1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Ethernet driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/interrupt.h> 9 #include <linux/pci.h> 10 #include <net/page_pool/helpers.h> 11 #include <net/tso.h> 12 #include <linux/bitfield.h> 13 #include <linux/dcbnl.h> 14 #include <net/xfrm.h> 15 16 #include "otx2_reg.h" 17 #include "otx2_common.h" 18 #include "otx2_struct.h" 19 #include "cn10k.h" 20 #include "otx2_xsk.h" 21 22 static bool otx2_is_pfc_enabled(struct otx2_nic *pfvf) 23 { 24 return IS_ENABLED(CONFIG_DCB) && !!pfvf->pfc_en; 25 } 26 27 static void otx2_nix_rq_op_stats(struct queue_stats *stats, 28 struct otx2_nic *pfvf, int qidx) 29 { 30 u64 incr = (u64)qidx << 32; 31 void __iomem *ptr; 32 33 ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS); 34 stats->bytes = otx2_atomic64_add(incr, ptr); 35 36 ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS); 37 stats->pkts = otx2_atomic64_add(incr, ptr); 38 } 39 40 static void otx2_nix_sq_op_stats(struct queue_stats *stats, 41 struct otx2_nic *pfvf, int qidx) 42 { 43 u64 incr = (u64)qidx << 32; 44 void __iomem *ptr; 45 46 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS); 47 stats->bytes = otx2_atomic64_add(incr, ptr); 48 49 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS); 50 stats->pkts = otx2_atomic64_add(incr, ptr); 51 } 52 53 void otx2_update_lmac_stats(struct otx2_nic *pfvf) 54 { 55 struct msg_req *req; 56 57 if (!netif_running(pfvf->netdev)) 58 return; 59 60 mutex_lock(&pfvf->mbox.lock); 61 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox); 62 if (!req) { 63 mutex_unlock(&pfvf->mbox.lock); 64 return; 65 } 66 67 otx2_sync_mbox_msg(&pfvf->mbox); 68 mutex_unlock(&pfvf->mbox.lock); 69 } 70 71 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf) 72 { 73 struct msg_req *req; 74 75 if (!netif_running(pfvf->netdev)) 76 return; 77 mutex_lock(&pfvf->mbox.lock); 78 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox); 79 if (req) 80 otx2_sync_mbox_msg(&pfvf->mbox); 81 mutex_unlock(&pfvf->mbox.lock); 82 } 83 84 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx) 85 { 86 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx]; 87 88 if (!pfvf->qset.rq) 89 return 0; 90 91 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx); 92 return 1; 93 } 94 EXPORT_SYMBOL(otx2_update_rq_stats); 95 96 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx) 97 { 98 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx]; 99 100 if (!pfvf->qset.sq) 101 return 0; 102 103 if (qidx >= pfvf->hw.non_qos_queues) { 104 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap)) 105 return 0; 106 } 107 108 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx); 109 return 1; 110 } 111 EXPORT_SYMBOL(otx2_update_sq_stats); 112 113 void otx2_get_dev_stats(struct otx2_nic *pfvf) 114 { 115 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats; 116 117 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS); 118 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP); 119 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST); 120 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST); 121 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST); 122 dev_stats->rx_frames = dev_stats->rx_bcast_frames + 123 dev_stats->rx_mcast_frames + 124 dev_stats->rx_ucast_frames; 125 126 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS); 127 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP); 128 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST); 129 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST); 130 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST); 131 dev_stats->tx_frames = dev_stats->tx_bcast_frames + 132 dev_stats->tx_mcast_frames + 133 dev_stats->tx_ucast_frames; 134 } 135 136 void otx2_get_stats64(struct net_device *netdev, 137 struct rtnl_link_stats64 *stats) 138 { 139 struct otx2_nic *pfvf = netdev_priv(netdev); 140 struct otx2_dev_stats *dev_stats; 141 142 otx2_get_dev_stats(pfvf); 143 144 dev_stats = &pfvf->hw.dev_stats; 145 stats->rx_bytes = dev_stats->rx_bytes; 146 stats->rx_packets = dev_stats->rx_frames; 147 stats->rx_dropped = dev_stats->rx_drops; 148 stats->multicast = dev_stats->rx_mcast_frames; 149 150 stats->tx_bytes = dev_stats->tx_bytes; 151 stats->tx_packets = dev_stats->tx_frames; 152 stats->tx_dropped = dev_stats->tx_drops; 153 } 154 EXPORT_SYMBOL(otx2_get_stats64); 155 156 /* Sync MAC address with RVU AF */ 157 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac) 158 { 159 struct nix_set_mac_addr *req; 160 int err; 161 162 mutex_lock(&pfvf->mbox.lock); 163 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox); 164 if (!req) { 165 mutex_unlock(&pfvf->mbox.lock); 166 return -ENOMEM; 167 } 168 169 ether_addr_copy(req->mac_addr, mac); 170 171 err = otx2_sync_mbox_msg(&pfvf->mbox); 172 mutex_unlock(&pfvf->mbox.lock); 173 return err; 174 } 175 176 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf, 177 struct net_device *netdev) 178 { 179 struct nix_get_mac_addr_rsp *rsp; 180 struct mbox_msghdr *msghdr; 181 struct msg_req *req; 182 int err; 183 184 mutex_lock(&pfvf->mbox.lock); 185 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox); 186 if (!req) { 187 mutex_unlock(&pfvf->mbox.lock); 188 return -ENOMEM; 189 } 190 191 err = otx2_sync_mbox_msg(&pfvf->mbox); 192 if (err) { 193 mutex_unlock(&pfvf->mbox.lock); 194 return err; 195 } 196 197 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 198 if (IS_ERR(msghdr)) { 199 mutex_unlock(&pfvf->mbox.lock); 200 return PTR_ERR(msghdr); 201 } 202 rsp = (struct nix_get_mac_addr_rsp *)msghdr; 203 eth_hw_addr_set(netdev, rsp->mac_addr); 204 mutex_unlock(&pfvf->mbox.lock); 205 206 return 0; 207 } 208 209 int otx2_set_mac_address(struct net_device *netdev, void *p) 210 { 211 struct otx2_nic *pfvf = netdev_priv(netdev); 212 struct sockaddr *addr = p; 213 214 if (!is_valid_ether_addr(addr->sa_data)) 215 return -EADDRNOTAVAIL; 216 217 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) { 218 eth_hw_addr_set(netdev, addr->sa_data); 219 /* update dmac field in vlan offload rule */ 220 if (netif_running(netdev) && 221 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT) 222 otx2_install_rxvlan_offload_flow(pfvf); 223 /* update dmac address in ntuple and DMAC filter list */ 224 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT) 225 otx2_dmacflt_update_pfmac_flow(pfvf); 226 } else { 227 return -EPERM; 228 } 229 230 return 0; 231 } 232 EXPORT_SYMBOL(otx2_set_mac_address); 233 234 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu) 235 { 236 struct nix_frs_cfg *req; 237 u16 maxlen; 238 int err; 239 240 maxlen = pfvf->hw.max_mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN; 241 242 mutex_lock(&pfvf->mbox.lock); 243 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox); 244 if (!req) { 245 mutex_unlock(&pfvf->mbox.lock); 246 return -ENOMEM; 247 } 248 249 req->maxlen = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN; 250 251 /* Use max receive length supported by hardware for loopback devices */ 252 if (is_otx2_lbkvf(pfvf->pdev)) 253 req->maxlen = maxlen; 254 255 err = otx2_sync_mbox_msg(&pfvf->mbox); 256 mutex_unlock(&pfvf->mbox.lock); 257 return err; 258 } 259 EXPORT_SYMBOL(otx2_hw_set_mtu); 260 261 int otx2_config_pause_frm(struct otx2_nic *pfvf) 262 { 263 struct cgx_pause_frm_cfg *req; 264 int err; 265 266 if (is_otx2_lbkvf(pfvf->pdev) || is_otx2_sdp_rep(pfvf->pdev)) 267 return 0; 268 269 mutex_lock(&pfvf->mbox.lock); 270 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox); 271 if (!req) { 272 err = -ENOMEM; 273 goto unlock; 274 } 275 276 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED); 277 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED); 278 req->set = 1; 279 280 err = otx2_sync_mbox_msg(&pfvf->mbox); 281 unlock: 282 mutex_unlock(&pfvf->mbox.lock); 283 return err; 284 } 285 EXPORT_SYMBOL(otx2_config_pause_frm); 286 287 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf) 288 { 289 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 290 struct nix_rss_flowkey_cfg_rsp *rsp; 291 struct nix_rss_flowkey_cfg *req; 292 int err; 293 294 mutex_lock(&pfvf->mbox.lock); 295 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox); 296 if (!req) { 297 mutex_unlock(&pfvf->mbox.lock); 298 return -ENOMEM; 299 } 300 req->mcam_index = -1; /* Default or reserved index */ 301 req->flowkey_cfg = rss->flowkey_cfg; 302 req->group = DEFAULT_RSS_CONTEXT_GROUP; 303 304 err = otx2_sync_mbox_msg(&pfvf->mbox); 305 if (err) 306 goto fail; 307 308 rsp = (struct nix_rss_flowkey_cfg_rsp *) 309 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 310 if (IS_ERR(rsp)) { 311 err = PTR_ERR(rsp); 312 goto fail; 313 } 314 315 pfvf->hw.flowkey_alg_idx = rsp->alg_idx; 316 fail: 317 mutex_unlock(&pfvf->mbox.lock); 318 return err; 319 } 320 321 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id, const u32 *ind_tbl) 322 { 323 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 324 const int index = rss->rss_size * ctx_id; 325 struct mbox *mbox = &pfvf->mbox; 326 struct nix_aq_enq_req *aq; 327 int idx, err; 328 329 mutex_lock(&mbox->lock); 330 ind_tbl = ind_tbl ?: rss->ind_tbl; 331 /* Get memory to put this msg */ 332 for (idx = 0; idx < rss->rss_size; idx++) { 333 /* Ignore the queue if AF_XDP zero copy is enabled */ 334 if (test_bit(ind_tbl[idx], pfvf->af_xdp_zc_qidx)) 335 continue; 336 337 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox); 338 if (!aq) { 339 /* The shared memory buffer can be full. 340 * Flush it and retry 341 */ 342 err = otx2_sync_mbox_msg(mbox); 343 if (err) { 344 mutex_unlock(&mbox->lock); 345 return err; 346 } 347 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox); 348 if (!aq) { 349 mutex_unlock(&mbox->lock); 350 return -ENOMEM; 351 } 352 } 353 354 aq->rss.rq = ind_tbl[idx]; 355 356 /* Fill AQ info */ 357 aq->qidx = index + idx; 358 aq->ctype = NIX_AQ_CTYPE_RSS; 359 aq->op = NIX_AQ_INSTOP_INIT; 360 } 361 err = otx2_sync_mbox_msg(mbox); 362 mutex_unlock(&mbox->lock); 363 return err; 364 } 365 366 void otx2_set_rss_key(struct otx2_nic *pfvf) 367 { 368 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 369 u64 *key = (u64 *)&rss->key[4]; 370 int idx; 371 372 /* 352bit or 44byte key needs to be configured as below 373 * NIX_LF_RX_SECRETX0 = key<351:288> 374 * NIX_LF_RX_SECRETX1 = key<287:224> 375 * NIX_LF_RX_SECRETX2 = key<223:160> 376 * NIX_LF_RX_SECRETX3 = key<159:96> 377 * NIX_LF_RX_SECRETX4 = key<95:32> 378 * NIX_LF_RX_SECRETX5<63:32> = key<31:0> 379 */ 380 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5), 381 (u64)(*((u32 *)&rss->key)) << 32); 382 idx = sizeof(rss->key) / sizeof(u64); 383 while (idx > 0) { 384 idx--; 385 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++); 386 } 387 } 388 389 int otx2_rss_init(struct otx2_nic *pfvf) 390 { 391 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 392 int idx, ret = 0; 393 394 rss->rss_size = sizeof(*rss->ind_tbl); 395 396 /* Init RSS key if it is not setup already */ 397 if (!rss->enable) 398 netdev_rss_key_fill(rss->key, sizeof(rss->key)); 399 otx2_set_rss_key(pfvf); 400 401 if (!netif_is_rxfh_configured(pfvf->netdev)) 402 for (idx = 0; idx < rss->rss_size; idx++) 403 rss->ind_tbl[idx] = 404 ethtool_rxfh_indir_default(idx, 405 pfvf->hw.rx_queues); 406 407 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP, NULL); 408 if (ret) 409 return ret; 410 411 /* Flowkey or hash config to be used for generating flow tag */ 412 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg : 413 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 | 414 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP | 415 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN | 416 NIX_FLOW_KEY_TYPE_IPV4_PROTO; 417 418 ret = otx2_set_flowkey_cfg(pfvf); 419 if (ret) 420 return ret; 421 422 rss->enable = true; 423 return 0; 424 } 425 426 /* Setup UDP segmentation algorithm in HW */ 427 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4) 428 { 429 struct nix_lso_format *field; 430 431 field = (struct nix_lso_format *)&lso->fields[0]; 432 lso->field_mask = GENMASK(18, 0); 433 434 /* IP's Length field */ 435 field->layer = NIX_TXLAYER_OL3; 436 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */ 437 field->offset = v4 ? 2 : 4; 438 field->sizem1 = 1; /* i.e 2 bytes */ 439 field->alg = NIX_LSOALG_ADD_PAYLEN; 440 field++; 441 442 /* No ID field in IPv6 header */ 443 if (v4) { 444 /* Increment IPID */ 445 field->layer = NIX_TXLAYER_OL3; 446 field->offset = 4; 447 field->sizem1 = 1; /* i.e 2 bytes */ 448 field->alg = NIX_LSOALG_ADD_SEGNUM; 449 field++; 450 } 451 452 /* Update length in UDP header */ 453 field->layer = NIX_TXLAYER_OL4; 454 field->offset = 4; 455 field->sizem1 = 1; 456 field->alg = NIX_LSOALG_ADD_PAYLEN; 457 } 458 459 /* Setup segmentation algorithms in HW and retrieve algorithm index */ 460 void otx2_setup_segmentation(struct otx2_nic *pfvf) 461 { 462 struct nix_lso_format_cfg_rsp *rsp; 463 struct nix_lso_format_cfg *lso; 464 struct otx2_hw *hw = &pfvf->hw; 465 int err; 466 467 mutex_lock(&pfvf->mbox.lock); 468 469 /* UDPv4 segmentation */ 470 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox); 471 if (!lso) 472 goto fail; 473 474 /* Setup UDP/IP header fields that HW should update per segment */ 475 otx2_setup_udp_segmentation(lso, true); 476 477 err = otx2_sync_mbox_msg(&pfvf->mbox); 478 if (err) 479 goto fail; 480 481 rsp = (struct nix_lso_format_cfg_rsp *) 482 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr); 483 if (IS_ERR(rsp)) 484 goto fail; 485 486 hw->lso_udpv4_idx = rsp->lso_format_idx; 487 488 /* UDPv6 segmentation */ 489 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox); 490 if (!lso) 491 goto fail; 492 493 /* Setup UDP/IP header fields that HW should update per segment */ 494 otx2_setup_udp_segmentation(lso, false); 495 496 err = otx2_sync_mbox_msg(&pfvf->mbox); 497 if (err) 498 goto fail; 499 500 rsp = (struct nix_lso_format_cfg_rsp *) 501 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr); 502 if (IS_ERR(rsp)) 503 goto fail; 504 505 hw->lso_udpv6_idx = rsp->lso_format_idx; 506 mutex_unlock(&pfvf->mbox.lock); 507 return; 508 fail: 509 mutex_unlock(&pfvf->mbox.lock); 510 netdev_info(pfvf->netdev, 511 "Failed to get LSO index for UDP GSO offload, disabling\n"); 512 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4; 513 } 514 515 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx) 516 { 517 /* Configure CQE interrupt coalescing parameters 518 * 519 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence 520 * set 1 less than cq_ecount_wait. And cq_time_wait is in 521 * usecs, convert that to 100ns count. 