xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_npc_fs.c (revision 59fff63cc2b75dcfe08f9eeb4b2187d73e53843d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6 
7 #include <linux/bitfield.h>
8 
9 #include "rvu_struct.h"
10 #include "rvu_reg.h"
11 #include "rvu.h"
12 #include "npc.h"
13 #include "rvu_npc_fs.h"
14 #include "rvu_npc_hash.h"
15 
16 static const char * const npc_flow_names[] = {
17 	[NPC_DMAC]	= "dmac",
18 	[NPC_SMAC]	= "smac",
19 	[NPC_ETYPE]	= "ether type",
20 	[NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag",
21 	[NPC_VLAN_ETYPE_STAG] = "vlan ether type stag",
22 	[NPC_OUTER_VID]	= "outer vlan id",
23 	[NPC_INNER_VID]	= "inner vlan id",
24 	[NPC_TOS]	= "tos",
25 	[NPC_IPFRAG_IPV4] = "fragmented IPv4 header ",
26 	[NPC_SIP_IPV4]	= "ipv4 source ip",
27 	[NPC_DIP_IPV4]	= "ipv4 destination ip",
28 	[NPC_IPFRAG_IPV6] = "fragmented IPv6 header ",
29 	[NPC_SIP_IPV6]	= "ipv6 source ip",
30 	[NPC_DIP_IPV6]	= "ipv6 destination ip",
31 	[NPC_IPPROTO_TCP] = "ip proto tcp",
32 	[NPC_IPPROTO_UDP] = "ip proto udp",
33 	[NPC_IPPROTO_SCTP] = "ip proto sctp",
34 	[NPC_IPPROTO_ICMP] = "ip proto icmp",
35 	[NPC_IPPROTO_ICMP6] = "ip proto icmp6",
36 	[NPC_IPPROTO_AH] = "ip proto AH",
37 	[NPC_IPPROTO_ESP] = "ip proto ESP",
38 	[NPC_SPORT_TCP]	= "tcp source port",
39 	[NPC_DPORT_TCP]	= "tcp destination port",
40 	[NPC_SPORT_UDP]	= "udp source port",
41 	[NPC_DPORT_UDP]	= "udp destination port",
42 	[NPC_SPORT_SCTP] = "sctp source port",
43 	[NPC_DPORT_SCTP] = "sctp destination port",
44 	[NPC_LXMB]	= "Mcast/Bcast header ",
45 	[NPC_IPSEC_SPI] = "SPI ",
46 	[NPC_MPLS1_LBTCBOS] = "lse depth 1 label tc bos",
47 	[NPC_MPLS1_TTL]     = "lse depth 1 ttl",
48 	[NPC_MPLS2_LBTCBOS] = "lse depth 2 label tc bos",
49 	[NPC_MPLS2_TTL]     = "lse depth 2 ttl",
50 	[NPC_MPLS3_LBTCBOS] = "lse depth 3 label tc bos",
51 	[NPC_MPLS3_TTL]     = "lse depth 3 ttl",
52 	[NPC_MPLS4_LBTCBOS] = "lse depth 4 label tc bos",
53 	[NPC_MPLS4_TTL]     = "lse depth 4",
54 	[NPC_UNKNOWN]	= "unknown",
55 };
56 
57 bool npc_is_feature_supported(struct rvu *rvu, u64 features, u8 intf)
58 {
59 	struct npc_mcam *mcam = &rvu->hw->mcam;
60 	u64 mcam_features;
61 	u64 unsupported;
62 
63 	mcam_features = is_npc_intf_tx(intf) ? mcam->tx_features : mcam->rx_features;
64 	unsupported = (mcam_features ^ features) & ~mcam_features;
65 
66 	/* Return false if at least one of the input flows is not extracted */
67 	return !unsupported;
68 }
69 
70 const char *npc_get_field_name(u8 hdr)
71 {
72 	if (hdr >= ARRAY_SIZE(npc_flow_names))
73 		return npc_flow_names[NPC_UNKNOWN];
74 
75 	return npc_flow_names[hdr];
76 }
77 
78 /* Compute keyword masks and figure out the number of keywords a field
79  * spans in the key.
80  */
81 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
82 			     u8 nr_bits, int start_kwi, int offset, u8 intf)
83 {
84 	struct npc_key_field *field = &mcam->rx_key_fields[type];
85 	u8 bits_in_kw;
86 	int max_kwi;
87 
88 	if (mcam->banks_per_entry == 1)
89 		max_kwi = 1; /* NPC_MCAM_KEY_X1 */
90 	else if (mcam->banks_per_entry == 2)
91 		max_kwi = 3; /* NPC_MCAM_KEY_X2 */
92 	else
93 		max_kwi = 6; /* NPC_MCAM_KEY_X4 */
94 
95 	if (is_npc_intf_tx(intf))
96 		field = &mcam->tx_key_fields[type];
97 
98 	if (offset + nr_bits <= 64) {
99 		/* one KW only */
100 		if (start_kwi > max_kwi)
101 			return;
102 		field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
103 					     << offset;
104 		field->nr_kws = 1;
105 	} else if (offset + nr_bits > 64 &&
106 		   offset + nr_bits <= 128) {
107 		/* two KWs */
108 		if (start_kwi + 1 > max_kwi)
109 			return;
110 		/* first KW mask */
111 		bits_in_kw = 64 - offset;
112 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
113 					     << offset;
114 		/* second KW mask i.e. mask for rest of bits */
115 		bits_in_kw = nr_bits + offset - 64;
116 		field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
117 		field->nr_kws = 2;
118 	} else {
119 		/* three KWs */
120 		if (start_kwi + 2 > max_kwi)
121 			return;
122 		/* first KW mask */
123 		bits_in_kw = 64 - offset;
124 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
125 					     << offset;
126 		/* second KW mask */
127 		field->kw_mask[start_kwi + 1] = ~0ULL;
128 		/* third KW mask i.e. mask for rest of bits */
129 		bits_in_kw = nr_bits + offset - 128;
130 		field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
131 		field->nr_kws = 3;
132 	}
133 }
134 
135 /* Helper function to figure out whether field exists in the key */
136 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
137 {
138 	struct npc_mcam *mcam = &rvu->hw->mcam;
139 	struct npc_key_field *input;
140 
141 	input  = &mcam->rx_key_fields[type];
142 	if (is_npc_intf_tx(intf))
143 		input  = &mcam->tx_key_fields[type];
144 
145 	return input->nr_kws > 0;
146 }
147 
148 static bool npc_is_same(struct npc_key_field *input,
149 			struct npc_key_field *field)
150 {
151 	return memcmp(&input->layer_mdata, &field->layer_mdata,
152 		     sizeof(struct npc_layer_mdata)) == 0;
153 }
154 
155 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
156 				u64 cfg, u8 lid, u8 lt, u8 intf)
157 {
158 	struct npc_key_field *input = &mcam->rx_key_fields[type];
159 
160 	if (is_npc_intf_tx(intf))
161 		input = &mcam->tx_key_fields[type];
162 
163 	input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
164 	input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
165 	input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
166 	input->layer_mdata.ltype = lt;
