xref: /linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_common.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13 
14 #include "otx2_reg.h"
15 #include "otx2_common.h"
16 #include "otx2_struct.h"
17 #include "cn10k.h"
18 
19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 				 struct otx2_nic *pfvf, int qidx)
21 {
22 	u64 incr = (u64)qidx << 32;
23 	u64 *ptr;
24 
25 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 	stats->bytes = otx2_atomic64_add(incr, ptr);
27 
28 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 	stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31 
32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 				 struct otx2_nic *pfvf, int qidx)
34 {
35 	u64 incr = (u64)qidx << 32;
36 	u64 *ptr;
37 
38 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 	stats->bytes = otx2_atomic64_add(incr, ptr);
40 
41 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 	stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44 
45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 	struct msg_req *req;
48 
49 	if (!netif_running(pfvf->netdev))
50 		return;
51 
52 	mutex_lock(&pfvf->mbox.lock);
53 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 	if (!req) {
55 		mutex_unlock(&pfvf->mbox.lock);
56 		return;
57 	}
58 
59 	otx2_sync_mbox_msg(&pfvf->mbox);
60 	mutex_unlock(&pfvf->mbox.lock);
61 }
62 
63 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
64 {
65 	struct msg_req *req;
66 
67 	if (!netif_running(pfvf->netdev))
68 		return;
69 	mutex_lock(&pfvf->mbox.lock);
70 	req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
71 	if (req)
72 		otx2_sync_mbox_msg(&pfvf->mbox);
73 	mutex_unlock(&pfvf->mbox.lock);
74 }
75 
76 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
77 {
78 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
79 
80 	if (!pfvf->qset.rq)
81 		return 0;
82 
83 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
84 	return 1;
85 }
86 EXPORT_SYMBOL(otx2_update_rq_stats);
87 
88 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
89 {
90 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
91 
92 	if (!pfvf->qset.sq)
93 		return 0;
94 
95 	if (qidx >= pfvf->hw.non_qos_queues) {
96 		if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
97 			return 0;
98 	}
99 
100 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
101 	return 1;
102 }
103 EXPORT_SYMBOL(otx2_update_sq_stats);
104 
105 void otx2_get_dev_stats(struct otx2_nic *pfvf)
106 {
107 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
108 
109 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
110 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
111 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
112 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
113 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
114 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
115 			       dev_stats->rx_mcast_frames +
116 			       dev_stats->rx_ucast_frames;
117 
118 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
119 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
120 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
121 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
122 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
123 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
124 			       dev_stats->tx_mcast_frames +
125 			       dev_stats->tx_ucast_frames;
126 }
127 
128 void otx2_get_stats64(struct net_device *netdev,
129 		      struct rtnl_link_stats64 *stats)
130 {
131 	struct otx2_nic *pfvf = netdev_priv(netdev);
132 	struct otx2_dev_stats *dev_stats;
133 
134 	otx2_get_dev_stats(pfvf);
135 
136 	dev_stats = &pfvf->hw.dev_stats;
137 	stats->rx_bytes = dev_stats->rx_bytes;
138 	stats->rx_packets = dev_stats->rx_frames;
139 	stats->rx_dropped = dev_stats->rx_drops;
140 	stats->multicast = dev_stats->rx_mcast_frames;
141 
142 	stats->tx_bytes = dev_stats->tx_bytes;
143 	stats->tx_packets = dev_stats->tx_frames;
144 	stats->tx_dropped = dev_stats->tx_drops;
145 }
146 EXPORT_SYMBOL(otx2_get_stats64);
147 
148 /* Sync MAC address with RVU AF */
149 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
150 {
151 	struct nix_set_mac_addr *req;
152 	int err;
153 
154 	mutex_lock(&pfvf->mbox.lock);
155 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
156 	if (!req) {
157 		mutex_unlock(&pfvf->mbox.lock);
158 		return -ENOMEM;
159 	}
160 
161 	ether_addr_copy(req->mac_addr, mac);
162 
163 	err = otx2_sync_mbox_msg(&pfvf->mbox);
164 	mutex_unlock(&pfvf->mbox.lock);
165 	return err;
166 }
167 
168 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
169 				struct net_device *netdev)
170 {
171 	struct nix_get_mac_addr_rsp *rsp;
172 	struct mbox_msghdr *msghdr;
173 	struct msg_req *req;
174 	int err;
175 
176 	mutex_lock(&pfvf->mbox.lock);
177 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
178 	if (!req) {
179 		mutex_unlock(&pfvf->mbox.lock);
180 		return -ENOMEM;
181 	}
182 
183 	err = otx2_sync_mbox_msg(&pfvf->mbox);
184 	if (err) {
185 		mutex_unlock(&pfvf->mbox.lock);
186 		return err;
187 	}
188 
189 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
190 	if (IS_ERR(msghdr)) {
191 		mutex_unlock(&pfvf->mbox.lock);
192 		return PTR_ERR(msghdr);
193 	}
194 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
195 	eth_hw_addr_set(netdev, rsp->mac_addr);
196 	mutex_unlock(&pfvf->mbox.lock);
197 
198 	return 0;
199 }
200 
201 int otx2_set_mac_address(struct net_device *netdev, void *p)
202 {
203 	struct otx2_nic *pfvf = netdev_priv(netdev);
204 	struct sockaddr *addr = p;
205 
206 	if (!is_valid_ether_addr(addr->sa_data))
207 		return -EADDRNOTAVAIL;
208 
209 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
210 		eth_hw_addr_set(netdev, addr->sa_data);
211 		/* update dmac field in vlan offload rule */
212 		if (netif_running(netdev) &&
213 		    pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
214 			otx2_install_rxvlan_offload_flow(pfvf);
215 		/* update dmac address in ntuple and DMAC filter list */
216 		if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
217 			otx2_dmacflt_update_pfmac_flow(pfvf);
218 	} else {
219 		return -EPERM;
220 	}
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL(otx2_set_mac_address);
225 
226 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
227 {
228 	struct nix_frs_cfg *req;
229 	u16 maxlen;
230 	int err;
231 
232 	maxlen = pfvf->hw.max_mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
233 
234 	mutex_lock(&pfvf->mbox.lock);
235 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
236 	if (!req) {
237 		mutex_unlock(&pfvf->mbox.lock);
238 		return -ENOMEM;
239 	}
240 
241 	req->maxlen = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
242 
243 	/* Use max receive length supported by hardware for loopback devices */
244 	if (is_otx2_lbkvf(pfvf->pdev))
245 		req->maxlen = maxlen;
246 
247 	err = otx2_sync_mbox_msg(&pfvf->mbox);
248 	mutex_unlock(&pfvf->mbox.lock);
249 	return err;
250 }
251 EXPORT_SYMBOL(otx2_hw_set_mtu);
252 
253 int otx2_config_pause_frm(struct otx2_nic *pfvf)
254 {
255 	struct cgx_pause_frm_cfg *req;
256 	int err;
257 
258 	if (is_otx2_lbkvf(pfvf->pdev) || is_otx2_sdp_rep(pfvf->pdev))
259 		return 0;
260 
261 	mutex_lock(&pfvf->mbox.lock);
262 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
263 	if (!req) {
264 		err = -ENOMEM;
265 		goto unlock;
266 	}
267 
268 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
269 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
270 	req->set = 1;
271 
272 	err = otx2_sync_mbox_msg(&pfvf->mbox);
273 unlock:
274 	mutex_unlock(&pfvf->mbox.lock);
275 	return err;
276 }
277 EXPORT_SYMBOL(otx2_config_pause_frm);
278 
279 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
280 {
281 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
282 	struct nix_rss_flowkey_cfg_rsp *rsp;
283 	struct nix_rss_flowkey_cfg *req;
284 	int err;
285 
286 	mutex_lock(&pfvf->mbox.lock);
287 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
288 	if (!req) {
289 		mutex_unlock(&pfvf->mbox.lock);
290 		return -ENOMEM;
291 	}
292 	req->mcam_index = -1; /* Default or reserved index */
293 	req->flowkey_cfg = rss->flowkey_cfg;
294 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
295 
296 	err = otx2_sync_mbox_msg(&pfvf->mbox);
297 	if (err)
298 		goto fail;
299 
300 	rsp = (struct nix_rss_flowkey_cfg_rsp *)
301 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
302 	if (IS_ERR(rsp)) {
303 		err = PTR_ERR(rsp);
304 		goto fail;
305 	}
306 
307 	pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
308 fail:
309 	mutex_unlock(&pfvf->mbox.lock);
310 	return err;
311 }
312 
313 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
314 {
315 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
316 	const int index = rss->rss_size * ctx_id;
317 	struct mbox *mbox = &pfvf->mbox;
318 	struct otx2_rss_ctx *rss_ctx;
319 	struct nix_aq_enq_req *aq;
320 	int idx, err;
321 
322 	mutex_lock(&mbox->lock);
323 	rss_ctx = rss->rss_ctx[ctx_id];
324 	/* Get memory to put this msg */
325 	for (idx = 0; idx < rss->rss_size; idx++) {
326 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
327 		if (!aq) {
328 			/* The shared memory buffer can be full.
