xref: /linux/drivers/net/ethernet/marvell/pxa168_eth.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *		Sachin Sanap <ssanap@marvell.com>
7  *		Zhangfei Gao <zgao6@marvell.com>
8  *		Philip Rakity <prakity@marvell.com>
9  *		Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/in.h>
29 #include <linux/ip.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/etherdevice.h>
33 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <linux/ethtool.h>
36 #include <linux/platform_device.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/workqueue.h>
40 #include <linux/clk.h>
41 #include <linux/phy.h>
42 #include <linux/io.h>
43 #include <linux/interrupt.h>
44 #include <linux/types.h>
45 #include <asm/pgtable.h>
46 #include <asm/system.h>
47 #include <asm/cacheflush.h>
48 #include <linux/pxa168_eth.h>
49 
50 #define DRIVER_NAME	"pxa168-eth"
51 #define DRIVER_VERSION	"0.3"
52 
53 /*
54  * Registers
55  */
56 
57 #define PHY_ADDRESS		0x0000
58 #define SMI			0x0010
59 #define PORT_CONFIG		0x0400
60 #define PORT_CONFIG_EXT		0x0408
61 #define PORT_COMMAND		0x0410
62 #define PORT_STATUS		0x0418
63 #define HTPR			0x0428
64 #define SDMA_CONFIG		0x0440
65 #define SDMA_CMD		0x0448
66 #define INT_CAUSE		0x0450
67 #define INT_W_CLEAR		0x0454
68 #define INT_MASK		0x0458
69 #define ETH_F_RX_DESC_0		0x0480
70 #define ETH_C_RX_DESC_0		0x04A0
71 #define ETH_C_TX_DESC_1		0x04E4
72 
73 /* smi register */
74 #define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
75 #define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
76 #define SMI_OP_W		(0 << 26)	/* Write operation      */
77 #define SMI_OP_R		(1 << 26)	/* Read operation */
78 
79 #define PHY_WAIT_ITERATIONS	10
80 
81 #define PXA168_ETH_PHY_ADDR_DEFAULT	0
82 /* RX & TX descriptor command */
83 #define BUF_OWNED_BY_DMA	(1 << 31)
84 
85 /* RX descriptor status */
86 #define RX_EN_INT		(1 << 23)
87 #define RX_FIRST_DESC		(1 << 17)
88 #define RX_LAST_DESC		(1 << 16)
89 #define RX_ERROR		(1 << 15)
90 
91 /* TX descriptor command */
92 #define TX_EN_INT		(1 << 23)
93 #define TX_GEN_CRC		(1 << 22)
94 #define TX_ZERO_PADDING		(1 << 18)
95 #define TX_FIRST_DESC		(1 << 17)
96 #define TX_LAST_DESC		(1 << 16)
97 #define TX_ERROR		(1 << 15)
98 
99 /* SDMA_CMD */
100 #define SDMA_CMD_AT		(1 << 31)
101 #define SDMA_CMD_TXDL		(1 << 24)
102 #define SDMA_CMD_TXDH		(1 << 23)
103 #define SDMA_CMD_AR		(1 << 15)
104 #define SDMA_CMD_ERD		(1 << 7)
105 
106 /* Bit definitions of the Port Config Reg */
107 #define PCR_HS			(1 << 12)
108 #define PCR_EN			(1 << 7)
109 #define PCR_PM			(1 << 0)
110 
111 /* Bit definitions of the Port Config Extend Reg */
112 #define PCXR_2BSM		(1 << 28)
113 #define PCXR_DSCP_EN		(1 << 21)
114 #define PCXR_MFL_1518		(0 << 14)
115 #define PCXR_MFL_1536		(1 << 14)
116 #define PCXR_MFL_2048		(2 << 14)
117 #define PCXR_MFL_64K		(3 << 14)
118 #define PCXR_FLP		(1 << 11)
119 #define PCXR_PRIO_TX_OFF	3
120 #define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
121 
122 /* Bit definitions of the SDMA Config Reg */
123 #define SDCR_BSZ_OFF		12
124 #define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
125 #define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
126 #define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
127 #define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
128 #define SDCR_BLMR		(1 << 6)
129 #define SDCR_BLMT		(1 << 7)
130 #define SDCR_RIFB		(1 << 9)
131 #define SDCR_RC_OFF		2
132 #define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
133 
134 /*
135  * Bit definitions of the Interrupt Cause Reg
136  * and Interrupt MASK Reg is the same
137  */
138 #define ICR_RXBUF		(1 << 0)
139 #define ICR_TXBUF_H		(1 << 2)
140 #define ICR_TXBUF_L		(1 << 3)
141 #define ICR_TXEND_H		(1 << 6)
142 #define ICR_TXEND_L		(1 << 7)
143 #define ICR_RXERR		(1 << 8)
144 #define ICR_TXERR_H		(1 << 10)
145 #define ICR_TXERR_L		(1 << 11)
146 #define ICR_TX_UDR		(1 << 13)
147 #define ICR_MII_CH		(1 << 28)
148 
149 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
150 				ICR_TXERR_H  | ICR_TXERR_L |\
151 				ICR_TXEND_H  | ICR_TXEND_L |\
152 				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
153 
154 #define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
155 
156 #define NUM_RX_DESCS		64
157 #define NUM_TX_DESCS		64
158 
159 #define HASH_ADD		0
160 #define HASH_DELETE		1
161 #define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
162 #define HOP_NUMBER		12
163 
164 /* Bit definitions for Port status */
165 #define PORT_SPEED_100		(1 << 0)
166 #define FULL_DUPLEX		(1 << 1)
167 #define FLOW_CONTROL_ENABLED	(1 << 2)
168 #define LINK_UP			(1 << 3)
169 
170 /* Bit definitions for work to be done */
171 #define WORK_LINK		(1 << 0)
172 #define WORK_TX_DONE		(1 << 1)
173 
174 /*
175  * Misc definitions.
