xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_npc_fs.c (revision 8faabc041a001140564f718dabe37753e88b37fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6 
7 #include <linux/bitfield.h>
8 
9 #include "rvu_struct.h"
10 #include "rvu_reg.h"
11 #include "rvu.h"
12 #include "npc.h"
13 #include "rvu_npc_fs.h"
14 #include "rvu_npc_hash.h"
15 
16 static const char * const npc_flow_names[] = {
17 	[NPC_DMAC]	= "dmac",
18 	[NPC_SMAC]	= "smac",
19 	[NPC_ETYPE]	= "ether type",
20 	[NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag",
21 	[NPC_VLAN_ETYPE_STAG] = "vlan ether type stag",
22 	[NPC_OUTER_VID]	= "outer vlan id",
23 	[NPC_INNER_VID]	= "inner vlan id",
24 	[NPC_TOS]	= "tos",
25 	[NPC_IPFRAG_IPV4] = "fragmented IPv4 header ",
26 	[NPC_SIP_IPV4]	= "ipv4 source ip",
27 	[NPC_DIP_IPV4]	= "ipv4 destination ip",
28 	[NPC_IPFRAG_IPV6] = "fragmented IPv6 header ",
29 	[NPC_SIP_IPV6]	= "ipv6 source ip",
30 	[NPC_DIP_IPV6]	= "ipv6 destination ip",
31 	[NPC_IPPROTO_TCP] = "ip proto tcp",
32 	[NPC_IPPROTO_UDP] = "ip proto udp",
33 	[NPC_IPPROTO_SCTP] = "ip proto sctp",
34 	[NPC_IPPROTO_ICMP] = "ip proto icmp",
35 	[NPC_IPPROTO_ICMP6] = "ip proto icmp6",
36 	[NPC_IPPROTO_AH] = "ip proto AH",
37 	[NPC_IPPROTO_ESP] = "ip proto ESP",
38 	[NPC_SPORT_TCP]	= "tcp source port",
39 	[NPC_DPORT_TCP]	= "tcp destination port",
40 	[NPC_SPORT_UDP]	= "udp source port",
41 	[NPC_DPORT_UDP]	= "udp destination port",
42 	[NPC_SPORT_SCTP] = "sctp source port",
43 	[NPC_DPORT_SCTP] = "sctp destination port",
44 	[NPC_LXMB]	= "Mcast/Bcast header ",
45 	[NPC_IPSEC_SPI] = "SPI ",
46 	[NPC_MPLS1_LBTCBOS] = "lse depth 1 label tc bos",
47 	[NPC_MPLS1_TTL]     = "lse depth 1 ttl",
48 	[NPC_MPLS2_LBTCBOS] = "lse depth 2 label tc bos",
49 	[NPC_MPLS2_TTL]     = "lse depth 2 ttl",
50 	[NPC_MPLS3_LBTCBOS] = "lse depth 3 label tc bos",
51 	[NPC_MPLS3_TTL]     = "lse depth 3 ttl",
52 	[NPC_MPLS4_LBTCBOS] = "lse depth 4 label tc bos",
53 	[NPC_MPLS4_TTL]     = "lse depth 4",
54 	[NPC_TYPE_ICMP] = "icmp type",
55 	[NPC_CODE_ICMP] = "icmp code",
56 	[NPC_TCP_FLAGS] = "tcp flags",
57 	[NPC_UNKNOWN]	= "unknown",
58 };
59 
60 bool npc_is_feature_supported(struct rvu *rvu, u64 features, u8 intf)
61 {
62 	struct npc_mcam *mcam = &rvu->hw->mcam;
63 	u64 mcam_features;
64 	u64 unsupported;
65 
66 	mcam_features = is_npc_intf_tx(intf) ? mcam->tx_features : mcam->rx_features;
67 	unsupported = (mcam_features ^ features) & ~mcam_features;
68 
69 	/* Return false if at least one of the input flows is not extracted */
70 	return !unsupported;
71 }
72 
73 const char *npc_get_field_name(u8 hdr)
74 {
75 	if (hdr >= ARRAY_SIZE(npc_flow_names))
76 		return npc_flow_names[NPC_UNKNOWN];
77 
78 	return npc_flow_names[hdr];
79 }
80 
81 /* Compute keyword masks and figure out the number of keywords a field
82  * spans in the key.
83  */
84 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
85 			     u8 nr_bits, int start_kwi, int offset, u8 intf)
86 {
87 	struct npc_key_field *field = &mcam->rx_key_fields[type];
88 	u8 bits_in_kw;
89 	int max_kwi;
90 
91 	if (mcam->banks_per_entry == 1)
92 		max_kwi = 1; /* NPC_MCAM_KEY_X1 */
93 	else if (mcam->banks_per_entry == 2)
94 		max_kwi = 3; /* NPC_MCAM_KEY_X2 */
95 	else
96 		max_kwi = 6; /* NPC_MCAM_KEY_X4 */
97 
98 	if (is_npc_intf_tx(intf))
99 		field = &mcam->tx_key_fields[type];
100 
101 	if (offset + nr_bits <= 64) {
102 		/* one KW only */
103 		if (start_kwi > max_kwi)
104 			return;
105 		field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
106 					     << offset;
107 		field->nr_kws = 1;
108 	} else if (offset + nr_bits > 64 &&
109 		   offset + nr_bits <= 128) {
110 		/* two KWs */
111 		if (start_kwi + 1 > max_kwi)
112 			return;
113 		/* first KW mask */
114 		bits_in_kw = 64 - offset;
115 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
116 					     << offset;
117 		/* second KW mask i.e. mask for rest of bits */
118 		bits_in_kw = nr_bits + offset - 64;
119 		field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
120 		field->nr_kws = 2;
121 	} else {
122 		/* three KWs */
123 		if (start_kwi + 2 > max_kwi)
124 			return;
125 		/* first KW mask */
126 		bits_in_kw = 64 - offset;
127 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
128 					     << offset;
129 		/* second KW mask */
130 		field->kw_mask[start_kwi + 1] = ~0ULL;
131 		/* third KW mask i.e. mask for rest of bits */
132 		bits_in_kw = nr_bits + offset - 128;
133 		field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
134 		field->nr_kws = 3;
135 	}
136 }
137 
138 /* Helper function to figure out whether field exists in the key */
139 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
140 {
141 	struct npc_mcam *mcam = &rvu->hw->mcam;
142 	struct npc_key_field *input;
143 
144 	input  = &mcam->rx_key_fields[type];
145 	if (is_npc_intf_tx(intf))
146 		input  = &mcam->tx_key_fields[type];
147 
148 	return input->nr_kws > 0;
149 }
150 
151 static bool npc_is_same(struct npc_key_field *input,
152 			struct npc_key_field *field)
153 {
154 	return memcmp(&input->layer_mdata, &field->layer_mdata,
155 		     sizeof(struct npc_layer_mdata)) == 0;
156 }
157 
158 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
159 				u64 cfg, u8 lid, u8 lt, u8 intf)
160 {
161 	struct npc_key_field *input = &mcam->rx_key_fields[type];
162 
163 	if (is_npc_intf_tx(intf))
164 		input = &mcam->tx_key_fields[type];
165 
166 	input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
167 	input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
168 	input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
169 	input->layer_mdata.ltype = lt;
170 	input->layer_mdata.lid = lid;
171 }
172 
173 static bool npc_check_overlap_fields(struct npc_key_field *input1,
174 				     struct npc_key_field *input2)
175 {
176 	int kwi;
177 
178 	/* Fields with same layer id and different ltypes are mutually
179 	 * exclusive hence they can be overlapped
180 	 */
181 	if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
182 	    input1->layer_mdata.ltype != input2->layer_mdata.ltype)
183 		return false;
184 
185 	for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
186 		if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
187 			return true;
188 	}
189 
190 	return false;
191 }
192 
193 /* Helper function to check whether given field overlaps with any other fields
194  * in the key. Due to limitations on key size and the key extraction profile in
195  * use higher layers can overwrite lower layer's header fields. Hence overlap
196  * needs to be checked.