167 	input->layer_mdata.lid = lid;
168 }
169 
170 static bool npc_check_overlap_fields(struct npc_key_field *input1,
171 				     struct npc_key_field *input2)
172 {
173 	int kwi;
174 
175 	/* Fields with same layer id and different ltypes are mutually
176 	 * exclusive hence they can be overlapped
177 	 */
178 	if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
179 	    input1->layer_mdata.ltype != input2->layer_mdata.ltype)
180 		return false;
181 
182 	for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
183 		if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
184 			return true;
185 	}
186 
187 	return false;
188 }
189 
190 /* Helper function to check whether given field overlaps with any other fields
191  * in the key. Due to limitations on key size and the key extraction profile in
192  * use higher layers can overwrite lower layer's header fields. Hence overlap
193  * needs to be checked.
194  */
195 static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
196 			      enum key_fields type, u8 start_lid, u8 intf)
197 {
198 	struct npc_mcam *mcam = &rvu->hw->mcam;
199 	struct npc_key_field *dummy, *input;
200 	int start_kwi, offset;
201 	u8 nr_bits, lid, lt, ld;
202 	u64 cfg;
203 
204 	dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
205 	input = &mcam->rx_key_fields[type];
206 
207 	if (is_npc_intf_tx(intf)) {
208 		dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
209 		input = &mcam->tx_key_fields[type];
210 	}
211 
212 	for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
213 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
214 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
215 				cfg = rvu_read64(rvu, blkaddr,
216 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
217 						 (intf, lid, lt, ld));
218 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
219 					continue;
220 				memset(dummy, 0, sizeof(struct npc_key_field));
221 				npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
222 						    lid, lt, intf);
223 				/* exclude input */
224 				if (npc_is_same(input, dummy))
225 					continue;
226 				start_kwi = dummy->layer_mdata.key / 8;
227 				offset = (dummy->layer_mdata.key * 8) % 64;
228 				nr_bits = dummy->layer_mdata.len * 8;
229 				/* form KW masks */
230 				npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
231 						 start_kwi, offset, intf);
232 				/* check any input field bits falls in any
233 				 * other field bits.
234 				 */
235 				if (npc_check_overlap_fields(dummy, input))
236 					return true;
237 			}
238 		}
239 	}
240 
241 	return false;
242 }
243 
244 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
245 			    u8 intf)
246 {
247 	if (!npc_is_field_present(rvu, type, intf) ||
248 	    npc_check_overlap(rvu, blkaddr, type, 0, intf))
249 		return false;
250 	return true;
251 }
252 
253 static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number,
254 				  u8 key_nibble, u8 intf)
255 {
256 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
257 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
258 	u8 nr_bits = 4; /* bits in a nibble */
259 	u8 type;
260 
261 	switch (bit_number) {
262 	case 40 ... 43:
263 		type = NPC_EXACT_RESULT;
264 		break;
265 
266 	default:
267 		return;
268 	}
269 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
270 }
271 
272 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
273 				  u8 key_nibble, u8 intf)
274 {
275 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
276 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
277 	u8 nr_bits = 4; /* bits in a nibble */
278 	u8 type;
279 
280 	switch (bit_number) {
281 	case 0 ... 2:
282 		type = NPC_CHAN;
283 		break;
284 	case 3:
285 		type = NPC_ERRLEV;
286 		break;
287 	case 4 ... 5:
288 		type = NPC_ERRCODE;
289 		break;
290 	case 6:
291 		type = NPC_LXMB;
292 		break;
293 	/* check for LTYPE only as of now */
294 	case 9:
295 		type = NPC_LA;
296 		break;
297 	case 12:
298 		type = NPC_LB;
299 		break;
300 	case 15:
301 		type = NPC_LC;
302 		break;
303 	case 18:
304 		type = NPC_LD;
305 		break;
306 	case 21:
307 		type = NPC_LE;
308 		break;
309 	case 24:
310 		type = NPC_LF;
311 		break;
312 	case 27:
313 		type = NPC_LG;
314 		break;
315 	case 30:
316 		type = NPC_LH;
317 		break;
318 	default:
319 		return;
320 	}
321 
322 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
323 }
324 
325 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
326 {
327 	struct npc_mcam *mcam = &rvu->hw->mcam;
328 	struct npc_key_field *key_fields;
329 	/* Ether type can come from three layers
330 	 * (ethernet, single tagged, double tagged)
331 	 */
332 	struct npc_key_field *etype_ether;
333 	struct npc_key_field *etype_tag1;
334 	struct npc_key_field *etype_tag2;
335 	/* Outer VLAN TCI can come from two layers
336 	 * (single tagged, double tagged)
337 	 */
338 	struct npc_key_field *vlan_tag1;
339 	struct npc_key_field *vlan_tag2;
340 	/* Inner VLAN TCI for double tagged frames */
341 	struct npc_key_field *vlan_tag3;
342 	u64 *features;
343 	u8 start_lid;
344 	int i;
345 
346 	key_fields = mcam->rx_key_fields;
347 	features = &mcam->rx_features;
348 
349 	if (is_npc_intf_tx(intf)) {
350 		key_fields = mcam->tx_key_fields;
351 		features = &mcam->tx_features;
352 	}
353 
354 	/* Handle header fields which can come from multiple layers like
355 	 * etype, outer vlan tci. These fields should have same position in
356 	 * the key otherwise to install a mcam rule more than one entry is
357 	 * needed which complicates mcam space management.