329 			 * Flush it and retry
330 			 */
331 			err = otx2_sync_mbox_msg(mbox);
332 			if (err) {
333 				mutex_unlock(&mbox->lock);
334 				return err;
335 			}
336 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
337 			if (!aq) {
338 				mutex_unlock(&mbox->lock);
339 				return -ENOMEM;
340 			}
341 		}
342 
343 		aq->rss.rq = rss_ctx->ind_tbl[idx];
344 
345 		/* Fill AQ info */
346 		aq->qidx = index + idx;
347 		aq->ctype = NIX_AQ_CTYPE_RSS;
348 		aq->op = NIX_AQ_INSTOP_INIT;
349 	}
350 	err = otx2_sync_mbox_msg(mbox);
351 	mutex_unlock(&mbox->lock);
352 	return err;
353 }
354 
355 void otx2_set_rss_key(struct otx2_nic *pfvf)
356 {
357 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
358 	u64 *key = (u64 *)&rss->key[4];
359 	int idx;
360 
361 	/* 352bit or 44byte key needs to be configured as below
362 	 * NIX_LF_RX_SECRETX0 = key<351:288>
363 	 * NIX_LF_RX_SECRETX1 = key<287:224>
364 	 * NIX_LF_RX_SECRETX2 = key<223:160>
365 	 * NIX_LF_RX_SECRETX3 = key<159:96>
366 	 * NIX_LF_RX_SECRETX4 = key<95:32>
367 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
368 	 */
369 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
370 		     (u64)(*((u32 *)&rss->key)) << 32);
371 	idx = sizeof(rss->key) / sizeof(u64);
372 	while (idx > 0) {
373 		idx--;
374 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
375 	}
376 }
377 
378 int otx2_rss_init(struct otx2_nic *pfvf)
379 {
380 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
381 	struct otx2_rss_ctx *rss_ctx;
382 	int idx, ret = 0;
383 
384 	rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
385 
386 	/* Init RSS key if it is not setup already */
387 	if (!rss->enable)
388 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
389 	otx2_set_rss_key(pfvf);
390 
391 	if (!netif_is_rxfh_configured(pfvf->netdev)) {
392 		/* Set RSS group 0 as default indirection table */
393 		rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
394 								  GFP_KERNEL);
395 		if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
396 			return -ENOMEM;
397 
398 		rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
399 		for (idx = 0; idx < rss->rss_size; idx++)
400 			rss_ctx->ind_tbl[idx] =
401 				ethtool_rxfh_indir_default(idx,
402 							   pfvf->hw.rx_queues);
403 	}
404 	ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
405 	if (ret)
406 		return ret;
407 
408 	/* Flowkey or hash config to be used for generating flow tag */
409 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
410 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
411 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
412 			   NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
413 			   NIX_FLOW_KEY_TYPE_IPV4_PROTO;
414 
415 	ret = otx2_set_flowkey_cfg(pfvf);
416 	if (ret)
417 		return ret;
418 
419 	rss->enable = true;
420 	return 0;
421 }
422 
423 /* Setup UDP segmentation algorithm in HW */
424 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
425 {
426 	struct nix_lso_format *field;
427 
428 	field = (struct nix_lso_format *)&lso->fields[0];
429 	lso->field_mask = GENMASK(18, 0);
430 
431 	/* IP's Length field */
432 	field->layer = NIX_TXLAYER_OL3;
433 	/* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
434 	field->offset = v4 ? 2 : 4;
435 	field->sizem1 = 1; /* i.e 2 bytes */
436 	field->alg = NIX_LSOALG_ADD_PAYLEN;
437 	field++;
438 
439 	/* No ID field in IPv6 header */
440 	if (v4) {
441 		/* Increment IPID */
442 		field->layer = NIX_TXLAYER_OL3;
443 		field->offset = 4;
444 		field->sizem1 = 1; /* i.e 2 bytes */
445 		field->alg = NIX_LSOALG_ADD_SEGNUM;
446 		field++;
447 	}
448 
449 	/* Update length in UDP header */
450 	field->layer = NIX_TXLAYER_OL4;
451 	field->offset = 4;
452 	field->sizem1 = 1;
453 	field->alg = NIX_LSOALG_ADD_PAYLEN;
454 }
455 
456 /* Setup segmentation algorithms in HW and retrieve algorithm index */
457 void otx2_setup_segmentation(struct otx2_nic *pfvf)
458 {
459 	struct nix_lso_format_cfg_rsp *rsp;
460 	struct nix_lso_format_cfg *lso;
461 	struct otx2_hw *hw = &pfvf->hw;
462 	int err;
463 
464 	mutex_lock(&pfvf->mbox.lock);
465 
466 	/* UDPv4 segmentation */
467 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
468 	if (!lso)
469 		goto fail;
470 
471 	/* Setup UDP/IP header fields that HW should update per segment */
472 	otx2_setup_udp_segmentation(lso, true);
473 
474 	err = otx2_sync_mbox_msg(&pfvf->mbox);
475 	if (err)
476 		goto fail;
477 
478 	rsp = (struct nix_lso_format_cfg_rsp *)
479 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
480 	if (IS_ERR(rsp))
481 		goto fail;
482 
483 	hw->lso_udpv4_idx = rsp->lso_format_idx;
484 
485 	/* UDPv6 segmentation */
486 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
487 	if (!lso)
488 		goto fail;
489 
490 	/* Setup UDP/IP header fields that HW should update per segment */
491 	otx2_setup_udp_segmentation(lso, false);
492 
493 	err = otx2_sync_mbox_msg(&pfvf->mbox);
494 	if (err)
495 		goto fail;
496 
497 	rsp = (struct nix_lso_format_cfg_rsp *)
498 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
499 	if (IS_ERR(rsp))
500 		goto fail;
501 
502 	hw->lso_udpv6_idx = rsp->lso_format_idx;
503 	mutex_unlock(&pfvf->mbox.lock);
504 	return;
505 fail:
506 	mutex_unlock(&pfvf->mbox.lock);
507 	netdev_info(pfvf->netdev,
508 		    "Failed to get LSO index for UDP GSO offload, disabling\n");
509 	pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
510 }
511 
512 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
513 {
514 	/* Configure CQE interrupt coalescing parameters
515 	 *
516 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
517 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
518 	 * usecs, convert that to 100ns count.
