != CHIP_ID_YUKON)
2055 		return 0;
2056 
2057 	reg = skge_read32(hw, B2_FAR);
2058 	skge_write8(hw, B2_FAR + 3, 0xff);
2059 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2060 	skge_write32(hw, B2_FAR, reg);
2061 	return ret;
2062 }
2063 
2064 static void yukon_mac_init(struct skge_hw *hw, int port)
2065 {
2066 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2067 	int i;
2068 	u32 reg;
2069 	const u8 *addr = hw->dev[port]->dev_addr;
2070 
2071 	/* WA code for COMA mode -- set PHY reset */
2072 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2073 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2074 		reg = skge_read32(hw, B2_GP_IO);
2075 		reg |= GP_DIR_9 | GP_IO_9;
2076 		skge_write32(hw, B2_GP_IO, reg);
2077 	}
2078 
2079 	/* hard reset */
2080 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2081 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2082 
2083 	/* WA code for COMA mode -- clear PHY reset */
2084 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2085 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2086 		reg = skge_read32(hw, B2_GP_IO);
2087 		reg |= GP_DIR_9;
2088 		reg &= ~GP_IO_9;
2089 		skge_write32(hw, B2_GP_IO, reg);
2090 	}
2091 
2092 	/* Set hardware config mode */
2093 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2094 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2095 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2096 
2097 	/* Clear GMC reset */
2098 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2099 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2100 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2101 
2102 	if (skge->autoneg == AUTONEG_DISABLE) {
2103 		reg = GM_GPCR_AU_ALL_DIS;
2104 		gma_write16(hw, port, GM_GP_CTRL,
2105 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2106 
2107 		switch (skge->speed) {
2108 		case SPEED_1000:
2109 			reg &= ~GM_GPCR_SPEED_100;
2110 			reg |= GM_GPCR_SPEED_1000;
2111 			break;
2112 		case SPEED_100:
2113 			reg &= ~GM_GPCR_SPEED_1000;
2114 			reg |= GM_GPCR_SPEED_100;
2115 			break;
2116 		case SPEED_10:
2117 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2118 			break;
2119 		}
2120 
2121 		if (skge->duplex == DUPLEX_FULL)
2122 			reg |= GM_GPCR_DUP_FULL;
2123 	} else
2124 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2125 
2126 	switch (skge->flow_control) {
2127 	case FLOW_MODE_NONE:
2128 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2129 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2130 		break;
2131 	case FLOW_MODE_LOC_SEND:
2132 		/* disable Rx flow-control */
2133 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2134 		break;
2135 	case FLOW_MODE_SYMMETRIC:
2136 	case FLOW_MODE_SYM_OR_REM:
2137 		/* enable Tx & Rx flow-control */
2138 		break;
2139 	}
2140 
2141 	gma_write16(hw, port, GM_GP_CTRL, reg);
2142 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2143 
2144 	yukon_init(hw, port);
2145 
2146 	/* MIB clear */
2147 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2148 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2149 
2150 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2151 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2152 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2153 
2154 	/* transmit control */
2155 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2156 
2157 	/* receive control reg: unicast + multicast + no FCS  */
2158 	gma_write16(hw, port, GM_RX_CTRL,
2159 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2160 
2161 	/* transmit flow control */
2162 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2163 
2164 	/* transmit parameter */
2165 	gma_write16(hw, port, GM_TX_PARAM,
2166 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2167 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2168 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2169 
2170 	/* configure the Serial Mode Register */
2171 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2172 		| GM_SMOD_VLAN_ENA
2173 		| IPG_DATA_VAL(IPG_DATA_DEF);
2174 
2175 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2176 		reg |= GM_SMOD_JUMBO_ENA;
2177 
2178 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2179 
2180 	/* physical address: used for pause frames */
2181 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2182 	/* virtual address for data */
2183 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2184 
2185 	/* enable interrupt mask for counter overflows */
2186 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2187 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2188 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2189 
2190 	/* Initialize Mac Fifo */
2191 
2192 	/* Configure Rx MAC FIFO */
2193 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2194 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2195 
2196 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2197 	if (is_yukon_lite_a0(hw))
2198 		reg &= ~GMF_RX_F_FL_ON;
2199 
2200 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2201 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2202 	/*
2203 	 * because Pause Packet Truncation in GMAC is not working
2204 	 * we have to increase the Flush Threshold to 64 bytes
2205 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2206 	 */
2207 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2208 
2209 	/* Configure Tx MAC FIFO */
2210 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2211 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2212 }
2213 
2214 /* Go into power down mode */
2215 static void yukon_suspend(struct skge_hw *hw, int port)
2216 {
2217 	u16 ctrl;
2218 
2219 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2220 	ctrl |= PHY_M_PC_POL_R_DIS;
2221 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2222 
2223 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2224 	ctrl |= PHY_CT_RESET;
2225 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2226 
2227 	/* switch IEEE compatible power down mode on */
2228 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2229 	ctrl |= PHY_CT_PDOWN;
2230 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2231 }
2232 
2233 static void yukon_stop(struct skge_port *skge)
2234 {
2235 	struct skge_hw *hw = skge->hw;
2236 	int port = skge->port;
2237 
2238 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2239 	yukon_reset(hw, port);
2240 
2241 	gma_write16(hw, port, GM_GP_CTRL,
2242 			 gma_read16(hw, port, GM_GP_CTRL)
2243 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2244 	gma_read16(hw, port, GM_GP_CTRL);
2245 
2246 	yukon_suspend(hw, port);
2247 
2248 	/* set GPHY Control reset */
2249 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2250 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2251 }
2252 
2253 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2254 {
2255 	struct skge_hw *hw = skge->hw;
2256 	int port = skge->port;
2257 	int i;
2258 
2259 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2260 		| gma_read32(hw, port, GM_TXO_OK_LO);
2261 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2262 		| gma_read32(hw, port, GM_RXO_OK_LO);
2263 
2264 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2265 		data[i] = gma_read32(hw, port,
2266 					  skge_stats[i].gma_offset);
2267 }
2268 
2269 static void yukon_mac_intr(struct skge_hw *hw, int port)
2270 {
2271 	struct net_device *dev = hw->dev[port];
2272 	struct skge_port *skge = netdev_priv(dev);
2273 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2274 
2275 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2276 		     "mac interrupt status 0x%x\n", status);
2277 
2278 	if (status & GM_IS_RX_FF_OR) {
2279 		++dev->stats.rx_fifo_errors;
2280 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2281 	}
2282 
2283 	if (status & GM_IS_TX_FF_UR) {
2284 		++dev->stats.tx_fifo_errors;
2285 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2286 	}
2287 
2288 }
