xref: /linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_common.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <net/tso.h>
14 
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18 
19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 				 struct otx2_nic *pfvf, int qidx)
21 {
22 	u64 incr = (u64)qidx << 32;
23 	u64 *ptr;
24 
25 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 	stats->bytes = otx2_atomic64_add(incr, ptr);
27 
28 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 	stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31 
32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 				 struct otx2_nic *pfvf, int qidx)
34 {
35 	u64 incr = (u64)qidx << 32;
36 	u64 *ptr;
37 
38 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 	stats->bytes = otx2_atomic64_add(incr, ptr);
40 
41 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 	stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44 
45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 	struct msg_req *req;
48 
49 	if (!netif_running(pfvf->netdev))
50 		return;
51 
52 	mutex_lock(&pfvf->mbox.lock);
53 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 	if (!req) {
55 		mutex_unlock(&pfvf->mbox.lock);
56 		return;
57 	}
58 
59 	otx2_sync_mbox_msg(&pfvf->mbox);
60 	mutex_unlock(&pfvf->mbox.lock);
61 }
62 
63 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
64 {
65 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
66 
67 	if (!pfvf->qset.rq)
68 		return 0;
69 
70 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
71 	return 1;
72 }
73 
74 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
75 {
76 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
77 
78 	if (!pfvf->qset.sq)
79 		return 0;
80 
81 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
82 	return 1;
83 }
84 
85 void otx2_get_dev_stats(struct otx2_nic *pfvf)
86 {
87 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
88 
89 #define OTX2_GET_RX_STATS(reg) \
90 	 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
91 #define OTX2_GET_TX_STATS(reg) \
92 	 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
93 
94 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
95 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
96 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
97 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
98 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
99 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
100 			       dev_stats->rx_mcast_frames +
101 			       dev_stats->rx_ucast_frames;
102 
103 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
104 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
105 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
106 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
107 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
108 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
109 			       dev_stats->tx_mcast_frames +
110 			       dev_stats->tx_ucast_frames;
111 }
112 
113 void otx2_get_stats64(struct net_device *netdev,
114 		      struct rtnl_link_stats64 *stats)
115 {
116 	struct otx2_nic *pfvf = netdev_priv(netdev);
117 	struct otx2_dev_stats *dev_stats;
118 
119 	otx2_get_dev_stats(pfvf);
120 
121 	dev_stats = &pfvf->hw.dev_stats;
122 	stats->rx_bytes = dev_stats->rx_bytes;
123 	stats->rx_packets = dev_stats->rx_frames;
124 	stats->rx_dropped = dev_stats->rx_drops;
125 	stats->multicast = dev_stats->rx_mcast_frames;
126 
127 	stats->tx_bytes = dev_stats->tx_bytes;
128 	stats->tx_packets = dev_stats->tx_frames;
129 	stats->tx_dropped = dev_stats->tx_drops;
130 }
131 EXPORT_SYMBOL(otx2_get_stats64);
132 
133 /* Sync MAC address with RVU AF */
134 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
135 {
136 	struct nix_set_mac_addr *req;
137 	int err;
138 
139 	mutex_lock(&pfvf->mbox.lock);
140 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
141 	if (!req) {
142 		mutex_unlock(&pfvf->mbox.lock);
143 		return -ENOMEM;
144 	}
145 
146 	ether_addr_copy(req->mac_addr, mac);
147 
148 	err = otx2_sync_mbox_msg(&pfvf->mbox);
149 	mutex_unlock(&pfvf->mbox.lock);
150 	return err;
151 }
152 
153 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
154 				struct net_device *netdev)
155 {
156 	struct nix_get_mac_addr_rsp *rsp;
157 	struct mbox_msghdr *msghdr;
158 	struct msg_req *req;
159 	int err;
160 
161 	mutex_lock(&pfvf->mbox.lock);
162 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
163 	if (!req) {
164 		mutex_unlock(&pfvf->mbox.lock);
165 		return -ENOMEM;
166 	}
167 
168 	err = otx2_sync_mbox_msg(&pfvf->mbox);
169 	if (err) {
170 		mutex_unlock(&pfvf->mbox.lock);
171 		return err;
172 	}
173 
174 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
175 	if (IS_ERR(msghdr)) {
176 		mutex_unlock(&pfvf->mbox.lock);
177 		return PTR_ERR(msghdr);
178 	}
179 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
180 	ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
181 	mutex_unlock(&pfvf->mbox.lock);
182 
183 	return 0;
184 }
185 
186 int otx2_set_mac_address(struct net_device *netdev, void *p)
187 {
188 	struct otx2_nic *pfvf = netdev_priv(netdev);
189 	struct sockaddr *addr = p;
190 
