xref: /linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_common.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <net/tso.h>
14 
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18 #include "cn10k.h"
19 
20 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
21 				 struct otx2_nic *pfvf, int qidx)
22 {
23 	u64 incr = (u64)qidx << 32;
24 	u64 *ptr;
25 
26 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
27 	stats->bytes = otx2_atomic64_add(incr, ptr);
28 
29 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
30 	stats->pkts = otx2_atomic64_add(incr, ptr);
31 }
32 
33 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
34 				 struct otx2_nic *pfvf, int qidx)
35 {
36 	u64 incr = (u64)qidx << 32;
37 	u64 *ptr;
38 
39 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
40 	stats->bytes = otx2_atomic64_add(incr, ptr);
41 
42 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
43 	stats->pkts = otx2_atomic64_add(incr, ptr);
44 }
45 
46 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
47 {
48 	struct msg_req *req;
49 
50 	if (!netif_running(pfvf->netdev))
51 		return;
52 
53 	mutex_lock(&pfvf->mbox.lock);
54 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
55 	if (!req) {
56 		mutex_unlock(&pfvf->mbox.lock);
57 		return;
58 	}
59 
60 	otx2_sync_mbox_msg(&pfvf->mbox);
61 	mutex_unlock(&pfvf->mbox.lock);
62 }
63 
64 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
65 {
66 	struct msg_req *req;
67 
68 	if (!netif_running(pfvf->netdev))
69 		return;
70 	mutex_lock(&pfvf->mbox.lock);
71 	req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
72 	if (req)
73 		otx2_sync_mbox_msg(&pfvf->mbox);
74 	mutex_unlock(&pfvf->mbox.lock);
75 }
76 
77 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
78 {
79 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
80 
81 	if (!pfvf->qset.rq)
82 		return 0;
83 
84 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
85 	return 1;
86 }
87 
88 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
89 {
90 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
91 
92 	if (!pfvf->qset.sq)
93 		return 0;
94 
95 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
96 	return 1;
97 }
98 
99 void otx2_get_dev_stats(struct otx2_nic *pfvf)
100 {
101 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
102 
103 #define OTX2_GET_RX_STATS(reg) \
104 	 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
105 #define OTX2_GET_TX_STATS(reg) \
106 	 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
107 
108 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
109 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
110 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
111 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
112 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
113 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
114 			       dev_stats->rx_mcast_frames +
115 			       dev_stats->rx_ucast_frames;
116 
117 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
118 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
119 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
120 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
121 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
122 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
123 			       dev_stats->tx_mcast_frames +
124 			       dev_stats->tx_ucast_frames;
125 }
126 
127 void otx2_get_stats64(struct net_device *netdev,
128 		      struct rtnl_link_stats64 *stats)
129 {
130 	struct otx2_nic *pfvf = netdev_priv(netdev);
131 	struct otx2_dev_stats *dev_stats;
132 
133 	otx2_get_dev_stats(pfvf);
134 
135 	dev_stats = &pfvf->hw.dev_stats;
136 	stats->rx_bytes = dev_stats->rx_bytes;
137 	stats->rx_packets = dev_stats->rx_frames;
138 	stats->rx_dropped = dev_stats->rx_drops;
139 	stats->multicast = dev_stats->rx_mcast_frames;
140 
141 	stats->tx_bytes = dev_stats->tx_bytes;
142 	stats->tx_packets = dev_stats->tx_frames;
143 	stats->tx_dropped = dev_stats->tx_drops;
144 }
145 EXPORT_SYMBOL(otx2_get_stats64);
146 
147 /* Sync MAC address with RVU AF */
148 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
149 {
150 	struct nix_set_mac_addr *req;
151 	int err;
152 
153 	mutex_lock(&pfvf->mbox.lock);
154 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
155 	if (!req) {
156 		mutex_unlock(&pfvf->mbox.lock);
157 		return -ENOMEM;
158 	}
159 
160 	ether_addr_copy(req->mac_addr, mac);
161 
162 	err = otx2_sync_mbox_msg(&pfvf->mbox);
163 	mutex_unlock(&pfvf->mbox.lock);
164 	return err;
165 }
166 
167 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
168 				struct net_device *netdev)
169 {
170 	struct nix_get_mac_addr_rsp *rsp;
171 	struct mbox_msghdr *msghdr;
172 	struct msg_req *req;
173 	int err;
174 
175 	mutex_lock(&pfvf->mbox.lock);
176 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
177 	if (!req) {
178 		mutex_unlock(&pfvf->mbox.lock);
179 		return -ENOMEM;
180 	}
181 
182 	err = otx2_sync_mbox_msg(&pfvf->mbox);
183 	if (err) {
184 		mutex_unlock(&pfvf->mbox.lock);
185 		return err;
186 	}
187 
188 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
189 	if (IS_ERR(msghdr)) {
190 		mutex_unlock(&pfvf->mbox.lock);
191 		return PTR_ERR(msghdr);
192 	}
193 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
194 	ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
195 	mutex_unlock(&pfvf->mbox.lock);
196 
197 	return 0;
198 }
199 
200 int otx2_set_mac_address(struct net_device *netdev, void *p)
201 {
202 	struct otx2_nic *pfvf = netdev_priv(netdev);
203 	struct sockaddr *addr = p;
204 
205 	if (!is_valid_ether_addr(addr->sa_data))
206 		return -EADDRNOTAVAIL;
207 
208 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
209 		memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
210 		/* update dmac field in vlan offload rule */
211 		if (pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
212 			otx2_install_rxvlan_offload_flow(pfvf);
213 		/* update dmac address in ntuple and DMAC filter list */
214 		if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
215 			otx2_dmacflt_update_pfmac_flow(pfvf);
216 	} else {
217 		return -EPERM;
218 	}
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(otx2_set_mac_address);
223 
224 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
225 {
226 	struct nix_frs_cfg *req;
227 	int err;
228 
229 	mutex_lock(&pfvf->mbox.lock);
230 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