197  */
198 static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
199 			      enum key_fields type, u8 start_lid, u8 intf)
200 {
201 	struct npc_mcam *mcam = &rvu->hw->mcam;
202 	struct npc_key_field *dummy, *input;
203 	int start_kwi, offset;
204 	u8 nr_bits, lid, lt, ld;
205 	u64 cfg;
206 
207 	dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
208 	input = &mcam->rx_key_fields[type];
209 
210 	if (is_npc_intf_tx(intf)) {
211 		dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
212 		input = &mcam->tx_key_fields[type];
213 	}
214 
215 	for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
216 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
217 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
218 				cfg = rvu_read64(rvu, blkaddr,
219 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
220 						 (intf, lid, lt, ld));
221 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
222 					continue;
223 				memset(dummy, 0, sizeof(struct npc_key_field));
224 				npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
225 						    lid, lt, intf);
226 				/* exclude input */
227 				if (npc_is_same(input, dummy))
228 					continue;
229 				start_kwi = dummy->layer_mdata.key / 8;
230 				offset = (dummy->layer_mdata.key * 8) % 64;
231 				nr_bits = dummy->layer_mdata.len * 8;
232 				/* form KW masks */
233 				npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
234 						 start_kwi, offset, intf);
235 				/* check any input field bits falls in any
236 				 * other field bits.
237 				 */
238 				if (npc_check_overlap_fields(dummy, input))
239 					return true;
240 			}
241 		}
242 	}
243 
244 	return false;
245 }
246 
247 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
248 			    u8 intf)
249 {
250 	if (!npc_is_field_present(rvu, type, intf) ||
251 	    npc_check_overlap(rvu, blkaddr, type, 0, intf))
252 		return false;
253 	return true;
254 }
255 
256 static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number,
257 				  u8 key_nibble, u8 intf)
258 {
259 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
260 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
261 	u8 nr_bits = 4; /* bits in a nibble */
262 	u8 type;
263 
264 	switch (bit_number) {
265 	case 40 ... 43:
266 		type = NPC_EXACT_RESULT;
267 		break;
268 
269 	default:
270 		return;
271 	}
272 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
273 }
274 
275 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
276 				  u8 key_nibble, u8 intf)
277 {
278 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
279 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
280 	u8 nr_bits = 4; /* bits in a nibble */
281 	u8 type;
282 
283 	switch (bit_number) {
284 	case 0 ... 2:
285 		type = NPC_CHAN;
286 		break;
287 	case 3:
288 		type = NPC_ERRLEV;
289 		break;
290 	case 4 ... 5:
291 		type = NPC_ERRCODE;
292 		break;
293 	case 6:
294 		type = NPC_LXMB;
295 		break;
296 	/* check for LTYPE only as of now */
297 	case 9:
298 		type = NPC_LA;
299 		break;
300 	case 12:
301 		type = NPC_LB;
302 		break;
303 	case 15:
304 		type = NPC_LC;
305 		break;
306 	case 18:
307 		type = NPC_LD;
308 		break;
309 	case 21:
310 		type = NPC_LE;
311 		break;
312 	case 24:
313 		type = NPC_LF;
314 		break;
315 	case 27:
316 		type = NPC_LG;
317 		break;
318 	case 30:
319 		type = NPC_LH;
320 		break;
321 	default:
322 		return;
323 	}
324 
325 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
326 }
327 
328 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
329 {
330 	struct npc_mcam *mcam = &rvu->hw->mcam;
331 	struct npc_key_field *key_fields;
332 	/* Ether type can come from three layers
333 	 * (ethernet, single tagged, double tagged)
334 	 */
335 	struct npc_key_field *etype_ether;
336 	struct npc_key_field *etype_tag1;
337 	struct npc_key_field *etype_tag2;
338 	/* Outer VLAN TCI can come from two layers
339 	 * (single tagged, double tagged)
340 	 */
341 	struct npc_key_field *vlan_tag1;
342 	struct npc_key_field *vlan_tag2;
343 	/* Inner VLAN TCI for double tagged frames */
344 	struct npc_key_field *vlan_tag3;
345 	u64 *features;
346 	u8 start_lid;
347 	int i;
348 
349 	key_fields = mcam->rx_key_fields;
350 	features = &mcam->rx_features;
351 
352 	if (is_npc_intf_tx(intf)) {
353 		key_fields = mcam->tx_key_fields;
354 		features = &mcam->tx_features;
355 	}
356 
357 	/* Handle header fields which can come from multiple layers like
358 	 * etype, outer vlan tci. These fields should have same position in
359 	 * the key otherwise to install a mcam rule more than one entry is
360 	 * needed which complicates mcam space management.
361 	 */
362 	etype_ether = &key_fields[NPC_ETYPE_ETHER];
363 	etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
364 	etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
365 	vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
366 	vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
367 	vlan_tag3 = &key_fields[NPC_VLAN_TAG3];
368 
369 	/* if key profile programmed does not extract Ethertype at all */
370 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) {
371 		dev_err(rvu->dev, "mkex: Ethertype is not extracted.\n");
372 		goto vlan_tci;
373 	}
374 
375 	/* if key profile programmed extracts Ethertype from one layer */
376 	if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
377 		key_fields[NPC_ETYPE] = *etype_ether;
378 	if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
379 		key_fields[NPC_ETYPE] = *etype_tag1;
380 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
381 		key_fields[NPC_ETYPE] = *etype_tag2;
382 
383 	/* if key profile programmed extracts Ethertype from multiple layers */
384 	if (etype_ether->nr_kws && etype_tag1->nr_kws) {
385 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
386 			if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) {
387 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and tagged pkts.\n");
388 				goto vlan_tci;
389 			}
390 		}
391 		key_fields[NPC_ETYPE] = *etype_tag1;
392 	}
393 	if (etype_ether->nr_kws && etype_tag2->nr_kws) {
394 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
395 			if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) {
396 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and double tagged pkts.\n");
397 				goto vlan_tci;
398 			}
399 		}
400 		key_fields[NPC_ETYPE] = *etype_tag2;
401 	}
402 	if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
403 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
404 			if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) {
405 				dev_err(rvu->dev, "mkex: Etype pos is different for tagged and double tagged pkts.\n");
406 				goto vlan_tci;
407 			}
408 		}
409 		key_fields[NPC_ETYPE] = *etype_tag2;
410 	}
411 
412 	/* check none of higher layers overwrite Ethertype */
413 	start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
414 	if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) {
415 		dev_err(rvu->dev, "mkex: Ethertype is overwritten by higher layers.\n");
416 		goto vlan_tci;
417 	}
418 	*features |= BIT_ULL(NPC_ETYPE);
419 vlan_tci:
420 	/* if key profile does not extract outer vlan tci at all */
421 	if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) {
422 		dev_err(rvu->dev, "mkex: Outer vlan tci is not extracted.\n");
423 		goto done;
424 	}
425 
426 	/* if key profile extracts outer vlan tci from one layer */
427 	if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
428 		key_fields[NPC_OUTER_VID] = *vlan_tag1;
429 	if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
430 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
431 
432 	/* if key profile extracts outer vlan tci from multiple layers */
433 	if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
434 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
435 			if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) {
436 				dev_err(rvu->dev, "mkex: Out vlan tci pos is different for tagged and double tagged pkts.\n");
437 				goto done;
438 			}
439 		}
440 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
441 	}
442 	/* check none of higher layers overwrite outer vlan tci */
443 	start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
444 	if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) {
445 		dev_err(rvu->dev, "mkex: Outer vlan tci is overwritten by higher layers.\n");
446 		goto done;
447 	}
448 	*features |= BIT_ULL(NPC_OUTER_VID);
449 
450 	/* If key profile extracts inner vlan tci */
451 	if (vlan_tag3->nr_kws) {
452 		key_fields[NPC_INNER_VID] = *vlan_tag3;
453 		*features |= BIT_ULL(NPC_INNER_VID);
454 	}
455 done:
456 	return;
457 }
458 
459 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
460 			   u8 lt, u64 cfg, u8 intf)
461 {
462 	struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
463 	struct npc_mcam *mcam = &rvu->hw->mcam;
464 	u8 hdr, key, nr_bytes, bit_offset;
465 	u8 la_ltype, la_start;
466 	/* starting KW index and starting bit position */
467 	int start_kwi, offset;
468 
469 	nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
470 	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
471 	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
472 
473 	/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
474 	 * ethernet header.
