xref: /linux/drivers/net/ethernet/marvell/skge.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3  * Ethernet adapters. Based on earlier sk98lin, e100 and
4  * FreeBSD if_sk drivers.
5  *
6  * This driver intentionally does not support all the features
7  * of the original driver such as link fail-over and link management because
8  * those should be done at higher levels.
9  *
10  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
48 #include <asm/irq.h>
49 
50 #include "skge.h"
51 
52 #define DRV_NAME		"skge"
53 #define DRV_VERSION		"1.14"
54 
55 #define DEFAULT_TX_RING_SIZE	128
56 #define DEFAULT_RX_RING_SIZE	512
57 #define MAX_TX_RING_SIZE	1024
58 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE	4096
60 #define RX_COPY_THRESHOLD	128
61 #define RX_BUF_SIZE		1536
62 #define PHY_RETRIES	        1000
63 #define ETH_JUMBO_MTU		9000
64 #define TX_WATCHDOG		(5 * HZ)
65 #define NAPI_WEIGHT		64
66 #define BLINK_MS		250
67 #define LINK_HZ			HZ
68 
69 #define SKGE_EEPROM_MAGIC	0x9933aabb
70 
71 
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION);
76 
77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
79 				NETIF_MSG_IFDOWN);
80 
81 static int debug = -1;	/* defaults above */
82 module_param(debug, int, 0);
83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84 
85 static const struct pci_device_id skge_id_table[] = {
86 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
87 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90 #endif
91 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
93 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
94 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
95 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
96 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
97 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
98 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
99 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100 	{ 0 }
101 };
102 MODULE_DEVICE_TABLE(pci, skge_id_table);
103 
104 static int skge_up(struct net_device *dev);
105 static int skge_down(struct net_device *dev);
106 static void skge_phy_reset(struct skge_port *skge);
107 static void skge_tx_clean(struct net_device *dev);
108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110 static void genesis_get_stats(struct skge_port *skge, u64 *data);
111 static void yukon_get_stats(struct skge_port *skge, u64 *data);
112 static void yukon_init(struct skge_hw *hw, int port);
113 static void genesis_mac_init(struct skge_hw *hw, int port);
114 static void genesis_link_up(struct skge_port *skge);
115 static void skge_set_multicast(struct net_device *dev);
116 static irqreturn_t skge_intr(int irq, void *dev_id);
117 
118 /* Avoid conditionals by using array */
119 static const int txqaddr[] = { Q_XA1, Q_XA2 };
120 static const int rxqaddr[] = { Q_R1, Q_R2 };
121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
125 
126 static inline bool is_genesis(const struct skge_hw *hw)
127 {
128 #ifdef CONFIG_SKGE_GENESIS
129 	return hw->chip_id == CHIP_ID_GENESIS;
130 #else
131 	return false;
132 #endif
133 }
134 
135 static int skge_get_regs_len(struct net_device *dev)
136 {
137 	return 0x4000;
138 }
139 
140 /*
141  * Returns copy of whole control register region
142  * Note: skip RAM address register because accessing it will
143  * 	 cause bus hangs!
144  */
145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146 			  void *p)
147 {
148 	const struct skge_port *skge = netdev_priv(dev);
149 	const void __iomem *io = skge->hw->regs;
150 
151 	regs->version = 1;
152 	memset(p, 0, regs->len);
153 	memcpy_fromio(p, io, B3_RAM_ADDR);
154 
155 	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
156 		      regs->len - B3_RI_WTO_R1);
157 }
158 
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32 wol_supported(const struct skge_hw *hw)
161 {
162 	if (is_genesis(hw))
163 		return 0;
164 
165 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166 		return 0;
167 
168 	return WAKE_MAGIC | WAKE_PHY;
169 }
170 
171 static void skge_wol_init(struct skge_port *skge)
172 {
173 	struct skge_hw *hw = skge->hw;
174 	int port = skge->port;
175 	u16 ctrl;
176 
177 	skge_write16(hw, B0_CTST, CS_RST_CLR);
178 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179 
180 	/* Turn on Vaux */
181 	skge_write8(hw, B0_POWER_CTRL,
182 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183 
184 	/* WA code for COMA mode -- clear PHY reset */
185 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187 		u32 reg = skge_read32(hw, B2_GP_IO);
188 		reg |= GP_DIR_9;
189 		reg &= ~GP_IO_9;
190 		skge_write32(hw, B2_GP_IO, reg);
191 	}
192 
193 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
194 		     GPC_DIS_SLEEP |
195 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
196 		     GPC_ANEG_1 | GPC_RST_SET);
197 
198 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
199 		     GPC_DIS_SLEEP |
200 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
201 		     GPC_ANEG_1 | GPC_RST_CLR);
202 
203 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204 
205 	/* Force to 10/100 skge_reset will re-enable on resume	 */
206 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
207 		     (PHY_AN_100FULL | PHY_AN_100HALF |
208 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
209 	/* no 1000 HD/FD */
210 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211 	gm_phy_write(hw, port, PHY_MARV_CTRL,
212 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
213 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
214 
215 
216 	/* Set GMAC to no flow control and auto update for speed/duplex */
217 	gma_write16(hw, port, GM_GP_CTRL,
218 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
219 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220 
221 	/* Set WOL address */
222 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223 		    skge->netdev->dev_addr, ETH_ALEN);
224 
225 	/* Turn on appropriate WOL control bits */
226 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227 	ctrl = 0;
228 	if (skge->wol & WAKE_PHY)
229 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230 	else
231 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232 
233 	if (skge->wol & WAKE_MAGIC)
234 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235 	else
236 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
237 
238 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
239 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240 
241 	/* block receiver */
242 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
243 }
244 
245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246 {
247 	struct skge_port *skge = netdev_priv(dev);
248 
249 	wol->supported = wol_supported(skge->hw);
250 	wol->wolopts = skge->wol;
251 }
252 
253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254 {
255 	struct skge_port *skge = netdev_priv(dev);
256 	struct skge_hw *hw = skge->hw;
257 
258 	if ((wol->wolopts & ~wol_supported(hw)) ||
259 	    !device_can_wakeup(&hw->pdev->dev))
260 		return -EOPNOTSUPP;
261 
262 	skge->wol = wol->wolopts;
263 
264 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
265 
266 	return 0;
267 }
268 
269 /* Determine supported/advertised modes based on hardware.
270  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
271  */
272 static u32 skge_supported_modes(const struct skge_hw *hw)
273 {
274 	u32 supported;
275 
276 	if (hw->copper) {
277 		supported = (SUPPORTED_10baseT_Half |
278 			     SUPPORTED_10baseT_Full |
279 			     SUPPORTED_100baseT_Half |
280 			     SUPPORTED_100baseT_Full |
281 			     SUPPORTED_1000baseT_Half |
282 			     SUPPORTED_1000baseT_Full |
283 			     SUPPORTED_Autoneg |
284 			     SUPPORTED_TP);
285 
286 		if (is_genesis(hw))
287 			supported &= ~(SUPPORTED_10baseT_Half |
288 				       SUPPORTED_10baseT_Full |
289 				       SUPPORTED_100baseT_Half |
290 				       SUPPORTED_100baseT_Full);
291 
292 		else if (hw->chip_id == CHIP_ID_YUKON)
293 			supported &= ~SUPPORTED_1000baseT_Half;
294 	} else
295 		supported = (SUPPORTED_1000baseT_Full |
296 			     SUPPORTED_1000baseT_Half |
297 			     SUPPORTED_FIBRE |
298 			     SUPPORTED_Autoneg);
299 
300 	return supported;
301 }
302 
303 static int skge_get_link_ksettings(struct net_device *dev,
304 				   struct ethtool_link_ksettings *cmd)
305 {
306 	struct skge_port *skge = netdev_priv(dev);
307 	struct skge_hw *hw = skge->hw;
308 	u32 supported, advertising;
309 
310 	supported = skge_supported_modes(hw);
311 
312 	if (hw->copper) {
313 		cmd->base.port = PORT_TP;
314 		cmd->base.phy_address = hw->phy_addr;
315 	} else
316 		cmd->base.port = PORT_FIBRE;
317 
318 	advertising = skge->advertising;
319 	cmd->base.autoneg = skge->autoneg;
320 	cmd->base.speed = skge->speed;
321 	cmd->base.duplex = skge->duplex;
322 
323 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
324 						supported);
325 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
326 						advertising);
327 
328 	return 0;
329 }
330 
331 static int skge_set_link_ksettings(struct net_device *dev,
332 				   const struct ethtool_link_ksettings *cmd)
333 {
334 	struct skge_port *skge = netdev_priv(dev);
335 	const struct skge_hw *hw = skge->hw;
336 	u32 supported = skge_supported_modes(hw);
337 	int err = 0;
338 	u32 advertising;
339 
340 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
341 						cmd->link_modes.advertising);
342 
343 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
344 		advertising = supported;
345 		skge->duplex = -1;
346 		skge->speed = -1;
347 	} else {
348 		u32 setting;
349 		u32 speed = cmd->base.speed;
350 
351 		switch (speed) {
352 		case SPEED_1000:
353 			if (cmd->base.duplex == DUPLEX_FULL)
354 				setting = SUPPORTED_1000baseT_Full;
355 			else if (cmd->base.duplex == DUPLEX_HALF)
356 				setting = SUPPORTED_1000baseT_Half;
357 			else
358 				return -EINVAL;
359 			break;
360 		case SPEED_100:
361 			if (cmd->base.duplex == DUPLEX_FULL)
362 				setting = SUPPORTED_100baseT_Full;
363 			else if (cmd->base.duplex == DUPLEX_HALF)
364 				setting = SUPPORTED_100baseT_Half;
365 			else
366 				return -EINVAL;
367 			break;
368 
369 		case SPEED_10:
370 			if (cmd->base.duplex == DUPLEX_FULL)
371 				setting = SUPPORTED_10baseT_Full;
372 			else if (cmd->base.duplex == DUPLEX_HALF)
373 				setting = SUPPORTED_10baseT_Half;
374 			else
375 				return -EINVAL;
376 			break;
377 		default:
378 			return -EINVAL;
379 		}
380 
381 		if ((setting & supported) == 0)
382 			return -EINVAL;
383 
384 		skge->speed = speed;
385 		skge->duplex = cmd->base.duplex;
386 	}
387 
388 	skge->autoneg = cmd->base.autoneg;
389 	skge->advertising = advertising;
390 
391 	if (netif_running(dev)) {
392 		skge_down(dev);
393 		err = skge_up(dev);
394 		if (err) {
395 			dev_close(dev);
396 			return err;
397 		}
398 	}
399 
400 	return 0;
401 }
402 
403 static void skge_get_drvinfo(struct net_device *dev,
404 			     struct ethtool_drvinfo *info)
405 {
406 	struct skge_port *skge = netdev_priv(dev);
407 
408 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
409 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
410 	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
411 		sizeof(info->bus_info));
412 }
413 
414 static const struct skge_stat {
415 	char 	   name[ETH_GSTRING_LEN];
416 	u16	   xmac_offset;
417 	u16	   gma_offset;
418 } skge_stats[] = {
419 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
420 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
421 
422 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
423 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
424 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
425 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
426 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
427 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
428 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
429 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
430 
431 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
432 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
433 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
434 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
435 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
436 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
437 
438 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
439 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
440 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
441 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
442 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
443 };
444 
445 static int skge_get_sset_count(struct net_device *dev, int sset)
446 {
447 	switch (sset) {
448 	case ETH_SS_STATS:
449 		return ARRAY_SIZE(skge_stats);
450 	default:
451 		return -EOPNOTSUPP;
452 	}
453 }
454 
455 static void skge_get_ethtool_stats(struct net_device *dev,
456 				   struct ethtool_stats *stats, u64 *data)
457 {
458 	struct skge_port *skge = netdev_priv(dev);
459 
460 	if (is_genesis(skge->hw))
461 		genesis_get_stats(skge, data);
462 	else
463 		yukon_get_stats(skge, data);
464 }
465 
466 /* Use hardware MIB variables for critical path statistics and
467  * transmit feedback not reported at interrupt.
468  * Other errors are accounted for in interrupt handler.