231 	if (!req) {
232 		mutex_unlock(&pfvf->mbox.lock);
233 		return -ENOMEM;
234 	}
235 
236 	req->maxlen = pfvf->max_frs;
237 
238 	err = otx2_sync_mbox_msg(&pfvf->mbox);
239 	mutex_unlock(&pfvf->mbox.lock);
240 	return err;
241 }
242 
243 int otx2_config_pause_frm(struct otx2_nic *pfvf)
244 {
245 	struct cgx_pause_frm_cfg *req;
246 	int err;
247 
248 	if (is_otx2_lbkvf(pfvf->pdev))
249 		return 0;
250 
251 	mutex_lock(&pfvf->mbox.lock);
252 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
253 	if (!req) {
254 		err = -ENOMEM;
255 		goto unlock;
256 	}
257 
258 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
259 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
260 	req->set = 1;
261 
262 	err = otx2_sync_mbox_msg(&pfvf->mbox);
263 unlock:
264 	mutex_unlock(&pfvf->mbox.lock);
265 	return err;
266 }
267 
268 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
269 {
270 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
271 	struct nix_rss_flowkey_cfg *req;
272 	int err;
273 
274 	mutex_lock(&pfvf->mbox.lock);
275 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
276 	if (!req) {
277 		mutex_unlock(&pfvf->mbox.lock);
278 		return -ENOMEM;
279 	}
280 	req->mcam_index = -1; /* Default or reserved index */
281 	req->flowkey_cfg = rss->flowkey_cfg;
282 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
283 
284 	err = otx2_sync_mbox_msg(&pfvf->mbox);
285 	mutex_unlock(&pfvf->mbox.lock);
286 	return err;
287 }
288 
289 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
290 {
291 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
292 	const int index = rss->rss_size * ctx_id;
293 	struct mbox *mbox = &pfvf->mbox;
294 	struct otx2_rss_ctx *rss_ctx;
295 	struct nix_aq_enq_req *aq;
296 	int idx, err;
297 
298 	mutex_lock(&mbox->lock);
299 	rss_ctx = rss->rss_ctx[ctx_id];
300 	/* Get memory to put this msg */
301 	for (idx = 0; idx < rss->rss_size; idx++) {
302 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
303 		if (!aq) {
304 			/* The shared memory buffer can be full.
305 			 * Flush it and retry
306 			 */
307 			err = otx2_sync_mbox_msg(mbox);
308 			if (err) {
309 				mutex_unlock(&mbox->lock);
310 				return err;
311 			}
312 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
313 			if (!aq) {
314 				mutex_unlock(&mbox->lock);
315 				return -ENOMEM;
316 			}
317 		}
318 
319 		aq->rss.rq = rss_ctx->ind_tbl[idx];
320 
321 		/* Fill AQ info */
322 		aq->qidx = index + idx;
323 		aq->ctype = NIX_AQ_CTYPE_RSS;
324 		aq->op = NIX_AQ_INSTOP_INIT;
325 	}
326 	err = otx2_sync_mbox_msg(mbox);
327 	mutex_unlock(&mbox->lock);
328 	return err;
329 }
330 
331 void otx2_set_rss_key(struct otx2_nic *pfvf)
332 {
333 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
334 	u64 *key = (u64 *)&rss->key[4];
335 	int idx;
336 
337 	/* 352bit or 44byte key needs to be configured as below
338 	 * NIX_LF_RX_SECRETX0 = key<351:288>
339 	 * NIX_LF_RX_SECRETX1 = key<287:224>
340 	 * NIX_LF_RX_SECRETX2 = key<223:160>
341 	 * NIX_LF_RX_SECRETX3 = key<159:96>
342 	 * NIX_LF_RX_SECRETX4 = key<95:32>
343 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
344 	 */
345 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
346 		     (u64)(*((u32 *)&rss->key)) << 32);
347 	idx = sizeof(rss->key) / sizeof(u64);
348 	while (idx > 0) {
349 		idx--;
350 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
351 	}
352 }
353 
354 int otx2_rss_init(struct otx2_nic *pfvf)
355 {
356 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
357 	struct otx2_rss_ctx *rss_ctx;
358 	int idx, ret = 0;
359 
360 	rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
361 
362 	/* Init RSS key if it is not setup already */
363 	if (!rss->enable)
364 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
365 	otx2_set_rss_key(pfvf);
366 
367 	if (!netif_is_rxfh_configured(pfvf->netdev)) {
368 		/* Set RSS group 0 as default indirection table */
369 		rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
370 								  GFP_KERNEL);
371 		if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
372 			return -ENOMEM;
373 
374 		rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
375 		for (idx = 0; idx < rss->rss_size; idx++)
376 			rss_ctx->ind_tbl[idx] =
377 				ethtool_rxfh_indir_default(idx,
378 							   pfvf->hw.rx_queues);
379 	}
380 	ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
381 	if (ret)
382 		return ret;
383 
384 	/* Flowkey or hash config to be used for generating flow tag */
385 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
386 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
387 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
388 			   NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
389 			   NIX_FLOW_KEY_TYPE_IPV4_PROTO;
390 
391 	ret = otx2_set_flowkey_cfg(pfvf);
392 	if (ret)
393 		return ret;
394 
395 	rss->enable = true;
396 	return 0;
397 }
398 
399 /* Setup UDP segmentation algorithm in HW */
400 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
401 {
402 	struct nix_lso_format *field;
403 
404 	field = (struct nix_lso_format *)&lso->fields[0];
405 	lso->field_mask = GENMASK(18, 0);
406 
407 	/* IP's Length field */
408 	field->layer = NIX_TXLAYER_OL3;
409 	/* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
410 	field->offset = v4 ? 2 : 4;
411 	field->sizem1 = 1; /* i.e 2 bytes */
412 	field->alg = NIX_LSOALG_ADD_PAYLEN;
413 	field++;
414 
415 	/* No ID field in IPv6 header */
416 	if (v4) {
417 		/* Increment IPID */
418 		field->layer = NIX_TXLAYER_OL3;
419 		field->offset = 4;
420 		field->sizem1 = 1; /* i.e 2 bytes */
421 		field->alg = NIX_LSOALG_ADD_SEGNUM;
422 		field++;
423 	}
424 
425 	/* Update length in UDP header */
426 	field->layer = NIX_TXLAYER_OL4;
427 	field->offset = 4;
428 	field->sizem1 = 1;
429 	field->alg = NIX_LSOALG_ADD_PAYLEN;
430 }
431 
432 /* Setup segmentation algorithms in HW and retrieve algorithm index */
433 void otx2_setup_segmentation(struct otx2_nic *pfvf)
434 {
435 	struct nix_lso_format_cfg_rsp *rsp;
436 	struct nix_lso_format_cfg *lso;
437 	struct otx2_hw *hw = &pfvf->hw;
438 	int err;
439 
440 	mutex_lock(&pfvf->mbox.lock);
441 
442 	/* UDPv4 segmentation */
443 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
444 	if (!lso)
445 		goto fail;
446 
447 	/* Setup UDP/IP header fields that HW should update per segment */
448 	otx2_setup_udp_segmentation(lso, true);
449 
450 	err = otx2_sync_mbox_msg(&pfvf->mbox);