522 */ 523 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx), 524 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) | 525 ((u64)pfvf->hw.cq_qcount_wait << 32) | 526 (pfvf->hw.cq_ecount_wait - 1)); 527 } 528 529 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool, 530 dma_addr_t *dma) 531 { 532 unsigned int offset = 0; 533 struct page *page; 534 size_t sz; 535 536 sz = SKB_DATA_ALIGN(pool->rbsize); 537 sz = ALIGN(sz, OTX2_ALIGN); 538 539 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC); 540 if (unlikely(!page)) 541 return -ENOMEM; 542 543 *dma = page_pool_get_dma_addr(page) + offset; 544 return 0; 545 } 546 547 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool, 548 dma_addr_t *dma, int qidx, int idx) 549 { 550 u8 *buf; 551 552 if (pool->xsk_pool) 553 return otx2_xsk_pool_alloc_buf(pfvf, pool, dma, idx); 554 555 if (pool->page_pool) 556 return otx2_alloc_pool_buf(pfvf, pool, dma); 557 558 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN); 559 if (unlikely(!buf)) 560 return -ENOMEM; 561 562 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize, 563 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 564 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) { 565 page_frag_free(buf); 566 return -ENOMEM; 567 } 568 569 return 0; 570 } 571 572 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool, 573 dma_addr_t *dma, int qidx, int idx) 574 { 575 int ret; 576 577 local_bh_disable(); 578 ret = __otx2_alloc_rbuf(pfvf, pool, dma, qidx, idx); 579 local_bh_enable(); 580 return ret; 581 } 582 583 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, 584 dma_addr_t *dma) 585 { 586 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma, 587 cq->cq_idx, cq->pool_ptrs - 1))) 588 return -ENOMEM; 589 return 0; 590 } 591 592 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq) 593 { 594 struct otx2_nic *pfvf = netdev_priv(netdev); 595 596 schedule_work(&pfvf->reset_task); 597 } 598 EXPORT_SYMBOL(otx2_tx_timeout); 599 600 void otx2_get_mac_from_af(struct net_device *netdev) 601 { 602 struct otx2_nic *pfvf = netdev_priv(netdev); 603 int err; 604 605 err = otx2_hw_get_mac_addr(pfvf, netdev); 606 if (err) 607 dev_warn(pfvf->dev, "Failed to read mac from hardware\n"); 608 609 /* If AF doesn't provide a valid MAC, generate a random one */ 610 if (!is_valid_ether_addr(netdev->dev_addr)) 611 eth_hw_addr_random(netdev); 612 } 613 EXPORT_SYMBOL(otx2_get_mac_from_af); 614 615 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc) 616 { 617 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC]; 618 struct otx2_hw *hw = &pfvf->hw; 619 struct nix_txschq_config *req; 620 u64 schq, parent; 621 u64 dwrr_val; 622 623 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen); 624 625 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox); 626 if (!req) 627 return -ENOMEM; 628 629 req->lvl = lvl; 630 req->num_regs = 1; 631 632 schq_list = hw->txschq_list; 633 #ifdef CONFIG_DCB 634 if (txschq_for_pfc) 635 schq_list = pfvf->pfc_schq_list; 636 #endif 637 638 schq = schq_list[lvl][prio]; 639 /* Set topology e.t.c configuration */ 640 if (lvl == NIX_TXSCH_LVL_SMQ) { 641 req->reg[0] = NIX_AF_SMQX_CFG(schq); 642 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU; 643 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) | 644 (0x2ULL << 36); 645 /* Set link type for DWRR MTU selection on CN10K silicons */ 646 if (!is_dev_otx2(pfvf->pdev)) 647 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57), 648 (u64)hw->smq_link_type); 649 req->num_regs++; 650 /* MDQ config */ 651 parent = schq_list[NIX_TXSCH_LVL_TL4][prio]; 652 req->reg[1] = NIX_AF_MDQX_PARENT(schq); 653 req->regval[1] = parent << 16; 654 req->num_regs++; 655 /* Set DWRR quantum */ 656 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq); 657 req->regval[2] = dwrr_val; 658 } else if (lvl == NIX_TXSCH_LVL_TL4) { 659 int sdp_chan = hw->tx_chan_base + prio; 660 661 if (is_otx2_sdp_rep(pfvf->pdev)) 662 prio = 0; 663 parent = schq_list[NIX_TXSCH_LVL_TL3][prio]; 664 req->reg[0] = NIX_AF_TL4X_PARENT(schq); 665 req->regval[0] = (u64)parent << 16; 666 req->num_regs++; 667 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq); 668 req->regval[1] = dwrr_val; 669 if (is_otx2_sdp_rep(pfvf->pdev)) { 670 req->num_regs++; 671 req->reg[2] = NIX_AF_TL4X_SDP_LINK_CFG(schq); 672 req->regval[2] = BIT_ULL(12) | BIT_ULL(13) | 673 (sdp_chan & 0xff); 674 } 675 } else if (lvl == NIX_TXSCH_LVL_TL3) { 676 parent = schq_list[NIX_TXSCH_LVL_TL2][prio]; 677 req->reg[0] = NIX_AF_TL3X_PARENT(schq); 678 req->regval[0] = (u64)parent << 16; 679 req->num_regs++; 680 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq); 681 req->regval[1] = dwrr_val; 682 if (lvl == hw->txschq_link_cfg_lvl && 683 !is_otx2_sdp_rep(pfvf->pdev)) { 684 req->num_regs++; 685 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link); 686 /* Enable this queue and backpressure 687 * and set relative channel 688 */ 689 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio; 690 } 691 } else if (lvl == NIX_TXSCH_LVL_TL2) { 692 parent = schq_list[NIX_TXSCH_LVL_TL1][prio]; 693 req->reg[0] = NIX_AF_TL2X_PARENT(schq); 694 req->regval[0] = (u64)parent << 16; 695 696 req->num_regs++; 697 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq); 698 req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val; 699 700 if (lvl == hw->txschq_link_cfg_lvl && 701 !is_otx2_sdp_rep(pfvf->pdev)) { 702 req->num_regs++; 703 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link); 704 /* Enable this queue and backpressure 705 * and set relative channel 706 */ 707 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio; 708 } 709 } else if (lvl == NIX_TXSCH_LVL_TL1) { 710 /* Default config for TL1. 711 * For VF this is always ignored. 712 */ 713 714 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will 715 * clip it to 16384, so configuring a 24bit max value 716 * will work on both OTx2 and CN10K. 717 */ 718 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq); 719 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM; 720 721 req->num_regs++; 722 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq); 723 req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1; 724 725 req->num_regs++; 726 req->reg[2] = NIX_AF_TL1X_CIR(schq); 727 req->regval[2] = 0; 728 } 729 730 return otx2_sync_mbox_msg(&pfvf->mbox); 731 } 732 EXPORT_SYMBOL(otx2_txschq_config); 733 734 int otx2_smq_flush(struct otx2_nic *pfvf, int smq) 735 { 736 struct nix_txschq_config *req; 737 int rc; 738 739 mutex_lock(&pfvf->mbox.lock); 740 741 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox); 742 if (!req) { 743 mutex_unlock(&pfvf->mbox.lock); 744 return -ENOMEM; 745 } 746 747 req->lvl = NIX_TXSCH_LVL_SMQ; 748 req->reg[0] = NIX_AF_SMQX_CFG(smq); 749 req->regval[0] |= BIT_ULL(49); 750 req->num_regs++; 751 752 rc = otx2_sync_mbox_msg(&pfvf->mbox); 753 mutex_unlock(&pfvf->mbox.lock); 754 return rc; 755 } 756 EXPORT_SYMBOL(otx2_smq_flush); 757 758 int otx2_txsch_alloc(struct otx2_nic *pfvf) 759 { 760 int chan_cnt = pfvf->hw.tx_chan_cnt; 761 struct nix_txsch_alloc_req *req; 762 struct nix_txsch_alloc_rsp *rsp; 763 int lvl, schq, rc; 764 765 /* Get memory to put this msg */ 766 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox); 767 if (!req) 768 return -ENOMEM; 769 770 /* Request one schq per level */ 771 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) 772 req->schq[lvl] = 1; 773 774 if (is_otx2_sdp_rep(pfvf->pdev) && chan_cnt > 1) { 775 req->schq[NIX_TXSCH_LVL_SMQ] = chan_cnt; 776 req->schq[NIX_TXSCH_LVL_TL4] = chan_cnt; 777 } 778 779 rc = otx2_sync_mbox_msg(&pfvf->mbox); 780 if (rc) 781 return rc; 782 783 rsp = (struct nix_txsch_alloc_rsp *) 784 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 785 if (IS_ERR(rsp)) 786 return PTR_ERR(rsp); 787 788 /* Setup transmit scheduler list */ 789 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { 790 pfvf->hw.txschq_cnt[lvl] = rsp->schq[lvl]; 791 for (schq = 0; schq < rsp->schq[lvl]; schq++) 792 pfvf->hw.txschq_list[lvl][schq] = 793 rsp->schq_list[lvl][schq]; 794 } 795 796 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl; 797 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio; 798 799 return 0; 800 } 801 802 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq) 803 { 804 struct nix_txsch_free_req *free_req; 805 int err; 806 807 mutex_lock(&pfvf->mbox.lock); 808 809 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox); 810 if (!free_req) { 811 mutex_unlock(&pfvf->mbox.lock); 812 netdev_err(pfvf->netdev, 813 "Failed alloc txschq free req\n"); 814 return; 