xref: /linux/drivers/net/ethernet/marvell/skge.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3  * Ethernet adapters. Based on earlier sk98lin, e100 and
4  * FreeBSD if_sk drivers.
5  *
6  * This driver intentionally does not support all the features
7  * of the original driver such as link fail-over and link management because
8  * those should be done at higher levels.
9  *
10  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
48 #include <asm/irq.h>
49 
50 #include "skge.h"
51 
52 #define DRV_NAME		"skge"
53 #define DRV_VERSION		"1.14"
54 
55 #define DEFAULT_TX_RING_SIZE	128
56 #define DEFAULT_RX_RING_SIZE	512
57 #define MAX_TX_RING_SIZE	1024
58 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE	4096
60 #define RX_COPY_THRESHOLD	128
61 #define RX_BUF_SIZE		1536
62 #define PHY_RETRIES	        1000
63 #define ETH_JUMBO_MTU		9000
64 #define TX_WATCHDOG		(5 * HZ)
65 #define NAPI_WEIGHT		64
66 #define BLINK_MS		250
67 #define LINK_HZ			HZ
68 
69 #define SKGE_EEPROM_MAGIC	0x9933aabb
70 
71 
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION);
76 
77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
79 				NETIF_MSG_IFDOWN);
80 
81 static int debug = -1;	/* defaults above */
82 module_param(debug, int, 0);
83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84 
85 static const struct pci_device_id skge_id_table[] = {
86 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
87 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90 #endif
91 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
93 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
94 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
95 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
96 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
97 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
98 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
99 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100 	{ 0 }
101 };
102 MODULE_DEVICE_TABLE(pci, skge_id_table);
103 
104 static int skge_up(struct net_device *dev);
105 static int skge_down(struct net_device *dev);
106 static void skge_phy_reset(struct skge_port *skge);
107 static void skge_tx_clean(struct net_device *dev);
108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110 static void genesis_get_stats(struct skge_port *skge, u64 *data);
111 static void yukon_get_stats(struct skge_port *skge, u64 *data);
112 static void yukon_init(struct skge_hw *hw, int port);
113 static void genesis_mac_init(struct skge_hw *hw, int port);
114 static void genesis_link_up(struct skge_port *skge);
115 static void skge_set_multicast(struct net_device *dev);
116 static irqreturn_t skge_intr(int irq, void *dev_id);
117 
118 /* Avoid conditionals by using array */
119 static const int txqaddr[] = { Q_XA1, Q_XA2 };
120 static const int rxqaddr[] = { Q_R1, Q_R2 };
121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
125 
126 static inline bool is_genesis(const struct skge_hw *hw)
127 {
128 #ifdef CONFIG_SKGE_GENESIS
129 	return hw->chip_id == CHIP_ID_GENESIS;
130 #else
131 	return false;
132 #endif
133 }
134 
135 static int skge_get_regs_len(struct net_device *dev)
136 {
137 	return 0x4000;
138 }
139 
140 /*
141  * Returns copy of whole control register region
142  * Note: skip RAM address register because accessing it will
143  * 	 cause bus hangs!
144  */
145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146 			  void *p)
147 {
148 	const struct skge_port *skge = netdev_priv(dev);
149 	const void __iomem *io = skge->hw->regs;
150 
151 	regs->version = 1;
152 	memset(p, 0, regs->len);
153 	memcpy_fromio(p, io, B3_RAM_ADDR);
154 
155 	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
156 		      regs->len - B3_RI_WTO_R1);
157 }
158 
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32 wol_supported(const struct skge_hw *hw)
161 {
162 	if (is_genesis(hw))
163 		return 0;
164 
165 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166 		return 0;
167 
168 	return WAKE_MAGIC | WAKE_PHY;
169 }
170 
171 static void skge_wol_init(struct skge_port *skge)
172 {
173 	struct skge_hw *hw = skge->hw;
174 	int port = skge->port;
175 	u16 ctrl;
176 
177 	skge_write16(hw, B0_CTST, CS_RST_CLR);
178 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179 
180 	/* Turn on Vaux */
181 	skge_write8(hw, B0_POWER_CTRL,
182 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183 
184 	/* WA code for COMA mode -- clear PHY reset */
185 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187 		u32 reg = skge_read32(hw, B2_GP_IO);
188 		reg |= GP_DIR_9;
189 		reg &= ~GP_IO_9;
190 		skge_write32(hw, B2_GP_IO, reg);
191 	}
192 
193 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
194 		     GPC_DIS_SLEEP |
195 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
196 		     GPC_ANEG_1 | GPC_RST_SET);
197 
198 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
199 		     GPC_DIS_SLEEP |
200 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
201 		     GPC_ANEG_1 | GPC_RST_CLR);
202 
203 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204 
205 	/* Force to 10/100 skge_reset will re-enable on resume	 */
206 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
207 		     (PHY_AN_100FULL | PHY_AN_100HALF |
208 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
209 	/* no 1000 HD/FD */
210 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211 	gm_phy_write(hw, port, PHY_MARV_CTRL,
212 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
213 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
214 
215 
216 	/* Set GMAC to no flow control and auto update for speed/duplex */
217 	gma_write16(hw, port, GM_GP_CTRL,
218 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
219 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220 
221 	/* Set WOL address */
222 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223 		    skge->netdev->dev_addr, ETH_ALEN);
224 
225 	/* Turn on appropriate WOL control bits */
226 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227 	ctrl = 0;
228 	if (skge->wol & WAKE_PHY)
229 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230 	else
231 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232 
233 	if (skge->wol & WAKE_MAGIC)
234 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235 	else
236 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
237 
238 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
239 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240 
241 	/* block receiver */
242 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
243 }
244 
245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246 {
247 	struct skge_port *skge = netdev_priv(dev);
248 
249 	wol->supported = wol_supported(skge->hw);
250 	wol->wolopts = skge->wol;
251 }
252 
253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254 {
255 	struct skge_port *skge = netdev_priv(dev);
256 	struct skge_hw *hw = skge->hw;
257 
258 	if ((wol->wolopts & ~wol_supported(hw)) ||
259 	    !device_can_wakeup(&hw->pdev->dev))
260 		return -EOPNOTSUPP;
261 
262 	skge->wol = wol->wolopts;
263 
264 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
265 
266 	return 0;
267 }
268 
269 /* Determine supported/advertised modes based on hardware.
270  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
271  */
272 static u32 skge_supported_modes(const struct skge_hw *hw)
273 {
274 	u32 supported;
275 
276 	if (hw->copper) {
277 		supported = (SUPPORTED_10baseT_Half |
278 			     SUPPORTED_10baseT_Full |
279 			     SUPPORTED_100baseT_Half |
280 			     SUPPORTED_100baseT_Full |
281 			     SUPPORTED_1000baseT_Half |
282 			     SUPPORTED_1000baseT_Full |
283 			     SUPPORTED_Autoneg |
284 			     SUPPORTED_TP);
285 
286 		if (is_genesis(hw))
287 			supported &= ~(SUPPORTED_10baseT_Half |
288 				       SUPPORTED_10baseT_Full |
289 				       SUPPORTED_100baseT_Half |
290 				       SUPPORTED_100baseT_Full);
291 
292 		else if (hw->chip_id == CHIP_ID_YUKON)
293 			supported &= ~SUPPORTED_1000baseT_Half;
294 	} else
295 		supported = (SUPPORTED_1000baseT_Full |
296 			     SUPPORTED_1000baseT_Half |
297 			     SUPPORTED_FIBRE |
298 			     SUPPORTED_Autoneg);
299 
300 	return supported;
301 }
302 
303 static int skge_get_settings(struct net_device *dev,
304 			     struct ethtool_cmd *ecmd)
305 {
306 	struct skge_port *skge = netdev_priv(dev);
307 	struct skge_hw *hw = skge->hw;
308 
309 	ecmd->transceiver = XCVR_INTERNAL;
310 	ecmd->supported = skge_supported_modes(hw);
311 
312 	if (hw->copper) {
313 		ecmd->port = PORT_TP;
314 		ecmd->phy_address = hw->phy_addr;
315 	} else
316 		ecmd->port = PORT_FIBRE;
317 
318 	ecmd->advertising = skge->advertising;
319 	ecmd->autoneg = skge->autoneg;
320 	ethtool_cmd_speed_set(ecmd, skge->speed);
321 	ecmd->duplex = skge->duplex;
322 	return 0;
323 }
324 
325 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
326 {
327 	struct skge_port *skge = netdev_priv(dev);
328 	const struct skge_hw *hw = skge->hw;
329 	u32 supported = skge_supported_modes(hw);
330 	int err = 0;
331 
332 	if (ecmd->autoneg == AUTONEG_ENABLE) {
333 		ecmd->advertising = supported;
334 		skge->duplex = -1;
335 		skge->speed = -1;
336 	} else {
337 		u32 setting;
338 		u32 speed = ethtool_cmd_speed(ecmd);
339 
340 		switch (speed) {
341 		case SPEED_1000:
342 			if (ecmd->duplex == DUPLEX_FULL)
343 				setting = SUPPORTED_1000baseT_Full;
344 			else if (ecmd->duplex == DUPLEX_HALF)
345 				setting = SUPPORTED_1000baseT_Half;
346 			else
347 				return -EINVAL;
348 			break;
349 		case SPEED_100:
350 			if (ecmd->duplex == DUPLEX_FULL)
351 				setting = SUPPORTED_100baseT_Full;
352 			else if (ecmd->duplex == DUPLEX_HALF)
353 				setting = SUPPORTED_100baseT_Half;
354 			else
355 				return -EINVAL;
356 			break;
357 
358 		case SPEED_10:
359 			if (ecmd->duplex == DUPLEX_FULL)
360 				setting = SUPPORTED_10baseT_Full;
361 			else if (ecmd->duplex == DUPLEX_HALF)
362 				setting = SUPPORTED_10baseT_Half;
363 			else
364 				return -EINVAL;
365 			break;
366 		default:
367 			return -EINVAL;
368 		}
369 
370 		if ((setting & supported) == 0)
371 			return -EINVAL;
372 
373 		skge->speed = speed;
374 		skge->duplex = ecmd->duplex;
375 	}
376 
377 	skge->autoneg = ecmd->autoneg;
378 	skge->advertising = ecmd->advertising;
379 
380 	if (netif_running(dev)) {
381 		skge_down(dev);
382 		err = skge_up(dev);
383 		if (err) {
384 			dev_close(dev);
385 			return err;
386 		}
387 	}
388 
389 	return 0;
390 }
391 
392 static void skge_get_drvinfo(struct net_device *dev,
393 			     struct ethtool_drvinfo *info)
394 {
395 	struct skge_port *skge = netdev_priv(dev);
396 
397 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
398 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
399 	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
400 		sizeof(info->bus_info));
401 }
402 
403 static const struct skge_stat {
404 	char 	   name[ETH_GSTRING_LEN];
405 	u16	   xmac_offset;
406 	u16	   gma_offset;
407 } skge_stats[] = {
408 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410 
411 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419 
420 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426 
427 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432 };
433 
434 static int skge_get_sset_count(struct net_device *dev, int sset)
435 {
436 	switch (sset) {
437 	case ETH_SS_STATS:
438 		return ARRAY_SIZE(skge_stats);
439 	default:
440 		return -EOPNOTSUPP;
441 	}
442 }
443 
444 static void skge_get_ethtool_stats(struct net_device *dev,
445 				   struct ethtool_stats *stats, u64 *data)
446 {
447 	struct skge_port *skge = netdev_priv(dev);
448 
449 	if (is_genesis(skge->hw))
450 		genesis_get_stats(skge, data);
451 	else
452 		yukon_get_stats(skge, data);
453 }
454 
455 /* Use hardware MIB variables for critical path statistics and
456  * transmit feedback not reported at interrupt.
457  * Other errors are accounted for in interrupt handler.