451 	if (err)
452 		goto fail;
453 
454 	rsp = (struct nix_lso_format_cfg_rsp *)
455 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
456 	if (IS_ERR(rsp))
457 		goto fail;
458 
459 	hw->lso_udpv4_idx = rsp->lso_format_idx;
460 
461 	/* UDPv6 segmentation */
462 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
463 	if (!lso)
464 		goto fail;
465 
466 	/* Setup UDP/IP header fields that HW should update per segment */
467 	otx2_setup_udp_segmentation(lso, false);
468 
469 	err = otx2_sync_mbox_msg(&pfvf->mbox);
470 	if (err)
471 		goto fail;
472 
473 	rsp = (struct nix_lso_format_cfg_rsp *)
474 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
475 	if (IS_ERR(rsp))
476 		goto fail;
477 
478 	hw->lso_udpv6_idx = rsp->lso_format_idx;
479 	mutex_unlock(&pfvf->mbox.lock);
480 	return;
481 fail:
482 	mutex_unlock(&pfvf->mbox.lock);
483 	netdev_info(pfvf->netdev,
484 		    "Failed to get LSO index for UDP GSO offload, disabling\n");
485 	pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
486 }
487 
488 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
489 {
490 	/* Configure CQE interrupt coalescing parameters
491 	 *
492 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
493 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
494 	 * usecs, convert that to 100ns count.
495 	 */
496 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
497 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
498 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
499 		     (pfvf->hw.cq_ecount_wait - 1));
500 }
501 
502 int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
503 		      dma_addr_t *dma)
504 {
505 	u8 *buf;
506 
507 	buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
508 	if (unlikely(!buf))
509 		return -ENOMEM;
510 
511 	*dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
512 				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
513 	if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
514 		page_frag_free(buf);
515 		return -ENOMEM;
516 	}
517 
518 	return 0;
519 }
520 
521 static int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
522 			   dma_addr_t *dma)
523 {
524 	int ret;
525 
526 	local_bh_disable();
527 	ret = __otx2_alloc_rbuf(pfvf, pool, dma);
528 	local_bh_enable();
529 	return ret;
530 }
531 
532 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
533 		      dma_addr_t *dma)
534 {
535 	if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma))) {
536 		struct refill_work *work;
537 		struct delayed_work *dwork;
538 
539 		work = &pfvf->refill_wrk[cq->cq_idx];
540 		dwork = &work->pool_refill_work;
541 		/* Schedule a task if no other task is running */
542 		if (!cq->refill_task_sched) {
543 			cq->refill_task_sched = true;
544 			schedule_delayed_work(dwork,
545 					      msecs_to_jiffies(100));
546 		}
547 		return -ENOMEM;
548 	}
549 	return 0;
550 }
551 
552 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
553 {
554 	struct otx2_nic *pfvf = netdev_priv(netdev);
555 
556 	schedule_work(&pfvf->reset_task);
557 }
558 EXPORT_SYMBOL(otx2_tx_timeout);
559 
560 void otx2_get_mac_from_af(struct net_device *netdev)
561 {
562 	struct otx2_nic *pfvf = netdev_priv(netdev);
563 	int err;
564 
565 	err = otx2_hw_get_mac_addr(pfvf, netdev);
566 	if (err)
567 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
568 
569 	/* If AF doesn't provide a valid MAC, generate a random one */
570 	if (!is_valid_ether_addr(netdev->dev_addr))
571 		eth_hw_addr_random(netdev);
572 }
573 EXPORT_SYMBOL(otx2_get_mac_from_af);
574 
575 static int otx2_get_link(struct otx2_nic *pfvf)
576 {
577 	int link = 0;
578 	u16 map;
579 
580 	/* cgx lmac link */
581 	if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
582 		map = pfvf->hw.tx_chan_base & 0x7FF;
583 		link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
584 	}
585 	/* LBK channel */
586 	if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE) {
587 		map = pfvf->hw.tx_chan_base & 0x7FF;
588 		link = pfvf->hw.cgx_links | ((map >> 8) & 0xF);
589 	}
590 
591 	return link;
592 }
593 
594 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
595 {
596 	struct otx2_hw *hw = &pfvf->hw;
597 	struct nix_txschq_config *req;
598 	u64 schq, parent;
599 
600 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
601 	if (!req)
602 		return -ENOMEM;
603 
604 	req->lvl = lvl;
605 	req->num_regs = 1;
606 
607 	schq = hw->txschq_list[lvl][0];
608 	/* Set topology e.t.c configuration */
609 	if (lvl == NIX_TXSCH_LVL_SMQ) {
610 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
611 		req->regval[0] = ((pfvf->netdev->max_mtu + OTX2_ETH_HLEN) << 8)
612 				  | OTX2_MIN_MTU;
613 
614 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
615 				  (0x2ULL << 36);
616 		req->num_regs++;
617 		/* MDQ config */
618 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
619 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
620 		req->regval[1] = parent << 16;
621 		req->num_regs++;
622 		/* Set DWRR quantum */
623 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
624 		req->regval[2] =  DFLT_RR_QTM;
625 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
626 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
627 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
628 		req->regval[0] = parent << 16;
629 		req->num_regs++;
630 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
631 		req->regval[1] = DFLT_RR_QTM;
632 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
633 		parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
634 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
635 		req->regval[0] = parent << 16;
636 		req->num_regs++;
637 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
638 		req->regval[1] = DFLT_RR_QTM;
639 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
640 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
641 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
642 		req->regval[0] = parent << 16;
643 
644 		req->num_regs++;
645 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
646 		req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;
647 
648 		req->num_regs++;
649 		req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
650 							otx2_get_link(pfvf));
651 		/* Enable this queue and backpressure */
652 		req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
653 
654 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
655 		/* Default config for TL1.