2289 
2290 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2291 {
2292 	switch (aux & PHY_M_PS_SPEED_MSK) {
2293 	case PHY_M_PS_SPEED_1000:
2294 		return SPEED_1000;
2295 	case PHY_M_PS_SPEED_100:
2296 		return SPEED_100;
2297 	default:
2298 		return SPEED_10;
2299 	}
2300 }
2301 
2302 static void yukon_link_up(struct skge_port *skge)
2303 {
2304 	struct skge_hw *hw = skge->hw;
2305 	int port = skge->port;
2306 	u16 reg;
2307 
2308 	/* Enable Transmit FIFO Underrun */
2309 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2310 
2311 	reg = gma_read16(hw, port, GM_GP_CTRL);
2312 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2313 		reg |= GM_GPCR_DUP_FULL;
2314 
2315 	/* enable Rx/Tx */
2316 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2317 	gma_write16(hw, port, GM_GP_CTRL, reg);
2318 
2319 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2320 	skge_link_up(skge);
2321 }
2322 
2323 static void yukon_link_down(struct skge_port *skge)
2324 {
2325 	struct skge_hw *hw = skge->hw;
2326 	int port = skge->port;
2327 	u16 ctrl;
2328 
2329 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2330 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2331 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2332 
2333 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2334 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2335 		ctrl |= PHY_M_AN_ASP;
2336 		/* restore Asymmetric Pause bit */
2337 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2338 	}
2339 
2340 	skge_link_down(skge);
2341 
2342 	yukon_init(hw, port);
2343 }
2344 
2345 static void yukon_phy_intr(struct skge_port *skge)
2346 {
2347 	struct skge_hw *hw = skge->hw;
2348 	int port = skge->port;
2349 	const char *reason = NULL;
2350 	u16 istatus, phystat;
2351 
2352 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2353 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2354 
2355 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2356 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2357 
2358 	if (istatus & PHY_M_IS_AN_COMPL) {
2359 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2360 		    & PHY_M_AN_RF) {
2361 			reason = "remote fault";
2362 			goto failed;
2363 		}
2364 
2365 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2366 			reason = "master/slave fault";
2367 			goto failed;
2368 		}
2369 
2370 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2371 			reason = "speed/duplex";
2372 			goto failed;
2373 		}
2374 
2375 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2376 			? DUPLEX_FULL : DUPLEX_HALF;
2377 		skge->speed = yukon_speed(hw, phystat);
2378 
2379 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2380 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2381 		case PHY_M_PS_PAUSE_MSK:
2382 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2383 			break;
2384 		case PHY_M_PS_RX_P_EN:
2385 			skge->flow_status = FLOW_STAT_REM_SEND;
2386 			break;
2387 		case PHY_M_PS_TX_P_EN:
2388 			skge->flow_status = FLOW_STAT_LOC_SEND;
2389 			break;
2390 		default:
2391 			skge->flow_status = FLOW_STAT_NONE;
2392 		}
2393 
2394 		if (skge->flow_status == FLOW_STAT_NONE ||
2395 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2396 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2397 		else
2398 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2399 		yukon_link_up(skge);
2400 		return;
2401 	}
2402 
2403 	if (istatus & PHY_M_IS_LSP_CHANGE)
2404 		skge->speed = yukon_speed(hw, phystat);
2405 
2406 	if (istatus & PHY_M_IS_DUP_CHANGE)
2407 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2408 	if (istatus & PHY_M_IS_LST_CHANGE) {
2409 		if (phystat & PHY_M_PS_LINK_UP)
2410 			yukon_link_up(skge);
2411 		else
2412 			yukon_link_down(skge);
2413 	}
2414 	return;
2415  failed:
2416 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2417 
2418 	/* XXX restart autonegotiation? */
2419 }
2420 
2421 static void skge_phy_reset(struct skge_port *skge)
2422 {
2423 	struct skge_hw *hw = skge->hw;
2424 	int port = skge->port;
2425 	struct net_device *dev = hw->dev[port];
2426 
2427 	netif_stop_queue(skge->netdev);
2428 	netif_carrier_off(skge->netdev);
2429 
2430 	spin_lock_bh(&hw->phy_lock);
2431 	if (is_genesis(hw)) {
2432 		genesis_reset(hw, port);
2433 		genesis_mac_init(hw, port);
2434 	} else {
2435 		yukon_reset(hw, port);
2436 		yukon_init(hw, port);
2437 	}
2438 	spin_unlock_bh(&hw->phy_lock);
2439 
2440 	skge_set_multicast(dev);
2441 }
2442 
2443 /* Basic MII support */
2444 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2445 {
2446 	struct mii_ioctl_data *data = if_mii(ifr);
2447 	struct skge_port *skge = netdev_priv(dev);
2448 	struct skge_hw *hw = skge->hw;
2449 	int err = -EOPNOTSUPP;
2450 
2451 	if (!netif_running(dev))
2452 		return -ENODEV;	/* Phy still in reset */
2453 
2454 	switch (cmd) {
2455 	case SIOCGMIIPHY:
2456 		data->phy_id = hw->phy_addr;
2457 
2458 		fallthrough;
2459 	case SIOCGMIIREG: {
2460 		u16 val = 0;
2461 		spin_lock_bh(&hw->phy_lock);
2462 
2463 		if (is_genesis(hw))
2464 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2465 		else
2466 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2467 		spin_unlock_bh(&hw->phy_lock);
2468 		data->val_out = val;
2469 		break;
2470 	}
2471 
2472 	case SIOCSMIIREG:
2473 		spin_lock_bh(&hw->phy_lock);
2474 		if (is_genesis(hw))
2475 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2476 				   data->val_in);
2477 		else
2478 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2479 				   data->val_in);
2480 		spin_unlock_bh(&hw->phy_lock);
2481 		break;
2482 	}
2483 	return err;
2484 }
2485 
2486 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2487 {
2488 	u32 end;
2489 
2490 	start /= 8;
2491 	len /= 8;
2492 	end = start + len - 1;
2493 
2494 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2495 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2496 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2497 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2498 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2499 
2500 	if (q == Q_R1 || q == Q_R2) {
2501 		/* Set thresholds on receive queue's */
2502 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2503 			     start + (2*len)/3);
2504 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2505 			     start + (len/3));
2506 	} else {
2507 		/* Enable store & forward on Tx queue's because
2508 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2509 		 */
2510 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2511 	}
2512 
2513 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2514 }
2515 
2516 /* Setup Bus Memory Interface */
2517 static void skge_qset(struct skge_port *skge, u16 q,
2518 		      const struct skge_element *e)
2519 {
2520 	struct skge_hw *hw = skge->hw;
2521 	u32 watermark = 0x600;
2522 	u64 base = skge->dma + (e->desc - skge->mem);
2523 
2524 	/* optimization to reduce window on 32bit/33mhz */
2525 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2526 		watermark /= 2;
2527 
2528 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2529 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2530 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2531 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2532 }
2533 
2534 static int skge_up(struct net_device *dev)
2535 {
2536 	struct skge_port *skge = netdev_priv(dev);
2537 	struct skge_hw *hw = skge->hw;
2538 	int port = skge->port;
2539 	u32 chunk, ram_addr;
2540 	size_t rx_size, tx_size;
2541 	int err;
2542 
2543 	if (!is_valid_ether_addr(dev->dev_addr))
2544 		return -EINVAL;
2545 
2546 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2547 
2548 	if (dev->mtu > RX_BUF_SIZE)
2549 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2550 	else
2551 		skge->rx_buf_size = RX_BUF_SIZE;
2552 
2553 
2554 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2555 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2556 	skge->mem_size = tx_size + rx_size;
