1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Admin Function driver 3 * 4 * Copyright (C) 2022 Marvell. 5 * 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/firmware.h> 12 #include <linux/stddef.h> 13 #include <linux/debugfs.h> 14 15 #include "rvu_struct.h" 16 #include "rvu_reg.h" 17 #include "rvu.h" 18 #include "npc.h" 19 #include "cgx.h" 20 #include "rvu_npc_fs.h" 21 #include "rvu_npc_hash.h" 22 23 static u64 rvu_npc_wide_extract(const u64 input[], size_t start_bit, 24 size_t width_bits) 25 { 26 const u64 mask = ~(u64)((~(__uint128_t)0) << width_bits); 27 const size_t msb = start_bit + width_bits - 1; 28 const size_t lword = start_bit >> 6; 29 const size_t uword = msb >> 6; 30 size_t lbits; 31 u64 hi, lo; 32 33 if (lword == uword) 34 return (input[lword] >> (start_bit & 63)) & mask; 35 36 lbits = 64 - (start_bit & 63); 37 hi = input[uword]; 38 lo = (input[lword] >> (start_bit & 63)); 39 return ((hi << lbits) | lo) & mask; 40 } 41 42 static void rvu_npc_lshift_key(u64 *key, size_t key_bit_len) 43 { 44 u64 prev_orig_word = 0; 45 u64 cur_orig_word = 0; 46 size_t extra = key_bit_len % 64; 47 size_t max_idx = key_bit_len / 64; 48 size_t i; 49 50 if (extra) 51 max_idx++; 52 53 for (i = 0; i < max_idx; i++) { 54 cur_orig_word = key[i]; 55 key[i] = key[i] << 1; 56 key[i] |= ((prev_orig_word >> 63) & 0x1); 57 prev_orig_word = cur_orig_word; 58 } 59 } 60 61 static u32 rvu_npc_toeplitz_hash(const u64 *data, u64 *key, size_t data_bit_len, 62 size_t key_bit_len) 63 { 64 u32 hash_out = 0; 65 u64 temp_data = 0; 66 int i; 67 68 for (i = data_bit_len - 1; i >= 0; i--) { 69 temp_data = (data[i / 64]); 70 temp_data = temp_data >> (i % 64); 71 temp_data &= 0x1; 72 if (temp_data) 73 hash_out ^= (u32)(rvu_npc_wide_extract(key, key_bit_len - 32, 32)); 74 75 rvu_npc_lshift_key(key, key_bit_len); 76 } 77 78 return hash_out; 79 } 80 81 u32 npc_field_hash_calc(u64 *ldata, struct npc_get_field_hash_info_rsp rsp, 82 u8 intf, u8 hash_idx) 83 { 84 u64 hash_key[3]; 85 u64 data_padded[2]; 86 u32 field_hash; 87 88 hash_key[0] = rsp.secret_key[1] << 31; 89 hash_key[0] |= rsp.secret_key[2]; 90 hash_key[1] = rsp.secret_key[1] >> 33; 91 hash_key[1] |= rsp.secret_key[0] << 31; 92 hash_key[2] = rsp.secret_key[0] >> 33; 93 94 data_padded[0] = rsp.hash_mask[intf][hash_idx][0] & ldata[0]; 95 data_padded[1] = rsp.hash_mask[intf][hash_idx][1] & ldata[1]; 96 field_hash = rvu_npc_toeplitz_hash(data_padded, hash_key, 128, 159); 97 98 field_hash &= FIELD_GET(GENMASK(63, 32), rsp.hash_ctrl[intf][hash_idx]); 99 field_hash += FIELD_GET(GENMASK(31, 0), rsp.hash_ctrl[intf][hash_idx]); 100 return field_hash; 101 } 102 103 static u64 npc_update_use_hash(struct rvu *rvu, int blkaddr, 104 u8 intf, int lid, int lt, int ld) 105 { 106 u8 hdr, key; 107 u64 cfg; 108 109 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_LIDX_LTX_LDX_CFG(intf, lid, lt, ld)); 110 hdr = FIELD_GET(NPC_HDR_OFFSET, cfg); 111 key = FIELD_GET(NPC_KEY_OFFSET, cfg); 112 113 /* Update use_hash(bit-20) to 'true' and 114 * bytesm1(bit-16:19) to '0x3' in KEX_LD_CFG 115 */ 116 cfg = KEX_LD_CFG_USE_HASH(0x1, 0x03, 117 hdr, 0x1, 0x0, key); 118 119 return cfg; 120 } 121 122 static void npc_program_mkex_hash_rx(struct rvu *rvu, int blkaddr, 123 u8 intf) 124 { 125 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; 126 int lid, lt, ld, hash_cnt = 0; 127 128 if (is_npc_intf_tx(intf)) 129 return; 130 131 /* Program HASH_CFG */ 132 for (lid = 0; lid < NPC_MAX_LID; lid++) { 133 for (lt = 0; lt < NPC_MAX_LT; lt++) { 134 for (ld = 0; ld < NPC_MAX_LD; ld++) { 135 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) { 136 u64 cfg; 137 138 if (hash_cnt == NPC_MAX_HASH) 139 return; 140 141 cfg = npc_update_use_hash(rvu, blkaddr, 142 intf, lid, lt, ld); 143 /* Set updated KEX configuration */ 144 SET_KEX_LD(intf, lid, lt, ld, cfg); 145 /* Set HASH configuration */ 146 SET_KEX_LD_HASH(intf, ld, 147 mkex_hash->hash[intf][ld]); 148 SET_KEX_LD_HASH_MASK(intf, ld, 0, 149 mkex_hash->hash_mask[intf][ld][0]); 150 SET_KEX_LD_HASH_MASK(intf, ld, 1, 151 mkex_hash->hash_mask[intf][ld][1]); 152 SET_KEX_LD_HASH_CTRL(intf, ld, 153 mkex_hash->hash_ctrl[intf][ld]); 154 155 hash_cnt++; 156 } 157 } 158 } 159 } 160 } 161 162 static void npc_program_mkex_hash_tx(struct rvu *rvu, int blkaddr, 163 u8 intf) 164 { 165 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; 166 int lid, lt, ld, hash_cnt = 0; 167 168 if (is_npc_intf_rx(intf)) 169 return; 170 171 /* Program HASH_CFG */ 172 for (lid = 0; lid < NPC_MAX_LID; lid++) { 173 for (lt = 0; lt < NPC_MAX_LT; lt++) { 174 for (ld = 0; ld < NPC_MAX_LD; ld++) 175 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) { 176 u64 cfg; 177 178 if (hash_cnt == NPC_MAX_HASH) 179 return; 180 181 cfg = npc_update_use_hash(rvu, blkaddr, 182 intf, lid, lt, ld); 183 /* Set updated KEX configuration */ 184 SET_KEX_LD(intf, lid, lt, ld, cfg); 185 /* Set HASH configuration */ 186 SET_KEX_LD_HASH(intf, ld, 187 mkex_hash->hash[intf][ld]); 188 SET_KEX_LD_HASH_MASK(intf, ld, 0, 189 mkex_hash->hash_mask[intf][ld][0]); 190 SET_KEX_LD_HASH_MASK(intf, ld, 1, 191 mkex_hash->hash_mask[intf][ld][1]); 192 SET_KEX_LD_HASH_CTRL(intf, ld, 193 mkex_hash->hash_ctrl[intf][ld]); 194 hash_cnt++; 195 } 196 } 197 } 198 } 199 200 void npc_config_secret_key(struct rvu *rvu, int blkaddr) 201 { 202 struct hw_cap *hwcap = &rvu->hw->cap; 203 struct rvu_hwinfo *hw = rvu->hw; 204 u8 intf; 205 206 if (!hwcap->npc_hash_extract) 207 return; 208 209 for (intf = 0; intf < hw->npc_intfs; intf++) { 210 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf), 211 RVU_NPC_HASH_SECRET_KEY0); 212 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf), 213 RVU_NPC_HASH_SECRET_KEY1); 214 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf), 215 RVU_NPC_HASH_SECRET_KEY2); 216 } 217 } 218 219 void npc_program_mkex_hash(struct rvu *rvu, int blkaddr) 220 { 221 struct hw_cap *hwcap = &rvu->hw->cap; 222 struct rvu_hwinfo *hw = rvu->hw; 223 u8 intf; 224 225 if (!hwcap->npc_hash_extract) 226 return; 227 228 for (intf = 0; intf < hw->npc_intfs; intf++) { 229 npc_program_mkex_hash_rx(rvu, blkaddr, intf); 230 npc_program_mkex_hash_tx(rvu, blkaddr, intf); 231 } 232 } 233 234 void npc_update_field_hash(struct rvu *rvu, u8 intf, 235 struct mcam_entry *entry, 236 int blkaddr, 237 u64 features, 238 struct flow_msg *pkt, 239 struct flow_msg *mask, 240 struct flow_msg *opkt, 241 struct flow_msg *omask) 242 { 243 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; 244 struct npc_get_field_hash_info_req req; 245 struct npc_get_field_hash_info_rsp rsp; 246 u64 ldata[2], cfg; 247 u32 field_hash; 248 u8 hash_idx; 249 250 if (!rvu->hw->cap.npc_hash_extract) { 251 dev_dbg(rvu->dev, "%s: Field hash extract feature is not supported\n", __func__); 252 return; 253 } 254 255 req.intf = intf; 256 rvu_mbox_handler_npc_get_field_hash_info(rvu, &req, &rsp); 257 258 for (hash_idx = 0; hash_idx < NPC_MAX_HASH; hash_idx++) { 259 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_HASHX_CFG(intf, hash_idx)); 260 if ((cfg & BIT_ULL(11)) && (cfg & BIT_ULL(12))) { 261 u8 lid = (cfg & GENMASK_ULL(10, 8)) >> 8; 262 u8 ltype = (cfg & GENMASK_ULL(7, 4)) >> 4; 263 u8 ltype_mask = cfg & GENMASK_ULL(3, 0); 264 265 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][ltype][hash_idx]) { 266 switch (ltype & ltype_mask) { 267 /* If hash extract enabled is supported for IPv6 then 268 * 128 bit IPv6 source and destination addressed 269 * is hashed to 32 bit value. 