656 		 * For VF this is always ignored.
657 		 */
658 
659 		/* Set DWRR quantum */
660 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
661 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
662 
663 		req->num_regs++;
664 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
665 		req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
666 
667 		req->num_regs++;
668 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
669 		req->regval[2] = 0;
670 	}
671 
672 	return otx2_sync_mbox_msg(&pfvf->mbox);
673 }
674 
675 int otx2_txsch_alloc(struct otx2_nic *pfvf)
676 {
677 	struct nix_txsch_alloc_req *req;
678 	int lvl;
679 
680 	/* Get memory to put this msg */
681 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
682 	if (!req)
683 		return -ENOMEM;
684 
685 	/* Request one schq per level */
686 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
687 		req->schq[lvl] = 1;
688 
689 	return otx2_sync_mbox_msg(&pfvf->mbox);
690 }
691 
692 int otx2_txschq_stop(struct otx2_nic *pfvf)
693 {
694 	struct nix_txsch_free_req *free_req;
695 	int lvl, schq, err;
696 
697 	mutex_lock(&pfvf->mbox.lock);
698 	/* Free the transmit schedulers */
699 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
700 	if (!free_req) {
701 		mutex_unlock(&pfvf->mbox.lock);
702 		return -ENOMEM;
703 	}
704 
705 	free_req->flags = TXSCHQ_FREE_ALL;
706 	err = otx2_sync_mbox_msg(&pfvf->mbox);
707 	mutex_unlock(&pfvf->mbox.lock);
708 
709 	/* Clear the txschq list */
710 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
711 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
712 			pfvf->hw.txschq_list[lvl][schq] = 0;
713 	}
714 	return err;
715 }
716 
717 void otx2_sqb_flush(struct otx2_nic *pfvf)
718 {
719 	int qidx, sqe_tail, sqe_head;
720 	u64 incr, *ptr, val;
721 	int timeout = 1000;
722 
723 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
724 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
725 		incr = (u64)qidx << 32;
726 		while (timeout) {
727 			val = otx2_atomic64_add(incr, ptr);
728 			sqe_head = (val >> 20) & 0x3F;
729 			sqe_tail = (val >> 28) & 0x3F;
730 			if (sqe_head == sqe_tail)
731 				break;
732 			usleep_range(1, 3);
733 			timeout--;
734 		}
735 	}
736 }
737 
738 /* RED and drop levels of CQ on packet reception.
739  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
740  */
741 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
742 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
743 
744 /* RED and drop levels of AURA for packet reception.
745  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
746  * Eg: For RQ length 1K, for pass/drop level 204/230.
747  * RED accepts pkts if free pointers > 102 & <= 205.
748  * Drops pkts if free pointers < 102.
749  */
750 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
751 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
752 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
753 
754 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
755 {
756 	struct otx2_qset *qset = &pfvf->qset;
757 	struct nix_aq_enq_req *aq;
758 
759 	/* Get memory to put this msg */
760 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
761 	if (!aq)
762 		return -ENOMEM;
763 
764 	aq->rq.cq = qidx;
765 	aq->rq.ena = 1;
766 	aq->rq.pb_caching = 1;
767 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
768 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
769 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
770 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
771 	aq->rq.qint_idx = 0;
772 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
773 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
774 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
775 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
776 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
777 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
778 
779 	/* Fill AQ info */
780 	aq->qidx = qidx;
781 	aq->ctype = NIX_AQ_CTYPE_RQ;
782 	aq->op = NIX_AQ_INSTOP_INIT;
783 
784 	return otx2_sync_mbox_msg(&pfvf->mbox);
785 }
786 
787 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
788 {
789 	struct otx2_nic *pfvf = dev;
790 	struct otx2_snd_queue *sq;
791 	struct nix_aq_enq_req *aq;
792 
793 	sq = &pfvf->qset.sq[qidx];
794 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
795 	/* Get memory to put this msg */
796 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
797 	if (!aq)
798 		return -ENOMEM;
799 
800 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
801 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
802 	aq->sq.cq_ena = 1;
803 	aq->sq.ena = 1;
804 	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
805 	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
806 	aq->sq.smq_rr_quantum = DFLT_RR_QTM;
807 	aq->sq.default_chan = pfvf->hw.tx_chan_base;
808 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
809 	aq->sq.sqb_aura = sqb_aura;
810 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
811 	aq->sq.qint_idx = 0;
812 	/* Due pipelining impact minimum 2000 unused SQ CQE's
813 	 * need to maintain to avoid CQ overflow.
814 	 */
815 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
816 
817 	/* Fill AQ info */
818 	aq->qidx = qidx;
819 	aq->ctype = NIX_AQ_CTYPE_SQ;
820 	aq->op = NIX_AQ_INSTOP_INIT;
821 
822 	return otx2_sync_mbox_msg(&pfvf->mbox);
823 }
824 
825 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
826 {
827 	struct otx2_qset *qset = &pfvf->qset;
828 	struct otx2_snd_queue *sq;
829 	struct otx2_pool *pool;
830 	int err;
831 
832 	pool = &pfvf->qset.pool[sqb_aura];
833 	sq = &qset->sq[qidx];
834 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
835 	sq->sqe_cnt = qset->sqe_cnt;
836 
837 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
838 	if (err)
839 		return err;
840 
841 	err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
842 			 TSO_HEADER_SIZE);
843 	if (err)
844 		return err;
845 
846 	sq->sqe_base = sq->sqe->base;
847 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
848 	if (!sq->sg)
849 		return -ENOMEM;
850 
851 	if (pfvf->ptp) {
852 		err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
853 				 sizeof(*sq->timestamps));
854 		if (err)
855 			return err;
856 	}
857 
858 	sq->head = 0;
859 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
860 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
861 	/* Set SQE threshold to 10% of total SQEs */
862 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
863 	sq->aura_id = sqb_aura;
864 	sq->aura_fc_addr = pool->fc_addr->base;
865 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
866 
867 	sq->stats.bytes = 0;
868 	sq->stats.pkts = 0;
869 
870 	return pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
871 
872 }
873 
874 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
875 {
876 	struct otx2_qset *qset = &pfvf->qset;
877 	struct nix_aq_enq_req *aq;
878 	struct otx2_cq_queue *cq;
879 	int err, pool_id;
880 
881 	cq = &qset->cq[qidx];
882 	cq->cq_idx = qidx;
883 	if (qidx < pfvf->hw.rx_queues) {
884 		cq->cq_type = CQ_RX;
885 		cq->cint_idx = qidx;
886 		cq->cqe_cnt = qset->rqe_cnt;
887 	} else {
888 		cq->cq_type = CQ_TX;
889 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
890 		cq->cqe_cnt = qset->sqe_cnt;
891 	}
892 	cq->cqe_size = pfvf->qset.xqe_size;
893 
894 	/* Allocate memory for CQEs */
895 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
896 	if (err)
897 		return err;
898 
899 	/* Save CQE CPU base for faster reference */
900 	cq->cqe_base = cq->cqe->base;
901 	/* In case where all RQs auras point to single pool,
902 	 * all CQs receive buffer pool also point to same pool.