176  */
177 #define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
178 
179 struct rx_desc {
180 	u32 cmd_sts;		/* Descriptor command status            */
181 	u16 byte_cnt;		/* Descriptor buffer byte count         */
182 	u16 buf_size;		/* Buffer size                          */
183 	u32 buf_ptr;		/* Descriptor buffer pointer            */
184 	u32 next_desc_ptr;	/* Next descriptor pointer              */
185 };
186 
187 struct tx_desc {
188 	u32 cmd_sts;		/* Command/status field                 */
189 	u16 reserved;
190 	u16 byte_cnt;		/* buffer byte count                    */
191 	u32 buf_ptr;		/* pointer to buffer for this descriptor */
192 	u32 next_desc_ptr;	/* Pointer to next descriptor           */
193 };
194 
195 struct pxa168_eth_private {
196 	int port_num;		/* User Ethernet port number    */
197 
198 	int rx_resource_err;	/* Rx ring resource error flag */
199 
200 	/* Next available and first returning Rx resource */
201 	int rx_curr_desc_q, rx_used_desc_q;
202 
203 	/* Next available and first returning Tx resource */
204 	int tx_curr_desc_q, tx_used_desc_q;
205 
206 	struct rx_desc *p_rx_desc_area;
207 	dma_addr_t rx_desc_dma;
208 	int rx_desc_area_size;
209 	struct sk_buff **rx_skb;
210 
211 	struct tx_desc *p_tx_desc_area;
212 	dma_addr_t tx_desc_dma;
213 	int tx_desc_area_size;
214 	struct sk_buff **tx_skb;
215 
216 	struct work_struct tx_timeout_task;
217 
218 	struct net_device *dev;
219 	struct napi_struct napi;
220 	u8 work_todo;
221 	int skb_size;
222 
223 	struct net_device_stats stats;
224 	/* Size of Tx Ring per queue */
225 	int tx_ring_size;
226 	/* Number of tx descriptors in use */
227 	int tx_desc_count;
228 	/* Size of Rx Ring per queue */
229 	int rx_ring_size;
230 	/* Number of rx descriptors in use */
231 	int rx_desc_count;
232 
233 	/*
234 	 * Used in case RX Ring is empty, which can occur when
235 	 * system does not have resources (skb's)
236 	 */
237 	struct timer_list timeout;
238 	struct mii_bus *smi_bus;
239 	struct phy_device *phy;
240 
241 	/* clock */
242 	struct clk *clk;
243 	struct pxa168_eth_platform_data *pd;
244 	/*
245 	 * Ethernet controller base address.
246 	 */
247 	void __iomem *base;
248 
249 	/* Pointer to the hardware address filter table */
250 	void *htpr;
251 	dma_addr_t htpr_dma;
252 };
253 
254 struct addr_table_entry {
255 	__le32 lo;
256 	__le32 hi;
257 };
258 
259 /* Bit fields of a Hash Table Entry */
260 enum hash_table_entry {
261 	HASH_ENTRY_VALID = 1,
262 	SKIP = 2,
263 	HASH_ENTRY_RECEIVE_DISCARD = 4,
264 	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
265 };
266 
267 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
268 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
269 static int pxa168_init_hw(struct pxa168_eth_private *pep);
270 static void eth_port_reset(struct net_device *dev);
271 static void eth_port_start(struct net_device *dev);
272 static int pxa168_eth_open(struct net_device *dev);
273 static int pxa168_eth_stop(struct net_device *dev);
274 static int ethernet_phy_setup(struct net_device *dev);
275 
276 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
277 {
278 	return readl(pep->base + offset);
279 }
280 
281 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
282 {
283 	writel(data, pep->base + offset);
284 }
285 
286 static void abort_dma(struct pxa168_eth_private *pep)
287 {
288 	int delay;
289 	int max_retries = 40;
290 
291 	do {
292 		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
293 		udelay(100);
294 
295 		delay = 10;
296 		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
297 		       && delay-- > 0) {
298 			udelay(10);
299 		}
300 	} while (max_retries-- > 0 && delay <= 0);
301 
302 	if (max_retries <= 0)
303 		printk(KERN_ERR "%s : DMA Stuck\n", __func__);
304 }
305 
306 static int ethernet_phy_get(struct pxa168_eth_private *pep)
307 {
308 	unsigned int reg_data;
309 
310 	reg_data = rdl(pep, PHY_ADDRESS);
311 
312 	return (reg_data >> (5 * pep->port_num)) & 0x1f;
313 }
314 
315 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
316 {
317 	u32 reg_data;
318 	int addr_shift = 5 * pep->port_num;
319 
320 	reg_data = rdl(pep, PHY_ADDRESS);
321 	reg_data &= ~(0x1f << addr_shift);
322 	reg_data |= (phy_addr & 0x1f) << addr_shift;
323 	wrl(pep, PHY_ADDRESS, reg_data);
324 }
325 
326 static void ethernet_phy_reset(struct pxa168_eth_private *pep)
327 {
328 	int data;
329 
330 	data = phy_read(pep->phy, MII_BMCR);
331 	if (data < 0)
332 		return;
333 
334 	data |= BMCR_RESET;
335 	if (phy_write(pep->phy, MII_BMCR, data) < 0)
336 		return;
337 
338 	do {
339 		data = phy_read(pep->phy, MII_BMCR);
340 	} while (data >= 0 && data & BMCR_RESET);
341 }
342 
343 static void rxq_refill(struct net_device *dev)
344 {
345 	struct pxa168_eth_private *pep = netdev_priv(dev);
346 	struct sk_buff *skb;
347 	struct rx_desc *p_used_rx_desc;
348 	int used_rx_desc;
349 
350 	while (pep->rx_desc_count < pep->rx_ring_size) {
351 		int size;
352 
353 		skb = dev_alloc_skb(pep->skb_size);
354 		if (!skb)
355 			break;
356 		if (SKB_DMA_REALIGN)
357 			skb_reserve(skb, SKB_DMA_REALIGN);
358 		pep->rx_desc_count++;
359 		/* Get 'used' Rx descriptor */
360 		used_rx_desc = pep->rx_used_desc_q;
361 		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
362 		size = skb->end - skb->data;
363 		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
364 							 skb->data,
365 							 size,
366 							 DMA_FROM_DEVICE);
367 		p_used_rx_desc->buf_size = size;
368 		pep->rx_skb[used_rx_desc] = skb;
369 
370 		/* Return the descriptor to DMA ownership */
371 		wmb();
372 		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
373 		wmb();
374 
375 		/* Move the used descriptor pointer to the next descriptor */
376 		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
377 
378 		/* Any Rx return cancels the Rx resource error status */
379 		pep->rx_resource_err = 0;
380 
381 		skb_reserve(skb, ETH_HW_IP_ALIGN);
382 	}
383 
384 	/*
385 	 * If RX ring is empty of SKB, set a timer to try allocating
386 	 * again at a later time.
387 	 */
388 	if (pep->rx_desc_count == 0) {
389 		pep->timeout.expires = jiffies + (HZ / 10);
390 		add_timer(&pep->timeout);
391 	}
392 }
393 
394 static inline void rxq_refill_timer_wrapper(unsigned long data)
395 {
396 	struct pxa168_eth_private *pep = (void *)data;
397 	napi_schedule(&pep->napi);
398 }
399 
400 static inline u8 flip_8_bits(u8 x)
401 {
402 	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
403 	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
404 	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
405 	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
406 }
407 
408 static void nibble_swap_every_byte(unsigned char *mac_addr)
409 {
410 	int i;
411 	for (i = 0; i < ETH_ALEN; i++) {
412 		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
413 				((mac_addr[i] & 0xf0) >> 4);
414 	}
415 }
416 
417 static void inverse_every_nibble(unsigned char *mac_addr)
418 {
419 	int i;
420 	for (i = 0; i < ETH_ALEN; i++)
421 		mac_addr[i] = flip_8_bits(mac_addr[i]);
422 }
423 
424 /*
425  * ----------------------------------------------------------------------------
426  * This function will calculate the hash function of the address.
427  * Inputs
428  * mac_addr_orig    - MAC address.