358 	 */
359 	etype_ether = &key_fields[NPC_ETYPE_ETHER];
360 	etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
361 	etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
362 	vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
363 	vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
364 	vlan_tag3 = &key_fields[NPC_VLAN_TAG3];
365 
366 	/* if key profile programmed does not extract Ethertype at all */
367 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) {
368 		dev_err(rvu->dev, "mkex: Ethertype is not extracted.\n");
369 		goto vlan_tci;
370 	}
371 
372 	/* if key profile programmed extracts Ethertype from one layer */
373 	if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
374 		key_fields[NPC_ETYPE] = *etype_ether;
375 	if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
376 		key_fields[NPC_ETYPE] = *etype_tag1;
377 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
378 		key_fields[NPC_ETYPE] = *etype_tag2;
379 
380 	/* if key profile programmed extracts Ethertype from multiple layers */
381 	if (etype_ether->nr_kws && etype_tag1->nr_kws) {
382 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
383 			if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) {
384 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and tagged pkts.\n");
385 				goto vlan_tci;
386 			}
387 		}
388 		key_fields[NPC_ETYPE] = *etype_tag1;
389 	}
390 	if (etype_ether->nr_kws && etype_tag2->nr_kws) {
391 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
392 			if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) {
393 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and double tagged pkts.\n");
394 				goto vlan_tci;
395 			}
396 		}
397 		key_fields[NPC_ETYPE] = *etype_tag2;
398 	}
399 	if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
400 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
401 			if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) {
402 				dev_err(rvu->dev, "mkex: Etype pos is different for tagged and double tagged pkts.\n");
403 				goto vlan_tci;
404 			}
405 		}
406 		key_fields[NPC_ETYPE] = *etype_tag2;
407 	}
408 
409 	/* check none of higher layers overwrite Ethertype */
410 	start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
411 	if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) {
412 		dev_err(rvu->dev, "mkex: Ethertype is overwritten by higher layers.\n");
413 		goto vlan_tci;
414 	}
415 	*features |= BIT_ULL(NPC_ETYPE);
416 vlan_tci:
417 	/* if key profile does not extract outer vlan tci at all */
418 	if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) {
419 		dev_err(rvu->dev, "mkex: Outer vlan tci is not extracted.\n");
420 		goto done;
421 	}
422 
423 	/* if key profile extracts outer vlan tci from one layer */
424 	if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
425 		key_fields[NPC_OUTER_VID] = *vlan_tag1;
426 	if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
427 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
428 
429 	/* if key profile extracts outer vlan tci from multiple layers */
430 	if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
431 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
432 			if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) {
433 				dev_err(rvu->dev, "mkex: Out vlan tci pos is different for tagged and double tagged pkts.\n");
434 				goto done;
435 			}
436 		}
437 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
438 	}
439 	/* check none of higher layers overwrite outer vlan tci */
440 	start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
441 	if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) {
442 		dev_err(rvu->dev, "mkex: Outer vlan tci is overwritten by higher layers.\n");
443 		goto done;
444 	}
445 	*features |= BIT_ULL(NPC_OUTER_VID);
446 
447 	/* If key profile extracts inner vlan tci */
448 	if (vlan_tag3->nr_kws) {
449 		key_fields[NPC_INNER_VID] = *vlan_tag3;
450 		*features |= BIT_ULL(NPC_INNER_VID);
451 	}
452 done:
453 	return;
454 }
455 
456 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
457 			   u8 lt, u64 cfg, u8 intf)
458 {
459 	struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
460 	struct npc_mcam *mcam = &rvu->hw->mcam;
461 	u8 hdr, key, nr_bytes, bit_offset;
462 	u8 la_ltype, la_start;
463 	/* starting KW index and starting bit position */
464 	int start_kwi, offset;
465 
466 	nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
467 	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
468 	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
469 
470 	/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
471 	 * ethernet header.
472 	 */
473 	if (is_npc_intf_tx(intf)) {
474 		la_ltype = NPC_LT_LA_IH_NIX_ETHER;
475 		la_start = 8;
476 	} else {
477 		la_ltype = NPC_LT_LA_ETHER;
478 		la_start = 0;
479 	}
480 
481 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)			       \
482 do {									       \
483 	start_kwi = key / 8;						       \
484 	offset = (key * 8) % 64;					       \
485 	if (lid == (hlid) && lt == (hlt)) {				       \
486 		if ((hstart) >= hdr &&					       \
487 		    ((hstart) + (hlen)) <= (hdr + nr_bytes)) {	               \
488 			bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
489 			npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
490 			offset += bit_offset;				       \
491 			start_kwi += offset / 64;			       \
492 			offset %= 64;					       \
493 			npc_set_kw_masks(mcam, (name), (hlen) * 8,	       \
494 					 start_kwi, offset, intf);	       \
495 		}							       \
496 	}								       \
497 } while (0)
498 
499 	/* List LID, LTYPE, start offset from layer and length(in bytes) of
500 	 * packet header fields below.