2557 	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2558 				       &skge->dma, GFP_KERNEL);
2559 	if (!skge->mem)
2560 		return -ENOMEM;
2561 
2562 	BUG_ON(skge->dma & 7);
2563 
2564 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2565 		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2566 		err = -EINVAL;
2567 		goto free_pci_mem;
2568 	}
2569 
2570 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2571 	if (err)
2572 		goto free_pci_mem;
2573 
2574 	err = skge_rx_fill(dev);
2575 	if (err)
2576 		goto free_rx_ring;
2577 
2578 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2579 			      skge->dma + rx_size);
2580 	if (err)
2581 		goto free_rx_ring;
2582 
2583 	if (hw->ports == 1) {
2584 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2585 				  dev->name, hw);
2586 		if (err) {
2587 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2588 				   hw->pdev->irq, err);
2589 			goto free_tx_ring;
2590 		}
2591 	}
2592 
2593 	/* Initialize MAC */
2594 	netif_carrier_off(dev);
2595 	spin_lock_bh(&hw->phy_lock);
2596 	if (is_genesis(hw))
2597 		genesis_mac_init(hw, port);
2598 	else
2599 		yukon_mac_init(hw, port);
2600 	spin_unlock_bh(&hw->phy_lock);
2601 
2602 	/* Configure RAMbuffers - equally between ports and tx/rx */
2603 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2604 	ram_addr = hw->ram_offset + 2 * chunk * port;
2605 
2606 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2607 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2608 
2609 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2610 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2611 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2612 
2613 	/* Start receiver BMU */
2614 	wmb();
2615 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2616 	skge_led(skge, LED_MODE_ON);
2617 
2618 	spin_lock_irq(&hw->hw_lock);
2619 	hw->intr_mask |= portmask[port];
2620 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2621 	skge_read32(hw, B0_IMSK);
2622 	spin_unlock_irq(&hw->hw_lock);
2623 
2624 	napi_enable(&skge->napi);
2625 
2626 	skge_set_multicast(dev);
2627 
2628 	return 0;
2629 
2630  free_tx_ring:
2631 	kfree(skge->tx_ring.start);
2632  free_rx_ring:
2633 	skge_rx_clean(skge);
2634 	kfree(skge->rx_ring.start);
2635  free_pci_mem:
2636 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2637 			  skge->dma);
2638 	skge->mem = NULL;
2639 
2640 	return err;
2641 }
2642 
2643 /* stop receiver */
2644 static void skge_rx_stop(struct skge_hw *hw, int port)
2645 {
2646 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2647 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2648 		     RB_RST_SET|RB_DIS_OP_MD);
2649 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2650 }
2651 
2652 static int skge_down(struct net_device *dev)
2653 {
2654 	struct skge_port *skge = netdev_priv(dev);
2655 	struct skge_hw *hw = skge->hw;
2656 	int port = skge->port;
2657 
2658 	if (!skge->mem)
2659 		return 0;
2660 
2661 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2662 
2663 	netif_tx_disable(dev);
2664 
2665 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2666 		del_timer_sync(&skge->link_timer);
2667 
2668 	napi_disable(&skge->napi);
2669 	netif_carrier_off(dev);
2670 
2671 	spin_lock_irq(&hw->hw_lock);
2672 	hw->intr_mask &= ~portmask[port];
2673 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2674 	skge_read32(hw, B0_IMSK);
2675 	spin_unlock_irq(&hw->hw_lock);
2676 
2677 	if (hw->ports == 1)
2678 		free_irq(hw->pdev->irq, hw);
2679 
2680 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2681 	if (is_genesis(hw))
2682 		genesis_stop(skge);
2683 	else
2684 		yukon_stop(skge);
2685 
2686 	/* Stop transmitter */
2687 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2688 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2689 		     RB_RST_SET|RB_DIS_OP_MD);
2690 
2691 
2692 	/* Disable Force Sync bit and Enable Alloc bit */
2693 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2694 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2695 
2696 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2697 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2698 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2699 
2700 	/* Reset PCI FIFO */
2701 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2702 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2703 
2704 	/* Reset the RAM Buffer async Tx queue */
2705 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2706 
2707 	skge_rx_stop(hw, port);
2708 
2709 	if (is_genesis(hw)) {
2710 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2711 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2712 	} else {
2713 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2714 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2715 	}
2716 
2717 	skge_led(skge, LED_MODE_OFF);
2718 
2719 	netif_tx_lock_bh(dev);
2720 	skge_tx_clean(dev);
2721 	netif_tx_unlock_bh(dev);
2722 
2723 	skge_rx_clean(skge);
2724 
2725 	kfree(skge->rx_ring.start);
2726 	kfree(skge->tx_ring.start);
2727 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2728 			  skge->dma);
2729 	skge->mem = NULL;
2730 	return 0;
2731 }
2732 
2733 static inline int skge_avail(const struct skge_ring *ring)
2734 {
2735 	smp_mb();
2736 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2737 		+ (ring->to_clean - ring->to_use) - 1;
2738 }
2739 
2740 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2741 				   struct net_device *dev)
2742 {
2743 	struct skge_port *skge = netdev_priv(dev);
2744 	struct skge_hw *hw = skge->hw;
2745 	struct skge_element *e;
2746 	struct skge_tx_desc *td;
2747 	int i;
2748 	u32 control, len;
2749 	dma_addr_t map;
2750 
2751 	if (skb_padto(skb, ETH_ZLEN))
2752 		return NETDEV_TX_OK;
2753 
2754 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2755 		return NETDEV_TX_BUSY;
2756 
2757 	e = skge->tx_ring.to_use;
2758 	td = e->desc;
2759 	BUG_ON(td->control & BMU_OWN);
2760 	e->skb = skb;
2761 	len = skb_headlen(skb);
2762 	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2763 	if (dma_mapping_error(&hw->pdev->dev, map))
2764 		goto mapping_error;
2765 
2766 	dma_unmap_addr_set(e, mapaddr, map);
2767 	dma_unmap_len_set(e, maplen, len);
2768 
2769 	td->dma_lo = lower_32_bits(map);
2770 	td->dma_hi = upper_32_bits(map);
2771 
2772 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2773 		const int offset = skb_checksum_start_offset(skb);
2774 
2775 		/* This seems backwards, but it is what the sk98lin
2776 		 * does.  Looks like hardware is wrong?
2777 		 */
2778 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2779 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2780 			control = BMU_TCP_CHECK;
2781 		else
2782 			control = BMU_UDP_CHECK;
2783 
2784 		td->csum_offs = 0;
2785 		td->csum_start = offset;
2786 		td->csum_write = offset + skb->csum_offset;
2787 	} else
2788 		control = BMU_CHECK;
2789 
2790 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2791 		control |= BMU_EOF | BMU_IRQ_EOF;
2792 	else {
2793 		struct skge_tx_desc *tf = td;
2794 
2795 		control |= BMU_STFWD;
2796 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2797 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2798 
2799 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2800 					       skb_frag_size(frag), DMA_TO_DEVICE);
2801 			if (dma_mapping_error(&hw->pdev->dev, map))
2802 				goto mapping_unwind;
2803 
2804 			e = e->next;
2805 			e->skb = skb;
2806 			tf = e->desc;
2807 			BUG_ON(tf->control & BMU_OWN);
2808 
2809 			tf->dma_lo = lower_32_bits(map);
2810 			tf->dma_hi = upper_32_bits(map);
2811 			dma_unmap_addr_set(e, mapaddr, map);
2812 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2813 
2814 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2815 		}
2816 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2817 	}