458  */
459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
460 {
461 	struct skge_port *skge = netdev_priv(dev);
462 	u64 data[ARRAY_SIZE(skge_stats)];
463 
464 	if (is_genesis(skge->hw))
465 		genesis_get_stats(skge, data);
466 	else
467 		yukon_get_stats(skge, data);
468 
469 	dev->stats.tx_bytes = data[0];
470 	dev->stats.rx_bytes = data[1];
471 	dev->stats.tx_packets = data[2] + data[4] + data[6];
472 	dev->stats.rx_packets = data[3] + data[5] + data[7];
473 	dev->stats.multicast = data[3] + data[5];
474 	dev->stats.collisions = data[10];
475 	dev->stats.tx_aborted_errors = data[12];
476 
477 	return &dev->stats;
478 }
479 
480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481 {
482 	int i;
483 
484 	switch (stringset) {
485 	case ETH_SS_STATS:
486 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 			memcpy(data + i * ETH_GSTRING_LEN,
488 			       skge_stats[i].name, ETH_GSTRING_LEN);
489 		break;
490 	}
491 }
492 
493 static void skge_get_ring_param(struct net_device *dev,
494 				struct ethtool_ringparam *p)
495 {
496 	struct skge_port *skge = netdev_priv(dev);
497 
498 	p->rx_max_pending = MAX_RX_RING_SIZE;
499 	p->tx_max_pending = MAX_TX_RING_SIZE;
500 
501 	p->rx_pending = skge->rx_ring.count;
502 	p->tx_pending = skge->tx_ring.count;
503 }
504 
505 static int skge_set_ring_param(struct net_device *dev,
506 			       struct ethtool_ringparam *p)
507 {
508 	struct skge_port *skge = netdev_priv(dev);
509 	int err = 0;
510 
511 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
512 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
513 		return -EINVAL;
514 
515 	skge->rx_ring.count = p->rx_pending;
516 	skge->tx_ring.count = p->tx_pending;
517 
518 	if (netif_running(dev)) {
519 		skge_down(dev);
520 		err = skge_up(dev);
521 		if (err)
522 			dev_close(dev);
523 	}
524 
525 	return err;
526 }
527 
528 static u32 skge_get_msglevel(struct net_device *netdev)
529 {
530 	struct skge_port *skge = netdev_priv(netdev);
531 	return skge->msg_enable;
532 }
533 
534 static void skge_set_msglevel(struct net_device *netdev, u32 value)
535 {
536 	struct skge_port *skge = netdev_priv(netdev);
537 	skge->msg_enable = value;
538 }
539 
540 static int skge_nway_reset(struct net_device *dev)
541 {
542 	struct skge_port *skge = netdev_priv(dev);
543 
544 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
545 		return -EINVAL;
546 
547 	skge_phy_reset(skge);
548 	return 0;
549 }
550 
551 static void skge_get_pauseparam(struct net_device *dev,
552 				struct ethtool_pauseparam *ecmd)
553 {
554 	struct skge_port *skge = netdev_priv(dev);
555 
556 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
557 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
558 	ecmd->tx_pause = (ecmd->rx_pause ||
559 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
560 
561 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
562 }
563 
564 static int skge_set_pauseparam(struct net_device *dev,
565 			       struct ethtool_pauseparam *ecmd)
566 {
567 	struct skge_port *skge = netdev_priv(dev);
568 	struct ethtool_pauseparam old;
569 	int err = 0;
570 
571 	skge_get_pauseparam(dev, &old);
572 
573 	if (ecmd->autoneg != old.autoneg)
574 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
575 	else {
576 		if (ecmd->rx_pause && ecmd->tx_pause)
577 			skge->flow_control = FLOW_MODE_SYMMETRIC;
578 		else if (ecmd->rx_pause && !ecmd->tx_pause)
579 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
580 		else if (!ecmd->rx_pause && ecmd->tx_pause)
581 			skge->flow_control = FLOW_MODE_LOC_SEND;
582 		else
583 			skge->flow_control = FLOW_MODE_NONE;
584 	}
585 
586 	if (netif_running(dev)) {
587 		skge_down(dev);
588 		err = skge_up(dev);
589 		if (err) {
590 			dev_close(dev);
591 			return err;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 /* Chip internal frequency for clock calculations */
599 static inline u32 hwkhz(const struct skge_hw *hw)
600 {
601 	return is_genesis(hw) ? 53125 : 78125;
602 }
603 
604 /* Chip HZ to microseconds */
605 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
606 {
607 	return (ticks * 1000) / hwkhz(hw);
608 }
609 
610 /* Microseconds to chip HZ */
611 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
612 {
613 	return hwkhz(hw) * usec / 1000;
614 }
615 
616 static int skge_get_coalesce(struct net_device *dev,
617 			     struct ethtool_coalesce *ecmd)
618 {
619 	struct skge_port *skge = netdev_priv(dev);
620 	struct skge_hw *hw = skge->hw;
621 	int port = skge->port;
622 
623 	ecmd->rx_coalesce_usecs = 0;
624 	ecmd->tx_coalesce_usecs = 0;
625 
626 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
627 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
628 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
629 
630 		if (msk & rxirqmask[port])
631 			ecmd->rx_coalesce_usecs = delay;
632 		if (msk & txirqmask[port])
633 			ecmd->tx_coalesce_usecs = delay;
634 	}
635 
636 	return 0;
637 }
638 
639 /* Note: interrupt timer is per board, but can turn on/off per port */
640 static int skge_set_coalesce(struct net_device *dev,
641 			     struct ethtool_coalesce *ecmd)
642 {
643 	struct skge_port *skge = netdev_priv(dev);
644 	struct skge_hw *hw = skge->hw;
645 	int port = skge->port;
646 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
647 	u32 delay = 25;
648 
649 	if (ecmd->rx_coalesce_usecs == 0)
650 		msk &= ~rxirqmask[port];
651 	else if (ecmd->rx_coalesce_usecs < 25 ||
652 		 ecmd->rx_coalesce_usecs > 33333)
653 		return -EINVAL;
654 	else {
655 		msk |= rxirqmask[port];
656 		delay = ecmd->rx_coalesce_usecs;
657 	}
658 
659 	if (ecmd->tx_coalesce_usecs == 0)
660 		msk &= ~txirqmask[port];
661 	else if (ecmd->tx_coalesce_usecs < 25 ||
662 		 ecmd->tx_coalesce_usecs > 33333)
663 		return -EINVAL;
664 	else {
665 		msk |= txirqmask[port];
666 		delay = min(delay, ecmd->rx_coalesce_usecs);
667 	}
668 
669 	skge_write32(hw, B2_IRQM_MSK, msk);
670 	if (msk == 0)
671 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
672 	else {
673 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
674 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
675 	}
676 	return 0;
677 }
678 
679 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
680 static void skge_led(struct skge_port *skge, enum led_mode mode)
681 {
682 	struct skge_hw *hw = skge->hw;
683 	int port = skge->port;
684 
685 	spin_lock_bh(&hw->phy_lock);
686 	if (is_genesis(hw)) {
687 		switch (mode) {
688 		case LED_MODE_OFF:
689 			if (hw->phy_type == SK_PHY_BCOM)
690 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
691 			else {
692 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
693 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
694 			}
695 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
696 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
697 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
698 			break;
699 
700 		case LED_MODE_ON:
701 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
702 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
703 
704 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
705 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
706 
707 			break;
708 
709 		case LED_MODE_TST:
710 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
711 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
712 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713 
714 			if (hw->phy_type == SK_PHY_BCOM)
715 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
716 			else {
717 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
718 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
719 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
720 			}
721 
722 		}
723 	} else {
724 		switch (mode) {
725 		case LED_MODE_OFF:
726 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
727 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
728 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
729 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
730 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
731 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
732 				     PHY_M_LED_MO_RX(MO_LED_OFF));
733 			break;
734 		case LED_MODE_ON:
735 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
736 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
737 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
738 				     PHY_M_LEDC_TX_CTRL |
739 				     PHY_M_LEDC_DP_CTRL);
740 
741 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
742 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
743 				     (skge->speed == SPEED_100 ?
744 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
745 			break;
746 		case LED_MODE_TST:
747 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
748 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
750 				     PHY_M_LED_MO_10(MO_LED_ON)   |
751 				     PHY_M_LED_MO_100(MO_LED_ON)  |
752 				     PHY_M_LED_MO_1000(MO_LED_ON) |
753 				     PHY_M_LED_MO_RX(MO_LED_ON));
754 		}
755 	}
756 	spin_unlock_bh(&hw->phy_lock);
757 }
758 
759 /* blink LED's for finding board */
760 static int skge_set_phys_id(struct net_device *dev,
761 			    enum ethtool_phys_id_state state)
762 {
763 	struct skge_port *skge = netdev_priv(dev);
764 
765 	switch (state) {
766 	case ETHTOOL_ID_ACTIVE:
767 		return 2;	/* cycle on/off twice per second */
768 
769 	case ETHTOOL_ID_ON:
770 		skge_led(skge, LED_MODE_TST);
771 		break;
772 
773 	case ETHTOOL_ID_OFF:
774 		skge_led(skge, LED_MODE_OFF);
775 		break;
776 
777 	case ETHTOOL_ID_INACTIVE:
778 		/* back to regular LED state */
779 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
780 	}
781 
782 	return 0;
783 }
784 
785 static int skge_get_eeprom_len(struct net_device *dev)
786 {
787 	struct skge_port *skge = netdev_priv(dev);
788 	u32 reg2;
789 
790 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
791 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
792 }
793 
794 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
795 {
796 	u32 val;
797 
798 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
799 
800 	do {
801 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
802 	} while (!(offset & PCI_VPD_ADDR_F));
803 
804 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
805 	return val;
806 }
807 
808 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
809 {
810 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
811 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
812 			      offset | PCI_VPD_ADDR_F);
813 
814 	do {
815 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
816 	} while (offset & PCI_VPD_ADDR_F);
817 }
818 
819 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
820 			   u8 *data)
821 {
822 	struct skge_port *skge = netdev_priv(dev);
823 	struct pci_dev *pdev = skge->hw->pdev;
824 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
825 	int length = eeprom->len;
826 	u16 offset = eeprom->offset;
827 
828 	if (!cap)
829 		return -EINVAL;
830 
831 	eeprom->magic = SKGE_EEPROM_MAGIC;
832 
833 	while (length > 0) {
834 		u32 val = skge_vpd_read(pdev, cap, offset);
835 		int n = min_t(int, length, sizeof(val));
836 
837 		memcpy(data, &val, n);
838 		length -= n;
839 		data += n;
840 		offset += n;
841 	}
842 	return 0;
843 }
844 
845 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
846 			   u8 *data)
847 {
848 	struct skge_port *skge = netdev_priv(dev);
849 	struct pci_dev *pdev = skge->hw->pdev;
850 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
851 	int length = eeprom->len;
852 	u16 offset = eeprom->offset;
853 
854 	if (!cap)
855 		return -EINVAL;
856 
857 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
858 		return -EINVAL;
859 
860 	while (length > 0) {
861 		u32 val;
862 		int n = min_t(int, length, sizeof(val));
863 
864 		if (n < sizeof(val))
865 			val = skge_vpd_read(pdev, cap, offset);
866 		memcpy(&val, data, n);
867 
868 		skge_vpd_write(pdev, cap, offset, val);
869 
870 		length -= n;
871 		data += n;
872 		offset += n;
873 	}
874 	return 0;
875 }
876 
877 static const struct ethtool_ops skge_ethtool_ops = {
878 	.get_settings	= skge_get_settings,
879 	.set_settings	= skge_set_settings,
880 	.get_drvinfo	= skge_get_drvinfo,
881 	.get_regs_len	= skge_get_regs_len,
882 	.get_regs	= skge_get_regs,
883 	.get_wol	= skge_get_wol,
884 	.set_wol	= skge_set_wol,
885 	.get_msglevel	= skge_get_msglevel,
886 	.set_msglevel	= skge_set_msglevel,
887 	.nway_reset	= skge_nway_reset,
888 	.get_link	= ethtool_op_get_link,
889 	.get_eeprom_len	= skge_get_eeprom_len,
890 	.get_eeprom	= skge_get_eeprom,
891 	.set_eeprom	= skge_set_eeprom,
892 	.get_ringparam	= skge_get_ring_param,
893 	.set_ringparam	= skge_set_ring_param,
894 	.get_pauseparam = skge_get_pauseparam,
895 	.set_pauseparam = skge_set_pauseparam,
896 	.get_coalesce	= skge_get_coalesce,
897 	.set_coalesce	= skge_set_coalesce,
898 	.get_strings	= skge_get_strings,
899 	.set_phys_id	= skge_set_phys_id,
900 	.get_sset_count = skge_get_sset_count,
901 	.get_ethtool_stats = skge_get_ethtool_stats,
902 };
903 
904 /*
905  * Allocate ring elements and chain them together
906  * One-to-one association of board descriptors with ring elements
907  */
908 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
909 {
910 	struct skge_tx_desc *d;
911 	struct skge_element *e;
912 	int i;
913 
914 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
915 	if (!ring->start)
916 		return -ENOMEM;
917 
918 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
919 		e->desc = d;
920 		if (i == ring->count - 1) {
921 			e->next = ring->start;
922 			d->next_offset = base;
923 		} else {
924 			e->next = e + 1;
925 			d->next_offset = base + (i+1) * sizeof(*d);
926 		}
927 	}
928 	ring->to_use = ring->to_clean = ring->start;
929 
930 	return 0;
931 }
932 
933 /* Allocate and setup a new buffer for receiving */
934 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
935 			 struct sk_buff *skb, unsigned int bufsize)
936 {
937 	struct skge_rx_desc *rd = e->desc;
938 	dma_addr_t map;
939 
940 	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
941 			     PCI_DMA_FROMDEVICE);
942 
943 	if (pci_dma_mapping_error(skge->hw->pdev, map))
944 		return -1;
945 
946 	rd->dma_lo = lower_32_bits(map);
947 	rd->dma_hi = upper_32_bits(map);
948 	e->skb = skb;
949 	rd->csum1_start = ETH_HLEN;
950 	rd->csum2_start = ETH_HLEN;
951 	rd->csum1 = 0;
952 	rd->csum2 = 0;
953 
954 	wmb();
955 
956 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
957 	dma_unmap_addr_set(e, mapaddr, map);
958 	dma_unmap_len_set(e, maplen, bufsize);
959 	return 0;
960 }
961 
962 /* Resume receiving using existing skb,
963  * Note: DMA address is not changed by chip.
964  * 	 MTU not changed while receiver active.
965  */
966 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
967 {
968 	struct skge_rx_desc *rd = e->desc;
969 
970 	rd->csum2 = 0;
971 	rd->csum2_start = ETH_HLEN;
972 
973 	wmb();
974 
975 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
976 }
977 
978 
979 /* Free all  buffers in receive ring, assumes receiver stopped */
980 static void skge_rx_clean(struct skge_port *skge)
981 {
982 	struct skge_hw *hw = skge->hw;
983 	struct skge_ring *ring = &skge->rx_ring;
984 	struct skge_element *e;
985 
986 	e = ring->start;
987 	do {
988 		struct skge_rx_desc *rd = e->desc;
989 		rd->control = 0;
990 		if (e->skb) {
991 			pci_unmap_single(hw->pdev,
992 					 dma_unmap_addr(e, mapaddr),
993 					 dma_unmap_len(e, maplen),
994 					 PCI_DMA_FROMDEVICE);
995 			dev_kfree_skb(e->skb);
996 			e->skb = NULL;
997 		}
998 	} while ((e = e->next) != ring->start);
999 }
1000 
1001 
1002 /* Allocate buffers for receive ring
1003  * For receive:  to_clean is next received frame.