519 	 */
520 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
521 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
522 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
523 		     (pfvf->hw.cq_ecount_wait - 1));
524 }
525 
526 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
527 			       dma_addr_t *dma)
528 {
529 	unsigned int offset = 0;
530 	struct page *page;
531 	size_t sz;
532 
533 	sz = SKB_DATA_ALIGN(pool->rbsize);
534 	sz = ALIGN(sz, OTX2_ALIGN);
535 
536 	page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
537 	if (unlikely(!page))
538 		return -ENOMEM;
539 
540 	*dma = page_pool_get_dma_addr(page) + offset;
541 	return 0;
542 }
543 
544 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
545 			     dma_addr_t *dma)
546 {
547 	u8 *buf;
548 
549 	if (pool->page_pool)
550 		return otx2_alloc_pool_buf(pfvf, pool, dma);
551 
552 	buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
553 	if (unlikely(!buf))
554 		return -ENOMEM;
555 
556 	*dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
557 				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
558 	if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
559 		page_frag_free(buf);
560 		return -ENOMEM;
561 	}
562 
563 	return 0;
564 }
565 
566 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
567 		    dma_addr_t *dma)
568 {
569 	int ret;
570 
571 	local_bh_disable();
572 	ret = __otx2_alloc_rbuf(pfvf, pool, dma);
573 	local_bh_enable();
574 	return ret;
575 }
576 
577 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
578 		      dma_addr_t *dma)
579 {
580 	if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma)))
581 		return -ENOMEM;
582 	return 0;
583 }
584 
585 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
586 {
587 	struct otx2_nic *pfvf = netdev_priv(netdev);
588 
589 	schedule_work(&pfvf->reset_task);
590 }
591 EXPORT_SYMBOL(otx2_tx_timeout);
592 
593 void otx2_get_mac_from_af(struct net_device *netdev)
594 {
595 	struct otx2_nic *pfvf = netdev_priv(netdev);
596 	int err;
597 
598 	err = otx2_hw_get_mac_addr(pfvf, netdev);
599 	if (err)
600 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
601 
602 	/* If AF doesn't provide a valid MAC, generate a random one */
603 	if (!is_valid_ether_addr(netdev->dev_addr))
604 		eth_hw_addr_random(netdev);
605 }
606 EXPORT_SYMBOL(otx2_get_mac_from_af);
607 
608 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
609 {
610 	u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
611 	struct otx2_hw *hw = &pfvf->hw;
612 	struct nix_txschq_config *req;
613 	u64 schq, parent;
614 	u64 dwrr_val;
615 
616 	dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
617 
618 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
619 	if (!req)
620 		return -ENOMEM;
621 
622 	req->lvl = lvl;
623 	req->num_regs = 1;
624 
625 	schq_list = hw->txschq_list;
626 #ifdef CONFIG_DCB
627 	if (txschq_for_pfc)
628 		schq_list = pfvf->pfc_schq_list;
629 #endif
630 
631 	schq = schq_list[lvl][prio];
632 	/* Set topology e.t.c configuration */
633 	if (lvl == NIX_TXSCH_LVL_SMQ) {
634 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
635 		req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
636 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
637 				  (0x2ULL << 36);
638 		/* Set link type for DWRR MTU selection on CN10K silicons */
639 		if (!is_dev_otx2(pfvf->pdev))
640 			req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
641 						(u64)hw->smq_link_type);
642 		req->num_regs++;
643 		/* MDQ config */
644 		parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
645 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
646 		req->regval[1] = parent << 16;
647 		req->num_regs++;
648 		/* Set DWRR quantum */
649 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
650 		req->regval[2] =  dwrr_val;
651 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
652 		int sdp_chan =  hw->tx_chan_base + prio;
653 
654 		if (is_otx2_sdp_rep(pfvf->pdev))
655 			prio = 0;
656 		parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
657 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
658 		req->regval[0] = (u64)parent << 16;
659 		req->num_regs++;
660 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
661 		req->regval[1] = dwrr_val;
662 		if (is_otx2_sdp_rep(pfvf->pdev)) {
663 			req->num_regs++;
664 			req->reg[2] = NIX_AF_TL4X_SDP_LINK_CFG(schq);
665 			req->regval[2] = BIT_ULL(12) | BIT_ULL(13) |
666 					 (sdp_chan & 0xff);
667 		}
668 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
669 		parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
670 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
671 		req->regval[0] = (u64)parent << 16;
672 		req->num_regs++;
673 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
674 		req->regval[1] = dwrr_val;
675 		if (lvl == hw->txschq_link_cfg_lvl &&
676 		    !is_otx2_sdp_rep(pfvf->pdev)) {
677 			req->num_regs++;
678 			req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
679 			/* Enable this queue and backpressure
680 			 * and set relative channel
681 			 */
682 			req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
683 		}
684 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
685 		parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
686 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
687 		req->regval[0] = (u64)parent << 16;
688 
689 		req->num_regs++;
690 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
691 		req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val;
692 
693 		if (lvl == hw->txschq_link_cfg_lvl &&
694 		    !is_otx2_sdp_rep(pfvf->pdev)) {
695 			req->num_regs++;
696 			req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
697 			/* Enable this queue and backpressure
698 			 * and set relative channel
699 			 */
700 			req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
701 		}
702 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
703 		/* Default config for TL1.
704 		 * For VF this is always ignored.
705 		 */
706 
707 		/* On CN10K, if RR_WEIGHT is greater than 16384, HW will
708 		 * clip it to 16384, so configuring a 24bit max value
709 		 * will work on both OTx2 and CN10K.
