xref: /linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_common.c (revision 65c93628599dff4cd7cfb70130d1f6a2203731ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <net/tso.h>
14 
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18 
19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 				 struct otx2_nic *pfvf, int qidx)
21 {
22 	u64 incr = (u64)qidx << 32;
23 	u64 *ptr;
24 
25 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 	stats->bytes = otx2_atomic64_add(incr, ptr);
27 
28 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 	stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31 
32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 				 struct otx2_nic *pfvf, int qidx)
34 {
35 	u64 incr = (u64)qidx << 32;
36 	u64 *ptr;
37 
38 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 	stats->bytes = otx2_atomic64_add(incr, ptr);
40 
41 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 	stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44 
45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 	struct msg_req *req;
48 
49 	if (!netif_running(pfvf->netdev))
50 		return;
51 
52 	otx2_mbox_lock(&pfvf->mbox);
53 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 	if (!req) {
55 		otx2_mbox_unlock(&pfvf->mbox);
56 		return;
57 	}
58 
59 	otx2_sync_mbox_msg(&pfvf->mbox);
60 	otx2_mbox_unlock(&pfvf->mbox);
61 }
62 
63 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
64 {
65 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
66 
67 	if (!pfvf->qset.rq)
68 		return 0;
69 
70 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
71 	return 1;
72 }
73 
74 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
75 {
76 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
77 
78 	if (!pfvf->qset.sq)
79 		return 0;
80 
81 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
82 	return 1;
83 }
84 
85 void otx2_get_dev_stats(struct otx2_nic *pfvf)
86 {
87 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
88 
89 #define OTX2_GET_RX_STATS(reg) \
90 	 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
91 #define OTX2_GET_TX_STATS(reg) \
92 	 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
93 
94 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
95 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
96 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
97 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
98 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
99 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
100 			       dev_stats->rx_mcast_frames +
101 			       dev_stats->rx_ucast_frames;
102 
103 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
104 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
105 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
106 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
107 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
108 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
109 			       dev_stats->tx_mcast_frames +
110 			       dev_stats->tx_ucast_frames;
111 }
112 
113 void otx2_get_stats64(struct net_device *netdev,
114 		      struct rtnl_link_stats64 *stats)
115 {
116 	struct otx2_nic *pfvf = netdev_priv(netdev);
117 	struct otx2_dev_stats *dev_stats;
118 
119 	otx2_get_dev_stats(pfvf);
120 
121 	dev_stats = &pfvf->hw.dev_stats;
122 	stats->rx_bytes = dev_stats->rx_bytes;
123 	stats->rx_packets = dev_stats->rx_frames;
124 	stats->rx_dropped = dev_stats->rx_drops;
125 	stats->multicast = dev_stats->rx_mcast_frames;
126 
127 	stats->tx_bytes = dev_stats->tx_bytes;
128 	stats->tx_packets = dev_stats->tx_frames;
129 	stats->tx_dropped = dev_stats->tx_drops;
130 }
131 
132 /* Sync MAC address with RVU AF */
133 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
134 {
135 	struct nix_set_mac_addr *req;
136 	int err;
137 
138 	otx2_mbox_lock(&pfvf->mbox);
139 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
140 	if (!req) {
141 		otx2_mbox_unlock(&pfvf->mbox);
142 		return -ENOMEM;
143 	}
144 
145 	ether_addr_copy(req->mac_addr, mac);
146 
147 	err = otx2_sync_mbox_msg(&pfvf->mbox);
148 	otx2_mbox_unlock(&pfvf->mbox);
149 	return err;
150 }
151 
152 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
153 				struct net_device *netdev)
154 {
155 	struct nix_get_mac_addr_rsp *rsp;
156 	struct mbox_msghdr *msghdr;
157 	struct msg_req *req;
158 	int err;
159 
160 	otx2_mbox_lock(&pfvf->mbox);
161 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
162 	if (!req) {
163 		otx2_mbox_unlock(&pfvf->mbox);
164 		return -ENOMEM;
165 	}
166 
167 	err = otx2_sync_mbox_msg(&pfvf->mbox);
168 	if (err) {
169 		otx2_mbox_unlock(&pfvf->mbox);
170 		return err;
171 	}
172 
173 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
174 	if (IS_ERR(msghdr)) {
175 		otx2_mbox_unlock(&pfvf->mbox);
176 		return PTR_ERR(msghdr);
177 	}
178 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
179 	ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
180 	otx2_mbox_unlock(&pfvf->mbox);
181 
182 	return 0;
183 }
184 
185 int otx2_set_mac_address(struct net_device *netdev, void *p)
186 {
187 	struct otx2_nic *pfvf = netdev_priv(netdev);
188 	struct sockaddr *addr = p;