191 	if (!is_valid_ether_addr(addr->sa_data))
192 		return -EADDRNOTAVAIL;
193 
194 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data))
195 		memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
196 	else
197 		return -EPERM;
198 
199 	return 0;
200 }
201 EXPORT_SYMBOL(otx2_set_mac_address);
202 
203 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
204 {
205 	struct nix_frs_cfg *req;
206 	int err;
207 
208 	mutex_lock(&pfvf->mbox.lock);
209 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
210 	if (!req) {
211 		mutex_unlock(&pfvf->mbox.lock);
212 		return -ENOMEM;
213 	}
214 
215 	pfvf->max_frs = mtu +  OTX2_ETH_HLEN;
216 	req->maxlen = pfvf->max_frs;
217 
218 	err = otx2_sync_mbox_msg(&pfvf->mbox);
219 	mutex_unlock(&pfvf->mbox.lock);
220 	return err;
221 }
222 
223 int otx2_config_pause_frm(struct otx2_nic *pfvf)
224 {
225 	struct cgx_pause_frm_cfg *req;
226 	int err;
227 
228 	if (is_otx2_lbkvf(pfvf->pdev))
229 		return 0;
230 
231 	mutex_lock(&pfvf->mbox.lock);
232 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
233 	if (!req) {
234 		err = -ENOMEM;
235 		goto unlock;
236 	}
237 
238 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
239 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
240 	req->set = 1;
241 
242 	err = otx2_sync_mbox_msg(&pfvf->mbox);
243 unlock:
244 	mutex_unlock(&pfvf->mbox.lock);
245 	return err;
246 }
247 
248 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
249 {
250 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
251 	struct nix_rss_flowkey_cfg *req;
252 	int err;
253 
254 	mutex_lock(&pfvf->mbox.lock);
255 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
256 	if (!req) {
257 		mutex_unlock(&pfvf->mbox.lock);
258 		return -ENOMEM;
259 	}
260 	req->mcam_index = -1; /* Default or reserved index */
261 	req->flowkey_cfg = rss->flowkey_cfg;
262 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
263 
264 	err = otx2_sync_mbox_msg(&pfvf->mbox);
265 	mutex_unlock(&pfvf->mbox.lock);
266 	return err;
267 }
268 
269 int otx2_set_rss_table(struct otx2_nic *pfvf)
270 {
271 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
272 	struct mbox *mbox = &pfvf->mbox;
273 	struct nix_aq_enq_req *aq;
274 	int idx, err;
275 
276 	mutex_lock(&mbox->lock);
277 	/* Get memory to put this msg */
278 	for (idx = 0; idx < rss->rss_size; idx++) {
279 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
280 		if (!aq) {
281 			/* The shared memory buffer can be full.
282 			 * Flush it and retry
283 			 */
284 			err = otx2_sync_mbox_msg(mbox);
285 			if (err) {
286 				mutex_unlock(&mbox->lock);
287 				return err;
288 			}
289 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
290 			if (!aq) {
291 				mutex_unlock(&mbox->lock);
292 				return -ENOMEM;
293 			}
294 		}
295 
296 		aq->rss.rq = rss->ind_tbl[idx];
297 
298 		/* Fill AQ info */
299 		aq->qidx = idx;
300 		aq->ctype = NIX_AQ_CTYPE_RSS;
301 		aq->op = NIX_AQ_INSTOP_INIT;
302 	}
303 	err = otx2_sync_mbox_msg(mbox);
304 	mutex_unlock(&mbox->lock);
305 	return err;
306 }
307 
308 void otx2_set_rss_key(struct otx2_nic *pfvf)
309 {
310 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
311 	u64 *key = (u64 *)&rss->key[4];
312 	int idx;
313 
314 	/* 352bit or 44byte key needs to be configured as below
315 	 * NIX_LF_RX_SECRETX0 = key<351:288>
316 	 * NIX_LF_RX_SECRETX1 = key<287:224>
317 	 * NIX_LF_RX_SECRETX2 = key<223:160>
318 	 * NIX_LF_RX_SECRETX3 = key<159:96>
319 	 * NIX_LF_RX_SECRETX4 = key<95:32>
320 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
321 	 */
322 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
323 		     (u64)(*((u32 *)&rss->key)) << 32);
324 	idx = sizeof(rss->key) / sizeof(u64);
325 	while (idx > 0) {
326 		idx--;
327 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
328 	}
329 }
330 
331 int otx2_rss_init(struct otx2_nic *pfvf)
332 {
333 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
334 	int idx, ret = 0;
335 
336 	rss->rss_size = sizeof(rss->ind_tbl);
337 
338 	/* Init RSS key if it is not setup already */
339 	if (!rss->enable)
340 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
341 	otx2_set_rss_key(pfvf);
342 
343 	if (!netif_is_rxfh_configured(pfvf->netdev)) {
344 		/* Default indirection table */
345 		for (idx = 0; idx < rss->rss_size; idx++)
346 			rss->ind_tbl[idx] =
347 				ethtool_rxfh_indir_default(idx,
348 							   pfvf->hw.rx_queues);
349 	}
350 	ret = otx2_set_rss_table(pfvf);
351 	if (ret)
352 		return ret;
353 
354 	/* Flowkey or hash config to be used for generating flow tag */
355 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
356 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
357 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
358 			   NIX_FLOW_KEY_TYPE_SCTP;
359 
360 	ret = otx2_set_flowkey_cfg(pfvf);
361 	if (ret)
362 		return ret;
363 
364 	rss->enable = true;
365 	return 0;
366 }
367 
368 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
369 {
370 	/* Configure CQE interrupt coalescing parameters
371 	 *
372 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
373 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
374 	 * usecs, convert that to 100ns count.