270 */ 271 case NPC_LT_LC_IP6: 272 /* ld[0] == hash_idx[0] == Source IPv6 273 * ld[1] == hash_idx[1] == Destination IPv6 274 */ 275 if ((features & BIT_ULL(NPC_SIP_IPV6)) && !hash_idx) { 276 u32 src_ip[IPV6_WORDS]; 277 278 be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS); 279 ldata[1] = (u64)src_ip[0] << 32 | src_ip[1]; 280 ldata[0] = (u64)src_ip[2] << 32 | src_ip[3]; 281 field_hash = npc_field_hash_calc(ldata, 282 rsp, 283 intf, 284 hash_idx); 285 npc_update_entry(rvu, NPC_SIP_IPV6, entry, 286 field_hash, 0, 287 GENMASK(31, 0), 0, intf); 288 memcpy(&opkt->ip6src, &pkt->ip6src, 289 sizeof(pkt->ip6src)); 290 memcpy(&omask->ip6src, &mask->ip6src, 291 sizeof(mask->ip6src)); 292 } else if ((features & BIT_ULL(NPC_DIP_IPV6)) && hash_idx) { 293 u32 dst_ip[IPV6_WORDS]; 294 295 be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS); 296 ldata[1] = (u64)dst_ip[0] << 32 | dst_ip[1]; 297 ldata[0] = (u64)dst_ip[2] << 32 | dst_ip[3]; 298 field_hash = npc_field_hash_calc(ldata, 299 rsp, 300 intf, 301 hash_idx); 302 npc_update_entry(rvu, NPC_DIP_IPV6, entry, 303 field_hash, 0, 304 GENMASK(31, 0), 0, intf); 305 memcpy(&opkt->ip6dst, &pkt->ip6dst, 306 sizeof(pkt->ip6dst)); 307 memcpy(&omask->ip6dst, &mask->ip6dst, 308 sizeof(mask->ip6dst)); 309 } 310 311 break; 312 } 313 } 314 } 315 } 316 } 317 318 int rvu_mbox_handler_npc_get_field_hash_info(struct rvu *rvu, 319 struct npc_get_field_hash_info_req *req, 320 struct npc_get_field_hash_info_rsp *rsp) 321 { 322 u64 *secret_key = rsp->secret_key; 323 u8 intf = req->intf; 324 int i, j, blkaddr; 325 326 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 327 if (blkaddr < 0) { 328 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); 329 return -EINVAL; 330 } 331 332 secret_key[0] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf)); 333 secret_key[1] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf)); 334 secret_key[2] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf)); 335 336 for (i = 0; i < NPC_MAX_HASH; i++) { 337 for (j = 0; j < NPC_MAX_HASH_MASK; j++) { 338 rsp->hash_mask[NIX_INTF_RX][i][j] = 339 GET_KEX_LD_HASH_MASK(NIX_INTF_RX, i, j); 340 rsp->hash_mask[NIX_INTF_TX][i][j] = 341 GET_KEX_LD_HASH_MASK(NIX_INTF_TX, i, j); 342 } 343 } 344 345 for (i = 0; i < NPC_MAX_INTF; i++) 346 for (j = 0; j < NPC_MAX_HASH; j++) 347 rsp->hash_ctrl[i][j] = GET_KEX_LD_HASH_CTRL(i, j); 348 349 return 0; 350 } 351 352 /** 353 * rvu_npc_exact_mac2u64 - utility function to convert mac address to u64. 354 * @mac_addr: MAC address. 355 * Return: mdata for exact match table. 356 */ 357 static u64 rvu_npc_exact_mac2u64(u8 *mac_addr) 358 { 359 u64 mac = 0; 360 int index; 361 362 for (index = ETH_ALEN - 1; index >= 0; index--) 363 mac |= ((u64)*mac_addr++) << (8 * index); 364 365 return mac; 366 } 367 368 /** 369 * rvu_exact_prepare_mdata - Make mdata for mcam entry 370 * @mac: MAC address 371 * @chan: Channel number. 372 * @ctype: Channel Type. 373 * @mask: LDATA mask. 374 * Return: Meta data 375 */ 376 static u64 rvu_exact_prepare_mdata(u8 *mac, u16 chan, u16 ctype, u64 mask) 377 { 378 u64 ldata = rvu_npc_exact_mac2u64(mac); 379 380 /* Please note that mask is 48bit which excludes chan and ctype. 381 * Increase mask bits if we need to include them as well. 382 */ 383 ldata |= ((u64)chan << 48); 384 ldata |= ((u64)ctype << 60); 385 ldata &= mask; 386 ldata = ldata << 2; 387 388 return ldata; 389 } 390 391 /** 392 * rvu_exact_calculate_hash - calculate hash index to mem table. 393 * @rvu: resource virtualization unit. 394 * @chan: Channel number 395 * @ctype: Channel type. 396 * @mac: MAC address 397 * @mask: HASH mask. 398 * @table_depth: Depth of table. 399 * Return: Hash value 400 */ 401 static u32 rvu_exact_calculate_hash(struct rvu *rvu, u16 chan, u16 ctype, u8 *mac, 402 u64 mask, u32 table_depth) 403 { 404 struct npc_exact_table *table = rvu->hw->table; 405 u64 hash_key[2]; 406 u64 key_in[2]; 407 u64 ldata; 408 u32 hash; 409 410 key_in[0] = RVU_NPC_HASH_SECRET_KEY0; 411 key_in[1] = RVU_NPC_HASH_SECRET_KEY2; 412 413 hash_key[0] = key_in[0] << 31; 414 hash_key[0] |= key_in[1]; 415 hash_key[1] = key_in[0] >> 33; 416 417 ldata = rvu_exact_prepare_mdata(mac, chan, ctype, mask); 418 419 dev_dbg(rvu->dev, "%s: ldata=0x%llx hash_key0=0x%llx hash_key2=0x%llx\n", __func__, 420 ldata, hash_key[1], hash_key[0]); 421 hash = rvu_npc_toeplitz_hash(&ldata, (u64 *)hash_key, 64, 95); 422 423 hash &= table->mem_table.hash_mask; 424 hash += table->mem_table.hash_offset; 425 dev_dbg(rvu->dev, "%s: hash=%x\n", __func__, hash); 426 427 return hash; 428 } 429 430 /** 431 * rvu_npc_exact_alloc_mem_table_entry - find free entry in 4 way table. 432 * @rvu: resource virtualization unit. 433 * @way: Indicate way to table. 434 * @index: Hash index to 4 way table. 435 * @hash: Hash value. 436 * 437 * Searches 4 way table using hash index. Returns 0 on success. 438 * Return: 0 upon success. 439 */ 440 static int rvu_npc_exact_alloc_mem_table_entry(struct rvu *rvu, u8 *way, 441 u32 *index, unsigned int hash) 442 { 443 struct npc_exact_table *table; 444 int depth, i; 445 446 table = rvu->hw->table; 447 depth = table->mem_table.depth; 448 449 /* Check all the 4 ways for a free slot. */ 450 mutex_lock(&table->lock); 451 for (i = 0; i < table->mem_table.ways; i++) { 452 if (test_bit(hash + i * depth, table->mem_table.bmap)) 453 continue; 454 455 set_bit(hash + i * depth, table->mem_table.bmap); 456 mutex_unlock(&table->lock); 457 458 dev_dbg(rvu->dev, "%s: mem table entry alloc success (way=%d index=%d)\n", 459 __func__, i, hash); 460 461 *way = i; 462 *index = hash; 463 return 0; 464 } 465 mutex_unlock(&table->lock); 466 467 dev_dbg(rvu->dev, "%s: No space in 4 way exact way, weight=%u\n", __func__, 468 bitmap_weight(table->mem_table.bmap, table->mem_table.depth)); 469 return -ENOSPC; 470 } 471 472 /** 473 * rvu_npc_exact_free_id - Free seq id from bitmat. 474 * @rvu: Resource virtualization unit. 475 * @seq_id: Sequence identifier to be freed. 476 */ 477 static void rvu_npc_exact_free_id(struct rvu *rvu, u32 seq_id) 478 { 479 struct npc_exact_table *table; 480 481 table = rvu->hw->table; 482 mutex_lock(&table->lock); 483 clear_bit(seq_id, table->id_bmap); 484 mutex_unlock(&table->lock); 485 dev_dbg(rvu->dev, "%s: freed id %d\n", __func__, seq_id); 486 } 487 488 /** 489 * rvu_npc_exact_alloc_id - Alloc seq id from bitmap. 490 * @rvu: Resource virtualization unit. 491 * @seq_id: Sequence identifier. 492 * Return: True or false. 493 */ 494 static bool rvu_npc_exact_alloc_id(struct rvu *rvu, u32 *seq_id) 495 { 496 struct npc_exact_table *table; 497 u32 idx; 498 499 table = rvu->hw->table; 500 501 mutex_lock(&table->lock); 502 idx = find_first_zero_bit(table->id_bmap, table->tot_ids); 503 if (idx == table->tot_ids) { 504 mutex_unlock(&table->lock); 505 dev_err(rvu->dev, "%s: No space in id bitmap (%d)\n", 506 __func__, table->tot_ids); 507 508 return false; 509 } 510 511 /* Mark bit map to indicate that slot is used.*/ 512 set_bit(idx, table->id_bmap); 513 mutex_unlock(&table->lock); 514 515 *seq_id = idx; 516 dev_dbg(rvu->dev, "%s: Allocated id (%d)\n", __func__, *seq_id); 517 518 return true; 519 } 520 521 /** 522 * rvu_npc_exact_alloc_cam_table_entry - find free slot in fully associative table. 523 * @rvu: resource virtualization unit. 524 * @index: Index to exact CAM table. 525 * Return: 0 upon success; else error number. 