189 
190 	if (!is_valid_ether_addr(addr->sa_data))
191 		return -EADDRNOTAVAIL;
192 
193 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data))
194 		memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
195 	else
196 		return -EPERM;
197 
198 	return 0;
199 }
200 
201 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
202 {
203 	struct nix_frs_cfg *req;
204 	int err;
205 
206 	otx2_mbox_lock(&pfvf->mbox);
207 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
208 	if (!req) {
209 		otx2_mbox_unlock(&pfvf->mbox);
210 		return -ENOMEM;
211 	}
212 
213 	/* SMQ config limits maximum pkt size that can be transmitted */
214 	req->update_smq = true;
215 	pfvf->max_frs = mtu +  OTX2_ETH_HLEN;
216 	req->maxlen = pfvf->max_frs;
217 
218 	err = otx2_sync_mbox_msg(&pfvf->mbox);
219 	otx2_mbox_unlock(&pfvf->mbox);
220 	return err;
221 }
222 
223 int otx2_config_pause_frm(struct otx2_nic *pfvf)
224 {
225 	struct cgx_pause_frm_cfg *req;
226 	int err;
227 
228 	otx2_mbox_lock(&pfvf->mbox);
229 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
230 	if (!req) {
231 		err = -ENOMEM;
232 		goto unlock;
233 	}
234 
235 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
236 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
237 	req->set = 1;
238 
239 	err = otx2_sync_mbox_msg(&pfvf->mbox);
240 unlock:
241 	otx2_mbox_unlock(&pfvf->mbox);
242 	return err;
243 }
244 
245 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
246 {
247 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
248 	struct nix_rss_flowkey_cfg *req;
249 	int err;
250 
251 	otx2_mbox_lock(&pfvf->mbox);
252 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
253 	if (!req) {
254 		otx2_mbox_unlock(&pfvf->mbox);
255 		return -ENOMEM;
256 	}
257 	req->mcam_index = -1; /* Default or reserved index */
258 	req->flowkey_cfg = rss->flowkey_cfg;
259 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
260 
261 	err = otx2_sync_mbox_msg(&pfvf->mbox);
262 	otx2_mbox_unlock(&pfvf->mbox);
263 	return err;
264 }
265 
266 int otx2_set_rss_table(struct otx2_nic *pfvf)
267 {
268 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
269 	struct mbox *mbox = &pfvf->mbox;
270 	struct nix_aq_enq_req *aq;
271 	int idx, err;
272 
273 	otx2_mbox_lock(mbox);
274 	/* Get memory to put this msg */
275 	for (idx = 0; idx < rss->rss_size; idx++) {
276 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
277 		if (!aq) {
278 			/* The shared memory buffer can be full.
279 			 * Flush it and retry
280 			 */
281 			err = otx2_sync_mbox_msg(mbox);
282 			if (err) {
283 				otx2_mbox_unlock(mbox);
284 				return err;
285 			}
286 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
287 			if (!aq) {
288 				otx2_mbox_unlock(mbox);
289 				return -ENOMEM;
290 			}
291 		}
292 
293 		aq->rss.rq = rss->ind_tbl[idx];
294 
295 		/* Fill AQ info */
296 		aq->qidx = idx;
297 		aq->ctype = NIX_AQ_CTYPE_RSS;
298 		aq->op = NIX_AQ_INSTOP_INIT;
299 	}
300 	err = otx2_sync_mbox_msg(mbox);
301 	otx2_mbox_unlock(mbox);
302 	return err;
303 }
304 
305 void otx2_set_rss_key(struct otx2_nic *pfvf)
306 {
307 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
308 	u64 *key = (u64 *)&rss->key[4];
309 	int idx;
310 
311 	/* 352bit or 44byte key needs to be configured as below
312 	 * NIX_LF_RX_SECRETX0 = key<351:288>
313 	 * NIX_LF_RX_SECRETX1 = key<287:224>
314 	 * NIX_LF_RX_SECRETX2 = key<223:160>
315 	 * NIX_LF_RX_SECRETX3 = key<159:96>
316 	 * NIX_LF_RX_SECRETX4 = key<95:32>
317 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
318 	 */
319 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
320 		     (u64)(*((u32 *)&rss->key)) << 32);
321 	idx = sizeof(rss->key) / sizeof(u64);
322 	while (idx > 0) {
323 		idx--;
324 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
325 	}
326 }
327 
328 int otx2_rss_init(struct otx2_nic *pfvf)
329 {
330 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
331 	int idx, ret = 0;
332 
333 	rss->rss_size = sizeof(rss->ind_tbl);
334 
335 	/* Init RSS key if it is not setup already */
336 	if (!rss->enable)
337 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
338 	otx2_set_rss_key(pfvf);
339 
340 	if (!netif_is_rxfh_configured(pfvf->netdev)) {
341 		/* Default indirection table */
342 		for (idx = 0; idx < rss->rss_size; idx++)
343 			rss->ind_tbl[idx] =
344 				ethtool_rxfh_indir_default(idx,
345 							   pfvf->hw.rx_queues);
346 	}
347 	ret = otx2_set_rss_table(pfvf);
348 	if (ret)
349 		return ret;
350 
351 	/* Flowkey or hash config to be used for generating flow tag */
352 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
353 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
354 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
355 			   NIX_FLOW_KEY_TYPE_SCTP;
356 
357 	ret = otx2_set_flowkey_cfg(pfvf);
358 	if (ret)
359 		return ret;
360 
361 	rss->enable = true;
362 	return 0;
363 }
364 
365 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
366 {
367 	/* Configure CQE interrupt coalescing parameters
368 	 *
369 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
370 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
371 	 * usecs, convert that to 100ns count.