710 		 */
711 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
712 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
713 
714 		req->num_regs++;
715 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
716 		req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1;
717 
718 		req->num_regs++;
719 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
720 		req->regval[2] = 0;
721 	}
722 
723 	return otx2_sync_mbox_msg(&pfvf->mbox);
724 }
725 EXPORT_SYMBOL(otx2_txschq_config);
726 
727 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
728 {
729 	struct nix_txschq_config *req;
730 	int rc;
731 
732 	mutex_lock(&pfvf->mbox.lock);
733 
734 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
735 	if (!req) {
736 		mutex_unlock(&pfvf->mbox.lock);
737 		return -ENOMEM;
738 	}
739 
740 	req->lvl = NIX_TXSCH_LVL_SMQ;
741 	req->reg[0] = NIX_AF_SMQX_CFG(smq);
742 	req->regval[0] |= BIT_ULL(49);
743 	req->num_regs++;
744 
745 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
746 	mutex_unlock(&pfvf->mbox.lock);
747 	return rc;
748 }
749 EXPORT_SYMBOL(otx2_smq_flush);
750 
751 int otx2_txsch_alloc(struct otx2_nic *pfvf)
752 {
753 	int chan_cnt = pfvf->hw.tx_chan_cnt;
754 	struct nix_txsch_alloc_req *req;
755 	struct nix_txsch_alloc_rsp *rsp;
756 	int lvl, schq, rc;
757 
758 	/* Get memory to put this msg */
759 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
760 	if (!req)
761 		return -ENOMEM;
762 
763 	/* Request one schq per level */
764 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
765 		req->schq[lvl] = 1;
766 
767 	if (is_otx2_sdp_rep(pfvf->pdev) && chan_cnt > 1) {
768 		req->schq[NIX_TXSCH_LVL_SMQ] = chan_cnt;
769 		req->schq[NIX_TXSCH_LVL_TL4] = chan_cnt;
770 	}
771 
772 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
773 	if (rc)
774 		return rc;
775 
776 	rsp = (struct nix_txsch_alloc_rsp *)
777 	      otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
778 	if (IS_ERR(rsp))
779 		return PTR_ERR(rsp);
780 
781 	/* Setup transmit scheduler list */
782 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
783 		pfvf->hw.txschq_cnt[lvl] = rsp->schq[lvl];
784 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
785 			pfvf->hw.txschq_list[lvl][schq] =
786 				rsp->schq_list[lvl][schq];
787 	}
788 
789 	pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
790 	pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
791 
792 	return 0;
793 }
794 
795 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
796 {
797 	struct nix_txsch_free_req *free_req;
798 	int err;
799 
800 	mutex_lock(&pfvf->mbox.lock);
801 
802 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
803 	if (!free_req) {
804 		mutex_unlock(&pfvf->mbox.lock);
805 		netdev_err(pfvf->netdev,
806 			   "Failed alloc txschq free req\n");
807 		return;
808 	}
809 
810 	free_req->schq_lvl = lvl;
811 	free_req->schq = schq;
812 
813 	err = otx2_sync_mbox_msg(&pfvf->mbox);
814 	if (err) {
815 		netdev_err(pfvf->netdev,
816 			   "Failed stop txschq %d at level %d\n", schq, lvl);
817 	}
818 
819 	mutex_unlock(&pfvf->mbox.lock);
820 }
821 EXPORT_SYMBOL(otx2_txschq_free_one);
822 
823 void otx2_txschq_stop(struct otx2_nic *pfvf)
824 {
825 	int lvl, schq, idx;
826 
827 	/* free non QOS TLx nodes */
828 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
829 		for (idx = 0; idx < pfvf->hw.txschq_cnt[lvl]; idx++) {
830 			otx2_txschq_free_one(pfvf, lvl,
831 					     pfvf->hw.txschq_list[lvl][idx]);
832 		}
833 	}
834 
835 	/* Clear the txschq list */
836 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
837 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
838 			pfvf->hw.txschq_list[lvl][schq] = 0;
839 	}
840 
841 }
842 
843 void otx2_sqb_flush(struct otx2_nic *pfvf)
844 {
845 	int qidx, sqe_tail, sqe_head;
846 	struct otx2_snd_queue *sq;
847 	u64 incr, *ptr, val;
848 
849 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
850 	for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
851 		sq = &pfvf->qset.sq[qidx];
852 		if (!sq->sqb_ptrs)
853 			continue;
854 
855 		incr = (u64)qidx << 32;
856 		val = otx2_atomic64_add(incr, ptr);
857 		sqe_head = (val >> 20) & 0x3F;
858 		sqe_tail = (val >> 28) & 0x3F;
859 		if (sqe_head != sqe_tail)
860 			usleep_range(50, 60);
861 	}
862 }
863 
864 /* RED and drop levels of CQ on packet reception.
865  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
866  */
867 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
868 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
869 
870 /* RED and drop levels of AURA for packet reception.
871  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
872  * Eg: For RQ length 1K, for pass/drop level 204/230.
873  * RED accepts pkts if free pointers > 102 & <= 205.
874  * Drops pkts if free pointers < 102.
875  */
876 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
877 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
878 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
879 
880 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
881 {
882 	struct otx2_qset *qset = &pfvf->qset;
883 	struct nix_aq_enq_req *aq;
884 
885 	/* Get memory to put this msg */
886 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
887 	if (!aq)
888 		return -ENOMEM;
889 
890 	aq->rq.cq = qidx;
891 	aq->rq.ena = 1;
892 	aq->rq.pb_caching = 1;
893 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
894 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
895 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
896 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
897 	aq->rq.qint_idx = 0;
898 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
899 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
900 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
901 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
902 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
903 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
904 
905 	/* Fill AQ info */
906 	aq->qidx = qidx;
907 	aq->ctype = NIX_AQ_CTYPE_RQ;
908 	aq->op = NIX_AQ_INSTOP_INIT;
909 
910 	return otx2_sync_mbox_msg(&pfvf->mbox);
911 }
912 
913 int otx2_sq_aq_init(void *dev, u16 qidx, u8 chan_offset, u16 sqb_aura)
914 {
915 	struct otx2_nic *pfvf = dev;
916 	struct otx2_snd_queue *sq;
917 	struct nix_aq_enq_req *aq;
918 
919 	sq = &pfvf->qset.sq[qidx];
920 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
921 	/* Get memory to put this msg */
922 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
923 	if (!aq)
924 		return -ENOMEM;
925 
926 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
927 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
928 	aq->sq.cq_ena = 1;
929 	aq->sq.ena = 1;
930 	aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
931 	aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
932 	aq->sq.default_chan = pfvf->hw.tx_chan_base + chan_offset;
933 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
934 	aq->sq.sqb_aura = sqb_aura;
935 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
936 	aq->sq.qint_idx = 0;
937 	/* Due pipelining impact minimum 2000 unused SQ CQE's
938 	 * need to maintain to avoid CQ overflow.