903 	 */
904 	pool_id = ((cq->cq_type == CQ_RX) &&
905 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
906 	cq->rbpool = &qset->pool[pool_id];
907 	cq->refill_task_sched = false;
908 
909 	/* Get memory to put this msg */
910 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
911 	if (!aq)
912 		return -ENOMEM;
913 
914 	aq->cq.ena = 1;
915 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
916 	aq->cq.caching = 1;
917 	aq->cq.base = cq->cqe->iova;
918 	aq->cq.cint_idx = cq->cint_idx;
919 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
920 	aq->cq.qint_idx = 0;
921 	aq->cq.avg_level = 255;
922 
923 	if (qidx < pfvf->hw.rx_queues) {
924 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
925 		aq->cq.drop_ena = 1;
926 
927 		/* Enable receive CQ backpressure */
928 		aq->cq.bp_ena = 1;
929 		aq->cq.bpid = pfvf->bpid[0];
930 
931 		/* Set backpressure level is same as cq pass level */
932 		aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
933 	}
934 
935 	/* Fill AQ info */
936 	aq->qidx = qidx;
937 	aq->ctype = NIX_AQ_CTYPE_CQ;
938 	aq->op = NIX_AQ_INSTOP_INIT;
939 
940 	return otx2_sync_mbox_msg(&pfvf->mbox);
941 }
942 
943 static void otx2_pool_refill_task(struct work_struct *work)
944 {
945 	struct otx2_cq_queue *cq;
946 	struct otx2_pool *rbpool;
947 	struct refill_work *wrk;
948 	int qidx, free_ptrs = 0;
949 	struct otx2_nic *pfvf;
950 	dma_addr_t bufptr;
951 
952 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
953 	pfvf = wrk->pf;
954 	qidx = wrk - pfvf->refill_wrk;
955 	cq = &pfvf->qset.cq[qidx];
956 	rbpool = cq->rbpool;
957 	free_ptrs = cq->pool_ptrs;
958 
959 	while (cq->pool_ptrs) {
960 		if (otx2_alloc_rbuf(pfvf, rbpool, &bufptr)) {
961 			/* Schedule a WQ if we fails to free atleast half of the
962 			 * pointers else enable napi for this RQ.
963 			 */
964 			if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
965 				struct delayed_work *dwork;
966 
967 				dwork = &wrk->pool_refill_work;
968 				schedule_delayed_work(dwork,
969 						      msecs_to_jiffies(100));
970 			} else {
971 				cq->refill_task_sched = false;
972 			}
973 			return;
974 		}
975 		pfvf->hw_ops->aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
976 		cq->pool_ptrs--;
977 	}
978 	cq->refill_task_sched = false;
979 }
980 
981 int otx2_config_nix_queues(struct otx2_nic *pfvf)
982 {
983 	int qidx, err;
984 
985 	/* Initialize RX queues */
986 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
987 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
988 
989 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
990 		if (err)
991 			return err;
992 	}
993 
994 	/* Initialize TX queues */
995 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
996 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
997 
998 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
999 		if (err)
1000 			return err;
1001 	}
1002 
1003 	/* Initialize completion queues */
1004 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1005 		err = otx2_cq_init(pfvf, qidx);
1006 		if (err)
1007 			return err;
1008 	}
1009 
1010 	/* Initialize work queue for receive buffer refill */
1011 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1012 					sizeof(struct refill_work), GFP_KERNEL);
1013 	if (!pfvf->refill_wrk)
1014 		return -ENOMEM;
1015 
1016 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1017 		pfvf->refill_wrk[qidx].pf = pfvf;
1018 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1019 				  otx2_pool_refill_task);
1020 	}
1021 	return 0;
1022 }
1023 
1024 int otx2_config_nix(struct otx2_nic *pfvf)
1025 {
1026 	struct nix_lf_alloc_req  *nixlf;
1027 	struct nix_lf_alloc_rsp *rsp;
1028 	int err;
1029 
1030 	pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
1031 
1032 	/* Get memory to put this msg */
1033 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1034 	if (!nixlf)
1035 		return -ENOMEM;
1036 
1037 	/* Set RQ/SQ/CQ counts */
1038 	nixlf->rq_cnt = pfvf->hw.rx_queues;
1039 	nixlf->sq_cnt = pfvf->hw.tx_queues;
1040 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
1041 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1042 	nixlf->rss_grps = MAX_RSS_GROUPS;
1043 	nixlf->xqe_sz = NIX_XQESZ_W16;
1044 	/* We don't know absolute NPA LF idx attached.
1045 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1046 	 * NPA LF attached to this RVU PF/VF.
1047 	 */
1048 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1049 	/* Disable alignment pad, enable L2 length check,
1050 	 * enable L4 TCP/UDP checksum verification.