501 	 * Example: Source IP is 4 bytes and starts at 12th byte of IP header
502 	 */
503 	NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
504 	NPC_SCAN_HDR(NPC_IPFRAG_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 6, 1);
505 	NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
506 	NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
507 	NPC_SCAN_HDR(NPC_IPFRAG_IPV6, NPC_LID_LC, NPC_LT_LC_IP6_EXT, 6, 1);
508 	if (rvu->hw->cap.npc_hash_extract) {
509 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][0])
510 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 4);
511 		else
512 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
513 
514 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][1])
515 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 4);
516 		else
517 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
518 	} else {
519 		NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
520 		NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
521 	}
522 
523 	NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
524 	NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
525 	NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
526 	NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
527 	NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
528 	NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
529 	NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
530 	NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
531 	NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
532 	NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
533 	NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
534 	NPC_SCAN_HDR(NPC_VLAN_TAG3, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 6, 2);
535 	NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
536 
537 	NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LD, NPC_LT_LD_AH, 4, 4);
538 	NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LE, NPC_LT_LE_ESP, 0, 4);
539 	NPC_SCAN_HDR(NPC_MPLS1_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 0, 3);
540 	NPC_SCAN_HDR(NPC_MPLS1_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 3, 1);
541 	NPC_SCAN_HDR(NPC_MPLS2_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 4, 3);
542 	NPC_SCAN_HDR(NPC_MPLS2_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 7, 1);
543 	NPC_SCAN_HDR(NPC_MPLS3_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 8, 3);
544 	NPC_SCAN_HDR(NPC_MPLS3_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 11, 1);
545 	NPC_SCAN_HDR(NPC_MPLS4_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 12, 3);
546 	NPC_SCAN_HDR(NPC_MPLS4_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 15, 1);
547 
548 	/* SMAC follows the DMAC(which is 6 bytes) */
549 	NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6);
550 	/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
551 	NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
552 }
553 
554 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
555 {
556 	struct npc_mcam *mcam = &rvu->hw->mcam;
557 	u64 *features = &mcam->rx_features;
558 	u64 tcp_udp_sctp;
559 	int hdr;
560 
561 	if (is_npc_intf_tx(intf))
562 		features = &mcam->tx_features;
563 
564 	for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
565 		if (npc_check_field(rvu, blkaddr, hdr, intf))
566 			*features |= BIT_ULL(hdr);
567 	}
568 
569 	tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
570 		       BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
571 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP);
572 
573 	/* for tcp/udp/sctp corresponding layer type should be in the key */
574 	if (*features & tcp_udp_sctp) {
575 		if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
576 			*features &= ~tcp_udp_sctp;
577 		else
578 			*features |= BIT_ULL(NPC_IPPROTO_TCP) |
579 				     BIT_ULL(NPC_IPPROTO_UDP) |
580 				     BIT_ULL(NPC_IPPROTO_SCTP);
581 	}
582 
583 	/* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
584 	if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
585 		*features |= BIT_ULL(NPC_IPPROTO_AH);
586 		*features |= BIT_ULL(NPC_IPPROTO_ICMP);
587 		*features |= BIT_ULL(NPC_IPPROTO_ICMP6);
588 	}
589 
590 	/* for ESP, check if corresponding layer type is present in the key */
591 	if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
592 		*features |= BIT_ULL(NPC_IPPROTO_ESP);
593 
594 	/* for vlan corresponding layer type should be in the key */
595 	if (*features & BIT_ULL(NPC_OUTER_VID))
596 		if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
597 			*features &= ~BIT_ULL(NPC_OUTER_VID);
598 
599 	/* Set SPI flag only if AH/ESP and IPSEC_SPI are in the key */
600 	if (npc_check_field(rvu, blkaddr, NPC_IPSEC_SPI, intf) &&
601 	    (*features & (BIT_ULL(NPC_IPPROTO_ESP) | BIT_ULL(NPC_IPPROTO_AH))))
602 		*features |= BIT_ULL(NPC_IPSEC_SPI);
603 
604 	/* for vlan ethertypes corresponding layer type should be in the key */
605 	if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
606 		*features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) |
607 			     BIT_ULL(NPC_VLAN_ETYPE_STAG);
608 
609 	/* for L2M/L2B/L3M/L3B, check if the type is present in the key */
610 	if (npc_check_field(rvu, blkaddr, NPC_LXMB, intf))
611 		*features |= BIT_ULL(NPC_LXMB);
612 
613 	for (hdr = NPC_MPLS1_LBTCBOS; hdr <= NPC_MPLS4_TTL; hdr++) {
614 		if (npc_check_field(rvu, blkaddr, hdr, intf))
615 			*features |= BIT_ULL(hdr);
616 	}
617 }
618 
619 /* Scan key extraction profile and record how fields of our interest
620  * fill the key structure. Also verify Channel and DMAC exists in
621  * key and not overwritten by other header fields.
622  */
623 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
624 {
625 	struct npc_mcam *mcam = &rvu->hw->mcam;
626 	u8 lid, lt, ld, bitnr;
627 	u64 cfg, masked_cfg;
628 	u8 key_nibble = 0;
629 
630 	/* Scan and note how parse result is going to be in key.
631 	 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
632 	 * parse result in the key. The enabled nibbles from parse result
633 	 * will be concatenated in key.
634 	 */
635 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
636 	masked_cfg = cfg & NPC_PARSE_NIBBLE;
637 	for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) {
638 		npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
639 		key_nibble++;
640 	}
641 
642 	/* Ignore exact match bits for mcam entries except the first rule
643 	 * which is drop on hit. This first rule is configured explitcitly by
644 	 * exact match code.