372 	 */
373 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
374 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
375 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
376 		     (pfvf->hw.cq_ecount_wait - 1));
377 }
378 
379 dma_addr_t otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
380 			   gfp_t gfp)
381 {
382 	dma_addr_t iova;
383 
384 	/* Check if request can be accommodated in previous allocated page */
385 	if (pool->page && ((pool->page_offset + pool->rbsize) <=
386 	    (PAGE_SIZE << pool->rbpage_order))) {
387 		pool->pageref++;
388 		goto ret;
389 	}
390 
391 	otx2_get_page(pool);
392 
393 	/* Allocate a new page */
394 	pool->page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
395 				 pool->rbpage_order);
396 	if (unlikely(!pool->page))
397 		return -ENOMEM;
398 
399 	pool->page_offset = 0;
400 ret:
401 	iova = (u64)otx2_dma_map_page(pfvf, pool->page, pool->page_offset,
402 				      pool->rbsize, DMA_FROM_DEVICE);
403 	if (!iova) {
404 		if (!pool->page_offset)
405 			__free_pages(pool->page, pool->rbpage_order);
406 		pool->page = NULL;
407 		return -ENOMEM;
408 	}
409 	pool->page_offset += pool->rbsize;
410 	return iova;
411 }
412 
413 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
414 {
415 	struct otx2_nic *pfvf = netdev_priv(netdev);
416 
417 	schedule_work(&pfvf->reset_task);
418 }
419 
420 void otx2_get_mac_from_af(struct net_device *netdev)
421 {
422 	struct otx2_nic *pfvf = netdev_priv(netdev);
423 	int err;
424 
425 	err = otx2_hw_get_mac_addr(pfvf, netdev);
426 	if (err)
427 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
428 
429 	/* If AF doesn't provide a valid MAC, generate a random one */
430 	if (!is_valid_ether_addr(netdev->dev_addr))
431 		eth_hw_addr_random(netdev);
432 }
433 
434 static int otx2_get_link(struct otx2_nic *pfvf)
435 {
436 	int link = 0;
437 	u16 map;
438 
439 	/* cgx lmac link */
440 	if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
441 		map = pfvf->hw.tx_chan_base & 0x7FF;
442 		link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
443 	}
444 	/* LBK channel */
445 	if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE)
446 		link = 12;
447 
448 	return link;
449 }
450 
451 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
452 {
453 	struct otx2_hw *hw = &pfvf->hw;
454 	struct nix_txschq_config *req;
455 	u64 schq, parent;
456 
457 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
458 	if (!req)
459 		return -ENOMEM;
460 
461 	req->lvl = lvl;
462 	req->num_regs = 1;
463 
464 	schq = hw->txschq_list[lvl][0];
465 	/* Set topology e.t.c configuration */
466 	if (lvl == NIX_TXSCH_LVL_SMQ) {
467 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
468 		req->regval[0] = ((pfvf->netdev->mtu  + OTX2_ETH_HLEN) << 8) |
469 				   OTX2_MIN_MTU;
470 
471 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
472 				  (0x2ULL << 36);
473 		req->num_regs++;
474 		/* MDQ config */
475 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
476 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
477 		req->regval[1] = parent << 16;
478 		req->num_regs++;
479 		/* Set DWRR quantum */
480 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
481 		req->regval[2] =  DFLT_RR_QTM;
482 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
483 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
484 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
485 		req->regval[0] = parent << 16;
486 		req->num_regs++;
487 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
488 		req->regval[1] = DFLT_RR_QTM;
489 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
490 		parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
491 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
492 		req->regval[0] = parent << 16;
493 		req->num_regs++;
494 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
495 		req->regval[1] = DFLT_RR_QTM;
496 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
497 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
498 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
499 		req->regval[0] = parent << 16;
500 
501 		req->num_regs++;
502 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
503 		req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;
504 
505 		req->num_regs++;
506 		req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
507 							otx2_get_link(pfvf));
508 		/* Enable this queue and backpressure */
509 		req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
510 
511 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
512 		/* Default config for TL1.
513 		 * For VF this is always ignored.
514 		 */
515 
516 		/* Set DWRR quantum */
517 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
518 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
519 
520 		req->num_regs++;
521 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
522 		req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
523 
524 		req->num_regs++;
525 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
526 		req->regval[2] = 0;
527 	}
528 
529 	return otx2_sync_mbox_msg(&pfvf->mbox);
530 }
531 
532 int otx2_txsch_alloc(struct otx2_nic *pfvf)
533 {
534 	struct nix_txsch_alloc_req *req;
535 	int lvl;
536 
537 	/* Get memory to put this msg */
538 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
539 	if (!req)
540 		return -ENOMEM;
541 
542 	/* Request one schq per level */
543 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
544 		req->schq[lvl] = 1;
545 
546 	return otx2_sync_mbox_msg(&pfvf->mbox);
547 }
548 
549 int otx2_txschq_stop(struct otx2_nic *pfvf)
550 {
551 	struct nix_txsch_free_req *free_req;
552 	int lvl, schq, err;
553 
554 	otx2_mbox_lock(&pfvf->mbox);
555 	/* Free the transmit schedulers */
556 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
557 	if (!free_req) {
558 		otx2_mbox_unlock(&pfvf->mbox);
559 		return -ENOMEM;
560 	}
561 
562 	free_req->flags = TXSCHQ_FREE_ALL;
563 	err = otx2_sync_mbox_msg(&pfvf->mbox);
564 	otx2_mbox_unlock(&pfvf->mbox);
565 
566 	/* Clear the txschq list */
567 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
568 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
569 			pfvf->hw.txschq_list[lvl][schq] = 0;
570 	}
571 	return err;
572 }
573 
574 void otx2_sqb_flush(struct otx2_nic *pfvf)
575 {
576 	int qidx, sqe_tail, sqe_head;
577 	u64 incr, *ptr, val;
578 
579 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
580 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
581 		incr = (u64)qidx << 32;
582 		while (1) {
583 			val = otx2_atomic64_add(incr, ptr);
584 			sqe_head = (val >> 20) & 0x3F;
585 			sqe_tail = (val >> 28) & 0x3F;
586 			if (sqe_head == sqe_tail)
587 				break;
588 			usleep_range(1, 3);
589 		}
590 	}
591 }
592 
593 /* RED and drop levels of CQ on packet reception.