1004  */
1005 static int skge_rx_fill(struct net_device *dev)
1006 {
1007 	struct skge_port *skge = netdev_priv(dev);
1008 	struct skge_ring *ring = &skge->rx_ring;
1009 	struct skge_element *e;
1010 
1011 	e = ring->start;
1012 	do {
1013 		struct sk_buff *skb;
1014 
1015 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1016 					 GFP_KERNEL);
1017 		if (!skb)
1018 			return -ENOMEM;
1019 
1020 		skb_reserve(skb, NET_IP_ALIGN);
1021 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1022 			dev_kfree_skb(skb);
1023 			return -EIO;
1024 		}
1025 	} while ((e = e->next) != ring->start);
1026 
1027 	ring->to_clean = ring->start;
1028 	return 0;
1029 }
1030 
1031 static const char *skge_pause(enum pause_status status)
1032 {
1033 	switch (status) {
1034 	case FLOW_STAT_NONE:
1035 		return "none";
1036 	case FLOW_STAT_REM_SEND:
1037 		return "rx only";
1038 	case FLOW_STAT_LOC_SEND:
1039 		return "tx_only";
1040 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1041 		return "both";
1042 	default:
1043 		return "indeterminated";
1044 	}
1045 }
1046 
1047 
1048 static void skge_link_up(struct skge_port *skge)
1049 {
1050 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1051 		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1052 
1053 	netif_carrier_on(skge->netdev);
1054 	netif_wake_queue(skge->netdev);
1055 
1056 	netif_info(skge, link, skge->netdev,
1057 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1058 		   skge->speed,
1059 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1060 		   skge_pause(skge->flow_status));
1061 }
1062 
1063 static void skge_link_down(struct skge_port *skge)
1064 {
1065 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1066 	netif_carrier_off(skge->netdev);
1067 	netif_stop_queue(skge->netdev);
1068 
1069 	netif_info(skge, link, skge->netdev, "Link is down\n");
1070 }
1071 
1072 static void xm_link_down(struct skge_hw *hw, int port)
1073 {
1074 	struct net_device *dev = hw->dev[port];
1075 	struct skge_port *skge = netdev_priv(dev);
1076 
1077 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1078 
1079 	if (netif_carrier_ok(dev))
1080 		skge_link_down(skge);
1081 }
1082 
1083 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1084 {
1085 	int i;
1086 
1087 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1088 	*val = xm_read16(hw, port, XM_PHY_DATA);
1089 
1090 	if (hw->phy_type == SK_PHY_XMAC)
1091 		goto ready;
1092 
1093 	for (i = 0; i < PHY_RETRIES; i++) {
1094 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1095 			goto ready;
1096 		udelay(1);
1097 	}
1098 
1099 	return -ETIMEDOUT;
1100  ready:
1101 	*val = xm_read16(hw, port, XM_PHY_DATA);
1102 
1103 	return 0;
1104 }
1105 
1106 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1107 {
1108 	u16 v = 0;
1109 	if (__xm_phy_read(hw, port, reg, &v))
1110 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1111 	return v;
1112 }
1113 
1114 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1115 {
1116 	int i;
1117 
1118 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1119 	for (i = 0; i < PHY_RETRIES; i++) {
1120 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1121 			goto ready;
1122 		udelay(1);
1123 	}
1124 	return -EIO;
1125 
1126  ready:
1127 	xm_write16(hw, port, XM_PHY_DATA, val);
1128 	for (i = 0; i < PHY_RETRIES; i++) {
1129 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130 			return 0;
1131 		udelay(1);
1132 	}
1133 	return -ETIMEDOUT;
1134 }
1135 
1136 static void genesis_init(struct skge_hw *hw)
1137 {
1138 	/* set blink source counter */
1139 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1140 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1141 
1142 	/* configure mac arbiter */
1143 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1144 
1145 	/* configure mac arbiter timeout values */
1146 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1147 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1148 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1149 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1150 
1151 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1152 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1153 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1154 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1155 
1156 	/* configure packet arbiter timeout */
1157 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1158 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1159 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1160 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1161 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1162 }
1163 
1164 static void genesis_reset(struct skge_hw *hw, int port)
1165 {
1166 	static const u8 zero[8]  = { 0 };
1167 	u32 reg;
1168 
1169 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1170 
1171 	/* reset the statistics module */
1172 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1173 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1174 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1175 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1176 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1177 
1178 	/* disable Broadcom PHY IRQ */
1179 	if (hw->phy_type == SK_PHY_BCOM)
1180 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1181 
1182 	xm_outhash(hw, port, XM_HSM, zero);
1183 
1184 	/* Flush TX and RX fifo */
1185 	reg = xm_read32(hw, port, XM_MODE);
1186 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1187 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1188 }
1189 
1190 /* Convert mode to MII values  */
1191 static const u16 phy_pause_map[] = {
1192 	[FLOW_MODE_NONE] =	0,
1193 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1194 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1195 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1196 };
1197 
1198 /* special defines for FIBER (88E1011S only) */
1199 static const u16 fiber_pause_map[] = {
1200 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1201 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1202 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1203 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1204 };
1205 
1206 
1207 /* Check status of Broadcom phy link */
1208 static void bcom_check_link(struct skge_hw *hw, int port)
1209 {
1210 	struct net_device *dev = hw->dev[port];
1211 	struct skge_port *skge = netdev_priv(dev);
1212 	u16 status;
1213 
1214 	/* read twice because of latch */
1215 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1216 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1217 
1218 	if ((status & PHY_ST_LSYNC) == 0) {
1219 		xm_link_down(hw, port);
1220 		return;
1221 	}
1222 
1223 	if (skge->autoneg == AUTONEG_ENABLE) {
1224 		u16 lpa, aux;
1225 
1226 		if (!(status & PHY_ST_AN_OVER))
1227 			return;
1228 
1229 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1230 		if (lpa & PHY_B_AN_RF) {
1231 			netdev_notice(dev, "remote fault\n");
1232 			return;
1233 		}
1234 
1235 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1236 
1237 		/* Check Duplex mismatch */
1238 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1239 		case PHY_B_RES_1000FD:
1240 			skge->duplex = DUPLEX_FULL;
1241 			break;
1242 		case PHY_B_RES_1000HD:
1243 			skge->duplex = DUPLEX_HALF;
1244 			break;
1245 		default:
1246 			netdev_notice(dev, "duplex mismatch\n");
1247 			return;
1248 		}
1249 
1250 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1251 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1252 		case PHY_B_AS_PAUSE_MSK:
1253 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1254 			break;
1255 		case PHY_B_AS_PRR:
1256 			skge->flow_status = FLOW_STAT_REM_SEND;
1257 			break;
1258 		case PHY_B_AS_PRT:
1259 			skge->flow_status = FLOW_STAT_LOC_SEND;
1260 			break;
1261 		default:
1262 			skge->flow_status = FLOW_STAT_NONE;
1263 		}
1264 		skge->speed = SPEED_1000;
1265 	}
1266 
1267 	if (!netif_carrier_ok(dev))
1268 		genesis_link_up(skge);
1269 }
1270 
1271 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1272  * Phy on for 100 or 10Mbit operation
1273  */
1274 static void bcom_phy_init(struct skge_port *skge)
1275 {
1276 	struct skge_hw *hw = skge->hw;
1277 	int port = skge->port;
1278 	int i;
1279 	u16 id1, r, ext, ctl;
1280 
1281 	/* magic workaround patterns for Broadcom */
1282 	static const struct {
1283 		u16 reg;
1284 		u16 val;
1285 	} A1hack[] = {
1286 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1287 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1288 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1289 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1290 	}, C0hack[] = {
1291 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1292 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1293 	};
1294 
1295 	/* read Id from external PHY (all have the same address) */
1296 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1297 
1298 	/* Optimize MDIO transfer by suppressing preamble. */
1299 	r = xm_read16(hw, port, XM_MMU_CMD);
1300 	r |=  XM_MMU_NO_PRE;
1301 	xm_write16(hw, port, XM_MMU_CMD, r);
1302 
1303 	switch (id1) {
1304 	case PHY_BCOM_ID1_C0:
1305 		/*
1306 		 * Workaround BCOM Errata for the C0 type.
1307 		 * Write magic patterns to reserved registers.
1308 		 */
1309 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1310 			xm_phy_write(hw, port,
1311 				     C0hack[i].reg, C0hack[i].val);
1312 
1313 		break;
1314 	case PHY_BCOM_ID1_A1:
1315 		/*
1316 		 * Workaround BCOM Errata for the A1 type.
1317 		 * Write magic patterns to reserved registers.
1318 		 */
1319 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1320 			xm_phy_write(hw, port,
1321 				     A1hack[i].reg, A1hack[i].val);
1322 		break;
1323 	}
1324 
1325 	/*
1326 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1327 	 * Disable Power Management after reset.
1328 	 */
1329 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1330 	r |= PHY_B_AC_DIS_PM;
1331 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1332 
1333 	/* Dummy read */
1334 	xm_read16(hw, port, XM_ISRC);
1335 
1336 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1337 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1338 
1339 	if (skge->autoneg == AUTONEG_ENABLE) {
1340 		/*
1341 		 * Workaround BCOM Errata #1 for the C5 type.
1342 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1343 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1344 		 */
1345 		u16 adv = PHY_B_1000C_RD;
1346 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1347 			adv |= PHY_B_1000C_AHD;
1348 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1349 			adv |= PHY_B_1000C_AFD;
1350 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1351 
1352 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1353 	} else {
1354 		if (skge->duplex == DUPLEX_FULL)
1355 			ctl |= PHY_CT_DUP_MD;
1356 		/* Force to slave */
1357 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1358 	}
1359 
1360 	/* Set autonegotiation pause parameters */
1361 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1362 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1363 
1364 	/* Handle Jumbo frames */
1365 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1366 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1367 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1368 
1369 		ext |= PHY_B_PEC_HIGH_LA;
1370 
1371 	}
1372 
1373 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1374 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1375 
1376 	/* Use link status change interrupt */
1377 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1378 }
1379 
1380 static void xm_phy_init(struct skge_port *skge)
1381 {
1382 	struct skge_hw *hw = skge->hw;
1383 	int port = skge->port;
1384 	u16 ctrl = 0;
1385 
1386 	if (skge->autoneg == AUTONEG_ENABLE) {
1387 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1388 			ctrl |= PHY_X_AN_HD;
1389 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1390 			ctrl |= PHY_X_AN_FD;
1391 
1392 		ctrl |= fiber_pause_map[skge->flow_control];
1393 
1394 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1395 
1396 		/* Restart Auto-negotiation */
1397 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1398 	} else {
1399 		/* Set DuplexMode in Config register */
1400 		if (skge->duplex == DUPLEX_FULL)
1401 			ctrl |= PHY_CT_DUP_MD;
1402 		/*
1403 		 * Do NOT enable Auto-negotiation here. This would hold
1404 		 * the link down because no IDLEs are transmitted
1405 		 */
1406 	}
1407 
1408 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1409 
1410 	/* Poll PHY for status changes */
1411 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1412 }
1413 
1414 static int xm_check_link(struct net_device *dev)
1415 {
1416 	struct skge_port *skge = netdev_priv(dev);
1417 	struct skge_hw *hw = skge->hw;
1418 	int port = skge->port;
1419 	u16 status;
1420 
1421 	/* read twice because of latch */
1422 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1423 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1424 
1425 	if ((status & PHY_ST_LSYNC) == 0) {
1426 		xm_link_down(hw, port);
1427 		return 0;
1428 	}
1429 
1430 	if (skge->autoneg == AUTONEG_ENABLE) {
1431 		u16 lpa, res;
1432 
1433 		if (!(status & PHY_ST_AN_OVER))
1434 			return 0;
1435 
1436 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1437 		if (lpa & PHY_B_AN_RF) {
1438 			netdev_notice(dev, "remote fault\n");
1439 			return 0;
1440 		}
1441 
1442 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1443 
1444 		/* Check Duplex mismatch */
1445 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1446 		case PHY_X_RS_FD:
1447 			skge->duplex = DUPLEX_FULL;
1448 			break;
1449 		case PHY_X_RS_HD:
1450 			skge->duplex = DUPLEX_HALF;
1451 			break;
1452 		default:
1453 			netdev_notice(dev, "duplex mismatch\n");
1454 			return 0;
1455 		}
1456 
1457 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1458 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1459 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1460 		    (lpa & PHY_X_P_SYM_MD))
1461 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1462 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1463 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1464 			/* Enable PAUSE receive, disable PAUSE transmit */
1465 			skge->flow_status  = FLOW_STAT_REM_SEND;
1466 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1467 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1468 			/* Disable PAUSE receive, enable PAUSE transmit */
1469 			skge->flow_status = FLOW_STAT_LOC_SEND;
1470 		else
1471 			skge->flow_status = FLOW_STAT_NONE;
1472 
1473 		skge->speed = SPEED_1000;
1474 	}
1475 
1476 	if (!netif_carrier_ok(dev))
1477 		genesis_link_up(skge);
1478 	return 1;
1479 }
1480 
1481 /* Poll to check for link coming up.
1482  *
1483  * Since internal PHY is wired to a level triggered pin, can't
1484  * get an interrupt when carrier is detected, need to poll for
1485  * link coming up.
1486  */
1487 static void xm_link_timer(unsigned long arg)
1488 {
1489 	struct skge_port *skge = (struct skge_port *) arg;
1490 	struct net_device *dev = skge->netdev;
1491 	struct skge_hw *hw = skge->hw;
1492 	int port = skge->port;
1493 	int i;
1494 	unsigned long flags;
1495 
1496 	if (!netif_running(dev))
1497 		return;
1498 
1499 	spin_lock_irqsave(&hw->phy_lock, flags);
1500 
1501 	/*
1502 	 * Verify that the link by checking GPIO register three times.
1503 	 * This pin has the signal from the link_sync pin connected to it.
1504 	 */
1505 	for (i = 0; i < 3; i++) {
1506 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1507 			goto link_down;
1508 	}
1509 
1510 	/* Re-enable interrupt to detect link down */
1511 	if (xm_check_link(dev)) {
1512 		u16 msk = xm_read16(hw, port, XM_IMSK);
1513 		msk &= ~XM_IS_INP_ASS;
1514 		xm_write16(hw, port, XM_IMSK, msk);
1515 		xm_read16(hw, port, XM_ISRC);
1516 	} else {
1517 link_down:
1518 		mod_timer(&skge->link_timer,
1519 			  round_jiffies(jiffies + LINK_HZ));
1520 	}
1521 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1522 }
1523 
1524 static void genesis_mac_init(struct skge_hw *hw, int port)
1525 {
1526 	struct net_device *dev = hw->dev[port];
1527 	struct skge_port *skge = netdev_priv(dev);
1528 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1529 	int i;
1530 	u32 r;
1531 	static const u8 zero[6]  = { 0 };
1532 
1533 	for (i = 0; i < 10; i++) {
1534 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1535 			     MFF_SET_MAC_RST);
1536 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1537 			goto reset_ok;
1538 		udelay(1);
1539 	}
1540 
1541 	netdev_warn(dev, "genesis reset failed\n");
1542 
1543  reset_ok:
1544 	/* Unreset the XMAC. */
1545 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1546 
1547 	/*
1548 	 * Perform additional initialization for external PHYs,
1549 	 * namely for the 1000baseTX cards that use the XMAC's
1550 	 * GMII mode.
1551 	 */
1552 	if (hw->phy_type != SK_PHY_XMAC) {
1553 		/* Take external Phy out of reset */
1554 		r = skge_read32(hw, B2_GP_IO);
1555 		if (port == 0)
1556 			r |= GP_DIR_0|GP_IO_0;
1557 		else
1558 			r |= GP_DIR_2|GP_IO_2;
1559 
1560 		skge_write32(hw, B2_GP_IO, r);
1561 
1562 		/* Enable GMII interface */
1563 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1564 	}
1565 
1566 
1567 	switch (hw->phy_type) {
1568 	case SK_PHY_XMAC:
1569 		xm_phy_init(skge);
1570 		break;
1571 	case SK_PHY_BCOM:
1572 		bcom_phy_init(skge);
1573 		bcom_check_link(hw, port);
1574 	}
1575 
1576 	/* Set Station Address */
1577 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1578 
1579 	/* We don't use match addresses so clear */
1580 	for (i = 1; i < 16; i++)
1581 		xm_outaddr(hw, port, XM_EXM(i), zero);
1582 
1583 	/* Clear MIB counters */
1584 	xm_write16(hw, port, XM_STAT_CMD,
1585 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1586 	/* Clear two times according to Errata #3 */
1587 	xm_write16(hw, port, XM_STAT_CMD,
1588 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1589 
1590 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1591 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1592 
1593 	/* We don't need the FCS appended to the packet. */
1594 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1595 	if (jumbo)
1596 		r |= XM_RX_BIG_PK_OK;
1597 
1598 	if (skge->duplex == DUPLEX_HALF) {
1599 		/*
1600 		 * If in manual half duplex mode the other side might be in
1601 		 * full duplex mode, so ignore if a carrier extension is not seen
1602 		 * on frames received
1603 		 */
1604 		r |= XM_RX_DIS_CEXT;
1605 	}
1606 	xm_write16(hw, port, XM_RX_CMD, r);
1607 
1608 	/* We want short frames padded to 60 bytes. */
1609 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1610 
1611 	/* Increase threshold for jumbo frames on dual port */
1612 	if (hw->ports > 1 && jumbo)
1613 		xm_write16(hw, port, XM_TX_THR, 1020);
1614 	else
1615 		xm_write16(hw, port, XM_TX_THR, 512);
1616 
1617 	/*
1618 	 * Enable the reception of all error frames. This is is
1619 	 * a necessary evil due to the design of the XMAC. The
1620 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1621 	 * frames can be up to 9000 bytes in length. When bad
1622 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1623 	 * in 'store and forward' mode. For this to work, the
1624 	 * entire frame has to fit into the FIFO, but that means
1625 	 * that jumbo frames larger than 8192 bytes will be
1626 	 * truncated. Disabling all bad frame filtering causes
1627 	 * the RX FIFO to operate in streaming mode, in which
1628 	 * case the XMAC will start transferring frames out of the
1629 	 * RX FIFO as soon as the FIFO threshold is reached.