475 	 */
476 	if (is_npc_intf_tx(intf)) {
477 		la_ltype = NPC_LT_LA_IH_NIX_ETHER;
478 		la_start = 8;
479 	} else {
480 		la_ltype = NPC_LT_LA_ETHER;
481 		la_start = 0;
482 	}
483 
484 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)			       \
485 do {									       \
486 	start_kwi = key / 8;						       \
487 	offset = (key * 8) % 64;					       \
488 	if (lid == (hlid) && lt == (hlt)) {				       \
489 		if ((hstart) >= hdr &&					       \
490 		    ((hstart) + (hlen)) <= (hdr + nr_bytes)) {	               \
491 			bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
492 			npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
493 			offset += bit_offset;				       \
494 			start_kwi += offset / 64;			       \
495 			offset %= 64;					       \
496 			npc_set_kw_masks(mcam, (name), (hlen) * 8,	       \
497 					 start_kwi, offset, intf);	       \
498 		}							       \
499 	}								       \
500 } while (0)
501 
502 	/* List LID, LTYPE, start offset from layer and length(in bytes) of
503 	 * packet header fields below.
504 	 * Example: Source IP is 4 bytes and starts at 12th byte of IP header
505 	 */
506 	NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
507 	NPC_SCAN_HDR(NPC_IPFRAG_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 6, 1);
508 	NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
509 	NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
510 	NPC_SCAN_HDR(NPC_IPFRAG_IPV6, NPC_LID_LC, NPC_LT_LC_IP6_EXT, 6, 1);
511 	if (rvu->hw->cap.npc_hash_extract) {
512 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][0])
513 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 4);
514 		else
515 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
516 
517 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][1])
518 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 4);
519 		else
520 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
521 	} else {
522 		NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
523 		NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
524 	}
525 
526 	NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
527 	NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
528 	NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
529 	NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
530 	NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
531 	NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
532 	NPC_SCAN_HDR(NPC_TYPE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 0, 1);
533 	NPC_SCAN_HDR(NPC_CODE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 1, 1);
534 	NPC_SCAN_HDR(NPC_TCP_FLAGS, NPC_LID_LD, NPC_LT_LD_TCP, 12, 2);
535 	NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
536 	NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
537 	NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
538 	NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
539 	NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
540 	NPC_SCAN_HDR(NPC_VLAN_TAG3, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 6, 2);
541 	NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
542 
543 	NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LD, NPC_LT_LD_AH, 4, 4);
544 	NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LE, NPC_LT_LE_ESP, 0, 4);
545 	NPC_SCAN_HDR(NPC_MPLS1_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 0, 3);
546 	NPC_SCAN_HDR(NPC_MPLS1_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 3, 1);
547 	NPC_SCAN_HDR(NPC_MPLS2_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 4, 3);
548 	NPC_SCAN_HDR(NPC_MPLS2_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 7, 1);
549 	NPC_SCAN_HDR(NPC_MPLS3_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 8, 3);
550 	NPC_SCAN_HDR(NPC_MPLS3_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 11, 1);
551 	NPC_SCAN_HDR(NPC_MPLS4_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 12, 3);
552 	NPC_SCAN_HDR(NPC_MPLS4_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 15, 1);
553 
554 	/* SMAC follows the DMAC(which is 6 bytes) */
555 	NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6);
556 	/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
557 	NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
558 }
559 
560 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
561 {
562 	struct npc_mcam *mcam = &rvu->hw->mcam;
563 	u64 *features = &mcam->rx_features;
564 	u64 proto_flags;
565 	int hdr;
566 
567 	if (is_npc_intf_tx(intf))
568 		features = &mcam->tx_features;
569 
570 	for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
571 		if (npc_check_field(rvu, blkaddr, hdr, intf))
572 			*features |= BIT_ULL(hdr);
573 	}
574 
575 	proto_flags = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
576 		       BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
577 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) |
578 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) |
579 		       BIT_ULL(NPC_TYPE_ICMP) | BIT_ULL(NPC_CODE_ICMP) |
580 		       BIT_ULL(NPC_TCP_FLAGS);
581 
582 	/* for tcp/udp/sctp corresponding layer type should be in the key */
583 	if (*features & proto_flags) {
584 		if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
585 			*features &= ~proto_flags;
586 		else
587 			*features |= BIT_ULL(NPC_IPPROTO_TCP) |
588 				     BIT_ULL(NPC_IPPROTO_UDP) |
589 				     BIT_ULL(NPC_IPPROTO_SCTP) |
590 				     BIT_ULL(NPC_IPPROTO_ICMP);
591 	}
592 
593 	/* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
594 	if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
595 		*features |= BIT_ULL(NPC_IPPROTO_AH);
596 		*features |= BIT_ULL(NPC_IPPROTO_ICMP);
597 		*features |= BIT_ULL(NPC_IPPROTO_ICMP6);
598 	}
599 
600 	/* for ESP, check if corresponding layer type is present in the key */
601 	if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
602 		*features |= BIT_ULL(NPC_IPPROTO_ESP);
603 
604 	/* for vlan corresponding layer type should be in the key */
605 	if (*features & BIT_ULL(NPC_OUTER_VID))
606 		if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
607 			*features &= ~BIT_ULL(NPC_OUTER_VID);
608 
609 	/* Set SPI flag only if AH/ESP and IPSEC_SPI are in the key */
610 	if (npc_check_field(rvu, blkaddr, NPC_IPSEC_SPI, intf) &&
611 	    (*features & (BIT_ULL(NPC_IPPROTO_ESP) | BIT_ULL(NPC_IPPROTO_AH))))
612 		*features |= BIT_ULL(NPC_IPSEC_SPI);
613 
614 	/* for vlan ethertypes corresponding layer type should be in the key */
615 	if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
616 		*features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) |
617 			     BIT_ULL(NPC_VLAN_ETYPE_STAG);
618 
619 	/* for L2M/L2B/L3M/L3B, check if the type is present in the key */
620 	if (npc_check_field(rvu, blkaddr, NPC_LXMB, intf))
621 		*features |= BIT_ULL(NPC_LXMB);
622 
623 	for (hdr = NPC_MPLS1_LBTCBOS; hdr <= NPC_MPLS4_TTL; hdr++) {
624 		if (npc_check_field(rvu, blkaddr, hdr, intf))
625 			*features |= BIT_ULL(hdr);
626 	}
627 }
628 
629 /* Scan key extraction profile and record how fields of our interest
630  * fill the key structure. Also verify Channel and DMAC exists in
631  * key and not overwritten by other header fields.
632  */
633 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
634 {
635 	struct npc_mcam *mcam = &rvu->hw->mcam;
636 	u8 lid, lt, ld, bitnr;
637 	u64 cfg, masked_cfg;
638 	u8 key_nibble = 0;
639 
640 	/* Scan and note how parse result is going to be in key.
641 	 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
642 	 * parse result in the key. The enabled nibbles from parse result
643 	 * will be concatenated in key.
644 	 */
645 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
646 	masked_cfg = cfg & NPC_PARSE_NIBBLE;
647 	for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) {
648 		npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
649 		key_nibble++;
650 	}
651 
652 	/* Ignore exact match bits for mcam entries except the first rule
653 	 * which is drop on hit. This first rule is configured explitcitly by
654 	 * exact match code.