429  * Outputs
430  * return the calculated entry.
431  */
432 static u32 hash_function(unsigned char *mac_addr_orig)
433 {
434 	u32 hash_result;
435 	u32 addr0;
436 	u32 addr1;
437 	u32 addr2;
438 	u32 addr3;
439 	unsigned char mac_addr[ETH_ALEN];
440 
441 	/* Make a copy of MAC address since we are going to performe bit
442 	 * operations on it
443 	 */
444 	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
445 
446 	nibble_swap_every_byte(mac_addr);
447 	inverse_every_nibble(mac_addr);
448 
449 	addr0 = (mac_addr[5] >> 2) & 0x3f;
450 	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
451 	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
452 	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
453 
454 	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
455 	hash_result = hash_result & 0x07ff;
456 	return hash_result;
457 }
458 
459 /*
460  * ----------------------------------------------------------------------------
461  * This function will add/del an entry to the address table.
462  * Inputs
463  * pep - ETHERNET .
464  * mac_addr - MAC address.
465  * skip - if 1, skip this address.Used in case of deleting an entry which is a
466  *	  part of chain in the hash table.We can't just delete the entry since
467  *	  that will break the chain.We need to defragment the tables time to
468  *	  time.
469  * rd   - 0 Discard packet upon match.
470  *	- 1 Receive packet upon match.
471  * Outputs
472  * address table entry is added/deleted.
473  * 0 if success.
474  * -ENOSPC if table full
475  */
476 static int add_del_hash_entry(struct pxa168_eth_private *pep,
477 			      unsigned char *mac_addr,
478 			      u32 rd, u32 skip, int del)
479 {
480 	struct addr_table_entry *entry, *start;
481 	u32 new_high;
482 	u32 new_low;
483 	u32 i;
484 
485 	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
486 	    | (((mac_addr[1] >> 0) & 0xf) << 11)
487 	    | (((mac_addr[0] >> 4) & 0xf) << 7)
488 	    | (((mac_addr[0] >> 0) & 0xf) << 3)
489 	    | (((mac_addr[3] >> 4) & 0x1) << 31)
490 	    | (((mac_addr[3] >> 0) & 0xf) << 27)
491 	    | (((mac_addr[2] >> 4) & 0xf) << 23)
492 	    | (((mac_addr[2] >> 0) & 0xf) << 19)
493 	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
494 	    | HASH_ENTRY_VALID;
495 
496 	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
497 	    | (((mac_addr[5] >> 0) & 0xf) << 11)
498 	    | (((mac_addr[4] >> 4) & 0xf) << 7)
499 	    | (((mac_addr[4] >> 0) & 0xf) << 3)
500 	    | (((mac_addr[3] >> 5) & 0x7) << 0);
501 
502 	/*
503 	 * Pick the appropriate table, start scanning for free/reusable
504 	 * entries at the index obtained by hashing the specified MAC address
505 	 */
506 	start = pep->htpr;
507 	entry = start + hash_function(mac_addr);
508 	for (i = 0; i < HOP_NUMBER; i++) {
509 		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
510 			break;
511 		} else {
512 			/* if same address put in same position */
513 			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
514 				(new_low & 0xfffffff8)) &&
515 				(le32_to_cpu(entry->hi) == new_high)) {
516 				break;
517 			}
518 		}
519 		if (entry == start + 0x7ff)
520 			entry = start;
521 		else
522 			entry++;
523 	}
524 
525 	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
526 	    (le32_to_cpu(entry->hi) != new_high) && del)
527 		return 0;
528 
529 	if (i == HOP_NUMBER) {
530 		if (!del) {
531 			printk(KERN_INFO "%s: table section is full, need to "
532 					"move to 16kB implementation?\n",
533 					 __FILE__);
534 			return -ENOSPC;
535 		} else
536 			return 0;
537 	}
538 
539 	/*
540 	 * Update the selected entry
541 	 */
542 	if (del) {
543 		entry->hi = 0;
544 		entry->lo = 0;
545 	} else {
546 		entry->hi = cpu_to_le32(new_high);
547 		entry->lo = cpu_to_le32(new_low);
548 	}
549 
550 	return 0;
551 }
552 
553 /*
554  * ----------------------------------------------------------------------------
555  *  Create an addressTable entry from MAC address info
556  *  found in the specifed net_device struct
557  *
558  *  Input : pointer to ethernet interface network device structure
559  *  Output : N/A
560  */
561 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
562 					  unsigned char *oaddr,
563 					  unsigned char *addr)
564 {
565 	/* Delete old entry */
566 	if (oaddr)
567 		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
568 	/* Add new entry */
569 	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
570 }
571 
572 static int init_hash_table(struct pxa168_eth_private *pep)
573 {
574 	/*
575 	 * Hardware expects CPU to build a hash table based on a predefined
576 	 * hash function and populate it based on hardware address. The
577 	 * location of the hash table is identified by 32-bit pointer stored
578 	 * in HTPR internal register. Two possible sizes exists for the hash
579 	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
580 	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
581 	 * 1/2kB.
582 	 */
583 	/* TODO: Add support for 8kB hash table and alternative hash
584 	 * function.Driver can dynamically switch to them if the 1/2kB hash
585 	 * table is full.
586 	 */
587 	if (pep->htpr == NULL) {
588 		pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
589 					      HASH_ADDR_TABLE_SIZE,
590 					      &pep->htpr_dma, GFP_KERNEL);
591 		if (pep->htpr == NULL)
592 			return -ENOMEM;
593 	}
594 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
595 	wrl(pep, HTPR, pep->htpr_dma);
596 	return 0;
597 }
598 
599 static void pxa168_eth_set_rx_mode(struct net_device *dev)
600 {
601 	struct pxa168_eth_private *pep = netdev_priv(dev);
602 	struct netdev_hw_addr *ha;
603 	u32 val;
604 
605 	val = rdl(pep, PORT_CONFIG);
606 	if (dev->flags & IFF_PROMISC)
607 		val |= PCR_PM;
608 	else
609 		val &= ~PCR_PM;
610 	wrl(pep, PORT_CONFIG, val);
611 
612 	/*
613 	 * Remove the old list of MAC address and add dev->addr
614 	 * and multicast address.