1630 	 */
1631 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1632 
1633 
1634 	/*
1635 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1636 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1637 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1638 	 */
1639 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1640 
1641 	/*
1642 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1643 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1644 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1645 	 */
1646 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1647 
1648 	/* Configure MAC arbiter */
1649 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1650 
1651 	/* configure timeout values */
1652 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1653 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1654 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1655 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1656 
1657 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1658 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1659 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1660 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1661 
1662 	/* Configure Rx MAC FIFO */
1663 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1664 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1665 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1666 
1667 	/* Configure Tx MAC FIFO */
1668 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1669 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1670 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1671 
1672 	if (jumbo) {
1673 		/* Enable frame flushing if jumbo frames used */
1674 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1675 	} else {
1676 		/* enable timeout timers if normal frames */
1677 		skge_write16(hw, B3_PA_CTRL,
1678 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1679 	}
1680 }
1681 
1682 static void genesis_stop(struct skge_port *skge)
1683 {
1684 	struct skge_hw *hw = skge->hw;
1685 	int port = skge->port;
1686 	unsigned retries = 1000;
1687 	u16 cmd;
1688 
1689 	/* Disable Tx and Rx */
1690 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1691 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1692 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1693 
1694 	genesis_reset(hw, port);
1695 
1696 	/* Clear Tx packet arbiter timeout IRQ */
1697 	skge_write16(hw, B3_PA_CTRL,
1698 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1699 
1700 	/* Reset the MAC */
1701 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1702 	do {
1703 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1704 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1705 			break;
1706 	} while (--retries > 0);
1707 
1708 	/* For external PHYs there must be special handling */
1709 	if (hw->phy_type != SK_PHY_XMAC) {
1710 		u32 reg = skge_read32(hw, B2_GP_IO);
1711 		if (port == 0) {
1712 			reg |= GP_DIR_0;
1713 			reg &= ~GP_IO_0;
1714 		} else {
1715 			reg |= GP_DIR_2;
1716 			reg &= ~GP_IO_2;
1717 		}
1718 		skge_write32(hw, B2_GP_IO, reg);
1719 		skge_read32(hw, B2_GP_IO);
1720 	}
1721 
1722 	xm_write16(hw, port, XM_MMU_CMD,
1723 			xm_read16(hw, port, XM_MMU_CMD)
1724 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1725 
1726 	xm_read16(hw, port, XM_MMU_CMD);
1727 }
1728 
1729 
1730 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1731 {
1732 	struct skge_hw *hw = skge->hw;
1733 	int port = skge->port;
1734 	int i;
1735 	unsigned long timeout = jiffies + HZ;
1736 
1737 	xm_write16(hw, port,
1738 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1739 
1740 	/* wait for update to complete */
1741 	while (xm_read16(hw, port, XM_STAT_CMD)
1742 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1743 		if (time_after(jiffies, timeout))
1744 			break;
1745 		udelay(10);
1746 	}
1747 
1748 	/* special case for 64 bit octet counter */
1749 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1750 		| xm_read32(hw, port, XM_TXO_OK_LO);
1751 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1752 		| xm_read32(hw, port, XM_RXO_OK_LO);
1753 
1754 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1755 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1756 }
1757 
1758 static void genesis_mac_intr(struct skge_hw *hw, int port)
1759 {
1760 	struct net_device *dev = hw->dev[port];
1761 	struct skge_port *skge = netdev_priv(dev);
1762 	u16 status = xm_read16(hw, port, XM_ISRC);
1763 
1764 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1765 		     "mac interrupt status 0x%x\n", status);
1766 
1767 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1768 		xm_link_down(hw, port);
1769 		mod_timer(&skge->link_timer, jiffies + 1);
1770 	}
1771 
1772 	if (status & XM_IS_TXF_UR) {
1773 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1774 		++dev->stats.tx_fifo_errors;
1775 	}
1776 }
1777 
1778 static void genesis_link_up(struct skge_port *skge)
1779 {
1780 	struct skge_hw *hw = skge->hw;
1781 	int port = skge->port;
1782 	u16 cmd, msk;
1783 	u32 mode;
1784 
1785 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1786 
1787 	/*
1788 	 * enabling pause frame reception is required for 1000BT
1789 	 * because the XMAC is not reset if the link is going down
1790 	 */
1791 	if (skge->flow_status == FLOW_STAT_NONE ||
1792 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1793 		/* Disable Pause Frame Reception */
1794 		cmd |= XM_MMU_IGN_PF;
1795 	else
1796 		/* Enable Pause Frame Reception */
1797 		cmd &= ~XM_MMU_IGN_PF;
1798 
1799 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1800 
1801 	mode = xm_read32(hw, port, XM_MODE);
1802 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1803 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1804 		/*
1805 		 * Configure Pause Frame Generation
1806 		 * Use internal and external Pause Frame Generation.
1807 		 * Sending pause frames is edge triggered.
1808 		 * Send a Pause frame with the maximum pause time if
1809 		 * internal oder external FIFO full condition occurs.
1810 		 * Send a zero pause time frame to re-start transmission.
1811 		 */
1812 		/* XM_PAUSE_DA = '010000C28001' (default) */
1813 		/* XM_MAC_PTIME = 0xffff (maximum) */
1814 		/* remember this value is defined in big endian (!) */
1815 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1816 
1817 		mode |= XM_PAUSE_MODE;
1818 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1819 	} else {
1820 		/*
1821 		 * disable pause frame generation is required for 1000BT
1822 		 * because the XMAC is not reset if the link is going down
1823 		 */
1824 		/* Disable Pause Mode in Mode Register */
1825 		mode &= ~XM_PAUSE_MODE;
1826 
1827 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1828 	}
1829 
1830 	xm_write32(hw, port, XM_MODE, mode);
1831 
1832 	/* Turn on detection of Tx underrun */
1833 	msk = xm_read16(hw, port, XM_IMSK);
1834 	msk &= ~XM_IS_TXF_UR;
1835 	xm_write16(hw, port, XM_IMSK, msk);
1836 
1837 	xm_read16(hw, port, XM_ISRC);
1838 
1839 	/* get MMU Command Reg. */
1840 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1841 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1842 		cmd |= XM_MMU_GMII_FD;
1843 
1844 	/*
1845 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1846 	 * Enable Power Management after link up
1847 	 */
1848 	if (hw->phy_type == SK_PHY_BCOM) {
1849 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1850 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1851 			     & ~PHY_B_AC_DIS_PM);
1852 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1853 	}
1854 
1855 	/* enable Rx/Tx */
1856 	xm_write16(hw, port, XM_MMU_CMD,
1857 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1858 	skge_link_up(skge);
1859 }
1860 
1861 
1862 static inline void bcom_phy_intr(struct skge_port *skge)
1863 {
1864 	struct skge_hw *hw = skge->hw;
1865 	int port = skge->port;
1866 	u16 isrc;
1867 
1868 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1869 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1870 		     "phy interrupt status 0x%x\n", isrc);
1871 
1872 	if (isrc & PHY_B_IS_PSE)
1873 		pr_err("%s: uncorrectable pair swap error\n",
1874 		       hw->dev[port]->name);
1875 
1876 	/* Workaround BCom Errata:
1877 	 *	enable and disable loopback mode if "NO HCD" occurs.
1878 	 */
1879 	if (isrc & PHY_B_IS_NO_HDCL) {
1880 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1881 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1882 				  ctrl | PHY_CT_LOOP);
1883 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884 				  ctrl & ~PHY_CT_LOOP);
1885 	}
1886 
1887 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1888 		bcom_check_link(hw, port);
1889 
1890 }
1891 
1892 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1893 {
1894 	int i;
1895 
1896 	gma_write16(hw, port, GM_SMI_DATA, val);
1897 	gma_write16(hw, port, GM_SMI_CTRL,
1898 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1899 	for (i = 0; i < PHY_RETRIES; i++) {
1900 		udelay(1);
1901 
1902 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1903 			return 0;
1904 	}
1905 
1906 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1907 	return -EIO;
1908 }
1909 
1910 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1911 {
1912 	int i;
1913 
1914 	gma_write16(hw, port, GM_SMI_CTRL,
1915 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1916 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1917 
1918 	for (i = 0; i < PHY_RETRIES; i++) {
1919 		udelay(1);
1920 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1921 			goto ready;
1922 	}
1923 
1924 	return -ETIMEDOUT;
1925  ready:
1926 	*val = gma_read16(hw, port, GM_SMI_DATA);
1927 	return 0;
1928 }
1929 
1930 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1931 {
1932 	u16 v = 0;
1933 	if (__gm_phy_read(hw, port, reg, &v))
1934 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1935 	return v;
1936 }
1937 
1938 /* Marvell Phy Initialization */
1939 static void yukon_init(struct skge_hw *hw, int port)
1940 {
1941 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1942 	u16 ctrl, ct1000, adv;
1943 
1944 	if (skge->autoneg == AUTONEG_ENABLE) {
1945 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1946 
1947 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1948 			  PHY_M_EC_MAC_S_MSK);
1949 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1950 
1951 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1952 
1953 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1954 	}
1955 
1956 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1957 	if (skge->autoneg == AUTONEG_DISABLE)
1958 		ctrl &= ~PHY_CT_ANE;
1959 
1960 	ctrl |= PHY_CT_RESET;
1961 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1962 
1963 	ctrl = 0;
1964 	ct1000 = 0;
1965 	adv = PHY_AN_CSMA;
1966 
1967 	if (skge->autoneg == AUTONEG_ENABLE) {
1968 		if (hw->copper) {
1969 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1970 				ct1000 |= PHY_M_1000C_AFD;
1971 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1972 				ct1000 |= PHY_M_1000C_AHD;
1973 			if (skge->advertising & ADVERTISED_100baseT_Full)
1974 				adv |= PHY_M_AN_100_FD;
1975 			if (skge->advertising & ADVERTISED_100baseT_Half)
1976 				adv |= PHY_M_AN_100_HD;
1977 			if (skge->advertising & ADVERTISED_10baseT_Full)
1978 				adv |= PHY_M_AN_10_FD;
1979 			if (skge->advertising & ADVERTISED_10baseT_Half)
1980 				adv |= PHY_M_AN_10_HD;
1981 
1982 			/* Set Flow-control capabilities */
1983 			adv |= phy_pause_map[skge->flow_control];
1984 		} else {
1985 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1986 				adv |= PHY_M_AN_1000X_AFD;
1987 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1988 				adv |= PHY_M_AN_1000X_AHD;
1989 
1990 			adv |= fiber_pause_map[skge->flow_control];
1991 		}
1992 
1993 		/* Restart Auto-negotiation */
1994 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1995 	} else {
1996 		/* forced speed/duplex settings */
1997 		ct1000 = PHY_M_1000C_MSE;
1998 
1999 		if (skge->duplex == DUPLEX_FULL)
2000 			ctrl |= PHY_CT_DUP_MD;
2001 
2002 		switch (skge->speed) {
2003 		case SPEED_1000:
2004 			ctrl |= PHY_CT_SP1000;
2005 			break;
2006 		case SPEED_100:
2007 			ctrl |= PHY_CT_SP100;
2008 			break;
2009 		}
2010 
2011 		ctrl |= PHY_CT_RESET;
2012 	}
2013 
2014 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2015 
2016 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2017 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2018 
2019 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2020 	if (skge->autoneg == AUTONEG_ENABLE)
2021 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2022 	else
2023 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2024 }
2025 
2026 static void yukon_reset(struct skge_hw *hw, int port)
2027 {
2028 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2029 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2030 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2031 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2032 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2033 
2034 	gma_write16(hw, port, GM_RX_CTRL,
2035 			 gma_read16(hw, port, GM_RX_CTRL)
2036 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2037 }
2038 
2039 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2040 static int is_yukon_lite_a0(struct skge_hw *hw)
2041 {
2042 	u32 reg;
2043 	int ret;
2044 
2045 	if (hw->chip_id != CHIP_ID_YUKON)
2046 		return 0;
2047 
2048 	reg = skge_read32(hw, B2_FAR);
2049 	skge_write8(hw, B2_FAR + 3, 0xff);
2050 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2051 	skge_write32(hw, B2_FAR, reg);
2052 	return ret;
2053 }
2054 
2055 static void yukon_mac_init(struct skge_hw *hw, int port)
2056 {
2057 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2058 	int i;
2059 	u32 reg;
2060 	const u8 *addr = hw->dev[port]->dev_addr;
2061 
2062 	/* WA code for COMA mode -- set PHY reset */
2063 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2064 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2065 		reg = skge_read32(hw, B2_GP_IO);
2066 		reg |= GP_DIR_9 | GP_IO_9;
2067 		skge_write32(hw, B2_GP_IO, reg);
2068 	}
2069 
2070 	/* hard reset */
2071 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2072 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2073 
2074 	/* WA code for COMA mode -- clear PHY reset */
2075 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2076 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2077 		reg = skge_read32(hw, B2_GP_IO);
2078 		reg |= GP_DIR_9;
2079 		reg &= ~GP_IO_9;
2080 		skge_write32(hw, B2_GP_IO, reg);
2081 	}
2082 
2083 	/* Set hardware config mode */
2084 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2085 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2086 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2087 
2088 	/* Clear GMC reset */
2089 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2090 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2091 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2092 
2093 	if (skge->autoneg == AUTONEG_DISABLE) {
2094 		reg = GM_GPCR_AU_ALL_DIS;
2095 		gma_write16(hw, port, GM_GP_CTRL,
2096 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2097 
2098 		switch (skge->speed) {
2099 		case SPEED_1000:
2100 			reg &= ~GM_GPCR_SPEED_100;
2101 			reg |= GM_GPCR_SPEED_1000;
2102 			break;
2103 		case SPEED_100:
2104 			reg &= ~GM_GPCR_SPEED_1000;
2105 			reg |= GM_GPCR_SPEED_100;
2106 			break;
2107 		case SPEED_10:
2108 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2109 			break;
2110 		}
2111 
2112 		if (skge->duplex == DUPLEX_FULL)
2113 			reg |= GM_GPCR_DUP_FULL;
2114 	} else
2115 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2116 
2117 	switch (skge->flow_control) {
2118 	case FLOW_MODE_NONE:
2119 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2120 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2121 		break;
2122 	case FLOW_MODE_LOC_SEND:
2123 		/* disable Rx flow-control */
2124 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2125 		break;
2126 	case FLOW_MODE_SYMMETRIC:
2127 	case FLOW_MODE_SYM_OR_REM:
2128 		/* enable Tx & Rx flow-control */
2129 		break;
2130 	}
2131 
2132 	gma_write16(hw, port, GM_GP_CTRL, reg);
2133 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2134 
2135 	yukon_init(hw, port);
2136 
2137 	/* MIB clear */
2138 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2139 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2140 
2141 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2142 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2143 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2144 
2145 	/* transmit control */
2146 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2147 
2148 	/* receive control reg: unicast + multicast + no FCS  */
2149 	gma_write16(hw, port, GM_RX_CTRL,
2150 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2151 
2152 	/* transmit flow control */
2153 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2154 
2155 	/* transmit parameter */
2156 	gma_write16(hw, port, GM_TX_PARAM,
2157 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2158 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2159 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2160 
2161 	/* configure the Serial Mode Register */
2162 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2163 		| GM_SMOD_VLAN_ENA
2164 		| IPG_DATA_VAL(IPG_DATA_DEF);
2165 
2166 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2167 		reg |= GM_SMOD_JUMBO_ENA;
2168 
2169 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2170 
2171 	/* physical address: used for pause frames */
2172 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2173 	/* virtual address for data */
2174 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2175 
2176 	/* enable interrupt mask for counter overflows */