655 	 */
656 	masked_cfg = cfg & NPC_EXACT_NIBBLE;
657 	bitnr = NPC_EXACT_NIBBLE_START;
658 	for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, NPC_EXACT_NIBBLE_END + 1) {
659 		npc_scan_exact_result(mcam, bitnr, key_nibble, intf);
660 		key_nibble++;
661 	}
662 
663 	/* Scan and note how layer data is going to be in key */
664 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
665 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
666 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
667 				cfg = rvu_read64(rvu, blkaddr,
668 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
669 						 (intf, lid, lt, ld));
670 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
671 					continue;
672 				npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
673 					       intf);
674 			}
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
682 {
683 	int err;
684 
685 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
686 	if (err)
687 		return err;
688 
689 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
690 	if (err)
691 		return err;
692 
693 	/* Channel is mandatory */
694 	if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
695 		dev_err(rvu->dev, "Channel not present in Key\n");
696 		return -EINVAL;
697 	}
698 	/* check that none of the fields overwrite channel */
699 	if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
700 		dev_err(rvu->dev, "Channel cannot be overwritten\n");
701 		return -EINVAL;
702 	}
703 
704 	npc_set_features(rvu, blkaddr, NIX_INTF_TX);
705 	npc_set_features(rvu, blkaddr, NIX_INTF_RX);
706 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
707 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
708 
709 	return 0;
710 }
711 
712 int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
713 {
714 	struct npc_mcam *mcam = &rvu->hw->mcam;
715 
716 	INIT_LIST_HEAD(&mcam->mcam_rules);
717 
718 	return npc_scan_verify_kex(rvu, blkaddr);
719 }
720 
721 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
722 {
723 	struct npc_mcam *mcam = &rvu->hw->mcam;
724 	u64 *mcam_features = &mcam->rx_features;
725 	u64 unsupported;
726 	u8 bit;
727 
728 	if (is_npc_intf_tx(intf))
729 		mcam_features = &mcam->tx_features;
730 
731 	unsupported = (*mcam_features ^ features) & ~(*mcam_features);
732 	if (unsupported) {
733 		dev_warn(rvu->dev, "Unsupported flow(s):\n");
734 		for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
735 			dev_warn(rvu->dev, "%s ", npc_get_field_name(bit));
736 		return -EOPNOTSUPP;
737 	}
738 
739 	return 0;
740 }
741 
742 /* npc_update_entry - Based on the masks generated during
743  * the key scanning, updates the given entry with value and
744  * masks for the field of interest. Maximum 16 bytes of a packet
745  * header can be extracted by HW hence lo and hi are sufficient.
746  * When field bytes are less than or equal to 8 then hi should be
747  * 0 for value and mask.
748  *
749  * If exact match of value is required then mask should be all 1's.
750  * If any bits in mask are 0 then corresponding bits in value are
751  * dont care.
752  */
753 void npc_update_entry(struct rvu *rvu, enum key_fields type,
754 		      struct mcam_entry *entry, u64 val_lo,
755 		      u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
756 {
757 	struct npc_mcam *mcam = &rvu->hw->mcam;
758 	struct mcam_entry dummy = { {0} };
759 	struct npc_key_field *field;
760 	u64 kw1, kw2, kw3;
761 	u8 shift;
762 	int i;
763 
764 	field = &mcam->rx_key_fields[type];
765 	if (is_npc_intf_tx(intf))
766 		field = &mcam->tx_key_fields[type];
767 
768 	if (!field->nr_kws)
769 		return;
770 
771 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
772 		if (!field->kw_mask[i])
773 			continue;
774 		/* place key value in kw[x] */
775 		shift = __ffs64(field->kw_mask[i]);
776 		/* update entry value */
777 		kw1 = (val_lo << shift) & field->kw_mask[i];
778 		dummy.kw[i] = kw1;
779 		/* update entry mask */
780 		kw1 = (mask_lo << shift) & field->kw_mask[i];
781 		dummy.kw_mask[i] = kw1;
782 
783 		if (field->nr_kws == 1)
784 			break;
785 		/* place remaining bits of key value in kw[x + 1] */
786 		if (field->nr_kws == 2) {
787 			/* update entry value */
788 			kw2 = shift ? val_lo >> (64 - shift) : 0;
789 			kw2 |= (val_hi << shift);
790 			kw2 &= field->kw_mask[i + 1];
791 			dummy.kw[i + 1] = kw2;
792 			/* update entry mask */
793 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
794 			kw2 |= (mask_hi << shift);
795 			kw2 &= field->kw_mask[i + 1];
796 			dummy.kw_mask[i + 1] = kw2;
797 			break;
798 		}
799 		/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
800 		if (field->nr_kws == 3) {
801 			/* update entry value */
802 			kw2 = shift ? val_lo >> (64 - shift) : 0;
803 			kw2 |= (val_hi << shift);
804 			kw2 &= field->kw_mask[i + 1];
805 			kw3 = shift ? val_hi >> (64 - shift) : 0;
806 			kw3 &= field->kw_mask[i + 2];
807 			dummy.kw[i + 1] = kw2;
808 			dummy.kw[i + 2] = kw3;
809 			/* update entry mask */
810 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
811 			kw2 |= (mask_hi << shift);
812 			kw2 &= field->kw_mask[i + 1];
813 			kw3 = shift ? mask_hi >> (64 - shift) : 0;
814 			kw3 &= field->kw_mask[i + 2];
815 			dummy.kw_mask[i + 1] = kw2;
816 			dummy.kw_mask[i + 2] = kw3;
817 			break;
818 		}
819 	}
820 	/* dummy is ready with values and masks for given key
821 	 * field now clear and update input entry with those
822 	 */
823 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
824 		if (!field->kw_mask[i])
825 			continue;
826 		entry->kw[i] &= ~field->kw_mask[i];
827 		entry->kw_mask[i] &= ~field->kw_mask[i];
828 
829 		entry->kw[i] |= dummy.kw[i];
830 		entry->kw_mask[i] |= dummy.kw_mask[i];
831 	}
832 }
833 
834 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
835 				 u64 features, struct flow_msg *pkt,
836 				 struct flow_msg *mask,
837 				 struct rvu_npc_mcam_rule *output, u8 intf)
838 {
839 	u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
840 	u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
841 	struct flow_msg *opkt = &output->packet;
842 	struct flow_msg *omask = &output->mask;
843 	u64 mask_lo, mask_hi;
844 	u64 val_lo, val_hi;
845 
846 	/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
847 	 * values to be programmed in MCAM should as below:
848 	 * val_high: 0xfe80000000000000
849 	 * val_low: 0x2c6863fffe5e2d0a
850 	 */
851 	if (features & BIT_ULL(NPC_SIP_IPV6)) {
852 		be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
853 		be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
854 
855 		mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
856 		mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
857 		val_hi = (u64)src_ip[0] << 32 | src_ip[1];
858 		val_lo = (u64)src_ip[2] << 32 | src_ip[3];
859 
860 		npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
861 				 mask_lo, mask_hi, intf);
862 		memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
863 		memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
864 	}
865 	if (features & BIT_ULL(NPC_DIP_IPV6)) {
866 		be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
867 		be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
868 
869 		mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
870 		mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
871 		val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
872 		val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
873 
874 		npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
875 				 mask_lo, mask_hi, intf);
876 		memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
877 		memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
878 	}
879 }
880 
881 static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry,
882 				     u64 features, u8 intf)
883 {
884 	bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG));
885 	bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG));
886 	bool vid = !!(features & BIT_ULL(NPC_OUTER_VID));
887 
888 	/* If only VLAN id is given then always match outer VLAN id */
889 	if (vid && !ctag && !stag) {
890 		npc_update_entry(rvu, NPC_LB, entry,
891 				 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
892 				 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
893 		return;
894 	}
895 	if (ctag)
896 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0,
897 				 ~0ULL, 0, intf);
898 	if (stag)