594  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
595  */
596 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
597 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
598 
599 /* RED and drop levels of AURA for packet reception.
600  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
601  * Eg: For RQ length 1K, for pass/drop level 204/230.
602  * RED accepts pkts if free pointers > 102 & <= 205.
603  * Drops pkts if free pointers < 102.
604  */
605 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
606 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
607 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
608 
609 /* Send skid of 2000 packets required for CQ size of 4K CQEs. */
610 #define SEND_CQ_SKID	2000
611 
612 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
613 {
614 	struct otx2_qset *qset = &pfvf->qset;
615 	struct nix_aq_enq_req *aq;
616 
617 	/* Get memory to put this msg */
618 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
619 	if (!aq)
620 		return -ENOMEM;
621 
622 	aq->rq.cq = qidx;
623 	aq->rq.ena = 1;
624 	aq->rq.pb_caching = 1;
625 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
626 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
627 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
628 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
629 	aq->rq.qint_idx = 0;
630 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
631 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
632 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
633 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
634 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
635 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
636 
637 	/* Fill AQ info */
638 	aq->qidx = qidx;
639 	aq->ctype = NIX_AQ_CTYPE_RQ;
640 	aq->op = NIX_AQ_INSTOP_INIT;
641 
642 	return otx2_sync_mbox_msg(&pfvf->mbox);
643 }
644 
645 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
646 {
647 	struct otx2_qset *qset = &pfvf->qset;
648 	struct otx2_snd_queue *sq;
649 	struct nix_aq_enq_req *aq;
650 	struct otx2_pool *pool;
651 	int err;
652 
653 	pool = &pfvf->qset.pool[sqb_aura];
654 	sq = &qset->sq[qidx];
655 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
656 	sq->sqe_cnt = qset->sqe_cnt;
657 
658 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
659 	if (err)
660 		return err;
661 
662 	err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
663 			 TSO_HEADER_SIZE);
664 	if (err)
665 		return err;
666 
667 	sq->sqe_base = sq->sqe->base;
668 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
669 	if (!sq->sg)
670 		return -ENOMEM;
671 
672 	sq->head = 0;
673 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
674 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
675 	/* Set SQE threshold to 10% of total SQEs */
676 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
677 	sq->aura_id = sqb_aura;
678 	sq->aura_fc_addr = pool->fc_addr->base;
679 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
680 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
681 
682 	sq->stats.bytes = 0;
683 	sq->stats.pkts = 0;
684 
685 	/* Get memory to put this msg */
686 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
687 	if (!aq)
688 		return -ENOMEM;
689 
690 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
691 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
692 	aq->sq.cq_ena = 1;
693 	aq->sq.ena = 1;
694 	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
695 	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
696 	aq->sq.smq_rr_quantum = DFLT_RR_QTM;
697 	aq->sq.default_chan = pfvf->hw.tx_chan_base;
698 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
699 	aq->sq.sqb_aura = sqb_aura;
700 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
701 	aq->sq.qint_idx = 0;
702 	/* Due pipelining impact minimum 2000 unused SQ CQE's
703 	 * need to maintain to avoid CQ overflow.
704 	 */
705 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (sq->sqe_cnt));
706 
707 	/* Fill AQ info */
708 	aq->qidx = qidx;
709 	aq->ctype = NIX_AQ_CTYPE_SQ;
710 	aq->op = NIX_AQ_INSTOP_INIT;
711 
712 	return otx2_sync_mbox_msg(&pfvf->mbox);
713 }
714 
715 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
716 {
717 	struct otx2_qset *qset = &pfvf->qset;
718 	struct nix_aq_enq_req *aq;
719 	struct otx2_cq_queue *cq;
720 	int err, pool_id;
721 
722 	cq = &qset->cq[qidx];
723 	cq->cq_idx = qidx;
724 	if (qidx < pfvf->hw.rx_queues) {
725 		cq->cq_type = CQ_RX;
726 		cq->cint_idx = qidx;
727 		cq->cqe_cnt = qset->rqe_cnt;
728 	} else {
729 		cq->cq_type = CQ_TX;
730 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
731 		cq->cqe_cnt = qset->sqe_cnt;
732 	}
733 	cq->cqe_size = pfvf->qset.xqe_size;
734 
735 	/* Allocate memory for CQEs */
736 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
737 	if (err)
738 		return err;
739 
740 	/* Save CQE CPU base for faster reference */
741 	cq->cqe_base = cq->cqe->base;
742 	/* In case where all RQs auras point to single pool,
743 	 * all CQs receive buffer pool also point to same pool.