645 	 */
646 	masked_cfg = cfg & NPC_EXACT_NIBBLE;
647 	bitnr = NPC_EXACT_NIBBLE_START;
648 	for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, NPC_EXACT_NIBBLE_END + 1) {
649 		npc_scan_exact_result(mcam, bitnr, key_nibble, intf);
650 		key_nibble++;
651 	}
652 
653 	/* Scan and note how layer data is going to be in key */
654 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
655 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
656 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
657 				cfg = rvu_read64(rvu, blkaddr,
658 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
659 						 (intf, lid, lt, ld));
660 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
661 					continue;
662 				npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
663 					       intf);
664 			}
665 		}
666 	}
667 
668 	return 0;
669 }
670 
671 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
672 {
673 	int err;
674 
675 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
676 	if (err)
677 		return err;
678 
679 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
680 	if (err)
681 		return err;
682 
683 	/* Channel is mandatory */
684 	if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
685 		dev_err(rvu->dev, "Channel not present in Key\n");
686 		return -EINVAL;
687 	}
688 	/* check that none of the fields overwrite channel */
689 	if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
690 		dev_err(rvu->dev, "Channel cannot be overwritten\n");
691 		return -EINVAL;
692 	}
693 
694 	npc_set_features(rvu, blkaddr, NIX_INTF_TX);
695 	npc_set_features(rvu, blkaddr, NIX_INTF_RX);
696 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
697 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
698 
699 	return 0;
700 }
701 
702 int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
703 {
704 	struct npc_mcam *mcam = &rvu->hw->mcam;
705 
706 	INIT_LIST_HEAD(&mcam->mcam_rules);
707 
708 	return npc_scan_verify_kex(rvu, blkaddr);
709 }
710 
711 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
712 {
713 	struct npc_mcam *mcam = &rvu->hw->mcam;
714 	u64 *mcam_features = &mcam->rx_features;
715 	u64 unsupported;
716 	u8 bit;
717 
718 	if (is_npc_intf_tx(intf))
719 		mcam_features = &mcam->tx_features;
720 
721 	unsupported = (*mcam_features ^ features) & ~(*mcam_features);
722 	if (unsupported) {
723 		dev_warn(rvu->dev, "Unsupported flow(s):\n");
724 		for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
725 			dev_warn(rvu->dev, "%s ", npc_get_field_name(bit));
726 		return -EOPNOTSUPP;
727 	}
728 
729 	return 0;
730 }
731 
732 /* npc_update_entry - Based on the masks generated during
733  * the key scanning, updates the given entry with value and
734  * masks for the field of interest. Maximum 16 bytes of a packet
735  * header can be extracted by HW hence lo and hi are sufficient.
736  * When field bytes are less than or equal to 8 then hi should be
737  * 0 for value and mask.
738  *
739  * If exact match of value is required then mask should be all 1's.
740  * If any bits in mask are 0 then corresponding bits in value are
741  * dont care.
742  */
743 void npc_update_entry(struct rvu *rvu, enum key_fields type,
744 		      struct mcam_entry *entry, u64 val_lo,
745 		      u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
746 {
747 	struct npc_mcam *mcam = &rvu->hw->mcam;
748 	struct mcam_entry dummy = { {0} };
749 	struct npc_key_field *field;
750 	u64 kw1, kw2, kw3;
751 	u8 shift;
752 	int i;
753 
754 	field = &mcam->rx_key_fields[type];
755 	if (is_npc_intf_tx(intf))
756 		field = &mcam->tx_key_fields[type];
757 
758 	if (!field->nr_kws)
759 		return;
760 
761 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
762 		if (!field->kw_mask[i])
763 			continue;
764 		/* place key value in kw[x] */
765 		shift = __ffs64(field->kw_mask[i]);
766 		/* update entry value */
767 		kw1 = (val_lo << shift) & field->kw_mask[i];
768 		dummy.kw[i] = kw1;
769 		/* update entry mask */
770 		kw1 = (mask_lo << shift) & field->kw_mask[i];
771 		dummy.kw_mask[i] = kw1;
772 
773 		if (field->nr_kws == 1)
774 			break;
775 		/* place remaining bits of key value in kw[x + 1] */
776 		if (field->nr_kws == 2) {
777 			/* update entry value */
778 			kw2 = shift ? val_lo >> (64 - shift) : 0;
779 			kw2 |= (val_hi << shift);
780 			kw2 &= field->kw_mask[i + 1];
781 			dummy.kw[i + 1] = kw2;
782 			/* update entry mask */
783 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
784 			kw2 |= (mask_hi << shift);
785 			kw2 &= field->kw_mask[i + 1];
786 			dummy.kw_mask[i + 1] = kw2;
787 			break;
788 		}
789 		/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
790 		if (field->nr_kws == 3) {
791 			/* update entry value */
792 			kw2 = shift ? val_lo >> (64 - shift) : 0;
793 			kw2 |= (val_hi << shift);
794 			kw2 &= field->kw_mask[i + 1];
795 			kw3 = shift ? val_hi >> (64 - shift) : 0;
796 			kw3 &= field->kw_mask[i + 2];
797 			dummy.kw[i + 1] = kw2;
798 			dummy.kw[i + 2] = kw3;
799 			/* update entry mask */
800 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
801 			kw2 |= (mask_hi << shift);
802 			kw2 &= field->kw_mask[i + 1];
803 			kw3 = shift ? mask_hi >> (64 - shift) : 0;
804 			kw3 &= field->kw_mask[i + 2];
805 			dummy.kw_mask[i + 1] = kw2;
806 			dummy.kw_mask[i + 2] = kw3;
807 			break;
808 		}
809 	}
810 	/* dummy is ready with values and masks for given key
811 	 * field now clear and update input entry with those
812 	 */
813 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
814 		if (!field->kw_mask[i])
815 			continue;
816 		entry->kw[i] &= ~field->kw_mask[i];
817 		entry->kw_mask[i] &= ~field->kw_mask[i];
818 
819 		entry->kw[i] |= dummy.kw[i];
820 		entry->kw_mask[i] |= dummy.kw_mask[i];
821 	}
822 }
823 
824 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
825 				 u64 features, struct flow_msg *pkt,
826 				 struct flow_msg *mask,
827 				 struct rvu_npc_mcam_rule *output, u8 intf)
828 {
829 	u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
830 	u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
831 	struct flow_msg *opkt = &output->packet;
832 	struct flow_msg *omask = &output->mask;
833 	u64 mask_lo, mask_hi;
834 	u64 val_lo, val_hi;
835 
836 	/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
837 	 * values to be programmed in MCAM should as below:
838 	 * val_high: 0xfe80000000000000
839 	 * val_low: 0x2c6863fffe5e2d0a
840 	 */
841 	if (features & BIT_ULL(NPC_SIP_IPV6)) {