899 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0,
900 				 ~0ULL, 0, intf);
901 }
902 
903 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
904 			    u64 features, struct flow_msg *pkt,
905 			    struct flow_msg *mask,
906 			    struct rvu_npc_mcam_rule *output, u8 intf,
907 			    int blkaddr)
908 {
909 	u64 dmac_mask = ether_addr_to_u64(mask->dmac);
910 	u64 smac_mask = ether_addr_to_u64(mask->smac);
911 	u64 dmac_val = ether_addr_to_u64(pkt->dmac);
912 	u64 smac_val = ether_addr_to_u64(pkt->smac);
913 	struct flow_msg *opkt = &output->packet;
914 	struct flow_msg *omask = &output->mask;
915 
916 	if (!features)
917 		return;
918 
919 	/* For tcp/udp/sctp LTYPE should be present in entry */
920 	if (features & BIT_ULL(NPC_IPPROTO_TCP))
921 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
922 				 0, ~0ULL, 0, intf);
923 	if (features & BIT_ULL(NPC_IPPROTO_UDP))
924 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
925 				 0, ~0ULL, 0, intf);
926 	if (features & BIT_ULL(NPC_IPPROTO_SCTP))
927 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
928 				 0, ~0ULL, 0, intf);
929 	if (features & BIT_ULL(NPC_IPPROTO_ICMP))
930 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
931 				 0, ~0ULL, 0, intf);
932 	if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
933 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
934 				 0, ~0ULL, 0, intf);
935 
936 	/* For AH, LTYPE should be present in entry */
937 	if (features & BIT_ULL(NPC_IPPROTO_AH))
938 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
939 				 0, ~0ULL, 0, intf);
940 	/* For ESP, LTYPE should be present in entry */
941 	if (features & BIT_ULL(NPC_IPPROTO_ESP))
942 		npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
943 				 0, ~0ULL, 0, intf);
944 
945 	if (features & BIT_ULL(NPC_LXMB)) {
946 		output->lxmb = is_broadcast_ether_addr(pkt->dmac) ? 2 : 1;
947 		npc_update_entry(rvu, NPC_LXMB, entry, output->lxmb, 0,
948 				 output->lxmb, 0, intf);
949 	}
950 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)	      \
951 do {									      \
952 	if (features & BIT_ULL((field))) {				      \
953 		npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
954 				 (mask_lo), (mask_hi), intf);		      \
955 		memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
956 		memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
957 	}								      \
958 } while (0)
959 
960 	NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
961 
962 	NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
963 	NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
964 		       ntohs(mask->etype), 0);
965 	NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
966 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV4, ip_flag, pkt->ip_flag, 0,
967 		       mask->ip_flag, 0);
968 	NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
969 		       ntohl(mask->ip4src), 0);
970 	NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
971 		       ntohl(mask->ip4dst), 0);
972 	NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
973 		       ntohs(mask->sport), 0);
974 	NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
975 		       ntohs(mask->sport), 0);
976 	NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
977 		       ntohs(mask->dport), 0);
978 	NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
979 		       ntohs(mask->dport), 0);
980 	NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
981 		       ntohs(mask->sport), 0);
982 	NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
983 		       ntohs(mask->dport), 0);
984 	NPC_WRITE_FLOW(NPC_TYPE_ICMP, icmp_type, pkt->icmp_type, 0,
985 		       mask->icmp_type, 0);
986 	NPC_WRITE_FLOW(NPC_CODE_ICMP, icmp_code, pkt->icmp_code, 0,
987 		       mask->icmp_code, 0);
988 	NPC_WRITE_FLOW(NPC_TCP_FLAGS, tcp_flags, ntohs(pkt->tcp_flags), 0,
989 		       ntohs(mask->tcp_flags), 0);
990 	NPC_WRITE_FLOW(NPC_IPSEC_SPI, spi, ntohl(pkt->spi), 0,
991 		       ntohl(mask->spi), 0);
992 
993 	NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
994 		       ntohs(mask->vlan_tci), 0);
995 	NPC_WRITE_FLOW(NPC_INNER_VID, vlan_itci, ntohs(pkt->vlan_itci), 0,
996 		       ntohs(mask->vlan_itci), 0);
997 
998 	NPC_WRITE_FLOW(NPC_MPLS1_LBTCBOS, mpls_lse,
999 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1000 				 pkt->mpls_lse[0]), 0,
1001 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1002 				 mask->mpls_lse[0]), 0);
1003 	NPC_WRITE_FLOW(NPC_MPLS1_TTL, mpls_lse,
1004 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1005 				 pkt->mpls_lse[0]), 0,
1006 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1007 				 mask->mpls_lse[0]), 0);
1008 	NPC_WRITE_FLOW(NPC_MPLS2_LBTCBOS, mpls_lse,
1009 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1010 				 pkt->mpls_lse[1]), 0,
1011 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1012 				 mask->mpls_lse[1]), 0);
1013 	NPC_WRITE_FLOW(NPC_MPLS2_TTL, mpls_lse,
1014 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1015 				 pkt->mpls_lse[1]), 0,
1016 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1017 				 mask->mpls_lse[1]), 0);
1018 	NPC_WRITE_FLOW(NPC_MPLS3_LBTCBOS, mpls_lse,
1019 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1020 				 pkt->mpls_lse[2]), 0,
1021 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1022 				 mask->mpls_lse[2]), 0);
1023 	NPC_WRITE_FLOW(NPC_MPLS3_TTL, mpls_lse,
1024 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1025 				 pkt->mpls_lse[2]), 0,
1026 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1027 				 mask->mpls_lse[2]), 0);
1028 	NPC_WRITE_FLOW(NPC_MPLS4_LBTCBOS, mpls_lse,
1029 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1030 				 pkt->mpls_lse[3]), 0,
1031 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1032 				 mask->mpls_lse[3]), 0);
1033 	NPC_WRITE_FLOW(NPC_MPLS4_TTL, mpls_lse,
1034 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1035 				 pkt->mpls_lse[3]), 0,
1036 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1037 				 mask->mpls_lse[3]), 0);
1038 
1039 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV6, next_header, pkt->next_header, 0,
1040 		       mask->next_header, 0);
1041 	npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
1042 	npc_update_vlan_features(rvu, entry, features, intf);
1043 
1044 	npc_update_field_hash(rvu, intf, entry, blkaddr, features,
1045 			      pkt, mask, opkt, omask);
1046 }
1047 
1048 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry)
1049 {
1050 	struct rvu_npc_mcam_rule *iter;
1051 
1052 	mutex_lock(&mcam->lock);
1053 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
1054 		if (iter->entry == entry) {
1055 			mutex_unlock(&mcam->lock);
1056 			return iter;
1057 		}
1058 	}
1059 	mutex_unlock(&mcam->lock);
1060 
1061 	return NULL;
1062 }
1063 
1064 static void rvu_mcam_add_rule(struct npc_mcam *mcam,
1065 			      struct rvu_npc_mcam_rule *rule)
1066 {
1067 	struct list_head *head = &mcam->mcam_rules;
1068 	struct rvu_npc_mcam_rule *iter;
1069 
1070 	mutex_lock(&mcam->lock);
1071 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
1072 		if (iter->entry > rule->entry)
1073 			break;
1074 		head = &iter->list;
1075 	}
1076 
1077 	list_add(&rule->list, head);
1078 	mutex_unlock(&mcam->lock);
1079 }
1080 
1081 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
1082 					      struct rvu_npc_mcam_rule *rule)
1083 {
1084 	struct npc_mcam *mcam = &rvu->hw->mcam;
1085 
1086 	mutex_lock(&mcam->lock);
1087 
1088 	__rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1089 
1090 	mutex_unlock(&mcam->lock);
1091 }
1092 
1093 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
1094 					 struct rvu_npc_mcam_rule *rule,
1095 					 struct npc_install_flow_rsp *rsp)
1096 {
1097 	struct npc_mcam *mcam = &rvu->hw->mcam;
1098 
1099 	mutex_lock(&mcam->lock);
1100 
1101 	__rvu_mcam_add_counter_to_rule(rvu, pcifunc, rule, rsp);
1102 
1103 	mutex_unlock(&mcam->lock);
1104 }
1105 
1106 static int npc_mcast_update_action_index(struct rvu *rvu, struct npc_install_flow_req *req,
1107 					 u64 op, void *action)
1108 {
1109 	int mce_index;
1110 
1111 	/* If a PF/VF is installing a multicast rule then it is expected
1112 	 * that the PF/VF should have created a group for the multicast/mirror
1113 	 * list. Otherwise reject the configuration.
1114 	 * During this scenario, req->index is set as multicast/mirror
1115 	 * group index.