2177 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2178 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2179 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2180 
2181 	/* Initialize Mac Fifo */
2182 
2183 	/* Configure Rx MAC FIFO */
2184 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2185 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2186 
2187 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2188 	if (is_yukon_lite_a0(hw))
2189 		reg &= ~GMF_RX_F_FL_ON;
2190 
2191 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2192 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2193 	/*
2194 	 * because Pause Packet Truncation in GMAC is not working
2195 	 * we have to increase the Flush Threshold to 64 bytes
2196 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2197 	 */
2198 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2199 
2200 	/* Configure Tx MAC FIFO */
2201 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2202 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2203 }
2204 
2205 /* Go into power down mode */
2206 static void yukon_suspend(struct skge_hw *hw, int port)
2207 {
2208 	u16 ctrl;
2209 
2210 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2211 	ctrl |= PHY_M_PC_POL_R_DIS;
2212 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2213 
2214 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2215 	ctrl |= PHY_CT_RESET;
2216 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2217 
2218 	/* switch IEEE compatible power down mode on */
2219 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2220 	ctrl |= PHY_CT_PDOWN;
2221 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2222 }
2223 
2224 static void yukon_stop(struct skge_port *skge)
2225 {
2226 	struct skge_hw *hw = skge->hw;
2227 	int port = skge->port;
2228 
2229 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2230 	yukon_reset(hw, port);
2231 
2232 	gma_write16(hw, port, GM_GP_CTRL,
2233 			 gma_read16(hw, port, GM_GP_CTRL)
2234 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2235 	gma_read16(hw, port, GM_GP_CTRL);
2236 
2237 	yukon_suspend(hw, port);
2238 
2239 	/* set GPHY Control reset */
2240 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2241 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2242 }
2243 
2244 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2245 {
2246 	struct skge_hw *hw = skge->hw;
2247 	int port = skge->port;
2248 	int i;
2249 
2250 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2251 		| gma_read32(hw, port, GM_TXO_OK_LO);
2252 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2253 		| gma_read32(hw, port, GM_RXO_OK_LO);
2254 
2255 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2256 		data[i] = gma_read32(hw, port,
2257 					  skge_stats[i].gma_offset);
2258 }
2259 
2260 static void yukon_mac_intr(struct skge_hw *hw, int port)
2261 {
2262 	struct net_device *dev = hw->dev[port];
2263 	struct skge_port *skge = netdev_priv(dev);
2264 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2265 
2266 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2267 		     "mac interrupt status 0x%x\n", status);
2268 
2269 	if (status & GM_IS_RX_FF_OR) {
2270 		++dev->stats.rx_fifo_errors;
2271 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2272 	}
2273 
2274 	if (status & GM_IS_TX_FF_UR) {
2275 		++dev->stats.tx_fifo_errors;
2276 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2277 	}
2278 
2279 }
2280 
2281 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2282 {
2283 	switch (aux & PHY_M_PS_SPEED_MSK) {
2284 	case PHY_M_PS_SPEED_1000:
2285 		return SPEED_1000;
2286 	case PHY_M_PS_SPEED_100:
2287 		return SPEED_100;
2288 	default:
2289 		return SPEED_10;
2290 	}
2291 }
2292 
2293 static void yukon_link_up(struct skge_port *skge)
2294 {
2295 	struct skge_hw *hw = skge->hw;
2296 	int port = skge->port;
2297 	u16 reg;
2298 
2299 	/* Enable Transmit FIFO Underrun */
2300 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2301 
2302 	reg = gma_read16(hw, port, GM_GP_CTRL);
2303 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2304 		reg |= GM_GPCR_DUP_FULL;
2305 
2306 	/* enable Rx/Tx */
2307 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2308 	gma_write16(hw, port, GM_GP_CTRL, reg);
2309 
2310 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2311 	skge_link_up(skge);
2312 }
2313 
2314 static void yukon_link_down(struct skge_port *skge)
2315 {
2316 	struct skge_hw *hw = skge->hw;
2317 	int port = skge->port;
2318 	u16 ctrl;
2319 
2320 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2321 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2322 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2323 
2324 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2325 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2326 		ctrl |= PHY_M_AN_ASP;
2327 		/* restore Asymmetric Pause bit */
2328 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2329 	}
2330 
2331 	skge_link_down(skge);
2332 
2333 	yukon_init(hw, port);
2334 }
2335 
2336 static void yukon_phy_intr(struct skge_port *skge)
2337 {
2338 	struct skge_hw *hw = skge->hw;
2339 	int port = skge->port;
2340 	const char *reason = NULL;
2341 	u16 istatus, phystat;
2342 
2343 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2344 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2345 
2346 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2347 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2348 
2349 	if (istatus & PHY_M_IS_AN_COMPL) {
2350 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2351 		    & PHY_M_AN_RF) {
2352 			reason = "remote fault";
2353 			goto failed;
2354 		}
2355 
2356 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2357 			reason = "master/slave fault";
2358 			goto failed;
2359 		}
2360 
2361 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2362 			reason = "speed/duplex";
2363 			goto failed;
2364 		}
2365 
2366 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2367 			? DUPLEX_FULL : DUPLEX_HALF;
2368 		skge->speed = yukon_speed(hw, phystat);
2369 
2370 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2371 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2372 		case PHY_M_PS_PAUSE_MSK:
2373 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2374 			break;
2375 		case PHY_M_PS_RX_P_EN:
2376 			skge->flow_status = FLOW_STAT_REM_SEND;
2377 			break;
2378 		case PHY_M_PS_TX_P_EN:
2379 			skge->flow_status = FLOW_STAT_LOC_SEND;
2380 			break;
2381 		default:
2382 			skge->flow_status = FLOW_STAT_NONE;
2383 		}
2384 
2385 		if (skge->flow_status == FLOW_STAT_NONE ||
2386 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2387 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2388 		else
2389 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2390 		yukon_link_up(skge);
2391 		return;
2392 	}
2393 
2394 	if (istatus & PHY_M_IS_LSP_CHANGE)
2395 		skge->speed = yukon_speed(hw, phystat);
2396 
2397 	if (istatus & PHY_M_IS_DUP_CHANGE)
2398 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2399 	if (istatus & PHY_M_IS_LST_CHANGE) {
2400 		if (phystat & PHY_M_PS_LINK_UP)
2401 			yukon_link_up(skge);
2402 		else
2403 			yukon_link_down(skge);
2404 	}
2405 	return;
2406  failed:
2407 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2408 
2409 	/* XXX restart autonegotiation? */
2410 }
2411 
2412 static void skge_phy_reset(struct skge_port *skge)
2413 {
2414 	struct skge_hw *hw = skge->hw;
2415 	int port = skge->port;
2416 	struct net_device *dev = hw->dev[port];
2417 
2418 	netif_stop_queue(skge->netdev);
2419 	netif_carrier_off(skge->netdev);
2420 
2421 	spin_lock_bh(&hw->phy_lock);
2422 	if (is_genesis(hw)) {
2423 		genesis_reset(hw, port);
2424 		genesis_mac_init(hw, port);
2425 	} else {
2426 		yukon_reset(hw, port);
2427 		yukon_init(hw, port);
2428 	}
2429 	spin_unlock_bh(&hw->phy_lock);
2430 
2431 	skge_set_multicast(dev);
2432 }
2433 
2434 /* Basic MII support */
2435 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2436 {
2437 	struct mii_ioctl_data *data = if_mii(ifr);
2438 	struct skge_port *skge = netdev_priv(dev);
2439 	struct skge_hw *hw = skge->hw;
2440 	int err = -EOPNOTSUPP;
2441 
2442 	if (!netif_running(dev))
2443 		return -ENODEV;	/* Phy still in reset */
2444 
2445 	switch (cmd) {
2446 	case SIOCGMIIPHY:
2447 		data->phy_id = hw->phy_addr;
2448 
2449 		/* fallthru */
2450 	case SIOCGMIIREG: {
2451 		u16 val = 0;
2452 		spin_lock_bh(&hw->phy_lock);
2453 
2454 		if (is_genesis(hw))
2455 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2456 		else
2457 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458 		spin_unlock_bh(&hw->phy_lock);
2459 		data->val_out = val;
2460 		break;
2461 	}
2462 
2463 	case SIOCSMIIREG:
2464 		spin_lock_bh(&hw->phy_lock);
2465 		if (is_genesis(hw))
2466 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2467 				   data->val_in);
2468 		else
2469 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2470 				   data->val_in);
2471 		spin_unlock_bh(&hw->phy_lock);
2472 		break;
2473 	}
2474 	return err;
2475 }
2476 
2477 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2478 {
2479 	u32 end;
2480 
2481 	start /= 8;
2482 	len /= 8;
2483 	end = start + len - 1;
2484 
2485 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2486 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2487 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2488 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2489 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2490 
2491 	if (q == Q_R1 || q == Q_R2) {
2492 		/* Set thresholds on receive queue's */
2493 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2494 			     start + (2*len)/3);
2495 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2496 			     start + (len/3));
2497 	} else {
2498 		/* Enable store & forward on Tx queue's because
2499 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2500 		 */
2501 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2502 	}
2503 
2504 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2505 }
2506 
2507 /* Setup Bus Memory Interface */
2508 static void skge_qset(struct skge_port *skge, u16 q,
2509 		      const struct skge_element *e)
2510 {
2511 	struct skge_hw *hw = skge->hw;
2512 	u32 watermark = 0x600;
2513 	u64 base = skge->dma + (e->desc - skge->mem);
2514 
2515 	/* optimization to reduce window on 32bit/33mhz */
2516 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2517 		watermark /= 2;
2518 
2519 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2520 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2521 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2522 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2523 }
2524 
2525 static int skge_up(struct net_device *dev)
2526 {
2527 	struct skge_port *skge = netdev_priv(dev);
2528 	struct skge_hw *hw = skge->hw;
2529 	int port = skge->port;
2530 	u32 chunk, ram_addr;
2531 	size_t rx_size, tx_size;
2532 	int err;
2533 
2534 	if (!is_valid_ether_addr(dev->dev_addr))
2535 		return -EINVAL;
2536 
2537 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2538 
2539 	if (dev->mtu > RX_BUF_SIZE)
2540 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2541 	else
2542 		skge->rx_buf_size = RX_BUF_SIZE;
2543 
2544 
2545 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2546 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2547 	skge->mem_size = tx_size + rx_size;
2548 	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2549 	if (!skge->mem)
2550 		return -ENOMEM;
2551 
2552 	BUG_ON(skge->dma & 7);
2553 
2554 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2555 		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2556 		err = -EINVAL;
2557 		goto free_pci_mem;
2558 	}
2559 
2560 	memset(skge->mem, 0, skge->mem_size);
2561 
2562 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2563 	if (err)
2564 		goto free_pci_mem;
2565 
2566 	err = skge_rx_fill(dev);
2567 	if (err)
2568 		goto free_rx_ring;
2569 
2570 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2571 			      skge->dma + rx_size);
2572 	if (err)
2573 		goto free_rx_ring;
2574 
2575 	if (hw->ports == 1) {
2576 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2577 				  dev->name, hw);
2578 		if (err) {
2579 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2580 				   hw->pdev->irq, err);
2581 			goto free_tx_ring;
2582 		}
2583 	}
2584 
2585 	/* Initialize MAC */
2586 	netif_carrier_off(dev);
2587 	spin_lock_bh(&hw->phy_lock);
2588 	if (is_genesis(hw))
2589 		genesis_mac_init(hw, port);
2590 	else
2591 		yukon_mac_init(hw, port);
2592 	spin_unlock_bh(&hw->phy_lock);
2593 
2594 	/* Configure RAMbuffers - equally between ports and tx/rx */
2595 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2596 	ram_addr = hw->ram_offset + 2 * chunk * port;
2597 
2598 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2599 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2600 
2601 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2602 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2603 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2604 
2605 	/* Start receiver BMU */
2606 	wmb();
2607 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2608 	skge_led(skge, LED_MODE_ON);
2609 
2610 	spin_lock_irq(&hw->hw_lock);
2611 	hw->intr_mask |= portmask[port];
2612 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2613 	skge_read32(hw, B0_IMSK);
2614 	spin_unlock_irq(&hw->hw_lock);
2615 
2616 	napi_enable(&skge->napi);
2617 
2618 	skge_set_multicast(dev);
2619 
2620 	return 0;
2621 
2622  free_tx_ring:
2623 	kfree(skge->tx_ring.start);
2624  free_rx_ring:
2625 	skge_rx_clean(skge);
2626 	kfree(skge->rx_ring.start);
2627  free_pci_mem:
2628 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2629 	skge->mem = NULL;
2630 
2631 	return err;
2632 }
2633 
2634 /* stop receiver */
2635 static void skge_rx_stop(struct skge_hw *hw, int port)
2636 {
2637 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2638 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2639 		     RB_RST_SET|RB_DIS_OP_MD);
2640 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2641 }
2642 
2643 static int skge_down(struct net_device *dev)
2644 {
2645 	struct skge_port *skge = netdev_priv(dev);
2646 	struct skge_hw *hw = skge->hw;
2647 	int port = skge->port;
2648 
2649 	if (skge->mem == NULL)
2650 		return 0;
2651 
2652 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2653 
2654 	netif_tx_disable(dev);
2655 
2656 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2657 		del_timer_sync(&skge->link_timer);
2658 
2659 	napi_disable(&skge->napi);
2660 	netif_carrier_off(dev);
2661 
2662 	spin_lock_irq(&hw->hw_lock);
2663 	hw->intr_mask &= ~portmask[port];
2664 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2665 	skge_read32(hw, B0_IMSK);
2666 	spin_unlock_irq(&hw->hw_lock);
2667 
2668 	if (hw->ports == 1)
2669 		free_irq(hw->pdev->irq, hw);
2670 
2671 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2672 	if (is_genesis(hw))
2673 		genesis_stop(skge);
2674 	else
2675 		yukon_stop(skge);
2676 
2677 	/* Stop transmitter */
2678 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2679 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2680 		     RB_RST_SET|RB_DIS_OP_MD);
2681 
2682 
2683 	/* Disable Force Sync bit and Enable Alloc bit */
2684 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2685 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2686 
2687 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2688 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2689 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2690 
2691 	/* Reset PCI FIFO */
2692 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2693 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2694 
2695 	/* Reset the RAM Buffer async Tx queue */
2696 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2697 
2698 	skge_rx_stop(hw, port);
2699 
2700 	if (is_genesis(hw)) {
2701 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2702 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2703 	} else {
2704 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2705 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2706 	}
2707 
2708 	skge_led(skge, LED_MODE_OFF);
2709 
2710 	netif_tx_lock_bh(dev);
2711 	skge_tx_clean(dev);
2712 	netif_tx_unlock_bh(dev);
2713 
2714 	skge_rx_clean(skge);
2715 
2716 	kfree(skge->rx_ring.start);
2717 	kfree(skge->tx_ring.start);
2718 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2719 	skge->mem = NULL;
2720 	return 0;
2721 }
2722 
2723 static inline int skge_avail(const struct skge_ring *ring)
2724 {
2725 	smp_mb();
2726 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2727 		+ (ring->to_clean - ring->to_use) - 1;
2728 }
2729 
2730 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2731 				   struct net_device *dev)
2732 {
2733 	struct skge_port *skge = netdev_priv(dev);
2734 	struct skge_hw *hw = skge->hw;
2735 	struct skge_element *e;
2736 	struct skge_tx_desc *td;
2737 	int i;
2738 	u32 control, len;
2739 	dma_addr_t map;
2740 
2741 	if (skb_padto(skb, ETH_ZLEN))
2742 		return NETDEV_TX_OK;
2743 
2744 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2745 		return NETDEV_TX_BUSY;
2746 
2747 	e = skge->tx_ring.to_use;
2748 	td = e->desc;
2749 	BUG_ON(td->control & BMU_OWN);
2750 	e->skb = skb;
2751 	len = skb_headlen(skb);
2752 	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2753 	if (pci_dma_mapping_error(hw->pdev, map))
2754 		goto mapping_error;
2755 
2756 	dma_unmap_addr_set(e, mapaddr, map);
2757 	dma_unmap_len_set(e, maplen, len);
2758 
2759 	td->dma_lo = lower_32_bits(map);
2760 	td->dma_hi = upper_32_bits(map);
2761 
2762 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2763 		const int offset = skb_checksum_start_offset(skb);
2764 
2765 		/* This seems backwards, but it is what the sk98lin
2766 		 * does.  Looks like hardware is wrong?