375 	 */
376 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
377 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
378 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
379 		     (pfvf->hw.cq_ecount_wait - 1));
380 }
381 
382 dma_addr_t __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool)
383 {
384 	dma_addr_t iova;
385 	u8 *buf;
386 
387 	buf = napi_alloc_frag(pool->rbsize);
388 	if (unlikely(!buf))
389 		return -ENOMEM;
390 
391 	iova = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
392 				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
393 	if (unlikely(dma_mapping_error(pfvf->dev, iova))) {
394 		page_frag_free(buf);
395 		return -ENOMEM;
396 	}
397 
398 	return iova;
399 }
400 
401 static dma_addr_t otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool)
402 {
403 	dma_addr_t addr;
404 
405 	local_bh_disable();
406 	addr = __otx2_alloc_rbuf(pfvf, pool);
407 	local_bh_enable();
408 	return addr;
409 }
410 
411 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
412 {
413 	struct otx2_nic *pfvf = netdev_priv(netdev);
414 
415 	schedule_work(&pfvf->reset_task);
416 }
417 EXPORT_SYMBOL(otx2_tx_timeout);
418 
419 void otx2_get_mac_from_af(struct net_device *netdev)
420 {
421 	struct otx2_nic *pfvf = netdev_priv(netdev);
422 	int err;
423 
424 	err = otx2_hw_get_mac_addr(pfvf, netdev);
425 	if (err)
426 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
427 
428 	/* If AF doesn't provide a valid MAC, generate a random one */
429 	if (!is_valid_ether_addr(netdev->dev_addr))
430 		eth_hw_addr_random(netdev);
431 }
432 EXPORT_SYMBOL(otx2_get_mac_from_af);
433 
434 static int otx2_get_link(struct otx2_nic *pfvf)
435 {
436 	int link = 0;
437 	u16 map;
438 
439 	/* cgx lmac link */
440 	if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
441 		map = pfvf->hw.tx_chan_base & 0x7FF;
442 		link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
443 	}
444 	/* LBK channel */
445 	if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE)
446 		link = 12;
447 
448 	return link;
449 }
450 
451 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
452 {
453 	struct otx2_hw *hw = &pfvf->hw;
454 	struct nix_txschq_config *req;
455 	u64 schq, parent;
456 
457 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
458 	if (!req)
459 		return -ENOMEM;
460 
461 	req->lvl = lvl;
462 	req->num_regs = 1;
463 
464 	schq = hw->txschq_list[lvl][0];
465 	/* Set topology e.t.c configuration */
466 	if (lvl == NIX_TXSCH_LVL_SMQ) {
467 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
468 		req->regval[0] = ((OTX2_MAX_MTU + OTX2_ETH_HLEN) << 8) |
469 				   OTX2_MIN_MTU;
470 
471 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
472 				  (0x2ULL << 36);
473 		req->num_regs++;
474 		/* MDQ config */
475 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
476 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
477 		req->regval[1] = parent << 16;
478 		req->num_regs++;
479 		/* Set DWRR quantum */
480 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
481 		req->regval[2] =  DFLT_RR_QTM;
482 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
483 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
484 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
485 		req->regval[0] = parent << 16;
486 		req->num_regs++;
487 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
488 		req->regval[1] = DFLT_RR_QTM;
489 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
490 		parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
491 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
492 		req->regval[0] = parent << 16;
493 		req->num_regs++;
494 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
495 		req->regval[1] = DFLT_RR_QTM;
496 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
497 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
498 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
499 		req->regval[0] = parent << 16;
500 
501 		req->num_regs++;
502 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
503 		req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;
504 
505 		req->num_regs++;
506 		req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
507 							otx2_get_link(pfvf));
508 		/* Enable this queue and backpressure */
509 		req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
510 
511 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
512 		/* Default config for TL1.
513 		 * For VF this is always ignored.
514 		 */
515 
516 		/* Set DWRR quantum */
517 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
518 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
519 
520 		req->num_regs++;
521 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
522 		req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
523 
524 		req->num_regs++;
525 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
526 		req->regval[2] = 0;
527 	}
528 
529 	return otx2_sync_mbox_msg(&pfvf->mbox);
530 }
531 
532 int otx2_txsch_alloc(struct otx2_nic *pfvf)
533 {
534 	struct nix_txsch_alloc_req *req;
535 	int lvl;
536 
537 	/* Get memory to put this msg */
538 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
539 	if (!req)
540 		return -ENOMEM;
541 
542 	/* Request one schq per level */
543 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
544 		req->schq[lvl] = 1;
545 
546 	return otx2_sync_mbox_msg(&pfvf->mbox);
547 }
548 
549 int otx2_txschq_stop(struct otx2_nic *pfvf)
550 {
551 	struct nix_txsch_free_req *free_req;
552 	int lvl, schq, err;
553 
554 	mutex_lock(&pfvf->mbox.lock);
555 	/* Free the transmit schedulers */
556 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
557 	if (!free_req) {
558 		mutex_unlock(&pfvf->mbox.lock);
559 		return -ENOMEM;
560 	}
561 
562 	free_req->flags = TXSCHQ_FREE_ALL;
563 	err = otx2_sync_mbox_msg(&pfvf->mbox);
564 	mutex_unlock(&pfvf->mbox.lock);
565 
566 	/* Clear the txschq list */
567 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
568 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
569 			pfvf->hw.txschq_list[lvl][schq] = 0;
570 	}
571 	return err;
572 }
573 
574 void otx2_sqb_flush(struct otx2_nic *pfvf)
575 {
576 	int qidx, sqe_tail, sqe_head;
577 	u64 incr, *ptr, val;
578 	int timeout = 1000;
579 
580 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
581 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
582 		incr = (u64)qidx << 32;
583 		while (timeout) {
584 			val = otx2_atomic64_add(incr, ptr);
585 			sqe_head = (val >> 20) & 0x3F;
586 			sqe_tail = (val >> 28) & 0x3F;
587 			if (sqe_head == sqe_tail)
588 				break;
589 			usleep_range(1, 3);
590 			timeout--;
591 		}
592 	}
593 }
594 
595 /* RED and drop levels of CQ on packet reception.