744 	 */
745 	pool_id = ((cq->cq_type == CQ_RX) &&
746 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
747 	cq->rbpool = &qset->pool[pool_id];
748 	cq->refill_task_sched = false;
749 
750 	/* Get memory to put this msg */
751 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
752 	if (!aq)
753 		return -ENOMEM;
754 
755 	aq->cq.ena = 1;
756 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
757 	aq->cq.caching = 1;
758 	aq->cq.base = cq->cqe->iova;
759 	aq->cq.cint_idx = cq->cint_idx;
760 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
761 	aq->cq.qint_idx = 0;
762 	aq->cq.avg_level = 255;
763 
764 	if (qidx < pfvf->hw.rx_queues) {
765 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
766 		aq->cq.drop_ena = 1;
767 
768 		/* Enable receive CQ backpressure */
769 		aq->cq.bp_ena = 1;
770 		aq->cq.bpid = pfvf->bpid[0];
771 
772 		/* Set backpressure level is same as cq pass level */
773 		aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
774 	}
775 
776 	/* Fill AQ info */
777 	aq->qidx = qidx;
778 	aq->ctype = NIX_AQ_CTYPE_CQ;
779 	aq->op = NIX_AQ_INSTOP_INIT;
780 
781 	return otx2_sync_mbox_msg(&pfvf->mbox);
782 }
783 
784 static void otx2_pool_refill_task(struct work_struct *work)
785 {
786 	struct otx2_cq_queue *cq;
787 	struct otx2_pool *rbpool;
788 	struct refill_work *wrk;
789 	int qidx, free_ptrs = 0;
790 	struct otx2_nic *pfvf;
791 	s64 bufptr;
792 
793 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
794 	pfvf = wrk->pf;
795 	qidx = wrk - pfvf->refill_wrk;
796 	cq = &pfvf->qset.cq[qidx];
797 	rbpool = cq->rbpool;
798 	free_ptrs = cq->pool_ptrs;
799 
800 	while (cq->pool_ptrs) {
801 		bufptr = otx2_alloc_rbuf(pfvf, rbpool, GFP_KERNEL);
802 		if (bufptr <= 0) {
803 			/* Schedule a WQ if we fails to free atleast half of the
804 			 * pointers else enable napi for this RQ.
805 			 */
806 			if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
807 				struct delayed_work *dwork;
808 
809 				dwork = &wrk->pool_refill_work;
810 				schedule_delayed_work(dwork,
811 						      msecs_to_jiffies(100));
812 			} else {
813 				cq->refill_task_sched = false;
814 			}
815 			return;
816 		}
817 		otx2_aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
818 		cq->pool_ptrs--;
819 	}
820 	cq->refill_task_sched = false;
821 }
822 
823 int otx2_config_nix_queues(struct otx2_nic *pfvf)
824 {
825 	int qidx, err;
826 
827 	/* Initialize RX queues */
828 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
829 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
830 
831 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
832 		if (err)
833 			return err;
834 	}
835 
836 	/* Initialize TX queues */
837 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
838 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
839 
840 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
841 		if (err)
842 			return err;
843 	}
844 
845 	/* Initialize completion queues */
846 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
847 		err = otx2_cq_init(pfvf, qidx);
848 		if (err)
849 			return err;
850 	}
851 
852 	/* Initialize work queue for receive buffer refill */
853 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
854 					sizeof(struct refill_work), GFP_KERNEL);
855 	if (!pfvf->refill_wrk)
856 		return -ENOMEM;
857 
858 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
859 		pfvf->refill_wrk[qidx].pf = pfvf;
860 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
861 				  otx2_pool_refill_task);
862 	}
863 	return 0;
864 }
865 
866 int otx2_config_nix(struct otx2_nic *pfvf)
867 {
868 	struct nix_lf_alloc_req  *nixlf;
869 	struct nix_lf_alloc_rsp *rsp;
870 	int err;
871 
872 	pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
873 
874 	/* Get memory to put this msg */
875 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
876 	if (!nixlf)
877 		return -ENOMEM;
878 
879 	/* Set RQ/SQ/CQ counts */
880 	nixlf->rq_cnt = pfvf->hw.rx_queues;
881 	nixlf->sq_cnt = pfvf->hw.tx_queues;
882 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
883 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
884 	nixlf->rss_grps = 1; /* Single RSS indir table supported, for now */
885 	nixlf->xqe_sz = NIX_XQESZ_W16;
886 	/* We don't know absolute NPA LF idx attached.
887 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
888 	 * NPA LF attached to this RVU PF/VF.
889 	 */
890 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
891 	/* Disable alignment pad, enable L2 length check,
892 	 * enable L4 TCP/UDP checksum verification.