615 	 */
616 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
617 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
618 
619 	netdev_for_each_mc_addr(ha, dev)
620 		update_hash_table_mac_address(pep, NULL, ha->addr);
621 }
622 
623 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
624 {
625 	struct sockaddr *sa = addr;
626 	struct pxa168_eth_private *pep = netdev_priv(dev);
627 	unsigned char oldMac[ETH_ALEN];
628 
629 	if (!is_valid_ether_addr(sa->sa_data))
630 		return -EINVAL;
631 	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
632 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
633 	netif_addr_lock_bh(dev);
634 	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
635 	netif_addr_unlock_bh(dev);
636 	return 0;
637 }
638 
639 static void eth_port_start(struct net_device *dev)
640 {
641 	unsigned int val = 0;
642 	struct pxa168_eth_private *pep = netdev_priv(dev);
643 	int tx_curr_desc, rx_curr_desc;
644 
645 	/* Perform PHY reset, if there is a PHY. */
646 	if (pep->phy != NULL) {
647 		struct ethtool_cmd cmd;
648 
649 		pxa168_get_settings(pep->dev, &cmd);
650 		ethernet_phy_reset(pep);
651 		pxa168_set_settings(pep->dev, &cmd);
652 	}
653 
654 	/* Assignment of Tx CTRP of given queue */
655 	tx_curr_desc = pep->tx_curr_desc_q;
656 	wrl(pep, ETH_C_TX_DESC_1,
657 	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
658 
659 	/* Assignment of Rx CRDP of given queue */
660 	rx_curr_desc = pep->rx_curr_desc_q;
661 	wrl(pep, ETH_C_RX_DESC_0,
662 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
663 
664 	wrl(pep, ETH_F_RX_DESC_0,
665 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
666 
667 	/* Clear all interrupts */
668 	wrl(pep, INT_CAUSE, 0);
669 
670 	/* Enable all interrupts for receive, transmit and error. */
671 	wrl(pep, INT_MASK, ALL_INTS);
672 
673 	val = rdl(pep, PORT_CONFIG);
674 	val |= PCR_EN;
675 	wrl(pep, PORT_CONFIG, val);
676 
677 	/* Start RX DMA engine */
678 	val = rdl(pep, SDMA_CMD);
679 	val |= SDMA_CMD_ERD;
680 	wrl(pep, SDMA_CMD, val);
681 }
682 
683 static void eth_port_reset(struct net_device *dev)
684 {
685 	struct pxa168_eth_private *pep = netdev_priv(dev);
686 	unsigned int val = 0;
687 
688 	/* Stop all interrupts for receive, transmit and error. */
689 	wrl(pep, INT_MASK, 0);
690 
691 	/* Clear all interrupts */
692 	wrl(pep, INT_CAUSE, 0);
693 
694 	/* Stop RX DMA */
695 	val = rdl(pep, SDMA_CMD);
696 	val &= ~SDMA_CMD_ERD;	/* abort dma command */
697 
698 	/* Abort any transmit and receive operations and put DMA
699 	 * in idle state.
700 	 */
701 	abort_dma(pep);
702 
703 	/* Disable port */
704 	val = rdl(pep, PORT_CONFIG);
705 	val &= ~PCR_EN;
706 	wrl(pep, PORT_CONFIG, val);
707 }
708 
709 /*
710  * txq_reclaim - Free the tx desc data for completed descriptors
711  * If force is non-zero, frees uncompleted descriptors as well
712  */
713 static int txq_reclaim(struct net_device *dev, int force)
714 {
715 	struct pxa168_eth_private *pep = netdev_priv(dev);
716 	struct tx_desc *desc;
717 	u32 cmd_sts;
718 	struct sk_buff *skb;
719 	int tx_index;
720 	dma_addr_t addr;
721 	int count;
722 	int released = 0;
723 
724 	netif_tx_lock(dev);
725 
726 	pep->work_todo &= ~WORK_TX_DONE;
727 	while (pep->tx_desc_count > 0) {
728 		tx_index = pep->tx_used_desc_q;
729 		desc = &pep->p_tx_desc_area[tx_index];
730 		cmd_sts = desc->cmd_sts;
731 		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
732 			if (released > 0) {
733 				goto txq_reclaim_end;
734 			} else {
735 				released = -1;
736 				goto txq_reclaim_end;
737 			}
738 		}
739 		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
740 		pep->tx_desc_count--;
741 		addr = desc->buf_ptr;
742 		count = desc->byte_cnt;
743 		skb = pep->tx_skb[tx_index];
744 		if (skb)
745 			pep->tx_skb[tx_index] = NULL;
746 
747 		if (cmd_sts & TX_ERROR) {
748 			if (net_ratelimit())
749 				printk(KERN_ERR "%s: Error in TX\n", dev->name);
750 			dev->stats.tx_errors++;
751 		}
752 		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
753 		if (skb)
754 			dev_kfree_skb_irq(skb);
755 		released++;
756 	}
757 txq_reclaim_end:
758 	netif_tx_unlock(dev);
759 	return released;
760 }
761 
762 static void pxa168_eth_tx_timeout(struct net_device *dev)
763 {
764 	struct pxa168_eth_private *pep = netdev_priv(dev);
765 
766 	printk(KERN_INFO "%s: TX timeout  desc_count %d\n",
767 	       dev->name, pep->tx_desc_count);
768 
769 	schedule_work(&pep->tx_timeout_task);
770 }
771 
772 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
773 {
774 	struct pxa168_eth_private *pep = container_of(work,
775 						 struct pxa168_eth_private,
776 						 tx_timeout_task);
777 	struct net_device *dev = pep->dev;
778 	pxa168_eth_stop(dev);
779 	pxa168_eth_open(dev);
780 }
781 
782 static int rxq_process(struct net_device *dev, int budget)
783 {
784 	struct pxa168_eth_private *pep = netdev_priv(dev);
785 	struct net_device_stats *stats = &dev->stats;
786 	unsigned int received_packets = 0;
787 	struct sk_buff *skb;
788 
789 	while (budget-- > 0) {
790 		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
791 		struct rx_desc *rx_desc;
792 		unsigned int cmd_sts;
793 
794 		/* Do not process Rx ring in case of Rx ring resource error */
795 		if (pep->rx_resource_err)
796 			break;
797 		rx_curr_desc = pep->rx_curr_desc_q;
798 		rx_used_desc = pep->rx_used_desc_q;
799 		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
800 		cmd_sts = rx_desc->cmd_sts;
801 		rmb();
802 		if (cmd_sts & (BUF_OWNED_BY_DMA))
803 			break;
804 		skb = pep->rx_skb[rx_curr_desc];
805 		pep->rx_skb[rx_curr_desc] = NULL;
806 
807 		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
808 		pep->rx_curr_desc_q = rx_next_curr_desc;
809 
810 		/* Rx descriptors exhausted. */
811 		/* Set the Rx ring resource error flag */
812 		if (rx_next_curr_desc == rx_used_desc)
813 			pep->rx_resource_err = 1;
814 		pep->rx_desc_count--;
815 		dma_unmap_single(NULL, rx_desc->buf_ptr,
816 				 rx_desc->buf_size,
817 				 DMA_FROM_DEVICE);
818 		received_packets++;
819 		/*
820 		 * Update statistics.
821 		 * Note byte count includes 4 byte CRC count
822 		 */
823 		stats->rx_packets++;
824 		stats->rx_bytes += rx_desc->byte_cnt;
825 		/*
826 		 * In case received a packet without first / last bits on OR
827 		 * the error summary bit is on, the packets needs to be droped.