469  */
470 static struct net_device_stats *skge_get_stats(struct net_device *dev)
471 {
472 	struct skge_port *skge = netdev_priv(dev);
473 	u64 data[ARRAY_SIZE(skge_stats)];
474 
475 	if (is_genesis(skge->hw))
476 		genesis_get_stats(skge, data);
477 	else
478 		yukon_get_stats(skge, data);
479 
480 	dev->stats.tx_bytes = data[0];
481 	dev->stats.rx_bytes = data[1];
482 	dev->stats.tx_packets = data[2] + data[4] + data[6];
483 	dev->stats.rx_packets = data[3] + data[5] + data[7];
484 	dev->stats.multicast = data[3] + data[5];
485 	dev->stats.collisions = data[10];
486 	dev->stats.tx_aborted_errors = data[12];
487 
488 	return &dev->stats;
489 }
490 
491 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
492 {
493 	int i;
494 
495 	switch (stringset) {
496 	case ETH_SS_STATS:
497 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
498 			memcpy(data + i * ETH_GSTRING_LEN,
499 			       skge_stats[i].name, ETH_GSTRING_LEN);
500 		break;
501 	}
502 }
503 
504 static void skge_get_ring_param(struct net_device *dev,
505 				struct ethtool_ringparam *p)
506 {
507 	struct skge_port *skge = netdev_priv(dev);
508 
509 	p->rx_max_pending = MAX_RX_RING_SIZE;
510 	p->tx_max_pending = MAX_TX_RING_SIZE;
511 
512 	p->rx_pending = skge->rx_ring.count;
513 	p->tx_pending = skge->tx_ring.count;
514 }
515 
516 static int skge_set_ring_param(struct net_device *dev,
517 			       struct ethtool_ringparam *p)
518 {
519 	struct skge_port *skge = netdev_priv(dev);
520 	int err = 0;
521 
522 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
523 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
524 		return -EINVAL;
525 
526 	skge->rx_ring.count = p->rx_pending;
527 	skge->tx_ring.count = p->tx_pending;
528 
529 	if (netif_running(dev)) {
530 		skge_down(dev);
531 		err = skge_up(dev);
532 		if (err)
533 			dev_close(dev);
534 	}
535 
536 	return err;
537 }
538 
539 static u32 skge_get_msglevel(struct net_device *netdev)
540 {
541 	struct skge_port *skge = netdev_priv(netdev);
542 	return skge->msg_enable;
543 }
544 
545 static void skge_set_msglevel(struct net_device *netdev, u32 value)
546 {
547 	struct skge_port *skge = netdev_priv(netdev);
548 	skge->msg_enable = value;
549 }
550 
551 static int skge_nway_reset(struct net_device *dev)
552 {
553 	struct skge_port *skge = netdev_priv(dev);
554 
555 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
556 		return -EINVAL;
557 
558 	skge_phy_reset(skge);
559 	return 0;
560 }
561 
562 static void skge_get_pauseparam(struct net_device *dev,
563 				struct ethtool_pauseparam *ecmd)
564 {
565 	struct skge_port *skge = netdev_priv(dev);
566 
567 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
568 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
569 	ecmd->tx_pause = (ecmd->rx_pause ||
570 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
571 
572 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
573 }
574 
575 static int skge_set_pauseparam(struct net_device *dev,
576 			       struct ethtool_pauseparam *ecmd)
577 {
578 	struct skge_port *skge = netdev_priv(dev);
579 	struct ethtool_pauseparam old;
580 	int err = 0;
581 
582 	skge_get_pauseparam(dev, &old);
583 
584 	if (ecmd->autoneg != old.autoneg)
585 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
586 	else {
587 		if (ecmd->rx_pause && ecmd->tx_pause)
588 			skge->flow_control = FLOW_MODE_SYMMETRIC;
589 		else if (ecmd->rx_pause && !ecmd->tx_pause)
590 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
591 		else if (!ecmd->rx_pause && ecmd->tx_pause)
592 			skge->flow_control = FLOW_MODE_LOC_SEND;
593 		else
594 			skge->flow_control = FLOW_MODE_NONE;
595 	}
596 
597 	if (netif_running(dev)) {
598 		skge_down(dev);
599 		err = skge_up(dev);
600 		if (err) {
601 			dev_close(dev);
602 			return err;
603 		}
604 	}
605 
606 	return 0;
607 }
608 
609 /* Chip internal frequency for clock calculations */
610 static inline u32 hwkhz(const struct skge_hw *hw)
611 {
612 	return is_genesis(hw) ? 53125 : 78125;
613 }
614 
615 /* Chip HZ to microseconds */
616 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
617 {
618 	return (ticks * 1000) / hwkhz(hw);
619 }
620 
621 /* Microseconds to chip HZ */
622 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
623 {
624 	return hwkhz(hw) * usec / 1000;
625 }
626 
627 static int skge_get_coalesce(struct net_device *dev,
628 			     struct ethtool_coalesce *ecmd)
629 {
630 	struct skge_port *skge = netdev_priv(dev);
631 	struct skge_hw *hw = skge->hw;
632 	int port = skge->port;
633 
634 	ecmd->rx_coalesce_usecs = 0;
635 	ecmd->tx_coalesce_usecs = 0;
636 
637 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
638 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
639 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
640 
641 		if (msk & rxirqmask[port])
642 			ecmd->rx_coalesce_usecs = delay;
643 		if (msk & txirqmask[port])
644 			ecmd->tx_coalesce_usecs = delay;
645 	}
646 
647 	return 0;
648 }
649 
650 /* Note: interrupt timer is per board, but can turn on/off per port */
651 static int skge_set_coalesce(struct net_device *dev,
652 			     struct ethtool_coalesce *ecmd)
653 {
654 	struct skge_port *skge = netdev_priv(dev);
655 	struct skge_hw *hw = skge->hw;
656 	int port = skge->port;
657 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
658 	u32 delay = 25;
659 
660 	if (ecmd->rx_coalesce_usecs == 0)
661 		msk &= ~rxirqmask[port];
662 	else if (ecmd->rx_coalesce_usecs < 25 ||
663 		 ecmd->rx_coalesce_usecs > 33333)
664 		return -EINVAL;
665 	else {
666 		msk |= rxirqmask[port];
667 		delay = ecmd->rx_coalesce_usecs;
668 	}
669 
670 	if (ecmd->tx_coalesce_usecs == 0)
671 		msk &= ~txirqmask[port];
672 	else if (ecmd->tx_coalesce_usecs < 25 ||
673 		 ecmd->tx_coalesce_usecs > 33333)
674 		return -EINVAL;
675 	else {
676 		msk |= txirqmask[port];
677 		delay = min(delay, ecmd->rx_coalesce_usecs);
678 	}
679 
680 	skge_write32(hw, B2_IRQM_MSK, msk);
681 	if (msk == 0)
682 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
683 	else {
684 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
685 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
686 	}
687 	return 0;
688 }
689 
690 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
691 static void skge_led(struct skge_port *skge, enum led_mode mode)
692 {
693 	struct skge_hw *hw = skge->hw;
694 	int port = skge->port;
695 
696 	spin_lock_bh(&hw->phy_lock);
697 	if (is_genesis(hw)) {
698 		switch (mode) {
699 		case LED_MODE_OFF:
700 			if (hw->phy_type == SK_PHY_BCOM)
701 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
702 			else {
703 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
704 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
705 			}
706 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
707 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
708 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
709 			break;
710 
711 		case LED_MODE_ON:
712 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
713 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
714 
715 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
716 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
717 
718 			break;
719 
720 		case LED_MODE_TST:
721 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
722 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
723 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
724 
725 			if (hw->phy_type == SK_PHY_BCOM)
726 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
727 			else {
728 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
729 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
730 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
731 			}
732 
733 		}
734 	} else {
735 		switch (mode) {
736 		case LED_MODE_OFF:
737 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
738 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
739 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
740 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
741 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
742 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
743 				     PHY_M_LED_MO_RX(MO_LED_OFF));
744 			break;
745 		case LED_MODE_ON:
746 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
747 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
748 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
749 				     PHY_M_LEDC_TX_CTRL |
750 				     PHY_M_LEDC_DP_CTRL);
751 
752 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
753 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
754 				     (skge->speed == SPEED_100 ?
755 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
756 			break;
757 		case LED_MODE_TST:
758 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
759 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
760 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
761 				     PHY_M_LED_MO_10(MO_LED_ON)   |
762 				     PHY_M_LED_MO_100(MO_LED_ON)  |
763 				     PHY_M_LED_MO_1000(MO_LED_ON) |
764 				     PHY_M_LED_MO_RX(MO_LED_ON));
765 		}
766 	}
767 	spin_unlock_bh(&hw->phy_lock);
768 }
769 
770 /* blink LED's for finding board */
771 static int skge_set_phys_id(struct net_device *dev,
772 			    enum ethtool_phys_id_state state)
773 {
774 	struct skge_port *skge = netdev_priv(dev);
775 
776 	switch (state) {
777 	case ETHTOOL_ID_ACTIVE:
778 		return 2;	/* cycle on/off twice per second */
779 
780 	case ETHTOOL_ID_ON:
781 		skge_led(skge, LED_MODE_TST);
782 		break;
783 
784 	case ETHTOOL_ID_OFF:
785 		skge_led(skge, LED_MODE_OFF);
786 		break;
787 
788 	case ETHTOOL_ID_INACTIVE:
789 		/* back to regular LED state */
790 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
791 	}
792 
793 	return 0;
794 }
795 
796 static int skge_get_eeprom_len(struct net_device *dev)
797 {
798 	struct skge_port *skge = netdev_priv(dev);
799 	u32 reg2;
800 
801 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
802 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
803 }
804 
805 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
806 {
807 	u32 val;
808 
809 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
810 
811 	do {
812 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
813 	} while (!(offset & PCI_VPD_ADDR_F));
814 
815 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
816 	return val;
817 }
818 
819 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
820 {
821 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
822 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
823 			      offset | PCI_VPD_ADDR_F);
824 
825 	do {
826 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
827 	} while (offset & PCI_VPD_ADDR_F);
828 }
829 
830 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
831 			   u8 *data)
832 {
833 	struct skge_port *skge = netdev_priv(dev);
834 	struct pci_dev *pdev = skge->hw->pdev;
835 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
836 	int length = eeprom->len;
837 	u16 offset = eeprom->offset;
838 
839 	if (!cap)
840 		return -EINVAL;
841 
842 	eeprom->magic = SKGE_EEPROM_MAGIC;
843 
844 	while (length > 0) {
845 		u32 val = skge_vpd_read(pdev, cap, offset);
846 		int n = min_t(int, length, sizeof(val));
847 
848 		memcpy(data, &val, n);
849 		length -= n;
850 		data += n;
851 		offset += n;
852 	}
853 	return 0;
854 }
855 
856 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
857 			   u8 *data)
858 {
859 	struct skge_port *skge = netdev_priv(dev);
860 	struct pci_dev *pdev = skge->hw->pdev;
861 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
862 	int length = eeprom->len;
863 	u16 offset = eeprom->offset;
864 
865 	if (!cap)
866 		return -EINVAL;
867 
868 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
869 		return -EINVAL;
870 
871 	while (length > 0) {
872 		u32 val;
873 		int n = min_t(int, length, sizeof(val));
874 
875 		if (n < sizeof(val))
876 			val = skge_vpd_read(pdev, cap, offset);
877 		memcpy(&val, data, n);
878 
879 		skge_vpd_write(pdev, cap, offset, val);
880 
881 		length -= n;
882 		data += n;
883 		offset += n;
884 	}
885 	return 0;
886 }
887 
888 static const struct ethtool_ops skge_ethtool_ops = {
889 	.get_drvinfo	= skge_get_drvinfo,
890 	.get_regs_len	= skge_get_regs_len,
891 	.get_regs	= skge_get_regs,
892 	.get_wol	= skge_get_wol,
893 	.set_wol	= skge_set_wol,
894 	.get_msglevel	= skge_get_msglevel,
895 	.set_msglevel	= skge_set_msglevel,
896 	.nway_reset	= skge_nway_reset,
897 	.get_link	= ethtool_op_get_link,
898 	.get_eeprom_len	= skge_get_eeprom_len,
899 	.get_eeprom	= skge_get_eeprom,
900 	.set_eeprom	= skge_set_eeprom,
901 	.get_ringparam	= skge_get_ring_param,
902 	.set_ringparam	= skge_set_ring_param,
903 	.get_pauseparam = skge_get_pauseparam,
904 	.set_pauseparam = skge_set_pauseparam,
905 	.get_coalesce	= skge_get_coalesce,
906 	.set_coalesce	= skge_set_coalesce,
907 	.get_strings	= skge_get_strings,
908 	.set_phys_id	= skge_set_phys_id,
909 	.get_sset_count = skge_get_sset_count,
910 	.get_ethtool_stats = skge_get_ethtool_stats,
911 	.get_link_ksettings = skge_get_link_ksettings,
912 	.set_link_ksettings = skge_set_link_ksettings,
913 };
914 
915 /*
916  * Allocate ring elements and chain them together
917  * One-to-one association of board descriptors with ring elements
918  */
919 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
920 {
921 	struct skge_tx_desc *d;
922 	struct skge_element *e;
923 	int i;
924 
925 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
926 	if (!ring->start)
927 		return -ENOMEM;
928 
929 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
930 		e->desc = d;
931 		if (i == ring->count - 1) {
932 			e->next = ring->start;
933 			d->next_offset = base;
934 		} else {
935 			e->next = e + 1;
936 			d->next_offset = base + (i+1) * sizeof(*d);
937 		}
938 	}
939 	ring->to_use = ring->to_clean = ring->start;
940 
941 	return 0;
942 }
943 
944 /* Allocate and setup a new buffer for receiving */
945 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
946 			 struct sk_buff *skb, unsigned int bufsize)
947 {
948 	struct skge_rx_desc *rd = e->desc;
949 	dma_addr_t map;
950 
951 	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
952 			     PCI_DMA_FROMDEVICE);
953 
954 	if (pci_dma_mapping_error(skge->hw->pdev, map))
955 		return -1;
956 
957 	rd->dma_lo = lower_32_bits(map);
958 	rd->dma_hi = upper_32_bits(map);
959 	e->skb = skb;
960 	rd->csum1_start = ETH_HLEN;
961 	rd->csum2_start = ETH_HLEN;
962 	rd->csum1 = 0;
963 	rd->csum2 = 0;
964 
965 	wmb();
966 
967 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
968 	dma_unmap_addr_set(e, mapaddr, map);
969 	dma_unmap_len_set(e, maplen, bufsize);
970 	return 0;
971 }
972 
973 /* Resume receiving using existing skb,
974  * Note: DMA address is not changed by chip.
975  * 	 MTU not changed while receiver active.
976  */
977 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
978 {
979 	struct skge_rx_desc *rd = e->desc;
980 
981 	rd->csum2 = 0;
982 	rd->csum2_start = ETH_HLEN;
983 
984 	wmb();
985 
986 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
987 }
988 
989 
990 /* Free all  buffers in receive ring, assumes receiver stopped */
991 static void skge_rx_clean(struct skge_port *skge)
992 {
993 	struct skge_hw *hw = skge->hw;
994 	struct skge_ring *ring = &skge->rx_ring;
995 	struct skge_element *e;
996 
997 	e = ring->start;
998 	do {
999 		struct skge_rx_desc *rd = e->desc;
1000 		rd->control = 0;
1001 		if (e->skb) {
1002 			pci_unmap_single(hw->pdev,
1003 					 dma_unmap_addr(e, mapaddr),
1004 					 dma_unmap_len(e, maplen),
1005 					 PCI_DMA_FROMDEVICE);
1006 			dev_kfree_skb(e->skb);
1007 			e->skb = NULL;
1008 		}
1009 	} while ((e = e->next) != ring->start);
1010 }
1011 
1012 
1013 /* Allocate buffers for receive ring
1014  * For receive:  to_clean is next received frame.
