xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_npc_fs.c (revision 68f715a820b02f965e2afc584a6cb542843cbc98)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6 
7 #include <linux/bitfield.h>
8 
9 #include "rvu_struct.h"
10 #include "rvu_reg.h"
11 #include "rvu.h"
12 #include "npc.h"
13 #include "rvu_npc_fs.h"
14 #include "rvu_npc_hash.h"
15 
16 static const char * const npc_flow_names[] = {
17 	[NPC_DMAC]	= "dmac",
18 	[NPC_SMAC]	= "smac",
19 	[NPC_ETYPE]	= "ether type",
20 	[NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag",
21 	[NPC_VLAN_ETYPE_STAG] = "vlan ether type stag",
22 	[NPC_OUTER_VID]	= "outer vlan id",
23 	[NPC_INNER_VID]	= "inner vlan id",
24 	[NPC_TOS]	= "tos",
25 	[NPC_IPFRAG_IPV4] = "fragmented IPv4 header ",
26 	[NPC_SIP_IPV4]	= "ipv4 source ip",
27 	[NPC_DIP_IPV4]	= "ipv4 destination ip",
28 	[NPC_IPFRAG_IPV6] = "fragmented IPv6 header ",
29 	[NPC_SIP_IPV6]	= "ipv6 source ip",
30 	[NPC_DIP_IPV6]	= "ipv6 destination ip",
31 	[NPC_IPPROTO_TCP] = "ip proto tcp",
32 	[NPC_IPPROTO_UDP] = "ip proto udp",
33 	[NPC_IPPROTO_SCTP] = "ip proto sctp",
34 	[NPC_IPPROTO_ICMP] = "ip proto icmp",
35 	[NPC_IPPROTO_ICMP6] = "ip proto icmp6",
36 	[NPC_IPPROTO_AH] = "ip proto AH",
37 	[NPC_IPPROTO_ESP] = "ip proto ESP",
38 	[NPC_SPORT_TCP]	= "tcp source port",
39 	[NPC_DPORT_TCP]	= "tcp destination port",
40 	[NPC_SPORT_UDP]	= "udp source port",
41 	[NPC_DPORT_UDP]	= "udp destination port",
42 	[NPC_SPORT_SCTP] = "sctp source port",
43 	[NPC_DPORT_SCTP] = "sctp destination port",
44 	[NPC_LXMB]	= "Mcast/Bcast header ",
45 	[NPC_IPSEC_SPI] = "SPI ",
46 	[NPC_MPLS1_LBTCBOS] = "lse depth 1 label tc bos",
47 	[NPC_MPLS1_TTL]     = "lse depth 1 ttl",
48 	[NPC_MPLS2_LBTCBOS] = "lse depth 2 label tc bos",
49 	[NPC_MPLS2_TTL]     = "lse depth 2 ttl",
50 	[NPC_MPLS3_LBTCBOS] = "lse depth 3 label tc bos",
51 	[NPC_MPLS3_TTL]     = "lse depth 3 ttl",
52 	[NPC_MPLS4_LBTCBOS] = "lse depth 4 label tc bos",
53 	[NPC_MPLS4_TTL]     = "lse depth 4",
54 	[NPC_TYPE_ICMP] = "icmp type",
55 	[NPC_CODE_ICMP] = "icmp code",
56 	[NPC_UNKNOWN]	= "unknown",
57 };
58 
59 bool npc_is_feature_supported(struct rvu *rvu, u64 features, u8 intf)
60 {
61 	struct npc_mcam *mcam = &rvu->hw->mcam;
62 	u64 mcam_features;
63 	u64 unsupported;
64 
65 	mcam_features = is_npc_intf_tx(intf) ? mcam->tx_features : mcam->rx_features;
66 	unsupported = (mcam_features ^ features) & ~mcam_features;
67 
68 	/* Return false if at least one of the input flows is not extracted */
69 	return !unsupported;
70 }
71 
72 const char *npc_get_field_name(u8 hdr)
73 {
74 	if (hdr >= ARRAY_SIZE(npc_flow_names))
75 		return npc_flow_names[NPC_UNKNOWN];
76 
77 	return npc_flow_names[hdr];
78 }
79 
80 /* Compute keyword masks and figure out the number of keywords a field
81  * spans in the key.
82  */
83 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
84 			     u8 nr_bits, int start_kwi, int offset, u8 intf)
85 {
86 	struct npc_key_field *field = &mcam->rx_key_fields[type];
87 	u8 bits_in_kw;
88 	int max_kwi;
89 
90 	if (mcam->banks_per_entry == 1)
91 		max_kwi = 1; /* NPC_MCAM_KEY_X1 */
92 	else if (mcam->banks_per_entry == 2)
93 		max_kwi = 3; /* NPC_MCAM_KEY_X2 */
94 	else
95 		max_kwi = 6; /* NPC_MCAM_KEY_X4 */
96 
97 	if (is_npc_intf_tx(intf))
98 		field = &mcam->tx_key_fields[type];
99 
100 	if (offset + nr_bits <= 64) {
101 		/* one KW only */
102 		if (start_kwi > max_kwi)
103 			return;
104 		field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
105 					     << offset;
106 		field->nr_kws = 1;
107 	} else if (offset + nr_bits > 64 &&
108 		   offset + nr_bits <= 128) {
109 		/* two KWs */
110 		if (start_kwi + 1 > max_kwi)
111 			return;
112 		/* first KW mask */
113 		bits_in_kw = 64 - offset;
114 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
115 					     << offset;
116 		/* second KW mask i.e. mask for rest of bits */
117 		bits_in_kw = nr_bits + offset - 64;
118 		field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
119 		field->nr_kws = 2;
120 	} else {
121 		/* three KWs */
122 		if (start_kwi + 2 > max_kwi)
123 			return;
124 		/* first KW mask */
125 		bits_in_kw = 64 - offset;
126 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
127 					     << offset;
128 		/* second KW mask */
129 		field->kw_mask[start_kwi + 1] = ~0ULL;
130 		/* third KW mask i.e. mask for rest of bits */
131 		bits_in_kw = nr_bits + offset - 128;
132 		field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
133 		field->nr_kws = 3;
134 	}
135 }
136 
137 /* Helper function to figure out whether field exists in the key */
138 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
139 {
140 	struct npc_mcam *mcam = &rvu->hw->mcam;
141 	struct npc_key_field *input;
142 
143 	input  = &mcam->rx_key_fields[type];
144 	if (is_npc_intf_tx(intf))
145 		input  = &mcam->tx_key_fields[type];
146 
147 	return input->nr_kws > 0;
148 }
149 
150 static bool npc_is_same(struct npc_key_field *input,
151 			struct npc_key_field *field)
152 {
153 	return memcmp(&input->layer_mdata, &field->layer_mdata,
154 		     sizeof(struct npc_layer_mdata)) == 0;
155 }
156 
157 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
158 				u64 cfg, u8 lid, u8 lt, u8 intf)
159 {
160 	struct npc_key_field *input = &mcam->rx_key_fields[type];
161 
162 	if (is_npc_intf_tx(intf))
163 		input = &mcam->tx_key_fields[type];
164 
165 	input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
166 	input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
167 	input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
168 	input->layer_mdata.ltype = lt;
169 	input->layer_mdata.lid = lid;
170 }
171 
172 static bool npc_check_overlap_fields(struct npc_key_field *input1,
173 				     struct npc_key_field *input2)
174 {
175 	int kwi;
176 
177 	/* Fields with same layer id and different ltypes are mutually
178 	 * exclusive hence they can be overlapped
179 	 */
180 	if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
181 	    input1->layer_mdata.ltype != input2->layer_mdata.ltype)
182 		return false;
183 
184 	for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
185 		if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
186 			return true;
187 	}
188 
189 	return false;
190 }
191 
192 /* Helper function to check whether given field overlaps with any other fields
193  * in the key. Due to limitations on key size and the key extraction profile in
194  * use higher layers can overwrite lower layer's header fields. Hence overlap
195  * needs to be checked.