828 		 */
829 		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
830 		     (RX_FIRST_DESC | RX_LAST_DESC))
831 		    || (cmd_sts & RX_ERROR)) {
832 
833 			stats->rx_dropped++;
834 			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
835 			    (RX_FIRST_DESC | RX_LAST_DESC)) {
836 				if (net_ratelimit())
837 					printk(KERN_ERR
838 					       "%s: Rx pkt on multiple desc\n",
839 					       dev->name);
840 			}
841 			if (cmd_sts & RX_ERROR)
842 				stats->rx_errors++;
843 			dev_kfree_skb_irq(skb);
844 		} else {
845 			/*
846 			 * The -4 is for the CRC in the trailer of the
847 			 * received packet
848 			 */
849 			skb_put(skb, rx_desc->byte_cnt - 4);
850 			skb->protocol = eth_type_trans(skb, dev);
851 			netif_receive_skb(skb);
852 		}
853 	}
854 	/* Fill RX ring with skb's */
855 	rxq_refill(dev);
856 	return received_packets;
857 }
858 
859 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
860 				     struct net_device *dev)
861 {
862 	u32 icr;
863 	int ret = 0;
864 
865 	icr = rdl(pep, INT_CAUSE);
866 	if (icr == 0)
867 		return IRQ_NONE;
868 
869 	wrl(pep, INT_CAUSE, ~icr);
870 	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
871 		pep->work_todo |= WORK_TX_DONE;
872 		ret = 1;
873 	}
874 	if (icr & ICR_RXBUF)
875 		ret = 1;
876 	if (icr & ICR_MII_CH) {
877 		pep->work_todo |= WORK_LINK;
878 		ret = 1;
879 	}
880 	return ret;
881 }
882 
883 static void handle_link_event(struct pxa168_eth_private *pep)
884 {
885 	struct net_device *dev = pep->dev;
886 	u32 port_status;
887 	int speed;
888 	int duplex;
889 	int fc;
890 
891 	port_status = rdl(pep, PORT_STATUS);
892 	if (!(port_status & LINK_UP)) {
893 		if (netif_carrier_ok(dev)) {
894 			printk(KERN_INFO "%s: link down\n", dev->name);
895 			netif_carrier_off(dev);
896 			txq_reclaim(dev, 1);
897 		}
898 		return;
899 	}
900 	if (port_status & PORT_SPEED_100)
901 		speed = 100;
902 	else
903 		speed = 10;
904 
905 	duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
906 	fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
907 	printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
908 	       "flow control %sabled\n", dev->name,
909 	       speed, duplex ? "full" : "half", fc ? "en" : "dis");
910 	if (!netif_carrier_ok(dev))
911 		netif_carrier_on(dev);
912 }
913 
914 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
915 {
916 	struct net_device *dev = (struct net_device *)dev_id;
917 	struct pxa168_eth_private *pep = netdev_priv(dev);
918 
919 	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
920 		return IRQ_NONE;
921 	/* Disable interrupts */
922 	wrl(pep, INT_MASK, 0);
923 	napi_schedule(&pep->napi);
924 	return IRQ_HANDLED;
925 }
926 
927 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
928 {
929 	int skb_size;
930 
931 	/*
932 	 * Reserve 2+14 bytes for an ethernet header (the hardware
933 	 * automatically prepends 2 bytes of dummy data to each
934 	 * received packet), 16 bytes for up to four VLAN tags, and
935 	 * 4 bytes for the trailing FCS -- 36 bytes total.
936 	 */
937 	skb_size = pep->dev->mtu + 36;
938 
939 	/*
940 	 * Make sure that the skb size is a multiple of 8 bytes, as
941 	 * the lower three bits of the receive descriptor's buffer
942 	 * size field are ignored by the hardware.
943 	 */
944 	pep->skb_size = (skb_size + 7) & ~7;
945 
946 	/*
947 	 * If NET_SKB_PAD is smaller than a cache line,
948 	 * netdev_alloc_skb() will cause skb->data to be misaligned
949 	 * to a cache line boundary.  If this is the case, include
950 	 * some extra space to allow re-aligning the data area.
951 	 */
952 	pep->skb_size += SKB_DMA_REALIGN;
953 
954 }
955 
956 static int set_port_config_ext(struct pxa168_eth_private *pep)
957 {
958 	int skb_size;
959 
960 	pxa168_eth_recalc_skb_size(pep);
961 	if  (pep->skb_size <= 1518)
962 		skb_size = PCXR_MFL_1518;
963 	else if (pep->skb_size <= 1536)
964 		skb_size = PCXR_MFL_1536;
965 	else if (pep->skb_size <= 2048)
966 		skb_size = PCXR_MFL_2048;
967 	else
968 		skb_size = PCXR_MFL_64K;
969 
970 	/* Extended Port Configuration */
971 	wrl(pep,
972 	    PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
973 	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
974 	    skb_size | PCXR_FLP |	 /* do not force link pass */
975 	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
976 
977 	return 0;
978 }
979 
980 static int pxa168_init_hw(struct pxa168_eth_private *pep)
981 {
982 	int err = 0;
983 
984 	/* Disable interrupts */
985 	wrl(pep, INT_MASK, 0);
986 	wrl(pep, INT_CAUSE, 0);
987 	/* Write to ICR to clear interrupts. */
988 	wrl(pep, INT_W_CLEAR, 0);
989 	/* Abort any transmit and receive operations and put DMA
990 	 * in idle state.