939 	 */
940 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
941 
942 	/* Fill AQ info */
943 	aq->qidx = qidx;
944 	aq->ctype = NIX_AQ_CTYPE_SQ;
945 	aq->op = NIX_AQ_INSTOP_INIT;
946 
947 	return otx2_sync_mbox_msg(&pfvf->mbox);
948 }
949 
950 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
951 {
952 	struct otx2_qset *qset = &pfvf->qset;
953 	struct otx2_snd_queue *sq;
954 	struct otx2_pool *pool;
955 	u8 chan_offset;
956 	int err;
957 
958 	pool = &pfvf->qset.pool[sqb_aura];
959 	sq = &qset->sq[qidx];
960 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
961 	sq->sqe_cnt = qset->sqe_cnt;
962 
963 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
964 	if (err)
965 		return err;
966 
967 	if (qidx < pfvf->hw.tx_queues) {
968 		err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
969 				 TSO_HEADER_SIZE);
970 		if (err)
971 			return err;
972 	}
973 
974 	sq->sqe_base = sq->sqe->base;
975 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
976 	if (!sq->sg)
977 		return -ENOMEM;
978 
979 	if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
980 		err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
981 				 sizeof(*sq->timestamps));
982 		if (err) {
983 			kfree(sq->sg);
984 			sq->sg = NULL;
985 			return err;
986 		}
987 	}
988 
989 	sq->head = 0;
990 	sq->cons_head = 0;
991 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
992 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
993 	/* Set SQE threshold to 10% of total SQEs */
994 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
995 	sq->aura_id = sqb_aura;
996 	sq->aura_fc_addr = pool->fc_addr->base;
997 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
998 
999 	sq->stats.bytes = 0;
1000 	sq->stats.pkts = 0;
1001 
1002 	chan_offset = qidx % pfvf->hw.tx_chan_cnt;
1003 	err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, chan_offset, sqb_aura);
1004 	if (err) {
1005 		kfree(sq->sg);
1006 		sq->sg = NULL;
1007 		return err;
1008 	}
1009 
1010 	return 0;
1011 
1012 }
1013 
1014 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
1015 {
1016 	struct otx2_qset *qset = &pfvf->qset;
1017 	int err, pool_id, non_xdp_queues;
1018 	struct nix_aq_enq_req *aq;
1019 	struct otx2_cq_queue *cq;
1020 
1021 	cq = &qset->cq[qidx];
1022 	cq->cq_idx = qidx;
1023 	non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
1024 	if (qidx < pfvf->hw.rx_queues) {
1025 		cq->cq_type = CQ_RX;
1026 		cq->cint_idx = qidx;
1027 		cq->cqe_cnt = qset->rqe_cnt;
1028 		if (pfvf->xdp_prog)
1029 			xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1030 	} else if (qidx < non_xdp_queues) {
1031 		cq->cq_type = CQ_TX;
1032 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
1033 		cq->cqe_cnt = qset->sqe_cnt;
1034 	} else {
1035 		if (pfvf->hw.xdp_queues &&
1036 		    qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1037 			cq->cq_type = CQ_XDP;
1038 			cq->cint_idx = qidx - non_xdp_queues;
1039 			cq->cqe_cnt = qset->sqe_cnt;
1040 		} else {
1041 			cq->cq_type = CQ_QOS;
1042 			cq->cint_idx = qidx - non_xdp_queues -
1043 				       pfvf->hw.xdp_queues;
1044 			cq->cqe_cnt = qset->sqe_cnt;
1045 		}
1046 	}
1047 	cq->cqe_size = pfvf->qset.xqe_size;
1048 
1049 	/* Allocate memory for CQEs */
1050 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1051 	if (err)
1052 		return err;
1053 
1054 	/* Save CQE CPU base for faster reference */
1055 	cq->cqe_base = cq->cqe->base;
1056 	/* In case where all RQs auras point to single pool,
1057 	 * all CQs receive buffer pool also point to same pool.
1058 	 */
1059 	pool_id = ((cq->cq_type == CQ_RX) &&
1060 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1061 	cq->rbpool = &qset->pool[pool_id];
1062 	cq->refill_task_sched = false;
1063 
1064 	/* Get memory to put this msg */
1065 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1066 	if (!aq)
1067 		return -ENOMEM;
1068 
1069 	aq->cq.ena = 1;
1070 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1071 	aq->cq.caching = 1;
1072 	aq->cq.base = cq->cqe->iova;
1073 	aq->cq.cint_idx = cq->cint_idx;
1074 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1075 	aq->cq.qint_idx = 0;
1076 	aq->cq.avg_level = 255;
1077 
1078 	if (qidx < pfvf->hw.rx_queues) {
1079 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1080 		aq->cq.drop_ena = 1;
1081 
1082 		if (!is_otx2_lbkvf(pfvf->pdev)) {
1083 			/* Enable receive CQ backpressure */
1084 			aq->cq.bp_ena = 1;
1085 #ifdef CONFIG_DCB
1086 			aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1087 #else
1088 			aq->cq.bpid = pfvf->bpid[0];
1089 #endif
1090 
1091 			/* Set backpressure level is same as cq pass level */
1092 			aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1093 		}
1094 	}
1095 
1096 	/* Fill AQ info */
1097 	aq->qidx = qidx;
1098 	aq->ctype = NIX_AQ_CTYPE_CQ;
1099 	aq->op = NIX_AQ_INSTOP_INIT;
1100 
1101 	return otx2_sync_mbox_msg(&pfvf->mbox);
1102 }
1103 
1104 static void otx2_pool_refill_task(struct work_struct *work)
1105 {
1106 	struct otx2_cq_queue *cq;
1107 	struct refill_work *wrk;
1108 	struct otx2_nic *pfvf;
1109 	int qidx;
1110 
1111 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
1112 	pfvf = wrk->pf;
1113 	qidx = wrk - pfvf->refill_wrk;
1114 	cq = &pfvf->qset.cq[qidx];
1115 
1116 	cq->refill_task_sched = false;
1117 
1118 	local_bh_disable();
1119 	napi_schedule(wrk->napi);
1120 	local_bh_enable();
1121 }
1122 
1123 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1124 {
1125 	int qidx, err;
1126 
1127 	/* Initialize RX queues */
1128 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1129 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1130 
1131 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
1132 		if (err)
1133 			return err;
1134 	}
1135 
1136 	/* Initialize TX queues */
1137 	for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1138 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1139 
1140 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
1141 		if (err)
1142 			return err;
1143 	}
1144 
1145 	/* Initialize completion queues */
1146 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1147 		err = otx2_cq_init(pfvf, qidx);
1148 		if (err)
1149 			return err;
1150 	}
1151 
1152 	pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1153 							   NIX_LF_CQ_OP_STATUS);
1154 
1155 	/* Initialize work queue for receive buffer refill */
1156 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1157 					sizeof(struct refill_work), GFP_KERNEL);
1158 	if (!pfvf->refill_wrk)
1159 		return -ENOMEM;
1160 
1161 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1162 		pfvf->refill_wrk[qidx].pf = pfvf;
1163 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1164 				  otx2_pool_refill_task);
1165 	}
1166 	return 0;
1167 }
1168 
1169 int otx2_config_nix(struct otx2_nic *pfvf)
1170 {
1171 	struct nix_lf_alloc_req  *nixlf;
1172 	struct nix_lf_alloc_rsp *rsp;
1173 	int err;
1174 
1175 	pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1176 
1177 	/* Get memory to put this msg */
1178 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1179 	if (!nixlf)
1180 		return -ENOMEM;
1181 
1182 	/* Set RQ/SQ/CQ counts */
1183 	nixlf->rq_cnt = pfvf->hw.rx_queues;
1184 	nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1185 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
1186 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1187 	nixlf->rss_grps = MAX_RSS_GROUPS;
1188 	nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1189 	/* We don't know absolute NPA LF idx attached.
1190 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1191 	 * NPA LF attached to this RVU PF/VF.
1192 	 */
1193 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1194 	/* Disable alignment pad, enable L2 length check,
1195 	 * enable L4 TCP/UDP checksum verification.