596  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
597  */
598 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
599 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
600 
601 /* RED and drop levels of AURA for packet reception.
602  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
603  * Eg: For RQ length 1K, for pass/drop level 204/230.
604  * RED accepts pkts if free pointers > 102 & <= 205.
605  * Drops pkts if free pointers < 102.
606  */
607 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
608 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
609 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
610 
611 /* Send skid of 2000 packets required for CQ size of 4K CQEs. */
612 #define SEND_CQ_SKID	2000
613 
614 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
615 {
616 	struct otx2_qset *qset = &pfvf->qset;
617 	struct nix_aq_enq_req *aq;
618 
619 	/* Get memory to put this msg */
620 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
621 	if (!aq)
622 		return -ENOMEM;
623 
624 	aq->rq.cq = qidx;
625 	aq->rq.ena = 1;
626 	aq->rq.pb_caching = 1;
627 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
628 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
629 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
630 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
631 	aq->rq.qint_idx = 0;
632 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
633 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
634 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
635 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
636 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
637 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
638 
639 	/* Fill AQ info */
640 	aq->qidx = qidx;
641 	aq->ctype = NIX_AQ_CTYPE_RQ;
642 	aq->op = NIX_AQ_INSTOP_INIT;
643 
644 	return otx2_sync_mbox_msg(&pfvf->mbox);
645 }
646 
647 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
648 {
649 	struct otx2_qset *qset = &pfvf->qset;
650 	struct otx2_snd_queue *sq;
651 	struct nix_aq_enq_req *aq;
652 	struct otx2_pool *pool;
653 	int err;
654 
655 	pool = &pfvf->qset.pool[sqb_aura];
656 	sq = &qset->sq[qidx];
657 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
658 	sq->sqe_cnt = qset->sqe_cnt;
659 
660 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
661 	if (err)
662 		return err;
663 
664 	err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
665 			 TSO_HEADER_SIZE);
666 	if (err)
667 		return err;
668 
669 	sq->sqe_base = sq->sqe->base;
670 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
671 	if (!sq->sg)
672 		return -ENOMEM;
673 
674 	sq->head = 0;
675 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
676 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
677 	/* Set SQE threshold to 10% of total SQEs */
678 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
679 	sq->aura_id = sqb_aura;
680 	sq->aura_fc_addr = pool->fc_addr->base;
681 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
682 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
683 
684 	sq->stats.bytes = 0;
685 	sq->stats.pkts = 0;
686 
687 	/* Get memory to put this msg */
688 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
689 	if (!aq)
690 		return -ENOMEM;
691 
692 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
693 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
694 	aq->sq.cq_ena = 1;
695 	aq->sq.ena = 1;
696 	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
697 	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
698 	aq->sq.smq_rr_quantum = DFLT_RR_QTM;
699 	aq->sq.default_chan = pfvf->hw.tx_chan_base;
700 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
701 	aq->sq.sqb_aura = sqb_aura;
702 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
703 	aq->sq.qint_idx = 0;
704 	/* Due pipelining impact minimum 2000 unused SQ CQE's
705 	 * need to maintain to avoid CQ overflow.
706 	 */
707 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (sq->sqe_cnt));
708 
709 	/* Fill AQ info */
710 	aq->qidx = qidx;
711 	aq->ctype = NIX_AQ_CTYPE_SQ;
712 	aq->op = NIX_AQ_INSTOP_INIT;
713 
714 	return otx2_sync_mbox_msg(&pfvf->mbox);
715 }
716 
717 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
718 {
719 	struct otx2_qset *qset = &pfvf->qset;
720 	struct nix_aq_enq_req *aq;
721 	struct otx2_cq_queue *cq;
722 	int err, pool_id;
723 
724 	cq = &qset->cq[qidx];
725 	cq->cq_idx = qidx;
726 	if (qidx < pfvf->hw.rx_queues) {
727 		cq->cq_type = CQ_RX;
728 		cq->cint_idx = qidx;
729 		cq->cqe_cnt = qset->rqe_cnt;
730 	} else {
731 		cq->cq_type = CQ_TX;
732 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
733 		cq->cqe_cnt = qset->sqe_cnt;
734 	}
735 	cq->cqe_size = pfvf->qset.xqe_size;
736 
737 	/* Allocate memory for CQEs */
738 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
739 	if (err)
740 		return err;
741 
742 	/* Save CQE CPU base for faster reference */
743 	cq->cqe_base = cq->cqe->base;
744 	/* In case where all RQs auras point to single pool,
745 	 * all CQs receive buffer pool also point to same pool.