196  */
197 static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
198 			      enum key_fields type, u8 start_lid, u8 intf)
199 {
200 	struct npc_mcam *mcam = &rvu->hw->mcam;
201 	struct npc_key_field *dummy, *input;
202 	int start_kwi, offset;
203 	u8 nr_bits, lid, lt, ld;
204 	u64 cfg;
205 
206 	dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
207 	input = &mcam->rx_key_fields[type];
208 
209 	if (is_npc_intf_tx(intf)) {
210 		dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
211 		input = &mcam->tx_key_fields[type];
212 	}
213 
214 	for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
215 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
216 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
217 				cfg = rvu_read64(rvu, blkaddr,
218 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
219 						 (intf, lid, lt, ld));
220 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
221 					continue;
222 				memset(dummy, 0, sizeof(struct npc_key_field));
223 				npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
224 						    lid, lt, intf);
225 				/* exclude input */
226 				if (npc_is_same(input, dummy))
227 					continue;
228 				start_kwi = dummy->layer_mdata.key / 8;
229 				offset = (dummy->layer_mdata.key * 8) % 64;
230 				nr_bits = dummy->layer_mdata.len * 8;
231 				/* form KW masks */
232 				npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
233 						 start_kwi, offset, intf);
234 				/* check any input field bits falls in any
235 				 * other field bits.
236 				 */
237 				if (npc_check_overlap_fields(dummy, input))
238 					return true;
239 			}
240 		}
241 	}
242 
243 	return false;
244 }
245 
246 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
247 			    u8 intf)
248 {
249 	if (!npc_is_field_present(rvu, type, intf) ||
250 	    npc_check_overlap(rvu, blkaddr, type, 0, intf))
251 		return false;
252 	return true;
253 }
254 
255 static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number,
256 				  u8 key_nibble, u8 intf)
257 {
258 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
259 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
260 	u8 nr_bits = 4; /* bits in a nibble */
261 	u8 type;
262 
263 	switch (bit_number) {
264 	case 40 ... 43:
265 		type = NPC_EXACT_RESULT;
266 		break;
267 
268 	default:
269 		return;
270 	}
271 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
272 }
273 
274 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
275 				  u8 key_nibble, u8 intf)
276 {
277 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
278 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
279 	u8 nr_bits = 4; /* bits in a nibble */
280 	u8 type;
281 
282 	switch (bit_number) {
283 	case 0 ... 2:
284 		type = NPC_CHAN;
285 		break;
286 	case 3:
287 		type = NPC_ERRLEV;
288 		break;
289 	case 4 ... 5:
290 		type = NPC_ERRCODE;
291 		break;
292 	case 6:
293 		type = NPC_LXMB;
294 		break;
295 	/* check for LTYPE only as of now */
296 	case 9:
297 		type = NPC_LA;
298 		break;
299 	case 12:
300 		type = NPC_LB;
301 		break;
302 	case 15:
303 		type = NPC_LC;
304 		break;
305 	case 18:
306 		type = NPC_LD;
307 		break;
308 	case 21:
309 		type = NPC_LE;
310 		break;
311 	case 24:
312 		type = NPC_LF;
313 		break;
314 	case 27:
315 		type = NPC_LG;
316 		break;
317 	case 30:
318 		type = NPC_LH;
319 		break;
320 	default:
321 		return;
322 	}
323 
324 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
325 }
326 
327 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
328 {
329 	struct npc_mcam *mcam = &rvu->hw->mcam;
330 	struct npc_key_field *key_fields;
331 	/* Ether type can come from three layers
332 	 * (ethernet, single tagged, double tagged)
333 	 */
334 	struct npc_key_field *etype_ether;
335 	struct npc_key_field *etype_tag1;
336 	struct npc_key_field *etype_tag2;
337 	/* Outer VLAN TCI can come from two layers
338 	 * (single tagged, double tagged)
339 	 */
340 	struct npc_key_field *vlan_tag1;
341 	struct npc_key_field *vlan_tag2;
342 	/* Inner VLAN TCI for double tagged frames */
343 	struct npc_key_field *vlan_tag3;
344 	u64 *features;
345 	u8 start_lid;
346 	int i;
347 
348 	key_fields = mcam->rx_key_fields;
349 	features = &mcam->rx_features;
350 
351 	if (is_npc_intf_tx(intf)) {
352 		key_fields = mcam->tx_key_fields;
353 		features = &mcam->tx_features;
354 	}
355 
356 	/* Handle header fields which can come from multiple layers like
357 	 * etype, outer vlan tci. These fields should have same position in
358 	 * the key otherwise to install a mcam rule more than one entry is
359 	 * needed which complicates mcam space management.
360 	 */
361 	etype_ether = &key_fields[NPC_ETYPE_ETHER];
362 	etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
363 	etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
364 	vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
365 	vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
366 	vlan_tag3 = &key_fields[NPC_VLAN_TAG3];
367 
368 	/* if key profile programmed does not extract Ethertype at all */
369 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) {
370 		dev_err(rvu->dev, "mkex: Ethertype is not extracted.\n");
371 		goto vlan_tci;
372 	}
373 
374 	/* if key profile programmed extracts Ethertype from one layer */
375 	if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
376 		key_fields[NPC_ETYPE] = *etype_ether;
377 	if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
378 		key_fields[NPC_ETYPE] = *etype_tag1;
379 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
380 		key_fields[NPC_ETYPE] = *etype_tag2;
381 
382 	/* if key profile programmed extracts Ethertype from multiple layers */
383 	if (etype_ether->nr_kws && etype_tag1->nr_kws) {
384 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
385 			if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) {
386 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and tagged pkts.\n");
387 				goto vlan_tci;
388 			}
389 		}
390 		key_fields[NPC_ETYPE] = *etype_tag1;
391 	}
392 	if (etype_ether->nr_kws && etype_tag2->nr_kws) {
393 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
394 			if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) {
395 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and double tagged pkts.\n");
396 				goto vlan_tci;
397 			}
398 		}
399 		key_fields[NPC_ETYPE] = *etype_tag2;
400 	}
401 	if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
402 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
403 			if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) {
404 				dev_err(rvu->dev, "mkex: Etype pos is different for tagged and double tagged pkts.\n");
405 				goto vlan_tci;
406 			}
407 		}
408 		key_fields[NPC_ETYPE] = *etype_tag2;
409 	}
410 
411 	/* check none of higher layers overwrite Ethertype */
412 	start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
413 	if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) {
414 		dev_err(rvu->dev, "mkex: Ethertype is overwritten by higher layers.\n");
415 		goto vlan_tci;
416 	}
417 	*features |= BIT_ULL(NPC_ETYPE);
418 vlan_tci:
419 	/* if key profile does not extract outer vlan tci at all */
420 	if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) {
421 		dev_err(rvu->dev, "mkex: Outer vlan tci is not extracted.\n");
422 		goto done;
423 	}
424 
425 	/* if key profile extracts outer vlan tci from one layer */
426 	if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
427 		key_fields[NPC_OUTER_VID] = *vlan_tag1;
428 	if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
429 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
430 
431 	/* if key profile extracts outer vlan tci from multiple layers */
432 	if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
433 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
434 			if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) {
435 				dev_err(rvu->dev, "mkex: Out vlan tci pos is different for tagged and double tagged pkts.\n");
436 				goto done;
437 			}
438 		}
439 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
440 	}
441 	/* check none of higher layers overwrite outer vlan tci */
442 	start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
443 	if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) {
444 		dev_err(rvu->dev, "mkex: Outer vlan tci is overwritten by higher layers.\n");
445 		goto done;
446 	}
447 	*features |= BIT_ULL(NPC_OUTER_VID);
448 
449 	/* If key profile extracts inner vlan tci */
450 	if (vlan_tag3->nr_kws) {
451 		key_fields[NPC_INNER_VID] = *vlan_tag3;
452 		*features |= BIT_ULL(NPC_INNER_VID);
453 	}
454 done:
455 	return;
456 }
457 
458 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
459 			   u8 lt, u64 cfg, u8 intf)
460 {
461 	struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
462 	struct npc_mcam *mcam = &rvu->hw->mcam;
463 	u8 hdr, key, nr_bytes, bit_offset;
464 	u8 la_ltype, la_start;
465 	/* starting KW index and starting bit position */
466 	int start_kwi, offset;
467 
468 	nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
469 	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
470 	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
471 
472 	/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
473 	 * ethernet header.