991 	 */
992 	abort_dma(pep);
993 	/* Initialize address hash table */
994 	err = init_hash_table(pep);
995 	if (err)
996 		return err;
997 	/* SDMA configuration */
998 	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
999 	    SDCR_RIFB |				/* Rx interrupt on frame */
1000 	    SDCR_BLMT |				/* Little endian transmit */
1001 	    SDCR_BLMR |				/* Little endian receive */
1002 	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1003 	/* Port Configuration */
1004 	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1005 	set_port_config_ext(pep);
1006 
1007 	return err;
1008 }
1009 
1010 static int rxq_init(struct net_device *dev)
1011 {
1012 	struct pxa168_eth_private *pep = netdev_priv(dev);
1013 	struct rx_desc *p_rx_desc;
1014 	int size = 0, i = 0;
1015 	int rx_desc_num = pep->rx_ring_size;
1016 
1017 	/* Allocate RX skb rings */
1018 	pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1019 			     GFP_KERNEL);
1020 	if (!pep->rx_skb) {
1021 		printk(KERN_ERR "%s: Cannot alloc RX skb ring\n", dev->name);
1022 		return -ENOMEM;
1023 	}
1024 	/* Allocate RX ring */
1025 	pep->rx_desc_count = 0;
1026 	size = pep->rx_ring_size * sizeof(struct rx_desc);
1027 	pep->rx_desc_area_size = size;
1028 	pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1029 						&pep->rx_desc_dma, GFP_KERNEL);
1030 	if (!pep->p_rx_desc_area) {
1031 		printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1032 		       dev->name, size);
1033 		goto out;
1034 	}
1035 	memset((void *)pep->p_rx_desc_area, 0, size);
1036 	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1037 	p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
1038 	for (i = 0; i < rx_desc_num; i++) {
1039 		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1040 		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1041 	}
1042 	/* Save Rx desc pointer to driver struct. */
1043 	pep->rx_curr_desc_q = 0;
1044 	pep->rx_used_desc_q = 0;
1045 	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1046 	return 0;
1047 out:
1048 	kfree(pep->rx_skb);
1049 	return -ENOMEM;
1050 }
1051 
1052 static void rxq_deinit(struct net_device *dev)
1053 {
1054 	struct pxa168_eth_private *pep = netdev_priv(dev);
1055 	int curr;
1056 
1057 	/* Free preallocated skb's on RX rings */
1058 	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1059 		if (pep->rx_skb[curr]) {
1060 			dev_kfree_skb(pep->rx_skb[curr]);
1061 			pep->rx_desc_count--;
1062 		}
1063 	}
1064 	if (pep->rx_desc_count)
1065 		printk(KERN_ERR
1066 		       "Error in freeing Rx Ring. %d skb's still\n",
1067 		       pep->rx_desc_count);
1068 	/* Free RX ring */
1069 	if (pep->p_rx_desc_area)
1070 		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1071 				  pep->p_rx_desc_area, pep->rx_desc_dma);
1072 	kfree(pep->rx_skb);
1073 }
1074 
1075 static int txq_init(struct net_device *dev)
1076 {
1077 	struct pxa168_eth_private *pep = netdev_priv(dev);
1078 	struct tx_desc *p_tx_desc;
1079 	int size = 0, i = 0;
1080 	int tx_desc_num = pep->tx_ring_size;
1081 
1082 	pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1083 			     GFP_KERNEL);
1084 	if (!pep->tx_skb) {
1085 		printk(KERN_ERR "%s: Cannot alloc TX skb ring\n", dev->name);
1086 		return -ENOMEM;
1087 	}
1088 	/* Allocate TX ring */
1089 	pep->tx_desc_count = 0;
1090 	size = pep->tx_ring_size * sizeof(struct tx_desc);
1091 	pep->tx_desc_area_size = size;
1092 	pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1093 						&pep->tx_desc_dma, GFP_KERNEL);
1094 	if (!pep->p_tx_desc_area) {
1095 		printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1096 		       dev->name, size);
1097 		goto out;
1098 	}
1099 	memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1100 	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1101 	p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
1102 	for (i = 0; i < tx_desc_num; i++) {
1103 		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1104 		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1105 	}
1106 	pep->tx_curr_desc_q = 0;
1107 	pep->tx_used_desc_q = 0;
1108 	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1109 	return 0;
1110 out:
1111 	kfree(pep->tx_skb);
1112 	return -ENOMEM;
1113 }
1114 
1115 static void txq_deinit(struct net_device *dev)
1116 {
1117 	struct pxa168_eth_private *pep = netdev_priv(dev);
1118 
1119 	/* Free outstanding skb's on TX ring */
1120 	txq_reclaim(dev, 1);
1121 	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1122 	/* Free TX ring */
1123 	if (pep->p_tx_desc_area)
1124 		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1125 				  pep->p_tx_desc_area, pep->tx_desc_dma);
1126 	kfree(pep->tx_skb);
1127 }
1128 
1129 static int pxa168_eth_open(struct net_device *dev)
1130 {
1131 	struct pxa168_eth_private *pep = netdev_priv(dev);
1132 	int err;
1133 
1134 	err = request_irq(dev->irq, pxa168_eth_int_handler,
1135 			  IRQF_DISABLED, dev->name, dev);
1136 	if (err) {
1137 		dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
1138 		return -EAGAIN;
1139 	}
1140 	pep->rx_resource_err = 0;
1141 	err = rxq_init(dev);
1142 	if (err != 0)
1143 		goto out_free_irq;
1144 	err = txq_init(dev);
1145 	if (err != 0)
1146 		goto out_free_rx_skb;
1147 	pep->rx_used_desc_q = 0;
1148 	pep->rx_curr_desc_q = 0;
1149 
1150 	/* Fill RX ring with skb's */
1151 	rxq_refill(dev);
1152 	pep->rx_used_desc_q = 0;
1153 	pep->rx_curr_desc_q = 0;
1154 	netif_carrier_off(dev);
1155 	eth_port_start(dev);
1156 	napi_enable(&pep->napi);
1157 	return 0;
1158 out_free_rx_skb:
1159 	rxq_deinit(dev);
1160 out_free_irq:
1161 	free_irq(dev->irq, dev);
1162 	return err;
1163 }
1164 
1165 static int pxa168_eth_stop(struct net_device *dev)
1166 {
1167 	struct pxa168_eth_private *pep = netdev_priv(dev);
1168 	eth_port_reset(dev);
1169 
1170 	/* Disable interrupts */
1171 	wrl(pep, INT_MASK, 0);
1172 	wrl(pep, INT_CAUSE, 0);
1173 	/* Write to ICR to clear interrupts. */
1174 	wrl(pep, INT_W_CLEAR, 0);
1175 	napi_disable(&pep->napi);
1176 	del_timer_sync(&pep->timeout);
1177 	netif_carrier_off(dev);
1178 	free_irq(dev->irq, dev);
1179 	rxq_deinit(dev);
1180 	txq_deinit(dev);
1181 
1182 	return 0;
1183 }
1184 
1185 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1186 {
1187 	int retval;
1188 	struct pxa168_eth_private *pep = netdev_priv(dev);
1189 
1190 	if ((mtu > 9500) || (mtu < 68))
1191 		return -EINVAL;
1192 
1193 	dev->mtu = mtu;
1194 	retval = set_port_config_ext(pep);
1195 
1196 	if (!netif_running(dev))
1197 		return 0;
1198 
1199 	/*
1200 	 * Stop and then re-open the interface. This will allocate RX
1201 	 * skbs of the new MTU.
1202 	 * There is a possible danger that the open will not succeed,
1203 	 * due to memory being full.
1204 	 */
1205 	pxa168_eth_stop(dev);
1206 	if (pxa168_eth_open(dev)) {
1207 		dev_printk(KERN_ERR, &dev->dev,
1208 			   "fatal error on re-opening device after "
1209 			   "MTU change\n");
1210 	}
1211 
1212 	return 0;
1213 }
1214 
1215 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1216 {
1217 	int tx_desc_curr;
1218 
1219 	tx_desc_curr = pep->tx_curr_desc_q;
1220 	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1221 	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1222 	pep->tx_desc_count++;
1223 
1224 	return tx_desc_curr;
1225 }
1226 
1227 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1228 {
1229 	struct pxa168_eth_private *pep =
1230 	    container_of(napi, struct pxa168_eth_private, napi);
1231 	struct net_device *dev = pep->dev;
1232 	int work_done = 0;
1233 
1234 	if (unlikely(pep->work_todo & WORK_LINK)) {
1235 		pep->work_todo &= ~(WORK_LINK);
1236 		handle_link_event(pep);
1237 	}
1238 	/*
1239 	 * We call txq_reclaim every time since in NAPI interupts are disabled
1240 	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1241 	 * interrupt status register.