526 */ 527 static int rvu_npc_exact_alloc_cam_table_entry(struct rvu *rvu, int *index) 528 { 529 struct npc_exact_table *table; 530 u32 idx; 531 532 table = rvu->hw->table; 533 534 mutex_lock(&table->lock); 535 idx = find_first_zero_bit(table->cam_table.bmap, table->cam_table.depth); 536 if (idx == table->cam_table.depth) { 537 mutex_unlock(&table->lock); 538 dev_info(rvu->dev, "%s: No space in exact cam table, weight=%u\n", __func__, 539 bitmap_weight(table->cam_table.bmap, table->cam_table.depth)); 540 return -ENOSPC; 541 } 542 543 /* Mark bit map to indicate that slot is used.*/ 544 set_bit(idx, table->cam_table.bmap); 545 mutex_unlock(&table->lock); 546 547 *index = idx; 548 dev_dbg(rvu->dev, "%s: cam table entry alloc success (index=%d)\n", 549 __func__, idx); 550 return 0; 551 } 552 553 /** 554 * rvu_exact_prepare_table_entry - Data for exact match table entry. 555 * @rvu: Resource virtualization unit. 556 * @enable: Enable/Disable entry 557 * @ctype: Software defined channel type. Currently set as 0. 558 * @chan: Channel number. 559 * @mac_addr: Destination mac address. 560 * Return: mdata for exact match table. 561 */ 562 static u64 rvu_exact_prepare_table_entry(struct rvu *rvu, bool enable, 563 u8 ctype, u16 chan, u8 *mac_addr) 564 565 { 566 u64 ldata = rvu_npc_exact_mac2u64(mac_addr); 567 568 /* Enable or disable */ 569 u64 mdata = FIELD_PREP(GENMASK_ULL(63, 63), enable ? 1 : 0); 570 571 /* Set Ctype */ 572 mdata |= FIELD_PREP(GENMASK_ULL(61, 60), ctype); 573 574 /* Set chan */ 575 mdata |= FIELD_PREP(GENMASK_ULL(59, 48), chan); 576 577 /* MAC address */ 578 mdata |= FIELD_PREP(GENMASK_ULL(47, 0), ldata); 579 580 return mdata; 581 } 582 583 /** 584 * rvu_exact_config_secret_key - Configure secret key. 585 * @rvu: Resource virtualization unit. 586 */ 587 static void rvu_exact_config_secret_key(struct rvu *rvu) 588 { 589 int blkaddr; 590 591 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 592 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET0(NIX_INTF_RX), 593 RVU_NPC_HASH_SECRET_KEY0); 594 595 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET1(NIX_INTF_RX), 596 RVU_NPC_HASH_SECRET_KEY1); 597 598 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET2(NIX_INTF_RX), 599 RVU_NPC_HASH_SECRET_KEY2); 600 } 601 602 /** 603 * rvu_exact_config_search_key - Configure search key 604 * @rvu: Resource virtualization unit. 605 */ 606 static void rvu_exact_config_search_key(struct rvu *rvu) 607 { 608 int blkaddr; 609 u64 reg_val; 610 611 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 612 613 /* HDR offset */ 614 reg_val = FIELD_PREP(GENMASK_ULL(39, 32), 0); 615 616 /* BYTESM1, number of bytes - 1 */ 617 reg_val |= FIELD_PREP(GENMASK_ULL(18, 16), ETH_ALEN - 1); 618 619 /* Enable LID and set LID to NPC_LID_LA */ 620 reg_val |= FIELD_PREP(GENMASK_ULL(11, 11), 1); 621 reg_val |= FIELD_PREP(GENMASK_ULL(10, 8), NPC_LID_LA); 622 623 /* Clear layer type based extraction */ 624 625 /* Disable LT_EN */ 626 reg_val |= FIELD_PREP(GENMASK_ULL(12, 12), 0); 627 628 /* Set LTYPE_MATCH to 0 */ 629 reg_val |= FIELD_PREP(GENMASK_ULL(7, 4), 0); 630 631 /* Set LTYPE_MASK to 0 */ 632 reg_val |= FIELD_PREP(GENMASK_ULL(3, 0), 0); 633 634 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_CFG(NIX_INTF_RX), reg_val); 635 } 636 637 /** 638 * rvu_exact_config_result_ctrl - Set exact table hash control 639 * @rvu: Resource virtualization unit. 640 * @depth: Depth of Exact match table. 641 * 642 * Sets mask and offset for hash for mem table. 643 */ 644 static void rvu_exact_config_result_ctrl(struct rvu *rvu, uint32_t depth) 645 { 646 int blkaddr; 647 u64 reg = 0; 648 649 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 650 651 /* Set mask. Note that depth is a power of 2 */ 652 rvu->hw->table->mem_table.hash_mask = (depth - 1); 653 reg |= FIELD_PREP(GENMASK_ULL(42, 32), (depth - 1)); 654 655 /* Set offset as 0 */ 656 rvu->hw->table->mem_table.hash_offset = 0; 657 reg |= FIELD_PREP(GENMASK_ULL(10, 0), 0); 658 659 /* Set reg for RX */ 660 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_RESULT_CTL(NIX_INTF_RX), reg); 661 /* Store hash mask and offset for s/w algorithm */ 662 } 663 664 /** 665 * rvu_exact_config_table_mask - Set exact table mask. 666 * @rvu: Resource virtualization unit. 667 */ 668 static void rvu_exact_config_table_mask(struct rvu *rvu) 669 { 670 int blkaddr; 671 u64 mask = 0; 672 673 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 674 675 /* Don't use Ctype */ 676 mask |= FIELD_PREP(GENMASK_ULL(61, 60), 0); 677 678 /* Set chan */ 679 mask |= GENMASK_ULL(59, 48); 680 681 /* Full ldata */ 682 mask |= GENMASK_ULL(47, 0); 683 684 /* Store mask for s/w hash calcualtion */ 685 rvu->hw->table->mem_table.mask = mask; 686 687 /* Set mask for RX.*/ 688 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_MASK(NIX_INTF_RX), mask); 689 } 690 691 /** 692 * rvu_npc_exact_get_max_entries - Get total number of entries in table. 693 * @rvu: resource virtualization unit. 694 * Return: Maximum table entries possible. 695 */ 696 u32 rvu_npc_exact_get_max_entries(struct rvu *rvu) 697 { 698 struct npc_exact_table *table; 699 700 table = rvu->hw->table; 701 return table->tot_ids; 702 } 703 704 /** 705 * rvu_npc_exact_has_match_table - Checks support for exact match. 706 * @rvu: resource virtualization unit. 707 * Return: True if exact match table is supported/enabled. 708 */ 709 bool rvu_npc_exact_has_match_table(struct rvu *rvu) 710 { 711 return rvu->hw->cap.npc_exact_match_enabled; 712 } 713 714 /** 715 * __rvu_npc_exact_find_entry_by_seq_id - find entry by id 716 * @rvu: resource virtualization unit. 717 * @seq_id: Sequence identifier. 718 * 719 * Caller should acquire the lock. 720 * Return: Pointer to table entry. 721 */ 722 static struct npc_exact_table_entry * 723 __rvu_npc_exact_find_entry_by_seq_id(struct rvu *rvu, u32 seq_id) 724 { 725 struct npc_exact_table *table = rvu->hw->table; 726 struct npc_exact_table_entry *entry = NULL; 727 struct list_head *lhead; 728 729 lhead = &table->lhead_gbl; 730 731 /* traverse to find the matching entry */ 732 list_for_each_entry(entry, lhead, glist) { 733 if (entry->seq_id != seq_id) 734 continue; 735 736 return entry; 737 } 738 739 return NULL; 740 } 741 742 /** 743 * rvu_npc_exact_add_to_list - Add entry to list 744 * @rvu: resource virtualization unit. 745 * @opc_type: OPCODE to select MEM/CAM table. 746 * @ways: MEM table ways. 747 * @index: Index in MEM/CAM table. 748 * @cgx_id: CGX identifier. 749 * @lmac_id: LMAC identifier. 750 * @mac_addr: MAC address. 751 * @chan: Channel number. 752 * @ctype: Channel Type. 753 * @seq_id: Sequence identifier 754 * @cmd: True if function is called by ethtool cmd 755 * @mcam_idx: NPC mcam index of DMAC entry in NPC mcam. 756 * @pcifunc: pci function 757 * Return: 0 upon success. 