474 	 */
475 	if (is_npc_intf_tx(intf)) {
476 		la_ltype = NPC_LT_LA_IH_NIX_ETHER;
477 		la_start = 8;
478 	} else {
479 		la_ltype = NPC_LT_LA_ETHER;
480 		la_start = 0;
481 	}
482 
483 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)			       \
484 do {									       \
485 	start_kwi = key / 8;						       \
486 	offset = (key * 8) % 64;					       \
487 	if (lid == (hlid) && lt == (hlt)) {				       \
488 		if ((hstart) >= hdr &&					       \
489 		    ((hstart) + (hlen)) <= (hdr + nr_bytes)) {	               \
490 			bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
491 			npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
492 			offset += bit_offset;				       \
493 			start_kwi += offset / 64;			       \
494 			offset %= 64;					       \
495 			npc_set_kw_masks(mcam, (name), (hlen) * 8,	       \
496 					 start_kwi, offset, intf);	       \
497 		}							       \
498 	}								       \
499 } while (0)
500 
501 	/* List LID, LTYPE, start offset from layer and length(in bytes) of
502 	 * packet header fields below.
503 	 * Example: Source IP is 4 bytes and starts at 12th byte of IP header
504 	 */
505 	NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
506 	NPC_SCAN_HDR(NPC_IPFRAG_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 6, 1);
507 	NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
508 	NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
509 	NPC_SCAN_HDR(NPC_IPFRAG_IPV6, NPC_LID_LC, NPC_LT_LC_IP6_EXT, 6, 1);
510 	if (rvu->hw->cap.npc_hash_extract) {
511 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][0])
512 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 4);
513 		else
514 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
515 
516 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][1])
517 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 4);
518 		else
519 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
520 	} else {
521 		NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
522 		NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
523 	}
524 
525 	NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
526 	NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
527 	NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
528 	NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
529 	NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
530 	NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
531 	NPC_SCAN_HDR(NPC_TYPE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 0, 1);
532 	NPC_SCAN_HDR(NPC_CODE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 1, 1);
533 	NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
534 	NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
535 	NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
536 	NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
537 	NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
538 	NPC_SCAN_HDR(NPC_VLAN_TAG3, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 6, 2);
539 	NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
540 
541 	NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LD, NPC_LT_LD_AH, 4, 4);
542 	NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LE, NPC_LT_LE_ESP, 0, 4);
543 	NPC_SCAN_HDR(NPC_MPLS1_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 0, 3);
544 	NPC_SCAN_HDR(NPC_MPLS1_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 3, 1);
545 	NPC_SCAN_HDR(NPC_MPLS2_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 4, 3);
546 	NPC_SCAN_HDR(NPC_MPLS2_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 7, 1);
547 	NPC_SCAN_HDR(NPC_MPLS3_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 8, 3);
548 	NPC_SCAN_HDR(NPC_MPLS3_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 11, 1);
549 	NPC_SCAN_HDR(NPC_MPLS4_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 12, 3);
550 	NPC_SCAN_HDR(NPC_MPLS4_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 15, 1);
551 
552 	/* SMAC follows the DMAC(which is 6 bytes) */
553 	NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6);
554 	/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
555 	NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
556 }
557 
558 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
559 {
560 	struct npc_mcam *mcam = &rvu->hw->mcam;
561 	u64 *features = &mcam->rx_features;
562 	u64 proto_flags;
563 	int hdr;
564 
565 	if (is_npc_intf_tx(intf))
566 		features = &mcam->tx_features;
567 
568 	for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
569 		if (npc_check_field(rvu, blkaddr, hdr, intf))
570 			*features |= BIT_ULL(hdr);
571 	}
572 
573 	proto_flags = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
574 		       BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
575 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) |
576 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) |
577 		       BIT_ULL(NPC_TYPE_ICMP) | BIT_ULL(NPC_CODE_ICMP);
578 
579 	/* for tcp/udp/sctp corresponding layer type should be in the key */
580 	if (*features & proto_flags) {
581 		if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
582 			*features &= ~proto_flags;
583 		else
584 			*features |= BIT_ULL(NPC_IPPROTO_TCP) |
585 				     BIT_ULL(NPC_IPPROTO_UDP) |
586 				     BIT_ULL(NPC_IPPROTO_SCTP) |
587 				     BIT_ULL(NPC_IPPROTO_ICMP);
588 	}
589 
590 	/* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
591 	if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
592 		*features |= BIT_ULL(NPC_IPPROTO_AH);
593 		*features |= BIT_ULL(NPC_IPPROTO_ICMP);
594 		*features |= BIT_ULL(NPC_IPPROTO_ICMP6);
595 	}
596 
597 	/* for ESP, check if corresponding layer type is present in the key */
598 	if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
599 		*features |= BIT_ULL(NPC_IPPROTO_ESP);
600 
601 	/* for vlan corresponding layer type should be in the key */
602 	if (*features & BIT_ULL(NPC_OUTER_VID))
603 		if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
604 			*features &= ~BIT_ULL(NPC_OUTER_VID);
605 
606 	/* Set SPI flag only if AH/ESP and IPSEC_SPI are in the key */
607 	if (npc_check_field(rvu, blkaddr, NPC_IPSEC_SPI, intf) &&
608 	    (*features & (BIT_ULL(NPC_IPPROTO_ESP) | BIT_ULL(NPC_IPPROTO_AH))))
609 		*features |= BIT_ULL(NPC_IPSEC_SPI);
610 
611 	/* for vlan ethertypes corresponding layer type should be in the key */
612 	if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
613 		*features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) |
614 			     BIT_ULL(NPC_VLAN_ETYPE_STAG);
615 
616 	/* for L2M/L2B/L3M/L3B, check if the type is present in the key */
617 	if (npc_check_field(rvu, blkaddr, NPC_LXMB, intf))
618 		*features |= BIT_ULL(NPC_LXMB);
619 
620 	for (hdr = NPC_MPLS1_LBTCBOS; hdr <= NPC_MPLS4_TTL; hdr++) {
621 		if (npc_check_field(rvu, blkaddr, hdr, intf))
622 			*features |= BIT_ULL(hdr);
623 	}
624 }
625 
626 /* Scan key extraction profile and record how fields of our interest
627  * fill the key structure. Also verify Channel and DMAC exists in
628  * key and not overwritten by other header fields.
629  */
630 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
631 {
632 	struct npc_mcam *mcam = &rvu->hw->mcam;
633 	u8 lid, lt, ld, bitnr;
634 	u64 cfg, masked_cfg;
635 	u8 key_nibble = 0;
636 
637 	/* Scan and note how parse result is going to be in key.
638 	 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
639 	 * parse result in the key. The enabled nibbles from parse result
640 	 * will be concatenated in key.
641 	 */
642 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
643 	masked_cfg = cfg & NPC_PARSE_NIBBLE;
644 	for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) {
645 		npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
646 		key_nibble++;
647 	}
648 
649 	/* Ignore exact match bits for mcam entries except the first rule
650 	 * which is drop on hit. This first rule is configured explitcitly by
651 	 * exact match code.