1196 	 */
1197 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1198 
1199 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1200 	if (err)
1201 		return err;
1202 
1203 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1204 							   &nixlf->hdr);
1205 	if (IS_ERR(rsp))
1206 		return PTR_ERR(rsp);
1207 
1208 	if (rsp->qints < 1)
1209 		return -ENXIO;
1210 
1211 	return rsp->hdr.rc;
1212 }
1213 
1214 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1215 {
1216 	struct otx2_qset *qset = &pfvf->qset;
1217 	struct otx2_hw *hw = &pfvf->hw;
1218 	struct otx2_snd_queue *sq;
1219 	int sqb, qidx;
1220 	u64 iova, pa;
1221 
1222 	for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1223 		sq = &qset->sq[qidx];
1224 		if (!sq->sqb_ptrs)
1225 			continue;
1226 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1227 			if (!sq->sqb_ptrs[sqb])
1228 				continue;
1229 			iova = sq->sqb_ptrs[sqb];
1230 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1231 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1232 					     DMA_FROM_DEVICE,
1233 					     DMA_ATTR_SKIP_CPU_SYNC);
1234 			put_page(virt_to_page(phys_to_virt(pa)));
1235 		}
1236 		sq->sqb_count = 0;
1237 	}
1238 }
1239 
1240 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1241 		    u64 iova, int size)
1242 {
1243 	struct page *page;
1244 	u64 pa;
1245 
1246 	pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1247 	page = virt_to_head_page(phys_to_virt(pa));
1248 
1249 	if (pool->page_pool) {
1250 		page_pool_put_full_page(pool->page_pool, page, true);
1251 	} else {
1252 		dma_unmap_page_attrs(pfvf->dev, iova, size,
1253 				     DMA_FROM_DEVICE,
1254 				     DMA_ATTR_SKIP_CPU_SYNC);
1255 
1256 		put_page(page);
1257 	}
1258 }
1259 
1260 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1261 {
1262 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
1263 	struct otx2_pool *pool;
1264 	u64 iova;
1265 
1266 	if (type == AURA_NIX_SQ) {
1267 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1268 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
1269 		size = pfvf->hw.sqb_size;
1270 	}
1271 	if (type == AURA_NIX_RQ) {
1272 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1273 		pool_end = pfvf->hw.rqpool_cnt;
1274 		size = pfvf->rbsize;
1275 	}
1276 
1277 	/* Free SQB and RQB pointers from the aura pool */
1278 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1279 		iova = otx2_aura_allocptr(pfvf, pool_id);
1280 		pool = &pfvf->qset.pool[pool_id];
1281 		while (iova) {
1282 			if (type == AURA_NIX_RQ)
1283 				iova -= OTX2_HEAD_ROOM;
1284 
1285 			otx2_free_bufs(pfvf, pool, iova, size);
1286 
1287 			iova = otx2_aura_allocptr(pfvf, pool_id);
1288 		}
1289 	}
1290 }
1291 
1292 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1293 {
1294 	struct otx2_pool *pool;
1295 	int pool_id;
1296 
1297 	if (!pfvf->qset.pool)
1298 		return;
1299 
1300 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1301 		pool = &pfvf->qset.pool[pool_id];
1302 		qmem_free(pfvf->dev, pool->stack);
1303 		qmem_free(pfvf->dev, pool->fc_addr);
1304 		page_pool_destroy(pool->page_pool);
1305 		pool->page_pool = NULL;
1306 	}
1307 	devm_kfree(pfvf->dev, pfvf->qset.pool);
1308 	pfvf->qset.pool = NULL;
1309 }
1310 
1311 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1312 		   int pool_id, int numptrs)
1313 {
1314 	struct npa_aq_enq_req *aq;
1315 	struct otx2_pool *pool;
1316 	int err;
1317 
1318 	pool = &pfvf->qset.pool[pool_id];
1319 
1320 	/* Allocate memory for HW to update Aura count.
1321 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
1322 	 */
1323 	if (!pool->fc_addr) {
1324 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1325 		if (err)
1326 			return err;
1327 	}
1328 
1329 	/* Initialize this aura's context via AF */
1330 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1331 	if (!aq) {
1332 		/* Shared mbox memory buffer is full, flush it and retry */
1333 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1334 		if (err)
1335 			return err;
1336 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1337 		if (!aq)
1338 			return -ENOMEM;
1339 	}
1340 
1341 	aq->aura_id = aura_id;
1342 	/* Will be filled by AF with correct pool context address */
1343 	aq->aura.pool_addr = pool_id;
1344 	aq->aura.pool_caching = 1;
1345 	aq->aura.shift = ilog2(numptrs) - 8;
1346 	aq->aura.count = numptrs;
1347 	aq->aura.limit = numptrs;
1348 	aq->aura.avg_level = 255;
1349 	aq->aura.ena = 1;
1350 	aq->aura.fc_ena = 1;
1351 	aq->aura.fc_addr = pool->fc_addr->iova;
1352 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1353 
1354 	/* Enable backpressure for RQ aura */
1355 	if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1356 		aq->aura.bp_ena = 0;
1357 		/* If NIX1 LF is attached then specify NIX1_RX.
1358 		 *
1359 		 * Below NPA_AURA_S[BP_ENA] is set according to the
1360 		 * NPA_BPINTF_E enumeration given as:
1361 		 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1362 		 * NIX0_RX is 0x0 + 0*0x1 = 0
1363 		 * NIX1_RX is 0x0 + 1*0x1 = 1
1364 		 * But in HRM it is given that
1365 		 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1366 		 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1367 		 * enumerated by NPA_BPINTF_E."
1368 		 */
1369 		if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1370 			aq->aura.bp_ena = 1;
1371 #ifdef CONFIG_DCB
1372 		aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1373 #else
1374 		aq->aura.nix0_bpid = pfvf->bpid[0];
1375 #endif
1376 
1377 		/* Set backpressure level for RQ's Aura */
1378 		aq->aura.bp = RQ_BP_LVL_AURA;
1379 	}
1380 
1381 	/* Fill AQ info */
1382 	aq->ctype = NPA_AQ_CTYPE_AURA;
1383 	aq->op = NPA_AQ_INSTOP_INIT;
1384 
1385 	return 0;
1386 }
1387 
1388 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1389 		   int stack_pages, int numptrs, int buf_size, int type)
1390 {
1391 	struct page_pool_params pp_params = { 0 };
1392 	struct npa_aq_enq_req *aq;
1393 	struct otx2_pool *pool;
1394 	int err;
1395 
1396 	pool = &pfvf->qset.pool[pool_id];
1397 	/* Alloc memory for stack which is used to store buffer pointers */
1398 	err = qmem_alloc(pfvf->dev, &pool->stack,
1399 			 stack_pages, pfvf->hw.stack_pg_bytes);
1400 	if (err)
1401 		return err;
1402 
1403 	pool->rbsize = buf_size;
1404 
1405 	/* Initialize this pool's context via AF */
1406 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1407 	if (!aq) {
1408 		/* Shared mbox memory buffer is full, flush it and retry */
1409 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1410 		if (err) {
1411 			qmem_free(pfvf->dev, pool->stack);
1412 			return err;
1413 		}
1414 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1415 		if (!aq) {
1416 			qmem_free(pfvf->dev, pool->stack);
1417 			return -ENOMEM;
1418 		}
1419 	}
1420 
1421 	aq->aura_id = pool_id;
1422 	aq->pool.stack_base = pool->stack->iova;
1423 	aq->pool.stack_caching = 1;
1424 	aq->pool.ena = 1;
1425 	aq->pool.buf_size = buf_size / 128;
1426 	aq->pool.stack_max_pages = stack_pages;
1427 	aq->pool.shift = ilog2(numptrs) - 8;
1428 	aq->pool.ptr_start = 0;
1429 	aq->pool.ptr_end = ~0ULL;
1430 
1431 	/* Fill AQ info */
1432 	aq->ctype = NPA_AQ_CTYPE_POOL;
1433 	aq->op = NPA_AQ_INSTOP_INIT;
1434 
1435 	if (type != AURA_NIX_RQ) {
1436 		pool->page_pool = NULL;
1437 		return 0;
1438 	}
1439 
1440 	pp_params.order = get_order(buf_size);
1441 	pp_params.flags = PP_FLAG_DMA_MAP;
1442 	pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1443 	pp_params.nid = NUMA_NO_NODE;
1444 	pp_params.dev = pfvf->dev;
1445 	pp_params.dma_dir = DMA_FROM_DEVICE;
1446 	pool->page_pool = page_pool_create(&pp_params);
1447 	if (IS_ERR(pool->page_pool)) {
1448 		netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1449 		return PTR_ERR(pool->page_pool);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1456 {
1457 	int qidx, pool_id, stack_pages, num_sqbs;
1458 	struct otx2_qset *qset = &pfvf->qset;
1459 	struct otx2_hw *hw = &pfvf->hw;
1460 	struct otx2_snd_queue *sq;
1461 	struct otx2_pool *pool;
1462 	dma_addr_t bufptr;
1463 	int err, ptr;
1464 
1465 	/* Calculate number of SQBs needed.