842 		be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
843 		be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
844 
845 		mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
846 		mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
847 		val_hi = (u64)src_ip[0] << 32 | src_ip[1];
848 		val_lo = (u64)src_ip[2] << 32 | src_ip[3];
849 
850 		npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
851 				 mask_lo, mask_hi, intf);
852 		memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
853 		memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
854 	}
855 	if (features & BIT_ULL(NPC_DIP_IPV6)) {
856 		be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
857 		be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
858 
859 		mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
860 		mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
861 		val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
862 		val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
863 
864 		npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
865 				 mask_lo, mask_hi, intf);
866 		memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
867 		memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
868 	}
869 }
870 
871 static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry,
872 				     u64 features, u8 intf)
873 {
874 	bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG));
875 	bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG));
876 	bool vid = !!(features & BIT_ULL(NPC_OUTER_VID));
877 
878 	/* If only VLAN id is given then always match outer VLAN id */
879 	if (vid && !ctag && !stag) {
880 		npc_update_entry(rvu, NPC_LB, entry,
881 				 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
882 				 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
883 		return;
884 	}
885 	if (ctag)
886 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0,
887 				 ~0ULL, 0, intf);
888 	if (stag)
889 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0,
890 				 ~0ULL, 0, intf);
891 }
892 
893 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
894 			    u64 features, struct flow_msg *pkt,
895 			    struct flow_msg *mask,
896 			    struct rvu_npc_mcam_rule *output, u8 intf,
897 			    int blkaddr)
898 {
899 	u64 dmac_mask = ether_addr_to_u64(mask->dmac);
900 	u64 smac_mask = ether_addr_to_u64(mask->smac);
901 	u64 dmac_val = ether_addr_to_u64(pkt->dmac);
902 	u64 smac_val = ether_addr_to_u64(pkt->smac);
903 	struct flow_msg *opkt = &output->packet;
904 	struct flow_msg *omask = &output->mask;
905 
906 	if (!features)
907 		return;
908 
909 	/* For tcp/udp/sctp LTYPE should be present in entry */
910 	if (features & BIT_ULL(NPC_IPPROTO_TCP))
911 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
912 				 0, ~0ULL, 0, intf);
913 	if (features & BIT_ULL(NPC_IPPROTO_UDP))
914 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
915 				 0, ~0ULL, 0, intf);
916 	if (features & BIT_ULL(NPC_IPPROTO_SCTP))
917 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
918 				 0, ~0ULL, 0, intf);
919 	if (features & BIT_ULL(NPC_IPPROTO_ICMP))
920 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
921 				 0, ~0ULL, 0, intf);
922 	if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
923 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
924 				 0, ~0ULL, 0, intf);
925 
926 	/* For AH, LTYPE should be present in entry */
927 	if (features & BIT_ULL(NPC_IPPROTO_AH))
928 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
929 				 0, ~0ULL, 0, intf);
930 	/* For ESP, LTYPE should be present in entry */
931 	if (features & BIT_ULL(NPC_IPPROTO_ESP))
932 		npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
933 				 0, ~0ULL, 0, intf);
934 
935 	if (features & BIT_ULL(NPC_LXMB)) {
936 		output->lxmb = is_broadcast_ether_addr(pkt->dmac) ? 2 : 1;
937 		npc_update_entry(rvu, NPC_LXMB, entry, output->lxmb, 0,
938 				 output->lxmb, 0, intf);
939 	}
940 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)	      \
941 do {									      \
942 	if (features & BIT_ULL((field))) {				      \
943 		npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
944 				 (mask_lo), (mask_hi), intf);		      \
945 		memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
946 		memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
947 	}								      \
948 } while (0)
949 
950 	NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
951 
952 	NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
953 	NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
954 		       ntohs(mask->etype), 0);
955 	NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
956 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV4, ip_flag, pkt->ip_flag, 0,
957 		       mask->ip_flag, 0);
958 	NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
959 		       ntohl(mask->ip4src), 0);
960 	NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
961 		       ntohl(mask->ip4dst), 0);
962 	NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
963 		       ntohs(mask->sport), 0);
964 	NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
965 		       ntohs(mask->sport), 0);
966 	NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
967 		       ntohs(mask->dport), 0);
968 	NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
969 		       ntohs(mask->dport), 0);
970 	NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
971 		       ntohs(mask->sport), 0);
972 	NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
973 		       ntohs(mask->dport), 0);
974 
975 	NPC_WRITE_FLOW(NPC_IPSEC_SPI, spi, ntohl(pkt->spi), 0,
976 		       ntohl(mask->spi), 0);
977 
978 	NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
979 		       ntohs(mask->vlan_tci), 0);
980 	NPC_WRITE_FLOW(NPC_INNER_VID, vlan_itci, ntohs(pkt->vlan_itci), 0,
981 		       ntohs(mask->vlan_itci), 0);
982 
983 	NPC_WRITE_FLOW(NPC_MPLS1_LBTCBOS, mpls_lse,
984 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
985 				 pkt->mpls_lse[0]), 0,
986 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
987 				 mask->mpls_lse[0]), 0);
988 	NPC_WRITE_FLOW(NPC_MPLS1_TTL, mpls_lse,
989 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
990 				 pkt->mpls_lse[0]), 0,
991 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
992 				 mask->mpls_lse[0]), 0);
993 	NPC_WRITE_FLOW(NPC_MPLS2_LBTCBOS, mpls_lse,
994 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
995 				 pkt->mpls_lse[1]), 0,