652 	 */
653 	masked_cfg = cfg & NPC_EXACT_NIBBLE;
654 	bitnr = NPC_EXACT_NIBBLE_START;
655 	for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, NPC_EXACT_NIBBLE_END + 1) {
656 		npc_scan_exact_result(mcam, bitnr, key_nibble, intf);
657 		key_nibble++;
658 	}
659 
660 	/* Scan and note how layer data is going to be in key */
661 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
662 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
663 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
664 				cfg = rvu_read64(rvu, blkaddr,
665 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
666 						 (intf, lid, lt, ld));
667 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
668 					continue;
669 				npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
670 					       intf);
671 			}
672 		}
673 	}
674 
675 	return 0;
676 }
677 
678 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
679 {
680 	int err;
681 
682 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
683 	if (err)
684 		return err;
685 
686 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
687 	if (err)
688 		return err;
689 
690 	/* Channel is mandatory */
691 	if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
692 		dev_err(rvu->dev, "Channel not present in Key\n");
693 		return -EINVAL;
694 	}
695 	/* check that none of the fields overwrite channel */
696 	if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
697 		dev_err(rvu->dev, "Channel cannot be overwritten\n");
698 		return -EINVAL;
699 	}
700 
701 	npc_set_features(rvu, blkaddr, NIX_INTF_TX);
702 	npc_set_features(rvu, blkaddr, NIX_INTF_RX);
703 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
704 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
705 
706 	return 0;
707 }
708 
709 int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
710 {
711 	struct npc_mcam *mcam = &rvu->hw->mcam;
712 
713 	INIT_LIST_HEAD(&mcam->mcam_rules);
714 
715 	return npc_scan_verify_kex(rvu, blkaddr);
716 }
717 
718 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
719 {
720 	struct npc_mcam *mcam = &rvu->hw->mcam;
721 	u64 *mcam_features = &mcam->rx_features;
722 	u64 unsupported;
723 	u8 bit;
724 
725 	if (is_npc_intf_tx(intf))
726 		mcam_features = &mcam->tx_features;
727 
728 	unsupported = (*mcam_features ^ features) & ~(*mcam_features);
729 	if (unsupported) {
730 		dev_warn(rvu->dev, "Unsupported flow(s):\n");
731 		for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
732 			dev_warn(rvu->dev, "%s ", npc_get_field_name(bit));
733 		return -EOPNOTSUPP;
734 	}
735 
736 	return 0;
737 }
738 
739 /* npc_update_entry - Based on the masks generated during
740  * the key scanning, updates the given entry with value and
741  * masks for the field of interest. Maximum 16 bytes of a packet
742  * header can be extracted by HW hence lo and hi are sufficient.
743  * When field bytes are less than or equal to 8 then hi should be
744  * 0 for value and mask.
745  *
746  * If exact match of value is required then mask should be all 1's.
747  * If any bits in mask are 0 then corresponding bits in value are
748  * dont care.
749  */
750 void npc_update_entry(struct rvu *rvu, enum key_fields type,
751 		      struct mcam_entry *entry, u64 val_lo,
752 		      u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
753 {
754 	struct npc_mcam *mcam = &rvu->hw->mcam;
755 	struct mcam_entry dummy = { {0} };
756 	struct npc_key_field *field;
757 	u64 kw1, kw2, kw3;
758 	u8 shift;
759 	int i;
760 
761 	field = &mcam->rx_key_fields[type];
762 	if (is_npc_intf_tx(intf))
763 		field = &mcam->tx_key_fields[type];
764 
765 	if (!field->nr_kws)
766 		return;
767 
768 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
769 		if (!field->kw_mask[i])
770 			continue;
771 		/* place key value in kw[x] */
772 		shift = __ffs64(field->kw_mask[i]);
773 		/* update entry value */
774 		kw1 = (val_lo << shift) & field->kw_mask[i];
775 		dummy.kw[i] = kw1;
776 		/* update entry mask */
777 		kw1 = (mask_lo << shift) & field->kw_mask[i];
778 		dummy.kw_mask[i] = kw1;
779 
780 		if (field->nr_kws == 1)
781 			break;
782 		/* place remaining bits of key value in kw[x + 1] */
783 		if (field->nr_kws == 2) {
784 			/* update entry value */
785 			kw2 = shift ? val_lo >> (64 - shift) : 0;
786 			kw2 |= (val_hi << shift);
787 			kw2 &= field->kw_mask[i + 1];
788 			dummy.kw[i + 1] = kw2;
789 			/* update entry mask */
790 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
791 			kw2 |= (mask_hi << shift);
792 			kw2 &= field->kw_mask[i + 1];
793 			dummy.kw_mask[i + 1] = kw2;
794 			break;
795 		}
796 		/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
797 		if (field->nr_kws == 3) {
798 			/* update entry value */
799 			kw2 = shift ? val_lo >> (64 - shift) : 0;
800 			kw2 |= (val_hi << shift);
801 			kw2 &= field->kw_mask[i + 1];
802 			kw3 = shift ? val_hi >> (64 - shift) : 0;
803 			kw3 &= field->kw_mask[i + 2];
804 			dummy.kw[i + 1] = kw2;
805 			dummy.kw[i + 2] = kw3;
806 			/* update entry mask */
807 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
808 			kw2 |= (mask_hi << shift);
809 			kw2 &= field->kw_mask[i + 1];
810 			kw3 = shift ? mask_hi >> (64 - shift) : 0;
811 			kw3 &= field->kw_mask[i + 2];
812 			dummy.kw_mask[i + 1] = kw2;
813 			dummy.kw_mask[i + 2] = kw3;
814 			break;
815 		}
816 	}
817 	/* dummy is ready with values and masks for given key
818 	 * field now clear and update input entry with those
819 	 */
820 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
821 		if (!field->kw_mask[i])
822 			continue;
823 		entry->kw[i] &= ~field->kw_mask[i];
824 		entry->kw_mask[i] &= ~field->kw_mask[i];
825 
826 		entry->kw[i] |= dummy.kw[i];
827 		entry->kw_mask[i] |= dummy.kw_mask[i];
828 	}
829 }
830 
831 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
832 				 u64 features, struct flow_msg *pkt,
833 				 struct flow_msg *mask,
834 				 struct rvu_npc_mcam_rule *output, u8 intf)
835 {
836 	u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
837 	u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
838 	struct flow_msg *opkt = &output->packet;
839 	struct flow_msg *omask = &output->mask;
840 	u64 mask_lo, mask_hi;
841 	u64 val_lo, val_hi;
842 
843 	/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
844 	 * values to be programmed in MCAM should as below:
845 	 * val_high: 0xfe80000000000000
846 	 * val_low: 0x2c6863fffe5e2d0a
847 	 */
848 	if (features & BIT_ULL(NPC_SIP_IPV6)) {
849 		be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
850 		be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
851 
852 		mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
853 		mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
854 		val_hi = (u64)src_ip[0] << 32 | src_ip[1];
855 		val_lo = (u64)src_ip[2] << 32 | src_ip[3];
856 
857 		npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
858 				 mask_lo, mask_hi, intf);
859 		memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
860 		memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
861 	}
862 	if (features & BIT_ULL(NPC_DIP_IPV6)) {
863 		be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
864 		be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
865 
866 		mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
867 		mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
868 		val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
869 		val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
870 
871 		npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
872 				 mask_lo, mask_hi, intf);
873 		memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
874 		memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
875 	}
876 }
877 
878 static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry,
879 				     u64 features, u8 intf)
880 {
881 	bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG));
882 	bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG));
883 	bool vid = !!(features & BIT_ULL(NPC_OUTER_VID));
884 
885 	/* If only VLAN id is given then always match outer VLAN id */
886 	if (vid && !ctag && !stag) {
887 		npc_update_entry(rvu, NPC_LB, entry,
888 				 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
889 				 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
890 		return;
891 	}
892 	if (ctag)
893 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0,
894 				 ~0ULL, 0, intf);
895 	if (stag)
896 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0,
897 				 ~0ULL, 0, intf);
898 }
899 
900 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
901 			    u64 features, struct flow_msg *pkt,
902 			    struct flow_msg *mask,
903 			    struct rvu_npc_mcam_rule *output, u8 intf,