758 */ 759 static int rvu_npc_exact_add_to_list(struct rvu *rvu, enum npc_exact_opc_type opc_type, u8 ways, 760 u32 index, u8 cgx_id, u8 lmac_id, u8 *mac_addr, u16 chan, 761 u8 ctype, u32 *seq_id, bool cmd, u32 mcam_idx, u16 pcifunc) 762 { 763 struct npc_exact_table_entry *entry, *tmp, *iter; 764 struct npc_exact_table *table = rvu->hw->table; 765 struct list_head *lhead, *pprev; 766 767 WARN_ON(ways >= NPC_EXACT_TBL_MAX_WAYS); 768 769 if (!rvu_npc_exact_alloc_id(rvu, seq_id)) { 770 dev_err(rvu->dev, "%s: Generate seq id failed\n", __func__); 771 return -EFAULT; 772 } 773 774 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 775 if (!entry) { 776 rvu_npc_exact_free_id(rvu, *seq_id); 777 dev_err(rvu->dev, "%s: Memory allocation failed\n", __func__); 778 return -ENOMEM; 779 } 780 781 mutex_lock(&table->lock); 782 switch (opc_type) { 783 case NPC_EXACT_OPC_CAM: 784 lhead = &table->lhead_cam_tbl_entry; 785 table->cam_tbl_entry_cnt++; 786 break; 787 788 case NPC_EXACT_OPC_MEM: 789 lhead = &table->lhead_mem_tbl_entry[ways]; 790 table->mem_tbl_entry_cnt++; 791 break; 792 793 default: 794 mutex_unlock(&table->lock); 795 kfree(entry); 796 rvu_npc_exact_free_id(rvu, *seq_id); 797 798 dev_err(rvu->dev, "%s: Unknown opc type%d\n", __func__, opc_type); 799 return -EINVAL; 800 } 801 802 /* Add to global list */ 803 INIT_LIST_HEAD(&entry->glist); 804 list_add_tail(&entry->glist, &table->lhead_gbl); 805 INIT_LIST_HEAD(&entry->list); 806 entry->index = index; 807 entry->ways = ways; 808 entry->opc_type = opc_type; 809 810 entry->pcifunc = pcifunc; 811 812 ether_addr_copy(entry->mac, mac_addr); 813 entry->chan = chan; 814 entry->ctype = ctype; 815 entry->cgx_id = cgx_id; 816 entry->lmac_id = lmac_id; 817 818 entry->seq_id = *seq_id; 819 820 entry->mcam_idx = mcam_idx; 821 entry->cmd = cmd; 822 823 pprev = lhead; 824 825 /* Insert entry in ascending order of index */ 826 list_for_each_entry_safe(iter, tmp, lhead, list) { 827 if (index < iter->index) 828 break; 829 830 pprev = &iter->list; 831 } 832 833 /* Add to each table list */ 834 list_add(&entry->list, pprev); 835 mutex_unlock(&table->lock); 836 return 0; 837 } 838 839 /** 840 * rvu_npc_exact_mem_table_write - Wrapper for register write 841 * @rvu: resource virtualization unit. 842 * @blkaddr: Block address 843 * @ways: ways for MEM table. 844 * @index: Index in MEM 845 * @mdata: Meta data to be written to register. 846 */ 847 static void rvu_npc_exact_mem_table_write(struct rvu *rvu, int blkaddr, u8 ways, 848 u32 index, u64 mdata) 849 { 850 rvu_write64(rvu, blkaddr, NPC_AF_EXACT_MEM_ENTRY(ways, index), mdata); 851 } 852 853 /** 854 * rvu_npc_exact_cam_table_write - Wrapper for register write 855 * @rvu: resource virtualization unit. 856 * @blkaddr: Block address 857 * @index: Index in MEM 858 * @mdata: Meta data to be written to register. 859 */ 860 static void rvu_npc_exact_cam_table_write(struct rvu *rvu, int blkaddr, 861 u32 index, u64 mdata) 862 { 863 rvu_write64(rvu, blkaddr, NPC_AF_EXACT_CAM_ENTRY(index), mdata); 864 } 865 866 /** 867 * rvu_npc_exact_dealloc_table_entry - dealloc table entry 868 * @rvu: resource virtualization unit. 869 * @opc_type: OPCODE for selection of table(MEM or CAM) 870 * @ways: ways if opc_type is MEM table. 871 * @index: Index of MEM or CAM table. 872 * Return: 0 upon success. 873 */ 874 static int rvu_npc_exact_dealloc_table_entry(struct rvu *rvu, enum npc_exact_opc_type opc_type, 875 u8 ways, u32 index) 876 { 877 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 878 struct npc_exact_table *table; 879 u8 null_dmac[6] = { 0 }; 880 int depth; 881 882 /* Prepare entry with all fields set to zero */ 883 u64 null_mdata = rvu_exact_prepare_table_entry(rvu, false, 0, 0, null_dmac); 884 885 table = rvu->hw->table; 886 depth = table->mem_table.depth; 887 888 mutex_lock(&table->lock); 889 890 switch (opc_type) { 891 case NPC_EXACT_OPC_CAM: 892 893 /* Check whether entry is used already */ 894 if (!test_bit(index, table->cam_table.bmap)) { 895 mutex_unlock(&table->lock); 896 dev_err(rvu->dev, "%s: Trying to free an unused entry ways=%d index=%d\n", 897 __func__, ways, index); 898 return -EINVAL; 899 } 900 901 rvu_npc_exact_cam_table_write(rvu, blkaddr, index, null_mdata); 902 clear_bit(index, table->cam_table.bmap); 903 break; 904 905 case NPC_EXACT_OPC_MEM: 906 907 /* Check whether entry is used already */ 908 if (!test_bit(index + ways * depth, table->mem_table.bmap)) { 909 mutex_unlock(&table->lock); 910 dev_err(rvu->dev, "%s: Trying to free an unused entry index=%d\n", 911 __func__, index); 912 return -EINVAL; 913 } 914 915 rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, null_mdata); 916 clear_bit(index + ways * depth, table->mem_table.bmap); 917 break; 918 919 default: 920 mutex_unlock(&table->lock); 921 dev_err(rvu->dev, "%s: invalid opc type %d", __func__, opc_type); 922 return -ENOSPC; 923 } 924 925 mutex_unlock(&table->lock); 926 927 dev_dbg(rvu->dev, "%s: Successfully deleted entry (index=%d, ways=%d opc_type=%d\n", 928 __func__, index, ways, opc_type); 929 930 return 0; 931 } 932 933 /** 934 * rvu_npc_exact_alloc_table_entry - Allociate an entry 935 * @rvu: resource virtualization unit. 936 * @mac: MAC address. 937 * @chan: Channel number. 938 * @ctype: Channel Type. 939 * @index: Index of MEM table or CAM table. 940 * @ways: Ways. Only valid for MEM table. 941 * @opc_type: OPCODE to select table (MEM or CAM) 942 * 943 * Try allocating a slot from MEM table. If all 4 ways 944 * slot are full for a hash index, check availability in 945 * 32-entry CAM table for allocation. 946 * Return: 0 upon success. 947 */ 948 static int rvu_npc_exact_alloc_table_entry(struct rvu *rvu, char *mac, u16 chan, u8 ctype, 949 u32 *index, u8 *ways, enum npc_exact_opc_type *opc_type) 950 { 951 struct npc_exact_table *table; 952 unsigned int hash; 953 int err; 954 955 table = rvu->hw->table; 956 957 /* Check in 4-ways mem entry for free slote */ 958 hash = rvu_exact_calculate_hash(rvu, chan, ctype, mac, table->mem_table.mask, 959 table->mem_table.depth); 960 err = rvu_npc_exact_alloc_mem_table_entry(rvu, ways, index, hash); 961 if (!err) { 962 *opc_type = NPC_EXACT_OPC_MEM; 963 dev_dbg(rvu->dev, "%s: inserted in 4 ways hash table ways=%d, index=%d\n", 964 __func__, *ways, *index); 965 return 0; 966 } 967 968 dev_dbg(rvu->dev, "%s: failed to insert in 4 ways hash table\n", __func__); 969 970 /* wayss is 0 for cam table */ 971 *ways = 0; 972 err = rvu_npc_exact_alloc_cam_table_entry(rvu, index); 973 if (!err) { 974 *opc_type = NPC_EXACT_OPC_CAM; 975 dev_dbg(rvu->dev, "%s: inserted in fully associative hash table index=%u\n", 976 __func__, *index); 977 return 0; 978 } 979 980 dev_err(rvu->dev, "%s: failed to insert in fully associative hash table\n", __func__); 981 return -ENOSPC; 982 } 983 984 /** 985 * rvu_npc_exact_save_drop_rule_chan_and_mask - Save drop rules info in data base. 986 * @rvu: resource virtualization unit. 987 * @drop_mcam_idx: Drop rule index in NPC mcam. 988 * @chan_val: Channel value. 989 * @chan_mask: Channel Mask. 990 * @pcifunc: pcifunc of interface. 991 * Return: True upon success. 992 */ 993 static bool rvu_npc_exact_save_drop_rule_chan_and_mask(struct rvu *rvu, int drop_mcam_idx, 994 u64 chan_val, u64 chan_mask, u16 pcifunc) 995 { 996 struct npc_exact_table *table; 997 int i; 998 999 table = rvu->hw->table; 1000 1001 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) { 1002 if (!table->drop_rule_map[i].valid) 1003 break; 1004 1005 if (table->drop_rule_map[i].chan_val != (u16)chan_val) 1006 continue; 1007 1008 if (table->drop_rule_map[i].chan_mask != (u16)chan_mask) 1009 continue; 1010 1011 return false; 1012 } 1013 1014 if (i == NPC_MCAM_DROP_RULE_MAX) 1015 return false; 1016 1017 table->drop_rule_map[i].drop_rule_idx = drop_mcam_idx; 1018 table->drop_rule_map[i].chan_val = (u16)chan_val; 1019 table->drop_rule_map[i].chan_mask = (u16)chan_mask; 1020 table->drop_rule_map[i].pcifunc = pcifunc; 1021 table->drop_rule_map[i].valid = true; 1022 return true; 1023 } 1024 1025 /** 1026 * rvu_npc_exact_calc_drop_rule_chan_and_mask - Calculate Channel number and mask. 1027 * @rvu: resource virtualization unit. 1028 * @intf_type: Interface type (SDK, LBK or CGX) 1029 * @cgx_id: CGX identifier. 1030 * @lmac_id: LAMC identifier. 1031 * @val: Channel number. 1032 * @mask: Channel mask. 1033 * Return: True upon success. 