815 } 816 817 free_req->schq_lvl = lvl; 818 free_req->schq = schq; 819 820 err = otx2_sync_mbox_msg(&pfvf->mbox); 821 if (err) { 822 netdev_err(pfvf->netdev, 823 "Failed stop txschq %d at level %d\n", schq, lvl); 824 } 825 826 mutex_unlock(&pfvf->mbox.lock); 827 } 828 EXPORT_SYMBOL(otx2_txschq_free_one); 829 830 void otx2_txschq_stop(struct otx2_nic *pfvf) 831 { 832 int lvl, schq, idx; 833 834 /* free non QOS TLx nodes */ 835 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { 836 for (idx = 0; idx < pfvf->hw.txschq_cnt[lvl]; idx++) { 837 otx2_txschq_free_one(pfvf, lvl, 838 pfvf->hw.txschq_list[lvl][idx]); 839 } 840 } 841 842 /* Clear the txschq list */ 843 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { 844 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++) 845 pfvf->hw.txschq_list[lvl][schq] = 0; 846 } 847 848 } 849 850 void otx2_sqb_flush(struct otx2_nic *pfvf) 851 { 852 int qidx, sqe_tail, sqe_head; 853 struct otx2_snd_queue *sq; 854 void __iomem *ptr; 855 u64 incr, val; 856 857 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS); 858 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) { 859 sq = &pfvf->qset.sq[qidx]; 860 if (!sq->sqb_ptrs) 861 continue; 862 863 incr = (u64)qidx << 32; 864 val = otx2_atomic64_add(incr, ptr); 865 sqe_head = (val >> 20) & 0x3F; 866 sqe_tail = (val >> 28) & 0x3F; 867 if (sqe_head != sqe_tail) 868 usleep_range(50, 60); 869 } 870 } 871 872 /* RED and drop levels of CQ on packet reception. 873 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty). 874 */ 875 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize)) 876 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize)) 877 878 /* RED and drop levels of AURA for packet reception. 879 * For AURA level is measure of fullness (0x0 = empty, 255 = full). 880 * Eg: For RQ length 1K, for pass/drop level 204/230. 881 * RED accepts pkts if free pointers > 102 & <= 205. 882 * Drops pkts if free pointers < 102. 883 */ 884 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */ 885 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */ 886 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */ 887 888 int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura) 889 { 890 struct otx2_qset *qset = &pfvf->qset; 891 struct nix_aq_enq_req *aq; 892 893 /* Get memory to put this msg */ 894 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); 895 if (!aq) 896 return -ENOMEM; 897 898 aq->rq.cq = qidx; 899 aq->rq.ena = 1; 900 aq->rq.pb_caching = 1; 901 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */ 902 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1; 903 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */ 904 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */ 905 aq->rq.qint_idx = 0; 906 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */ 907 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */ 908 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); 909 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); 910 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA; 911 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA; 912 913 /* Fill AQ info */ 914 aq->qidx = qidx; 915 aq->ctype = NIX_AQ_CTYPE_RQ; 916 aq->op = NIX_AQ_INSTOP_INIT; 917 918 return otx2_sync_mbox_msg(&pfvf->mbox); 919 } 920 921 int otx2_sq_aq_init(void *dev, u16 qidx, u8 chan_offset, u16 sqb_aura) 922 { 923 struct otx2_nic *pfvf = dev; 924 struct otx2_snd_queue *sq; 925 struct nix_aq_enq_req *aq; 926 927 sq = &pfvf->qset.sq[qidx]; 928 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx)); 929 /* Get memory to put this msg */ 930 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); 931 if (!aq) 932 return -ENOMEM; 933 934 aq->sq.cq = pfvf->hw.rx_queues + qidx; 935 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */ 936 aq->sq.cq_ena = 1; 937 aq->sq.ena = 1; 938 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx); 939 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen); 940 aq->sq.default_chan = pfvf->hw.tx_chan_base + chan_offset; 941 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */ 942 aq->sq.sqb_aura = sqb_aura; 943 aq->sq.sq_int_ena = NIX_SQINT_BITS; 944 aq->sq.qint_idx = 0; 945 /* Due pipelining impact minimum 2000 unused SQ CQE's 946 * need to maintain to avoid CQ overflow. 947 */ 948 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt)); 949 950 /* Fill AQ info */ 951 aq->qidx = qidx; 952 aq->ctype = NIX_AQ_CTYPE_SQ; 953 aq->op = NIX_AQ_INSTOP_INIT; 954 955 return otx2_sync_mbox_msg(&pfvf->mbox); 956 } 957 958 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura) 959 { 960 struct otx2_qset *qset = &pfvf->qset; 961 struct otx2_snd_queue *sq; 962 struct otx2_pool *pool; 963 u8 chan_offset; 964 int err; 965 966 pool = &pfvf->qset.pool[sqb_aura]; 967 sq = &qset->sq[qidx]; 968 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128; 969 sq->sqe_cnt = qset->sqe_cnt; 970 971 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size); 972 if (err) 973 return err; 974 975 /* Allocate memory for NIX SQE (which includes NIX SG) and CPT SG. 976 * SG of NIX and CPT are same in size. Allocate memory for CPT SG 977 * same as NIX SQE for base address alignment. 978 * Layout of a NIX SQE and CPT SG entry: 979 * ----------------------------- 980 * | CPT Scatter Gather | 981 * | (SQE SIZE) | 982 * | | 983 * ----------------------------- 984 * | NIX SQE | 985 * | (SQE SIZE) | 986 * | | 987 * ----------------------------- 988 */ 989 err = qmem_alloc(pfvf->dev, &sq->sqe_ring, qset->sqe_cnt, 990 sq->sqe_size * 2); 991 if (err) 992 return err; 993 994 err = qmem_alloc(pfvf->dev, &sq->cpt_resp, qset->sqe_cnt, 64); 995 if (err) 996 return err; 997 998 if (qidx < pfvf->hw.tx_queues) { 999 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt, 1000 TSO_HEADER_SIZE); 1001 if (err) 1002 return err; 1003 } 1004 1005 sq->sqe_base = sq->sqe->base; 1006 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL); 1007 if (!sq->sg) 1008 return -ENOMEM; 1009 1010 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) { 1011 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt, 1012 sizeof(*sq->timestamps)); 1013 if (err) { 1014 kfree(sq->sg); 1015 sq->sg = NULL; 1016 return err; 1017 } 1018 } 1019 1020 sq->head = 0; 1021 sq->cons_head = 0; 1022 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1; 1023 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb; 1024 /* Set SQE threshold to 10% of total SQEs */ 1025 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100; 1026 sq->aura_id = sqb_aura; 1027 sq->aura_fc_addr = pool->fc_addr->base; 1028 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0)); 1029 1030 sq->stats.bytes = 0; 1031 sq->stats.pkts = 0; 1032 /* Attach XSK_BUFF_POOL to XDP queue */ 1033 if (qidx > pfvf->hw.xdp_queues) 1034 otx2_attach_xsk_buff(pfvf, sq, (qidx - pfvf->hw.xdp_queues)); 1035 1036 1037 chan_offset = qidx % pfvf->hw.tx_chan_cnt; 1038 err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, chan_offset, sqb_aura); 1039 if (err) { 1040 kfree(sq->sg); 1041 sq->sg = NULL; 1042 return err; 1043 } 1044 1045 return 0; 1046 1047 } 1048 1049 int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx) 1050 { 1051 struct otx2_qset *qset = &pfvf->qset; 1052 int err, pool_id, non_xdp_queues; 1053 struct nix_aq_enq_req *aq; 1054 struct otx2_cq_queue *cq; 1055 struct otx2_pool *pool; 1056 1057 cq = &qset->cq[qidx]; 1058 cq->cq_idx = qidx; 1059 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues; 1060 if (qidx < pfvf->hw.rx_queues) { 1061 cq->cq_type = CQ_RX; 1062 cq->cint_idx = qidx; 1063 cq->cqe_cnt = qset->rqe_cnt; 1064 if (pfvf->xdp_prog) { 1065 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0); 1066 pool = &qset->pool[qidx]; 1067 if (pool->xsk_pool) { 1068 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq, 1069 MEM_TYPE_XSK_BUFF_POOL, 1070 NULL); 1071 xsk_pool_set_rxq_info(pool->xsk_pool, &cq->xdp_rxq); 1072 } else if (pool->page_pool) { 1073 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq, 1074 MEM_TYPE_PAGE_POOL, 1075 pool->page_pool); 1076 } 1077 } 1078 } else if (qidx < non_xdp_queues) { 1079 cq->cq_type = CQ_TX; 1080 cq->cint_idx = qidx - pfvf->hw.rx_queues; 1081 cq->cqe_cnt = qset->sqe_cnt; 1082 } else { 1083 if (pfvf->hw.xdp_queues && 1084 qidx < non_xdp_queues + pfvf->hw.xdp_queues) { 1085 cq->cq_type = CQ_XDP; 1086 cq->cint_idx = qidx - non_xdp_queues; 1087 cq->cqe_cnt = qset->sqe_cnt; 1088 } else { 1089 cq->cq_type = CQ_QOS; 1090 cq->cint_idx = qidx - non_xdp_queues - 1091 pfvf->hw.xdp_queues; 1092 cq->cqe_cnt = qset->sqe_cnt; 1093 } 1094 } 1095 cq->cqe_size = pfvf->qset.xqe_size; 1096 1097 /* Allocate memory for CQEs */ 1098 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size); 1099 if (err) 1100 return err; 1101 1102 /* Save CQE CPU base for faster reference */ 1103 cq->cqe_base = cq->cqe->base; 1104 /* In case where all RQs auras point to single pool, 1105 * all CQs receive buffer pool also point to same pool. 1106 */ 1107 pool_id = ((cq->cq_type == CQ_RX) && 1108 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx; 1109 cq->rbpool = &qset->pool[pool_id]; 1110 cq->refill_task_sched = false; 1111 1112 /* Get memory to put this msg */ 1113 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); 1114 if (!aq) 1115 return -ENOMEM; 1116 1117 aq->cq.ena = 1; 1118 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4); 1119 aq->cq.caching = 1; 1120 aq->cq.base = cq->cqe->iova; 1121 aq->cq.cint_idx = cq->cint_idx; 1122 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS; 1123 aq->cq.qint_idx = 0; 1124 aq->cq.avg_level = 255; 1125 1126 if (qidx < pfvf->hw.rx_queues) { 1127 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt); 1128 aq->cq.drop_ena = 1; 1129 1130 if (!is_otx2_lbkvf(pfvf->pdev)) { 1131 /* Enable receive CQ backpressure */ 1132 aq->cq.bp_ena = 1; 1133 #ifdef CONFIG_DCB 1134 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]]; 1135 #else 1136 aq->cq.bpid = pfvf->bpid[0]; 1137 #endif 1138 1139 /* Set backpressure level is same as cq pass level */ 1140 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); 1141 } 1142 } 1143 1144 /* Fill AQ info */ 1145 aq->qidx = qidx; 1146 aq->ctype = NIX_AQ_CTYPE_CQ; 1147 aq->op = NIX_AQ_INSTOP_INIT; 1148 1149 return otx2_sync_mbox_msg(&pfvf->mbox); 1150 } 1151 1152 static void otx2_pool_refill_task(struct work_struct *work) 1153 { 1154 struct otx2_cq_queue *cq; 1155 struct refill_work *wrk; 1156 struct otx2_nic *pfvf; 1157 int qidx; 1158 1159 wrk = container_of(work, struct refill_work, pool_refill_work.work); 1160 pfvf = wrk->pf; 1161 qidx = wrk - pfvf->refill_wrk; 1162 cq = &pfvf->qset.cq[qidx]; 1163 1164 cq->refill_task_sched = false; 1165 1166 local_bh_disable(); 1167 napi_schedule(wrk->napi); 1168 local_bh_enable(); 1169 } 1170 1171 int otx2_config_nix_queues(struct otx2_nic *pfvf) 1172 { 1173 int qidx, err; 1174 1175 /* Initialize RX queues */ 1176 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) { 1177 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx); 1178 1179 err = otx2_rq_init(pfvf, qidx, lpb_aura); 1180 if (err) 1181 return err; 1182 } 1183 1184 /* Initialize TX queues */ 1185 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) { 1186 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); 1187 1188 err = otx2_sq_init(pfvf, qidx, sqb_aura); 1189 if (err) 1190 return err; 1191 } 1192 1193 /* Initialize completion queues */ 1194 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) { 1195 err = otx2_cq_init(pfvf, qidx); 1196 if (err) 1197 return err; 1198 } 1199 1200 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf, 1201 NIX_LF_CQ_OP_STATUS); 1202 1203 /* Initialize work queue for receive buffer refill */ 1204 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt, 1205 sizeof(struct refill_work), GFP_KERNEL); 1206 if (!pfvf->refill_wrk) 1207 return -ENOMEM; 1208 1209 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) { 1210 pfvf->refill_wrk[qidx].pf = pfvf; 1211 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work, 1212 otx2_pool_refill_task); 1213 } 1214 return 0; 1215 } 1216 1217 int otx2_config_nix(struct otx2_nic *pfvf) 1218 { 1219 struct nix_lf_alloc_req *nixlf; 1220 struct nix_lf_alloc_rsp *rsp; 1221 int err; 1222 1223 pfvf->qset.xqe_size = pfvf->hw.xqe_size; 1224 1225 /* Get memory to put this msg */ 1226 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox); 1227 if (!nixlf) 1228 return -ENOMEM; 1229 1230 /* Set RQ/SQ/CQ counts */ 1231 nixlf->rq_cnt = pfvf->hw.rx_queues; 1232 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf); 1233 nixlf->cq_cnt = pfvf->qset.cq_cnt; 1234 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE; 1235 nixlf->rss_grps = MAX_RSS_GROUPS; 1236 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64; 1237 /* We don't know absolute NPA LF idx attached. 1238 * AF will replace 'RVU_DEFAULT_PF_FUNC' with 1239 * NPA LF attached to this RVU PF/VF. 1240 */ 1241 nixlf->npa_func = RVU_DEFAULT_PF_FUNC; 1242 /* Disable alignment pad, enable L2 length check, 1243 * enable L4 TCP/UDP checksum verification. 1244 */ 1245 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37); 1246 1247 err = otx2_sync_mbox_msg(&pfvf->mbox); 1248 if (err) 1249 return err; 1250 1251 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, 1252 &nixlf->hdr); 1253 if (IS_ERR(rsp)) 1254 return PTR_ERR(rsp); 1255 1256 if (rsp->qints < 1) 1257 return -ENXIO; 1258 1259 return rsp->hdr.rc; 1260 } 1261 1262 void otx2_sq_free_sqbs(struct otx2_nic *pfvf) 1263 { 1264 struct otx2_qset *qset = &pfvf->qset; 1265 struct otx2_hw *hw = &pfvf->hw; 1266 struct otx2_snd_queue *sq; 1267 int sqb, qidx; 1268 u64 iova, pa; 1269 1270 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) { 1271 sq = &qset->sq[qidx]; 1272 if (!sq->sqb_ptrs) 1273 continue; 1274 for (sqb = 0; sqb < sq->sqb_count; sqb++) { 1275 if (!sq->sqb_ptrs[sqb]) 1276 continue; 1277 iova = sq->sqb_ptrs[sqb]; 1278 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); 1279 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size, 1280 DMA_FROM_DEVICE, 1281 DMA_ATTR_SKIP_CPU_SYNC); 1282 put_page(virt_to_page(phys_to_virt(pa))); 1283 } 1284 sq->sqb_count = 0; 1285 } 1286 } 1287 1288 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool, 1289 u64 iova, int size) 1290 { 1291 struct page *page; 1292 u64 pa; 1293 1294 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); 1295 page = virt_to_head_page(phys_to_virt(pa)); 1296 if (pool->page_pool) { 1297 page_pool_put_full_page(pool->page_pool, page, true); 1298 } else if (pool->xsk_pool) { 1299 /* Note: No way of identifying xdp_buff */ 1300 } else { 1301 dma_unmap_page_attrs(pfvf->dev, iova, size, 1302 DMA_FROM_DEVICE, 1303 DMA_ATTR_SKIP_CPU_SYNC); 1304 1305 put_page(page); 1306 } 1307 } 1308 1309 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type) 1310 { 1311 int pool_id, pool_start = 0, pool_end = 0, size = 0; 1312 struct otx2_pool *pool; 1313 u64 iova; 1314 int idx; 1315 1316 if (type == AURA_NIX_SQ) { 1317 pool_start = otx2_get_pool_idx(pfvf, type, 0); 1318 pool_end = pool_start + pfvf->hw.sqpool_cnt; 1319 size = pfvf->hw.sqb_size; 1320 } 1321 if (type == AURA_NIX_RQ) { 1322 pool_start = otx2_get_pool_idx(pfvf, type, 0); 1323 pool_end = pfvf->hw.rqpool_cnt; 1324 size = pfvf->rbsize; 1325 } 1326 1327 /* Free SQB and RQB pointers from the aura pool */ 1328 for (pool_id = pool_start; pool_id < pool_end; pool_id++) { 1329 pool = &pfvf->qset.pool[pool_id]; 1330 iova = otx2_aura_allocptr(pfvf, pool_id); 1331 while (iova) { 1332 if (type == AURA_NIX_RQ) 1333 iova -= OTX2_HEAD_ROOM; 1334 otx2_free_bufs(pfvf, pool, iova, size); 1335 iova = otx2_aura_allocptr(pfvf, pool_id); 1336 } 1337 1338 for (idx = 0 ; idx < pool->xdp_cnt; idx++) { 1339 if (!pool->xdp[idx]) 1340 continue; 1341 1342 xsk_buff_free(pool->xdp[idx]); 1343 } 1344 } 1345 } 1346 1347 void otx2_aura_pool_free(struct otx2_nic *pfvf) 1348 { 1349 struct otx2_pool *pool; 1350 int pool_id; 1351 1352 if (!pfvf->qset.pool) 1353 return; 1354 1355 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) { 1356 pool = &pfvf->qset.pool[pool_id]; 1357 qmem_free(pfvf->dev, pool->stack); 1358 qmem_free(pfvf->dev, pool->fc_addr); 1359 page_pool_destroy(pool->page_pool); 1360 devm_kfree(pfvf->dev, pool->xdp); 1361 pool->xsk_pool = NULL; 1362 } 1363 devm_kfree(pfvf->dev, pfvf->qset.pool); 1364 pfvf->qset.pool = NULL; 1365 } 1366 1367 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id, 1368 int pool_id, int numptrs) 1369 { 1370 struct npa_aq_enq_req *aq; 1371 struct otx2_pool *pool; 1372 int err; 1373 1374 pool = &pfvf->qset.pool[pool_id]; 1375 1376 /* Allocate memory for HW to update Aura count. 1377 * Alloc one cache line, so that it fits all FC_STYPE modes. 1378 */ 1379 if (!pool->fc_addr) { 1380 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN); 1381 if (err) 1382 return err; 1383 } 1384 1385 /* Initialize this aura's context via AF */ 1386 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1387 if (!aq) { 1388 /* Shared mbox memory buffer is full, flush it and retry */ 1389 err = otx2_sync_mbox_msg(&pfvf->mbox); 1390 if (err) 1391 return err; 1392 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1393 if (!aq) 1394 return -ENOMEM; 1395 } 1396 1397 aq->aura_id = aura_id; 1398 /* Will be filled by AF with correct pool context address */ 1399 aq->aura.pool_addr = pool_id; 1400 aq->aura.pool_caching = 1; 1401 aq->aura.shift = ilog2(numptrs) - 8; 1402 aq->aura.count = numptrs; 1403 aq->aura.limit = numptrs; 1404 aq->aura.avg_level = 255; 1405 aq->aura.ena = 1; 1406 aq->aura.fc_ena = 1; 1407 aq->aura.fc_addr = pool->fc_addr->iova; 1408 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */ 1409 1410 /* Enable backpressure for RQ aura */ 1411 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) { 1412 aq->aura.bp_ena = 0; 1413 /* If NIX1 LF is attached then specify NIX1_RX. 1414 * 1415 * Below NPA_AURA_S[BP_ENA] is set according to the 1416 * NPA_BPINTF_E enumeration given as: 1417 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so 1418 * NIX0_RX is 0x0 + 0*0x1 = 0 1419 * NIX1_RX is 0x0 + 1*0x1 = 1 1420 * But in HRM it is given that 1421 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to 1422 * NIX-RX based on [BP] level. One bit per NIX-RX; index 1423 * enumerated by NPA_BPINTF_E." 1424 */ 1425 if (pfvf->nix_blkaddr == BLKADDR_NIX1) 1426 aq->aura.bp_ena = 1; 1427 #ifdef CONFIG_DCB 1428 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]]; 1429 #else 1430 aq->aura.nix0_bpid = pfvf->bpid[0]; 1431 #endif 1432 1433 /* Set backpressure level for RQ's Aura */ 1434 aq->aura.bp = RQ_BP_LVL_AURA; 1435 } 1436 1437 /* Fill AQ info */ 1438 aq->ctype = NPA_AQ_CTYPE_AURA; 1439 aq->op = NPA_AQ_INSTOP_INIT; 1440 1441 return 0; 1442 } 1443 1444 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id, 1445 int stack_pages, int numptrs, int buf_size, int type) 1446 { 1447 struct page_pool_params pp_params = { 0 }; 1448 struct xsk_buff_pool *xsk_pool; 1449 struct npa_aq_enq_req *aq; 1450 struct otx2_pool *pool; 1451 int err; 1452 1453 pool = &pfvf->qset.pool[pool_id]; 1454 /* Alloc memory for stack which is used to store buffer pointers */ 1455 err = qmem_alloc(pfvf->dev, &pool->stack, 1456 stack_pages, pfvf->hw.stack_pg_bytes); 1457 if (err) 1458 return err; 1459 1460 pool->rbsize = buf_size; 1461 1462 /* Initialize this pool's context via AF */ 1463 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1464 if (!aq) { 1465 /* Shared mbox memory buffer is full, flush it and retry */ 1466 err = otx2_sync_mbox_msg(&pfvf->mbox); 1467 if (err) { 1468 qmem_free(pfvf->dev, pool->stack); 1469 return err; 1470 } 1471 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1472 if (!aq) { 1473 qmem_free(pfvf->dev, pool->stack); 1474 return -ENOMEM; 1475 } 1476 } 1477 1478 aq->aura_id = pool_id; 1479 aq->pool.stack_base = pool->stack->iova; 1480 aq->pool.stack_caching = 1; 1481 aq->pool.ena = 1; 1482 aq->pool.buf_size = buf_size / 128; 1483 aq->pool.stack_max_pages = stack_pages; 1484 aq->pool.shift = ilog2(numptrs) - 8; 1485 aq->pool.ptr_start = 0; 1486 aq->pool.ptr_end = ~0ULL; 1487 1488 /* Fill AQ info */ 1489 aq->ctype = NPA_AQ_CTYPE_POOL; 1490 aq->op = NPA_AQ_INSTOP_INIT; 1491 1492 if (type != AURA_NIX_RQ) 1493 return 0; 1494 1495 if (!test_bit(pool_id, pfvf->af_xdp_zc_qidx)) { 1496 pp_params.order = get_order(buf_size); 1497 pp_params.flags = PP_FLAG_DMA_MAP; 1498 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs); 1499 pp_params.nid = NUMA_NO_NODE; 1500 pp_params.dev = pfvf->dev; 1501 pp_params.dma_dir = DMA_FROM_DEVICE; 1502 pool->page_pool = page_pool_create(&pp_params); 1503 if (IS_ERR(pool->page_pool)) { 1504 netdev_err(pfvf->netdev, "Creation of page pool failed\n"); 1505 return PTR_ERR(pool->page_pool); 1506 } 1507 return 0; 1508 } 1509 1510 /* Set XSK pool to support AF_XDP zero-copy */ 1511 xsk_pool = xsk_get_pool_from_qid(pfvf->netdev, pool_id); 1512 if (xsk_pool) { 1513 pool->xsk_pool = xsk_pool; 1514 pool->xdp_cnt = numptrs; 1515 pool->xdp = devm_kcalloc(pfvf->dev, 1516 numptrs, sizeof(struct xdp_buff *), GFP_KERNEL); 1517 if (IS_ERR(pool->xdp)) { 1518 netdev_err(pfvf->netdev, "Creation of xsk pool failed\n"); 1519 return PTR_ERR(pool->xdp); 1520 } 1521 } 1522 1523 return 0; 1524 } 1525 1526 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf) 1527 { 1528 int qidx, pool_id, stack_pages, num_sqbs; 1529 struct otx2_qset *qset = &pfvf->qset; 1530 struct otx2_hw *hw = &pfvf->hw; 1531 struct otx2_snd_queue *sq; 1532 struct otx2_pool *pool; 1533 dma_addr_t bufptr; 1534 int err, ptr; 1535 1536 /* Calculate number of SQBs needed. 1537 * 1538 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB. 1539 * Last SQE is used for pointing to next SQB. 1540 */ 1541 num_sqbs = (hw->sqb_size / 128) - 1; 1542 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs; 1543 1544 /* Get no of stack pages needed */ 1545 stack_pages = 1546 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs; 1547 1548 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) { 1549 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); 1550 /* Initialize aura context */ 1551 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs); 1552 if (err) 1553 goto fail; 1554 1555 /* Initialize pool context */ 1556 err = otx2_pool_init(pfvf, pool_id, stack_pages, 1557 num_sqbs, hw->sqb_size, AURA_NIX_SQ); 1558 if (err) 1559 goto fail; 1560 } 1561 1562 /* Flush accumulated messages */ 1563 err = otx2_sync_mbox_msg(&pfvf->mbox); 1564 if (err) 1565 goto fail; 1566 1567 /* Allocate pointers and free them to aura/pool */ 1568 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) { 1569 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); 1570 pool = &pfvf->qset.pool[pool_id]; 1571 1572 sq = &qset->sq[qidx]; 1573 sq->sqb_count = 0; 1574 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL); 1575 if (!sq->sqb_ptrs) { 1576 err = -ENOMEM; 1577 goto err_mem; 1578 } 1579 1580 for (ptr = 0; ptr < num_sqbs; ptr++) { 1581 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr); 1582 if (err) { 1583 if (pool->xsk_pool) { 1584 ptr--; 1585 while (ptr >= 0) { 1586 xsk_buff_free(pool->xdp[ptr]); 1587 ptr--; 1588 } 1589 } 1590 goto err_mem; 1591 } 1592 