904 			    int blkaddr)
905 {
906 	u64 dmac_mask = ether_addr_to_u64(mask->dmac);
907 	u64 smac_mask = ether_addr_to_u64(mask->smac);
908 	u64 dmac_val = ether_addr_to_u64(pkt->dmac);
909 	u64 smac_val = ether_addr_to_u64(pkt->smac);
910 	struct flow_msg *opkt = &output->packet;
911 	struct flow_msg *omask = &output->mask;
912 
913 	if (!features)
914 		return;
915 
916 	/* For tcp/udp/sctp LTYPE should be present in entry */
917 	if (features & BIT_ULL(NPC_IPPROTO_TCP))
918 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
919 				 0, ~0ULL, 0, intf);
920 	if (features & BIT_ULL(NPC_IPPROTO_UDP))
921 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
922 				 0, ~0ULL, 0, intf);
923 	if (features & BIT_ULL(NPC_IPPROTO_SCTP))
924 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
925 				 0, ~0ULL, 0, intf);
926 	if (features & BIT_ULL(NPC_IPPROTO_ICMP))
927 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
928 				 0, ~0ULL, 0, intf);
929 	if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
930 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
931 				 0, ~0ULL, 0, intf);
932 
933 	/* For AH, LTYPE should be present in entry */
934 	if (features & BIT_ULL(NPC_IPPROTO_AH))
935 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
936 				 0, ~0ULL, 0, intf);
937 	/* For ESP, LTYPE should be present in entry */
938 	if (features & BIT_ULL(NPC_IPPROTO_ESP))
939 		npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
940 				 0, ~0ULL, 0, intf);
941 
942 	if (features & BIT_ULL(NPC_LXMB)) {
943 		output->lxmb = is_broadcast_ether_addr(pkt->dmac) ? 2 : 1;
944 		npc_update_entry(rvu, NPC_LXMB, entry, output->lxmb, 0,
945 				 output->lxmb, 0, intf);
946 	}
947 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)	      \
948 do {									      \
949 	if (features & BIT_ULL((field))) {				      \
950 		npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
951 				 (mask_lo), (mask_hi), intf);		      \
952 		memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
953 		memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
954 	}								      \
955 } while (0)
956 
957 	NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
958 
959 	NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
960 	NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
961 		       ntohs(mask->etype), 0);
962 	NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
963 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV4, ip_flag, pkt->ip_flag, 0,
964 		       mask->ip_flag, 0);
965 	NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
966 		       ntohl(mask->ip4src), 0);
967 	NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
968 		       ntohl(mask->ip4dst), 0);
969 	NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
970 		       ntohs(mask->sport), 0);
971 	NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
972 		       ntohs(mask->sport), 0);
973 	NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
974 		       ntohs(mask->dport), 0);
975 	NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
976 		       ntohs(mask->dport), 0);
977 	NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
978 		       ntohs(mask->sport), 0);
979 	NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
980 		       ntohs(mask->dport), 0);
981 	NPC_WRITE_FLOW(NPC_TYPE_ICMP, icmp_type, pkt->icmp_type, 0,
982 		       mask->icmp_type, 0);
983 	NPC_WRITE_FLOW(NPC_CODE_ICMP, icmp_code, pkt->icmp_code, 0,
984 		       mask->icmp_code, 0);
985 
986 	NPC_WRITE_FLOW(NPC_IPSEC_SPI, spi, ntohl(pkt->spi), 0,
987 		       ntohl(mask->spi), 0);
988 
989 	NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
990 		       ntohs(mask->vlan_tci), 0);
991 	NPC_WRITE_FLOW(NPC_INNER_VID, vlan_itci, ntohs(pkt->vlan_itci), 0,
992 		       ntohs(mask->vlan_itci), 0);
993 
994 	NPC_WRITE_FLOW(NPC_MPLS1_LBTCBOS, mpls_lse,
995 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
996 				 pkt->mpls_lse[0]), 0,
997 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
998 				 mask->mpls_lse[0]), 0);
999 	NPC_WRITE_FLOW(NPC_MPLS1_TTL, mpls_lse,
1000 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1001 				 pkt->mpls_lse[0]), 0,
1002 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1003 				 mask->mpls_lse[0]), 0);
1004 	NPC_WRITE_FLOW(NPC_MPLS2_LBTCBOS, mpls_lse,
1005 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1006 				 pkt->mpls_lse[1]), 0,
1007 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1008 				 mask->mpls_lse[1]), 0);
1009 	NPC_WRITE_FLOW(NPC_MPLS2_TTL, mpls_lse,
1010 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1011 				 pkt->mpls_lse[1]), 0,
1012 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1013 				 mask->mpls_lse[1]), 0);
1014 	NPC_WRITE_FLOW(NPC_MPLS3_LBTCBOS, mpls_lse,
1015 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1016 				 pkt->mpls_lse[2]), 0,
1017 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1018 				 mask->mpls_lse[2]), 0);
1019 	NPC_WRITE_FLOW(NPC_MPLS3_TTL, mpls_lse,
1020 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1021 				 pkt->mpls_lse[2]), 0,
1022 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1023 				 mask->mpls_lse[2]), 0);
1024 	NPC_WRITE_FLOW(NPC_MPLS4_LBTCBOS, mpls_lse,
1025 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1026 				 pkt->mpls_lse[3]), 0,
1027 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1028 				 mask->mpls_lse[3]), 0);
1029 	NPC_WRITE_FLOW(NPC_MPLS4_TTL, mpls_lse,
1030 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1031 				 pkt->mpls_lse[3]), 0,
1032 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1033 				 mask->mpls_lse[3]), 0);
1034 
1035 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV6, next_header, pkt->next_header, 0,
1036 		       mask->next_header, 0);
1037 	npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
1038 	npc_update_vlan_features(rvu, entry, features, intf);
1039 
1040 	npc_update_field_hash(rvu, intf, entry, blkaddr, features,
1041 			      pkt, mask, opkt, omask);
1042 }
1043 
1044 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry)
1045 {
1046 	struct rvu_npc_mcam_rule *iter;
1047 
1048 	mutex_lock(&mcam->lock);
1049 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
1050 		if (iter->entry == entry) {
1051 			mutex_unlock(&mcam->lock);
1052 			return iter;
1053 		}
1054 	}
1055 	mutex_unlock(&mcam->lock);
1056 
1057 	return NULL;
1058 }
1059 
1060 static void rvu_mcam_add_rule(struct npc_mcam *mcam,
1061 			      struct rvu_npc_mcam_rule *rule)
1062 {
1063 	struct list_head *head = &mcam->mcam_rules;
1064 	struct rvu_npc_mcam_rule *iter;
1065 
1066 	mutex_lock(&mcam->lock);
1067 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
1068 		if (iter->entry > rule->entry)
1069 			break;
1070 		head = &iter->list;
1071 	}
1072 
1073 	list_add(&rule->list, head);
1074 	mutex_unlock(&mcam->lock);
1075 }
1076 
1077 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
1078 					      struct rvu_npc_mcam_rule *rule)
1079 {
1080 	struct npc_mcam_oper_counter_req free_req = { 0 };
1081 	struct msg_rsp free_rsp;
1082 
1083 	if (!rule->has_cntr)
1084 		return;
1085 
1086 	free_req.hdr.pcifunc = pcifunc;
1087 	free_req.cntr = rule->cntr;
1088 
1089 	rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
1090 	rule->has_cntr = false;
1091 }
1092 
1093 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
1094 					 struct rvu_npc_mcam_rule *rule,
1095 					 struct npc_install_flow_rsp *rsp)
1096 {
1097 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
1098 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1099 	int err;
1100 
1101 	cntr_req.hdr.pcifunc = pcifunc;
1102 	cntr_req.contig = true;
1103 	cntr_req.count = 1;
1104 
1105 	/* we try to allocate a counter to track the stats of this
1106 	 * rule. If counter could not be allocated then proceed
1107 	 * without counter because counters are limited than entries.
1108 	 */
1109 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
1110 						      &cntr_rsp);
1111 	if (!err && cntr_rsp.count) {
1112 		rule->cntr = cntr_rsp.cntr;
1113 		rule->has_cntr = true;
1114 		rsp->counter = rule->cntr;
1115 	} else {
1116 		rsp->counter = err;
1117 	}
1118 }
1119 
1120 static int npc_mcast_update_action_index(struct rvu *rvu, struct npc_install_flow_req *req,
1121 					 u64 op, void *action)
1122 {
1123 	int mce_index;
1124 
1125 	/* If a PF/VF is installing a multicast rule then it is expected
1126 	 * that the PF/VF should have created a group for the multicast/mirror
1127 	 * list. Otherwise reject the configuration.
1128 	 * During this scenario, req->index is set as multicast/mirror
1129 	 * group index.