1034 */ 1035 static bool rvu_npc_exact_calc_drop_rule_chan_and_mask(struct rvu *rvu, u8 intf_type, 1036 u8 cgx_id, u8 lmac_id, 1037 u64 *val, u64 *mask) 1038 { 1039 u16 chan_val, chan_mask; 1040 1041 /* No support for SDP and LBK */ 1042 if (intf_type != NIX_INTF_TYPE_CGX) 1043 return false; 1044 1045 chan_val = rvu_nix_chan_cgx(rvu, cgx_id, lmac_id, 0); 1046 chan_mask = 0xfff; 1047 1048 if (val) 1049 *val = chan_val; 1050 1051 if (mask) 1052 *mask = chan_mask; 1053 1054 return true; 1055 } 1056 1057 /** 1058 * rvu_npc_exact_drop_rule_to_pcifunc - Retrieve pcifunc 1059 * @rvu: resource virtualization unit. 1060 * @drop_rule_idx: Drop rule index in NPC mcam. 1061 * 1062 * Debugfs (exact_drop_cnt) entry displays pcifunc for interface 1063 * by retrieving the pcifunc value from data base. 1064 * Return: Drop rule index. 1065 */ 1066 u16 rvu_npc_exact_drop_rule_to_pcifunc(struct rvu *rvu, u32 drop_rule_idx) 1067 { 1068 struct npc_exact_table *table; 1069 int i; 1070 1071 table = rvu->hw->table; 1072 1073 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) { 1074 if (!table->drop_rule_map[i].valid) 1075 break; 1076 1077 if (table->drop_rule_map[i].drop_rule_idx != drop_rule_idx) 1078 continue; 1079 1080 return table->drop_rule_map[i].pcifunc; 1081 } 1082 1083 dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n", 1084 __func__, drop_rule_idx); 1085 return -1; 1086 } 1087 1088 /** 1089 * rvu_npc_exact_get_drop_rule_info - Get drop rule information. 1090 * @rvu: resource virtualization unit. 1091 * @intf_type: Interface type (CGX, SDP or LBK) 1092 * @cgx_id: CGX identifier. 1093 * @lmac_id: LMAC identifier. 1094 * @drop_mcam_idx: NPC mcam drop rule index. 1095 * @val: Channel value. 1096 * @mask: Channel mask. 1097 * @pcifunc: pcifunc of interface corresponding to the drop rule. 1098 * Return: True upon success. 1099 */ 1100 static bool rvu_npc_exact_get_drop_rule_info(struct rvu *rvu, u8 intf_type, u8 cgx_id, 1101 u8 lmac_id, u32 *drop_mcam_idx, u64 *val, 1102 u64 *mask, u16 *pcifunc) 1103 { 1104 struct npc_exact_table *table; 1105 u64 chan_val, chan_mask; 1106 bool rc; 1107 int i; 1108 1109 table = rvu->hw->table; 1110 1111 if (intf_type != NIX_INTF_TYPE_CGX) { 1112 dev_err(rvu->dev, "%s: No drop rule for LBK/SDP mode\n", __func__); 1113 return false; 1114 } 1115 1116 rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, intf_type, cgx_id, 1117 lmac_id, &chan_val, &chan_mask); 1118 if (!rc) 1119 return false; 1120 1121 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) { 1122 if (!table->drop_rule_map[i].valid) 1123 break; 1124 1125 if (table->drop_rule_map[i].chan_val != (u16)chan_val) 1126 continue; 1127 1128 if (val) 1129 *val = table->drop_rule_map[i].chan_val; 1130 if (mask) 1131 *mask = table->drop_rule_map[i].chan_mask; 1132 if (pcifunc) 1133 *pcifunc = table->drop_rule_map[i].pcifunc; 1134 1135 *drop_mcam_idx = i; 1136 return true; 1137 } 1138 1139 if (i == NPC_MCAM_DROP_RULE_MAX) { 1140 dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n", 1141 __func__, *drop_mcam_idx); 1142 return false; 1143 } 1144 1145 dev_err(rvu->dev, "%s: Could not retrieve for cgx=%d, lmac=%d\n", 1146 __func__, cgx_id, lmac_id); 1147 return false; 1148 } 1149 1150 /** 1151 * __rvu_npc_exact_cmd_rules_cnt_update - Update number dmac rules against a drop rule. 1152 * @rvu: resource virtualization unit. 1153 * @drop_mcam_idx: NPC mcam drop rule index. 1154 * @val: +1 or -1. 1155 * @enable_or_disable_cam: If no exact match rules against a drop rule, disable it. 1156 * 1157 * when first exact match entry against a drop rule is added, enable_or_disable_cam 1158 * is set to true. When last exact match entry against a drop rule is deleted, 1159 * enable_or_disable_cam is set to true. 1160 * Return: Number of rules 1161 */ 1162 static u16 __rvu_npc_exact_cmd_rules_cnt_update(struct rvu *rvu, int drop_mcam_idx, 1163 int val, bool *enable_or_disable_cam) 1164 { 1165 struct npc_exact_table *table; 1166 u16 *cnt, old_cnt; 1167 bool promisc; 1168 1169 table = rvu->hw->table; 1170 promisc = table->promisc_mode[drop_mcam_idx]; 1171 1172 cnt = &table->cnt_cmd_rules[drop_mcam_idx]; 1173 old_cnt = *cnt; 1174 1175 *cnt += val; 1176 1177 if (!enable_or_disable_cam) 1178 goto done; 1179 1180 *enable_or_disable_cam = false; 1181 1182 if (promisc) 1183 goto done; 1184 1185 /* If all rules are deleted and not already in promisc mode; 1186 * disable cam 1187 */ 1188 if (!*cnt && val < 0) { 1189 *enable_or_disable_cam = true; 1190 goto done; 1191 } 1192 1193 /* If rule got added and not already in promisc mode; enable cam */ 1194 if (!old_cnt && val > 0) { 1195 *enable_or_disable_cam = true; 1196 goto done; 1197 } 1198 1199 done: 1200 return *cnt; 1201 } 1202 1203 /** 1204 * rvu_npc_exact_del_table_entry_by_id - Delete and free table entry. 1205 * @rvu: resource virtualization unit. 1206 * @seq_id: Sequence identifier of the entry. 1207 * 1208 * Deletes entry from linked lists and free up slot in HW MEM or CAM 1209 * table. 1210 * Return: 0 upon success. 1211 */ 1212 static int rvu_npc_exact_del_table_entry_by_id(struct rvu *rvu, u32 seq_id) 1213 { 1214 struct npc_exact_table_entry *entry = NULL; 1215 struct npc_exact_table *table; 1216 bool disable_cam = false; 1217 u32 drop_mcam_idx = -1; 1218 int *cnt; 1219 bool rc; 1220 1221 table = rvu->hw->table; 1222 1223 mutex_lock(&table->lock); 1224 1225 /* Lookup for entry which needs to be updated */ 1226 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, seq_id); 1227 if (!entry) { 1228 dev_dbg(rvu->dev, "%s: failed to find entry for id=%d\n", __func__, seq_id); 1229 mutex_unlock(&table->lock); 1230 return -ENODATA; 1231 } 1232 1233 cnt = (entry->opc_type == NPC_EXACT_OPC_CAM) ? &table->cam_tbl_entry_cnt : 1234 &table->mem_tbl_entry_cnt; 1235 1236 /* delete from lists */ 1237 list_del_init(&entry->list); 1238 list_del_init(&entry->glist); 1239 1240 (*cnt)--; 1241 1242 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, entry->cgx_id, 1243 entry->lmac_id, &drop_mcam_idx, NULL, NULL, NULL); 1244 if (!rc) { 1245 dev_dbg(rvu->dev, "%s: failed to retrieve drop info for id=0x%x\n", 1246 __func__, seq_id); 1247 mutex_unlock(&table->lock); 1248 return -ENODATA; 1249 } 1250 1251 if (entry->cmd) 1252 __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, -1, &disable_cam); 1253 1254 /* No dmac filter rules; disable drop on hit rule */ 1255 if (disable_cam) { 1256 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false); 1257 dev_dbg(rvu->dev, "%s: Disabling mcam idx %d\n", 1258 __func__, drop_mcam_idx); 1259 } 1260 1261 mutex_unlock(&table->lock); 1262 1263 rvu_npc_exact_dealloc_table_entry(rvu, entry->opc_type, entry->ways, entry->index); 1264 1265 rvu_npc_exact_free_id(rvu, seq_id); 1266 1267 dev_dbg(rvu->dev, "%s: delete entry success for id=0x%x, mca=%pM\n", 1268 __func__, seq_id, entry->mac); 1269 kfree(entry); 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * rvu_npc_exact_add_table_entry - Adds a table entry 1276 * @rvu: resource virtualization unit. 1277 * @cgx_id: cgx identifier. 1278 * @lmac_id: lmac identifier. 1279 * @mac: MAC address. 1280 * @chan: Channel number. 1281 * @ctype: Channel Type. 1282 * @seq_id: Sequence number. 1283 * @cmd: Whether it is invoked by ethtool cmd. 1284 * @mcam_idx: NPC mcam index corresponding to MAC 1285 * @pcifunc: PCI func. 1286 * 1287 * Creates a new exact match table entry in either CAM or 1288 * MEM table. 1289 * Return: 0 upon success. 