746 	 */
747 	pool_id = ((cq->cq_type == CQ_RX) &&
748 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
749 	cq->rbpool = &qset->pool[pool_id];
750 	cq->refill_task_sched = false;
751 
752 	/* Get memory to put this msg */
753 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
754 	if (!aq)
755 		return -ENOMEM;
756 
757 	aq->cq.ena = 1;
758 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
759 	aq->cq.caching = 1;
760 	aq->cq.base = cq->cqe->iova;
761 	aq->cq.cint_idx = cq->cint_idx;
762 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
763 	aq->cq.qint_idx = 0;
764 	aq->cq.avg_level = 255;
765 
766 	if (qidx < pfvf->hw.rx_queues) {
767 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
768 		aq->cq.drop_ena = 1;
769 
770 		/* Enable receive CQ backpressure */
771 		aq->cq.bp_ena = 1;
772 		aq->cq.bpid = pfvf->bpid[0];
773 
774 		/* Set backpressure level is same as cq pass level */
775 		aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
776 	}
777 
778 	/* Fill AQ info */
779 	aq->qidx = qidx;
780 	aq->ctype = NIX_AQ_CTYPE_CQ;
781 	aq->op = NIX_AQ_INSTOP_INIT;
782 
783 	return otx2_sync_mbox_msg(&pfvf->mbox);
784 }
785 
786 static void otx2_pool_refill_task(struct work_struct *work)
787 {
788 	struct otx2_cq_queue *cq;
789 	struct otx2_pool *rbpool;
790 	struct refill_work *wrk;
791 	int qidx, free_ptrs = 0;
792 	struct otx2_nic *pfvf;
793 	s64 bufptr;
794 
795 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
796 	pfvf = wrk->pf;
797 	qidx = wrk - pfvf->refill_wrk;
798 	cq = &pfvf->qset.cq[qidx];
799 	rbpool = cq->rbpool;
800 	free_ptrs = cq->pool_ptrs;
801 
802 	while (cq->pool_ptrs) {
803 		bufptr = otx2_alloc_rbuf(pfvf, rbpool);
804 		if (bufptr <= 0) {
805 			/* Schedule a WQ if we fails to free atleast half of the
806 			 * pointers else enable napi for this RQ.
807 			 */
808 			if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
809 				struct delayed_work *dwork;
810 
811 				dwork = &wrk->pool_refill_work;
812 				schedule_delayed_work(dwork,
813 						      msecs_to_jiffies(100));
814 			} else {
815 				cq->refill_task_sched = false;
816 			}
817 			return;
818 		}
819 		otx2_aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
820 		cq->pool_ptrs--;
821 	}
822 	cq->refill_task_sched = false;
823 }
824 
825 int otx2_config_nix_queues(struct otx2_nic *pfvf)
826 {
827 	int qidx, err;
828 
829 	/* Initialize RX queues */
830 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
831 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
832 
833 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
834 		if (err)
835 			return err;
836 	}
837 
838 	/* Initialize TX queues */
839 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
840 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
841 
842 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
843 		if (err)
844 			return err;
845 	}
846 
847 	/* Initialize completion queues */
848 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
849 		err = otx2_cq_init(pfvf, qidx);
850 		if (err)
851 			return err;
852 	}
853 
854 	/* Initialize work queue for receive buffer refill */
855 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
856 					sizeof(struct refill_work), GFP_KERNEL);
857 	if (!pfvf->refill_wrk)
858 		return -ENOMEM;
859 
860 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
861 		pfvf->refill_wrk[qidx].pf = pfvf;
862 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
863 				  otx2_pool_refill_task);
864 	}
865 	return 0;
866 }
867 
868 int otx2_config_nix(struct otx2_nic *pfvf)
869 {
870 	struct nix_lf_alloc_req  *nixlf;
871 	struct nix_lf_alloc_rsp *rsp;
872 	int err;
873 
874 	pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
875 
876 	/* Get memory to put this msg */
877 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
878 	if (!nixlf)
879 		return -ENOMEM;
880 
881 	/* Set RQ/SQ/CQ counts */
882 	nixlf->rq_cnt = pfvf->hw.rx_queues;
883 	nixlf->sq_cnt = pfvf->hw.tx_queues;
884 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
885 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
886 	nixlf->rss_grps = 1; /* Single RSS indir table supported, for now */
887 	nixlf->xqe_sz = NIX_XQESZ_W16;
888 	/* We don't know absolute NPA LF idx attached.
889 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
890 	 * NPA LF attached to this RVU PF/VF.
891 	 */
892 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
893 	/* Disable alignment pad, enable L2 length check,
894 	 * enable L4 TCP/UDP checksum verification.