1466 	 *
1467 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1468 	 * Last SQE is used for pointing to next SQB.
1469 	 */
1470 	num_sqbs = (hw->sqb_size / 128) - 1;
1471 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1472 
1473 	/* Get no of stack pages needed */
1474 	stack_pages =
1475 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1476 
1477 	for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1478 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1479 		/* Initialize aura context */
1480 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1481 		if (err)
1482 			goto fail;
1483 
1484 		/* Initialize pool context */
1485 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1486 				     num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1487 		if (err)
1488 			goto fail;
1489 	}
1490 
1491 	/* Flush accumulated messages */
1492 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1493 	if (err)
1494 		goto fail;
1495 
1496 	/* Allocate pointers and free them to aura/pool */
1497 	for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1498 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1499 		pool = &pfvf->qset.pool[pool_id];
1500 
1501 		sq = &qset->sq[qidx];
1502 		sq->sqb_count = 0;
1503 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1504 		if (!sq->sqb_ptrs) {
1505 			err = -ENOMEM;
1506 			goto err_mem;
1507 		}
1508 
1509 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1510 			err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1511 			if (err)
1512 				goto err_mem;
1513 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1514 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1515 		}
1516 	}
1517 
1518 err_mem:
1519 	return err ? -ENOMEM : 0;
1520 
1521 fail:
1522 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1523 	otx2_aura_pool_free(pfvf);
1524 	return err;
1525 }
1526 
1527 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1528 {
1529 	struct otx2_hw *hw = &pfvf->hw;
1530 	int stack_pages, pool_id, rq;
1531 	struct otx2_pool *pool;
1532 	int err, ptr, num_ptrs;
1533 	dma_addr_t bufptr;
1534 
1535 	num_ptrs = pfvf->qset.rqe_cnt;
1536 
1537 	stack_pages =
1538 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1539 
1540 	for (rq = 0; rq < hw->rx_queues; rq++) {
1541 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1542 		/* Initialize aura context */
1543 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1544 		if (err)
1545 			goto fail;
1546 	}
1547 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1548 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1549 				     num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1550 		if (err)
1551 			goto fail;
1552 	}
1553 
1554 	/* Flush accumulated messages */
1555 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1556 	if (err)
1557 		goto fail;
1558 
1559 	/* Allocate pointers and free them to aura/pool */
1560 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1561 		pool = &pfvf->qset.pool[pool_id];
1562 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1563 			err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1564 			if (err)
1565 				return -ENOMEM;
1566 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1567 						   bufptr + OTX2_HEAD_ROOM);
1568 		}
1569 	}
1570 	return 0;
1571 fail:
1572 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1573 	otx2_aura_pool_free(pfvf);
1574 	return err;
1575 }
1576 
1577 int otx2_config_npa(struct otx2_nic *pfvf)
1578 {
1579 	struct otx2_qset *qset = &pfvf->qset;
1580 	struct npa_lf_alloc_req  *npalf;
1581 	struct otx2_hw *hw = &pfvf->hw;
1582 	int aura_cnt;
1583 
1584 	/* Pool - Stack of free buffer pointers
1585 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1586 	 */
1587 
1588 	if (!hw->pool_cnt)
1589 		return -EINVAL;
1590 
1591 	qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1592 				  sizeof(struct otx2_pool), GFP_KERNEL);
1593 	if (!qset->pool)
1594 		return -ENOMEM;
1595 
1596 	/* Get memory to put this msg */
1597 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1598 	if (!npalf)
1599 		return -ENOMEM;
1600 
1601 	/* Set aura and pool counts */
1602 	npalf->nr_pools = hw->pool_cnt;
1603 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1604 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1605 
1606 	return otx2_sync_mbox_msg(&pfvf->mbox);
1607 }
1608 
1609 int otx2_detach_resources(struct mbox *mbox)
1610 {
1611 	struct rsrc_detach *detach;
1612 
1613 	mutex_lock(&mbox->lock);
1614 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1615 	if (!detach) {
1616 		mutex_unlock(&mbox->lock);
1617 		return -ENOMEM;
1618 	}
1619 
1620 	/* detach all */
1621 	detach->partial = false;
1622 
1623 	/* Send detach request to AF */
1624 	otx2_sync_mbox_msg(mbox);
1625 	mutex_unlock(&mbox->lock);
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL(otx2_detach_resources);
1629 
1630 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1631 {
1632 	struct rsrc_attach *attach;
1633 	struct msg_req *msix;
1634 	int err;
1635 
1636 	mutex_lock(&pfvf->mbox.lock);
1637 	/* Get memory to put this msg */
1638 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1639 	if (!attach) {
1640 		mutex_unlock(&pfvf->mbox.lock);
1641 		return -ENOMEM;
1642 	}
1643 
1644 	attach->npalf = true;
1645 	attach->nixlf = true;
1646 
1647 	/* Send attach request to AF */
1648 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1649 	if (err) {
1650 		mutex_unlock(&pfvf->mbox.lock);
1651 		return err;
1652 	}
1653 
1654 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1655 
1656 	/* If the platform has two NIX blocks then LF may be
1657 	 * allocated from NIX1.