2818 	/* Make sure all the descriptors written */
2819 	wmb();
2820 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2821 	wmb();
2822 
2823 	netdev_sent_queue(dev, skb->len);
2824 
2825 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2826 
2827 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2828 		     "tx queued, slot %td, len %d\n",
2829 		     e - skge->tx_ring.start, skb->len);
2830 
2831 	skge->tx_ring.to_use = e->next;
2832 	smp_wmb();
2833 
2834 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2835 		netdev_dbg(dev, "transmit queue full\n");
2836 		netif_stop_queue(dev);
2837 	}
2838 
2839 	return NETDEV_TX_OK;
2840 
2841 mapping_unwind:
2842 	e = skge->tx_ring.to_use;
2843 	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2844 			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2845 	while (i-- > 0) {
2846 		e = e->next;
2847 		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2848 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2849 	}
2850 
2851 mapping_error:
2852 	if (net_ratelimit())
2853 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2854 	dev_kfree_skb_any(skb);
2855 	return NETDEV_TX_OK;
2856 }
2857 
2858 
2859 /* Free resources associated with this reing element */
2860 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2861 				 u32 control)
2862 {
2863 	/* skb header vs. fragment */
2864 	if (control & BMU_STF)
2865 		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2866 				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2867 	else
2868 		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2869 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2870 }
2871 
2872 /* Free all buffers in transmit ring */
2873 static void skge_tx_clean(struct net_device *dev)
2874 {
2875 	struct skge_port *skge = netdev_priv(dev);
2876 	struct skge_element *e;
2877 
2878 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2879 		struct skge_tx_desc *td = e->desc;
2880 
2881 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2882 
2883 		if (td->control & BMU_EOF)
2884 			dev_kfree_skb(e->skb);
2885 		td->control = 0;
2886 	}
2887 
2888 	netdev_reset_queue(dev);
2889 	skge->tx_ring.to_clean = e;
2890 }
2891 
2892 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2893 {
2894 	struct skge_port *skge = netdev_priv(dev);
2895 
2896 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2897 
2898 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2899 	skge_tx_clean(dev);
2900 	netif_wake_queue(dev);
2901 }
2902 
2903 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2904 {
2905 	int err;
2906 
2907 	if (!netif_running(dev)) {
2908 		dev->mtu = new_mtu;
2909 		return 0;
2910 	}
2911 
2912 	skge_down(dev);
2913 
2914 	dev->mtu = new_mtu;
2915 
2916 	err = skge_up(dev);
2917 	if (err)
2918 		dev_close(dev);
2919 
2920 	return err;
2921 }
2922 
2923 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2924 
2925 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2926 {
2927 	u32 crc, bit;
2928 
2929 	crc = ether_crc_le(ETH_ALEN, addr);
2930 	bit = ~crc & 0x3f;
2931 	filter[bit/8] |= 1 << (bit%8);
2932 }
2933 
2934 static void genesis_set_multicast(struct net_device *dev)
2935 {
2936 	struct skge_port *skge = netdev_priv(dev);
2937 	struct skge_hw *hw = skge->hw;
2938 	int port = skge->port;
2939 	struct netdev_hw_addr *ha;
2940 	u32 mode;
2941 	u8 filter[8];
2942 
2943 	mode = xm_read32(hw, port, XM_MODE);
2944 	mode |= XM_MD_ENA_HASH;
2945 	if (dev->flags & IFF_PROMISC)
2946 		mode |= XM_MD_ENA_PROM;
2947 	else
2948 		mode &= ~XM_MD_ENA_PROM;
2949 
2950 	if (dev->flags & IFF_ALLMULTI)
2951 		memset(filter, 0xff, sizeof(filter));
2952 	else {
2953 		memset(filter, 0, sizeof(filter));
2954 
2955 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2956 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2957 			genesis_add_filter(filter, pause_mc_addr);
2958 
2959 		netdev_for_each_mc_addr(ha, dev)
2960 			genesis_add_filter(filter, ha->addr);
2961 	}
2962 
2963 	xm_write32(hw, port, XM_MODE, mode);
2964 	xm_outhash(hw, port, XM_HSM, filter);
2965 }
2966 
2967 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2968 {
2969 	u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2970 
2971 	filter[bit / 8] |= 1 << (bit % 8);
2972 }
2973 
2974 static void yukon_set_multicast(struct net_device *dev)
2975 {
2976 	struct skge_port *skge = netdev_priv(dev);
2977 	struct skge_hw *hw = skge->hw;
2978 	int port = skge->port;
2979 	struct netdev_hw_addr *ha;
2980 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2981 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2982 	u16 reg;
2983 	u8 filter[8];
2984 
2985 	memset(filter, 0, sizeof(filter));
2986 
2987 	reg = gma_read16(hw, port, GM_RX_CTRL);
2988 	reg |= GM_RXCR_UCF_ENA;
2989 
2990 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2991 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2992 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2993 		memset(filter, 0xff, sizeof(filter));
2994 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2995 		reg &= ~GM_RXCR_MCF_ENA;
2996 	else {
2997 		reg |= GM_RXCR_MCF_ENA;
2998 
2999 		if (rx_pause)
3000 			yukon_add_filter(filter, pause_mc_addr);
3001 
3002 		netdev_for_each_mc_addr(ha, dev)
3003 			yukon_add_filter(filter, ha->addr);
3004 	}
3005 
3006 
3007 	gma_write16(hw, port, GM_MC_ADDR_H1,
3008 			 (u16)filter[0] | ((u16)filter[1] << 8));
3009 	gma_write16(hw, port, GM_MC_ADDR_H2,
3010 			 (u16)filter[2] | ((u16)filter[3] << 8));
3011 	gma_write16(hw, port, GM_MC_ADDR_H3,
3012 			 (u16)filter[4] | ((u16)filter[5] << 8));
3013 	gma_write16(hw, port, GM_MC_ADDR_H4,
3014 			 (u16)filter[6] | ((u16)filter[7] << 8));
3015 
3016 	gma_write16(hw, port, GM_RX_CTRL, reg);
3017 }
3018 
3019 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3020 {
3021 	if (is_genesis(hw))
3022 		return status >> XMR_FS_LEN_SHIFT;
3023 	else
3024 		return status >> GMR_FS_LEN_SHIFT;
3025 }
3026 
3027 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3028 {
3029 	if (is_genesis(hw))
3030 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3031 	else
3032 		return (status & GMR_FS_ANY_ERR) ||
3033 			(status & GMR_FS_RX_OK) == 0;
3034 }
3035 
3036 static void skge_set_multicast(struct net_device *dev)
3037 {
3038 	struct skge_port *skge = netdev_priv(dev);
3039 
3040 	if (is_genesis(skge->hw))
3041 		genesis_set_multicast(dev);
3042 	else
3043 		yukon_set_multicast(dev);
3044 
3045 }
3046 
3047 
3048 /* Get receive buffer from descriptor.
3049  * Handles copy of small buffers and reallocation failures
3050  */
3051 static struct sk_buff *skge_rx_get(struct net_device *dev,
3052 				   struct skge_element *e,
3053 				   u32 control, u32 status, u16 csum)
3054 {
3055 	struct skge_port *skge = netdev_priv(dev);
3056 	struct sk_buff *skb;
3057 	u16 len = control & BMU_BBC;
3058 
3059 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3060 		     "rx slot %td status 0x%x len %d\n",
3061 		     e - skge->rx_ring.start, status, len);
3062 
3063 	if (len > skge->rx_buf_size)
3064 		goto error;
3065 
3066 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3067 		goto error;
3068 
3069 	if (bad_phy_status(skge->hw, status))
3070 		goto error;
3071 
3072 	if (phy_length(skge->hw, status) != len)
3073 		goto error;
3074 
3075 	if (len < RX_COPY_THRESHOLD) {
3076 		skb = netdev_alloc_skb_ip_align(dev, len);
3077 		if (!skb)
3078 			goto resubmit;
3079 
3080 		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3081 					dma_unmap_addr(e, mapaddr),
3082 					dma_unmap_len(e, maplen),
3083 					DMA_FROM_DEVICE);
3084 		skb_copy_from_linear_data(e->skb, skb->data, len);
3085 		dma_sync_single_for_device(&skge->hw->pdev->dev,
3086 					   dma_unmap_addr(e, mapaddr),
3087 					   dma_unmap_len(e, maplen),
3088 					   DMA_FROM_DEVICE);
3089 		skge_rx_reuse(e, skge->rx_buf_size);
3090 	} else {
3091 		struct skge_element ee;