1290 */ 1291 static int rvu_npc_exact_add_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id, u8 *mac, 1292 u16 chan, u8 ctype, u32 *seq_id, bool cmd, 1293 u32 mcam_idx, u16 pcifunc) 1294 { 1295 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1296 enum npc_exact_opc_type opc_type; 1297 bool enable_cam = false; 1298 u32 drop_mcam_idx; 1299 u32 index; 1300 u64 mdata; 1301 bool rc; 1302 int err; 1303 u8 ways; 1304 1305 ctype = 0; 1306 1307 err = rvu_npc_exact_alloc_table_entry(rvu, mac, chan, ctype, &index, &ways, &opc_type); 1308 if (err) { 1309 dev_err(rvu->dev, "%s: Could not alloc in exact match table\n", __func__); 1310 return err; 1311 } 1312 1313 /* Write mdata to table */ 1314 mdata = rvu_exact_prepare_table_entry(rvu, true, ctype, chan, mac); 1315 1316 if (opc_type == NPC_EXACT_OPC_CAM) 1317 rvu_npc_exact_cam_table_write(rvu, blkaddr, index, mdata); 1318 else 1319 rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, mdata); 1320 1321 /* Insert entry to linked list */ 1322 err = rvu_npc_exact_add_to_list(rvu, opc_type, ways, index, cgx_id, lmac_id, 1323 mac, chan, ctype, seq_id, cmd, mcam_idx, pcifunc); 1324 if (err) { 1325 rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index); 1326 dev_err(rvu->dev, "%s: could not add to exact match table\n", __func__); 1327 return err; 1328 } 1329 1330 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id, 1331 &drop_mcam_idx, NULL, NULL, NULL); 1332 if (!rc) { 1333 rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index); 1334 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n", 1335 __func__, cgx_id, lmac_id); 1336 return -EINVAL; 1337 } 1338 1339 if (cmd) 1340 __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 1, &enable_cam); 1341 1342 /* First command rule; enable drop on hit rule */ 1343 if (enable_cam) { 1344 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, true); 1345 dev_dbg(rvu->dev, "%s: Enabling mcam idx %d\n", 1346 __func__, drop_mcam_idx); 1347 } 1348 1349 dev_dbg(rvu->dev, 1350 "%s: Successfully added entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n", 1351 __func__, index, mac, ways, opc_type); 1352 1353 return 0; 1354 } 1355 1356 /** 1357 * rvu_npc_exact_update_table_entry - Update exact match table. 1358 * @rvu: resource virtualization unit. 1359 * @cgx_id: CGX identifier. 1360 * @lmac_id: LMAC identifier. 1361 * @old_mac: Existing MAC address entry. 1362 * @new_mac: New MAC address entry. 1363 * @seq_id: Sequence identifier of the entry. 1364 * 1365 * Updates MAC address of an entry. If entry is in MEM table, new 1366 * hash value may not match with old one. 1367 * Return: 0 upon success. 1368 */ 1369 static int rvu_npc_exact_update_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id, 1370 u8 *old_mac, u8 *new_mac, u32 *seq_id) 1371 { 1372 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1373 struct npc_exact_table_entry *entry; 1374 struct npc_exact_table *table; 1375 u32 hash_index; 1376 u64 mdata; 1377 1378 table = rvu->hw->table; 1379 1380 mutex_lock(&table->lock); 1381 1382 /* Lookup for entry which needs to be updated */ 1383 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, *seq_id); 1384 if (!entry) { 1385 mutex_unlock(&table->lock); 1386 dev_dbg(rvu->dev, 1387 "%s: failed to find entry for cgx_id=%d lmac_id=%d old_mac=%pM\n", 1388 __func__, cgx_id, lmac_id, old_mac); 1389 return -ENODATA; 1390 } 1391 1392 /* If entry is in mem table and new hash index is different than old 1393 * hash index, we cannot update the entry. Fail in these scenarios. 1394 */ 1395 if (entry->opc_type == NPC_EXACT_OPC_MEM) { 1396 hash_index = rvu_exact_calculate_hash(rvu, entry->chan, entry->ctype, 1397 new_mac, table->mem_table.mask, 1398 table->mem_table.depth); 1399 if (hash_index != entry->index) { 1400 dev_dbg(rvu->dev, 1401 "%s: Update failed due to index mismatch(new=0x%x, old=%x)\n", 1402 __func__, hash_index, entry->index); 1403 mutex_unlock(&table->lock); 1404 return -EINVAL; 1405 } 1406 } 1407 1408 mdata = rvu_exact_prepare_table_entry(rvu, true, entry->ctype, entry->chan, new_mac); 1409 1410 if (entry->opc_type == NPC_EXACT_OPC_MEM) 1411 rvu_npc_exact_mem_table_write(rvu, blkaddr, entry->ways, entry->index, mdata); 1412 else 1413 rvu_npc_exact_cam_table_write(rvu, blkaddr, entry->index, mdata); 1414 1415 /* Update entry fields */ 1416 ether_addr_copy(entry->mac, new_mac); 1417 *seq_id = entry->seq_id; 1418 1419 dev_dbg(rvu->dev, 1420 "%s: Successfully updated entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n", 1421 __func__, entry->index, entry->mac, entry->ways, entry->opc_type); 1422 1423 dev_dbg(rvu->dev, "%s: Successfully updated entry (old mac=%pM new_mac=%pM\n", 1424 __func__, old_mac, new_mac); 1425 1426 mutex_unlock(&table->lock); 1427 return 0; 1428 } 1429 1430 /** 1431 * rvu_npc_exact_promisc_disable - Disable promiscuous mode. 1432 * @rvu: resource virtualization unit. 1433 * @pcifunc: pcifunc 1434 * 1435 * Drop rule is against each PF. We dont support DMAC filter for 1436 * VF. 1437 * Return: 0 upon success 1438 */ 1439 1440 int rvu_npc_exact_promisc_disable(struct rvu *rvu, u16 pcifunc) 1441 { 1442 struct npc_exact_table *table; 1443 int pf = rvu_get_pf(pcifunc); 1444 u8 cgx_id, lmac_id; 1445 u32 drop_mcam_idx; 1446 bool *promisc; 1447 bool rc; 1448 1449 table = rvu->hw->table; 1450 1451 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1452 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id, 1453 &drop_mcam_idx, NULL, NULL, NULL); 1454 if (!rc) { 1455 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n", 1456 __func__, cgx_id, lmac_id); 1457 return -EINVAL; 1458 } 1459 1460 mutex_lock(&table->lock); 1461 promisc = &table->promisc_mode[drop_mcam_idx]; 1462 1463 if (!*promisc) { 1464 mutex_unlock(&table->lock); 1465 dev_dbg(rvu->dev, "%s: Err Already promisc mode disabled (cgx=%d lmac=%d)\n", 1466 __func__, cgx_id, lmac_id); 1467 return LMAC_AF_ERR_INVALID_PARAM; 1468 } 1469 *promisc = false; 1470 mutex_unlock(&table->lock); 1471 1472 /* Enable drop rule */ 1473 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, 1474 true); 1475 1476 dev_dbg(rvu->dev, "%s: disabled promisc mode (cgx=%d lmac=%d)\n", 1477 __func__, cgx_id, lmac_id); 1478 return 0; 1479 } 1480 1481 /** 1482 * rvu_npc_exact_promisc_enable - Enable promiscuous mode. 1483 * @rvu: resource virtualization unit. 1484 * @pcifunc: pcifunc. 1485 * Return: 0 upon success 1486 */ 1487 int rvu_npc_exact_promisc_enable(struct rvu *rvu, u16 pcifunc) 1488 { 1489 struct npc_exact_table *table; 1490 int pf = rvu_get_pf(pcifunc); 1491 u8 cgx_id, lmac_id; 1492 u32 drop_mcam_idx; 1493 bool *promisc; 1494 bool rc; 1495 1496 table = rvu->hw->table; 1497 1498 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1499 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id, 1500 &drop_mcam_idx, NULL, NULL, NULL); 1501 if (!rc) { 1502 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n", 1503 __func__, cgx_id, lmac_id); 1504 return -EINVAL; 1505 } 1506 1507 mutex_lock(&table->lock); 1508 promisc = &table->promisc_mode[drop_mcam_idx]; 1509 1510 if (*promisc) { 1511 mutex_unlock(&table->lock); 1512 dev_dbg(rvu->dev, "%s: Already in promisc mode (cgx=%d lmac=%d)\n", 1513 __func__, cgx_id, lmac_id); 1514 return LMAC_AF_ERR_INVALID_PARAM; 1515 } 1516 *promisc = true; 1517 mutex_unlock(&table->lock); 1518 1519 /* disable drop rule */ 1520 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, 1521 false); 1522 1523 dev_dbg(rvu->dev, "%s: Enabled promisc mode (cgx=%d lmac=%d)\n", 1524 __func__, cgx_id, lmac_id); 1525 return 0; 1526 } 1527 1528 /** 1529 * rvu_npc_exact_mac_addr_reset - Delete PF mac address. 1530 * @rvu: resource virtualization unit. 1531 * @req: Reset request 1532 * @rsp: Reset response. 