1051 	 */
1052 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1053 
1054 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1055 	if (err)
1056 		return err;
1057 
1058 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1059 							   &nixlf->hdr);
1060 	if (IS_ERR(rsp))
1061 		return PTR_ERR(rsp);
1062 
1063 	if (rsp->qints < 1)
1064 		return -ENXIO;
1065 
1066 	return rsp->hdr.rc;
1067 }
1068 
1069 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1070 {
1071 	struct otx2_qset *qset = &pfvf->qset;
1072 	struct otx2_hw *hw = &pfvf->hw;
1073 	struct otx2_snd_queue *sq;
1074 	int sqb, qidx;
1075 	u64 iova, pa;
1076 
1077 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1078 		sq = &qset->sq[qidx];
1079 		if (!sq->sqb_ptrs)
1080 			continue;
1081 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1082 			if (!sq->sqb_ptrs[sqb])
1083 				continue;
1084 			iova = sq->sqb_ptrs[sqb];
1085 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1086 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1087 					     DMA_FROM_DEVICE,
1088 					     DMA_ATTR_SKIP_CPU_SYNC);
1089 			put_page(virt_to_page(phys_to_virt(pa)));
1090 		}
1091 		sq->sqb_count = 0;
1092 	}
1093 }
1094 
1095 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1096 {
1097 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
1098 	u64 iova, pa;
1099 
1100 	if (type == AURA_NIX_SQ) {
1101 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1102 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
1103 		size = pfvf->hw.sqb_size;
1104 	}
1105 	if (type == AURA_NIX_RQ) {
1106 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1107 		pool_end = pfvf->hw.rqpool_cnt;
1108 		size = pfvf->rbsize;
1109 	}
1110 
1111 	/* Free SQB and RQB pointers from the aura pool */
1112 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1113 		iova = otx2_aura_allocptr(pfvf, pool_id);
1114 		while (iova) {
1115 			if (type == AURA_NIX_RQ)
1116 				iova -= OTX2_HEAD_ROOM;
1117 
1118 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1119 			dma_unmap_page_attrs(pfvf->dev, iova, size,
1120 					     DMA_FROM_DEVICE,
1121 					     DMA_ATTR_SKIP_CPU_SYNC);
1122 			put_page(virt_to_page(phys_to_virt(pa)));
1123 			iova = otx2_aura_allocptr(pfvf, pool_id);
1124 		}
1125 	}
1126 }
1127 
1128 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1129 {
1130 	struct otx2_pool *pool;
1131 	int pool_id;
1132 
1133 	if (!pfvf->qset.pool)
1134 		return;
1135 
1136 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1137 		pool = &pfvf->qset.pool[pool_id];
1138 		qmem_free(pfvf->dev, pool->stack);
1139 		qmem_free(pfvf->dev, pool->fc_addr);
1140 	}
1141 	devm_kfree(pfvf->dev, pfvf->qset.pool);
1142 	pfvf->qset.pool = NULL;
1143 }
1144 
1145 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1146 			  int pool_id, int numptrs)
1147 {
1148 	struct npa_aq_enq_req *aq;
1149 	struct otx2_pool *pool;
1150 	int err;
1151 
1152 	pool = &pfvf->qset.pool[pool_id];
1153 
1154 	/* Allocate memory for HW to update Aura count.
1155 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
1156 	 */
1157 	if (!pool->fc_addr) {
1158 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1159 		if (err)
1160 			return err;
1161 	}
1162 
1163 	/* Initialize this aura's context via AF */
1164 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1165 	if (!aq) {
1166 		/* Shared mbox memory buffer is full, flush it and retry */
1167 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1168 		if (err)
1169 			return err;
1170 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1171 		if (!aq)
1172 			return -ENOMEM;
1173 	}
1174 
1175 	aq->aura_id = aura_id;
1176 	/* Will be filled by AF with correct pool context address */
1177 	aq->aura.pool_addr = pool_id;
1178 	aq->aura.pool_caching = 1;
1179 	aq->aura.shift = ilog2(numptrs) - 8;
1180 	aq->aura.count = numptrs;
1181 	aq->aura.limit = numptrs;
1182 	aq->aura.avg_level = 255;
1183 	aq->aura.ena = 1;
1184 	aq->aura.fc_ena = 1;
1185 	aq->aura.fc_addr = pool->fc_addr->iova;
1186 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1187 
1188 	/* Enable backpressure for RQ aura */
1189 	if (aura_id < pfvf->hw.rqpool_cnt) {
1190 		aq->aura.bp_ena = 0;
1191 		aq->aura.nix0_bpid = pfvf->bpid[0];
1192 		/* Set backpressure level for RQ's Aura */
1193 		aq->aura.bp = RQ_BP_LVL_AURA;
1194 	}
1195 
1196 	/* Fill AQ info */
1197 	aq->ctype = NPA_AQ_CTYPE_AURA;
1198 	aq->op = NPA_AQ_INSTOP_INIT;
1199 
1200 	return 0;
1201 }
1202 
1203 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1204 			  int stack_pages, int numptrs, int buf_size)
1205 {
1206 	struct npa_aq_enq_req *aq;
1207 	struct otx2_pool *pool;
1208 	int err;
1209 
1210 	pool = &pfvf->qset.pool[pool_id];
1211 	/* Alloc memory for stack which is used to store buffer pointers */
1212 	err = qmem_alloc(pfvf->dev, &pool->stack,
1213 			 stack_pages, pfvf->hw.stack_pg_bytes);
1214 	if (err)
1215 		return err;
1216 
1217 	pool->rbsize = buf_size;
1218 
1219 	/* Set LMTST addr for NPA batch free */
1220 	if (test_bit(CN10K_LMTST, &pfvf->hw.cap_flag))
1221 		pool->lmt_addr = (__force u64 *)((u64)pfvf->hw.npa_lmt_base +
1222 						 (pool_id * LMT_LINE_SIZE));
1223 
1224 	/* Initialize this pool's context via AF */
1225 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1226 	if (!aq) {
1227 		/* Shared mbox memory buffer is full, flush it and retry */
1228 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1229 		if (err) {
1230 			qmem_free(pfvf->dev, pool->stack);
1231 			return err;
1232 		}
1233 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1234 		if (!aq) {
1235 			qmem_free(pfvf->dev, pool->stack);
1236 			return -ENOMEM;
1237 		}
1238 	}
1239 
1240 	aq->aura_id = pool_id;
1241 	aq->pool.stack_base = pool->stack->iova;
1242 	aq->pool.stack_caching = 1;
1243 	aq->pool.ena = 1;
1244 	aq->pool.buf_size = buf_size / 128;
1245 	aq->pool.stack_max_pages = stack_pages;
1246 	aq->pool.shift = ilog2(numptrs) - 8;
1247 	aq->pool.ptr_start = 0;
1248 	aq->pool.ptr_end = ~0ULL;
1249 
1250 	/* Fill AQ info */
1251 	aq->ctype = NPA_AQ_CTYPE_POOL;
1252 	aq->op = NPA_AQ_INSTOP_INIT;
1253 
1254 	return 0;
1255 }
1256 
1257 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1258 {
1259 	int qidx, pool_id, stack_pages, num_sqbs;
1260 	struct otx2_qset *qset = &pfvf->qset;
1261 	struct otx2_hw *hw = &pfvf->hw;
1262 	struct otx2_snd_queue *sq;
1263 	struct otx2_pool *pool;
1264 	dma_addr_t bufptr;
1265 	int err, ptr;
1266 
1267 	/* Calculate number of SQBs needed.