1116 	 */
1117 	if (req->hdr.pcifunc &&
1118 	    (op == NIX_RX_ACTIONOP_MCAST || op == NIX_TX_ACTIONOP_MCAST)) {
1119 		mce_index = rvu_nix_mcast_get_mce_index(rvu, req->hdr.pcifunc, req->index);
1120 		if (mce_index < 0)
1121 			return mce_index;
1122 
1123 		if (op == NIX_RX_ACTIONOP_MCAST)
1124 			((struct nix_rx_action *)action)->index = mce_index;
1125 		else
1126 			((struct nix_tx_action *)action)->index = mce_index;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1133 			       struct mcam_entry *entry,
1134 			       struct npc_install_flow_req *req,
1135 			       u16 target, bool pf_set_vfs_mac)
1136 {
1137 	struct rvu_switch *rswitch = &rvu->rswitch;
1138 	struct nix_rx_action action;
1139 	int ret;
1140 
1141 	if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac)
1142 		req->chan_mask = 0x0; /* Do not care channel */
1143 
1144 	npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask,
1145 			 0, NIX_INTF_RX);
1146 
1147 	*(u64 *)&action = 0x00;
1148 	action.pf_func = target;
1149 	action.op = req->op;
1150 	action.index = req->index;
1151 
1152 	ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action);
1153 	if (ret)
1154 		return ret;
1155 
1156 	action.match_id = req->match_id;
1157 	action.flow_key_alg = req->flow_key_alg;
1158 
1159 	if (req->op == NIX_RX_ACTION_DEFAULT) {
1160 		if (pfvf->def_ucast_rule) {
1161 			action = pfvf->def_ucast_rule->rx_action;
1162 		} else {
1163 			/* For profiles which do not extract DMAC, the default
1164 			 * unicast entry is unused. Hence modify action for the
1165 			 * requests which use same action as default unicast
1166 			 * entry
1167 			 */
1168 			*(u64 *)&action = 0;
1169 			action.pf_func = target;
1170 			action.op = NIX_RX_ACTIONOP_UCAST;
1171 		}
1172 		if (req->match_id)
1173 			action.match_id = req->match_id;
1174 	}
1175 
1176 	entry->action = *(u64 *)&action;
1177 
1178 	/* VTAG0 starts at 0th byte of LID_B.
1179 	 * VTAG1 starts at 4th byte of LID_B.
1180 	 */
1181 	entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
1182 			     FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
1183 			     FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
1184 			     FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
1185 			     FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
1186 			     FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
1187 			     FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
1188 			     FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
1189 
1190 	return 0;
1191 }
1192 
1193 static int npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1194 			       struct mcam_entry *entry,
1195 			       struct npc_install_flow_req *req, u16 target)
1196 {
1197 	struct nix_tx_action action;
1198 	u64 mask = ~0ULL;
1199 	int ret;
1200 
1201 	/* If AF is installing then do not care about
1202 	 * PF_FUNC in Send Descriptor
1203 	 */
1204 	if (is_pffunc_af(req->hdr.pcifunc))
1205 		mask = 0;
1206 
1207 	npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
1208 			 0, mask, 0, NIX_INTF_TX);
1209 
1210 	*(u64 *)&action = 0x00;
1211 	action.op = req->op;
1212 	action.index = req->index;
1213 
1214 	ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action);
1215 	if (ret)
1216 		return ret;
1217 
1218 	action.match_id = req->match_id;
1219 
1220 	entry->action = *(u64 *)&action;
1221 
1222 	/* VTAG0 starts at 0th byte of LID_B.
1223 	 * VTAG1 starts at 4th byte of LID_B.
1224 	 */
1225 	entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
1226 			     FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
1227 			     FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
1228 			     FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
1229 			     FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
1230 			     FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
1231 			     FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
1232 			     FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
1233 
1234 	return 0;
1235 }
1236 
1237 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
1238 			    int nixlf, struct rvu_pfvf *pfvf,
1239 			    struct npc_install_flow_req *req,
1240 			    struct npc_install_flow_rsp *rsp, bool enable,
1241 			    bool pf_set_vfs_mac)
1242 {
1243 	struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
1244 	u64 features, installed_features, missing_features = 0;
1245 	struct npc_mcam_write_entry_req write_req = { 0 };
1246 	struct npc_mcam *mcam = &rvu->hw->mcam;
1247 	struct rvu_npc_mcam_rule dummy = { 0 };
1248 	struct rvu_npc_mcam_rule *rule;
1249 	u16 owner = req->hdr.pcifunc;
1250 	struct msg_rsp write_rsp;
1251 	struct mcam_entry *entry;
1252 	bool new = false;
1253 	u16 entry_index;
1254 	int err;
1255 
1256 	installed_features = req->features;
1257 	features = req->features;
1258 	entry = &write_req.entry_data;
1259 	entry_index = req->entry;
1260 
1261 	npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
1262 			req->intf, blkaddr);
1263 
1264 	if (is_npc_intf_rx(req->intf)) {
1265 		err = npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac);
1266 		if (err)
1267 			return err;
1268 	} else {
1269 		err = npc_update_tx_entry(rvu, pfvf, entry, req, target);
1270 		if (err)
1271 			return err;
1272 	}
1273 
1274 	/* Default unicast rules do not exist for TX */
1275 	if (is_npc_intf_tx(req->intf))
1276 		goto find_rule;
1277 
1278 	if (req->default_rule) {
1279 		entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
1280 						       NIXLF_UCAST_ENTRY);
1281 		enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
1282 	}
1283 
1284 	/* update mcam entry with default unicast rule attributes */
1285 	if (def_ucast_rule && (req->default_rule && req->append)) {
1286 		missing_features = (def_ucast_rule->features ^ features) &
1287 					def_ucast_rule->features;
1288 		if (missing_features)
1289 			npc_update_flow(rvu, entry, missing_features,
1290 					&def_ucast_rule->packet,
1291 					&def_ucast_rule->mask,
1292 					&dummy, req->intf,
1293 					blkaddr);
1294 		installed_features = req->features | missing_features;
1295 	}
1296 
1297 find_rule:
1298 	rule = rvu_mcam_find_rule(mcam, entry_index);
1299 	if (!rule) {
1300 		rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1301 		if (!rule)
1302 			return -ENOMEM;
1303 		new = true;
1304 	}
1305 
1306 	/* allocate new counter if rule has no counter */
1307 	if (!req->default_rule && req->set_cntr && !rule->has_cntr)
1308 		rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
1309 
1310 	/* if user wants to delete an existing counter for a rule then
1311 	 * free the counter
1312 	 */
1313 	if (!req->set_cntr && rule->has_cntr)
1314 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1315 
1316 	write_req.hdr.pcifunc = owner;
1317 
1318 	/* AF owns the default rules so change the owner just to relax
1319 	 * the checks in rvu_mbox_handler_npc_mcam_write_entry
1320 	 */
1321 	if (req->default_rule)
1322 		write_req.hdr.pcifunc = 0;
1323 
1324 	write_req.entry = entry_index;
1325 	write_req.intf = req->intf;
1326 	write_req.enable_entry = (u8)enable;
1327 	/* if counter is available then clear and use it */
1328 	if (req->set_cntr && rule->has_cntr) {
1329 		rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), req->cntr_val);
1330 		write_req.set_cntr = 1;
1331 		write_req.cntr = rule->cntr;
1332 	}
1333 
1334 	/* update rule */
1335 	memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
1336 	memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
1337 	rule->entry = entry_index;
1338 	memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
1339 	if (is_npc_intf_tx(req->intf))
1340 		memcpy(&rule->tx_action, &entry->action,
1341 		       sizeof(struct nix_tx_action));
1342 	rule->vtag_action = entry->vtag_action;
1343 	rule->features = installed_features;
1344 	rule->default_rule = req->default_rule;
1345 	rule->owner = owner;
1346 	rule->enable = enable;
1347 	rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK;
1348 	rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK;
1349 	rule->chan &= rule->chan_mask;
1350 	rule->lxmb = dummy.lxmb;
1351 	if (is_npc_intf_tx(req->intf))
1352 		rule->intf = pfvf->nix_tx_intf;
1353 	else
1354 		rule->intf = pfvf->nix_rx_intf;
1355 
1356 	if (new)
1357 		rvu_mcam_add_rule(mcam, rule);
1358 	if (req->default_rule)
1359 		pfvf->def_ucast_rule = rule;
1360 
1361 	/* write to mcam entry registers */
1362 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
1363 						    &write_rsp);
1364 	if (err) {
1365 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1366 		if (new) {
1367 			list_del(&rule->list);
1368 			kfree(rule);
1369 		}
1370 		return err;
1371 	}
1372 
1373 	/* VF's MAC address is being changed via PF  */
1374 	if (pf_set_vfs_mac) {
1375 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1376 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1377 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1378 	}
1379 
1380 	if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
1381 	    req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
1382 		rule->vfvlan_cfg = true;
1383 
1384 	if (is_npc_intf_rx(req->intf) && req->match_id &&
1385 	    (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
1386 		return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
1387 					     req->index, req->match_id);
1388 
1389 	if (owner && req->op == NIX_RX_ACTIONOP_MCAST)
1390 		return rvu_nix_mcast_update_mcam_entry(rvu, req->hdr.pcifunc,
1391 						       req->index, entry_index);
1392 
1393 	return 0;
1394 }
1395 
1396 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
1397 				      struct npc_install_flow_req *req,
1398 				      struct npc_install_flow_rsp *rsp)
1399 {
1400 	bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
1401 	bool from_rep_dev = !!is_rep_dev(rvu, req->hdr.pcifunc);
1402 	struct rvu_switch *rswitch = &rvu->rswitch;
1403 	int blkaddr, nixlf, err;
1404 	struct rvu_pfvf *pfvf;
1405 	bool pf_set_vfs_mac = false;
1406 	bool enable = true;
1407 	u16 target;
1408 
1409 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1410 	if (blkaddr < 0) {
1411 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1412 		return NPC_MCAM_INVALID_REQ;
1413 	}
1414 
1415 	if (!is_npc_interface_valid(rvu, req->intf))
1416 		return NPC_FLOW_INTF_INVALID;
1417 
1418 	/* If DMAC is not extracted in MKEX, rules installed by AF
1419 	 * can rely on L2MB bit set by hardware protocol checker for
1420 	 * broadcast and multicast addresses.