893 	 */
894 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
895 
896 	err = otx2_sync_mbox_msg(&pfvf->mbox);
897 	if (err)
898 		return err;
899 
900 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
901 							   &nixlf->hdr);
902 	if (IS_ERR(rsp))
903 		return PTR_ERR(rsp);
904 
905 	if (rsp->qints < 1)
906 		return -ENXIO;
907 
908 	return rsp->hdr.rc;
909 }
910 
911 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
912 {
913 	struct otx2_qset *qset = &pfvf->qset;
914 	struct otx2_hw *hw = &pfvf->hw;
915 	struct otx2_snd_queue *sq;
916 	int sqb, qidx;
917 	u64 iova, pa;
918 
919 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
920 		sq = &qset->sq[qidx];
921 		if (!sq->sqb_ptrs)
922 			continue;
923 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
924 			if (!sq->sqb_ptrs[sqb])
925 				continue;
926 			iova = sq->sqb_ptrs[sqb];
927 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
928 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
929 					     DMA_FROM_DEVICE,
930 					     DMA_ATTR_SKIP_CPU_SYNC);
931 			put_page(virt_to_page(phys_to_virt(pa)));
932 		}
933 		sq->sqb_count = 0;
934 	}
935 }
936 
937 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
938 {
939 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
940 	u64 iova, pa;
941 
942 	if (type == AURA_NIX_SQ) {
943 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
944 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
945 		size = pfvf->hw.sqb_size;
946 	}
947 	if (type == AURA_NIX_RQ) {
948 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
949 		pool_end = pfvf->hw.rqpool_cnt;
950 		size = pfvf->rbsize;
951 	}
952 
953 	/* Free SQB and RQB pointers from the aura pool */
954 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
955 		iova = otx2_aura_allocptr(pfvf, pool_id);
956 		while (iova) {
957 			if (type == AURA_NIX_RQ)
958 				iova -= OTX2_HEAD_ROOM;
959 
960 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
961 			dma_unmap_page_attrs(pfvf->dev, iova, size,
962 					     DMA_FROM_DEVICE,
963 					     DMA_ATTR_SKIP_CPU_SYNC);
964 			put_page(virt_to_page(phys_to_virt(pa)));
965 			iova = otx2_aura_allocptr(pfvf, pool_id);
966 		}
967 	}
968 }
969 
970 void otx2_aura_pool_free(struct otx2_nic *pfvf)
971 {
972 	struct otx2_pool *pool;
973 	int pool_id;
974 
975 	if (!pfvf->qset.pool)
976 		return;
977 
978 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
979 		pool = &pfvf->qset.pool[pool_id];
980 		qmem_free(pfvf->dev, pool->stack);
981 		qmem_free(pfvf->dev, pool->fc_addr);
982 	}
983 	devm_kfree(pfvf->dev, pfvf->qset.pool);
984 }
985 
986 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
987 			  int pool_id, int numptrs)
988 {
989 	struct npa_aq_enq_req *aq;
990 	struct otx2_pool *pool;
991 	int err;
992 
993 	pool = &pfvf->qset.pool[pool_id];
994 
995 	/* Allocate memory for HW to update Aura count.
996 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
997 	 */
998 	if (!pool->fc_addr) {
999 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1000 		if (err)
1001 			return err;
1002 	}
1003 
1004 	/* Initialize this aura's context via AF */
1005 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1006 	if (!aq) {
1007 		/* Shared mbox memory buffer is full, flush it and retry */
1008 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1009 		if (err)
1010 			return err;
1011 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1012 		if (!aq)
1013 			return -ENOMEM;
1014 	}
1015 
1016 	aq->aura_id = aura_id;
1017 	/* Will be filled by AF with correct pool context address */
1018 	aq->aura.pool_addr = pool_id;
1019 	aq->aura.pool_caching = 1;
1020 	aq->aura.shift = ilog2(numptrs) - 8;
1021 	aq->aura.count = numptrs;
1022 	aq->aura.limit = numptrs;
1023 	aq->aura.avg_level = 255;
1024 	aq->aura.ena = 1;
1025 	aq->aura.fc_ena = 1;
1026 	aq->aura.fc_addr = pool->fc_addr->iova;
1027 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1028 
1029 	/* Enable backpressure for RQ aura */
1030 	if (aura_id < pfvf->hw.rqpool_cnt) {
1031 		aq->aura.bp_ena = 0;
1032 		aq->aura.nix0_bpid = pfvf->bpid[0];
1033 		/* Set backpressure level for RQ's Aura */
1034 		aq->aura.bp = RQ_BP_LVL_AURA;
1035 	}
1036 
1037 	/* Fill AQ info */
1038 	aq->ctype = NPA_AQ_CTYPE_AURA;
1039 	aq->op = NPA_AQ_INSTOP_INIT;
1040 
1041 	return 0;
1042 }
1043 
1044 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1045 			  int stack_pages, int numptrs, int buf_size)
1046 {
1047 	struct npa_aq_enq_req *aq;
1048 	struct otx2_pool *pool;
1049 	int err;
1050 
1051 	pool = &pfvf->qset.pool[pool_id];
1052 	/* Alloc memory for stack which is used to store buffer pointers */
1053 	err = qmem_alloc(pfvf->dev, &pool->stack,
1054 			 stack_pages, pfvf->hw.stack_pg_bytes);
1055 	if (err)
1056 		return err;
1057 
1058 	pool->rbsize = buf_size;
1059 	pool->rbpage_order = get_order(buf_size);
1060 
1061 	/* Initialize this pool's context via AF */
1062 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1063 	if (!aq) {
1064 		/* Shared mbox memory buffer is full, flush it and retry */
1065 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1066 		if (err) {
1067 			qmem_free(pfvf->dev, pool->stack);
1068 			return err;
1069 		}
1070 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1071 		if (!aq) {
1072 			qmem_free(pfvf->dev, pool->stack);
1073 			return -ENOMEM;
1074 		}
1075 	}
1076 
1077 	aq->aura_id = pool_id;
1078 	aq->pool.stack_base = pool->stack->iova;
1079 	aq->pool.stack_caching = 1;
1080 	aq->pool.ena = 1;
1081 	aq->pool.buf_size = buf_size / 128;
1082 	aq->pool.stack_max_pages = stack_pages;
1083 	aq->pool.shift = ilog2(numptrs) - 8;
1084 	aq->pool.ptr_start = 0;
1085 	aq->pool.ptr_end = ~0ULL;
1086 
1087 	/* Fill AQ info */
1088 	aq->ctype = NPA_AQ_CTYPE_POOL;
1089 	aq->op = NPA_AQ_INSTOP_INIT;
1090 
1091 	return 0;
1092 }
1093 
1094 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1095 {
1096 	int qidx, pool_id, stack_pages, num_sqbs;
1097 	struct otx2_qset *qset = &pfvf->qset;
1098 	struct otx2_hw *hw = &pfvf->hw;
1099 	struct otx2_snd_queue *sq;
1100 	struct otx2_pool *pool;
1101 	int err, ptr;
1102 	s64 bufptr;
1103 
1104 	/* Calculate number of SQBs needed.