1268 	 *
1269 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1270 	 * Last SQE is used for pointing to next SQB.
1271 	 */
1272 	num_sqbs = (hw->sqb_size / 128) - 1;
1273 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1274 
1275 	/* Get no of stack pages needed */
1276 	stack_pages =
1277 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1278 
1279 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1280 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1281 		/* Initialize aura context */
1282 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1283 		if (err)
1284 			goto fail;
1285 
1286 		/* Initialize pool context */
1287 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1288 				     num_sqbs, hw->sqb_size);
1289 		if (err)
1290 			goto fail;
1291 	}
1292 
1293 	/* Flush accumulated messages */
1294 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1295 	if (err)
1296 		goto fail;
1297 
1298 	/* Allocate pointers and free them to aura/pool */
1299 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1300 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1301 		pool = &pfvf->qset.pool[pool_id];
1302 
1303 		sq = &qset->sq[qidx];
1304 		sq->sqb_count = 0;
1305 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1306 		if (!sq->sqb_ptrs)
1307 			return -ENOMEM;
1308 
1309 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1310 			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1311 				return -ENOMEM;
1312 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1313 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1314 		}
1315 	}
1316 
1317 	return 0;
1318 fail:
1319 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1320 	otx2_aura_pool_free(pfvf);
1321 	return err;
1322 }
1323 
1324 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1325 {
1326 	struct otx2_hw *hw = &pfvf->hw;
1327 	int stack_pages, pool_id, rq;
1328 	struct otx2_pool *pool;
1329 	int err, ptr, num_ptrs;
1330 	dma_addr_t bufptr;
1331 
1332 	num_ptrs = pfvf->qset.rqe_cnt;
1333 
1334 	stack_pages =
1335 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1336 
1337 	for (rq = 0; rq < hw->rx_queues; rq++) {
1338 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1339 		/* Initialize aura context */
1340 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1341 		if (err)
1342 			goto fail;
1343 	}
1344 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1345 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1346 				     num_ptrs, pfvf->rbsize);
1347 		if (err)
1348 			goto fail;
1349 	}
1350 
1351 	/* Flush accumulated messages */
1352 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1353 	if (err)
1354 		goto fail;
1355 
1356 	/* Allocate pointers and free them to aura/pool */
1357 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1358 		pool = &pfvf->qset.pool[pool_id];
1359 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1360 			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1361 				return -ENOMEM;
1362 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1363 						   bufptr + OTX2_HEAD_ROOM);
1364 		}
1365 	}
1366 
1367 	return 0;
1368 fail:
1369 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1370 	otx2_aura_pool_free(pfvf);
1371 	return err;
1372 }
1373 
1374 int otx2_config_npa(struct otx2_nic *pfvf)
1375 {
1376 	struct otx2_qset *qset = &pfvf->qset;
1377 	struct npa_lf_alloc_req  *npalf;
1378 	struct otx2_hw *hw = &pfvf->hw;
1379 	int aura_cnt;
1380 
1381 	/* Pool - Stack of free buffer pointers
1382 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1383 	 */
1384 
1385 	if (!hw->pool_cnt)
1386 		return -EINVAL;
1387 
1388 	qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1389 				  sizeof(struct otx2_pool), GFP_KERNEL);
1390 	if (!qset->pool)
1391 		return -ENOMEM;
1392 
1393 	/* Get memory to put this msg */
1394 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1395 	if (!npalf)
1396 		return -ENOMEM;
1397 
1398 	/* Set aura and pool counts */
1399 	npalf->nr_pools = hw->pool_cnt;
1400 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1401 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1402 
1403 	return otx2_sync_mbox_msg(&pfvf->mbox);
1404 }
1405 
1406 int otx2_detach_resources(struct mbox *mbox)
1407 {
1408 	struct rsrc_detach *detach;
1409 
1410 	mutex_lock(&mbox->lock);
1411 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1412 	if (!detach) {
1413 		mutex_unlock(&mbox->lock);
1414 		return -ENOMEM;
1415 	}
1416 
1417 	/* detach all */
1418 	detach->partial = false;
1419 
1420 	/* Send detach request to AF */
1421 	otx2_mbox_msg_send(&mbox->mbox, 0);
1422 	mutex_unlock(&mbox->lock);
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL(otx2_detach_resources);
1426 
1427 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1428 {
1429 	struct rsrc_attach *attach;
1430 	struct msg_req *msix;
1431 	int err;
1432 
1433 	mutex_lock(&pfvf->mbox.lock);
1434 	/* Get memory to put this msg */
1435 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1436 	if (!attach) {
1437 		mutex_unlock(&pfvf->mbox.lock);
1438 		return -ENOMEM;
1439 	}
1440 
1441 	attach->npalf = true;
1442 	attach->nixlf = true;
1443 
1444 	/* Send attach request to AF */
1445 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1446 	if (err) {
1447 		mutex_unlock(&pfvf->mbox.lock);
1448 		return err;
1449 	}
1450 
1451 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1452 
1453 	/* If the platform has two NIX blocks then LF may be
1454 	 * allocated from NIX1.