1015  */
1016 static int skge_rx_fill(struct net_device *dev)
1017 {
1018 	struct skge_port *skge = netdev_priv(dev);
1019 	struct skge_ring *ring = &skge->rx_ring;
1020 	struct skge_element *e;
1021 
1022 	e = ring->start;
1023 	do {
1024 		struct sk_buff *skb;
1025 
1026 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1027 					 GFP_KERNEL);
1028 		if (!skb)
1029 			return -ENOMEM;
1030 
1031 		skb_reserve(skb, NET_IP_ALIGN);
1032 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1033 			dev_kfree_skb(skb);
1034 			return -EIO;
1035 		}
1036 	} while ((e = e->next) != ring->start);
1037 
1038 	ring->to_clean = ring->start;
1039 	return 0;
1040 }
1041 
1042 static const char *skge_pause(enum pause_status status)
1043 {
1044 	switch (status) {
1045 	case FLOW_STAT_NONE:
1046 		return "none";
1047 	case FLOW_STAT_REM_SEND:
1048 		return "rx only";
1049 	case FLOW_STAT_LOC_SEND:
1050 		return "tx_only";
1051 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1052 		return "both";
1053 	default:
1054 		return "indeterminated";
1055 	}
1056 }
1057 
1058 
1059 static void skge_link_up(struct skge_port *skge)
1060 {
1061 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1062 		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1063 
1064 	netif_carrier_on(skge->netdev);
1065 	netif_wake_queue(skge->netdev);
1066 
1067 	netif_info(skge, link, skge->netdev,
1068 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1069 		   skge->speed,
1070 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1071 		   skge_pause(skge->flow_status));
1072 }
1073 
1074 static void skge_link_down(struct skge_port *skge)
1075 {
1076 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1077 	netif_carrier_off(skge->netdev);
1078 	netif_stop_queue(skge->netdev);
1079 
1080 	netif_info(skge, link, skge->netdev, "Link is down\n");
1081 }
1082 
1083 static void xm_link_down(struct skge_hw *hw, int port)
1084 {
1085 	struct net_device *dev = hw->dev[port];
1086 	struct skge_port *skge = netdev_priv(dev);
1087 
1088 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1089 
1090 	if (netif_carrier_ok(dev))
1091 		skge_link_down(skge);
1092 }
1093 
1094 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1095 {
1096 	int i;
1097 
1098 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1099 	*val = xm_read16(hw, port, XM_PHY_DATA);
1100 
1101 	if (hw->phy_type == SK_PHY_XMAC)
1102 		goto ready;
1103 
1104 	for (i = 0; i < PHY_RETRIES; i++) {
1105 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1106 			goto ready;
1107 		udelay(1);
1108 	}
1109 
1110 	return -ETIMEDOUT;
1111  ready:
1112 	*val = xm_read16(hw, port, XM_PHY_DATA);
1113 
1114 	return 0;
1115 }
1116 
1117 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1118 {
1119 	u16 v = 0;
1120 	if (__xm_phy_read(hw, port, reg, &v))
1121 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1122 	return v;
1123 }
1124 
1125 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1126 {
1127 	int i;
1128 
1129 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1130 	for (i = 0; i < PHY_RETRIES; i++) {
1131 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1132 			goto ready;
1133 		udelay(1);
1134 	}
1135 	return -EIO;
1136 
1137  ready:
1138 	xm_write16(hw, port, XM_PHY_DATA, val);
1139 	for (i = 0; i < PHY_RETRIES; i++) {
1140 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1141 			return 0;
1142 		udelay(1);
1143 	}
1144 	return -ETIMEDOUT;
1145 }
1146 
1147 static void genesis_init(struct skge_hw *hw)
1148 {
1149 	/* set blink source counter */
1150 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1151 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1152 
1153 	/* configure mac arbiter */
1154 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1155 
1156 	/* configure mac arbiter timeout values */
1157 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1158 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1159 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1160 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1161 
1162 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1163 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1164 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1165 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1166 
1167 	/* configure packet arbiter timeout */
1168 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1169 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1170 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1171 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1172 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1173 }
1174 
1175 static void genesis_reset(struct skge_hw *hw, int port)
1176 {
1177 	static const u8 zero[8]  = { 0 };
1178 	u32 reg;
1179 
1180 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1181 
1182 	/* reset the statistics module */
1183 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1184 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1185 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1186 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1187 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1188 
1189 	/* disable Broadcom PHY IRQ */
1190 	if (hw->phy_type == SK_PHY_BCOM)
1191 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1192 
1193 	xm_outhash(hw, port, XM_HSM, zero);
1194 
1195 	/* Flush TX and RX fifo */
1196 	reg = xm_read32(hw, port, XM_MODE);
1197 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1198 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1199 }
1200 
1201 /* Convert mode to MII values  */
1202 static const u16 phy_pause_map[] = {
1203 	[FLOW_MODE_NONE] =	0,
1204 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1205 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1206 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1207 };
1208 
1209 /* special defines for FIBER (88E1011S only) */
1210 static const u16 fiber_pause_map[] = {
1211 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1212 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1213 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1214 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1215 };
1216 
1217 
1218 /* Check status of Broadcom phy link */
1219 static void bcom_check_link(struct skge_hw *hw, int port)
1220 {
1221 	struct net_device *dev = hw->dev[port];
1222 	struct skge_port *skge = netdev_priv(dev);
1223 	u16 status;
1224 
1225 	/* read twice because of latch */
1226 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1227 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1228 
1229 	if ((status & PHY_ST_LSYNC) == 0) {
1230 		xm_link_down(hw, port);
1231 		return;
1232 	}
1233 
1234 	if (skge->autoneg == AUTONEG_ENABLE) {
1235 		u16 lpa, aux;
1236 
1237 		if (!(status & PHY_ST_AN_OVER))
1238 			return;
1239 
1240 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1241 		if (lpa & PHY_B_AN_RF) {
1242 			netdev_notice(dev, "remote fault\n");
1243 			return;
1244 		}
1245 
1246 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1247 
1248 		/* Check Duplex mismatch */
1249 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1250 		case PHY_B_RES_1000FD:
1251 			skge->duplex = DUPLEX_FULL;
1252 			break;
1253 		case PHY_B_RES_1000HD:
1254 			skge->duplex = DUPLEX_HALF;
1255 			break;
1256 		default:
1257 			netdev_notice(dev, "duplex mismatch\n");
1258 			return;
1259 		}
1260 
1261 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1262 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1263 		case PHY_B_AS_PAUSE_MSK:
1264 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1265 			break;
1266 		case PHY_B_AS_PRR:
1267 			skge->flow_status = FLOW_STAT_REM_SEND;
1268 			break;
1269 		case PHY_B_AS_PRT:
1270 			skge->flow_status = FLOW_STAT_LOC_SEND;
1271 			break;
1272 		default:
1273 			skge->flow_status = FLOW_STAT_NONE;
1274 		}
1275 		skge->speed = SPEED_1000;
1276 	}
1277 
1278 	if (!netif_carrier_ok(dev))
1279 		genesis_link_up(skge);
1280 }
1281 
1282 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1283  * Phy on for 100 or 10Mbit operation
1284  */
1285 static void bcom_phy_init(struct skge_port *skge)
1286 {
1287 	struct skge_hw *hw = skge->hw;
1288 	int port = skge->port;
1289 	int i;
1290 	u16 id1, r, ext, ctl;
1291 
1292 	/* magic workaround patterns for Broadcom */
1293 	static const struct {
1294 		u16 reg;
1295 		u16 val;
1296 	} A1hack[] = {
1297 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1298 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1299 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1300 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1301 	}, C0hack[] = {
1302 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1303 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1304 	};
1305 
1306 	/* read Id from external PHY (all have the same address) */
1307 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1308 
1309 	/* Optimize MDIO transfer by suppressing preamble. */
1310 	r = xm_read16(hw, port, XM_MMU_CMD);
1311 	r |=  XM_MMU_NO_PRE;
1312 	xm_write16(hw, port, XM_MMU_CMD, r);
1313 
1314 	switch (id1) {
1315 	case PHY_BCOM_ID1_C0:
1316 		/*
1317 		 * Workaround BCOM Errata for the C0 type.
1318 		 * Write magic patterns to reserved registers.
1319 		 */
1320 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1321 			xm_phy_write(hw, port,
1322 				     C0hack[i].reg, C0hack[i].val);
1323 
1324 		break;
1325 	case PHY_BCOM_ID1_A1:
1326 		/*
1327 		 * Workaround BCOM Errata for the A1 type.
1328 		 * Write magic patterns to reserved registers.
1329 		 */
1330 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1331 			xm_phy_write(hw, port,
1332 				     A1hack[i].reg, A1hack[i].val);
1333 		break;
1334 	}
1335 
1336 	/*
1337 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1338 	 * Disable Power Management after reset.
1339 	 */
1340 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1341 	r |= PHY_B_AC_DIS_PM;
1342 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1343 
1344 	/* Dummy read */
1345 	xm_read16(hw, port, XM_ISRC);
1346 
1347 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1348 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1349 
1350 	if (skge->autoneg == AUTONEG_ENABLE) {
1351 		/*
1352 		 * Workaround BCOM Errata #1 for the C5 type.
1353 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1354 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1355 		 */
1356 		u16 adv = PHY_B_1000C_RD;
1357 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1358 			adv |= PHY_B_1000C_AHD;
1359 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1360 			adv |= PHY_B_1000C_AFD;
1361 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1362 
1363 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1364 	} else {
1365 		if (skge->duplex == DUPLEX_FULL)
1366 			ctl |= PHY_CT_DUP_MD;
1367 		/* Force to slave */
1368 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1369 	}
1370 
1371 	/* Set autonegotiation pause parameters */
1372 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1373 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1374 
1375 	/* Handle Jumbo frames */
1376 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1377 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1378 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1379 
1380 		ext |= PHY_B_PEC_HIGH_LA;
1381 
1382 	}
1383 
1384 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1385 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1386 
1387 	/* Use link status change interrupt */
1388 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1389 }
1390 
1391 static void xm_phy_init(struct skge_port *skge)
1392 {
1393 	struct skge_hw *hw = skge->hw;
1394 	int port = skge->port;
1395 	u16 ctrl = 0;
1396 
1397 	if (skge->autoneg == AUTONEG_ENABLE) {
1398 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1399 			ctrl |= PHY_X_AN_HD;
1400 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1401 			ctrl |= PHY_X_AN_FD;
1402 
1403 		ctrl |= fiber_pause_map[skge->flow_control];
1404 
1405 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1406 
1407 		/* Restart Auto-negotiation */
1408 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1409 	} else {
1410 		/* Set DuplexMode in Config register */
1411 		if (skge->duplex == DUPLEX_FULL)
1412 			ctrl |= PHY_CT_DUP_MD;
1413 		/*
1414 		 * Do NOT enable Auto-negotiation here. This would hold
1415 		 * the link down because no IDLEs are transmitted
1416 		 */
1417 	}
1418 
1419 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1420 
1421 	/* Poll PHY for status changes */
1422 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1423 }
1424 
1425 static int xm_check_link(struct net_device *dev)
1426 {
1427 	struct skge_port *skge = netdev_priv(dev);
1428 	struct skge_hw *hw = skge->hw;
1429 	int port = skge->port;
1430 	u16 status;
1431 
1432 	/* read twice because of latch */
1433 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1434 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1435 
1436 	if ((status & PHY_ST_LSYNC) == 0) {
1437 		xm_link_down(hw, port);
1438 		return 0;
1439 	}
1440 
1441 	if (skge->autoneg == AUTONEG_ENABLE) {
1442 		u16 lpa, res;
1443 
1444 		if (!(status & PHY_ST_AN_OVER))
1445 			return 0;
1446 
1447 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1448 		if (lpa & PHY_B_AN_RF) {
1449 			netdev_notice(dev, "remote fault\n");
1450 			return 0;
1451 		}
1452 
1453 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1454 
1455 		/* Check Duplex mismatch */
1456 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1457 		case PHY_X_RS_FD:
1458 			skge->duplex = DUPLEX_FULL;
1459 			break;
1460 		case PHY_X_RS_HD:
1461 			skge->duplex = DUPLEX_HALF;
1462 			break;
1463 		default:
1464 			netdev_notice(dev, "duplex mismatch\n");
1465 			return 0;
1466 		}
1467 
1468 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1469 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1470 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1471 		    (lpa & PHY_X_P_SYM_MD))
1472 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1473 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1474 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1475 			/* Enable PAUSE receive, disable PAUSE transmit */
1476 			skge->flow_status  = FLOW_STAT_REM_SEND;
1477 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1478 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1479 			/* Disable PAUSE receive, enable PAUSE transmit */
1480 			skge->flow_status = FLOW_STAT_LOC_SEND;
1481 		else
1482 			skge->flow_status = FLOW_STAT_NONE;
1483 
1484 		skge->speed = SPEED_1000;
1485 	}
1486 
1487 	if (!netif_carrier_ok(dev))
1488 		genesis_link_up(skge);
1489 	return 1;
1490 }
1491 
1492 /* Poll to check for link coming up.
1493  *
1494  * Since internal PHY is wired to a level triggered pin, can't
1495  * get an interrupt when carrier is detected, need to poll for
1496  * link coming up.
1497  */
1498 static void xm_link_timer(struct timer_list *t)
1499 {
1500 	struct skge_port *skge = from_timer(skge, t, link_timer);
1501 	struct net_device *dev = skge->netdev;
1502 	struct skge_hw *hw = skge->hw;
1503 	int port = skge->port;
1504 	int i;
1505 	unsigned long flags;
1506 
1507 	if (!netif_running(dev))
1508 		return;
1509 
1510 	spin_lock_irqsave(&hw->phy_lock, flags);
1511 
1512 	/*
1513 	 * Verify that the link by checking GPIO register three times.
1514 	 * This pin has the signal from the link_sync pin connected to it.
1515 	 */
1516 	for (i = 0; i < 3; i++) {
1517 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1518 			goto link_down;
1519 	}
1520 
1521 	/* Re-enable interrupt to detect link down */
1522 	if (xm_check_link(dev)) {
1523 		u16 msk = xm_read16(hw, port, XM_IMSK);
1524 		msk &= ~XM_IS_INP_ASS;
1525 		xm_write16(hw, port, XM_IMSK, msk);
1526 		xm_read16(hw, port, XM_ISRC);
1527 	} else {
1528 link_down:
1529 		mod_timer(&skge->link_timer,
1530 			  round_jiffies(jiffies + LINK_HZ));
1531 	}
1532 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1533 }
1534 
1535 static void genesis_mac_init(struct skge_hw *hw, int port)
1536 {
1537 	struct net_device *dev = hw->dev[port];
1538 	struct skge_port *skge = netdev_priv(dev);
1539 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1540 	int i;
1541 	u32 r;
1542 	static const u8 zero[6]  = { 0 };
1543 
1544 	for (i = 0; i < 10; i++) {
1545 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1546 			     MFF_SET_MAC_RST);
1547 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1548 			goto reset_ok;
1549 		udelay(1);
1550 	}
1551 
1552 	netdev_warn(dev, "genesis reset failed\n");
1553 
1554  reset_ok:
1555 	/* Unreset the XMAC. */
1556 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1557 
1558 	/*
1559 	 * Perform additional initialization for external PHYs,
1560 	 * namely for the 1000baseTX cards that use the XMAC's
1561 	 * GMII mode.
1562 	 */
1563 	if (hw->phy_type != SK_PHY_XMAC) {
1564 		/* Take external Phy out of reset */
1565 		r = skge_read32(hw, B2_GP_IO);
1566 		if (port == 0)
1567 			r |= GP_DIR_0|GP_IO_0;
1568 		else
1569 			r |= GP_DIR_2|GP_IO_2;
1570 
1571 		skge_write32(hw, B2_GP_IO, r);
1572 
1573 		/* Enable GMII interface */
1574 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1575 	}
1576 
1577 
1578 	switch (hw->phy_type) {
1579 	case SK_PHY_XMAC:
1580 		xm_phy_init(skge);
1581 		break;
1582 	case SK_PHY_BCOM:
1583 		bcom_phy_init(skge);
1584 		bcom_check_link(hw, port);
1585 	}
1586 
1587 	/* Set Station Address */
1588 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1589 
1590 	/* We don't use match addresses so clear */
1591 	for (i = 1; i < 16; i++)
1592 		xm_outaddr(hw, port, XM_EXM(i), zero);
1593 
1594 	/* Clear MIB counters */
1595 	xm_write16(hw, port, XM_STAT_CMD,
1596 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1597 	/* Clear two times according to Errata #3 */
1598 	xm_write16(hw, port, XM_STAT_CMD,
1599 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1600 
1601 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1602 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1603 
1604 	/* We don't need the FCS appended to the packet. */
1605 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1606 	if (jumbo)
1607 		r |= XM_RX_BIG_PK_OK;
1608 
1609 	if (skge->duplex == DUPLEX_HALF) {
1610 		/*
1611 		 * If in manual half duplex mode the other side might be in
1612 		 * full duplex mode, so ignore if a carrier extension is not seen
1613 		 * on frames received
1614 		 */
1615 		r |= XM_RX_DIS_CEXT;
1616 	}
1617 	xm_write16(hw, port, XM_RX_CMD, r);
1618 
1619 	/* We want short frames padded to 60 bytes. */
1620 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1621 
1622 	/* Increase threshold for jumbo frames on dual port */
1623 	if (hw->ports > 1 && jumbo)
1624 		xm_write16(hw, port, XM_TX_THR, 1020);
1625 	else
1626 		xm_write16(hw, port, XM_TX_THR, 512);
1627 
1628 	/*
1629 	 * Enable the reception of all error frames. This is is
1630 	 * a necessary evil due to the design of the XMAC. The
1631 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1632 	 * frames can be up to 9000 bytes in length. When bad
1633 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1634 	 * in 'store and forward' mode. For this to work, the
1635 	 * entire frame has to fit into the FIFO, but that means
1636 	 * that jumbo frames larger than 8192 bytes will be
1637 	 * truncated. Disabling all bad frame filtering causes
1638 	 * the RX FIFO to operate in streaming mode, in which
1639 	 * case the XMAC will start transferring frames out of the
1640 	 * RX FIFO as soon as the FIFO threshold is reached.