996 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
997 				 mask->mpls_lse[1]), 0);
998 	NPC_WRITE_FLOW(NPC_MPLS2_TTL, mpls_lse,
999 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1000 				 pkt->mpls_lse[1]), 0,
1001 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1002 				 mask->mpls_lse[1]), 0);
1003 	NPC_WRITE_FLOW(NPC_MPLS3_LBTCBOS, mpls_lse,
1004 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1005 				 pkt->mpls_lse[2]), 0,
1006 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1007 				 mask->mpls_lse[2]), 0);
1008 	NPC_WRITE_FLOW(NPC_MPLS3_TTL, mpls_lse,
1009 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1010 				 pkt->mpls_lse[2]), 0,
1011 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1012 				 mask->mpls_lse[2]), 0);
1013 	NPC_WRITE_FLOW(NPC_MPLS4_LBTCBOS, mpls_lse,
1014 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1015 				 pkt->mpls_lse[3]), 0,
1016 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
1017 				 mask->mpls_lse[3]), 0);
1018 	NPC_WRITE_FLOW(NPC_MPLS4_TTL, mpls_lse,
1019 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1020 				 pkt->mpls_lse[3]), 0,
1021 		       FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
1022 				 mask->mpls_lse[3]), 0);
1023 
1024 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV6, next_header, pkt->next_header, 0,
1025 		       mask->next_header, 0);
1026 	npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
1027 	npc_update_vlan_features(rvu, entry, features, intf);
1028 
1029 	npc_update_field_hash(rvu, intf, entry, blkaddr, features,
1030 			      pkt, mask, opkt, omask);
1031 }
1032 
1033 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry)
1034 {
1035 	struct rvu_npc_mcam_rule *iter;
1036 
1037 	mutex_lock(&mcam->lock);
1038 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
1039 		if (iter->entry == entry) {
1040 			mutex_unlock(&mcam->lock);
1041 			return iter;
1042 		}
1043 	}
1044 	mutex_unlock(&mcam->lock);
1045 
1046 	return NULL;
1047 }
1048 
1049 static void rvu_mcam_add_rule(struct npc_mcam *mcam,
1050 			      struct rvu_npc_mcam_rule *rule)
1051 {
1052 	struct list_head *head = &mcam->mcam_rules;
1053 	struct rvu_npc_mcam_rule *iter;
1054 
1055 	mutex_lock(&mcam->lock);
1056 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
1057 		if (iter->entry > rule->entry)
1058 			break;
1059 		head = &iter->list;
1060 	}
1061 
1062 	list_add(&rule->list, head);
1063 	mutex_unlock(&mcam->lock);
1064 }
1065 
1066 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
1067 					      struct rvu_npc_mcam_rule *rule)
1068 {
1069 	struct npc_mcam_oper_counter_req free_req = { 0 };
1070 	struct msg_rsp free_rsp;
1071 
1072 	if (!rule->has_cntr)
1073 		return;
1074 
1075 	free_req.hdr.pcifunc = pcifunc;
1076 	free_req.cntr = rule->cntr;
1077 
1078 	rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
1079 	rule->has_cntr = false;
1080 }
1081 
1082 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
1083 					 struct rvu_npc_mcam_rule *rule,
1084 					 struct npc_install_flow_rsp *rsp)
1085 {
1086 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
1087 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1088 	int err;
1089 
1090 	cntr_req.hdr.pcifunc = pcifunc;
1091 	cntr_req.contig = true;
1092 	cntr_req.count = 1;
1093 
1094 	/* we try to allocate a counter to track the stats of this
1095 	 * rule. If counter could not be allocated then proceed
1096 	 * without counter because counters are limited than entries.
1097 	 */
1098 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
1099 						      &cntr_rsp);
1100 	if (!err && cntr_rsp.count) {
1101 		rule->cntr = cntr_rsp.cntr;
1102 		rule->has_cntr = true;
1103 		rsp->counter = rule->cntr;
1104 	} else {
1105 		rsp->counter = err;
1106 	}
1107 }
1108 
1109 static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1110 				struct mcam_entry *entry,
1111 				struct npc_install_flow_req *req,
1112 				u16 target, bool pf_set_vfs_mac)
1113 {
1114 	struct rvu_switch *rswitch = &rvu->rswitch;
1115 	struct nix_rx_action action;
1116 
1117 	if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac)
1118 		req->chan_mask = 0x0; /* Do not care channel */
1119 
1120 	npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask,
1121 			 0, NIX_INTF_RX);
1122 
1123 	*(u64 *)&action = 0x00;
1124 	action.pf_func = target;
1125 	action.op = req->op;
1126 	action.index = req->index;
1127 	action.match_id = req->match_id;
1128 	action.flow_key_alg = req->flow_key_alg;
1129 
1130 	if (req->op == NIX_RX_ACTION_DEFAULT) {
1131 		if (pfvf->def_ucast_rule) {
1132 			action = pfvf->def_ucast_rule->rx_action;
1133 		} else {
1134 			/* For profiles which do not extract DMAC, the default
1135 			 * unicast entry is unused. Hence modify action for the
1136 			 * requests which use same action as default unicast
1137 			 * entry
1138 			 */
1139 			*(u64 *)&action = 0;
1140 			action.pf_func = target;
1141 			action.op = NIX_RX_ACTIONOP_UCAST;
1142 		}
1143 	}
1144 
1145 	entry->action = *(u64 *)&action;
1146 
1147 	/* VTAG0 starts at 0th byte of LID_B.
1148 	 * VTAG1 starts at 4th byte of LID_B.
1149 	 */
1150 	entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
1151 			     FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
1152 			     FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
1153 			     FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
1154 			     FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
1155 			     FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
1156 			     FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
1157 			     FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
1158 }
1159 
1160 static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1161 				struct mcam_entry *entry,
1162 				struct npc_install_flow_req *req, u16 target)
1163 {
1164 	struct nix_tx_action action;
1165 	u64 mask = ~0ULL;
1166 
1167 	/* If AF is installing then do not care about
1168 	 * PF_FUNC in Send Descriptor
1169 	 */
1170 	if (is_pffunc_af(req->hdr.pcifunc))
1171 		mask = 0;
1172 
1173 	npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
1174 			 0, mask, 0, NIX_INTF_TX);
1175 
1176 	*(u64 *)&action = 0x00;
1177 	action.op = req->op;
1178 	action.index = req->index;
1179 	action.match_id = req->match_id;
1180 
1181 	entry->action = *(u64 *)&action;
1182 
1183 	/* VTAG0 starts at 0th byte of LID_B.
1184 	 * VTAG1 starts at 4th byte of LID_B.