1242 	 */
1243 	txq_reclaim(dev, 0);
1244 	if (netif_queue_stopped(dev)
1245 	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1246 		netif_wake_queue(dev);
1247 	}
1248 	work_done = rxq_process(dev, budget);
1249 	if (work_done < budget) {
1250 		napi_complete(napi);
1251 		wrl(pep, INT_MASK, ALL_INTS);
1252 	}
1253 
1254 	return work_done;
1255 }
1256 
1257 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1258 {
1259 	struct pxa168_eth_private *pep = netdev_priv(dev);
1260 	struct net_device_stats *stats = &dev->stats;
1261 	struct tx_desc *desc;
1262 	int tx_index;
1263 	int length;
1264 
1265 	tx_index = eth_alloc_tx_desc_index(pep);
1266 	desc = &pep->p_tx_desc_area[tx_index];
1267 	length = skb->len;
1268 	pep->tx_skb[tx_index] = skb;
1269 	desc->byte_cnt = length;
1270 	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1271 
1272 	skb_tx_timestamp(skb);
1273 
1274 	wmb();
1275 	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1276 			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1277 	wmb();
1278 	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1279 
1280 	stats->tx_bytes += length;
1281 	stats->tx_packets++;
1282 	dev->trans_start = jiffies;
1283 	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1284 		/* We handled the current skb, but now we are out of space.*/
1285 		netif_stop_queue(dev);
1286 	}
1287 
1288 	return NETDEV_TX_OK;
1289 }
1290 
1291 static int smi_wait_ready(struct pxa168_eth_private *pep)
1292 {
1293 	int i = 0;
1294 
1295 	/* wait for the SMI register to become available */
1296 	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1297 		if (i == PHY_WAIT_ITERATIONS)
1298 			return -ETIMEDOUT;
1299 		msleep(10);
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1306 {
1307 	struct pxa168_eth_private *pep = bus->priv;
1308 	int i = 0;
1309 	int val;
1310 
1311 	if (smi_wait_ready(pep)) {
1312 		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1313 		return -ETIMEDOUT;
1314 	}
1315 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1316 	/* now wait for the data to be valid */
1317 	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1318 		if (i == PHY_WAIT_ITERATIONS) {
1319 			printk(KERN_WARNING
1320 				"pxa168_eth: SMI bus read not valid\n");
1321 			return -ENODEV;
1322 		}
1323 		msleep(10);
1324 	}
1325 
1326 	return val & 0xffff;
1327 }
1328 
1329 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1330 			    u16 value)
1331 {
1332 	struct pxa168_eth_private *pep = bus->priv;
1333 
1334 	if (smi_wait_ready(pep)) {
1335 		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1336 		return -ETIMEDOUT;
1337 	}
1338 
1339 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1340 	    SMI_OP_W | (value & 0xffff));
1341 
1342 	if (smi_wait_ready(pep)) {
1343 		printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1344 		return -ETIMEDOUT;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1351 			       int cmd)
1352 {
1353 	struct pxa168_eth_private *pep = netdev_priv(dev);
1354 	if (pep->phy != NULL)
1355 		return phy_mii_ioctl(pep->phy, ifr, cmd);
1356 
1357 	return -EOPNOTSUPP;
1358 }
1359 
1360 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1361 {
1362 	struct mii_bus *bus = pep->smi_bus;
1363 	struct phy_device *phydev;
1364 	int start;
1365 	int num;
1366 	int i;
1367 
1368 	if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1369 		/* Scan entire range */
1370 		start = ethernet_phy_get(pep);
1371 		num = 32;
1372 	} else {
1373 		/* Use phy addr specific to platform */
1374 		start = phy_addr & 0x1f;
1375 		num = 1;
1376 	}
1377 	phydev = NULL;
1378 	for (i = 0; i < num; i++) {
1379 		int addr = (start + i) & 0x1f;
1380 		if (bus->phy_map[addr] == NULL)
1381 			mdiobus_scan(bus, addr);
1382 
1383 		if (phydev == NULL) {
1384 			phydev = bus->phy_map[addr];
1385 			if (phydev != NULL)
1386 				ethernet_phy_set_addr(pep, addr);
1387 		}
1388 	}
1389 
1390 	return phydev;
1391 }
1392 
1393 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1394 {
1395 	struct phy_device *phy = pep->phy;
1396 	ethernet_phy_reset(pep);
1397 
1398 	phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1399 
1400 	if (speed == 0) {
1401 		phy->autoneg = AUTONEG_ENABLE;
1402 		phy->speed = 0;
1403 		phy->duplex = 0;
1404 		phy->supported &= PHY_BASIC_FEATURES;
1405 		phy->advertising = phy->supported | ADVERTISED_Autoneg;
1406 	} else {
1407 		phy->autoneg = AUTONEG_DISABLE;
1408 		phy->advertising = 0;
1409 		phy->speed = speed;
1410 		phy->duplex = duplex;
1411 	}
1412 	phy_start_aneg(phy);
1413 }
1414 
1415 static int ethernet_phy_setup(struct net_device *dev)
1416 {
1417 	struct pxa168_eth_private *pep = netdev_priv(dev);
1418 
1419 	if (pep->pd->init)
1420 		pep->pd->init();
1421 	pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1422 	if (pep->phy != NULL)
1423 		phy_init(pep, pep->pd->speed, pep->pd->duplex);
1424 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1425 
1426 	return 0;
1427 }
1428 
1429 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1430 {
1431 	struct pxa168_eth_private *pep = netdev_priv(dev);
1432 	int err;
1433 
1434 	err = phy_read_status(pep->phy);
1435 	if (err == 0)
1436 		err = phy_ethtool_gset(pep->phy, cmd);
1437 
1438 	return err;
1439 }
1440 
1441 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1442 {
1443 	struct pxa168_eth_private *pep = netdev_priv(dev);
1444 
1445 	return phy_ethtool_sset(pep->phy, cmd);
1446 }
1447 
1448 static void pxa168_get_drvinfo(struct net_device *dev,
1449 			       struct ethtool_drvinfo *info)
1450 {
1451 	strncpy(info->driver, DRIVER_NAME, 32);
1452 	strncpy(info->version, DRIVER_VERSION, 32);
1453 	strncpy(info->fw_version, "N/A", 32);
1454 	strncpy(info->bus_info, "N/A", 32);
1455 }
1456 
1457 static const struct ethtool_ops pxa168_ethtool_ops = {
1458 	.get_settings = pxa168_get_settings,
1459 	.set_settings = pxa168_set_settings,