1641 	 */
1642 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1643 
1644 
1645 	/*
1646 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1647 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1648 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1649 	 */
1650 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1651 
1652 	/*
1653 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1654 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1655 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1656 	 */
1657 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1658 
1659 	/* Configure MAC arbiter */
1660 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1661 
1662 	/* configure timeout values */
1663 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1664 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1665 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1666 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1667 
1668 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1669 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1670 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1671 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1672 
1673 	/* Configure Rx MAC FIFO */
1674 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1675 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1676 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1677 
1678 	/* Configure Tx MAC FIFO */
1679 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1680 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1681 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1682 
1683 	if (jumbo) {
1684 		/* Enable frame flushing if jumbo frames used */
1685 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1686 	} else {
1687 		/* enable timeout timers if normal frames */
1688 		skge_write16(hw, B3_PA_CTRL,
1689 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1690 	}
1691 }
1692 
1693 static void genesis_stop(struct skge_port *skge)
1694 {
1695 	struct skge_hw *hw = skge->hw;
1696 	int port = skge->port;
1697 	unsigned retries = 1000;
1698 	u16 cmd;
1699 
1700 	/* Disable Tx and Rx */
1701 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1702 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1703 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1704 
1705 	genesis_reset(hw, port);
1706 
1707 	/* Clear Tx packet arbiter timeout IRQ */
1708 	skge_write16(hw, B3_PA_CTRL,
1709 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1710 
1711 	/* Reset the MAC */
1712 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1713 	do {
1714 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1715 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1716 			break;
1717 	} while (--retries > 0);
1718 
1719 	/* For external PHYs there must be special handling */
1720 	if (hw->phy_type != SK_PHY_XMAC) {
1721 		u32 reg = skge_read32(hw, B2_GP_IO);
1722 		if (port == 0) {
1723 			reg |= GP_DIR_0;
1724 			reg &= ~GP_IO_0;
1725 		} else {
1726 			reg |= GP_DIR_2;
1727 			reg &= ~GP_IO_2;
1728 		}
1729 		skge_write32(hw, B2_GP_IO, reg);
1730 		skge_read32(hw, B2_GP_IO);
1731 	}
1732 
1733 	xm_write16(hw, port, XM_MMU_CMD,
1734 			xm_read16(hw, port, XM_MMU_CMD)
1735 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1736 
1737 	xm_read16(hw, port, XM_MMU_CMD);
1738 }
1739 
1740 
1741 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1742 {
1743 	struct skge_hw *hw = skge->hw;
1744 	int port = skge->port;
1745 	int i;
1746 	unsigned long timeout = jiffies + HZ;
1747 
1748 	xm_write16(hw, port,
1749 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1750 
1751 	/* wait for update to complete */
1752 	while (xm_read16(hw, port, XM_STAT_CMD)
1753 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1754 		if (time_after(jiffies, timeout))
1755 			break;
1756 		udelay(10);
1757 	}
1758 
1759 	/* special case for 64 bit octet counter */
1760 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1761 		| xm_read32(hw, port, XM_TXO_OK_LO);
1762 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1763 		| xm_read32(hw, port, XM_RXO_OK_LO);
1764 
1765 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1766 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1767 }
1768 
1769 static void genesis_mac_intr(struct skge_hw *hw, int port)
1770 {
1771 	struct net_device *dev = hw->dev[port];
1772 	struct skge_port *skge = netdev_priv(dev);
1773 	u16 status = xm_read16(hw, port, XM_ISRC);
1774 
1775 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1776 		     "mac interrupt status 0x%x\n", status);
1777 
1778 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1779 		xm_link_down(hw, port);
1780 		mod_timer(&skge->link_timer, jiffies + 1);
1781 	}
1782 
1783 	if (status & XM_IS_TXF_UR) {
1784 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1785 		++dev->stats.tx_fifo_errors;
1786 	}
1787 }
1788 
1789 static void genesis_link_up(struct skge_port *skge)
1790 {
1791 	struct skge_hw *hw = skge->hw;
1792 	int port = skge->port;
1793 	u16 cmd, msk;
1794 	u32 mode;
1795 
1796 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1797 
1798 	/*
1799 	 * enabling pause frame reception is required for 1000BT
1800 	 * because the XMAC is not reset if the link is going down
1801 	 */
1802 	if (skge->flow_status == FLOW_STAT_NONE ||
1803 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1804 		/* Disable Pause Frame Reception */
1805 		cmd |= XM_MMU_IGN_PF;
1806 	else
1807 		/* Enable Pause Frame Reception */
1808 		cmd &= ~XM_MMU_IGN_PF;
1809 
1810 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1811 
1812 	mode = xm_read32(hw, port, XM_MODE);
1813 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1814 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1815 		/*
1816 		 * Configure Pause Frame Generation
1817 		 * Use internal and external Pause Frame Generation.
1818 		 * Sending pause frames is edge triggered.
1819 		 * Send a Pause frame with the maximum pause time if
1820 		 * internal oder external FIFO full condition occurs.
1821 		 * Send a zero pause time frame to re-start transmission.
1822 		 */
1823 		/* XM_PAUSE_DA = '010000C28001' (default) */
1824 		/* XM_MAC_PTIME = 0xffff (maximum) */
1825 		/* remember this value is defined in big endian (!) */
1826 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1827 
1828 		mode |= XM_PAUSE_MODE;
1829 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1830 	} else {
1831 		/*
1832 		 * disable pause frame generation is required for 1000BT
1833 		 * because the XMAC is not reset if the link is going down
1834 		 */
1835 		/* Disable Pause Mode in Mode Register */
1836 		mode &= ~XM_PAUSE_MODE;
1837 
1838 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1839 	}
1840 
1841 	xm_write32(hw, port, XM_MODE, mode);
1842 
1843 	/* Turn on detection of Tx underrun */
1844 	msk = xm_read16(hw, port, XM_IMSK);
1845 	msk &= ~XM_IS_TXF_UR;
1846 	xm_write16(hw, port, XM_IMSK, msk);
1847 
1848 	xm_read16(hw, port, XM_ISRC);
1849 
1850 	/* get MMU Command Reg. */
1851 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1852 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1853 		cmd |= XM_MMU_GMII_FD;
1854 
1855 	/*
1856 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1857 	 * Enable Power Management after link up
1858 	 */
1859 	if (hw->phy_type == SK_PHY_BCOM) {
1860 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1861 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1862 			     & ~PHY_B_AC_DIS_PM);
1863 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1864 	}
1865 
1866 	/* enable Rx/Tx */
1867 	xm_write16(hw, port, XM_MMU_CMD,
1868 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1869 	skge_link_up(skge);
1870 }
1871 
1872 
1873 static inline void bcom_phy_intr(struct skge_port *skge)
1874 {
1875 	struct skge_hw *hw = skge->hw;
1876 	int port = skge->port;
1877 	u16 isrc;
1878 
1879 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1880 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1881 		     "phy interrupt status 0x%x\n", isrc);
1882 
1883 	if (isrc & PHY_B_IS_PSE)
1884 		pr_err("%s: uncorrectable pair swap error\n",
1885 		       hw->dev[port]->name);
1886 
1887 	/* Workaround BCom Errata:
1888 	 *	enable and disable loopback mode if "NO HCD" occurs.
1889 	 */
1890 	if (isrc & PHY_B_IS_NO_HDCL) {
1891 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1892 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1893 				  ctrl | PHY_CT_LOOP);
1894 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1895 				  ctrl & ~PHY_CT_LOOP);
1896 	}
1897 
1898 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1899 		bcom_check_link(hw, port);
1900 
1901 }
1902 
1903 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1904 {
1905 	int i;
1906 
1907 	gma_write16(hw, port, GM_SMI_DATA, val);
1908 	gma_write16(hw, port, GM_SMI_CTRL,
1909 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1910 	for (i = 0; i < PHY_RETRIES; i++) {
1911 		udelay(1);
1912 
1913 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1914 			return 0;
1915 	}
1916 
1917 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1918 	return -EIO;
1919 }
1920 
1921 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1922 {
1923 	int i;
1924 
1925 	gma_write16(hw, port, GM_SMI_CTRL,
1926 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1927 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1928 
1929 	for (i = 0; i < PHY_RETRIES; i++) {
1930 		udelay(1);
1931 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1932 			goto ready;
1933 	}
1934 
1935 	return -ETIMEDOUT;
1936  ready:
1937 	*val = gma_read16(hw, port, GM_SMI_DATA);
1938 	return 0;
1939 }
1940 
1941 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1942 {
1943 	u16 v = 0;
1944 	if (__gm_phy_read(hw, port, reg, &v))
1945 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1946 	return v;
1947 }
1948 
1949 /* Marvell Phy Initialization */
1950 static void yukon_init(struct skge_hw *hw, int port)
1951 {
1952 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1953 	u16 ctrl, ct1000, adv;
1954 
1955 	if (skge->autoneg == AUTONEG_ENABLE) {
1956 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1957 
1958 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1959 			  PHY_M_EC_MAC_S_MSK);
1960 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1961 
1962 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1963 
1964 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1965 	}
1966 
1967 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1968 	if (skge->autoneg == AUTONEG_DISABLE)
1969 		ctrl &= ~PHY_CT_ANE;
1970 
1971 	ctrl |= PHY_CT_RESET;
1972 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1973 
1974 	ctrl = 0;
1975 	ct1000 = 0;
1976 	adv = PHY_AN_CSMA;
1977 
1978 	if (skge->autoneg == AUTONEG_ENABLE) {
1979 		if (hw->copper) {
1980 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1981 				ct1000 |= PHY_M_1000C_AFD;
1982 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1983 				ct1000 |= PHY_M_1000C_AHD;
1984 			if (skge->advertising & ADVERTISED_100baseT_Full)
1985 				adv |= PHY_M_AN_100_FD;
1986 			if (skge->advertising & ADVERTISED_100baseT_Half)
1987 				adv |= PHY_M_AN_100_HD;
1988 			if (skge->advertising & ADVERTISED_10baseT_Full)
1989 				adv |= PHY_M_AN_10_FD;
1990 			if (skge->advertising & ADVERTISED_10baseT_Half)
1991 				adv |= PHY_M_AN_10_HD;
1992 
1993 			/* Set Flow-control capabilities */
1994 			adv |= phy_pause_map[skge->flow_control];
1995 		} else {
1996 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1997 				adv |= PHY_M_AN_1000X_AFD;
1998 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1999 				adv |= PHY_M_AN_1000X_AHD;
2000 
2001 			adv |= fiber_pause_map[skge->flow_control];
2002 		}
2003 
2004 		/* Restart Auto-negotiation */
2005 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2006 	} else {
2007 		/* forced speed/duplex settings */
2008 		ct1000 = PHY_M_1000C_MSE;
2009 
2010 		if (skge->duplex == DUPLEX_FULL)
2011 			ctrl |= PHY_CT_DUP_MD;
2012 
2013 		switch (skge->speed) {
2014 		case SPEED_1000:
2015 			ctrl |= PHY_CT_SP1000;
2016 			break;
2017 		case SPEED_100:
2018 			ctrl |= PHY_CT_SP100;
2019 			break;
2020 		}
2021 
2022 		ctrl |= PHY_CT_RESET;
2023 	}
2024 
2025 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2026 
2027 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2028 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2029 
2030 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2031 	if (skge->autoneg == AUTONEG_ENABLE)
2032 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2033 	else
2034 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2035 }
2036 
2037 static void yukon_reset(struct skge_hw *hw, int port)
2038 {
2039 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2040 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2041 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2042 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2043 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2044 
2045 	gma_write16(hw, port, GM_RX_CTRL,
2046 			 gma_read16(hw, port, GM_RX_CTRL)
2047 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2048 }
2049 
2050 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2051 static int is_yukon_lite_a0(struct skge_hw *hw)
2052 {
2053 	u32 reg;
2054 	int ret;
2055 
2056 	if (hw->chip_id != CHIP_ID_YUKON)
2057 		return 0;
2058 
2059 	reg = skge_read32(hw, B2_FAR);
2060 	skge_write8(hw, B2_FAR + 3, 0xff);
2061 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2062 	skge_write32(hw, B2_FAR, reg);
2063 	return ret;
2064 }
2065 
2066 static void yukon_mac_init(struct skge_hw *hw, int port)
2067 {
2068 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2069 	int i;
2070 	u32 reg;
2071 	const u8 *addr = hw->dev[port]->dev_addr;
2072 
2073 	/* WA code for COMA mode -- set PHY reset */
2074 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2075 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2076 		reg = skge_read32(hw, B2_GP_IO);
2077 		reg |= GP_DIR_9 | GP_IO_9;
2078 		skge_write32(hw, B2_GP_IO, reg);
2079 	}
2080 
2081 	/* hard reset */
2082 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2083 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2084 
2085 	/* WA code for COMA mode -- clear PHY reset */
2086 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2087 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2088 		reg = skge_read32(hw, B2_GP_IO);
2089 		reg |= GP_DIR_9;
2090 		reg &= ~GP_IO_9;
2091 		skge_write32(hw, B2_GP_IO, reg);
2092 	}
2093 
2094 	/* Set hardware config mode */
2095 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2096 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2097 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2098 
2099 	/* Clear GMC reset */
2100 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2101 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2102 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2103 
2104 	if (skge->autoneg == AUTONEG_DISABLE) {
2105 		reg = GM_GPCR_AU_ALL_DIS;
2106 		gma_write16(hw, port, GM_GP_CTRL,
2107 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2108 
2109 		switch (skge->speed) {
2110 		case SPEED_1000:
2111 			reg &= ~GM_GPCR_SPEED_100;
2112 			reg |= GM_GPCR_SPEED_1000;
2113 			break;
2114 		case SPEED_100:
2115 			reg &= ~GM_GPCR_SPEED_1000;
2116 			reg |= GM_GPCR_SPEED_100;
2117 			break;
2118 		case SPEED_10:
2119 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2120 			break;
2121 		}
2122 
2123 		if (skge->duplex == DUPLEX_FULL)
2124 			reg |= GM_GPCR_DUP_FULL;
2125 	} else
2126 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2127 
2128 	switch (skge->flow_control) {
2129 	case FLOW_MODE_NONE:
2130 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2131 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2132 		break;
2133 	case FLOW_MODE_LOC_SEND:
2134 		/* disable Rx flow-control */
2135 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2136 		break;
2137 	case FLOW_MODE_SYMMETRIC:
2138 	case FLOW_MODE_SYM_OR_REM:
2139 		/* enable Tx & Rx flow-control */
2140 		break;
2141 	}
2142 
2143 	gma_write16(hw, port, GM_GP_CTRL, reg);
2144 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2145 
2146 	yukon_init(hw, port);
2147 
2148 	/* MIB clear */
2149 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2150 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2151 
2152 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2153 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2154 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2155 
2156 	/* transmit control */
2157 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2158 
2159 	/* receive control reg: unicast + multicast + no FCS  */
2160 	gma_write16(hw, port, GM_RX_CTRL,
2161 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2162 
2163 	/* transmit flow control */
2164 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2165 
2166 	/* transmit parameter */
2167 	gma_write16(hw, port, GM_TX_PARAM,
2168 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2169 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2170 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2171 
2172 	/* configure the Serial Mode Register */
2173 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2174 		| GM_SMOD_VLAN_ENA
2175 		| IPG_DATA_VAL(IPG_DATA_DEF);
2176 
2177 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2178 		reg |= GM_SMOD_JUMBO_ENA;
2179 
2180 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2181 
2182 	/* physical address: used for pause frames */
2183 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2184 	/* virtual address for data */
2185 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2186 
2187 	/* enable interrupt mask for counter overflows */