3092 		struct sk_buff *nskb;
3093 
3094 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3095 		if (!nskb)
3096 			goto resubmit;
3097 
3098 		ee = *e;
3099 
3100 		skb = ee.skb;
3101 		prefetch(skb->data);
3102 
3103 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3104 			dev_kfree_skb(nskb);
3105 			goto resubmit;
3106 		}
3107 
3108 		dma_unmap_single(&skge->hw->pdev->dev,
3109 				 dma_unmap_addr(&ee, mapaddr),
3110 				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3111 	}
3112 
3113 	skb_put(skb, len);
3114 
3115 	if (dev->features & NETIF_F_RXCSUM) {
3116 		skb->csum = le16_to_cpu(csum);
3117 		skb->ip_summed = CHECKSUM_COMPLETE;
3118 	}
3119 
3120 	skb->protocol = eth_type_trans(skb, dev);
3121 
3122 	return skb;
3123 error:
3124 
3125 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3126 		     "rx err, slot %td control 0x%x status 0x%x\n",
3127 		     e - skge->rx_ring.start, control, status);
3128 
3129 	if (is_genesis(skge->hw)) {
3130 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3131 			dev->stats.rx_length_errors++;
3132 		if (status & XMR_FS_FRA_ERR)
3133 			dev->stats.rx_frame_errors++;
3134 		if (status & XMR_FS_FCS_ERR)
3135 			dev->stats.rx_crc_errors++;
3136 	} else {
3137 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3138 			dev->stats.rx_length_errors++;
3139 		if (status & GMR_FS_FRAGMENT)
3140 			dev->stats.rx_frame_errors++;
3141 		if (status & GMR_FS_CRC_ERR)
3142 			dev->stats.rx_crc_errors++;
3143 	}
3144 
3145 resubmit:
3146 	skge_rx_reuse(e, skge->rx_buf_size);
3147 	return NULL;
3148 }
3149 
3150 /* Free all buffers in Tx ring which are no longer owned by device */
3151 static void skge_tx_done(struct net_device *dev)
3152 {
3153 	struct skge_port *skge = netdev_priv(dev);
3154 	struct skge_ring *ring = &skge->tx_ring;
3155 	struct skge_element *e;
3156 	unsigned int bytes_compl = 0, pkts_compl = 0;
3157 
3158 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3159 
3160 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3161 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3162 
3163 		if (control & BMU_OWN)
3164 			break;
3165 
3166 		skge_tx_unmap(skge->hw->pdev, e, control);
3167 
3168 		if (control & BMU_EOF) {
3169 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3170 				     "tx done slot %td\n",
3171 				     e - skge->tx_ring.start);
3172 
3173 			pkts_compl++;
3174 			bytes_compl += e->skb->len;
3175 
3176 			dev_consume_skb_any(e->skb);
3177 		}
3178 	}
3179 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3180 	skge->tx_ring.to_clean = e;
3181 
3182 	/* Can run lockless until we need to synchronize to restart queue. */
3183 	smp_mb();
3184 
3185 	if (unlikely(netif_queue_stopped(dev) &&
3186 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3187 		netif_tx_lock(dev);
3188 		if (unlikely(netif_queue_stopped(dev) &&
3189 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3190 			netif_wake_queue(dev);
3191 
3192 		}
3193 		netif_tx_unlock(dev);
3194 	}
3195 }
3196 
3197 static int skge_poll(struct napi_struct *napi, int budget)
3198 {
3199 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3200 	struct net_device *dev = skge->netdev;
3201 	struct skge_hw *hw = skge->hw;
3202 	struct skge_ring *ring = &skge->rx_ring;
3203 	struct skge_element *e;
3204 	int work_done = 0;
3205 
3206 	skge_tx_done(dev);
3207 
3208 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3209 
3210 	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3211 		struct skge_rx_desc *rd = e->desc;
3212 		struct sk_buff *skb;
3213 		u32 control;
3214 
3215 		rmb();
3216 		control = rd->control;
3217 		if (control & BMU_OWN)
3218 			break;
3219 
3220 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3221 		if (likely(skb)) {
3222 			napi_gro_receive(napi, skb);
3223 			++work_done;
3224 		}
3225 	}
3226 	ring->to_clean = e;
3227 
3228 	/* restart receiver */
3229 	wmb();
3230 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3231 
3232 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3233 		unsigned long flags;
3234 
3235 		spin_lock_irqsave(&hw->hw_lock, flags);
3236 		hw->intr_mask |= napimask[skge->port];
3237 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3238 		skge_read32(hw, B0_IMSK);
3239 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3240 	}
3241 
3242 	return work_done;
3243 }
3244 
3245 /* Parity errors seem to happen when Genesis is connected to a switch
3246  * with no other ports present. Heartbeat error??
3247  */
3248 static void skge_mac_parity(struct skge_hw *hw, int port)
3249 {
3250 	struct net_device *dev = hw->dev[port];
3251 
3252 	++dev->stats.tx_heartbeat_errors;
3253 
3254 	if (is_genesis(hw))
3255 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3256 			     MFF_CLR_PERR);
3257 	else
3258 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3259 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3260 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3261 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3262 }
3263 
3264 static void skge_mac_intr(struct skge_hw *hw, int port)
3265 {
3266 	if (is_genesis(hw))
3267 		genesis_mac_intr(hw, port);
3268 	else
3269 		yukon_mac_intr(hw, port);
3270 }
3271 
3272 /* Handle device specific framing and timeout interrupts */
3273 static void skge_error_irq(struct skge_hw *hw)
3274 {
3275 	struct pci_dev *pdev = hw->pdev;
3276 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3277 
3278 	if (is_genesis(hw)) {
3279 		/* clear xmac errors */
3280 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3281 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3282 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3283 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3284 	} else {
3285 		/* Timestamp (unused) overflow */
3286 		if (hwstatus & IS_IRQ_TIST_OV)
3287 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3288 	}
3289 
3290 	if (hwstatus & IS_RAM_RD_PAR) {
3291 		dev_err(&pdev->dev, "Ram read data parity error\n");
3292 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3293 	}
3294 
3295 	if (hwstatus & IS_RAM_WR_PAR) {
3296 		dev_err(&pdev->dev, "Ram write data parity error\n");
3297 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3298 	}
3299 
3300 	if (hwstatus & IS_M1_PAR_ERR)
3301 		skge_mac_parity(hw, 0);
3302 
3303 	if (hwstatus & IS_M2_PAR_ERR)
3304 		skge_mac_parity(hw, 1);
3305 
3306 	if (hwstatus & IS_R1_PAR_ERR) {
3307 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3308 			hw->dev[0]->name);
3309 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3310 	}
3311 
3312 	if (hwstatus & IS_R2_PAR_ERR) {
3313 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3314 			hw->dev[1]->name);
3315 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3316 	}
3317 
3318 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3319 		u16 pci_status, pci_cmd;
3320 
3321 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3322 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3323 
3324 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3325 			pci_cmd, pci_status);
3326 
3327 		/* Write the error bits back to clear them. */
3328 		pci_status &= PCI_STATUS_ERROR_BITS;
3329 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3330 		pci_write_config_word(pdev, PCI_COMMAND,
3331 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3332 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3333 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3334 
3335 		/* if error still set then just ignore it */
3336 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3337 		if (hwstatus & IS_IRQ_STAT) {
3338 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3339 			hw->intr_mask &= ~IS_HW_ERR;
3340 		}
3341 	}
3342 }
3343 
3344 /*
3345  * Interrupt from PHY are handled in tasklet (softirq)
3346  * because accessing phy registers requires spin wait which might
3347  * cause excess interrupt latency.