1455 	 */
1456 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1457 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1458 
1459 	/* Get NPA and NIX MSIX vector offsets */
1460 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1461 	if (!msix) {
1462 		mutex_unlock(&pfvf->mbox.lock);
1463 		return -ENOMEM;
1464 	}
1465 
1466 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1467 	if (err) {
1468 		mutex_unlock(&pfvf->mbox.lock);
1469 		return err;
1470 	}
1471 	mutex_unlock(&pfvf->mbox.lock);
1472 
1473 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1474 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1475 		dev_err(pfvf->dev,
1476 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1477 		return -EINVAL;
1478 	}
1479 
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(otx2_attach_npa_nix);
1483 
1484 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1485 {
1486 	struct hwctx_disable_req *req;
1487 
1488 	mutex_lock(&mbox->lock);
1489 	/* Request AQ to disable this context */
1490 	if (npa)
1491 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1492 	else
1493 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1494 
1495 	if (!req) {
1496 		mutex_unlock(&mbox->lock);
1497 		return;
1498 	}
1499 
1500 	req->ctype = type;
1501 
1502 	if (otx2_sync_mbox_msg(mbox))
1503 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1504 			__func__);
1505 
1506 	mutex_unlock(&mbox->lock);
1507 }
1508 
1509 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1510 {
1511 	struct nix_bp_cfg_req *req;
1512 
1513 	if (enable)
1514 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1515 	else
1516 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1517 
1518 	if (!req)
1519 		return -ENOMEM;
1520 
1521 	req->chan_base = 0;
1522 	req->chan_cnt = 1;
1523 	req->bpid_per_chan = 0;
1524 
1525 	return otx2_sync_mbox_msg(&pfvf->mbox);
1526 }
1527 
1528 /* Mbox message handlers */
1529 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1530 			    struct cgx_stats_rsp *rsp)
1531 {
1532 	int id;
1533 
1534 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1535 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1536 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1537 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1538 }
1539 
1540 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1541 				struct cgx_fec_stats_rsp *rsp)
1542 {
1543 	pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1544 	pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1545 }
1546 
1547 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1548 				  struct nix_txsch_alloc_rsp *rsp)
1549 {
1550 	int lvl, schq;
1551 
1552 	/* Setup transmit scheduler list */
1553 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1554 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
1555 			pf->hw.txschq_list[lvl][schq] =
1556 				rsp->schq_list[lvl][schq];
1557 }
1558 EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1559 
1560 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1561 			       struct npa_lf_alloc_rsp *rsp)
1562 {
1563 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1564 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1565 }
1566 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1567 
1568 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1569 			       struct nix_lf_alloc_rsp *rsp)
1570 {
1571 	pfvf->hw.sqb_size = rsp->sqb_size;
1572 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1573 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1574 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1575 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1576 	pfvf->hw.cgx_links = rsp->cgx_links;
1577 	pfvf->hw.lbk_links = rsp->lbk_links;
1578 }
1579 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1580 
1581 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1582 			      struct msix_offset_rsp *rsp)
1583 {
1584 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1585 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1586 }
1587 EXPORT_SYMBOL(mbox_handler_msix_offset);
1588 
1589 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1590 				struct nix_bp_cfg_rsp *rsp)
1591 {
1592 	int chan, chan_id;
1593 
1594 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1595 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1596 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1597 	}
1598 }
1599 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1600 
1601 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1602 {
1603 	struct otx2_qset *qset = &pfvf->qset;
1604 	struct otx2_hw *hw = &pfvf->hw;
1605 	int irq, qidx;
1606 
1607 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1608 	     qidx < n;
1609 	     qidx++, irq++) {
1610 		int vector = pci_irq_vector(pfvf->pdev, irq);
1611 
1612 		irq_set_affinity_hint(vector, NULL);
1613 		free_cpumask_var(hw->affinity_mask[irq]);
1614 		free_irq(vector, &qset->napi[qidx]);
1615 	}
1616 }
1617 
1618 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1619 {
1620 	struct otx2_hw *hw = &pfvf->hw;
1621 	int vec, cpu, irq, cint;
1622 
1623 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1624 	cpu = cpumask_first(cpu_online_mask);
1625 
1626 	/* CQ interrupts */
1627 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1628 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1629 			return;
1630 
1631 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1632 
1633 		irq = pci_irq_vector(pfvf->pdev, vec);
1634 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1635 
1636 		cpu = cpumask_next(cpu, cpu_online_mask);
1637 		if (unlikely(cpu >= nr_cpu_ids))
1638 			cpu = 0;
1639 	}
1640 }
1641 
1642 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1643 {
1644 	struct nix_hw_info *rsp;
1645 	struct msg_req *req;
1646 	u16 max_mtu;
1647 	int rc;
1648 
1649 	mutex_lock(&pfvf->mbox.lock);
1650 
1651 	req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1652 	if (!req) {
1653 		rc =  -ENOMEM;
1654 		goto out;
1655 	}
1656 
1657 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
1658 	if (!rc) {
1659 		rsp = (struct nix_hw_info *)
1660 		       otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1661 
1662 		/* HW counts VLAN insertion bytes (8 for double tag)
1663 		 * irrespective of whether SQE is requesting to insert VLAN
1664 		 * in the packet or not. Hence these 8 bytes have to be
1665 		 * discounted from max packet size otherwise HW will throw
1666 		 * SMQ errors
1667 		 */
1668 		max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1669 	}
1670 
1671 out:
1672 	mutex_unlock(&pfvf->mbox.lock);
1673 	if (rc) {
1674 		dev_warn(pfvf->dev,
1675 			 "Failed to get MTU from hardware setting default value(1500)\n");
1676 		max_mtu = 1500;
1677 	}
1678 	return max_mtu;
1679 }
1680 EXPORT_SYMBOL(otx2_get_max_mtu);
1681 
1682 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1683 int __weak								\
1684 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
1685 				struct _req_type *req,			\
1686 				struct _rsp_type *rsp)			\
1687 {									\
1688 	/* Nothing to do here */					\
1689 	return 0;							\
1690 }									\
1691 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1692 MBOX_UP_CGX_MESSAGES
1693 #undef M
1694