2188 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2189 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2190 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2191 
2192 	/* Initialize Mac Fifo */
2193 
2194 	/* Configure Rx MAC FIFO */
2195 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2196 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2197 
2198 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2199 	if (is_yukon_lite_a0(hw))
2200 		reg &= ~GMF_RX_F_FL_ON;
2201 
2202 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2203 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2204 	/*
2205 	 * because Pause Packet Truncation in GMAC is not working
2206 	 * we have to increase the Flush Threshold to 64 bytes
2207 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2208 	 */
2209 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2210 
2211 	/* Configure Tx MAC FIFO */
2212 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2213 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2214 }
2215 
2216 /* Go into power down mode */
2217 static void yukon_suspend(struct skge_hw *hw, int port)
2218 {
2219 	u16 ctrl;
2220 
2221 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2222 	ctrl |= PHY_M_PC_POL_R_DIS;
2223 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2224 
2225 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2226 	ctrl |= PHY_CT_RESET;
2227 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2228 
2229 	/* switch IEEE compatible power down mode on */
2230 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2231 	ctrl |= PHY_CT_PDOWN;
2232 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2233 }
2234 
2235 static void yukon_stop(struct skge_port *skge)
2236 {
2237 	struct skge_hw *hw = skge->hw;
2238 	int port = skge->port;
2239 
2240 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2241 	yukon_reset(hw, port);
2242 
2243 	gma_write16(hw, port, GM_GP_CTRL,
2244 			 gma_read16(hw, port, GM_GP_CTRL)
2245 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2246 	gma_read16(hw, port, GM_GP_CTRL);
2247 
2248 	yukon_suspend(hw, port);
2249 
2250 	/* set GPHY Control reset */
2251 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2252 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2253 }
2254 
2255 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2256 {
2257 	struct skge_hw *hw = skge->hw;
2258 	int port = skge->port;
2259 	int i;
2260 
2261 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2262 		| gma_read32(hw, port, GM_TXO_OK_LO);
2263 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2264 		| gma_read32(hw, port, GM_RXO_OK_LO);
2265 
2266 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2267 		data[i] = gma_read32(hw, port,
2268 					  skge_stats[i].gma_offset);
2269 }
2270 
2271 static void yukon_mac_intr(struct skge_hw *hw, int port)
2272 {
2273 	struct net_device *dev = hw->dev[port];
2274 	struct skge_port *skge = netdev_priv(dev);
2275 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2276 
2277 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2278 		     "mac interrupt status 0x%x\n", status);
2279 
2280 	if (status & GM_IS_RX_FF_OR) {
2281 		++dev->stats.rx_fifo_errors;
2282 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2283 	}
2284 
2285 	if (status & GM_IS_TX_FF_UR) {
2286 		++dev->stats.tx_fifo_errors;
2287 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2288 	}
2289 
2290 }
2291 
2292 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2293 {
2294 	switch (aux & PHY_M_PS_SPEED_MSK) {
2295 	case PHY_M_PS_SPEED_1000:
2296 		return SPEED_1000;
2297 	case PHY_M_PS_SPEED_100:
2298 		return SPEED_100;
2299 	default:
2300 		return SPEED_10;
2301 	}
2302 }
2303 
2304 static void yukon_link_up(struct skge_port *skge)
2305 {
2306 	struct skge_hw *hw = skge->hw;
2307 	int port = skge->port;
2308 	u16 reg;
2309 
2310 	/* Enable Transmit FIFO Underrun */
2311 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2312 
2313 	reg = gma_read16(hw, port, GM_GP_CTRL);
2314 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2315 		reg |= GM_GPCR_DUP_FULL;
2316 
2317 	/* enable Rx/Tx */
2318 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2319 	gma_write16(hw, port, GM_GP_CTRL, reg);
2320 
2321 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2322 	skge_link_up(skge);
2323 }
2324 
2325 static void yukon_link_down(struct skge_port *skge)
2326 {
2327 	struct skge_hw *hw = skge->hw;
2328 	int port = skge->port;
2329 	u16 ctrl;
2330 
2331 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2332 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2333 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2334 
2335 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2336 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2337 		ctrl |= PHY_M_AN_ASP;
2338 		/* restore Asymmetric Pause bit */
2339 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2340 	}
2341 
2342 	skge_link_down(skge);
2343 
2344 	yukon_init(hw, port);
2345 }
2346 
2347 static void yukon_phy_intr(struct skge_port *skge)
2348 {
2349 	struct skge_hw *hw = skge->hw;
2350 	int port = skge->port;
2351 	const char *reason = NULL;
2352 	u16 istatus, phystat;
2353 
2354 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2355 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2356 
2357 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2358 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2359 
2360 	if (istatus & PHY_M_IS_AN_COMPL) {
2361 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2362 		    & PHY_M_AN_RF) {
2363 			reason = "remote fault";
2364 			goto failed;
2365 		}
2366 
2367 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2368 			reason = "master/slave fault";
2369 			goto failed;
2370 		}
2371 
2372 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2373 			reason = "speed/duplex";
2374 			goto failed;
2375 		}
2376 
2377 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2378 			? DUPLEX_FULL : DUPLEX_HALF;
2379 		skge->speed = yukon_speed(hw, phystat);
2380 
2381 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2382 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2383 		case PHY_M_PS_PAUSE_MSK:
2384 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2385 			break;
2386 		case PHY_M_PS_RX_P_EN:
2387 			skge->flow_status = FLOW_STAT_REM_SEND;
2388 			break;
2389 		case PHY_M_PS_TX_P_EN:
2390 			skge->flow_status = FLOW_STAT_LOC_SEND;
2391 			break;
2392 		default:
2393 			skge->flow_status = FLOW_STAT_NONE;
2394 		}
2395 
2396 		if (skge->flow_status == FLOW_STAT_NONE ||
2397 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2398 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2399 		else
2400 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2401 		yukon_link_up(skge);
2402 		return;
2403 	}
2404 
2405 	if (istatus & PHY_M_IS_LSP_CHANGE)
2406 		skge->speed = yukon_speed(hw, phystat);
2407 
2408 	if (istatus & PHY_M_IS_DUP_CHANGE)
2409 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2410 	if (istatus & PHY_M_IS_LST_CHANGE) {
2411 		if (phystat & PHY_M_PS_LINK_UP)
2412 			yukon_link_up(skge);
2413 		else
2414 			yukon_link_down(skge);
2415 	}
2416 	return;
2417  failed:
2418 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2419 
2420 	/* XXX restart autonegotiation? */
2421 }
2422 
2423 static void skge_phy_reset(struct skge_port *skge)
2424 {
2425 	struct skge_hw *hw = skge->hw;
2426 	int port = skge->port;
2427 	struct net_device *dev = hw->dev[port];
2428 
2429 	netif_stop_queue(skge->netdev);
2430 	netif_carrier_off(skge->netdev);
2431 
2432 	spin_lock_bh(&hw->phy_lock);
2433 	if (is_genesis(hw)) {
2434 		genesis_reset(hw, port);
2435 		genesis_mac_init(hw, port);
2436 	} else {
2437 		yukon_reset(hw, port);
2438 		yukon_init(hw, port);
2439 	}
2440 	spin_unlock_bh(&hw->phy_lock);
2441 
2442 	skge_set_multicast(dev);
2443 }
2444 
2445 /* Basic MII support */
2446 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2447 {
2448 	struct mii_ioctl_data *data = if_mii(ifr);
2449 	struct skge_port *skge = netdev_priv(dev);
2450 	struct skge_hw *hw = skge->hw;
2451 	int err = -EOPNOTSUPP;
2452 
2453 	if (!netif_running(dev))
2454 		return -ENODEV;	/* Phy still in reset */
2455 
2456 	switch (cmd) {
2457 	case SIOCGMIIPHY:
2458 		data->phy_id = hw->phy_addr;
2459 
2460 		/* fallthru */
2461 	case SIOCGMIIREG: {
2462 		u16 val = 0;
2463 		spin_lock_bh(&hw->phy_lock);
2464 
2465 		if (is_genesis(hw))
2466 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2467 		else
2468 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2469 		spin_unlock_bh(&hw->phy_lock);
2470 		data->val_out = val;
2471 		break;
2472 	}
2473 
2474 	case SIOCSMIIREG:
2475 		spin_lock_bh(&hw->phy_lock);
2476 		if (is_genesis(hw))
2477 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2478 				   data->val_in);
2479 		else
2480 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2481 				   data->val_in);
2482 		spin_unlock_bh(&hw->phy_lock);
2483 		break;
2484 	}
2485 	return err;
2486 }
2487 
2488 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2489 {
2490 	u32 end;
2491 
2492 	start /= 8;
2493 	len /= 8;
2494 	end = start + len - 1;
2495 
2496 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2497 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2498 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2499 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2500 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2501 
2502 	if (q == Q_R1 || q == Q_R2) {
2503 		/* Set thresholds on receive queue's */
2504 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2505 			     start + (2*len)/3);
2506 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2507 			     start + (len/3));
2508 	} else {
2509 		/* Enable store & forward on Tx queue's because
2510 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2511 		 */
2512 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2513 	}
2514 
2515 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2516 }
2517 
2518 /* Setup Bus Memory Interface */
2519 static void skge_qset(struct skge_port *skge, u16 q,
2520 		      const struct skge_element *e)
2521 {
2522 	struct skge_hw *hw = skge->hw;
2523 	u32 watermark = 0x600;
2524 	u64 base = skge->dma + (e->desc - skge->mem);
2525 
2526 	/* optimization to reduce window on 32bit/33mhz */
2527 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2528 		watermark /= 2;
2529 
2530 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2531 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2532 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2533 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2534 }
2535 
2536 static int skge_up(struct net_device *dev)
2537 {
2538 	struct skge_port *skge = netdev_priv(dev);
2539 	struct skge_hw *hw = skge->hw;
2540 	int port = skge->port;
2541 	u32 chunk, ram_addr;
2542 	size_t rx_size, tx_size;
2543 	int err;
2544 
2545 	if (!is_valid_ether_addr(dev->dev_addr))
2546 		return -EINVAL;
2547 
2548 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2549 
2550 	if (dev->mtu > RX_BUF_SIZE)
2551 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2552 	else
2553 		skge->rx_buf_size = RX_BUF_SIZE;
2554 
2555 
2556 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2557 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2558 	skge->mem_size = tx_size + rx_size;
2559 	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2560 	if (!skge->mem)
2561 		return -ENOMEM;
2562 
2563 	BUG_ON(skge->dma & 7);
2564 
2565 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2566 		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2567 		err = -EINVAL;
2568 		goto free_pci_mem;
2569 	}
2570 
2571 	memset(skge->mem, 0, skge->mem_size);
2572 
2573 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2574 	if (err)
2575 		goto free_pci_mem;
2576 
2577 	err = skge_rx_fill(dev);
2578 	if (err)
2579 		goto free_rx_ring;
2580 
2581 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2582 			      skge->dma + rx_size);
2583 	if (err)
2584 		goto free_rx_ring;
2585 
2586 	if (hw->ports == 1) {
2587 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2588 				  dev->name, hw);
2589 		if (err) {
2590 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2591 				   hw->pdev->irq, err);
2592 			goto free_tx_ring;
2593 		}
2594 	}
2595 
2596 	/* Initialize MAC */
2597 	netif_carrier_off(dev);
2598 	spin_lock_bh(&hw->phy_lock);
2599 	if (is_genesis(hw))
2600 		genesis_mac_init(hw, port);
2601 	else
2602 		yukon_mac_init(hw, port);
2603 	spin_unlock_bh(&hw->phy_lock);
2604 
2605 	/* Configure RAMbuffers - equally between ports and tx/rx */
2606 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2607 	ram_addr = hw->ram_offset + 2 * chunk * port;
2608 
2609 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2610 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2611 
2612 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2613 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2614 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2615 
2616 	/* Start receiver BMU */
2617 	wmb();
2618 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2619 	skge_led(skge, LED_MODE_ON);
2620 
2621 	spin_lock_irq(&hw->hw_lock);
2622 	hw->intr_mask |= portmask[port];
2623 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2624 	skge_read32(hw, B0_IMSK);
2625 	spin_unlock_irq(&hw->hw_lock);
2626 
2627 	napi_enable(&skge->napi);
2628 
2629 	skge_set_multicast(dev);
2630 
2631 	return 0;
2632 
2633  free_tx_ring:
2634 	kfree(skge->tx_ring.start);
2635  free_rx_ring:
2636 	skge_rx_clean(skge);
2637 	kfree(skge->rx_ring.start);
2638  free_pci_mem:
2639 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2640 	skge->mem = NULL;
2641 
2642 	return err;
2643 }
2644 
2645 /* stop receiver */
2646 static void skge_rx_stop(struct skge_hw *hw, int port)
2647 {
2648 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2649 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2650 		     RB_RST_SET|RB_DIS_OP_MD);
2651 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2652 }
2653 
2654 static int skge_down(struct net_device *dev)
2655 {
2656 	struct skge_port *skge = netdev_priv(dev);
2657 	struct skge_hw *hw = skge->hw;
2658 	int port = skge->port;
2659 
2660 	if (!skge->mem)
2661 		return 0;
2662 
2663 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2664 
2665 	netif_tx_disable(dev);
2666 
2667 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2668 		del_timer_sync(&skge->link_timer);
2669 
2670 	napi_disable(&skge->napi);
2671 	netif_carrier_off(dev);
2672 
2673 	spin_lock_irq(&hw->hw_lock);
2674 	hw->intr_mask &= ~portmask[port];
2675 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2676 	skge_read32(hw, B0_IMSK);
2677 	spin_unlock_irq(&hw->hw_lock);
2678 
2679 	if (hw->ports == 1)
2680 		free_irq(hw->pdev->irq, hw);
2681 
2682 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2683 	if (is_genesis(hw))
2684 		genesis_stop(skge);
2685 	else
2686 		yukon_stop(skge);
2687 
2688 	/* Stop transmitter */
2689 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2690 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2691 		     RB_RST_SET|RB_DIS_OP_MD);
2692 
2693 
2694 	/* Disable Force Sync bit and Enable Alloc bit */
2695 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2696 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2697 
2698 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2699 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2700 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2701 
2702 	/* Reset PCI FIFO */
2703 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2704 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2705 
2706 	/* Reset the RAM Buffer async Tx queue */
2707 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2708 
2709 	skge_rx_stop(hw, port);
2710 
2711 	if (is_genesis(hw)) {
2712 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2713 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2714 	} else {
2715 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2716 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2717 	}
2718 
2719 	skge_led(skge, LED_MODE_OFF);
2720 
2721 	netif_tx_lock_bh(dev);
2722 	skge_tx_clean(dev);
2723 	netif_tx_unlock_bh(dev);
2724 
2725 	skge_rx_clean(skge);
2726 
2727 	kfree(skge->rx_ring.start);
2728 	kfree(skge->tx_ring.start);
2729 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2730 	skge->mem = NULL;
2731 	return 0;
2732 }
2733 
2734 static inline int skge_avail(const struct skge_ring *ring)
2735 {
2736 	smp_mb();
2737 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2738 		+ (ring->to_clean - ring->to_use) - 1;
2739 }
2740 
2741 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2742 				   struct net_device *dev)
2743 {
2744 	struct skge_port *skge = netdev_priv(dev);
2745 	struct skge_hw *hw = skge->hw;
2746 	struct skge_element *e;
2747 	struct skge_tx_desc *td;
2748 	int i;
2749 	u32 control, len;
2750 	dma_addr_t map;
2751 
2752 	if (skb_padto(skb, ETH_ZLEN))
2753 		return NETDEV_TX_OK;
2754 
2755 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2756 		return NETDEV_TX_BUSY;
2757 
2758 	e = skge->tx_ring.to_use;
2759 	td = e->desc;
2760 	BUG_ON(td->control & BMU_OWN);
2761 	e->skb = skb;
2762 	len = skb_headlen(skb);
2763 	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2764 	if (pci_dma_mapping_error(hw->pdev, map))
2765 		goto mapping_error;
2766 
2767 	dma_unmap_addr_set(e, mapaddr, map);
2768 	dma_unmap_len_set(e, maplen, len);
2769 
2770 	td->dma_lo = lower_32_bits(map);
2771 	td->dma_hi = upper_32_bits(map);
2772 
2773 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774 		const int offset = skb_checksum_start_offset(skb);
2775 
2776 		/* This seems backwards, but it is what the sk98lin
2777 		 * does.  Looks like hardware is wrong?