3348  */
3349 static void skge_extirq(struct tasklet_struct *t)
3350 {
3351 	struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3352 	int port;
3353 
3354 	for (port = 0; port < hw->ports; port++) {
3355 		struct net_device *dev = hw->dev[port];
3356 
3357 		if (netif_running(dev)) {
3358 			struct skge_port *skge = netdev_priv(dev);
3359 
3360 			spin_lock(&hw->phy_lock);
3361 			if (!is_genesis(hw))
3362 				yukon_phy_intr(skge);
3363 			else if (hw->phy_type == SK_PHY_BCOM)
3364 				bcom_phy_intr(skge);
3365 			spin_unlock(&hw->phy_lock);
3366 		}
3367 	}
3368 
3369 	spin_lock_irq(&hw->hw_lock);
3370 	hw->intr_mask |= IS_EXT_REG;
3371 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3372 	skge_read32(hw, B0_IMSK);
3373 	spin_unlock_irq(&hw->hw_lock);
3374 }
3375 
3376 static irqreturn_t skge_intr(int irq, void *dev_id)
3377 {
3378 	struct skge_hw *hw = dev_id;
3379 	u32 status;
3380 	int handled = 0;
3381 
3382 	spin_lock(&hw->hw_lock);
3383 	/* Reading this register masks IRQ */
3384 	status = skge_read32(hw, B0_SP_ISRC);
3385 	if (status == 0 || status == ~0)
3386 		goto out;
3387 
3388 	handled = 1;
3389 	status &= hw->intr_mask;
3390 	if (status & IS_EXT_REG) {
3391 		hw->intr_mask &= ~IS_EXT_REG;
3392 		tasklet_schedule(&hw->phy_task);
3393 	}
3394 
3395 	if (status & (IS_XA1_F|IS_R1_F)) {
3396 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3397 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3398 		napi_schedule(&skge->napi);
3399 	}
3400 
3401 	if (status & IS_PA_TO_TX1)
3402 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3403 
3404 	if (status & IS_PA_TO_RX1) {
3405 		++hw->dev[0]->stats.rx_over_errors;
3406 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3407 	}
3408 
3409 
3410 	if (status & IS_MAC1)
3411 		skge_mac_intr(hw, 0);
3412 
3413 	if (hw->dev[1]) {
3414 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3415 
3416 		if (status & (IS_XA2_F|IS_R2_F)) {
3417 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3418 			napi_schedule(&skge->napi);
3419 		}
3420 
3421 		if (status & IS_PA_TO_RX2) {
3422 			++hw->dev[1]->stats.rx_over_errors;
3423 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3424 		}
3425 
3426 		if (status & IS_PA_TO_TX2)
3427 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3428 
3429 		if (status & IS_MAC2)
3430 			skge_mac_intr(hw, 1);
3431 	}
3432 
3433 	if (status & IS_HW_ERR)
3434 		skge_error_irq(hw);
3435 out:
3436 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3437 	skge_read32(hw, B0_IMSK);
3438 	spin_unlock(&hw->hw_lock);
3439 
3440 	return IRQ_RETVAL(handled);
3441 }
3442 
3443 #ifdef CONFIG_NET_POLL_CONTROLLER
3444 static void skge_netpoll(struct net_device *dev)
3445 {
3446 	struct skge_port *skge = netdev_priv(dev);
3447 
3448 	disable_irq(dev->irq);
3449 	skge_intr(dev->irq, skge->hw);
3450 	enable_irq(dev->irq);
3451 }
3452 #endif
3453 
3454 static int skge_set_mac_address(struct net_device *dev, void *p)
3455 {
3456 	struct skge_port *skge = netdev_priv(dev);
3457 	struct skge_hw *hw = skge->hw;
3458 	unsigned port = skge->port;
3459 	const struct sockaddr *addr = p;
3460 	u16 ctrl;
3461 
3462 	if (!is_valid_ether_addr(addr->sa_data))
3463 		return -EADDRNOTAVAIL;
3464 
3465 	eth_hw_addr_set(dev, addr->sa_data);
3466 
3467 	if (!netif_running(dev)) {
3468 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3469 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3470 	} else {
3471 		/* disable Rx */
3472 		spin_lock_bh(&hw->phy_lock);
3473 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3474 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3475 
3476 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3477 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3478 
3479 		if (is_genesis(hw))
3480 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3481 		else {
3482 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3483 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3484 		}
3485 
3486 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3487 		spin_unlock_bh(&hw->phy_lock);
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 static const struct {
3494 	u8 id;
3495 	const char *name;
3496 } skge_chips[] = {
3497 	{ CHIP_ID_GENESIS,	"Genesis" },
3498 	{ CHIP_ID_YUKON,	 "Yukon" },
3499 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3500 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3501 };
3502 
3503 static const char *skge_board_name(const struct skge_hw *hw)
3504 {
3505 	int i;
3506 	static char buf[16];
3507 
3508 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3509 		if (skge_chips[i].id == hw->chip_id)
3510 			return skge_chips[i].name;
3511 
3512 	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3513 	return buf;
3514 }
3515 
3516 
3517 /*
3518  * Setup the board data structure, but don't bring up
3519  * the port(s)
3520  */
3521 static int skge_reset(struct skge_hw *hw)
3522 {
3523 	u32 reg;
3524 	u16 ctst, pci_status;
3525 	u8 t8, mac_cfg, pmd_type;
3526 	int i;
3527 
3528 	ctst = skge_read16(hw, B0_CTST);
3529 
3530 	/* do a SW reset */
3531 	skge_write8(hw, B0_CTST, CS_RST_SET);
3532 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3533 
3534 	/* clear PCI errors, if any */
3535 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3536 	skge_write8(hw, B2_TST_CTRL2, 0);
3537 
3538 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3539 	pci_write_config_word(hw->pdev, PCI_STATUS,
3540 			      pci_status | PCI_STATUS_ERROR_BITS);
3541 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3542 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3543 
3544 	/* restore CLK_RUN bits (for Yukon-Lite) */
3545 	skge_write16(hw, B0_CTST,
3546 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3547 
3548 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3549 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3550 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3551 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3552 
3553 	switch (hw->chip_id) {
3554 	case CHIP_ID_GENESIS:
3555 #ifdef CONFIG_SKGE_GENESIS
3556 		switch (hw->phy_type) {
3557 		case SK_PHY_XMAC:
3558 			hw->phy_addr = PHY_ADDR_XMAC;
3559 			break;
3560 		case SK_PHY_BCOM:
3561 			hw->phy_addr = PHY_ADDR_BCOM;
3562 			break;
3563 		default:
3564 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3565 			       hw->phy_type);
3566 			return -EOPNOTSUPP;
3567 		}
3568 		break;
3569 #else
3570 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3571 		return -EOPNOTSUPP;
3572 #endif
3573 
3574 	case CHIP_ID_YUKON:
3575 	case CHIP_ID_YUKON_LITE:
3576 	case CHIP_ID_YUKON_LP:
3577 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3578 			hw->copper = 1;
3579 
3580 		hw->phy_addr = PHY_ADDR_MARV;
3581 		break;
3582 
3583 	default:
3584 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3585 		       hw->chip_id);
3586 		return -EOPNOTSUPP;
3587 	}
3588 
3589 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3590 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3591 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3592 
3593 	/* read the adapters RAM size */
3594 	t8 = skge_read8(hw, B2_E_0);
3595 	if (is_genesis(hw)) {
3596 		if (t8 == 3) {
3597 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3598 			hw->ram_size = 0x100000;
3599 			hw->ram_offset = 0x80000;
3600 		} else
3601 			hw->ram_size = t8 * 512;
3602 	} else if (t8 == 0)
3603 		hw->ram_size = 0x20000;
3604 	else
3605 		hw->ram_size = t8 * 4096;
3606 
3607 	hw->intr_mask = IS_HW_ERR;
3608 
3609 	/* Use PHY IRQ for all but fiber based Genesis board */
3610 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3611 		hw->intr_mask |= IS_EXT_REG;
3612 
3613 	if (is_genesis(hw))
3614 		genesis_init(hw);
3615 	else {
3616 		/* switch power to VCC (WA for VAUX problem) */
3617 		skge_write8(hw, B0_POWER_CTRL,
3618 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3619 
3620 		/* avoid boards with stuck Hardware error bits */