1658 	 */
1659 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1660 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1661 
1662 	/* Get NPA and NIX MSIX vector offsets */
1663 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1664 	if (!msix) {
1665 		mutex_unlock(&pfvf->mbox.lock);
1666 		return -ENOMEM;
1667 	}
1668 
1669 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1670 	if (err) {
1671 		mutex_unlock(&pfvf->mbox.lock);
1672 		return err;
1673 	}
1674 	mutex_unlock(&pfvf->mbox.lock);
1675 
1676 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1677 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1678 		dev_err(pfvf->dev,
1679 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1680 		return -EINVAL;
1681 	}
1682 
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL(otx2_attach_npa_nix);
1686 
1687 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1688 {
1689 	struct hwctx_disable_req *req;
1690 
1691 	mutex_lock(&mbox->lock);
1692 	/* Request AQ to disable this context */
1693 	if (npa)
1694 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1695 	else
1696 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1697 
1698 	if (!req) {
1699 		mutex_unlock(&mbox->lock);
1700 		return;
1701 	}
1702 
1703 	req->ctype = type;
1704 
1705 	if (otx2_sync_mbox_msg(mbox))
1706 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1707 			__func__);
1708 
1709 	mutex_unlock(&mbox->lock);
1710 }
1711 
1712 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1713 {
1714 	struct nix_bp_cfg_req *req;
1715 
1716 	if (enable)
1717 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1718 	else
1719 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1720 
1721 	if (!req)
1722 		return -ENOMEM;
1723 
1724 	req->chan_base = 0;
1725 #ifdef CONFIG_DCB
1726 	req->chan_cnt = pfvf->pfc_en ? IEEE_8021QAZ_MAX_TCS : 1;
1727 	req->bpid_per_chan = pfvf->pfc_en ? 1 : 0;
1728 #else
1729 	req->chan_cnt =  1;
1730 	req->bpid_per_chan = 0;
1731 #endif
1732 
1733 	return otx2_sync_mbox_msg(&pfvf->mbox);
1734 }
1735 EXPORT_SYMBOL(otx2_nix_config_bp);
1736 
1737 /* Mbox message handlers */
1738 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1739 			    struct cgx_stats_rsp *rsp)
1740 {
1741 	int id;
1742 
1743 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1744 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1745 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1746 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1747 }
1748 
1749 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1750 				struct cgx_fec_stats_rsp *rsp)
1751 {
1752 	pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1753 	pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1754 }
1755 
1756 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1757 			       struct npa_lf_alloc_rsp *rsp)
1758 {
1759 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1760 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1761 }
1762 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1763 
1764 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1765 			       struct nix_lf_alloc_rsp *rsp)
1766 {
1767 	pfvf->hw.sqb_size = rsp->sqb_size;
1768 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1769 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1770 	pfvf->hw.rx_chan_cnt = rsp->rx_chan_cnt;
1771 	pfvf->hw.tx_chan_cnt = rsp->tx_chan_cnt;
1772 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1773 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1774 	pfvf->hw.cgx_links = rsp->cgx_links;
1775 	pfvf->hw.lbk_links = rsp->lbk_links;
1776 	pfvf->hw.tx_link = rsp->tx_link;
1777 }
1778 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1779 
1780 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1781 			      struct msix_offset_rsp *rsp)
1782 {
1783 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1784 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1785 }
1786 EXPORT_SYMBOL(mbox_handler_msix_offset);
1787 
1788 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1789 				struct nix_bp_cfg_rsp *rsp)
1790 {
1791 	int chan, chan_id;
1792 
1793 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1794 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1795 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1796 	}
1797 }
1798 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1799 
1800 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1801 {
1802 	struct otx2_qset *qset = &pfvf->qset;
1803 	struct otx2_hw *hw = &pfvf->hw;
1804 	int irq, qidx;
1805 
1806 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1807 	     qidx < n;
1808 	     qidx++, irq++) {
1809 		int vector = pci_irq_vector(pfvf->pdev, irq);
1810 
1811 		irq_set_affinity_hint(vector, NULL);
1812 		free_cpumask_var(hw->affinity_mask[irq]);
1813 		free_irq(vector, &qset->napi[qidx]);
1814 	}
1815 }
1816 EXPORT_SYMBOL(otx2_free_cints);
1817 
1818 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1819 {
1820 	struct otx2_hw *hw = &pfvf->hw;
1821 	int vec, cpu, irq, cint;
1822 
1823 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1824 	cpu = cpumask_first(cpu_online_mask);
1825 
1826 	/* CQ interrupts */
1827 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1828 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1829 			return;
1830 
1831 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1832 
1833 		irq = pci_irq_vector(pfvf->pdev, vec);
1834 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1835 
1836 		cpu = cpumask_next(cpu, cpu_online_mask);
1837 		if (unlikely(cpu >= nr_cpu_ids))
1838 			cpu = 0;
1839 	}
1840 }
1841 
1842 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1843 {
1844 	if (is_otx2_lbkvf(pfvf->pdev)) {
1845 		pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1846 		return hw->lbk_dwrr_mtu;
1847 	}
1848 
1849 	pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1850 	return hw->rpm_dwrr_mtu;
1851 }
1852 
1853 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1854 {
1855 	struct nix_hw_info *rsp;
1856 	struct msg_req *req;
1857 	u16 max_mtu;
1858 	int rc;
1859 
1860 	mutex_lock(&pfvf->mbox.lock);
1861 
1862 	req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1863 	if (!req) {
1864 		rc =  -ENOMEM;
1865 		goto out;
1866 	}
1867 
1868 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
1869 	if (!rc) {
1870 		rsp = (struct nix_hw_info *)
1871 		       otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1872 		if (IS_ERR(rsp)) {
1873 			rc = PTR_ERR(rsp);
1874 			goto out;
1875 		}
1876 
1877 		/* HW counts VLAN insertion bytes (8 for double tag)
1878 		 * irrespective of whether SQE is requesting to insert VLAN
1879 		 * in the packet or not. Hence these 8 bytes have to be
1880 		 * discounted from max packet size otherwise HW will throw
1881 		 * SMQ errors
1882 		 */
1883 		max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1884 
1885 		/* Also save DWRR MTU, needed for DWRR weight calculation */
1886 		pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
1887 		if (!pfvf->hw.dwrr_mtu)
1888 			pfvf->hw.dwrr_mtu = 1;
1889 	}
1890 
1891 out:
1892 	mutex_unlock(&pfvf->mbox.lock);
1893 	if (rc) {
1894 		dev_warn(pfvf->dev,
1895 			 "Failed to get MTU from hardware setting default value(1500)\n");
1896 		max_mtu = 1500;
1897 	}
1898 	return max_mtu;
1899 }
1900 EXPORT_SYMBOL(otx2_get_max_mtu);
1901 
1902 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
1903 {
1904 	netdev_features_t changed = features ^ netdev->features;
1905 	struct otx2_nic *pfvf = netdev_priv(netdev);
1906 	bool ntuple = !!(features & NETIF_F_NTUPLE);
1907 	bool tc = !!(features & NETIF_F_HW_TC);
1908 
1909 	if ((changed & NETIF_F_NTUPLE) && !ntuple)
1910 		otx2_destroy_ntuple_flows(pfvf);
1911 
1912 	if ((changed & NETIF_F_NTUPLE) && ntuple) {
1913 		if (!pfvf->flow_cfg->max_flows) {
1914 			netdev_err(netdev,
1915 				   "Can't enable NTUPLE, MCAM entries not allocated\n");
1916 			return -EINVAL;
1917 		}
1918 	}
1919 
1920 	if ((changed & NETIF_F_HW_TC) && !tc &&
1921 	    otx2_tc_flower_rule_cnt(pfvf)) {
1922 		netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
1923 		return -EBUSY;
1924 	}
1925 
1926 	if ((changed & NETIF_F_NTUPLE) && ntuple &&
1927 	    otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
1928 		netdev_err(netdev,
1929 			   "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
1930 		return -EINVAL;
1931 	}
1932 
1933 	return 0;
1934 }
1935 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
1936 
1937 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1938 int __weak								\
1939 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
1940 				struct _req_type *req,			\
1941 				struct _rsp_type *rsp)			\
1942 {									\
1943 	/* Nothing to do here */					\
1944 	return 0;							\
1945 }									\
1946 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1947 MBOX_UP_CGX_MESSAGES
1948 MBOX_UP_MCS_MESSAGES
1949 #undef M
1950