2767 		 */
2768 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2769 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2770 			control = BMU_TCP_CHECK;
2771 		else
2772 			control = BMU_UDP_CHECK;
2773 
2774 		td->csum_offs = 0;
2775 		td->csum_start = offset;
2776 		td->csum_write = offset + skb->csum_offset;
2777 	} else
2778 		control = BMU_CHECK;
2779 
2780 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2781 		control |= BMU_EOF | BMU_IRQ_EOF;
2782 	else {
2783 		struct skge_tx_desc *tf = td;
2784 
2785 		control |= BMU_STFWD;
2786 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2787 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2788 
2789 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2790 					       skb_frag_size(frag), DMA_TO_DEVICE);
2791 			if (dma_mapping_error(&hw->pdev->dev, map))
2792 				goto mapping_unwind;
2793 
2794 			e = e->next;
2795 			e->skb = skb;
2796 			tf = e->desc;
2797 			BUG_ON(tf->control & BMU_OWN);
2798 
2799 			tf->dma_lo = lower_32_bits(map);
2800 			tf->dma_hi = upper_32_bits(map);
2801 			dma_unmap_addr_set(e, mapaddr, map);
2802 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2803 
2804 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2805 		}
2806 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2807 	}
2808 	/* Make sure all the descriptors written */
2809 	wmb();
2810 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2811 	wmb();
2812 
2813 	netdev_sent_queue(dev, skb->len);
2814 
2815 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2816 
2817 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2818 		     "tx queued, slot %td, len %d\n",
2819 		     e - skge->tx_ring.start, skb->len);
2820 
2821 	skge->tx_ring.to_use = e->next;
2822 	smp_wmb();
2823 
2824 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2825 		netdev_dbg(dev, "transmit queue full\n");
2826 		netif_stop_queue(dev);
2827 	}
2828 
2829 	return NETDEV_TX_OK;
2830 
2831 mapping_unwind:
2832 	e = skge->tx_ring.to_use;
2833 	pci_unmap_single(hw->pdev,
2834 			 dma_unmap_addr(e, mapaddr),
2835 			 dma_unmap_len(e, maplen),
2836 			 PCI_DMA_TODEVICE);
2837 	while (i-- > 0) {
2838 		e = e->next;
2839 		pci_unmap_page(hw->pdev,
2840 			       dma_unmap_addr(e, mapaddr),
2841 			       dma_unmap_len(e, maplen),
2842 			       PCI_DMA_TODEVICE);
2843 	}
2844 
2845 mapping_error:
2846 	if (net_ratelimit())
2847 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2848 	dev_kfree_skb_any(skb);
2849 	return NETDEV_TX_OK;
2850 }
2851 
2852 
2853 /* Free resources associated with this reing element */
2854 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2855 				 u32 control)
2856 {
2857 	/* skb header vs. fragment */
2858 	if (control & BMU_STF)
2859 		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2860 				 dma_unmap_len(e, maplen),
2861 				 PCI_DMA_TODEVICE);
2862 	else
2863 		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2864 			       dma_unmap_len(e, maplen),
2865 			       PCI_DMA_TODEVICE);
2866 }
2867 
2868 /* Free all buffers in transmit ring */
2869 static void skge_tx_clean(struct net_device *dev)
2870 {
2871 	struct skge_port *skge = netdev_priv(dev);
2872 	struct skge_element *e;
2873 
2874 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2875 		struct skge_tx_desc *td = e->desc;
2876 
2877 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2878 
2879 		if (td->control & BMU_EOF)
2880 			dev_kfree_skb(e->skb);
2881 		td->control = 0;
2882 	}
2883 
2884 	netdev_reset_queue(dev);
2885 	skge->tx_ring.to_clean = e;
2886 }
2887 
2888 static void skge_tx_timeout(struct net_device *dev)
2889 {
2890 	struct skge_port *skge = netdev_priv(dev);
2891 
2892 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2893 
2894 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2895 	skge_tx_clean(dev);
2896 	netif_wake_queue(dev);
2897 }
2898 
2899 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2900 {
2901 	int err;
2902 
2903 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2904 		return -EINVAL;
2905 
2906 	if (!netif_running(dev)) {
2907 		dev->mtu = new_mtu;
2908 		return 0;
2909 	}
2910 
2911 	skge_down(dev);
2912 
2913 	dev->mtu = new_mtu;
2914 
2915 	err = skge_up(dev);
2916 	if (err)
2917 		dev_close(dev);
2918 
2919 	return err;
2920 }
2921 
2922 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2923 
2924 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2925 {
2926 	u32 crc, bit;
2927 
2928 	crc = ether_crc_le(ETH_ALEN, addr);
2929 	bit = ~crc & 0x3f;
2930 	filter[bit/8] |= 1 << (bit%8);
2931 }
2932 
2933 static void genesis_set_multicast(struct net_device *dev)
2934 {
2935 	struct skge_port *skge = netdev_priv(dev);
2936 	struct skge_hw *hw = skge->hw;
2937 	int port = skge->port;
2938 	struct netdev_hw_addr *ha;
2939 	u32 mode;
2940 	u8 filter[8];
2941 
2942 	mode = xm_read32(hw, port, XM_MODE);
2943 	mode |= XM_MD_ENA_HASH;
2944 	if (dev->flags & IFF_PROMISC)
2945 		mode |= XM_MD_ENA_PROM;
2946 	else
2947 		mode &= ~XM_MD_ENA_PROM;
2948 
2949 	if (dev->flags & IFF_ALLMULTI)
2950 		memset(filter, 0xff, sizeof(filter));
2951 	else {
2952 		memset(filter, 0, sizeof(filter));
2953 
2954 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2955 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2956 			genesis_add_filter(filter, pause_mc_addr);
2957 
2958 		netdev_for_each_mc_addr(ha, dev)
2959 			genesis_add_filter(filter, ha->addr);
2960 	}
2961 
2962 	xm_write32(hw, port, XM_MODE, mode);
2963 	xm_outhash(hw, port, XM_HSM, filter);
2964 }
2965 
2966 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2967 {
2968 	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2969 	 filter[bit/8] |= 1 << (bit%8);
2970 }
2971 
2972 static void yukon_set_multicast(struct net_device *dev)
2973 {
2974 	struct skge_port *skge = netdev_priv(dev);
2975 	struct skge_hw *hw = skge->hw;
2976 	int port = skge->port;
2977 	struct netdev_hw_addr *ha;
2978 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2979 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2980 	u16 reg;
2981 	u8 filter[8];
2982 
2983 	memset(filter, 0, sizeof(filter));
2984 
2985 	reg = gma_read16(hw, port, GM_RX_CTRL);
2986 	reg |= GM_RXCR_UCF_ENA;
2987 
2988 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2989 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2990 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2991 		memset(filter, 0xff, sizeof(filter));
2992 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2993 		reg &= ~GM_RXCR_MCF_ENA;
2994 	else {
2995 		reg |= GM_RXCR_MCF_ENA;
2996 
2997 		if (rx_pause)
2998 			yukon_add_filter(filter, pause_mc_addr);
2999 
3000 		netdev_for_each_mc_addr(ha, dev)
3001 			yukon_add_filter(filter, ha->addr);
3002 	}
3003 
3004 
3005 	gma_write16(hw, port, GM_MC_ADDR_H1,
3006 			 (u16)filter[0] | ((u16)filter[1] << 8));
3007 	gma_write16(hw, port, GM_MC_ADDR_H2,
3008 			 (u16)filter[2] | ((u16)filter[3] << 8));
3009 	gma_write16(hw, port, GM_MC_ADDR_H3,
3010 			 (u16)filter[4] | ((u16)filter[5] << 8));
3011 	gma_write16(hw, port, GM_MC_ADDR_H4,
3012 			 (u16)filter[6] | ((u16)filter[7] << 8));
3013 
3014 	gma_write16(hw, port, GM_RX_CTRL, reg);
3015 }
3016 
3017 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3018 {
3019 	if (is_genesis(hw))
3020 		return status >> XMR_FS_LEN_SHIFT;
3021 	else
3022 		return status >> GMR_FS_LEN_SHIFT;
3023 }
3024 
3025 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3026 {
3027 	if (is_genesis(hw))
3028 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3029 	else
3030 		return (status & GMR_FS_ANY_ERR) ||
3031 			(status & GMR_FS_RX_OK) == 0;
3032 }
3033 
3034 static void skge_set_multicast(struct net_device *dev)
3035 {
3036 	struct skge_port *skge = netdev_priv(dev);
3037 
3038 	if (is_genesis(skge->hw))
3039 		genesis_set_multicast(dev);
3040 	else
3041 		yukon_set_multicast(dev);
3042 
3043 }
3044 
3045 
3046 /* Get receive buffer from descriptor.
3047  * Handles copy of small buffers and reallocation failures
3048  */
3049 static struct sk_buff *skge_rx_get(struct net_device *dev,
3050 				   struct skge_element *e,
3051 				   u32 control, u32 status, u16 csum)
3052 {
3053 	struct skge_port *skge = netdev_priv(dev);
3054 	struct sk_buff *skb;
3055 	u16 len = control & BMU_BBC;
3056 
3057 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3058 		     "rx slot %td status 0x%x len %d\n",
3059 		     e - skge->rx_ring.start, status, len);
3060 
3061 	if (len > skge->rx_buf_size)
3062 		goto error;
3063 
3064 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3065 		goto error;
3066 
3067 	if (bad_phy_status(skge->hw, status))
3068 		goto error;
3069 
3070 	if (phy_length(skge->hw, status) != len)
3071 		goto error;
3072 
3073 	if (len < RX_COPY_THRESHOLD) {
3074 		skb = netdev_alloc_skb_ip_align(dev, len);
3075 		if (!skb)
3076 			goto resubmit;
3077 
3078 		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3079 					    dma_unmap_addr(e, mapaddr),
3080 					    dma_unmap_len(e, maplen),
3081 					    PCI_DMA_FROMDEVICE);
3082 		skb_copy_from_linear_data(e->skb, skb->data, len);
3083 		pci_dma_sync_single_for_device(skge->hw->pdev,
3084 					       dma_unmap_addr(e, mapaddr),
3085 					       dma_unmap_len(e, maplen),
3086 					       PCI_DMA_FROMDEVICE);
3087 		skge_rx_reuse(e, skge->rx_buf_size);
3088 	} else {
3089 		struct skge_element ee;
3090 		struct sk_buff *nskb;
3091 
3092 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3093 		if (!nskb)
3094 			goto resubmit;
3095 
3096 		ee = *e;
3097 
3098 		skb = ee.skb;
3099 		prefetch(skb->data);
3100 
3101 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3102 			dev_kfree_skb(nskb);
3103 			goto resubmit;
3104 		}
3105 
3106 		pci_unmap_single(skge->hw->pdev,
3107 				 dma_unmap_addr(&ee, mapaddr),
3108 				 dma_unmap_len(&ee, maplen),
3109 				 PCI_DMA_FROMDEVICE);
3110 	}
3111 
3112 	skb_put(skb, len);
3113 
3114 	if (dev->features & NETIF_F_RXCSUM) {
3115 		skb->csum = csum;
3116 		skb->ip_summed = CHECKSUM_COMPLETE;
3117 	}
3118 
3119 	skb->protocol = eth_type_trans(skb, dev);
3120 
3121 	return skb;
3122 error:
3123 
3124 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3125 		     "rx err, slot %td control 0x%x status 0x%x\n",
3126 		     e - skge->rx_ring.start, control, status);
3127 
3128 	if (is_genesis(skge->hw)) {
3129 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3130 			dev->stats.rx_length_errors++;
3131 		if (status & XMR_FS_FRA_ERR)
3132 			dev->stats.rx_frame_errors++;
3133 		if (status & XMR_FS_FCS_ERR)
3134 			dev->stats.rx_crc_errors++;
3135 	} else {
3136 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3137 			dev->stats.rx_length_errors++;
3138 		if (status & GMR_FS_FRAGMENT)
3139 			dev->stats.rx_frame_errors++;
3140 		if (status & GMR_FS_CRC_ERR)
3141 			dev->stats.rx_crc_errors++;
3142 	}
3143 
3144 resubmit:
3145 	skge_rx_reuse(e, skge->rx_buf_size);
3146 	return NULL;
3147 }
3148 
3149 /* Free all buffers in Tx ring which are no longer owned by device */
3150 static void skge_tx_done(struct net_device *dev)
3151 {
3152 	struct skge_port *skge = netdev_priv(dev);
3153 	struct skge_ring *ring = &skge->tx_ring;
3154 	struct skge_element *e;
3155 	unsigned int bytes_compl = 0, pkts_compl = 0;
3156 
3157 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3158 
3159 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3160 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3161 
3162 		if (control & BMU_OWN)
3163 			break;
3164 
3165 		skge_tx_unmap(skge->hw->pdev, e, control);
3166 
3167 		if (control & BMU_EOF) {
3168 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3169 				     "tx done slot %td\n",
3170 				     e - skge->tx_ring.start);
3171 
3172 			pkts_compl++;
3173 			bytes_compl += e->skb->len;
3174 
3175 			dev_consume_skb_any(e->skb);
3176 		}
3177 	}
3178 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3179 	skge->tx_ring.to_clean = e;
3180 
3181 	/* Can run lockless until we need to synchronize to restart queue. */
3182 	smp_mb();
3183 
3184 	if (unlikely(netif_queue_stopped(dev) &&
3185 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186 		netif_tx_lock(dev);
3187 		if (unlikely(netif_queue_stopped(dev) &&
3188 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3189 			netif_wake_queue(dev);
3190 
3191 		}
3192 		netif_tx_unlock(dev);
3193 	}
3194 }
3195 
3196 static int skge_poll(struct napi_struct *napi, int to_do)
3197 {
3198 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3199 	struct net_device *dev = skge->netdev;
3200 	struct skge_hw *hw = skge->hw;
3201 	struct skge_ring *ring = &skge->rx_ring;
3202 	struct skge_element *e;
3203 	int work_done = 0;
3204 
3205 	skge_tx_done(dev);
3206 
3207 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3208 
3209 	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3210 		struct skge_rx_desc *rd = e->desc;
3211 		struct sk_buff *skb;
3212 		u32 control;
3213 
3214 		rmb();
3215 		control = rd->control;
3216 		if (control & BMU_OWN)
3217 			break;
3218 
3219 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3220 		if (likely(skb)) {
3221 			napi_gro_receive(napi, skb);
3222 			++work_done;
3223 		}
3224 	}
3225 	ring->to_clean = e;
3226 
3227 	/* restart receiver */
3228 	wmb();
3229 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3230 
3231 	if (work_done < to_do) {
3232 		unsigned long flags;
3233 
3234 		napi_gro_flush(napi, false);
3235 		spin_lock_irqsave(&hw->hw_lock, flags);
3236 		__napi_complete(napi);
3237 		hw->intr_mask |= napimask[skge->port];
3238 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3239 		skge_read32(hw, B0_IMSK);
3240 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3241 	}
3242 
3243 	return work_done;
3244 }
3245 
3246 /* Parity errors seem to happen when Genesis is connected to a switch
3247  * with no other ports present. Heartbeat error??