1130 	 */
1131 	if (req->hdr.pcifunc &&
1132 	    (op == NIX_RX_ACTIONOP_MCAST || op == NIX_TX_ACTIONOP_MCAST)) {
1133 		mce_index = rvu_nix_mcast_get_mce_index(rvu, req->hdr.pcifunc, req->index);
1134 		if (mce_index < 0)
1135 			return mce_index;
1136 
1137 		if (op == NIX_RX_ACTIONOP_MCAST)
1138 			((struct nix_rx_action *)action)->index = mce_index;
1139 		else
1140 			((struct nix_tx_action *)action)->index = mce_index;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static int npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1147 			       struct mcam_entry *entry,
1148 			       struct npc_install_flow_req *req,
1149 			       u16 target, bool pf_set_vfs_mac)
1150 {
1151 	struct rvu_switch *rswitch = &rvu->rswitch;
1152 	struct nix_rx_action action;
1153 	int ret;
1154 
1155 	if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac)
1156 		req->chan_mask = 0x0; /* Do not care channel */
1157 
1158 	npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask,
1159 			 0, NIX_INTF_RX);
1160 
1161 	*(u64 *)&action = 0x00;
1162 	action.pf_func = target;
1163 	action.op = req->op;
1164 	action.index = req->index;
1165 
1166 	ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action);
1167 	if (ret)
1168 		return ret;
1169 
1170 	action.match_id = req->match_id;
1171 	action.flow_key_alg = req->flow_key_alg;
1172 
1173 	if (req->op == NIX_RX_ACTION_DEFAULT) {
1174 		if (pfvf->def_ucast_rule) {
1175 			action = pfvf->def_ucast_rule->rx_action;
1176 		} else {
1177 			/* For profiles which do not extract DMAC, the default
1178 			 * unicast entry is unused. Hence modify action for the
1179 			 * requests which use same action as default unicast
1180 			 * entry
1181 			 */
1182 			*(u64 *)&action = 0;
1183 			action.pf_func = target;
1184 			action.op = NIX_RX_ACTIONOP_UCAST;
1185 		}
1186 	}
1187 
1188 	entry->action = *(u64 *)&action;
1189 
1190 	/* VTAG0 starts at 0th byte of LID_B.
1191 	 * VTAG1 starts at 4th byte of LID_B.
1192 	 */
1193 	entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
1194 			     FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
1195 			     FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
1196 			     FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
1197 			     FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
1198 			     FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
1199 			     FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
1200 			     FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
1201 
1202 	return 0;
1203 }
1204 
1205 static int npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1206 			       struct mcam_entry *entry,
1207 			       struct npc_install_flow_req *req, u16 target)
1208 {
1209 	struct nix_tx_action action;
1210 	u64 mask = ~0ULL;
1211 	int ret;
1212 
1213 	/* If AF is installing then do not care about
1214 	 * PF_FUNC in Send Descriptor
1215 	 */
1216 	if (is_pffunc_af(req->hdr.pcifunc))
1217 		mask = 0;
1218 
1219 	npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
1220 			 0, mask, 0, NIX_INTF_TX);
1221 
1222 	*(u64 *)&action = 0x00;
1223 	action.op = req->op;
1224 	action.index = req->index;
1225 
1226 	ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action);
1227 	if (ret)
1228 		return ret;
1229 
1230 	action.match_id = req->match_id;
1231 
1232 	entry->action = *(u64 *)&action;
1233 
1234 	/* VTAG0 starts at 0th byte of LID_B.
1235 	 * VTAG1 starts at 4th byte of LID_B.
1236 	 */
1237 	entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
1238 			     FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
1239 			     FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
1240 			     FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
1241 			     FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
1242 			     FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
1243 			     FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
1244 			     FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
1245 
1246 	return 0;
1247 }
1248 
1249 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
1250 			    int nixlf, struct rvu_pfvf *pfvf,
1251 			    struct npc_install_flow_req *req,
1252 			    struct npc_install_flow_rsp *rsp, bool enable,
1253 			    bool pf_set_vfs_mac)
1254 {
1255 	struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
1256 	u64 features, installed_features, missing_features = 0;
1257 	struct npc_mcam_write_entry_req write_req = { 0 };
1258 	struct npc_mcam *mcam = &rvu->hw->mcam;
1259 	struct rvu_npc_mcam_rule dummy = { 0 };
1260 	struct rvu_npc_mcam_rule *rule;
1261 	u16 owner = req->hdr.pcifunc;
1262 	struct msg_rsp write_rsp;
1263 	struct mcam_entry *entry;
1264 	bool new = false;
1265 	u16 entry_index;
1266 	int err;
1267 
1268 	installed_features = req->features;
1269 	features = req->features;
1270 	entry = &write_req.entry_data;
1271 	entry_index = req->entry;
1272 
1273 	npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
1274 			req->intf, blkaddr);
1275 
1276 	if (is_npc_intf_rx(req->intf)) {
1277 		err = npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac);
1278 		if (err)
1279 			return err;
1280 	} else {
1281 		err = npc_update_tx_entry(rvu, pfvf, entry, req, target);
1282 		if (err)
1283 			return err;
1284 	}
1285 
1286 	/* Default unicast rules do not exist for TX */
1287 	if (is_npc_intf_tx(req->intf))
1288 		goto find_rule;
1289 
1290 	if (req->default_rule) {
1291 		entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
1292 						       NIXLF_UCAST_ENTRY);
1293 		enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
1294 	}
1295 
1296 	/* update mcam entry with default unicast rule attributes */
1297 	if (def_ucast_rule && (req->default_rule && req->append)) {
1298 		missing_features = (def_ucast_rule->features ^ features) &
1299 					def_ucast_rule->features;
1300 		if (missing_features)
1301 			npc_update_flow(rvu, entry, missing_features,
1302 					&def_ucast_rule->packet,
1303 					&def_ucast_rule->mask,
1304 					&dummy, req->intf,
1305 					blkaddr);
1306 		installed_features = req->features | missing_features;
1307 	}
1308 
1309 find_rule:
1310 	rule = rvu_mcam_find_rule(mcam, entry_index);
1311 	if (!rule) {
1312 		rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1313 		if (!rule)
1314 			return -ENOMEM;
1315 		new = true;
1316 	}
1317 
1318 	/* allocate new counter if rule has no counter */
1319 	if (!req->default_rule && req->set_cntr && !rule->has_cntr)
1320 		rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
1321 
1322 	/* if user wants to delete an existing counter for a rule then
1323 	 * free the counter
1324 	 */
1325 	if (!req->set_cntr && rule->has_cntr)
1326 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1327 
1328 	write_req.hdr.pcifunc = owner;
1329 
1330 	/* AF owns the default rules so change the owner just to relax
1331 	 * the checks in rvu_mbox_handler_npc_mcam_write_entry
1332 	 */
1333 	if (req->default_rule)
1334 		write_req.hdr.pcifunc = 0;
1335 
1336 	write_req.entry = entry_index;
1337 	write_req.intf = req->intf;
1338 	write_req.enable_entry = (u8)enable;
1339 	/* if counter is available then clear and use it */
1340 	if (req->set_cntr && rule->has_cntr) {
1341 		rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), req->cntr_val);
1342 		write_req.set_cntr = 1;
1343 		write_req.cntr = rule->cntr;
1344 	}
1345 
1346 	/* update rule */
1347 	memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
1348 	memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
1349 	rule->entry = entry_index;
1350 	memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
1351 	if (is_npc_intf_tx(req->intf))
1352 		memcpy(&rule->tx_action, &entry->action,
1353 		       sizeof(struct nix_tx_action));
1354 	rule->vtag_action = entry->vtag_action;
1355 	rule->features = installed_features;
1356 	rule->default_rule = req->default_rule;
1357 	rule->owner = owner;
1358 	rule->enable = enable;
1359 	rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK;
1360 	rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK;
1361 	rule->chan &= rule->chan_mask;
1362 	rule->lxmb = dummy.lxmb;
1363 	if (is_npc_intf_tx(req->intf))
1364 		rule->intf = pfvf->nix_tx_intf;
1365 	else
1366 		rule->intf = pfvf->nix_rx_intf;
1367 
1368 	if (new)
1369 		rvu_mcam_add_rule(mcam, rule);
1370 	if (req->default_rule)
1371 		pfvf->def_ucast_rule = rule;
1372 
1373 	/* write to mcam entry registers */
1374 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
1375 						    &write_rsp);
1376 	if (err) {
1377 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1378 		if (new) {
1379 			list_del(&rule->list);
1380 			kfree(rule);
1381 		}
1382 		return err;
1383 	}
1384 
1385 	/* VF's MAC address is being changed via PF  */
1386 	if (pf_set_vfs_mac) {
1387 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1388 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1389 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1390 	}
1391 
1392 	if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
1393 	    req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
1394 		rule->vfvlan_cfg = true;
1395 
1396 	if (is_npc_intf_rx(req->intf) && req->match_id &&
1397 	    (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
1398 		return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
1399 					     req->index, req->match_id);
1400 
1401 	if (owner && req->op == NIX_RX_ACTIONOP_MCAST)
1402 		return rvu_nix_mcast_update_mcam_entry(rvu, req->hdr.pcifunc,
1403 						       req->index, entry_index);
1404 
1405 	return 0;
1406 }
1407 
1408 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
1409 				      struct npc_install_flow_req *req,
1410 				      struct npc_install_flow_rsp *rsp)
1411 {
1412 	bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
1413 	struct rvu_switch *rswitch = &rvu->rswitch;
1414 	int blkaddr, nixlf, err;
1415 	struct rvu_pfvf *pfvf;
1416 	bool pf_set_vfs_mac = false;
1417 	bool enable = true;
1418 	u16 target;
1419 
1420 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1421 	if (blkaddr < 0) {
1422 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1423 		return NPC_MCAM_INVALID_REQ;
1424 	}
1425 
1426 	if (!is_npc_interface_valid(rvu, req->intf))
1427 		return NPC_FLOW_INTF_INVALID;
1428 
1429 	/* If DMAC is not extracted in MKEX, rules installed by AF
1430 	 * can rely on L2MB bit set by hardware protocol checker for
1431 	 * broadcast and multicast addresses.