3621 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3622 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3623 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3624 			hw->intr_mask &= ~IS_HW_ERR;
3625 		}
3626 
3627 		/* Clear PHY COMA */
3628 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3629 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3630 		reg &= ~PCI_PHY_COMA;
3631 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3632 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3633 
3634 
3635 		for (i = 0; i < hw->ports; i++) {
3636 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3637 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3638 		}
3639 	}
3640 
3641 	/* turn off hardware timer (unused) */
3642 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3643 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3644 	skge_write8(hw, B0_LED, LED_STAT_ON);
3645 
3646 	/* enable the Tx Arbiters */
3647 	for (i = 0; i < hw->ports; i++)
3648 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3649 
3650 	/* Initialize ram interface */
3651 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3652 
3653 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3654 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3655 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3656 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3657 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3658 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3659 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3660 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3661 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3662 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3663 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3664 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3665 
3666 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3667 
3668 	/* Set interrupt moderation for Transmit only
3669 	 * Receive interrupts avoided by NAPI
3670 	 */
3671 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3672 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3673 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3674 
3675 	/* Leave irq disabled until first port is brought up. */
3676 	skge_write32(hw, B0_IMSK, 0);
3677 
3678 	for (i = 0; i < hw->ports; i++) {
3679 		if (is_genesis(hw))
3680 			genesis_reset(hw, i);
3681 		else
3682 			yukon_reset(hw, i);
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 
3689 #ifdef CONFIG_SKGE_DEBUG
3690 
3691 static struct dentry *skge_debug;
3692 
3693 static int skge_debug_show(struct seq_file *seq, void *v)
3694 {
3695 	struct net_device *dev = seq->private;
3696 	const struct skge_port *skge = netdev_priv(dev);
3697 	const struct skge_hw *hw = skge->hw;
3698 	const struct skge_element *e;
3699 
3700 	if (!netif_running(dev))
3701 		return -ENETDOWN;
3702 
3703 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3704 		   skge_read32(hw, B0_IMSK));
3705 
3706 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3707 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3708 		const struct skge_tx_desc *t = e->desc;
3709 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3710 			   t->control, t->dma_hi, t->dma_lo, t->status,
3711 			   t->csum_offs, t->csum_write, t->csum_start);
3712 	}
3713 
3714 	seq_puts(seq, "\nRx Ring:\n");
3715 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3716 		const struct skge_rx_desc *r = e->desc;
3717 
3718 		if (r->control & BMU_OWN)
3719 			break;
3720 
3721 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3722 			   r->control, r->dma_hi, r->dma_lo, r->status,
3723 			   r->timestamp, r->csum1, r->csum1_start);
3724 	}
3725 
3726 	return 0;
3727 }
3728 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3729 
3730 /*
3731  * Use network device events to create/remove/rename
3732  * debugfs file entries
3733  */
3734 static int skge_device_event(struct notifier_block *unused,
3735 			     unsigned long event, void *ptr)
3736 {
3737 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3738 	struct skge_port *skge;
3739 
3740 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3741 		goto done;
3742 
3743 	skge = netdev_priv(dev);
3744 	switch (event) {
3745 	case NETDEV_CHANGENAME:
3746 		if (skge->debugfs)
3747 			skge->debugfs = debugfs_rename(skge_debug,
3748 						       skge->debugfs,
3749 						       skge_debug, dev->name);
3750 		break;
3751 
3752 	case NETDEV_GOING_DOWN:
3753 		debugfs_remove(skge->debugfs);
3754 		skge->debugfs = NULL;
3755 		break;
3756 
3757 	case NETDEV_UP:
3758 		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3759 						    dev, &skge_debug_fops);
3760 		break;
3761 	}
3762 
3763 done:
3764 	return NOTIFY_DONE;
3765 }
3766 
3767 static struct notifier_block skge_notifier = {
3768 	.notifier_call = skge_device_event,
3769 };
3770 
3771 
3772 static __init void skge_debug_init(void)
3773 {
3774 	skge_debug = debugfs_create_dir("skge", NULL);
3775 
3776 	register_netdevice_notifier(&skge_notifier);
3777 }
3778 
3779 static __exit void skge_debug_cleanup(void)
3780 {
3781 	if (skge_debug) {
3782 		unregister_netdevice_notifier(&skge_notifier);
3783 		debugfs_remove(skge_debug);
3784 		skge_debug = NULL;
3785 	}
3786 }
3787 
3788 #else
3789 #define skge_debug_init()
3790 #define skge_debug_cleanup()
3791 #endif
3792 
3793 static const struct net_device_ops skge_netdev_ops = {
3794 	.ndo_open		= skge_up,
3795 	.ndo_stop		= skge_down,
3796 	.ndo_start_xmit		= skge_xmit_frame,
3797 	.ndo_eth_ioctl		= skge_ioctl,
3798 	.ndo_get_stats		= skge_get_stats,
3799 	.ndo_tx_timeout		= skge_tx_timeout,
3800 	.ndo_change_mtu		= skge_change_mtu,
3801 	.ndo_validate_addr	= eth_validate_addr,
3802 	.ndo_set_rx_mode	= skge_set_multicast,
3803 	.ndo_set_mac_address	= skge_set_mac_address,
3804 #ifdef CONFIG_NET_POLL_CONTROLLER
3805 	.ndo_poll_controller	= skge_netpoll,
3806 #endif
3807 };
3808 
3809 
3810 /* Initialize network device */
3811 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3812 				       int highmem)
3813 {
3814 	struct skge_port *skge;
3815 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3816 	u8 addr[ETH_ALEN];
3817 
3818 	if (!dev)
3819 		return NULL;
3820 
3821 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3822 	dev->netdev_ops = &skge_netdev_ops;
3823 	dev->ethtool_ops = &skge_ethtool_ops;
3824 	dev->watchdog_timeo = TX_WATCHDOG;
3825 	dev->irq = hw->pdev->irq;
3826 
3827 	/* MTU range: 60 - 9000 */
3828 	dev->min_mtu = ETH_ZLEN;
3829 	dev->max_mtu = ETH_JUMBO_MTU;
3830 
3831 	if (highmem)
3832 		dev->features |= NETIF_F_HIGHDMA;
3833 
3834 	skge = netdev_priv(dev);
3835 	netif_napi_add(dev, &skge->napi, skge_poll);
3836 	skge->netdev = dev;
3837 	skge->hw = hw;
3838 	skge->msg_enable = netif_msg_init(debug, default_msg);
3839 
3840 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3841 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3842 
3843 	/* Auto speed and flow control */
3844 	skge->autoneg = AUTONEG_ENABLE;
3845 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3846 	skge->duplex = -1;
3847 	skge->speed = -1;
3848 	skge->advertising = skge_supported_modes(hw);
3849 
3850 	if (device_can_wakeup(&hw->pdev->dev)) {
3851 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3852 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3853 	}
3854 
3855 	hw->dev[port] = dev;
3856 
3857 	skge->port = port;
3858 
3859 	/* Only used for Genesis XMAC */
3860 	if (is_genesis(hw))
3861 		timer_setup(&skge->link_timer, xm_link_timer, 0);
3862 	else {
3863 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3864 		                   NETIF_F_RXCSUM;
3865 		dev->features |= dev->hw_features;
3866 	}
3867 
3868 	/* read the mac address */
3869 	memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3870 	eth_hw_addr_set(dev, addr);
3871 
3872 	return dev;
3873 }
3874 
3875 static void skge_show_addr(struct net_device *dev)
3876 {
3877 	const struct skge_port *skge = netdev_priv(dev);
3878 