2778 		 */
2779 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2780 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2781 			control = BMU_TCP_CHECK;
2782 		else
2783 			control = BMU_UDP_CHECK;
2784 
2785 		td->csum_offs = 0;
2786 		td->csum_start = offset;
2787 		td->csum_write = offset + skb->csum_offset;
2788 	} else
2789 		control = BMU_CHECK;
2790 
2791 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2792 		control |= BMU_EOF | BMU_IRQ_EOF;
2793 	else {
2794 		struct skge_tx_desc *tf = td;
2795 
2796 		control |= BMU_STFWD;
2797 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2798 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2799 
2800 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2801 					       skb_frag_size(frag), DMA_TO_DEVICE);
2802 			if (dma_mapping_error(&hw->pdev->dev, map))
2803 				goto mapping_unwind;
2804 
2805 			e = e->next;
2806 			e->skb = skb;
2807 			tf = e->desc;
2808 			BUG_ON(tf->control & BMU_OWN);
2809 
2810 			tf->dma_lo = lower_32_bits(map);
2811 			tf->dma_hi = upper_32_bits(map);
2812 			dma_unmap_addr_set(e, mapaddr, map);
2813 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2814 
2815 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2816 		}
2817 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2818 	}
2819 	/* Make sure all the descriptors written */
2820 	wmb();
2821 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2822 	wmb();
2823 
2824 	netdev_sent_queue(dev, skb->len);
2825 
2826 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2827 
2828 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2829 		     "tx queued, slot %td, len %d\n",
2830 		     e - skge->tx_ring.start, skb->len);
2831 
2832 	skge->tx_ring.to_use = e->next;
2833 	smp_wmb();
2834 
2835 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2836 		netdev_dbg(dev, "transmit queue full\n");
2837 		netif_stop_queue(dev);
2838 	}
2839 
2840 	return NETDEV_TX_OK;
2841 
2842 mapping_unwind:
2843 	e = skge->tx_ring.to_use;
2844 	pci_unmap_single(hw->pdev,
2845 			 dma_unmap_addr(e, mapaddr),
2846 			 dma_unmap_len(e, maplen),
2847 			 PCI_DMA_TODEVICE);
2848 	while (i-- > 0) {
2849 		e = e->next;
2850 		pci_unmap_page(hw->pdev,
2851 			       dma_unmap_addr(e, mapaddr),
2852 			       dma_unmap_len(e, maplen),
2853 			       PCI_DMA_TODEVICE);
2854 	}
2855 
2856 mapping_error:
2857 	if (net_ratelimit())
2858 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2859 	dev_kfree_skb_any(skb);
2860 	return NETDEV_TX_OK;
2861 }
2862 
2863 
2864 /* Free resources associated with this reing element */
2865 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2866 				 u32 control)
2867 {
2868 	/* skb header vs. fragment */
2869 	if (control & BMU_STF)
2870 		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2871 				 dma_unmap_len(e, maplen),
2872 				 PCI_DMA_TODEVICE);
2873 	else
2874 		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2875 			       dma_unmap_len(e, maplen),
2876 			       PCI_DMA_TODEVICE);
2877 }
2878 
2879 /* Free all buffers in transmit ring */
2880 static void skge_tx_clean(struct net_device *dev)
2881 {
2882 	struct skge_port *skge = netdev_priv(dev);
2883 	struct skge_element *e;
2884 
2885 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2886 		struct skge_tx_desc *td = e->desc;
2887 
2888 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2889 
2890 		if (td->control & BMU_EOF)
2891 			dev_kfree_skb(e->skb);
2892 		td->control = 0;
2893 	}
2894 
2895 	netdev_reset_queue(dev);
2896 	skge->tx_ring.to_clean = e;
2897 }
2898 
2899 static void skge_tx_timeout(struct net_device *dev)
2900 {
2901 	struct skge_port *skge = netdev_priv(dev);
2902 
2903 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2904 
2905 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2906 	skge_tx_clean(dev);
2907 	netif_wake_queue(dev);
2908 }
2909 
2910 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2911 {
2912 	int err;
2913 
2914 	if (!netif_running(dev)) {
2915 		dev->mtu = new_mtu;
2916 		return 0;
2917 	}
2918 
2919 	skge_down(dev);
2920 
2921 	dev->mtu = new_mtu;
2922 
2923 	err = skge_up(dev);
2924 	if (err)
2925 		dev_close(dev);
2926 
2927 	return err;
2928 }
2929 
2930 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2931 
2932 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2933 {
2934 	u32 crc, bit;
2935 
2936 	crc = ether_crc_le(ETH_ALEN, addr);
2937 	bit = ~crc & 0x3f;
2938 	filter[bit/8] |= 1 << (bit%8);
2939 }
2940 
2941 static void genesis_set_multicast(struct net_device *dev)
2942 {
2943 	struct skge_port *skge = netdev_priv(dev);
2944 	struct skge_hw *hw = skge->hw;
2945 	int port = skge->port;
2946 	struct netdev_hw_addr *ha;
2947 	u32 mode;
2948 	u8 filter[8];
2949 
2950 	mode = xm_read32(hw, port, XM_MODE);
2951 	mode |= XM_MD_ENA_HASH;
2952 	if (dev->flags & IFF_PROMISC)
2953 		mode |= XM_MD_ENA_PROM;
2954 	else
2955 		mode &= ~XM_MD_ENA_PROM;
2956 
2957 	if (dev->flags & IFF_ALLMULTI)
2958 		memset(filter, 0xff, sizeof(filter));
2959 	else {
2960 		memset(filter, 0, sizeof(filter));
2961 
2962 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2963 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2964 			genesis_add_filter(filter, pause_mc_addr);
2965 
2966 		netdev_for_each_mc_addr(ha, dev)
2967 			genesis_add_filter(filter, ha->addr);
2968 	}
2969 
2970 	xm_write32(hw, port, XM_MODE, mode);
2971 	xm_outhash(hw, port, XM_HSM, filter);
2972 }
2973 
2974 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2975 {
2976 	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2977 	 filter[bit/8] |= 1 << (bit%8);
2978 }
2979 
2980 static void yukon_set_multicast(struct net_device *dev)
2981 {
2982 	struct skge_port *skge = netdev_priv(dev);
2983 	struct skge_hw *hw = skge->hw;
2984 	int port = skge->port;
2985 	struct netdev_hw_addr *ha;
2986 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2987 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2988 	u16 reg;
2989 	u8 filter[8];
2990 
2991 	memset(filter, 0, sizeof(filter));
2992 
2993 	reg = gma_read16(hw, port, GM_RX_CTRL);
2994 	reg |= GM_RXCR_UCF_ENA;
2995 
2996 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2997 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2998 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2999 		memset(filter, 0xff, sizeof(filter));
3000 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
3001 		reg &= ~GM_RXCR_MCF_ENA;
3002 	else {
3003 		reg |= GM_RXCR_MCF_ENA;
3004 
3005 		if (rx_pause)
3006 			yukon_add_filter(filter, pause_mc_addr);
3007 
3008 		netdev_for_each_mc_addr(ha, dev)
3009 			yukon_add_filter(filter, ha->addr);
3010 	}
3011 
3012 
3013 	gma_write16(hw, port, GM_MC_ADDR_H1,
3014 			 (u16)filter[0] | ((u16)filter[1] << 8));
3015 	gma_write16(hw, port, GM_MC_ADDR_H2,
3016 			 (u16)filter[2] | ((u16)filter[3] << 8));
3017 	gma_write16(hw, port, GM_MC_ADDR_H3,
3018 			 (u16)filter[4] | ((u16)filter[5] << 8));
3019 	gma_write16(hw, port, GM_MC_ADDR_H4,
3020 			 (u16)filter[6] | ((u16)filter[7] << 8));
3021 
3022 	gma_write16(hw, port, GM_RX_CTRL, reg);
3023 }
3024 
3025 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3026 {
3027 	if (is_genesis(hw))
3028 		return status >> XMR_FS_LEN_SHIFT;
3029 	else
3030 		return status >> GMR_FS_LEN_SHIFT;
3031 }
3032 
3033 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3034 {
3035 	if (is_genesis(hw))
3036 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3037 	else
3038 		return (status & GMR_FS_ANY_ERR) ||
3039 			(status & GMR_FS_RX_OK) == 0;
3040 }
3041 
3042 static void skge_set_multicast(struct net_device *dev)
3043 {
3044 	struct skge_port *skge = netdev_priv(dev);
3045 
3046 	if (is_genesis(skge->hw))
3047 		genesis_set_multicast(dev);
3048 	else
3049 		yukon_set_multicast(dev);
3050 
3051 }
3052 
3053 
3054 /* Get receive buffer from descriptor.
3055  * Handles copy of small buffers and reallocation failures
3056  */
3057 static struct sk_buff *skge_rx_get(struct net_device *dev,
3058 				   struct skge_element *e,
3059 				   u32 control, u32 status, u16 csum)
3060 {
3061 	struct skge_port *skge = netdev_priv(dev);
3062 	struct sk_buff *skb;
3063 	u16 len = control & BMU_BBC;
3064 
3065 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3066 		     "rx slot %td status 0x%x len %d\n",
3067 		     e - skge->rx_ring.start, status, len);
3068 
3069 	if (len > skge->rx_buf_size)
3070 		goto error;
3071 
3072 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3073 		goto error;
3074 
3075 	if (bad_phy_status(skge->hw, status))
3076 		goto error;
3077 
3078 	if (phy_length(skge->hw, status) != len)
3079 		goto error;
3080 
3081 	if (len < RX_COPY_THRESHOLD) {
3082 		skb = netdev_alloc_skb_ip_align(dev, len);
3083 		if (!skb)
3084 			goto resubmit;
3085 
3086 		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3087 					    dma_unmap_addr(e, mapaddr),
3088 					    dma_unmap_len(e, maplen),
3089 					    PCI_DMA_FROMDEVICE);
3090 		skb_copy_from_linear_data(e->skb, skb->data, len);
3091 		pci_dma_sync_single_for_device(skge->hw->pdev,
3092 					       dma_unmap_addr(e, mapaddr),
3093 					       dma_unmap_len(e, maplen),
3094 					       PCI_DMA_FROMDEVICE);
3095 		skge_rx_reuse(e, skge->rx_buf_size);
3096 	} else {
3097 		struct skge_element ee;
3098 		struct sk_buff *nskb;
3099 
3100 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3101 		if (!nskb)
3102 			goto resubmit;
3103 
3104 		ee = *e;
3105 
3106 		skb = ee.skb;
3107 		prefetch(skb->data);
3108 
3109 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3110 			dev_kfree_skb(nskb);
3111 			goto resubmit;
3112 		}
3113 
3114 		pci_unmap_single(skge->hw->pdev,
3115 				 dma_unmap_addr(&ee, mapaddr),
3116 				 dma_unmap_len(&ee, maplen),
3117 				 PCI_DMA_FROMDEVICE);
3118 	}
3119 
3120 	skb_put(skb, len);
3121 
3122 	if (dev->features & NETIF_F_RXCSUM) {
3123 		skb->csum = csum;
3124 		skb->ip_summed = CHECKSUM_COMPLETE;
3125 	}
3126 
3127 	skb->protocol = eth_type_trans(skb, dev);
3128 
3129 	return skb;
3130 error:
3131 
3132 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3133 		     "rx err, slot %td control 0x%x status 0x%x\n",
3134 		     e - skge->rx_ring.start, control, status);
3135 
3136 	if (is_genesis(skge->hw)) {
3137 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3138 			dev->stats.rx_length_errors++;
3139 		if (status & XMR_FS_FRA_ERR)
3140 			dev->stats.rx_frame_errors++;
3141 		if (status & XMR_FS_FCS_ERR)
3142 			dev->stats.rx_crc_errors++;
3143 	} else {
3144 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3145 			dev->stats.rx_length_errors++;
3146 		if (status & GMR_FS_FRAGMENT)
3147 			dev->stats.rx_frame_errors++;
3148 		if (status & GMR_FS_CRC_ERR)
3149 			dev->stats.rx_crc_errors++;
3150 	}
3151 
3152 resubmit:
3153 	skge_rx_reuse(e, skge->rx_buf_size);
3154 	return NULL;
3155 }
3156 
3157 /* Free all buffers in Tx ring which are no longer owned by device */
3158 static void skge_tx_done(struct net_device *dev)
3159 {
3160 	struct skge_port *skge = netdev_priv(dev);
3161 	struct skge_ring *ring = &skge->tx_ring;
3162 	struct skge_element *e;
3163 	unsigned int bytes_compl = 0, pkts_compl = 0;
3164 
3165 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3166 
3167 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3168 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3169 
3170 		if (control & BMU_OWN)
3171 			break;
3172 
3173 		skge_tx_unmap(skge->hw->pdev, e, control);
3174 
3175 		if (control & BMU_EOF) {
3176 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3177 				     "tx done slot %td\n",
3178 				     e - skge->tx_ring.start);
3179 
3180 			pkts_compl++;
3181 			bytes_compl += e->skb->len;
3182 
3183 			dev_consume_skb_any(e->skb);
3184 		}
3185 	}
3186 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3187 	skge->tx_ring.to_clean = e;
3188 
3189 	/* Can run lockless until we need to synchronize to restart queue. */
3190 	smp_mb();
3191 
3192 	if (unlikely(netif_queue_stopped(dev) &&
3193 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3194 		netif_tx_lock(dev);
3195 		if (unlikely(netif_queue_stopped(dev) &&
3196 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3197 			netif_wake_queue(dev);
3198 
3199 		}
3200 		netif_tx_unlock(dev);
3201 	}
3202 }
3203 
3204 static int skge_poll(struct napi_struct *napi, int budget)
3205 {
3206 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3207 	struct net_device *dev = skge->netdev;
3208 	struct skge_hw *hw = skge->hw;
3209 	struct skge_ring *ring = &skge->rx_ring;
3210 	struct skge_element *e;
3211 	int work_done = 0;
3212 
3213 	skge_tx_done(dev);
3214 
3215 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3216 
3217 	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3218 		struct skge_rx_desc *rd = e->desc;
3219 		struct sk_buff *skb;
3220 		u32 control;
3221 
3222 		rmb();
3223 		control = rd->control;
3224 		if (control & BMU_OWN)
3225 			break;
3226 
3227 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3228 		if (likely(skb)) {
3229 			napi_gro_receive(napi, skb);
3230 			++work_done;
3231 		}
3232 	}
3233 	ring->to_clean = e;
3234 
3235 	/* restart receiver */
3236 	wmb();
3237 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3238 
3239 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3240 		unsigned long flags;
3241 
3242 		spin_lock_irqsave(&hw->hw_lock, flags);
3243 		hw->intr_mask |= napimask[skge->port];
3244 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3245 		skge_read32(hw, B0_IMSK);
3246 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3247 	}
3248 
3249 	return work_done;
3250 }
3251 
3252 /* Parity errors seem to happen when Genesis is connected to a switch
3253  * with no other ports present. Heartbeat error??