1460 	.get_drvinfo = pxa168_get_drvinfo,
1461 	.get_link = ethtool_op_get_link,
1462 };
1463 
1464 static const struct net_device_ops pxa168_eth_netdev_ops = {
1465 	.ndo_open = pxa168_eth_open,
1466 	.ndo_stop = pxa168_eth_stop,
1467 	.ndo_start_xmit = pxa168_eth_start_xmit,
1468 	.ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1469 	.ndo_set_mac_address = pxa168_eth_set_mac_address,
1470 	.ndo_validate_addr = eth_validate_addr,
1471 	.ndo_do_ioctl = pxa168_eth_do_ioctl,
1472 	.ndo_change_mtu = pxa168_eth_change_mtu,
1473 	.ndo_tx_timeout = pxa168_eth_tx_timeout,
1474 };
1475 
1476 static int pxa168_eth_probe(struct platform_device *pdev)
1477 {
1478 	struct pxa168_eth_private *pep = NULL;
1479 	struct net_device *dev = NULL;
1480 	struct resource *res;
1481 	struct clk *clk;
1482 	int err;
1483 
1484 	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1485 
1486 	clk = clk_get(&pdev->dev, "MFUCLK");
1487 	if (IS_ERR(clk)) {
1488 		printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1489 			DRIVER_NAME);
1490 		return -ENODEV;
1491 	}
1492 	clk_enable(clk);
1493 
1494 	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1495 	if (!dev) {
1496 		err = -ENOMEM;
1497 		goto err_clk;
1498 	}
1499 
1500 	platform_set_drvdata(pdev, dev);
1501 	pep = netdev_priv(dev);
1502 	pep->dev = dev;
1503 	pep->clk = clk;
1504 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1505 	if (res == NULL) {
1506 		err = -ENODEV;
1507 		goto err_netdev;
1508 	}
1509 	pep->base = ioremap(res->start, resource_size(res));
1510 	if (pep->base == NULL) {
1511 		err = -ENOMEM;
1512 		goto err_netdev;
1513 	}
1514 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1515 	BUG_ON(!res);
1516 	dev->irq = res->start;
1517 	dev->netdev_ops = &pxa168_eth_netdev_ops;
1518 	dev->watchdog_timeo = 2 * HZ;
1519 	dev->base_addr = 0;
1520 	SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1521 
1522 	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1523 
1524 	printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1525 	random_ether_addr(dev->dev_addr);
1526 
1527 	pep->pd = pdev->dev.platform_data;
1528 	pep->rx_ring_size = NUM_RX_DESCS;
1529 	if (pep->pd->rx_queue_size)
1530 		pep->rx_ring_size = pep->pd->rx_queue_size;
1531 
1532 	pep->tx_ring_size = NUM_TX_DESCS;
1533 	if (pep->pd->tx_queue_size)
1534 		pep->tx_ring_size = pep->pd->tx_queue_size;
1535 
1536 	pep->port_num = pep->pd->port_number;
1537 	/* Hardware supports only 3 ports */
1538 	BUG_ON(pep->port_num > 2);
1539 	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1540 
1541 	memset(&pep->timeout, 0, sizeof(struct timer_list));
1542 	init_timer(&pep->timeout);
1543 	pep->timeout.function = rxq_refill_timer_wrapper;
1544 	pep->timeout.data = (unsigned long)pep;
1545 
1546 	pep->smi_bus = mdiobus_alloc();
1547 	if (pep->smi_bus == NULL) {
1548 		err = -ENOMEM;
1549 		goto err_base;
1550 	}
1551 	pep->smi_bus->priv = pep;
1552 	pep->smi_bus->name = "pxa168_eth smi";
1553 	pep->smi_bus->read = pxa168_smi_read;
1554 	pep->smi_bus->write = pxa168_smi_write;
1555 	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
1556 	pep->smi_bus->parent = &pdev->dev;
1557 	pep->smi_bus->phy_mask = 0xffffffff;
1558 	err = mdiobus_register(pep->smi_bus);
1559 	if (err)
1560 		goto err_free_mdio;
1561 
1562 	pxa168_init_hw(pep);
1563 	err = ethernet_phy_setup(dev);
1564 	if (err)
1565 		goto err_mdiobus;
1566 	SET_NETDEV_DEV(dev, &pdev->dev);
1567 	err = register_netdev(dev);
1568 	if (err)
1569 		goto err_mdiobus;
1570 	return 0;
1571 
1572 err_mdiobus:
1573 	mdiobus_unregister(pep->smi_bus);
1574 err_free_mdio:
1575 	mdiobus_free(pep->smi_bus);
1576 err_base:
1577 	iounmap(pep->base);
1578 err_netdev:
1579 	free_netdev(dev);
1580 err_clk:
1581 	clk_disable(clk);
1582 	clk_put(clk);
1583 	return err;
1584 }
1585 
1586 static int pxa168_eth_remove(struct platform_device *pdev)
1587 {
1588 	struct net_device *dev = platform_get_drvdata(pdev);
1589 	struct pxa168_eth_private *pep = netdev_priv(dev);
1590 
1591 	if (pep->htpr) {
1592 		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1593 				  pep->htpr, pep->htpr_dma);
1594 		pep->htpr = NULL;
1595 	}
1596 	if (pep->clk) {
1597 		clk_disable(pep->clk);
1598 		clk_put(pep->clk);
1599 		pep->clk = NULL;
1600 	}
1601 	if (pep->phy != NULL)
1602 		phy_detach(pep->phy);
1603 
1604 	iounmap(pep->base);
1605 	pep->base = NULL;
1606 	mdiobus_unregister(pep->smi_bus);
1607 	mdiobus_free(pep->smi_bus);
1608 	unregister_netdev(dev);
1609 	cancel_work_sync(&pep->tx_timeout_task);
1610 	free_netdev(dev);
1611 	platform_set_drvdata(pdev, NULL);
1612 	return 0;
1613 }
1614 
1615 static void pxa168_eth_shutdown(struct platform_device *pdev)
1616 {
1617 	struct net_device *dev = platform_get_drvdata(pdev);
1618 	eth_port_reset(dev);
1619 }
1620 
1621 #ifdef CONFIG_PM
1622 static int pxa168_eth_resume(struct platform_device *pdev)
1623 {
1624 	return -ENOSYS;
1625 }
1626 
1627 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1628 {
1629 	return -ENOSYS;
1630 }
1631 
1632 #else
1633 #define pxa168_eth_resume NULL
1634 #define pxa168_eth_suspend NULL
1635 #endif
1636 
1637 static struct platform_driver pxa168_eth_driver = {
1638 	.probe = pxa168_eth_probe,
1639 	.remove = pxa168_eth_remove,
1640 	.shutdown = pxa168_eth_shutdown,
1641 	.resume = pxa168_eth_resume,
1642 	.suspend = pxa168_eth_suspend,
1643 	.driver = {
1644 		   .name = DRIVER_NAME,
1645 		   },
1646 };
1647 
1648 static int __init pxa168_init_module(void)
1649 {
1650 	return platform_driver_register(&pxa168_eth_driver);
1651 }
1652 
1653 static void __exit pxa168_cleanup_module(void)
1654 {
1655 	platform_driver_unregister(&pxa168_eth_driver);
1656 }
1657 
1658 module_init(pxa168_init_module);
1659 module_exit(pxa168_cleanup_module);
1660 
1661 MODULE_LICENSE("GPL");
1662 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1663 MODULE_ALIAS("platform:pxa168_eth");
1664