3879 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3880 }
3881 
3882 static int only_32bit_dma;
3883 
3884 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3885 {
3886 	struct net_device *dev, *dev1;
3887 	struct skge_hw *hw;
3888 	int err, using_dac = 0;
3889 
3890 	err = pci_enable_device(pdev);
3891 	if (err) {
3892 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3893 		goto err_out;
3894 	}
3895 
3896 	err = pci_request_regions(pdev, DRV_NAME);
3897 	if (err) {
3898 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3899 		goto err_out_disable_pdev;
3900 	}
3901 
3902 	pci_set_master(pdev);
3903 
3904 	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3905 		using_dac = 1;
3906 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3907 	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3908 		using_dac = 0;
3909 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3910 	}
3911 
3912 	if (err) {
3913 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3914 		goto err_out_free_regions;
3915 	}
3916 
3917 #ifdef __BIG_ENDIAN
3918 	/* byte swap descriptors in hardware */
3919 	{
3920 		u32 reg;
3921 
3922 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3923 		reg |= PCI_REV_DESC;
3924 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3925 	}
3926 #endif
3927 
3928 	err = -ENOMEM;
3929 	/* space for skge@pci:0000:04:00.0 */
3930 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3931 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3932 	if (!hw)
3933 		goto err_out_free_regions;
3934 
3935 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3936 
3937 	hw->pdev = pdev;
3938 	spin_lock_init(&hw->hw_lock);
3939 	spin_lock_init(&hw->phy_lock);
3940 	tasklet_setup(&hw->phy_task, skge_extirq);
3941 
3942 	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3943 	if (!hw->regs) {
3944 		dev_err(&pdev->dev, "cannot map device registers\n");
3945 		goto err_out_free_hw;
3946 	}
3947 
3948 	err = skge_reset(hw);
3949 	if (err)
3950 		goto err_out_iounmap;
3951 
3952 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3953 		DRV_VERSION,
3954 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3955 		skge_board_name(hw), hw->chip_rev);
3956 
3957 	dev = skge_devinit(hw, 0, using_dac);
3958 	if (!dev) {
3959 		err = -ENOMEM;
3960 		goto err_out_led_off;
3961 	}
3962 
3963 	/* Some motherboards are broken and has zero in ROM. */
3964 	if (!is_valid_ether_addr(dev->dev_addr))
3965 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3966 
3967 	err = register_netdev(dev);
3968 	if (err) {
3969 		dev_err(&pdev->dev, "cannot register net device\n");
3970 		goto err_out_free_netdev;
3971 	}
3972 
3973 	skge_show_addr(dev);
3974 
3975 	if (hw->ports > 1) {
3976 		dev1 = skge_devinit(hw, 1, using_dac);
3977 		if (!dev1) {
3978 			err = -ENOMEM;
3979 			goto err_out_unregister;
3980 		}
3981 
3982 		err = register_netdev(dev1);
3983 		if (err) {
3984 			dev_err(&pdev->dev, "cannot register second net device\n");
3985 			goto err_out_free_dev1;
3986 		}
3987 
3988 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3989 				  hw->irq_name, hw);
3990 		if (err) {
3991 			dev_err(&pdev->dev, "cannot assign irq %d\n",
3992 				pdev->irq);
3993 			goto err_out_unregister_dev1;
3994 		}
3995 
3996 		skge_show_addr(dev1);
3997 	}
3998 	pci_set_drvdata(pdev, hw);
3999 
4000 	return 0;
4001 
4002 err_out_unregister_dev1:
4003 	unregister_netdev(dev1);
4004 err_out_free_dev1:
4005 	free_netdev(dev1);
4006 err_out_unregister:
4007 	unregister_netdev(dev);
4008 err_out_free_netdev:
4009 	free_netdev(dev);
4010 err_out_led_off:
4011 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4012 err_out_iounmap:
4013 	iounmap(hw->regs);
4014 err_out_free_hw:
4015 	kfree(hw);
4016 err_out_free_regions:
4017 	pci_release_regions(pdev);
4018 err_out_disable_pdev:
4019 	pci_disable_device(pdev);
4020 err_out:
4021 	return err;
4022 }
4023 
4024 static void skge_remove(struct pci_dev *pdev)
4025 {
4026 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4027 	struct net_device *dev0, *dev1;
4028 
4029 	if (!hw)
4030 		return;
4031 
4032 	dev1 = hw->dev[1];
4033 	if (dev1)
4034 		unregister_netdev(dev1);
4035 	dev0 = hw->dev[0];
4036 	unregister_netdev(dev0);
4037 
4038 	tasklet_kill(&hw->phy_task);
4039 
4040 	spin_lock_irq(&hw->hw_lock);
4041 	hw->intr_mask = 0;
4042 
4043 	if (hw->ports > 1) {
4044 		skge_write32(hw, B0_IMSK, 0);
4045 		skge_read32(hw, B0_IMSK);
4046 	}
4047 	spin_unlock_irq(&hw->hw_lock);
4048 
4049 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4050 	skge_write8(hw, B0_CTST, CS_RST_SET);
4051 
4052 	if (hw->ports > 1)
4053 		free_irq(pdev->irq, hw);
4054 	pci_release_regions(pdev);
4055 	pci_disable_device(pdev);
4056 	if (dev1)
4057 		free_netdev(dev1);
4058 	free_netdev(dev0);
4059 
4060 	iounmap(hw->regs);
4061 	kfree(hw);
4062 }
4063 
4064 #ifdef CONFIG_PM_SLEEP
4065 static int skge_suspend(struct device *dev)
4066 {
4067 	struct skge_hw *hw  = dev_get_drvdata(dev);
4068 	int i;
4069 
4070 	if (!hw)
4071 		return 0;
4072 
4073 	for (i = 0; i < hw->ports; i++) {
4074 		struct net_device *dev = hw->dev[i];
4075 		struct skge_port *skge = netdev_priv(dev);
4076 
4077 		if (netif_running(dev))
4078 			skge_down(dev);
4079 
4080 		if (skge->wol)
4081 			skge_wol_init(skge);
4082 	}
4083 
4084 	skge_write32(hw, B0_IMSK, 0);
4085 
4086 	return 0;
4087 }
4088 
4089 static int skge_resume(struct device *dev)
4090 {
4091 	struct skge_hw *hw  = dev_get_drvdata(dev);
4092 	int i, err;
4093 
4094 	if (!hw)
4095 		return 0;
4096 
4097 	err = skge_reset(hw);
4098 	if (err)
4099 		goto out;
4100 
4101 	for (i = 0; i < hw->ports; i++) {
4102 		struct net_device *dev = hw->dev[i];
4103 
4104 		if (netif_running(dev)) {
4105 			err = skge_up(dev);
4106 
4107 			if (err) {
4108 				netdev_err(dev, "could not up: %d\n", err);
4109 				dev_close(dev);
4110 				goto out;
4111 			}
4112 		}
4113 	}
4114 out:
4115 	return err;
4116 }
4117 
4118 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4119 #define SKGE_PM_OPS (&skge_pm_ops)
4120 
4121 #else
4122 
4123 #define SKGE_PM_OPS NULL
4124 #endif /* CONFIG_PM_SLEEP */
4125 
4126 static void skge_shutdown(struct pci_dev *pdev)
4127 {
4128 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4129 	int i;
4130 
4131 	if (!hw)
4132 		return;
4133 
4134 	for (i = 0; i < hw->ports; i++) {
4135 		struct net_device *dev = hw->dev[i];
4136 		struct skge_port *skge = netdev_priv(dev);
4137 
4138 		if (skge->wol)
4139 			skge_wol_init(skge);
4140 	}
4141 
4142 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4143 	pci_set_power_state(pdev, PCI_D3hot);
4144 }
4145 
4146 static struct pci_driver skge_driver = {
4147 	.name =         DRV_NAME,
4148 	.id_table =     skge_id_table,
4149 	.probe =        skge_probe,
4150 	.remove =       skge_remove,
4151 	.shutdown =	skge_shutdown,
4152 	.driver.pm =	SKGE_PM_OPS,
4153 };
4154 
4155 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4156 	{
4157 		.ident = "Gigabyte nForce boards",
4158 		.matches = {
4159 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4160 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4161 		},
4162 	},
4163 	{
4164 		.ident = "ASUS P5NSLI",
4165 		.matches = {
4166 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4167 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4168 		},
4169 	},
4170 	{
4171 		.ident = "FUJITSU SIEMENS A8NE-FM",
4172 		.matches = {
4173 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4174 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4175 		},
4176 	},
4177 	{}
4178 };
4179 
4180 static int __init skge_init_module(void)
4181 {
4182 	if (dmi_check_system(skge_32bit_dma_boards))
4183 		only_32bit_dma = 1;
4184 	skge_debug_init();
4185 	return pci_register_driver(&skge_driver);
4186 }
4187 
4188 static void __exit skge_cleanup_module(void)
4189 {
4190 	pci_unregister_driver(&skge_driver);
4191 	skge_debug_cleanup();
4192 }
4193 
4194 module_init(skge_init_module);
4195 module_exit(skge_cleanup_module);
4196