1432 	 */
1433 	if (npc_check_field(rvu, blkaddr, NPC_DMAC, req->intf))
1434 		goto process_flow;
1435 
1436 	if (is_pffunc_af(req->hdr.pcifunc) &&
1437 	    req->features & BIT_ULL(NPC_DMAC)) {
1438 		if (is_unicast_ether_addr(req->packet.dmac)) {
1439 			dev_warn(rvu->dev,
1440 				 "%s: mkex profile does not support ucast flow\n",
1441 				 __func__);
1442 			return NPC_FLOW_NOT_SUPPORTED;
1443 		}
1444 
1445 		if (!npc_is_field_present(rvu, NPC_LXMB, req->intf)) {
1446 			dev_warn(rvu->dev,
1447 				 "%s: mkex profile does not support bcast/mcast flow",
1448 				 __func__);
1449 			return NPC_FLOW_NOT_SUPPORTED;
1450 		}
1451 
1452 		/* Modify feature to use LXMB instead of DMAC */
1453 		req->features &= ~BIT_ULL(NPC_DMAC);
1454 		req->features |= BIT_ULL(NPC_LXMB);
1455 	}
1456 
1457 process_flow:
1458 	if (from_vf && req->default_rule)
1459 		return NPC_FLOW_VF_PERM_DENIED;
1460 
1461 	/* Each PF/VF info is maintained in struct rvu_pfvf.
1462 	 * rvu_pfvf for the target PF/VF needs to be retrieved
1463 	 * hence modify pcifunc accordingly.
1464 	 */
1465 
1466 	/* AF installing for a PF/VF */
1467 	if (!req->hdr.pcifunc)
1468 		target = req->vf;
1469 	/* PF installing for its VF */
1470 	else if (!from_vf && req->vf) {
1471 		target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
1472 		pf_set_vfs_mac = req->default_rule &&
1473 				(req->features & BIT_ULL(NPC_DMAC));
1474 	}
1475 	/* msg received from PF/VF */
1476 	else
1477 		target = req->hdr.pcifunc;
1478 
1479 	/* ignore chan_mask in case pf func is not AF, revisit later */
1480 	if (!is_pffunc_af(req->hdr.pcifunc))
1481 		req->chan_mask = 0xFFF;
1482 
1483 	err = npc_check_unsupported_flows(rvu, req->features, req->intf);
1484 	if (err)
1485 		return NPC_FLOW_NOT_SUPPORTED;
1486 
1487 	pfvf = rvu_get_pfvf(rvu, target);
1488 
1489 	/* PF installing for its VF */
1490 	if (req->hdr.pcifunc && !from_vf && req->vf)
1491 		set_bit(PF_SET_VF_CFG, &pfvf->flags);
1492 
1493 	/* update req destination mac addr */
1494 	if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
1495 	    is_zero_ether_addr(req->packet.dmac)) {
1496 		ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
1497 		eth_broadcast_addr((u8 *)&req->mask.dmac);
1498 	}
1499 
1500 	/* Proceed if NIXLF is attached or not for TX rules */
1501 	err = nix_get_nixlf(rvu, target, &nixlf, NULL);
1502 	if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
1503 		return NPC_FLOW_NO_NIXLF;
1504 
1505 	/* don't enable rule when nixlf not attached or initialized */
1506 	if (!(is_nixlf_attached(rvu, target) &&
1507 	      test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
1508 		enable = false;
1509 
1510 	/* Packets reaching NPC in Tx path implies that a
1511 	 * NIXLF is properly setup and transmitting.
1512 	 * Hence rules can be enabled for Tx.