895 	 */
896 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
897 
898 	err = otx2_sync_mbox_msg(&pfvf->mbox);
899 	if (err)
900 		return err;
901 
902 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
903 							   &nixlf->hdr);
904 	if (IS_ERR(rsp))
905 		return PTR_ERR(rsp);
906 
907 	if (rsp->qints < 1)
908 		return -ENXIO;
909 
910 	return rsp->hdr.rc;
911 }
912 
913 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
914 {
915 	struct otx2_qset *qset = &pfvf->qset;
916 	struct otx2_hw *hw = &pfvf->hw;
917 	struct otx2_snd_queue *sq;
918 	int sqb, qidx;
919 	u64 iova, pa;
920 
921 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
922 		sq = &qset->sq[qidx];
923 		if (!sq->sqb_ptrs)
924 			continue;
925 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
926 			if (!sq->sqb_ptrs[sqb])
927 				continue;
928 			iova = sq->sqb_ptrs[sqb];
929 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
930 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
931 					     DMA_FROM_DEVICE,
932 					     DMA_ATTR_SKIP_CPU_SYNC);
933 			put_page(virt_to_page(phys_to_virt(pa)));
934 		}
935 		sq->sqb_count = 0;
936 	}
937 }
938 
939 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
940 {
941 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
942 	u64 iova, pa;
943 
944 	if (type == AURA_NIX_SQ) {
945 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
946 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
947 		size = pfvf->hw.sqb_size;
948 	}
949 	if (type == AURA_NIX_RQ) {
950 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
951 		pool_end = pfvf->hw.rqpool_cnt;
952 		size = pfvf->rbsize;
953 	}
954 
955 	/* Free SQB and RQB pointers from the aura pool */
956 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
957 		iova = otx2_aura_allocptr(pfvf, pool_id);
958 		while (iova) {
959 			if (type == AURA_NIX_RQ)
960 				iova -= OTX2_HEAD_ROOM;
961 
962 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
963 			dma_unmap_page_attrs(pfvf->dev, iova, size,
964 					     DMA_FROM_DEVICE,
965 					     DMA_ATTR_SKIP_CPU_SYNC);
966 			put_page(virt_to_page(phys_to_virt(pa)));
967 			iova = otx2_aura_allocptr(pfvf, pool_id);
968 		}
969 	}
970 }
971 
972 void otx2_aura_pool_free(struct otx2_nic *pfvf)
973 {
974 	struct otx2_pool *pool;
975 	int pool_id;
976 
977 	if (!pfvf->qset.pool)
978 		return;
979 
980 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
981 		pool = &pfvf->qset.pool[pool_id];
982 		qmem_free(pfvf->dev, pool->stack);
983 		qmem_free(pfvf->dev, pool->fc_addr);
984 	}
985 	devm_kfree(pfvf->dev, pfvf->qset.pool);
986 	pfvf->qset.pool = NULL;
987 }
988 
989 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
990 			  int pool_id, int numptrs)
991 {
992 	struct npa_aq_enq_req *aq;
993 	struct otx2_pool *pool;
994 	int err;
995 
996 	pool = &pfvf->qset.pool[pool_id];
997 
998 	/* Allocate memory for HW to update Aura count.
999 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
1000 	 */
1001 	if (!pool->fc_addr) {
1002 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1003 		if (err)
1004 			return err;
1005 	}
1006 
1007 	/* Initialize this aura's context via AF */
1008 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1009 	if (!aq) {
1010 		/* Shared mbox memory buffer is full, flush it and retry */
1011 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1012 		if (err)
1013 			return err;
1014 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1015 		if (!aq)
1016 			return -ENOMEM;
1017 	}
1018 
1019 	aq->aura_id = aura_id;
1020 	/* Will be filled by AF with correct pool context address */
1021 	aq->aura.pool_addr = pool_id;
1022 	aq->aura.pool_caching = 1;
1023 	aq->aura.shift = ilog2(numptrs) - 8;
1024 	aq->aura.count = numptrs;
1025 	aq->aura.limit = numptrs;
1026 	aq->aura.avg_level = 255;
1027 	aq->aura.ena = 1;
1028 	aq->aura.fc_ena = 1;
1029 	aq->aura.fc_addr = pool->fc_addr->iova;
1030 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1031 
1032 	/* Enable backpressure for RQ aura */
1033 	if (aura_id < pfvf->hw.rqpool_cnt) {
1034 		aq->aura.bp_ena = 0;
1035 		aq->aura.nix0_bpid = pfvf->bpid[0];
1036 		/* Set backpressure level for RQ's Aura */
1037 		aq->aura.bp = RQ_BP_LVL_AURA;
1038 	}
1039 
1040 	/* Fill AQ info */
1041 	aq->ctype = NPA_AQ_CTYPE_AURA;
1042 	aq->op = NPA_AQ_INSTOP_INIT;
1043 
1044 	return 0;
1045 }
1046 
1047 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1048 			  int stack_pages, int numptrs, int buf_size)
1049 {
1050 	struct npa_aq_enq_req *aq;
1051 	struct otx2_pool *pool;
1052 	int err;
1053 
1054 	pool = &pfvf->qset.pool[pool_id];
1055 	/* Alloc memory for stack which is used to store buffer pointers */
1056 	err = qmem_alloc(pfvf->dev, &pool->stack,
1057 			 stack_pages, pfvf->hw.stack_pg_bytes);
1058 	if (err)
1059 		return err;
1060 
1061 	pool->rbsize = buf_size;
1062 
1063 	/* Initialize this pool's context via AF */
1064 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1065 	if (!aq) {
1066 		/* Shared mbox memory buffer is full, flush it and retry */
1067 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1068 		if (err) {
1069 			qmem_free(pfvf->dev, pool->stack);
1070 			return err;
1071 		}
1072 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1073 		if (!aq) {
1074 			qmem_free(pfvf->dev, pool->stack);
1075 			return -ENOMEM;
1076 		}
1077 	}
1078 
1079 	aq->aura_id = pool_id;
1080 	aq->pool.stack_base = pool->stack->iova;
1081 	aq->pool.stack_caching = 1;
1082 	aq->pool.ena = 1;
1083 	aq->pool.buf_size = buf_size / 128;
1084 	aq->pool.stack_max_pages = stack_pages;
1085 	aq->pool.shift = ilog2(numptrs) - 8;
1086 	aq->pool.ptr_start = 0;
1087 	aq->pool.ptr_end = ~0ULL;
1088 
1089 	/* Fill AQ info */
1090 	aq->ctype = NPA_AQ_CTYPE_POOL;
1091 	aq->op = NPA_AQ_INSTOP_INIT;
1092 
1093 	return 0;
1094 }
1095 
1096 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1097 {
1098 	int qidx, pool_id, stack_pages, num_sqbs;
1099 	struct otx2_qset *qset = &pfvf->qset;
1100 	struct otx2_hw *hw = &pfvf->hw;
1101 	struct otx2_snd_queue *sq;
1102 	struct otx2_pool *pool;
1103 	int err, ptr;
1104 	s64 bufptr;
1105 
1106 	/* Calculate number of SQBs needed.