3254  */
3255 static void skge_mac_parity(struct skge_hw *hw, int port)
3256 {
3257 	struct net_device *dev = hw->dev[port];
3258 
3259 	++dev->stats.tx_heartbeat_errors;
3260 
3261 	if (is_genesis(hw))
3262 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3263 			     MFF_CLR_PERR);
3264 	else
3265 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3266 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3267 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3268 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3269 }
3270 
3271 static void skge_mac_intr(struct skge_hw *hw, int port)
3272 {
3273 	if (is_genesis(hw))
3274 		genesis_mac_intr(hw, port);
3275 	else
3276 		yukon_mac_intr(hw, port);
3277 }
3278 
3279 /* Handle device specific framing and timeout interrupts */
3280 static void skge_error_irq(struct skge_hw *hw)
3281 {
3282 	struct pci_dev *pdev = hw->pdev;
3283 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3284 
3285 	if (is_genesis(hw)) {
3286 		/* clear xmac errors */
3287 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3288 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3289 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3290 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3291 	} else {
3292 		/* Timestamp (unused) overflow */
3293 		if (hwstatus & IS_IRQ_TIST_OV)
3294 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3295 	}
3296 
3297 	if (hwstatus & IS_RAM_RD_PAR) {
3298 		dev_err(&pdev->dev, "Ram read data parity error\n");
3299 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3300 	}
3301 
3302 	if (hwstatus & IS_RAM_WR_PAR) {
3303 		dev_err(&pdev->dev, "Ram write data parity error\n");
3304 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3305 	}
3306 
3307 	if (hwstatus & IS_M1_PAR_ERR)
3308 		skge_mac_parity(hw, 0);
3309 
3310 	if (hwstatus & IS_M2_PAR_ERR)
3311 		skge_mac_parity(hw, 1);
3312 
3313 	if (hwstatus & IS_R1_PAR_ERR) {
3314 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3315 			hw->dev[0]->name);
3316 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3317 	}
3318 
3319 	if (hwstatus & IS_R2_PAR_ERR) {
3320 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3321 			hw->dev[1]->name);
3322 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3323 	}
3324 
3325 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3326 		u16 pci_status, pci_cmd;
3327 
3328 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3329 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3330 
3331 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3332 			pci_cmd, pci_status);
3333 
3334 		/* Write the error bits back to clear them. */
3335 		pci_status &= PCI_STATUS_ERROR_BITS;
3336 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3337 		pci_write_config_word(pdev, PCI_COMMAND,
3338 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3339 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3340 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3341 
3342 		/* if error still set then just ignore it */
3343 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3344 		if (hwstatus & IS_IRQ_STAT) {
3345 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3346 			hw->intr_mask &= ~IS_HW_ERR;
3347 		}
3348 	}
3349 }
3350 
3351 /*
3352  * Interrupt from PHY are handled in tasklet (softirq)
3353  * because accessing phy registers requires spin wait which might
3354  * cause excess interrupt latency.
3355  */
3356 static void skge_extirq(unsigned long arg)
3357 {
3358 	struct skge_hw *hw = (struct skge_hw *) arg;
3359 	int port;
3360 
3361 	for (port = 0; port < hw->ports; port++) {
3362 		struct net_device *dev = hw->dev[port];
3363 
3364 		if (netif_running(dev)) {
3365 			struct skge_port *skge = netdev_priv(dev);
3366 
3367 			spin_lock(&hw->phy_lock);
3368 			if (!is_genesis(hw))
3369 				yukon_phy_intr(skge);
3370 			else if (hw->phy_type == SK_PHY_BCOM)
3371 				bcom_phy_intr(skge);
3372 			spin_unlock(&hw->phy_lock);
3373 		}
3374 	}
3375 
3376 	spin_lock_irq(&hw->hw_lock);
3377 	hw->intr_mask |= IS_EXT_REG;
3378 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3379 	skge_read32(hw, B0_IMSK);
3380 	spin_unlock_irq(&hw->hw_lock);
3381 }
3382 
3383 static irqreturn_t skge_intr(int irq, void *dev_id)
3384 {
3385 	struct skge_hw *hw = dev_id;
3386 	u32 status;
3387 	int handled = 0;
3388 
3389 	spin_lock(&hw->hw_lock);
3390 	/* Reading this register masks IRQ */
3391 	status = skge_read32(hw, B0_SP_ISRC);
3392 	if (status == 0 || status == ~0)
3393 		goto out;
3394 
3395 	handled = 1;
3396 	status &= hw->intr_mask;
3397 	if (status & IS_EXT_REG) {
3398 		hw->intr_mask &= ~IS_EXT_REG;
3399 		tasklet_schedule(&hw->phy_task);
3400 	}
3401 
3402 	if (status & (IS_XA1_F|IS_R1_F)) {
3403 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3404 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3405 		napi_schedule(&skge->napi);
3406 	}
3407 
3408 	if (status & IS_PA_TO_TX1)
3409 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3410 
3411 	if (status & IS_PA_TO_RX1) {
3412 		++hw->dev[0]->stats.rx_over_errors;
3413 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3414 	}
3415 
3416 
3417 	if (status & IS_MAC1)
3418 		skge_mac_intr(hw, 0);
3419 
3420 	if (hw->dev[1]) {
3421 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3422 
3423 		if (status & (IS_XA2_F|IS_R2_F)) {
3424 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3425 			napi_schedule(&skge->napi);
3426 		}
3427 
3428 		if (status & IS_PA_TO_RX2) {
3429 			++hw->dev[1]->stats.rx_over_errors;
3430 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3431 		}
3432 
3433 		if (status & IS_PA_TO_TX2)
3434 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3435 
3436 		if (status & IS_MAC2)
3437 			skge_mac_intr(hw, 1);
3438 	}
3439 
3440 	if (status & IS_HW_ERR)
3441 		skge_error_irq(hw);
3442 out:
3443 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3444 	skge_read32(hw, B0_IMSK);
3445 	spin_unlock(&hw->hw_lock);
3446 
3447 	return IRQ_RETVAL(handled);
3448 }
3449 
3450 #ifdef CONFIG_NET_POLL_CONTROLLER
3451 static void skge_netpoll(struct net_device *dev)
3452 {
3453 	struct skge_port *skge = netdev_priv(dev);
3454 
3455 	disable_irq(dev->irq);
3456 	skge_intr(dev->irq, skge->hw);
3457 	enable_irq(dev->irq);
3458 }
3459 #endif
3460 
3461 static int skge_set_mac_address(struct net_device *dev, void *p)
3462 {
3463 	struct skge_port *skge = netdev_priv(dev);
3464 	struct skge_hw *hw = skge->hw;
3465 	unsigned port = skge->port;
3466 	const struct sockaddr *addr = p;
3467 	u16 ctrl;
3468 
3469 	if (!is_valid_ether_addr(addr->sa_data))
3470 		return -EADDRNOTAVAIL;
3471 
3472 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3473 
3474 	if (!netif_running(dev)) {
3475 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3476 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3477 	} else {
3478 		/* disable Rx */
3479 		spin_lock_bh(&hw->phy_lock);
3480 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3481 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3482 
3483 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3484 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3485 
3486 		if (is_genesis(hw))
3487 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3488 		else {
3489 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3490 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3491 		}
3492 
3493 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3494 		spin_unlock_bh(&hw->phy_lock);
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static const struct {
3501 	u8 id;
3502 	const char *name;
3503 } skge_chips[] = {
3504 	{ CHIP_ID_GENESIS,	"Genesis" },
3505 	{ CHIP_ID_YUKON,	 "Yukon" },
3506 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3507 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3508 };
3509 
3510 static const char *skge_board_name(const struct skge_hw *hw)
3511 {
3512 	int i;
3513 	static char buf[16];
3514 
3515 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3516 		if (skge_chips[i].id == hw->chip_id)
3517 			return skge_chips[i].name;
3518 
3519 	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3520 	return buf;
3521 }
3522 
3523 
3524 /*
3525  * Setup the board data structure, but don't bring up
3526  * the port(s)
3527  */
3528 static int skge_reset(struct skge_hw *hw)
3529 {
3530 	u32 reg;
3531 	u16 ctst, pci_status;
3532 	u8 t8, mac_cfg, pmd_type;
3533 	int i;
3534 
3535 	ctst = skge_read16(hw, B0_CTST);
3536 
3537 	/* do a SW reset */
3538 	skge_write8(hw, B0_CTST, CS_RST_SET);
3539 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3540 
3541 	/* clear PCI errors, if any */
3542 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3543 	skge_write8(hw, B2_TST_CTRL2, 0);
3544 
3545 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3546 	pci_write_config_word(hw->pdev, PCI_STATUS,
3547 			      pci_status | PCI_STATUS_ERROR_BITS);
3548 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3549 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3550 
3551 	/* restore CLK_RUN bits (for Yukon-Lite) */
3552 	skge_write16(hw, B0_CTST,
3553 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3554 
3555 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3556 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3557 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3558 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3559 
3560 	switch (hw->chip_id) {
3561 	case CHIP_ID_GENESIS:
3562 #ifdef CONFIG_SKGE_GENESIS
3563 		switch (hw->phy_type) {
3564 		case SK_PHY_XMAC:
3565 			hw->phy_addr = PHY_ADDR_XMAC;
3566 			break;
3567 		case SK_PHY_BCOM:
3568 			hw->phy_addr = PHY_ADDR_BCOM;
3569 			break;
3570 		default:
3571 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3572 			       hw->phy_type);
3573 			return -EOPNOTSUPP;
3574 		}
3575 		break;
3576 #else
3577 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3578 		return -EOPNOTSUPP;
3579 #endif
3580 
3581 	case CHIP_ID_YUKON:
3582 	case CHIP_ID_YUKON_LITE:
3583 	case CHIP_ID_YUKON_LP:
3584 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3585 			hw->copper = 1;
3586 
3587 		hw->phy_addr = PHY_ADDR_MARV;
3588 		break;
3589 
3590 	default:
3591 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3592 		       hw->chip_id);
3593 		return -EOPNOTSUPP;
3594 	}
3595 
3596 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3597 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3598 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3599 
3600 	/* read the adapters RAM size */
3601 	t8 = skge_read8(hw, B2_E_0);
3602 	if (is_genesis(hw)) {
3603 		if (t8 == 3) {
3604 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3605 			hw->ram_size = 0x100000;
3606 			hw->ram_offset = 0x80000;
3607 		} else
3608 			hw->ram_size = t8 * 512;
3609 	} else if (t8 == 0)
3610 		hw->ram_size = 0x20000;
3611 	else
3612 		hw->ram_size = t8 * 4096;
3613 
3614 	hw->intr_mask = IS_HW_ERR;
3615 
3616 	/* Use PHY IRQ for all but fiber based Genesis board */
3617 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3618 		hw->intr_mask |= IS_EXT_REG;
3619 
3620 	if (is_genesis(hw))
3621 		genesis_init(hw);
3622 	else {
3623 		/* switch power to VCC (WA for VAUX problem) */
3624 		skge_write8(hw, B0_POWER_CTRL,
3625 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3626 
3627 		/* avoid boards with stuck Hardware error bits */
3628 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3629 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3630 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3631 			hw->intr_mask &= ~IS_HW_ERR;
3632 		}
3633 
3634 		/* Clear PHY COMA */
3635 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3636 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3637 		reg &= ~PCI_PHY_COMA;
3638 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3639 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3640 
3641 
3642 		for (i = 0; i < hw->ports; i++) {
3643 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3644 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3645 		}
3646 	}
3647 
3648 	/* turn off hardware timer (unused) */
3649 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3650 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3651 	skge_write8(hw, B0_LED, LED_STAT_ON);
3652 
3653 	/* enable the Tx Arbiters */
3654 	for (i = 0; i < hw->ports; i++)
3655 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3656 
3657 	/* Initialize ram interface */
3658 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3659 
3660 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3661 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3662 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3663 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3664 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3665 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3666 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3667 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3668 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3669 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3670 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3671 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3672 
3673 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3674 
3675 	/* Set interrupt moderation for Transmit only
3676 	 * Receive interrupts avoided by NAPI
3677 	 */
3678 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3679 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3680 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3681 
3682 	/* Leave irq disabled until first port is brought up. */
3683 	skge_write32(hw, B0_IMSK, 0);
3684 
3685 	for (i = 0; i < hw->ports; i++) {
3686 		if (is_genesis(hw))
3687 			genesis_reset(hw, i);
3688 		else
3689 			yukon_reset(hw, i);
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 
3696 #ifdef CONFIG_SKGE_DEBUG
3697 
3698 static struct dentry *skge_debug;
3699 
3700 static int skge_debug_show(struct seq_file *seq, void *v)
3701 {
3702 	struct net_device *dev = seq->private;
3703 	const struct skge_port *skge = netdev_priv(dev);