1593 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr); 1594 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr; 1595 } 1596 } 1597 1598 err_mem: 1599 return err ? -ENOMEM : 0; 1600 1601 fail: 1602 otx2_mbox_reset(&pfvf->mbox.mbox, 0); 1603 otx2_aura_pool_free(pfvf); 1604 return err; 1605 } 1606 1607 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf) 1608 { 1609 struct otx2_hw *hw = &pfvf->hw; 1610 int stack_pages, pool_id, rq; 1611 struct otx2_pool *pool; 1612 int err, ptr, num_ptrs; 1613 dma_addr_t bufptr; 1614 1615 num_ptrs = pfvf->qset.rqe_cnt; 1616 1617 stack_pages = 1618 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs; 1619 1620 for (rq = 0; rq < hw->rx_queues; rq++) { 1621 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq); 1622 /* Initialize aura context */ 1623 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs); 1624 if (err) 1625 goto fail; 1626 } 1627 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) { 1628 err = otx2_pool_init(pfvf, pool_id, stack_pages, 1629 num_ptrs, pfvf->rbsize, AURA_NIX_RQ); 1630 if (err) 1631 goto fail; 1632 } 1633 1634 /* Flush accumulated messages */ 1635 err = otx2_sync_mbox_msg(&pfvf->mbox); 1636 if (err) 1637 goto fail; 1638 1639 /* Allocate pointers and free them to aura/pool */ 1640 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) { 1641 pool = &pfvf->qset.pool[pool_id]; 1642 1643 for (ptr = 0; ptr < num_ptrs; ptr++) { 1644 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr); 1645 if (err) { 1646 if (pool->xsk_pool) { 1647 while (ptr) 1648 xsk_buff_free(pool->xdp[--ptr]); 1649 } 1650 return -ENOMEM; 1651 } 1652 1653 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, 1654 pool->xsk_pool ? bufptr : 1655 bufptr + OTX2_HEAD_ROOM); 1656 } 1657 } 1658 return 0; 1659 fail: 1660 otx2_mbox_reset(&pfvf->mbox.mbox, 0); 1661 otx2_aura_pool_free(pfvf); 1662 return err; 1663 } 1664 1665 int otx2_config_npa(struct otx2_nic *pfvf) 1666 { 1667 struct otx2_qset *qset = &pfvf->qset; 1668 struct npa_lf_alloc_req *npalf; 1669 struct otx2_hw *hw = &pfvf->hw; 1670 int aura_cnt; 1671 1672 /* Pool - Stack of free buffer pointers 1673 * Aura - Alloc/frees pointers from/to pool for NIX DMA. 1674 */ 1675 1676 if (!hw->pool_cnt) 1677 return -EINVAL; 1678 1679 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt, 1680 sizeof(struct otx2_pool), GFP_KERNEL); 1681 if (!qset->pool) 1682 return -ENOMEM; 1683 1684 /* Get memory to put this msg */ 1685 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox); 1686 if (!npalf) 1687 return -ENOMEM; 1688 1689 /* Set aura and pool counts */ 1690 npalf->nr_pools = hw->pool_cnt; 1691 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt)); 1692 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1; 1693 1694 return otx2_sync_mbox_msg(&pfvf->mbox); 1695 } 1696 1697 int otx2_detach_resources(struct mbox *mbox) 1698 { 1699 struct rsrc_detach *detach; 1700 1701 mutex_lock(&mbox->lock); 1702 detach = otx2_mbox_alloc_msg_detach_resources(mbox); 1703 if (!detach) { 1704 mutex_unlock(&mbox->lock); 1705 return -ENOMEM; 1706 } 1707 1708 /* detach all */ 1709 detach->partial = false; 1710 1711 /* Send detach request to AF */ 1712 otx2_sync_mbox_msg(mbox); 1713 mutex_unlock(&mbox->lock); 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(otx2_detach_resources); 1717 1718 int otx2_attach_npa_nix(struct otx2_nic *pfvf) 1719 { 1720 struct rsrc_attach *attach; 1721 struct msg_req *msix; 1722 int err; 1723 1724 mutex_lock(&pfvf->mbox.lock); 1725 /* Get memory to put this msg */ 1726 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox); 1727 if (!attach) { 1728 mutex_unlock(&pfvf->mbox.lock); 1729 return -ENOMEM; 1730 } 1731 1732 attach->npalf = true; 1733 attach->nixlf = true; 1734 1735 /* Send attach request to AF */ 1736 err = otx2_sync_mbox_msg(&pfvf->mbox); 1737 if (err) { 1738 mutex_unlock(&pfvf->mbox.lock); 1739 return err; 1740 } 1741 1742 pfvf->nix_blkaddr = BLKADDR_NIX0; 1743 1744 /* If the platform has two NIX blocks then LF may be 1745 * allocated from NIX1. 1746 */ 1747 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL) 1748 pfvf->nix_blkaddr = BLKADDR_NIX1; 1749 1750 /* Get NPA and NIX MSIX vector offsets */ 1751 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox); 1752 if (!msix) { 1753 mutex_unlock(&pfvf->mbox.lock); 1754 return -ENOMEM; 1755 } 1756 1757 err = otx2_sync_mbox_msg(&pfvf->mbox); 1758 if (err) { 1759 mutex_unlock(&pfvf->mbox.lock); 1760 return err; 1761 } 1762 mutex_unlock(&pfvf->mbox.lock); 1763 1764 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID || 1765 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) { 1766 dev_err(pfvf->dev, 1767 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n"); 1768 return -EINVAL; 1769 } 1770 1771 return 0; 1772 } 1773 EXPORT_SYMBOL(otx2_attach_npa_nix); 1774 1775 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa) 1776 { 1777 struct hwctx_disable_req *req; 1778 1779 mutex_lock(&mbox->lock); 1780 /* Request AQ to disable this context */ 1781 if (npa) 1782 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox); 1783 else 1784 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox); 1785 1786 if (!req) { 1787 mutex_unlock(&mbox->lock); 1788 return; 1789 } 1790 1791 req->ctype = type; 1792 1793 if (otx2_sync_mbox_msg(mbox)) 1794 dev_err(mbox->pfvf->dev, "%s failed to disable context\n", 1795 __func__); 1796 1797 mutex_unlock(&mbox->lock); 1798 } 1799 1800 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable) 1801 { 1802 struct nix_bp_cfg_req *req; 1803 1804 if (enable) 1805 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox); 1806 else 1807 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox); 1808 1809 if (!req) 1810 return -ENOMEM; 1811 1812 req->chan_base = 0; 1813 if (otx2_is_pfc_enabled(pfvf)) { 1814 req->chan_cnt = IEEE_8021QAZ_MAX_TCS; 1815 req->bpid_per_chan = 1; 1816 } else { 1817 req->chan_cnt = pfvf->hw.rx_chan_cnt; 1818 req->bpid_per_chan = 0; 1819 } 1820 1821 return otx2_sync_mbox_msg(&pfvf->mbox); 1822 } 1823 EXPORT_SYMBOL(otx2_nix_config_bp); 1824 1825 int otx2_nix_cpt_config_bp(struct otx2_nic *pfvf, bool enable) 1826 { 1827 struct nix_bp_cfg_req *req; 1828 1829 if (enable) 1830 req = otx2_mbox_alloc_msg_nix_cpt_bp_enable(&pfvf->mbox); 1831 else 1832 req = otx2_mbox_alloc_msg_nix_cpt_bp_disable(&pfvf->mbox); 1833 1834 if (!req) 1835 return -ENOMEM; 1836 1837 req->chan_base = 0; 1838 if (otx2_is_pfc_enabled(pfvf)) { 1839 req->chan_cnt = IEEE_8021QAZ_MAX_TCS; 1840 req->bpid_per_chan = 1; 1841 } else { 1842 req->chan_cnt = pfvf->hw.rx_chan_cnt; 1843 req->bpid_per_chan = 0; 1844 } 1845 1846 return otx2_sync_mbox_msg(&pfvf->mbox); 1847 } 1848 EXPORT_SYMBOL(otx2_nix_cpt_config_bp); 1849 1850 /* Mbox message handlers */ 1851 void mbox_handler_cgx_stats(struct otx2_nic *pfvf, 1852 struct cgx_stats_rsp *rsp) 1853 { 1854 int id; 1855 1856 for (id = 0; id < CGX_RX_STATS_COUNT; id++) 1857 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id]; 1858 for (id = 0; id < CGX_TX_STATS_COUNT; id++) 1859 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id]; 1860 } 1861 1862 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf, 1863 struct cgx_fec_stats_rsp *rsp) 1864 { 1865 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks; 1866 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks; 1867 } 1868 1869 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf, 1870 struct npa_lf_alloc_rsp *rsp) 1871 { 1872 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs; 1873 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes; 1874 } 1875 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc); 1876 1877 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf, 1878 struct nix_lf_alloc_rsp *rsp) 1879 { 1880 pfvf->hw.sqb_size = rsp->sqb_size; 1881 pfvf->hw.rx_chan_base = rsp->rx_chan_base; 1882 pfvf->hw.tx_chan_base = rsp->tx_chan_base; 1883 pfvf->hw.rx_chan_cnt = rsp->rx_chan_cnt; 1884 pfvf->hw.tx_chan_cnt = rsp->tx_chan_cnt; 1885 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx; 1886 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx; 1887 pfvf->hw.cgx_links = rsp->cgx_links; 1888 pfvf->hw.lbk_links = rsp->lbk_links; 1889 pfvf->hw.tx_link = rsp->tx_link; 1890 } 1891 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc); 1892 1893 void mbox_handler_msix_offset(struct otx2_nic *pfvf, 1894 struct msix_offset_rsp *rsp) 1895 { 1896 pfvf->hw.npa_msixoff = rsp->npa_msixoff; 1897 pfvf->hw.nix_msixoff = rsp->nix_msixoff; 1898 } 1899 EXPORT_SYMBOL(mbox_handler_msix_offset); 1900 1901 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf, 1902 struct nix_bp_cfg_rsp *rsp) 1903 { 1904 int chan, chan_id; 1905 1906 for (chan = 0; chan < rsp->chan_cnt; chan++) { 1907 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F); 1908 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF; 1909 } 1910 } 1911 EXPORT_SYMBOL(mbox_handler_nix_bp_enable); 1912 1913 void otx2_free_cints(struct otx2_nic *pfvf, int n) 1914 { 1915 struct otx2_qset *qset = &pfvf->qset; 1916 struct otx2_hw *hw = &pfvf->hw; 1917 int irq, qidx; 1918 1919 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START; 1920 qidx < n; 1921 qidx++, irq++) { 1922 int vector = pci_irq_vector(pfvf->pdev, irq); 1923 1924 irq_set_affinity_hint(vector, NULL); 1925 free_cpumask_var(hw->affinity_mask[irq]); 1926 free_irq(vector, &qset->napi[qidx]); 1927 } 1928 } 1929 EXPORT_SYMBOL(otx2_free_cints); 1930 1931 void otx2_set_cints_affinity(struct otx2_nic *pfvf) 1932 { 1933 struct otx2_hw *hw = &pfvf->hw; 1934 int vec, cpu, irq, cint; 1935 1936 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START; 1937 cpu = cpumask_first(cpu_online_mask); 1938 1939 /* CQ interrupts */ 1940 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) { 1941 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL)) 1942 return; 1943 1944 cpumask_set_cpu(cpu, hw->affinity_mask[vec]); 1945 1946 irq = pci_irq_vector(pfvf->pdev, vec); 1947 irq_set_affinity_hint(irq, hw->affinity_mask[vec]); 1948 1949 cpu = cpumask_next(cpu, cpu_online_mask); 1950 if (unlikely(cpu >= nr_cpu_ids)) 1951 cpu = 0; 1952 } 1953 } 1954 1955 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw) 1956 { 1957 if (is_otx2_lbkvf(pfvf->pdev)) { 1958 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK; 1959 return hw->lbk_dwrr_mtu; 1960 } 1961 1962 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM; 1963 return hw->rpm_dwrr_mtu; 1964 } 1965 1966 u16 otx2_get_max_mtu(struct otx2_nic *pfvf) 1967 { 1968 struct nix_hw_info *rsp; 1969 struct msg_req *req; 1970 u16 max_mtu; 1971 int rc; 1972 1973 mutex_lock(&pfvf->mbox.lock); 1974 1975 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox); 1976 if (!req) { 1977 rc = -ENOMEM; 1978 goto out; 1979 } 1980 1981 rc = otx2_sync_mbox_msg(&pfvf->mbox); 1982 if (!rc) { 1983 rsp = (struct nix_hw_info *) 1984 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 1985 if (IS_ERR(rsp)) { 1986 rc = PTR_ERR(rsp); 1987 goto out; 1988 } 1989 1990 /* HW counts VLAN insertion bytes (8 for double tag) 1991 * irrespective of whether SQE is requesting to insert VLAN 1992 * in the packet or not. Hence these 8 bytes have to be 1993 * discounted from max packet size otherwise HW will throw 1994 * SMQ errors 1995 */ 1996 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN; 1997 1998 /* Also save DWRR MTU, needed for DWRR weight calculation */ 1999 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp); 2000 if (!pfvf->hw.dwrr_mtu) 2001 pfvf->hw.dwrr_mtu = 1; 2002 } 2003 2004 out: 2005 mutex_unlock(&pfvf->mbox.lock); 2006 if (rc) { 2007 dev_warn(pfvf->dev, 2008 "Failed to get MTU from hardware setting default value(1500)\n"); 2009 max_mtu = 1500; 2010 } 2011 return max_mtu; 2012 } 2013 EXPORT_SYMBOL(otx2_get_max_mtu); 2014 2015 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features) 2016 { 2017 netdev_features_t changed = features ^ netdev->features; 2018 struct otx2_nic *pfvf = netdev_priv(netdev); 2019 bool ntuple = !!(features & NETIF_F_NTUPLE); 2020 bool tc = !!(features & NETIF_F_HW_TC); 2021 2022 if ((changed & NETIF_F_NTUPLE) && !ntuple) 2023 otx2_destroy_ntuple_flows(pfvf); 2024 2025 if ((changed & NETIF_F_NTUPLE) && ntuple) { 2026 if (!pfvf->flow_cfg->max_flows) { 2027 netdev_err(netdev, 2028 "Can't enable NTUPLE, MCAM entries not allocated\n"); 2029 return -EINVAL; 2030 } 2031 } 2032 2033 if ((changed & NETIF_F_HW_TC) && !tc && 2034 otx2_tc_flower_rule_cnt(pfvf)) { 2035 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n"); 2036 return -EBUSY; 2037 } 2038 2039 if ((changed & NETIF_F_NTUPLE) && ntuple && 2040 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) { 2041 netdev_err(netdev, 2042 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n"); 2043 return -EINVAL; 2044 } 2045 2046 return 0; 2047 } 2048 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features); 2049 2050 int otx2_set_hw_capabilities(struct otx2_nic *pfvf) 2051 { 2052 struct mbox *mbox = &pfvf->mbox; 2053 struct otx2_hw *hw = &pfvf->hw; 2054 struct get_hw_cap_rsp *rsp; 2055 struct msg_req *req; 2056 int ret = -ENOMEM; 2057 2058 mutex_lock(&mbox->lock); 2059 2060 req = otx2_mbox_alloc_msg_get_hw_cap(mbox); 2061 if (!req) 2062 goto fail; 2063 2064 ret = otx2_sync_mbox_msg(mbox); 2065 if (ret) 2066 goto fail; 2067 2068 rsp = (struct get_hw_cap_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 2069 0, &req->hdr); 2070 if (IS_ERR(rsp)) { 2071 ret = -EINVAL; 2072 goto fail; 2073 } 2074 2075 if (rsp->hw_caps & HW_CAP_MACSEC) 2076 __set_bit(CN10K_HW_MACSEC, &hw->cap_flag); 2077 2078 mutex_unlock(&mbox->lock); 2079 2080 return 0; 2081 fail: 2082 dev_err(pfvf->dev, "Cannot get MACSEC capability from AF\n"); 2083 mutex_unlock(&mbox->lock); 2084 return ret; 2085 } 2086 2087 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ 2088 int __weak \ 2089 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \ 2090 struct _req_type *req, \ 2091 struct _rsp_type *rsp) \ 2092 { \ 2093 /* Nothing to do here */ \ 2094 return 0; \ 2095 } \ 2096 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name); 2097 MBOX_UP_CGX_MESSAGES 2098 MBOX_UP_MCS_MESSAGES 2099 #undef M 2100 2101 dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf, 2102 struct sk_buff *skb, int seg, int *len) 2103 { 2104 enum dma_data_direction dir = DMA_TO_DEVICE; 2105 const skb_frag_t *frag; 2106 struct page *page; 2107 int offset; 2108 2109 /* Crypto hardware need write permission for ipsec crypto offload */ 2110 if (unlikely(xfrm_offload(skb))) { 2111 dir = DMA_BIDIRECTIONAL; 2112 skb = skb_unshare(skb, GFP_ATOMIC); 2113 } 2114 2115 /* First segment is always skb->data */ 2116 if (!seg) { 2117 page = virt_to_page(skb->data); 2118 offset = offset_in_page(skb->data); 2119 *len = skb_headlen(skb); 2120 } else { 2121 frag = &skb_shinfo(skb)->frags[seg - 1]; 2122 page = skb_frag_page(frag); 2123 offset = skb_frag_off(frag); 2124 *len = skb_frag_size(frag); 2125 } 2126 return otx2_dma_map_page(pfvf, page, offset, *len, dir); 2127 } 2128 2129 void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg) 2130 { 2131 enum dma_data_direction dir = DMA_TO_DEVICE; 2132 struct sk_buff *skb = NULL; 2133 int seg; 2134 2135 skb = (struct sk_buff *)sg->skb; 2136 if (unlikely(xfrm_offload(skb))) 2137 dir = DMA_BIDIRECTIONAL; 2138 2139 for (seg = 0; seg < sg->num_segs; seg++) { 2140 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg], 2141 sg->size[seg], dir); 2142 } 2143 sg->num_segs = 0; 2144 } 2145