1107 	 *
1108 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1109 	 * Last SQE is used for pointing to next SQB.
1110 	 */
1111 	num_sqbs = (hw->sqb_size / 128) - 1;
1112 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1113 
1114 	/* Get no of stack pages needed */
1115 	stack_pages =
1116 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1117 
1118 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1119 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1120 		/* Initialize aura context */
1121 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1122 		if (err)
1123 			goto fail;
1124 
1125 		/* Initialize pool context */
1126 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1127 				     num_sqbs, hw->sqb_size);
1128 		if (err)
1129 			goto fail;
1130 	}
1131 
1132 	/* Flush accumulated messages */
1133 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1134 	if (err)
1135 		goto fail;
1136 
1137 	/* Allocate pointers and free them to aura/pool */
1138 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1139 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1140 		pool = &pfvf->qset.pool[pool_id];
1141 
1142 		sq = &qset->sq[qidx];
1143 		sq->sqb_count = 0;
1144 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(u64 *), GFP_KERNEL);
1145 		if (!sq->sqb_ptrs)
1146 			return -ENOMEM;
1147 
1148 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1149 			bufptr = otx2_alloc_rbuf(pfvf, pool);
1150 			if (bufptr <= 0)
1151 				return bufptr;
1152 			otx2_aura_freeptr(pfvf, pool_id, bufptr);
1153 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1154 		}
1155 	}
1156 
1157 	return 0;
1158 fail:
1159 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1160 	otx2_aura_pool_free(pfvf);
1161 	return err;
1162 }
1163 
1164 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1165 {
1166 	struct otx2_hw *hw = &pfvf->hw;
1167 	int stack_pages, pool_id, rq;
1168 	struct otx2_pool *pool;
1169 	int err, ptr, num_ptrs;
1170 	s64 bufptr;
1171 
1172 	num_ptrs = pfvf->qset.rqe_cnt;
1173 
1174 	stack_pages =
1175 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1176 
1177 	for (rq = 0; rq < hw->rx_queues; rq++) {
1178 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1179 		/* Initialize aura context */
1180 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1181 		if (err)
1182 			goto fail;
1183 	}
1184 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1185 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1186 				     num_ptrs, pfvf->rbsize);
1187 		if (err)
1188 			goto fail;
1189 	}
1190 
1191 	/* Flush accumulated messages */
1192 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1193 	if (err)
1194 		goto fail;
1195 
1196 	/* Allocate pointers and free them to aura/pool */
1197 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1198 		pool = &pfvf->qset.pool[pool_id];
1199 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1200 			bufptr = otx2_alloc_rbuf(pfvf, pool);
1201 			if (bufptr <= 0)
1202 				return bufptr;
1203 			otx2_aura_freeptr(pfvf, pool_id,
1204 					  bufptr + OTX2_HEAD_ROOM);
1205 		}
1206 	}
1207 
1208 	return 0;
1209 fail:
1210 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1211 	otx2_aura_pool_free(pfvf);
1212 	return err;
1213 }
1214 
1215 int otx2_config_npa(struct otx2_nic *pfvf)
1216 {
1217 	struct otx2_qset *qset = &pfvf->qset;
1218 	struct npa_lf_alloc_req  *npalf;
1219 	struct otx2_hw *hw = &pfvf->hw;
1220 	int aura_cnt;
1221 
1222 	/* Pool - Stack of free buffer pointers
1223 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1224 	 */
1225 
1226 	if (!hw->pool_cnt)
1227 		return -EINVAL;
1228 
1229 	qset->pool = devm_kzalloc(pfvf->dev, sizeof(struct otx2_pool) *
1230 				  hw->pool_cnt, GFP_KERNEL);
1231 	if (!qset->pool)
1232 		return -ENOMEM;
1233 
1234 	/* Get memory to put this msg */
1235 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1236 	if (!npalf)
1237 		return -ENOMEM;
1238 
1239 	/* Set aura and pool counts */
1240 	npalf->nr_pools = hw->pool_cnt;
1241 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1242 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1243 
1244 	return otx2_sync_mbox_msg(&pfvf->mbox);
1245 }
1246 
1247 int otx2_detach_resources(struct mbox *mbox)
1248 {
1249 	struct rsrc_detach *detach;
1250 
1251 	mutex_lock(&mbox->lock);
1252 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1253 	if (!detach) {
1254 		mutex_unlock(&mbox->lock);
1255 		return -ENOMEM;
1256 	}
1257 
1258 	/* detach all */
1259 	detach->partial = false;
1260 
1261 	/* Send detach request to AF */
1262 	otx2_mbox_msg_send(&mbox->mbox, 0);
1263 	mutex_unlock(&mbox->lock);
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL(otx2_detach_resources);
1267 
1268 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1269 {
1270 	struct rsrc_attach *attach;
1271 	struct msg_req *msix;
1272 	int err;
1273 
1274 	mutex_lock(&pfvf->mbox.lock);
1275 	/* Get memory to put this msg */
1276 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1277 	if (!attach) {
1278 		mutex_unlock(&pfvf->mbox.lock);
1279 		return -ENOMEM;
1280 	}
1281 
1282 	attach->npalf = true;
1283 	attach->nixlf = true;
1284 
1285 	/* Send attach request to AF */
1286 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1287 	if (err) {
1288 		mutex_unlock(&pfvf->mbox.lock);
1289 		return err;
1290 	}
1291 
1292 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1293 
1294 	/* If the platform has two NIX blocks then LF may be
1295 	 * allocated from NIX1.