1533 * Return: 0 upon success 1534 */ 1535 int rvu_npc_exact_mac_addr_reset(struct rvu *rvu, struct cgx_mac_addr_reset_req *req, 1536 struct msg_rsp *rsp) 1537 { 1538 int pf = rvu_get_pf(req->hdr.pcifunc); 1539 u32 seq_id = req->index; 1540 struct rvu_pfvf *pfvf; 1541 u8 cgx_id, lmac_id; 1542 int rc; 1543 1544 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1545 1546 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); 1547 1548 rc = rvu_npc_exact_del_table_entry_by_id(rvu, seq_id); 1549 if (rc) { 1550 /* TODO: how to handle this error case ? */ 1551 dev_err(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__, pfvf->mac_addr, pf); 1552 return 0; 1553 } 1554 1555 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d success (seq_id=%u)\n", 1556 __func__, pfvf->mac_addr, pf, seq_id); 1557 return 0; 1558 } 1559 1560 /** 1561 * rvu_npc_exact_mac_addr_update - Update mac address field with new value. 1562 * @rvu: resource virtualization unit. 1563 * @req: Update request. 1564 * @rsp: Update response. 1565 * Return: 0 upon success 1566 */ 1567 int rvu_npc_exact_mac_addr_update(struct rvu *rvu, 1568 struct cgx_mac_addr_update_req *req, 1569 struct cgx_mac_addr_update_rsp *rsp) 1570 { 1571 int pf = rvu_get_pf(req->hdr.pcifunc); 1572 struct npc_exact_table_entry *entry; 1573 struct npc_exact_table *table; 1574 struct rvu_pfvf *pfvf; 1575 u32 seq_id, mcam_idx; 1576 u8 old_mac[ETH_ALEN]; 1577 u8 cgx_id, lmac_id; 1578 int rc; 1579 1580 if (!is_cgx_config_permitted(rvu, req->hdr.pcifunc)) 1581 return LMAC_AF_ERR_PERM_DENIED; 1582 1583 dev_dbg(rvu->dev, "%s: Update request for seq_id=%d, mac=%pM\n", 1584 __func__, req->index, req->mac_addr); 1585 1586 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1587 1588 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); 1589 1590 table = rvu->hw->table; 1591 1592 mutex_lock(&table->lock); 1593 1594 /* Lookup for entry which needs to be updated */ 1595 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, req->index); 1596 if (!entry) { 1597 dev_err(rvu->dev, "%s: failed to find entry for id=0x%x\n", __func__, req->index); 1598 mutex_unlock(&table->lock); 1599 return LMAC_AF_ERR_EXACT_MATCH_TBL_LOOK_UP_FAILED; 1600 } 1601 ether_addr_copy(old_mac, entry->mac); 1602 seq_id = entry->seq_id; 1603 mcam_idx = entry->mcam_idx; 1604 mutex_unlock(&table->lock); 1605 1606 rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, old_mac, 1607 req->mac_addr, &seq_id); 1608 if (!rc) { 1609 rsp->index = seq_id; 1610 dev_dbg(rvu->dev, "%s mac:%pM (pfvf:%pM default:%pM) update to PF=%d success\n", 1611 __func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf); 1612 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1613 return 0; 1614 } 1615 1616 /* Try deleting and adding it again */ 1617 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index); 1618 if (rc) { 1619 /* This could be a new entry */ 1620 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__, 1621 pfvf->mac_addr, pf); 1622 } 1623 1624 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr, 1625 pfvf->rx_chan_base, 0, &seq_id, true, 1626 mcam_idx, req->hdr.pcifunc); 1627 if (rc) { 1628 dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n", __func__, 1629 req->mac_addr, pf); 1630 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED; 1631 } 1632 1633 rsp->index = seq_id; 1634 dev_dbg(rvu->dev, 1635 "%s MAC (new:%pM, old=%pM default:%pM) del and add to PF=%d success (seq_id=%u)\n", 1636 __func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf, seq_id); 1637 1638 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1639 return 0; 1640 } 1641 1642 /** 1643 * rvu_npc_exact_mac_addr_add - Adds MAC address to exact match table. 1644 * @rvu: resource virtualization unit. 1645 * @req: Add request. 1646 * @rsp: Add response. 1647 * Return: 0 upon success 1648 */ 1649 int rvu_npc_exact_mac_addr_add(struct rvu *rvu, 1650 struct cgx_mac_addr_add_req *req, 1651 struct cgx_mac_addr_add_rsp *rsp) 1652 { 1653 int pf = rvu_get_pf(req->hdr.pcifunc); 1654 struct rvu_pfvf *pfvf; 1655 u8 cgx_id, lmac_id; 1656 int rc = 0; 1657 u32 seq_id; 1658 1659 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1660 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); 1661 1662 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr, 1663 pfvf->rx_chan_base, 0, &seq_id, 1664 true, -1, req->hdr.pcifunc); 1665 1666 if (!rc) { 1667 rsp->index = seq_id; 1668 dev_dbg(rvu->dev, "%s MAC (%pM) add to PF=%d success (seq_id=%u)\n", 1669 __func__, req->mac_addr, pf, seq_id); 1670 return 0; 1671 } 1672 1673 dev_err(rvu->dev, "%s MAC (%pM) add to PF=%d failed\n", __func__, 1674 req->mac_addr, pf); 1675 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED; 1676 } 1677 1678 /** 1679 * rvu_npc_exact_mac_addr_del - Delete DMAC filter 1680 * @rvu: resource virtualization unit. 1681 * @req: Delete request. 1682 * @rsp: Delete response. 1683 * Return: 0 upon success 1684 */ 1685 int rvu_npc_exact_mac_addr_del(struct rvu *rvu, 1686 struct cgx_mac_addr_del_req *req, 1687 struct msg_rsp *rsp) 1688 { 1689 int pf = rvu_get_pf(req->hdr.pcifunc); 1690 int rc; 1691 1692 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index); 1693 if (!rc) { 1694 dev_dbg(rvu->dev, "%s del to PF=%d success (seq_id=%u)\n", 1695 __func__, pf, req->index); 1696 return 0; 1697 } 1698 1699 dev_err(rvu->dev, "%s del to PF=%d failed (seq_id=%u)\n", 1700 __func__, pf, req->index); 1701 return LMAC_AF_ERR_EXACT_MATCH_TBL_DEL_FAILED; 1702 } 1703 1704 /** 1705 * rvu_npc_exact_mac_addr_set - Add PF mac address to dmac filter. 1706 * @rvu: resource virtualization unit. 1707 * @req: Set request. 1708 * @rsp: Set response. 1709 * Return: 0 upon success 1710 */ 1711 int rvu_npc_exact_mac_addr_set(struct rvu *rvu, struct cgx_mac_addr_set_or_get *req, 1712 struct cgx_mac_addr_set_or_get *rsp) 1713 { 1714 int pf = rvu_get_pf(req->hdr.pcifunc); 1715 u32 seq_id = req->index; 1716 struct rvu_pfvf *pfvf; 1717 u8 cgx_id, lmac_id; 1718 u32 mcam_idx = -1; 1719 int rc, nixlf; 1720 1721 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1722 1723 pfvf = &rvu->pf[pf]; 1724 1725 /* If table does not have an entry; both update entry and del table entry API 1726 * below fails. Those are not failure conditions. 1727 */ 1728 rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, pfvf->mac_addr, 1729 req->mac_addr, &seq_id); 1730 if (!rc) { 1731 rsp->index = seq_id; 1732 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1733 ether_addr_copy(rsp->mac_addr, req->mac_addr); 1734 dev_dbg(rvu->dev, "%s MAC (%pM) update to PF=%d success\n", 1735 __func__, req->mac_addr, pf); 1736 return 0; 1737 } 1738 1739 /* Try deleting and adding it again */ 1740 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index); 1741 if (rc) { 1742 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", 1743 __func__, pfvf->mac_addr, pf); 1744 } 1745 1746 /* find mcam entry if exist */ 1747 rc = nix_get_nixlf(rvu, req->hdr.pcifunc, &nixlf, NULL); 1748 if (!rc) { 1749 mcam_idx = npc_get_nixlf_mcam_index(&rvu->hw->mcam, req->hdr.pcifunc, 1750 nixlf, NIXLF_UCAST_ENTRY); 1751 } 1752 1753 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr, 1754 pfvf->rx_chan_base, 0, &seq_id, 1755 true, mcam_idx, req->hdr.pcifunc); 1756 if (rc) { 1757 dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n", 1758 __func__, req->mac_addr, pf); 1759 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED; 1760 } 1761 1762 rsp->index = seq_id; 1763 ether_addr_copy(rsp->mac_addr, req->mac_addr); 1764 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1765 dev_dbg(rvu->dev, 1766 "%s MAC (%pM) del and add to PF=%d success (seq_id=%u)\n", 1767 __func__, req->mac_addr, pf, seq_id); 1768 return 0; 1769 } 1770 1771 /** 1772 * rvu_npc_exact_can_disable_feature - Check if feature can be disabled. 