1513 	 */
1514 	if (is_npc_intf_tx(req->intf))
1515 		enable = true;
1516 
1517 	/* Do not allow requests from uninitialized VFs */
1518 	if (from_vf && !enable)
1519 		return NPC_FLOW_VF_NOT_INIT;
1520 
1521 	/* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
1522 	if (pf_set_vfs_mac && !enable) {
1523 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1524 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1525 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1526 		return 0;
1527 	}
1528 
1529 	mutex_lock(&rswitch->switch_lock);
1530 	err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf,
1531 			       req, rsp, enable, pf_set_vfs_mac);
1532 	mutex_unlock(&rswitch->switch_lock);
1533 
1534 	return err;
1535 }
1536 
1537 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
1538 			   u16 pcifunc)
1539 {
1540 	struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
1541 	struct msg_rsp dis_rsp;
1542 
1543 	if (rule->default_rule)
1544 		return 0;
1545 
1546 	if (rule->has_cntr)
1547 		rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1548 
1549 	dis_req.hdr.pcifunc = pcifunc;
1550 	dis_req.entry = rule->entry;
1551 
1552 	list_del(&rule->list);
1553 	kfree(rule);
1554 
1555 	return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
1556 }
1557 
1558 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
1559 				     struct npc_delete_flow_req *req,
1560 				     struct npc_delete_flow_rsp *rsp)
1561 {
1562 	struct npc_mcam *mcam = &rvu->hw->mcam;
1563 	struct rvu_npc_mcam_rule *iter, *tmp;
1564 	u16 pcifunc = req->hdr.pcifunc;
1565 	struct list_head del_list;
1566 	int blkaddr;
1567 
1568 	INIT_LIST_HEAD(&del_list);
1569 
1570 	mutex_lock(&mcam->lock);
1571 	list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
1572 		if (iter->owner == pcifunc) {
1573 			/* All rules */
1574 			if (req->all) {
1575 				list_move_tail(&iter->list, &del_list);
1576 			/* Range of rules */
1577 			} else if (req->end && iter->entry >= req->start &&
1578 				   iter->entry <= req->end) {
1579 				list_move_tail(&iter->list, &del_list);
1580 			/* single rule */
1581 			} else if (req->entry == iter->entry) {
1582 				blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1583 				if (blkaddr)
1584 					rsp->cntr_val = rvu_read64(rvu, blkaddr,
1585 								   NPC_AF_MATCH_STATX(iter->cntr));
1586 				list_move_tail(&iter->list, &del_list);
1587 				break;
1588 			}
1589 		}
1590 	}
1591 	mutex_unlock(&mcam->lock);
1592 
1593 	list_for_each_entry_safe(iter, tmp, &del_list, list) {
1594 		u16 entry = iter->entry;
1595 
1596 		/* clear the mcam entry target pcifunc */
1597 		mcam->entry2target_pffunc[entry] = 0x0;
1598 		if (npc_delete_flow(rvu, iter, pcifunc))
1599 			dev_err(rvu->dev, "rule deletion failed for entry:%u",
1600 				entry);
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
1607 				 struct rvu_npc_mcam_rule *rule,
1608 				 struct rvu_pfvf *pfvf)
1609 {
1610 	struct npc_mcam_write_entry_req write_req = { 0 };
1611 	struct mcam_entry *entry = &write_req.entry_data;
1612 	struct npc_mcam *mcam = &rvu->hw->mcam;
1613 	struct msg_rsp rsp;
1614 	u8 intf, enable;
1615 	int err;
1616 
1617 	ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
1618 
1619 	npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
1620 			    entry, &intf,  &enable);
1621 
1622 	npc_update_entry(rvu, NPC_DMAC, entry,
1623 			 ether_addr_to_u64(pfvf->mac_addr), 0,
1624 			 0xffffffffffffull, 0, intf);
1625 
1626 	write_req.hdr.pcifunc = rule->owner;
1627 	write_req.entry = rule->entry;
1628 	write_req.intf = pfvf->nix_rx_intf;
1629 
1630 	mutex_unlock(&mcam->lock);
1631 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
1632 	mutex_lock(&mcam->lock);
1633 
1634 	return err;
1635 }
1636 
1637 void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
1638 {
1639 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
1640 	struct rvu_npc_mcam_rule *def_ucast_rule;
1641 	struct npc_mcam *mcam = &rvu->hw->mcam;
1642 	struct rvu_npc_mcam_rule *rule;
1643 	int blkaddr, bank, index;
1644 	u64 def_action;
1645 
1646 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1647 	if (blkaddr < 0)
1648 		return;
1649 
1650 	def_ucast_rule = pfvf->def_ucast_rule;
1651 
1652 	mutex_lock(&mcam->lock);
1653 	list_for_each_entry(rule, &mcam->mcam_rules, list) {
1654 		if (is_npc_intf_rx(rule->intf) &&
1655 		    rule->rx_action.pf_func == target && !rule->enable) {
1656 			if (rule->default_rule) {
1657 				npc_enable_mcam_entry(rvu, mcam, blkaddr,
1658 						      rule->entry, true);
1659 				rule->enable = true;
1660 				continue;
1661 			}
1662 
1663 			if (rule->vfvlan_cfg)
1664 				npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
1665 
1666 			if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
1667 				if (!def_ucast_rule)
1668 					continue;
1669 				/* Use default unicast entry action */
1670 				rule->rx_action = def_ucast_rule->rx_action;
1671 				def_action = *(u64 *)&def_ucast_rule->rx_action;
1672 				bank = npc_get_bank(mcam, rule->entry);
1673 				rvu_write64(rvu, blkaddr,
1674 					    NPC_AF_MCAMEX_BANKX_ACTION
1675 					    (rule->entry, bank), def_action);
1676 			}
1677 
1678 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1679 					      rule->entry, true);
1680 			rule->enable = true;
1681 		}
1682 	}
1683 
1684 	/* Enable MCAM entries installed by PF with target as VF pcifunc */
1685 	for (index = 0; index < mcam->bmap_entries; index++) {
1686 		if (mcam->entry2target_pffunc[index] == target)
1687 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1688 					      index, true);
1689 	}
1690 	mutex_unlock(&mcam->lock);
1691 }
1692 
1693 void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
1694 {
1695 	struct npc_mcam *mcam = &rvu->hw->mcam;
1696 	int blkaddr, index;
1697 
1698 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1699 	if (blkaddr < 0)
1700 		return;
1701 
1702 	mutex_lock(&mcam->lock);
1703 	/* Disable MCAM entries installed by PF with target as VF pcifunc */
1704 	for (index = 0; index < mcam->bmap_entries; index++) {
1705 		if (mcam->entry2target_pffunc[index] == target)
1706 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1707 					      index, false);
1708 	}
1709 	mutex_unlock(&mcam->lock);
1710 }
1711 
1712 /* single drop on non hit rule starting from 0th index. This an extension
1713  * to RPM mac filter to support more rules.
1714  */
1715 int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx,
1716 			       u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask,
1717 			       u64 bcast_mcast_val, u64 bcast_mcast_mask)
1718 {
1719 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
1720 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1721 	struct npc_mcam_write_entry_req req = { 0 };
1722 	struct npc_mcam *mcam = &rvu->hw->mcam;
1723 	struct rvu_npc_mcam_rule *rule;
1724 	struct msg_rsp rsp;
1725 	bool enabled;
1726 	int blkaddr;
1727 	int err;
1728 
1729 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1730 	if (blkaddr < 0) {
1731 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1732 		return -ENODEV;
1733 	}
1734 
1735 	/* Bail out if no exact match support */
1736 	if (!rvu_npc_exact_has_match_table(rvu)) {
1737 		dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__);
1738 		return -EINVAL;
1739 	}
1740 
1741 	/* If 0th entry is already used, return err */
1742 	enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx);
1743 	if (enabled) {
1744 		dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n",
1745 			__func__, mcam_idx);
1746 		return	-EINVAL;
1747 	}
1748 
1749 	/* Add this entry to mcam rules list */
1750 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1751 	if (!rule)
1752 		return -ENOMEM;
1753 
1754 	/* Disable rule by default. Enable rule when first dmac filter is
1755 	 * installed
1756 	 */
1757 	rule->enable = false;
1758 	rule->chan = chan_val;
1759 	rule->chan_mask = chan_mask;
1760 	rule->entry = mcam_idx;
1761 	rvu_mcam_add_rule(mcam, rule);
1762 
1763 	/* Reserve slot 0 */
1764 	npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx);
1765 
1766 	/* Allocate counter for this single drop on non hit rule */
1767 	cntr_req.hdr.pcifunc = 0; /* AF request */
1768 	cntr_req.contig = true;
1769 	cntr_req.count = 1;
1770 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp);
1771 	if (err) {
1772 		dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n",
1773 			__func__, err);
1774 		return	-EFAULT;
1775 	}
1776 	*counter_idx = cntr_rsp.cntr;
1777 
1778 	/* Fill in fields for this mcam entry */
1779 	npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0,
1780 			 exact_mask, 0, NIX_INTF_RX);
1781 	npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0,
1782 			 chan_mask, 0, NIX_INTF_RX);
1783 	npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0,
1784 			 bcast_mcast_mask, 0, NIX_INTF_RX);
1785 
1786 	req.intf = NIX_INTF_RX;
1787 	req.set_cntr = true;
1788 	req.cntr = cntr_rsp.cntr;
1789 	req.entry = mcam_idx;
1790 
1791 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp);
1792 	if (err) {
1793 		dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n",
1794 			__func__, mcam_idx);
1795 		return err;
1796 	}
1797 
1798 	dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n",
1799 		__func__, mcam_idx, req.cntr);
1800 
1801 	/* disable entry at Bank 0, index 0 */
1802 	npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false);
1803 
1804 	return 0;
1805 }
1806 
1807 int rvu_mbox_handler_npc_get_field_status(struct rvu *rvu,
1808 					  struct npc_get_field_status_req *req,
1809 					  struct npc_get_field_status_rsp *rsp)
1810 {
1811 	int blkaddr;
1812 
1813 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1814 	if (blkaddr < 0)
1815 		return NPC_MCAM_INVALID_REQ;
1816 
1817 	if (!is_npc_interface_valid(rvu, req->intf))
1818 		return NPC_FLOW_INTF_INVALID;
1819 
1820 	if (npc_check_field(rvu, blkaddr, req->field, req->intf))
1821 		rsp->enable = 1;
1822 
1823 	return 0;
1824 }
1825