1296 	 */
1297 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1298 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1299 
1300 	/* Get NPA and NIX MSIX vector offsets */
1301 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1302 	if (!msix) {
1303 		mutex_unlock(&pfvf->mbox.lock);
1304 		return -ENOMEM;
1305 	}
1306 
1307 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1308 	if (err) {
1309 		mutex_unlock(&pfvf->mbox.lock);
1310 		return err;
1311 	}
1312 	mutex_unlock(&pfvf->mbox.lock);
1313 
1314 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1315 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1316 		dev_err(pfvf->dev,
1317 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1318 		return -EINVAL;
1319 	}
1320 
1321 	return 0;
1322 }
1323 EXPORT_SYMBOL(otx2_attach_npa_nix);
1324 
1325 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1326 {
1327 	struct hwctx_disable_req *req;
1328 
1329 	mutex_lock(&mbox->lock);
1330 	/* Request AQ to disable this context */
1331 	if (npa)
1332 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1333 	else
1334 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1335 
1336 	if (!req) {
1337 		mutex_unlock(&mbox->lock);
1338 		return;
1339 	}
1340 
1341 	req->ctype = type;
1342 
1343 	if (otx2_sync_mbox_msg(mbox))
1344 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1345 			__func__);
1346 
1347 	mutex_unlock(&mbox->lock);
1348 }
1349 
1350 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1351 {
1352 	struct nix_bp_cfg_req *req;
1353 
1354 	if (enable)
1355 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1356 	else
1357 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1358 
1359 	if (!req)
1360 		return -ENOMEM;
1361 
1362 	req->chan_base = 0;
1363 	req->chan_cnt = 1;
1364 	req->bpid_per_chan = 0;
1365 
1366 	return otx2_sync_mbox_msg(&pfvf->mbox);
1367 }
1368 
1369 /* Mbox message handlers */
1370 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1371 			    struct cgx_stats_rsp *rsp)
1372 {
1373 	int id;
1374 
1375 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1376 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1377 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1378 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1379 }
1380 
1381 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1382 				  struct nix_txsch_alloc_rsp *rsp)
1383 {
1384 	int lvl, schq;
1385 
1386 	/* Setup transmit scheduler list */
1387 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1388 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
1389 			pf->hw.txschq_list[lvl][schq] =
1390 				rsp->schq_list[lvl][schq];
1391 }
1392 EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1393 
1394 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1395 			       struct npa_lf_alloc_rsp *rsp)
1396 {
1397 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1398 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1399 }
1400 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1401 
1402 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1403 			       struct nix_lf_alloc_rsp *rsp)
1404 {
1405 	pfvf->hw.sqb_size = rsp->sqb_size;
1406 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1407 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1408 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1409 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1410 }
1411 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1412 
1413 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1414 			      struct msix_offset_rsp *rsp)
1415 {
1416 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1417 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1418 }
1419 EXPORT_SYMBOL(mbox_handler_msix_offset);
1420 
1421 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1422 				struct nix_bp_cfg_rsp *rsp)
1423 {
1424 	int chan, chan_id;
1425 
1426 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1427 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1428 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1429 	}
1430 }
1431 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1432 
1433 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1434 {
1435 	struct otx2_qset *qset = &pfvf->qset;
1436 	struct otx2_hw *hw = &pfvf->hw;
1437 	int irq, qidx;
1438 
1439 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1440 	     qidx < n;
1441 	     qidx++, irq++) {
1442 		int vector = pci_irq_vector(pfvf->pdev, irq);
1443 
1444 		irq_set_affinity_hint(vector, NULL);
1445 		free_cpumask_var(hw->affinity_mask[irq]);
1446 		free_irq(vector, &qset->napi[qidx]);
1447 	}
1448 }
1449 
1450 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1451 {
1452 	struct otx2_hw *hw = &pfvf->hw;
1453 	int vec, cpu, irq, cint;
1454 
1455 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1456 	cpu = cpumask_first(cpu_online_mask);
1457 
1458 	/* CQ interrupts */
1459 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1460 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1461 			return;
1462 
1463 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1464 
1465 		irq = pci_irq_vector(pfvf->pdev, vec);
1466 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1467 
1468 		cpu = cpumask_next(cpu, cpu_online_mask);
1469 		if (unlikely(cpu >= nr_cpu_ids))
1470 			cpu = 0;
1471 	}
1472 }
1473 
1474 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1475 int __weak								\
1476 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
1477 				struct _req_type *req,			\
1478 				struct _rsp_type *rsp)			\
1479 {									\
1480 	/* Nothing to do here */					\
1481 	return 0;							\
1482 }									\
1483 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1484 MBOX_UP_CGX_MESSAGES
1485 #undef M
1486