3248  */
3249 static void skge_mac_parity(struct skge_hw *hw, int port)
3250 {
3251 	struct net_device *dev = hw->dev[port];
3252 
3253 	++dev->stats.tx_heartbeat_errors;
3254 
3255 	if (is_genesis(hw))
3256 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3257 			     MFF_CLR_PERR);
3258 	else
3259 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3260 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3261 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3262 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3263 }
3264 
3265 static void skge_mac_intr(struct skge_hw *hw, int port)
3266 {
3267 	if (is_genesis(hw))
3268 		genesis_mac_intr(hw, port);
3269 	else
3270 		yukon_mac_intr(hw, port);
3271 }
3272 
3273 /* Handle device specific framing and timeout interrupts */
3274 static void skge_error_irq(struct skge_hw *hw)
3275 {
3276 	struct pci_dev *pdev = hw->pdev;
3277 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3278 
3279 	if (is_genesis(hw)) {
3280 		/* clear xmac errors */
3281 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3282 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3283 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3284 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3285 	} else {
3286 		/* Timestamp (unused) overflow */
3287 		if (hwstatus & IS_IRQ_TIST_OV)
3288 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3289 	}
3290 
3291 	if (hwstatus & IS_RAM_RD_PAR) {
3292 		dev_err(&pdev->dev, "Ram read data parity error\n");
3293 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3294 	}
3295 
3296 	if (hwstatus & IS_RAM_WR_PAR) {
3297 		dev_err(&pdev->dev, "Ram write data parity error\n");
3298 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3299 	}
3300 
3301 	if (hwstatus & IS_M1_PAR_ERR)
3302 		skge_mac_parity(hw, 0);
3303 
3304 	if (hwstatus & IS_M2_PAR_ERR)
3305 		skge_mac_parity(hw, 1);
3306 
3307 	if (hwstatus & IS_R1_PAR_ERR) {
3308 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3309 			hw->dev[0]->name);
3310 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3311 	}
3312 
3313 	if (hwstatus & IS_R2_PAR_ERR) {
3314 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3315 			hw->dev[1]->name);
3316 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3317 	}
3318 
3319 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3320 		u16 pci_status, pci_cmd;
3321 
3322 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3323 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3324 
3325 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3326 			pci_cmd, pci_status);
3327 
3328 		/* Write the error bits back to clear them. */
3329 		pci_status &= PCI_STATUS_ERROR_BITS;
3330 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3331 		pci_write_config_word(pdev, PCI_COMMAND,
3332 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3333 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3334 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3335 
3336 		/* if error still set then just ignore it */
3337 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3338 		if (hwstatus & IS_IRQ_STAT) {
3339 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3340 			hw->intr_mask &= ~IS_HW_ERR;
3341 		}
3342 	}
3343 }
3344 
3345 /*
3346  * Interrupt from PHY are handled in tasklet (softirq)
3347  * because accessing phy registers requires spin wait which might
3348  * cause excess interrupt latency.
3349  */
3350 static void skge_extirq(unsigned long arg)
3351 {
3352 	struct skge_hw *hw = (struct skge_hw *) arg;
3353 	int port;
3354 
3355 	for (port = 0; port < hw->ports; port++) {
3356 		struct net_device *dev = hw->dev[port];
3357 
3358 		if (netif_running(dev)) {
3359 			struct skge_port *skge = netdev_priv(dev);
3360 
3361 			spin_lock(&hw->phy_lock);
3362 			if (!is_genesis(hw))
3363 				yukon_phy_intr(skge);
3364 			else if (hw->phy_type == SK_PHY_BCOM)
3365 				bcom_phy_intr(skge);
3366 			spin_unlock(&hw->phy_lock);
3367 		}
3368 	}
3369 
3370 	spin_lock_irq(&hw->hw_lock);
3371 	hw->intr_mask |= IS_EXT_REG;
3372 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3373 	skge_read32(hw, B0_IMSK);
3374 	spin_unlock_irq(&hw->hw_lock);
3375 }
3376 
3377 static irqreturn_t skge_intr(int irq, void *dev_id)
3378 {
3379 	struct skge_hw *hw = dev_id;
3380 	u32 status;
3381 	int handled = 0;
3382 
3383 	spin_lock(&hw->hw_lock);
3384 	/* Reading this register masks IRQ */
3385 	status = skge_read32(hw, B0_SP_ISRC);
3386 	if (status == 0 || status == ~0)
3387 		goto out;
3388 
3389 	handled = 1;
3390 	status &= hw->intr_mask;
3391 	if (status & IS_EXT_REG) {
3392 		hw->intr_mask &= ~IS_EXT_REG;
3393 		tasklet_schedule(&hw->phy_task);
3394 	}
3395 
3396 	if (status & (IS_XA1_F|IS_R1_F)) {
3397 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3398 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3399 		napi_schedule(&skge->napi);
3400 	}
3401 
3402 	if (status & IS_PA_TO_TX1)
3403 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3404 
3405 	if (status & IS_PA_TO_RX1) {
3406 		++hw->dev[0]->stats.rx_over_errors;
3407 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3408 	}
3409 
3410 
3411 	if (status & IS_MAC1)
3412 		skge_mac_intr(hw, 0);
3413 
3414 	if (hw->dev[1]) {
3415 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3416 
3417 		if (status & (IS_XA2_F|IS_R2_F)) {
3418 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3419 			napi_schedule(&skge->napi);
3420 		}
3421 
3422 		if (status & IS_PA_TO_RX2) {
3423 			++hw->dev[1]->stats.rx_over_errors;
3424 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3425 		}
3426 
3427 		if (status & IS_PA_TO_TX2)
3428 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3429 
3430 		if (status & IS_MAC2)
3431 			skge_mac_intr(hw, 1);
3432 	}
3433 
3434 	if (status & IS_HW_ERR)
3435 		skge_error_irq(hw);
3436 out:
3437 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3438 	skge_read32(hw, B0_IMSK);
3439 	spin_unlock(&hw->hw_lock);
3440 
3441 	return IRQ_RETVAL(handled);
3442 }
3443 
3444 #ifdef CONFIG_NET_POLL_CONTROLLER
3445 static void skge_netpoll(struct net_device *dev)
3446 {
3447 	struct skge_port *skge = netdev_priv(dev);
3448 
3449 	disable_irq(dev->irq);
3450 	skge_intr(dev->irq, skge->hw);
3451 	enable_irq(dev->irq);
3452 }
3453 #endif
3454 
3455 static int skge_set_mac_address(struct net_device *dev, void *p)
3456 {
3457 	struct skge_port *skge = netdev_priv(dev);
3458 	struct skge_hw *hw = skge->hw;
3459 	unsigned port = skge->port;
3460 	const struct sockaddr *addr = p;
3461 	u16 ctrl;
3462 
3463 	if (!is_valid_ether_addr(addr->sa_data))
3464 		return -EADDRNOTAVAIL;
3465 
3466 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3467 
3468 	if (!netif_running(dev)) {
3469 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3470 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471 	} else {
3472 		/* disable Rx */
3473 		spin_lock_bh(&hw->phy_lock);
3474 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3475 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3476 
3477 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3478 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3479 
3480 		if (is_genesis(hw))
3481 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3482 		else {
3483 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3484 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3485 		}
3486 
3487 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3488 		spin_unlock_bh(&hw->phy_lock);
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 static const struct {
3495 	u8 id;
3496 	const char *name;
3497 } skge_chips[] = {
3498 	{ CHIP_ID_GENESIS,	"Genesis" },
3499 	{ CHIP_ID_YUKON,	 "Yukon" },
3500 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3501 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3502 };
3503 
3504 static const char *skge_board_name(const struct skge_hw *hw)
3505 {
3506 	int i;
3507 	static char buf[16];
3508 
3509 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3510 		if (skge_chips[i].id == hw->chip_id)
3511 			return skge_chips[i].name;
3512 
3513 	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3514 	return buf;
3515 }
3516 
3517 
3518 /*
3519  * Setup the board data structure, but don't bring up
3520  * the port(s)
3521  */
3522 static int skge_reset(struct skge_hw *hw)
3523 {
3524 	u32 reg;
3525 	u16 ctst, pci_status;
3526 	u8 t8, mac_cfg, pmd_type;
3527 	int i;
3528 
3529 	ctst = skge_read16(hw, B0_CTST);
3530 
3531 	/* do a SW reset */
3532 	skge_write8(hw, B0_CTST, CS_RST_SET);
3533 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3534 
3535 	/* clear PCI errors, if any */
3536 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3537 	skge_write8(hw, B2_TST_CTRL2, 0);
3538 
3539 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3540 	pci_write_config_word(hw->pdev, PCI_STATUS,
3541 			      pci_status | PCI_STATUS_ERROR_BITS);
3542 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3543 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3544 
3545 	/* restore CLK_RUN bits (for Yukon-Lite) */
3546 	skge_write16(hw, B0_CTST,
3547 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3548 
3549 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3550 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3551 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3552 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3553 
3554 	switch (hw->chip_id) {
3555 	case CHIP_ID_GENESIS:
3556 #ifdef CONFIG_SKGE_GENESIS
3557 		switch (hw->phy_type) {
3558 		case SK_PHY_XMAC:
3559 			hw->phy_addr = PHY_ADDR_XMAC;
3560 			break;
3561 		case SK_PHY_BCOM:
3562 			hw->phy_addr = PHY_ADDR_BCOM;
3563 			break;
3564 		default:
3565 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3566 			       hw->phy_type);
3567 			return -EOPNOTSUPP;
3568 		}
3569 		break;
3570 #else
3571 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3572 		return -EOPNOTSUPP;
3573 #endif
3574 
3575 	case CHIP_ID_YUKON:
3576 	case CHIP_ID_YUKON_LITE:
3577 	case CHIP_ID_YUKON_LP:
3578 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3579 			hw->copper = 1;
3580 
3581 		hw->phy_addr = PHY_ADDR_MARV;
3582 		break;
3583 
3584 	default:
3585 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3586 		       hw->chip_id);
3587 		return -EOPNOTSUPP;
3588 	}
3589 
3590 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3591 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3592 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3593 
3594 	/* read the adapters RAM size */
3595 	t8 = skge_read8(hw, B2_E_0);
3596 	if (is_genesis(hw)) {
3597 		if (t8 == 3) {
3598 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3599 			hw->ram_size = 0x100000;
3600 			hw->ram_offset = 0x80000;
3601 		} else
3602 			hw->ram_size = t8 * 512;
3603 	} else if (t8 == 0)
3604 		hw->ram_size = 0x20000;
3605 	else
3606 		hw->ram_size = t8 * 4096;
3607 
3608 	hw->intr_mask = IS_HW_ERR;
3609 
3610 	/* Use PHY IRQ for all but fiber based Genesis board */
3611 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3612 		hw->intr_mask |= IS_EXT_REG;
3613 
3614 	if (is_genesis(hw))
3615 		genesis_init(hw);
3616 	else {
3617 		/* switch power to VCC (WA for VAUX problem) */
3618 		skge_write8(hw, B0_POWER_CTRL,
3619 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3620 
3621 		/* avoid boards with stuck Hardware error bits */
3622 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3623 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3624 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3625 			hw->intr_mask &= ~IS_HW_ERR;
3626 		}
3627 
3628 		/* Clear PHY COMA */
3629 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3630 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3631 		reg &= ~PCI_PHY_COMA;
3632 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3633 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3634 
3635 
3636 		for (i = 0; i < hw->ports; i++) {
3637 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3638 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3639 		}
3640 	}
3641 
3642 	/* turn off hardware timer (unused) */
3643 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3644 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3645 	skge_write8(hw, B0_LED, LED_STAT_ON);
3646 
3647 	/* enable the Tx Arbiters */
3648 	for (i = 0; i < hw->ports; i++)
3649 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3650 
3651 	/* Initialize ram interface */
3652 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3653 
3654 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3655 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3656 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3657 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3658 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3659 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3660 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3661 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3662 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3663 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3664 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3665 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3666 
3667 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3668 
3669 	/* Set interrupt moderation for Transmit only
3670 	 * Receive interrupts avoided by NAPI
3671 	 */
3672 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3673 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3674 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3675 
3676 	/* Leave irq disabled until first port is brought up. */
3677 	skge_write32(hw, B0_IMSK, 0);
3678 
3679 	for (i = 0; i < hw->ports; i++) {
3680 		if (is_genesis(hw))
3681 			genesis_reset(hw, i);
3682 		else
3683 			yukon_reset(hw, i);
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 
3690 #ifdef CONFIG_SKGE_DEBUG
3691 
3692 static struct dentry *skge_debug;
3693 
3694 static int skge_debug_show(struct seq_file *seq, void *v)
3695 {
3696 	struct net_device *dev = seq->private;