3704 	const struct skge_hw *hw = skge->hw;
3705 	const struct skge_element *e;
3706 
3707 	if (!netif_running(dev))
3708 		return -ENETDOWN;
3709 
3710 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3711 		   skge_read32(hw, B0_IMSK));
3712 
3713 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3714 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3715 		const struct skge_tx_desc *t = e->desc;
3716 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3717 			   t->control, t->dma_hi, t->dma_lo, t->status,
3718 			   t->csum_offs, t->csum_write, t->csum_start);
3719 	}
3720 
3721 	seq_puts(seq, "\nRx Ring:\n");
3722 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3723 		const struct skge_rx_desc *r = e->desc;
3724 
3725 		if (r->control & BMU_OWN)
3726 			break;
3727 
3728 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3729 			   r->control, r->dma_hi, r->dma_lo, r->status,
3730 			   r->timestamp, r->csum1, r->csum1_start);
3731 	}
3732 
3733 	return 0;
3734 }
3735 
3736 static int skge_debug_open(struct inode *inode, struct file *file)
3737 {
3738 	return single_open(file, skge_debug_show, inode->i_private);
3739 }
3740 
3741 static const struct file_operations skge_debug_fops = {
3742 	.owner		= THIS_MODULE,
3743 	.open		= skge_debug_open,
3744 	.read		= seq_read,
3745 	.llseek		= seq_lseek,
3746 	.release	= single_release,
3747 };
3748 
3749 /*
3750  * Use network device events to create/remove/rename
3751  * debugfs file entries
3752  */
3753 static int skge_device_event(struct notifier_block *unused,
3754 			     unsigned long event, void *ptr)
3755 {
3756 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3757 	struct skge_port *skge;
3758 	struct dentry *d;
3759 
3760 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3761 		goto done;
3762 
3763 	skge = netdev_priv(dev);
3764 	switch (event) {
3765 	case NETDEV_CHANGENAME:
3766 		if (skge->debugfs) {
3767 			d = debugfs_rename(skge_debug, skge->debugfs,
3768 					   skge_debug, dev->name);
3769 			if (d)
3770 				skge->debugfs = d;
3771 			else {
3772 				netdev_info(dev, "rename failed\n");
3773 				debugfs_remove(skge->debugfs);
3774 			}
3775 		}
3776 		break;
3777 
3778 	case NETDEV_GOING_DOWN:
3779 		if (skge->debugfs) {
3780 			debugfs_remove(skge->debugfs);
3781 			skge->debugfs = NULL;
3782 		}
3783 		break;
3784 
3785 	case NETDEV_UP:
3786 		d = debugfs_create_file(dev->name, 0444,
3787 					skge_debug, dev,
3788 					&skge_debug_fops);
3789 		if (!d || IS_ERR(d))
3790 			netdev_info(dev, "debugfs create failed\n");
3791 		else
3792 			skge->debugfs = d;
3793 		break;
3794 	}
3795 
3796 done:
3797 	return NOTIFY_DONE;
3798 }
3799 
3800 static struct notifier_block skge_notifier = {
3801 	.notifier_call = skge_device_event,
3802 };
3803 
3804 
3805 static __init void skge_debug_init(void)
3806 {
3807 	struct dentry *ent;
3808 
3809 	ent = debugfs_create_dir("skge", NULL);
3810 	if (!ent || IS_ERR(ent)) {
3811 		pr_info("debugfs create directory failed\n");
3812 		return;
3813 	}
3814 
3815 	skge_debug = ent;
3816 	register_netdevice_notifier(&skge_notifier);
3817 }
3818 
3819 static __exit void skge_debug_cleanup(void)
3820 {
3821 	if (skge_debug) {
3822 		unregister_netdevice_notifier(&skge_notifier);
3823 		debugfs_remove(skge_debug);
3824 		skge_debug = NULL;
3825 	}
3826 }
3827 
3828 #else
3829 #define skge_debug_init()
3830 #define skge_debug_cleanup()
3831 #endif
3832 
3833 static const struct net_device_ops skge_netdev_ops = {
3834 	.ndo_open		= skge_up,
3835 	.ndo_stop		= skge_down,
3836 	.ndo_start_xmit		= skge_xmit_frame,
3837 	.ndo_do_ioctl		= skge_ioctl,
3838 	.ndo_get_stats		= skge_get_stats,
3839 	.ndo_tx_timeout		= skge_tx_timeout,
3840 	.ndo_change_mtu		= skge_change_mtu,
3841 	.ndo_validate_addr	= eth_validate_addr,
3842 	.ndo_set_rx_mode	= skge_set_multicast,
3843 	.ndo_set_mac_address	= skge_set_mac_address,
3844 #ifdef CONFIG_NET_POLL_CONTROLLER
3845 	.ndo_poll_controller	= skge_netpoll,
3846 #endif
3847 };
3848 
3849 
3850 /* Initialize network device */
3851 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3852 				       int highmem)
3853 {
3854 	struct skge_port *skge;
3855 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3856 
3857 	if (!dev)
3858 		return NULL;
3859 
3860 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3861 	dev->netdev_ops = &skge_netdev_ops;
3862 	dev->ethtool_ops = &skge_ethtool_ops;
3863 	dev->watchdog_timeo = TX_WATCHDOG;
3864 	dev->irq = hw->pdev->irq;
3865 
3866 	/* MTU range: 60 - 9000 */
3867 	dev->min_mtu = ETH_ZLEN;
3868 	dev->max_mtu = ETH_JUMBO_MTU;
3869 
3870 	if (highmem)
3871 		dev->features |= NETIF_F_HIGHDMA;
3872 
3873 	skge = netdev_priv(dev);
3874 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3875 	skge->netdev = dev;
3876 	skge->hw = hw;
3877 	skge->msg_enable = netif_msg_init(debug, default_msg);
3878 
3879 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3880 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3881 
3882 	/* Auto speed and flow control */
3883 	skge->autoneg = AUTONEG_ENABLE;
3884 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3885 	skge->duplex = -1;
3886 	skge->speed = -1;
3887 	skge->advertising = skge_supported_modes(hw);
3888 
3889 	if (device_can_wakeup(&hw->pdev->dev)) {
3890 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3891 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3892 	}
3893 
3894 	hw->dev[port] = dev;
3895 
3896 	skge->port = port;
3897 
3898 	/* Only used for Genesis XMAC */
3899 	if (is_genesis(hw))
3900 	    timer_setup(&skge->link_timer, xm_link_timer, 0);
3901 	else {
3902 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3903 		                   NETIF_F_RXCSUM;
3904 		dev->features |= dev->hw_features;
3905 	}
3906 
3907 	/* read the mac address */
3908 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3909 
3910 	return dev;
3911 }
3912 
3913 static void skge_show_addr(struct net_device *dev)
3914 {
3915 	const struct skge_port *skge = netdev_priv(dev);
3916 
3917 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3918 }
3919 
3920 static int only_32bit_dma;
3921 
3922 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3923 {
3924 	struct net_device *dev, *dev1;
3925 	struct skge_hw *hw;
3926 	int err, using_dac = 0;
3927 
3928 	err = pci_enable_device(pdev);
3929 	if (err) {
3930 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3931 		goto err_out;
3932 	}
3933 
3934 	err = pci_request_regions(pdev, DRV_NAME);
3935 	if (err) {
3936 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3937 		goto err_out_disable_pdev;
3938 	}
3939 
3940 	pci_set_master(pdev);
3941 
3942 	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3943 		using_dac = 1;
3944 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3945 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3946 		using_dac = 0;
3947 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3948 	}
3949 
3950 	if (err) {
3951 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3952 		goto err_out_free_regions;
3953 	}
3954 
3955 #ifdef __BIG_ENDIAN
3956 	/* byte swap descriptors in hardware */
3957 	{
3958 		u32 reg;
3959 
3960 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3961 		reg |= PCI_REV_DESC;
3962 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3963 	}
3964 #endif
3965 
3966 	err = -ENOMEM;
3967 	/* space for skge@pci:0000:04:00.0 */
3968 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3969 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3970 	if (!hw)
3971 		goto err_out_free_regions;
3972 
3973 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3974 
3975 	hw->pdev = pdev;
3976 	spin_lock_init(&hw->hw_lock);
3977 	spin_lock_init(&hw->phy_lock);
3978 	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3979 
3980 	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3981 	if (!hw->regs) {
3982 		dev_err(&pdev->dev, "cannot map device registers\n");
3983 		goto err_out_free_hw;
3984 	}
3985 
3986 	err = skge_reset(hw);
3987 	if (err)
3988 		goto err_out_iounmap;
3989 
3990 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3991 		DRV_VERSION,
3992 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3993 		skge_board_name(hw), hw->chip_rev);
3994 
3995 	dev = skge_devinit(hw, 0, using_dac);
3996 	if (!dev) {
3997 		err = -ENOMEM;
3998 		goto err_out_led_off;
3999 	}
4000 
4001 	/* Some motherboards are broken and has zero in ROM. */
4002 	if (!is_valid_ether_addr(dev->dev_addr))
4003 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
4004 
4005 	err = register_netdev(dev);
4006 	if (err) {
4007 		dev_err(&pdev->dev, "cannot register net device\n");
4008 		goto err_out_free_netdev;
4009 	}
4010 
4011 	skge_show_addr(dev);
4012 
4013 	if (hw->ports > 1) {
4014 		dev1 = skge_devinit(hw, 1, using_dac);
4015 		if (!dev1) {
4016 			err = -ENOMEM;
4017 			goto err_out_unregister;
4018 		}
4019 
4020 		err = register_netdev(dev1);
4021 		if (err) {
4022 			dev_err(&pdev->dev, "cannot register second net device\n");
4023 			goto err_out_free_dev1;
4024 		}
4025 
4026 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4027 				  hw->irq_name, hw);
4028 		if (err) {
4029 			dev_err(&pdev->dev, "cannot assign irq %d\n",
4030 				pdev->irq);
4031 			goto err_out_unregister_dev1;
4032 		}
4033 
4034 		skge_show_addr(dev1);
4035 	}
4036 	pci_set_drvdata(pdev, hw);
4037 
4038 	return 0;
4039 
4040 err_out_unregister_dev1:
4041 	unregister_netdev(dev1);
4042 err_out_free_dev1:
4043 	free_netdev(dev1);
4044 err_out_unregister:
4045 	unregister_netdev(dev);
4046 err_out_free_netdev:
4047 	free_netdev(dev);
4048 err_out_led_off:
4049 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4050 err_out_iounmap:
4051 	iounmap(hw->regs);
4052 err_out_free_hw:
4053 	kfree(hw);
4054 err_out_free_regions:
4055 	pci_release_regions(pdev);
4056 err_out_disable_pdev:
4057 	pci_disable_device(pdev);
4058 err_out:
4059 	return err;
4060 }
4061 
4062 static void skge_remove(struct pci_dev *pdev)
4063 {
4064 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4065 	struct net_device *dev0, *dev1;
4066 
4067 	if (!hw)
4068 		return;
4069 
4070 	dev1 = hw->dev[1];
4071 	if (dev1)
4072 		unregister_netdev(dev1);
4073 	dev0 = hw->dev[0];
4074 	unregister_netdev(dev0);
4075 
4076 	tasklet_kill(&hw->phy_task);
4077 
4078 	spin_lock_irq(&hw->hw_lock);
4079 	hw->intr_mask = 0;
4080 
4081 	if (hw->ports > 1) {
4082 		skge_write32(hw, B0_IMSK, 0);
4083 		skge_read32(hw, B0_IMSK);
4084 	}
4085 	spin_unlock_irq(&hw->hw_lock);
4086 
4087 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4088 	skge_write8(hw, B0_CTST, CS_RST_SET);
4089 
4090 	if (hw->ports > 1)
4091 		free_irq(pdev->irq, hw);
4092 	pci_release_regions(pdev);
4093 	pci_disable_device(pdev);
4094 	if (dev1)
4095 		free_netdev(dev1);
4096 	free_netdev(dev0);
4097 
4098 	iounmap(hw->regs);
4099 	kfree(hw);
4100 }
4101 
4102 #ifdef CONFIG_PM_SLEEP
4103 static int skge_suspend(struct device *dev)
4104 {
4105 	struct pci_dev *pdev = to_pci_dev(dev);
4106 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4107 	int i;
4108 
4109 	if (!hw)
4110 		return 0;
4111 
4112 	for (i = 0; i < hw->ports; i++) {
4113 		struct net_device *dev = hw->dev[i];
4114 		struct skge_port *skge = netdev_priv(dev);
4115 
4116 		if (netif_running(dev))
4117 			skge_down(dev);
4118 
4119 		if (skge->wol)
4120 			skge_wol_init(skge);
4121 	}
4122 
4123 	skge_write32(hw, B0_IMSK, 0);
4124 
4125 	return 0;
4126 }
4127 
4128 static int skge_resume(struct device *dev)
4129 {
4130 	struct pci_dev *pdev = to_pci_dev(dev);
4131 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4132 	int i, err;
4133 
4134 	if (!hw)
4135 		return 0;
4136 
4137 	err = skge_reset(hw);
4138 	if (err)
4139 		goto out;
4140 
4141 	for (i = 0; i < hw->ports; i++) {
4142 		struct net_device *dev = hw->dev[i];
4143 
4144 		if (netif_running(dev)) {
4145 			err = skge_up(dev);
4146 
4147 			if (err) {
4148 				netdev_err(dev, "could not up: %d\n", err);
4149 				dev_close(dev);
4150 				goto out;
4151 			}
4152 		}
4153 	}
4154 out:
4155 	return err;
4156 }
4157 
4158 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4159 #define SKGE_PM_OPS (&skge_pm_ops)
4160 
4161 #else
4162 
4163 #define SKGE_PM_OPS NULL
4164 #endif /* CONFIG_PM_SLEEP */
4165 
4166 static void skge_shutdown(struct pci_dev *pdev)
4167 {
4168 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4169 	int i;
4170 
4171 	if (!hw)
4172 		return;
4173 
4174 	for (i = 0; i < hw->ports; i++) {
4175 		struct net_device *dev = hw->dev[i];
4176 		struct skge_port *skge = netdev_priv(dev);
4177 
4178 		if (skge->wol)
4179 			skge_wol_init(skge);
4180 	}
4181 
4182 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4183 	pci_set_power_state(pdev, PCI_D3hot);
4184 }
4185 
4186 static struct pci_driver skge_driver = {
4187 	.name =         DRV_NAME,
4188 	.id_table =     skge_id_table,
4189 	.probe =        skge_probe,
4190 	.remove =       skge_remove,
4191 	.shutdown =	skge_shutdown,
4192 	.driver.pm =	SKGE_PM_OPS,
4193 };
4194 
4195 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4196 	{
4197 		.ident = "Gigabyte nForce boards",
4198 		.matches = {
4199 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4200 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4201 		},
4202 	},
4203 	{
4204 		.ident = "ASUS P5NSLI",
4205 		.matches = {
4206 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4207 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4208 		},
4209 	},
4210 	{
4211 		.ident = "FUJITSU SIEMENS A8NE-FM",
4212 		.matches = {
4213 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4214 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4215 		},
4216 	},
4217 	{}
4218 };
4219 
4220 static int __init skge_init_module(void)
4221 {
4222 	if (dmi_check_system(skge_32bit_dma_boards))
4223 		only_32bit_dma = 1;
4224 	skge_debug_init();
4225 	return pci_register_driver(&skge_driver);
4226 }
4227 
4228 static void __exit skge_cleanup_module(void)
4229 {
4230 	pci_unregister_driver(&skge_driver);
4231 	skge_debug_cleanup();
4232 }
4233 
4234 module_init(skge_init_module);
4235 module_exit(skge_cleanup_module);
4236