1105 	 *
1106 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1107 	 * Last SQE is used for pointing to next SQB.
1108 	 */
1109 	num_sqbs = (hw->sqb_size / 128) - 1;
1110 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1111 
1112 	/* Get no of stack pages needed */
1113 	stack_pages =
1114 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1115 
1116 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1117 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1118 		/* Initialize aura context */
1119 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1120 		if (err)
1121 			goto fail;
1122 
1123 		/* Initialize pool context */
1124 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1125 				     num_sqbs, hw->sqb_size);
1126 		if (err)
1127 			goto fail;
1128 	}
1129 
1130 	/* Flush accumulated messages */
1131 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1132 	if (err)
1133 		goto fail;
1134 
1135 	/* Allocate pointers and free them to aura/pool */
1136 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1137 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1138 		pool = &pfvf->qset.pool[pool_id];
1139 
1140 		sq = &qset->sq[qidx];
1141 		sq->sqb_count = 0;
1142 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(u64 *), GFP_KERNEL);
1143 		if (!sq->sqb_ptrs)
1144 			return -ENOMEM;
1145 
1146 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1147 			bufptr = otx2_alloc_rbuf(pfvf, pool, GFP_KERNEL);
1148 			if (bufptr <= 0)
1149 				return bufptr;
1150 			otx2_aura_freeptr(pfvf, pool_id, bufptr);
1151 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1152 		}
1153 		otx2_get_page(pool);
1154 	}
1155 
1156 	return 0;
1157 fail:
1158 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1159 	otx2_aura_pool_free(pfvf);
1160 	return err;
1161 }
1162 
1163 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1164 {
1165 	struct otx2_hw *hw = &pfvf->hw;
1166 	int stack_pages, pool_id, rq;
1167 	struct otx2_pool *pool;
1168 	int err, ptr, num_ptrs;
1169 	s64 bufptr;
1170 
1171 	num_ptrs = pfvf->qset.rqe_cnt;
1172 
1173 	stack_pages =
1174 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1175 
1176 	for (rq = 0; rq < hw->rx_queues; rq++) {
1177 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1178 		/* Initialize aura context */
1179 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1180 		if (err)
1181 			goto fail;
1182 	}
1183 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1184 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1185 				     num_ptrs, pfvf->rbsize);
1186 		if (err)
1187 			goto fail;
1188 	}
1189 
1190 	/* Flush accumulated messages */
1191 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1192 	if (err)
1193 		goto fail;
1194 
1195 	/* Allocate pointers and free them to aura/pool */
1196 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1197 		pool = &pfvf->qset.pool[pool_id];
1198 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1199 			bufptr = otx2_alloc_rbuf(pfvf, pool, GFP_KERNEL);
1200 			if (bufptr <= 0)
1201 				return bufptr;
1202 			otx2_aura_freeptr(pfvf, pool_id,
1203 					  bufptr + OTX2_HEAD_ROOM);
1204 		}
1205 		otx2_get_page(pool);
1206 	}
1207 
1208 	return 0;
1209 fail:
1210 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1211 	otx2_aura_pool_free(pfvf);
1212 	return err;
1213 }
1214 
1215 int otx2_config_npa(struct otx2_nic *pfvf)
1216 {
1217 	struct otx2_qset *qset = &pfvf->qset;
1218 	struct npa_lf_alloc_req  *npalf;
1219 	struct otx2_hw *hw = &pfvf->hw;
1220 	int aura_cnt;
1221 
1222 	/* Pool - Stack of free buffer pointers
1223 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1224 	 */
1225 
1226 	if (!hw->pool_cnt)
1227 		return -EINVAL;
1228 
1229 	qset->pool = devm_kzalloc(pfvf->dev, sizeof(struct otx2_pool) *
1230 				  hw->pool_cnt, GFP_KERNEL);
1231 	if (!qset->pool)
1232 		return -ENOMEM;
1233 
1234 	/* Get memory to put this msg */
1235 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1236 	if (!npalf)
1237 		return -ENOMEM;
1238 
1239 	/* Set aura and pool counts */
1240 	npalf->nr_pools = hw->pool_cnt;
1241 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1242 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1243 
1244 	return otx2_sync_mbox_msg(&pfvf->mbox);
1245 }
1246 
1247 int otx2_detach_resources(struct mbox *mbox)
1248 {
1249 	struct rsrc_detach *detach;
1250 
1251 	otx2_mbox_lock(mbox);
1252 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1253 	if (!detach) {
1254 		otx2_mbox_unlock(mbox);
1255 		return -ENOMEM;
1256 	}
1257 
1258 	/* detach all */
1259 	detach->partial = false;
1260 
1261 	/* Send detach request to AF */
1262 	otx2_mbox_msg_send(&mbox->mbox, 0);
1263 	otx2_mbox_unlock(mbox);
1264 	return 0;
1265 }
1266 
1267 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1268 {
1269 	struct rsrc_attach *attach;
1270 	struct msg_req *msix;
1271 	int err;
1272 
1273 	otx2_mbox_lock(&pfvf->mbox);
1274 	/* Get memory to put this msg */
1275 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1276 	if (!attach) {
1277 		otx2_mbox_unlock(&pfvf->mbox);
1278 		return -ENOMEM;
1279 	}
1280 
1281 	attach->npalf = true;
1282 	attach->nixlf = true;
1283 
1284 	/* Send attach request to AF */
1285 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1286 	if (err) {
1287 		otx2_mbox_unlock(&pfvf->mbox);
1288 		return err;
1289 	}
1290 
1291 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1292 
1293 	/* If the platform has two NIX blocks then LF may be
1294 	 * allocated from NIX1.