1773 * @rvu: resource virtualization unit. 1774 * Return: True if exact match feature is supported. 1775 */ 1776 bool rvu_npc_exact_can_disable_feature(struct rvu *rvu) 1777 { 1778 struct npc_exact_table *table = rvu->hw->table; 1779 bool empty; 1780 1781 if (!rvu->hw->cap.npc_exact_match_enabled) 1782 return false; 1783 1784 mutex_lock(&table->lock); 1785 empty = list_empty(&table->lhead_gbl); 1786 mutex_unlock(&table->lock); 1787 1788 return empty; 1789 } 1790 1791 /** 1792 * rvu_npc_exact_disable_feature - Disable feature. 1793 * @rvu: resource virtualization unit. 1794 */ 1795 void rvu_npc_exact_disable_feature(struct rvu *rvu) 1796 { 1797 rvu->hw->cap.npc_exact_match_enabled = false; 1798 } 1799 1800 /** 1801 * rvu_npc_exact_reset - Delete and free all entry which match pcifunc. 1802 * @rvu: resource virtualization unit. 1803 * @pcifunc: PCI func to match. 1804 */ 1805 void rvu_npc_exact_reset(struct rvu *rvu, u16 pcifunc) 1806 { 1807 struct npc_exact_table *table = rvu->hw->table; 1808 struct npc_exact_table_entry *tmp, *iter; 1809 u32 seq_id; 1810 1811 mutex_lock(&table->lock); 1812 list_for_each_entry_safe(iter, tmp, &table->lhead_gbl, glist) { 1813 if (pcifunc != iter->pcifunc) 1814 continue; 1815 1816 seq_id = iter->seq_id; 1817 dev_dbg(rvu->dev, "%s: resetting pcifun=%d seq_id=%u\n", __func__, 1818 pcifunc, seq_id); 1819 1820 mutex_unlock(&table->lock); 1821 rvu_npc_exact_del_table_entry_by_id(rvu, seq_id); 1822 mutex_lock(&table->lock); 1823 } 1824 mutex_unlock(&table->lock); 1825 } 1826 1827 /** 1828 * rvu_npc_exact_init - initialize exact match table 1829 * @rvu: resource virtualization unit. 1830 * 1831 * Initialize HW and SW resources to manage 4way-2K table and fully 1832 * associative 32-entry mcam table. 1833 * Return: 0 upon success. 1834 */ 1835 int rvu_npc_exact_init(struct rvu *rvu) 1836 { 1837 u64 bcast_mcast_val, bcast_mcast_mask; 1838 struct npc_exact_table *table; 1839 u64 exact_val, exact_mask; 1840 u64 chan_val, chan_mask; 1841 u8 cgx_id, lmac_id; 1842 u32 *drop_mcam_idx; 1843 u16 max_lmac_cnt; 1844 u64 npc_const3; 1845 int table_size; 1846 int blkaddr; 1847 u16 pcifunc; 1848 int err, i; 1849 u64 cfg; 1850 bool rc; 1851 1852 /* Read NPC_AF_CONST3 and check for have exact 1853 * match functionality is present 1854 */ 1855 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1856 if (blkaddr < 0) { 1857 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); 1858 return -EINVAL; 1859 } 1860 1861 /* Check exact match feature is supported */ 1862 npc_const3 = rvu_read64(rvu, blkaddr, NPC_AF_CONST3); 1863 if (!(npc_const3 & BIT_ULL(62))) 1864 return 0; 1865 1866 /* Check if kex profile has enabled EXACT match nibble */ 1867 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(NIX_INTF_RX)); 1868 if (!(cfg & NPC_EXACT_NIBBLE_HIT)) 1869 return 0; 1870 1871 /* Set capability to true */ 1872 rvu->hw->cap.npc_exact_match_enabled = true; 1873 1874 table = kzalloc(sizeof(*table), GFP_KERNEL); 1875 if (!table) 1876 return -ENOMEM; 1877 1878 dev_dbg(rvu->dev, "%s: Memory allocation for table success\n", __func__); 1879 rvu->hw->table = table; 1880 1881 /* Read table size, ways and depth */ 1882 table->mem_table.ways = FIELD_GET(GENMASK_ULL(19, 16), npc_const3); 1883 table->mem_table.depth = FIELD_GET(GENMASK_ULL(15, 0), npc_const3); 1884 table->cam_table.depth = FIELD_GET(GENMASK_ULL(31, 24), npc_const3); 1885 1886 dev_dbg(rvu->dev, "%s: NPC exact match 4way_2k table(ways=%d, depth=%d)\n", 1887 __func__, table->mem_table.ways, table->cam_table.depth); 1888 1889 /* Check if depth of table is not a sequre of 2 1890 * TODO: why _builtin_popcount() is not working ? 1891 */ 1892 if ((table->mem_table.depth & (table->mem_table.depth - 1)) != 0) { 1893 dev_err(rvu->dev, 1894 "%s: NPC exact match 4way_2k table depth(%d) is not square of 2\n", 1895 __func__, table->mem_table.depth); 1896 return -EINVAL; 1897 } 1898 1899 table_size = table->mem_table.depth * table->mem_table.ways; 1900 1901 /* Allocate bitmap for 4way 2K table */ 1902 table->mem_table.bmap = devm_bitmap_zalloc(rvu->dev, table_size, 1903 GFP_KERNEL); 1904 if (!table->mem_table.bmap) 1905 return -ENOMEM; 1906 1907 dev_dbg(rvu->dev, "%s: Allocated bitmap for 4way 2K entry table\n", __func__); 1908 1909 /* Allocate bitmap for 32 entry mcam */ 1910 table->cam_table.bmap = devm_bitmap_zalloc(rvu->dev, 32, GFP_KERNEL); 1911 1912 if (!table->cam_table.bmap) 1913 return -ENOMEM; 1914 1915 dev_dbg(rvu->dev, "%s: Allocated bitmap for 32 entry cam\n", __func__); 1916 1917 table->tot_ids = table_size + table->cam_table.depth; 1918 table->id_bmap = devm_bitmap_zalloc(rvu->dev, table->tot_ids, 1919 GFP_KERNEL); 1920 1921 if (!table->id_bmap) 1922 return -ENOMEM; 1923 1924 dev_dbg(rvu->dev, "%s: Allocated bitmap for id map (total=%d)\n", 1925 __func__, table->tot_ids); 1926 1927 /* Initialize list heads for npc_exact_table entries. 1928 * This entry is used by debugfs to show entries in 1929 * exact match table. 1930 */ 1931 for (i = 0; i < NPC_EXACT_TBL_MAX_WAYS; i++) 1932 INIT_LIST_HEAD(&table->lhead_mem_tbl_entry[i]); 1933 1934 INIT_LIST_HEAD(&table->lhead_cam_tbl_entry); 1935 INIT_LIST_HEAD(&table->lhead_gbl); 1936 1937 mutex_init(&table->lock); 1938 1939 rvu_exact_config_secret_key(rvu); 1940 rvu_exact_config_search_key(rvu); 1941 1942 rvu_exact_config_table_mask(rvu); 1943 rvu_exact_config_result_ctrl(rvu, table->mem_table.depth); 1944 1945 /* - No drop rule for LBK 1946 * - Drop rules for SDP and each LMAC. 1947 */ 1948 exact_val = !NPC_EXACT_RESULT_HIT; 1949 exact_mask = NPC_EXACT_RESULT_HIT; 1950 1951 /* nibble - 3 2 1 0 1952 * L3B L3M L2B L2M 1953 */ 1954 bcast_mcast_val = 0b0000; 1955 bcast_mcast_mask = 0b0011; 1956 1957 /* Install SDP drop rule */ 1958 drop_mcam_idx = &table->num_drop_rules; 1959 1960 max_lmac_cnt = rvu->cgx_cnt_max * rvu->hw->lmac_per_cgx + 1961 PF_CGXMAP_BASE; 1962 1963 for (i = PF_CGXMAP_BASE; i < max_lmac_cnt; i++) { 1964 if (rvu->pf2cgxlmac_map[i] == 0xFF) 1965 continue; 1966 1967 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[i], &cgx_id, &lmac_id); 1968 1969 rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, NIX_INTF_TYPE_CGX, cgx_id, 1970 lmac_id, &chan_val, &chan_mask); 1971 if (!rc) { 1972 dev_err(rvu->dev, 1973 "%s: failed, info chan_val=0x%llx chan_mask=0x%llx rule_id=%d\n", 1974 __func__, chan_val, chan_mask, *drop_mcam_idx); 1975 return -EINVAL; 1976 } 1977 1978 /* Filter rules are only for PF */ 1979 pcifunc = RVU_PFFUNC(i, 0); 1980 1981 dev_dbg(rvu->dev, 1982 "%s:Drop rule cgx=%d lmac=%d chan(val=0x%llx, mask=0x%llx\n", 1983 __func__, cgx_id, lmac_id, chan_val, chan_mask); 1984 1985 rc = rvu_npc_exact_save_drop_rule_chan_and_mask(rvu, table->num_drop_rules, 1986 chan_val, chan_mask, pcifunc); 1987 if (!rc) { 1988 dev_err(rvu->dev, 1989 "%s: failed to set drop info for cgx=%d, lmac=%d, chan=%llx\n", 1990 __func__, cgx_id, lmac_id, chan_val); 1991 return -EINVAL; 1992 } 1993 1994 err = npc_install_mcam_drop_rule(rvu, *drop_mcam_idx, 1995 &table->counter_idx[*drop_mcam_idx], 1996 chan_val, chan_mask, 1997 exact_val, exact_mask, 1998 bcast_mcast_val, bcast_mcast_mask); 1999 if (err) { 2000 dev_err(rvu->dev, 2001 "failed to configure drop rule (cgx=%d lmac=%d)\n", 2002 cgx_id, lmac_id); 2003 return err; 2004 } 2005 2006 (*drop_mcam_idx)++; 2007 } 2008 2009 dev_info(rvu->dev, "initialized exact match table successfully\n"); 2010 return 0; 2011 } 2012