1421 	 */
1422 	if (npc_check_field(rvu, blkaddr, NPC_DMAC, req->intf))
1423 		goto process_flow;
1424 
1425 	if (is_pffunc_af(req->hdr.pcifunc) &&
1426 	    req->features & BIT_ULL(NPC_DMAC)) {
1427 		if (is_unicast_ether_addr(req->packet.dmac)) {
1428 			dev_warn(rvu->dev,
1429 				 "%s: mkex profile does not support ucast flow\n",
1430 				 __func__);
1431 			return NPC_FLOW_NOT_SUPPORTED;
1432 		}
1433 
1434 		if (!npc_is_field_present(rvu, NPC_LXMB, req->intf)) {
1435 			dev_warn(rvu->dev,
1436 				 "%s: mkex profile does not support bcast/mcast flow",
1437 				 __func__);
1438 			return NPC_FLOW_NOT_SUPPORTED;
1439 		}
1440 
1441 		/* Modify feature to use LXMB instead of DMAC */
1442 		req->features &= ~BIT_ULL(NPC_DMAC);
1443 		req->features |= BIT_ULL(NPC_LXMB);
1444 	}
1445 
1446 process_flow:
1447 	if (from_vf && req->default_rule)
1448 		return NPC_FLOW_VF_PERM_DENIED;
1449 
1450 	/* Each PF/VF info is maintained in struct rvu_pfvf.
1451 	 * rvu_pfvf for the target PF/VF needs to be retrieved
1452 	 * hence modify pcifunc accordingly.
1453 	 */
1454 
1455 	if (!req->hdr.pcifunc) {
1456 		/* AF installing for a PF/VF */
1457 		target = req->vf;
1458 	} else if (!from_vf && req->vf && !from_rep_dev) {
1459 		/* PF installing for its VF */
1460 		target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
1461 		pf_set_vfs_mac = req->default_rule &&
1462 				(req->features & BIT_ULL(NPC_DMAC));
1463 	} else if (from_rep_dev && req->vf) {
1464 		/* Representor device installing for a representee */
1465 		target = req->vf;
1466 	} else {
1467 		/* msg received from PF/VF */
1468 		target = req->hdr.pcifunc;
1469 	}
1470 
1471 	/* ignore chan_mask in case pf func is not AF, revisit later */
1472 	if (!is_pffunc_af(req->hdr.pcifunc))
1473 		req->chan_mask = 0xFFF;
1474 
1475 	err = npc_check_unsupported_flows(rvu, req->features, req->intf);
1476 	if (err)
1477 		return NPC_FLOW_NOT_SUPPORTED;
1478 
1479 	pfvf = rvu_get_pfvf(rvu, target);
1480 
1481 	if (from_rep_dev)
1482 		req->channel = pfvf->rx_chan_base;
1483 	/* PF installing for its VF */
1484 	if (req->hdr.pcifunc && !from_vf && req->vf && !from_rep_dev)
1485 		set_bit(PF_SET_VF_CFG, &pfvf->flags);
1486 
1487 	/* update req destination mac addr */
1488 	if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
1489 	    is_zero_ether_addr(req->packet.dmac)) {
1490 		ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
1491 		eth_broadcast_addr((u8 *)&req->mask.dmac);
1492 	}
1493 
1494 	/* Proceed if NIXLF is attached or not for TX rules */
1495 	err = nix_get_nixlf(rvu, target, &nixlf, NULL);
1496 	if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
1497 		return NPC_FLOW_NO_NIXLF;
1498 
1499 	/* don't enable rule when nixlf not attached or initialized */
1500 	if (!(is_nixlf_attached(rvu, target) &&
1501 	      test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
1502 		enable = false;
1503 
1504 	/* Packets reaching NPC in Tx path implies that a
1505 	 * NIXLF is properly setup and transmitting.
1506 	 * Hence rules can be enabled for Tx.