1295 	 */
1296 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1297 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1298 
1299 	/* Get NPA and NIX MSIX vector offsets */
1300 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1301 	if (!msix) {
1302 		otx2_mbox_unlock(&pfvf->mbox);
1303 		return -ENOMEM;
1304 	}
1305 
1306 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1307 	if (err) {
1308 		otx2_mbox_unlock(&pfvf->mbox);
1309 		return err;
1310 	}
1311 	otx2_mbox_unlock(&pfvf->mbox);
1312 
1313 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1314 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1315 		dev_err(pfvf->dev,
1316 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1317 		return -EINVAL;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1324 {
1325 	struct hwctx_disable_req *req;
1326 
1327 	otx2_mbox_lock(mbox);
1328 	/* Request AQ to disable this context */
1329 	if (npa)
1330 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1331 	else
1332 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1333 
1334 	if (!req) {
1335 		otx2_mbox_unlock(mbox);
1336 		return;
1337 	}
1338 
1339 	req->ctype = type;
1340 
1341 	if (otx2_sync_mbox_msg(mbox))
1342 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1343 			__func__);
1344 
1345 	otx2_mbox_unlock(mbox);
1346 }
1347 
1348 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1349 {
1350 	struct nix_bp_cfg_req *req;
1351 
1352 	if (enable)
1353 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1354 	else
1355 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1356 
1357 	if (!req)
1358 		return -ENOMEM;
1359 
1360 	req->chan_base = 0;
1361 	req->chan_cnt = 1;
1362 	req->bpid_per_chan = 0;
1363 
1364 	return otx2_sync_mbox_msg(&pfvf->mbox);
1365 }
1366 
1367 /* Mbox message handlers */
1368 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1369 			    struct cgx_stats_rsp *rsp)
1370 {
1371 	int id;
1372 
1373 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1374 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1375 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1376 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1377 }
1378 
1379 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1380 				  struct nix_txsch_alloc_rsp *rsp)
1381 {
1382 	int lvl, schq;
1383 
1384 	/* Setup transmit scheduler list */
1385 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1386 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
1387 			pf->hw.txschq_list[lvl][schq] =
1388 				rsp->schq_list[lvl][schq];
1389 }
1390 
1391 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1392 			       struct npa_lf_alloc_rsp *rsp)
1393 {
1394 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1395 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1396 }
1397 
1398 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1399 			       struct nix_lf_alloc_rsp *rsp)
1400 {
1401 	pfvf->hw.sqb_size = rsp->sqb_size;
1402 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1403 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1404 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1405 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1406 }
1407 
1408 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1409 			      struct msix_offset_rsp *rsp)
1410 {
1411 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1412 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1413 }
1414 
1415 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1416 				struct nix_bp_cfg_rsp *rsp)
1417 {
1418 	int chan, chan_id;
1419 
1420 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1421 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1422 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1423 	}
1424 }
1425 
1426 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1427 {
1428 	struct otx2_qset *qset = &pfvf->qset;
1429 	struct otx2_hw *hw = &pfvf->hw;
1430 	int irq, qidx;
1431 
1432 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1433 	     qidx < n;
1434 	     qidx++, irq++) {
1435 		int vector = pci_irq_vector(pfvf->pdev, irq);
1436 
1437 		irq_set_affinity_hint(vector, NULL);
1438 		free_cpumask_var(hw->affinity_mask[irq]);
1439 		free_irq(vector, &qset->napi[qidx]);
1440 	}
1441 }
1442 
1443 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1444 {
1445 	struct otx2_hw *hw = &pfvf->hw;
1446 	int vec, cpu, irq, cint;
1447 
1448 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1449 	cpu = cpumask_first(cpu_online_mask);
1450 
1451 	/* CQ interrupts */
1452 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1453 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1454 			return;
1455 
1456 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1457 
1458 		irq = pci_irq_vector(pfvf->pdev, vec);
1459 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1460 
1461 		cpu = cpumask_next(cpu, cpu_online_mask);
1462 		if (unlikely(cpu >= nr_cpu_ids))
1463 			cpu = 0;
1464 	}
1465 }
1466 
1467 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1468 int __weak								\
1469 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
1470 				struct _req_type *req,			\
1471 				struct _rsp_type *rsp)			\
1472 {									\
1473 	/* Nothing to do here */					\
1474 	return 0;							\
1475 }									\
1476 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1477 MBOX_UP_CGX_MESSAGES
1478 #undef M
1479