3697 	const struct skge_port *skge = netdev_priv(dev);
3698 	const struct skge_hw *hw = skge->hw;
3699 	const struct skge_element *e;
3700 
3701 	if (!netif_running(dev))
3702 		return -ENETDOWN;
3703 
3704 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3705 		   skge_read32(hw, B0_IMSK));
3706 
3707 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3708 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3709 		const struct skge_tx_desc *t = e->desc;
3710 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3711 			   t->control, t->dma_hi, t->dma_lo, t->status,
3712 			   t->csum_offs, t->csum_write, t->csum_start);
3713 	}
3714 
3715 	seq_printf(seq, "\nRx Ring:\n");
3716 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3717 		const struct skge_rx_desc *r = e->desc;
3718 
3719 		if (r->control & BMU_OWN)
3720 			break;
3721 
3722 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3723 			   r->control, r->dma_hi, r->dma_lo, r->status,
3724 			   r->timestamp, r->csum1, r->csum1_start);
3725 	}
3726 
3727 	return 0;
3728 }
3729 
3730 static int skge_debug_open(struct inode *inode, struct file *file)
3731 {
3732 	return single_open(file, skge_debug_show, inode->i_private);
3733 }
3734 
3735 static const struct file_operations skge_debug_fops = {
3736 	.owner		= THIS_MODULE,
3737 	.open		= skge_debug_open,
3738 	.read		= seq_read,
3739 	.llseek		= seq_lseek,
3740 	.release	= single_release,
3741 };
3742 
3743 /*
3744  * Use network device events to create/remove/rename
3745  * debugfs file entries
3746  */
3747 static int skge_device_event(struct notifier_block *unused,
3748 			     unsigned long event, void *ptr)
3749 {
3750 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3751 	struct skge_port *skge;
3752 	struct dentry *d;
3753 
3754 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3755 		goto done;
3756 
3757 	skge = netdev_priv(dev);
3758 	switch (event) {
3759 	case NETDEV_CHANGENAME:
3760 		if (skge->debugfs) {
3761 			d = debugfs_rename(skge_debug, skge->debugfs,
3762 					   skge_debug, dev->name);
3763 			if (d)
3764 				skge->debugfs = d;
3765 			else {
3766 				netdev_info(dev, "rename failed\n");
3767 				debugfs_remove(skge->debugfs);
3768 			}
3769 		}
3770 		break;
3771 
3772 	case NETDEV_GOING_DOWN:
3773 		if (skge->debugfs) {
3774 			debugfs_remove(skge->debugfs);
3775 			skge->debugfs = NULL;
3776 		}
3777 		break;
3778 
3779 	case NETDEV_UP:
3780 		d = debugfs_create_file(dev->name, S_IRUGO,
3781 					skge_debug, dev,
3782 					&skge_debug_fops);
3783 		if (!d || IS_ERR(d))
3784 			netdev_info(dev, "debugfs create failed\n");
3785 		else
3786 			skge->debugfs = d;
3787 		break;
3788 	}
3789 
3790 done:
3791 	return NOTIFY_DONE;
3792 }
3793 
3794 static struct notifier_block skge_notifier = {
3795 	.notifier_call = skge_device_event,
3796 };
3797 
3798 
3799 static __init void skge_debug_init(void)
3800 {
3801 	struct dentry *ent;
3802 
3803 	ent = debugfs_create_dir("skge", NULL);
3804 	if (!ent || IS_ERR(ent)) {
3805 		pr_info("debugfs create directory failed\n");
3806 		return;
3807 	}
3808 
3809 	skge_debug = ent;
3810 	register_netdevice_notifier(&skge_notifier);
3811 }
3812 
3813 static __exit void skge_debug_cleanup(void)
3814 {
3815 	if (skge_debug) {
3816 		unregister_netdevice_notifier(&skge_notifier);
3817 		debugfs_remove(skge_debug);
3818 		skge_debug = NULL;
3819 	}
3820 }
3821 
3822 #else
3823 #define skge_debug_init()
3824 #define skge_debug_cleanup()
3825 #endif
3826 
3827 static const struct net_device_ops skge_netdev_ops = {
3828 	.ndo_open		= skge_up,
3829 	.ndo_stop		= skge_down,
3830 	.ndo_start_xmit		= skge_xmit_frame,
3831 	.ndo_do_ioctl		= skge_ioctl,
3832 	.ndo_get_stats		= skge_get_stats,
3833 	.ndo_tx_timeout		= skge_tx_timeout,
3834 	.ndo_change_mtu		= skge_change_mtu,
3835 	.ndo_validate_addr	= eth_validate_addr,
3836 	.ndo_set_rx_mode	= skge_set_multicast,
3837 	.ndo_set_mac_address	= skge_set_mac_address,
3838 #ifdef CONFIG_NET_POLL_CONTROLLER
3839 	.ndo_poll_controller	= skge_netpoll,
3840 #endif
3841 };
3842 
3843 
3844 /* Initialize network device */
3845 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3846 				       int highmem)
3847 {
3848 	struct skge_port *skge;
3849 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3850 
3851 	if (!dev)
3852 		return NULL;
3853 
3854 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3855 	dev->netdev_ops = &skge_netdev_ops;
3856 	dev->ethtool_ops = &skge_ethtool_ops;
3857 	dev->watchdog_timeo = TX_WATCHDOG;
3858 	dev->irq = hw->pdev->irq;
3859 
3860 	if (highmem)
3861 		dev->features |= NETIF_F_HIGHDMA;
3862 
3863 	skge = netdev_priv(dev);
3864 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3865 	skge->netdev = dev;
3866 	skge->hw = hw;
3867 	skge->msg_enable = netif_msg_init(debug, default_msg);
3868 
3869 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3870 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3871 
3872 	/* Auto speed and flow control */
3873 	skge->autoneg = AUTONEG_ENABLE;
3874 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3875 	skge->duplex = -1;
3876 	skge->speed = -1;
3877 	skge->advertising = skge_supported_modes(hw);
3878 
3879 	if (device_can_wakeup(&hw->pdev->dev)) {
3880 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3881 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3882 	}
3883 
3884 	hw->dev[port] = dev;
3885 
3886 	skge->port = port;
3887 
3888 	/* Only used for Genesis XMAC */
3889 	if (is_genesis(hw))
3890 	    setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3891 	else {
3892 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3893 		                   NETIF_F_RXCSUM;
3894 		dev->features |= dev->hw_features;
3895 	}
3896 
3897 	/* read the mac address */
3898 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3899 
3900 	return dev;
3901 }
3902 
3903 static void skge_show_addr(struct net_device *dev)
3904 {
3905 	const struct skge_port *skge = netdev_priv(dev);
3906 
3907 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3908 }
3909 
3910 static int only_32bit_dma;
3911 
3912 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3913 {
3914 	struct net_device *dev, *dev1;
3915 	struct skge_hw *hw;
3916 	int err, using_dac = 0;
3917 
3918 	err = pci_enable_device(pdev);
3919 	if (err) {
3920 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3921 		goto err_out;
3922 	}
3923 
3924 	err = pci_request_regions(pdev, DRV_NAME);
3925 	if (err) {
3926 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3927 		goto err_out_disable_pdev;
3928 	}
3929 
3930 	pci_set_master(pdev);
3931 
3932 	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3933 		using_dac = 1;
3934 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3935 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3936 		using_dac = 0;
3937 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3938 	}
3939 
3940 	if (err) {
3941 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3942 		goto err_out_free_regions;
3943 	}
3944 
3945 #ifdef __BIG_ENDIAN
3946 	/* byte swap descriptors in hardware */
3947 	{
3948 		u32 reg;
3949 
3950 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3951 		reg |= PCI_REV_DESC;
3952 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3953 	}
3954 #endif
3955 
3956 	err = -ENOMEM;
3957 	/* space for skge@pci:0000:04:00.0 */
3958 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3959 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3960 	if (!hw)
3961 		goto err_out_free_regions;
3962 
3963 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3964 
3965 	hw->pdev = pdev;
3966 	spin_lock_init(&hw->hw_lock);
3967 	spin_lock_init(&hw->phy_lock);
3968 	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3969 
3970 	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3971 	if (!hw->regs) {
3972 		dev_err(&pdev->dev, "cannot map device registers\n");
3973 		goto err_out_free_hw;
3974 	}
3975 
3976 	err = skge_reset(hw);
3977 	if (err)
3978 		goto err_out_iounmap;
3979 
3980 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3981 		DRV_VERSION,
3982 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3983 		skge_board_name(hw), hw->chip_rev);
3984 
3985 	dev = skge_devinit(hw, 0, using_dac);
3986 	if (!dev) {
3987 		err = -ENOMEM;
3988 		goto err_out_led_off;
3989 	}
3990 
3991 	/* Some motherboards are broken and has zero in ROM. */
3992 	if (!is_valid_ether_addr(dev->dev_addr))
3993 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3994 
3995 	err = register_netdev(dev);
3996 	if (err) {
3997 		dev_err(&pdev->dev, "cannot register net device\n");
3998 		goto err_out_free_netdev;
3999 	}
4000 
4001 	skge_show_addr(dev);
4002 
4003 	if (hw->ports > 1) {
4004 		dev1 = skge_devinit(hw, 1, using_dac);
4005 		if (!dev1) {
4006 			err = -ENOMEM;
4007 			goto err_out_unregister;
4008 		}
4009 
4010 		err = register_netdev(dev1);
4011 		if (err) {
4012 			dev_err(&pdev->dev, "cannot register second net device\n");
4013 			goto err_out_free_dev1;
4014 		}
4015 
4016 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4017 				  hw->irq_name, hw);
4018 		if (err) {
4019 			dev_err(&pdev->dev, "cannot assign irq %d\n",
4020 				pdev->irq);
4021 			goto err_out_unregister_dev1;
4022 		}
4023 
4024 		skge_show_addr(dev1);
4025 	}
4026 	pci_set_drvdata(pdev, hw);
4027 
4028 	return 0;
4029 
4030 err_out_unregister_dev1:
4031 	unregister_netdev(dev1);
4032 err_out_free_dev1:
4033 	free_netdev(dev1);
4034 err_out_unregister:
4035 	unregister_netdev(dev);
4036 err_out_free_netdev:
4037 	free_netdev(dev);
4038 err_out_led_off:
4039 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4040 err_out_iounmap:
4041 	iounmap(hw->regs);
4042 err_out_free_hw:
4043 	kfree(hw);
4044 err_out_free_regions:
4045 	pci_release_regions(pdev);
4046 err_out_disable_pdev:
4047 	pci_disable_device(pdev);
4048 err_out:
4049 	return err;
4050 }
4051 
4052 static void skge_remove(struct pci_dev *pdev)
4053 {
4054 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4055 	struct net_device *dev0, *dev1;
4056 
4057 	if (!hw)
4058 		return;
4059 
4060 	dev1 = hw->dev[1];
4061 	if (dev1)
4062 		unregister_netdev(dev1);
4063 	dev0 = hw->dev[0];
4064 	unregister_netdev(dev0);
4065 
4066 	tasklet_kill(&hw->phy_task);
4067 
4068 	spin_lock_irq(&hw->hw_lock);
4069 	hw->intr_mask = 0;
4070 
4071 	if (hw->ports > 1) {
4072 		skge_write32(hw, B0_IMSK, 0);
4073 		skge_read32(hw, B0_IMSK);
4074 		free_irq(pdev->irq, hw);
4075 	}
4076 	spin_unlock_irq(&hw->hw_lock);
4077 
4078 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4079 	skge_write8(hw, B0_CTST, CS_RST_SET);
4080 
4081 	if (hw->ports > 1)
4082 		free_irq(pdev->irq, hw);
4083 	pci_release_regions(pdev);
4084 	pci_disable_device(pdev);
4085 	if (dev1)
4086 		free_netdev(dev1);
4087 	free_netdev(dev0);
4088 
4089 	iounmap(hw->regs);
4090 	kfree(hw);
4091 }
4092 
4093 #ifdef CONFIG_PM_SLEEP
4094 static int skge_suspend(struct device *dev)
4095 {
4096 	struct pci_dev *pdev = to_pci_dev(dev);
4097 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4098 	int i;
4099 
4100 	if (!hw)
4101 		return 0;
4102 
4103 	for (i = 0; i < hw->ports; i++) {
4104 		struct net_device *dev = hw->dev[i];
4105 		struct skge_port *skge = netdev_priv(dev);
4106 
4107 		if (netif_running(dev))
4108 			skge_down(dev);
4109 
4110 		if (skge->wol)
4111 			skge_wol_init(skge);
4112 	}
4113 
4114 	skge_write32(hw, B0_IMSK, 0);
4115 
4116 	return 0;
4117 }
4118 
4119 static int skge_resume(struct device *dev)
4120 {
4121 	struct pci_dev *pdev = to_pci_dev(dev);
4122 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4123 	int i, err;
4124 
4125 	if (!hw)
4126 		return 0;
4127 
4128 	err = skge_reset(hw);
4129 	if (err)
4130 		goto out;
4131 
4132 	for (i = 0; i < hw->ports; i++) {
4133 		struct net_device *dev = hw->dev[i];
4134 
4135 		if (netif_running(dev)) {
4136 			err = skge_up(dev);
4137 
4138 			if (err) {
4139 				netdev_err(dev, "could not up: %d\n", err);
4140 				dev_close(dev);
4141 				goto out;
4142 			}
4143 		}
4144 	}
4145 out:
4146 	return err;
4147 }
4148 
4149 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4150 #define SKGE_PM_OPS (&skge_pm_ops)
4151 
4152 #else
4153 
4154 #define SKGE_PM_OPS NULL
4155 #endif /* CONFIG_PM_SLEEP */
4156 
4157 static void skge_shutdown(struct pci_dev *pdev)
4158 {
4159 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4160 	int i;
4161 
4162 	if (!hw)
4163 		return;
4164 
4165 	for (i = 0; i < hw->ports; i++) {
4166 		struct net_device *dev = hw->dev[i];
4167 		struct skge_port *skge = netdev_priv(dev);
4168 
4169 		if (skge->wol)
4170 			skge_wol_init(skge);
4171 	}
4172 
4173 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4174 	pci_set_power_state(pdev, PCI_D3hot);
4175 }
4176 
4177 static struct pci_driver skge_driver = {
4178 	.name =         DRV_NAME,
4179 	.id_table =     skge_id_table,
4180 	.probe =        skge_probe,
4181 	.remove =       skge_remove,
4182 	.shutdown =	skge_shutdown,
4183 	.driver.pm =	SKGE_PM_OPS,
4184 };
4185 
4186 static struct dmi_system_id skge_32bit_dma_boards[] = {
4187 	{
4188 		.ident = "Gigabyte nForce boards",
4189 		.matches = {
4190 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4191 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4192 		},
4193 	},
4194 	{
4195 		.ident = "ASUS P5NSLI",
4196 		.matches = {
4197 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4198 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4199 		},
4200 	},
4201 	{
4202 		.ident = "FUJITSU SIEMENS A8NE-FM",
4203 		.matches = {
4204 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4205 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4206 		},
4207 	},
4208 	{}
4209 };
4210 
4211 static int __init skge_init_module(void)
4212 {
4213 	if (dmi_check_system(skge_32bit_dma_boards))
4214 		only_32bit_dma = 1;
4215 	skge_debug_init();
4216 	return pci_register_driver(&skge_driver);
4217 }
4218 
4219 static void __exit skge_cleanup_module(void)
4220 {
4221 	pci_unregister_driver(&skge_driver);
4222 	skge_debug_cleanup();
4223 }
4224 
4225 module_init(skge_init_module);
4226 module_exit(skge_cleanup_module);
4227