1507 	 */
1508 	if (is_npc_intf_tx(req->intf))
1509 		enable = true;
1510 
1511 	/* Do not allow requests from uninitialized VFs */
1512 	if (from_vf && !enable)
1513 		return NPC_FLOW_VF_NOT_INIT;
1514 
1515 	/* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
1516 	if (pf_set_vfs_mac && !enable) {
1517 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1518 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1519 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1520 		return 0;
1521 	}
1522 
1523 	mutex_lock(&rswitch->switch_lock);
1524 	err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf,
1525 			       req, rsp, enable, pf_set_vfs_mac);
1526 	mutex_unlock(&rswitch->switch_lock);
1527 
1528 	return err;
1529 }
1530 
1531 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
1532 			   u16 pcifunc)
1533 {
1534 	struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
1535 	struct msg_rsp dis_rsp;
1536 
1537 	if (rule->default_rule)
1538 		return 0;
1539 
1540 	if (rule->has_cntr)
1541 		rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1542 
1543 	dis_req.hdr.pcifunc = pcifunc;
1544 	dis_req.entry = rule->entry;
1545 
1546 	list_del(&rule->list);
1547 	kfree(rule);
1548 
1549 	return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
1550 }
1551 
1552 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
1553 				     struct npc_delete_flow_req *req,
1554 				     struct npc_delete_flow_rsp *rsp)
1555 {
1556 	struct npc_mcam *mcam = &rvu->hw->mcam;
1557 	struct rvu_npc_mcam_rule *iter, *tmp;
1558 	u16 pcifunc = req->hdr.pcifunc;
1559 	struct list_head del_list;
1560 	int blkaddr;
1561 
1562 	INIT_LIST_HEAD(&del_list);
1563 
1564 	mutex_lock(&mcam->lock);
1565 	list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
1566 		if (iter->owner == pcifunc) {
1567 			/* All rules */
1568 			if (req->all) {
1569 				list_move_tail(&iter->list, &del_list);
1570 			/* Range of rules */
1571 			} else if (req->end && iter->entry >= req->start &&
1572 				   iter->entry <= req->end) {
1573 				list_move_tail(&iter->list, &del_list);
1574 			/* single rule */
1575 			} else if (req->entry == iter->entry) {
1576 				blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1577 				if (blkaddr)
1578 					rsp->cntr_val = rvu_read64(rvu, blkaddr,
1579 								   NPC_AF_MATCH_STATX(iter->cntr));
1580 				list_move_tail(&iter->list, &del_list);
1581 				break;
1582 			}
1583 		}
1584 	}
1585 	mutex_unlock(&mcam->lock);
1586 
1587 	list_for_each_entry_safe(iter, tmp, &del_list, list) {
1588 		u16 entry = iter->entry;
1589 
1590 		/* clear the mcam entry target pcifunc */
1591 		mcam->entry2target_pffunc[entry] = 0x0;
1592 		if (npc_delete_flow(rvu, iter, pcifunc))
1593 			dev_err(rvu->dev, "rule deletion failed for entry:%u",
1594 				entry);
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
1601 				 struct rvu_npc_mcam_rule *rule,
1602 				 struct rvu_pfvf *pfvf)
1603 {
1604 	struct npc_mcam_write_entry_req write_req = { 0 };
1605 	struct mcam_entry *entry = &write_req.entry_data;
1606 	struct npc_mcam *mcam = &rvu->hw->mcam;
1607 	struct msg_rsp rsp;
1608 	u8 intf, enable;
1609 	int err;
1610 
1611 	ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
1612 
1613 	npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
1614 			    entry, &intf,  &enable);
1615 
1616 	npc_update_entry(rvu, NPC_DMAC, entry,
1617 			 ether_addr_to_u64(pfvf->mac_addr), 0,
1618 			 0xffffffffffffull, 0, intf);
1619 
1620 	write_req.hdr.pcifunc = rule->owner;
1621 	write_req.entry = rule->entry;
1622 	write_req.intf = pfvf->nix_rx_intf;
1623 
1624 	mutex_unlock(&mcam->lock);
1625 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
1626 	mutex_lock(&mcam->lock);
1627 
1628 	return err;
1629 }
1630 
1631 void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
1632 {
1633 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
1634 	struct rvu_npc_mcam_rule *def_ucast_rule;
1635 	struct npc_mcam *mcam = &rvu->hw->mcam;
1636 	struct rvu_npc_mcam_rule *rule;
1637 	int blkaddr, bank, index;
1638 	u64 def_action;
1639 
1640 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1641 	if (blkaddr < 0)
1642 		return;
1643 
1644 	def_ucast_rule = pfvf->def_ucast_rule;
1645 
1646 	mutex_lock(&mcam->lock);
1647 	list_for_each_entry(rule, &mcam->mcam_rules, list) {
1648 		if (is_npc_intf_rx(rule->intf) &&
1649 		    rule->rx_action.pf_func == target && !rule->enable) {
1650 			if (rule->default_rule) {
1651 				npc_enable_mcam_entry(rvu, mcam, blkaddr,
1652 						      rule->entry, true);
1653 				rule->enable = true;
1654 				continue;
1655 			}
1656 
1657 			if (rule->vfvlan_cfg)
1658 				npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
1659 
1660 			if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
1661 				if (!def_ucast_rule)
1662 					continue;
1663 				/* Use default unicast entry action */
1664 				rule->rx_action = def_ucast_rule->rx_action;
1665 				def_action = *(u64 *)&def_ucast_rule->rx_action;
1666 				bank = npc_get_bank(mcam, rule->entry);
1667 				rvu_write64(rvu, blkaddr,
1668 					    NPC_AF_MCAMEX_BANKX_ACTION
1669 					    (rule->entry, bank), def_action);
1670 			}
1671 
1672 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1673 					      rule->entry, true);
1674 			rule->enable = true;
1675 		}
1676 	}
1677 
1678 	/* Enable MCAM entries installed by PF with target as VF pcifunc */
1679 	for (index = 0; index < mcam->bmap_entries; index++) {
1680 		if (mcam->entry2target_pffunc[index] == target)
1681 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1682 					      index, true);
1683 	}
1684 	mutex_unlock(&mcam->lock);
1685 }
1686 
1687 void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
1688 {
1689 	struct npc_mcam *mcam = &rvu->hw->mcam;
1690 	int blkaddr, index;
1691 
1692 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1693 	if (blkaddr < 0)
1694 		return;
1695 
1696 	mutex_lock(&mcam->lock);
1697 	/* Disable MCAM entries installed by PF with target as VF pcifunc */
1698 	for (index = 0; index < mcam->bmap_entries; index++) {
1699 		if (mcam->entry2target_pffunc[index] == target)
1700 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1701 					      index, false);
1702 	}
1703 	mutex_unlock(&mcam->lock);
1704 }
1705 
1706 /* single drop on non hit rule starting from 0th index. This an extension
1707  * to RPM mac filter to support more rules.
1708  */
1709 int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx,
1710 			       u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask,
1711 			       u64 bcast_mcast_val, u64 bcast_mcast_mask)
1712 {
1713 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
1714 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1715 	struct npc_mcam_write_entry_req req = { 0 };
1716 	struct npc_mcam *mcam = &rvu->hw->mcam;
1717 	struct rvu_npc_mcam_rule *rule;
1718 	struct msg_rsp rsp;
1719 	bool enabled;
1720 	int blkaddr;
1721 	int err;
1722 
1723 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1724 	if (blkaddr < 0) {
1725 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1726 		return -ENODEV;
1727 	}
1728 
1729 	/* Bail out if no exact match support */
1730 	if (!rvu_npc_exact_has_match_table(rvu)) {
1731 		dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__);
1732 		return -EINVAL;
1733 	}
1734 
1735 	/* If 0th entry is already used, return err */
1736 	enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx);
1737 	if (enabled) {
1738 		dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n",
1739 			__func__, mcam_idx);
1740 		return	-EINVAL;
1741 	}
1742 
1743 	/* Add this entry to mcam rules list */
1744 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1745 	if (!rule)
1746 		return -ENOMEM;
1747 
1748 	/* Disable rule by default. Enable rule when first dmac filter is
1749 	 * installed
1750 	 */
1751 	rule->enable = false;
1752 	rule->chan = chan_val;
1753 	rule->chan_mask = chan_mask;
1754 	rule->entry = mcam_idx;
1755 	rvu_mcam_add_rule(mcam, rule);
1756 
1757 	/* Reserve slot 0 */
1758 	npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx);
1759 
1760 	/* Allocate counter for this single drop on non hit rule */
1761 	cntr_req.hdr.pcifunc = 0; /* AF request */
1762 	cntr_req.contig = true;
1763 	cntr_req.count = 1;
1764 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp);
1765 	if (err) {
1766 		dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n",
1767 			__func__, err);
1768 		return	-EFAULT;
1769 	}
1770 	*counter_idx = cntr_rsp.cntr;
1771 
1772 	/* Fill in fields for this mcam entry */
1773 	npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0,
1774 			 exact_mask, 0, NIX_INTF_RX);
1775 	npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0,
1776 			 chan_mask, 0, NIX_INTF_RX);
1777 	npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0,
1778 			 bcast_mcast_mask, 0, NIX_INTF_RX);
1779 
1780 	req.intf = NIX_INTF_RX;
1781 	req.set_cntr = true;
1782 	req.cntr = cntr_rsp.cntr;
1783 	req.entry = mcam_idx;
1784 
1785 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp);
1786 	if (err) {
1787 		dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n",
1788 			__func__, mcam_idx);
1789 		return err;
1790 	}
1791 
1792 	dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n",
1793 		__func__, mcam_idx, req.cntr);
1794 
1795 	/* disable entry at Bank 0, index 0 */
1796 	npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false);
1797 
1798 	return 0;
1799 }
1800 
1801 int rvu_mbox_handler_npc_get_field_status(struct rvu *rvu,
1802 					  struct npc_get_field_status_req *req,
1803 					  struct npc_get_field_status_rsp *rsp)
1804 {
1805 	int blkaddr;
1806 
1807 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1808 	if (blkaddr < 0)
1809 		return NPC_MCAM_INVALID_REQ;
1810 
1811 	if (!is_npc_interface_valid(rvu, req->intf))
1812 		return NPC_FLOW_INTF_INVALID;
1813 
1814 	if (npc_check_field(rvu, blkaddr, req->field, req->intf))
1815 		rsp->enable = 1;
1816 
1817 	return 0;
1818 }
1819