1185 	 */
1186 	entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
1187 			     FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
1188 			     FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
1189 			     FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
1190 			     FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
1191 			     FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
1192 			     FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
1193 			     FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
1194 }
1195 
1196 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
1197 			    int nixlf, struct rvu_pfvf *pfvf,
1198 			    struct npc_install_flow_req *req,
1199 			    struct npc_install_flow_rsp *rsp, bool enable,
1200 			    bool pf_set_vfs_mac)
1201 {
1202 	struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
1203 	u64 features, installed_features, missing_features = 0;
1204 	struct npc_mcam_write_entry_req write_req = { 0 };
1205 	struct npc_mcam *mcam = &rvu->hw->mcam;
1206 	struct rvu_npc_mcam_rule dummy = { 0 };
1207 	struct rvu_npc_mcam_rule *rule;
1208 	u16 owner = req->hdr.pcifunc;
1209 	struct msg_rsp write_rsp;
1210 	struct mcam_entry *entry;
1211 	bool new = false;
1212 	u16 entry_index;
1213 	int err;
1214 
1215 	installed_features = req->features;
1216 	features = req->features;
1217 	entry = &write_req.entry_data;
1218 	entry_index = req->entry;
1219 
1220 	npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
1221 			req->intf, blkaddr);
1222 
1223 	if (is_npc_intf_rx(req->intf))
1224 		npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac);
1225 	else
1226 		npc_update_tx_entry(rvu, pfvf, entry, req, target);
1227 
1228 	/* Default unicast rules do not exist for TX */
1229 	if (is_npc_intf_tx(req->intf))
1230 		goto find_rule;
1231 
1232 	if (req->default_rule) {
1233 		entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
1234 						       NIXLF_UCAST_ENTRY);
1235 		enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
1236 	}
1237 
1238 	/* update mcam entry with default unicast rule attributes */
1239 	if (def_ucast_rule && (req->default_rule && req->append)) {
1240 		missing_features = (def_ucast_rule->features ^ features) &
1241 					def_ucast_rule->features;
1242 		if (missing_features)
1243 			npc_update_flow(rvu, entry, missing_features,
1244 					&def_ucast_rule->packet,
1245 					&def_ucast_rule->mask,
1246 					&dummy, req->intf,
1247 					blkaddr);
1248 		installed_features = req->features | missing_features;
1249 	}
1250 
1251 find_rule:
1252 	rule = rvu_mcam_find_rule(mcam, entry_index);
1253 	if (!rule) {
1254 		rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1255 		if (!rule)
1256 			return -ENOMEM;
1257 		new = true;
1258 	}
1259 
1260 	/* allocate new counter if rule has no counter */
1261 	if (!req->default_rule && req->set_cntr && !rule->has_cntr)
1262 		rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
1263 
1264 	/* if user wants to delete an existing counter for a rule then
1265 	 * free the counter
1266 	 */
1267 	if (!req->set_cntr && rule->has_cntr)
1268 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1269 
1270 	write_req.hdr.pcifunc = owner;
1271 
1272 	/* AF owns the default rules so change the owner just to relax
1273 	 * the checks in rvu_mbox_handler_npc_mcam_write_entry
1274 	 */
1275 	if (req->default_rule)
1276 		write_req.hdr.pcifunc = 0;
1277 
1278 	write_req.entry = entry_index;
1279 	write_req.intf = req->intf;
1280 	write_req.enable_entry = (u8)enable;
1281 	/* if counter is available then clear and use it */
1282 	if (req->set_cntr && rule->has_cntr) {
1283 		rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), req->cntr_val);
1284 		write_req.set_cntr = 1;
1285 		write_req.cntr = rule->cntr;
1286 	}
1287 
1288 	/* update rule */
1289 	memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
1290 	memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
1291 	rule->entry = entry_index;
1292 	memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
1293 	if (is_npc_intf_tx(req->intf))
1294 		memcpy(&rule->tx_action, &entry->action,
1295 		       sizeof(struct nix_tx_action));
1296 	rule->vtag_action = entry->vtag_action;
1297 	rule->features = installed_features;
1298 	rule->default_rule = req->default_rule;
1299 	rule->owner = owner;
1300 	rule->enable = enable;
1301 	rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK;
1302 	rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK;
1303 	rule->chan &= rule->chan_mask;
1304 	rule->lxmb = dummy.lxmb;
1305 	if (is_npc_intf_tx(req->intf))
1306 		rule->intf = pfvf->nix_tx_intf;
1307 	else
1308 		rule->intf = pfvf->nix_rx_intf;
1309 
1310 	if (new)
1311 		rvu_mcam_add_rule(mcam, rule);
1312 	if (req->default_rule)
1313 		pfvf->def_ucast_rule = rule;
1314 
1315 	/* write to mcam entry registers */
1316 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
1317 						    &write_rsp);
1318 	if (err) {
1319 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1320 		if (new) {
1321 			list_del(&rule->list);
1322 			kfree(rule);
1323 		}
1324 		return err;
1325 	}
1326 
1327 	/* VF's MAC address is being changed via PF  */
1328 	if (pf_set_vfs_mac) {
1329 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1330 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1331 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1332 	}
1333 
1334 	if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
1335 	    req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
1336 		rule->vfvlan_cfg = true;
1337 
1338 	if (is_npc_intf_rx(req->intf) && req->match_id &&
1339 	    (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
1340 		return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
1341 					     req->index, req->match_id);
1342 
1343 	return 0;
1344 }
1345 
1346 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
1347 				      struct npc_install_flow_req *req,
1348 				      struct npc_install_flow_rsp *rsp)
1349 {
1350 	bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
1351 	struct rvu_switch *rswitch = &rvu->rswitch;
1352 	int blkaddr, nixlf, err;
1353 	struct rvu_pfvf *pfvf;
1354 	bool pf_set_vfs_mac = false;
1355 	bool enable = true;
1356 	u16 target;
1357 
1358 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1359 	if (blkaddr < 0) {
1360 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1361 		return NPC_MCAM_INVALID_REQ;
1362 	}
1363 
1364 	if (!is_npc_interface_valid(rvu, req->intf))
1365 		return NPC_FLOW_INTF_INVALID;
1366 
1367 	/* If DMAC is not extracted in MKEX, rules installed by AF
1368 	 * can rely on L2MB bit set by hardware protocol checker for
1369 	 * broadcast and multicast addresses.
1370 	 */
1371 	if (npc_check_field(rvu, blkaddr, NPC_DMAC, req->intf))
1372 		goto process_flow;
1373 
1374 	if (is_pffunc_af(req->hdr.pcifunc) &&
1375 	    req->features & BIT_ULL(NPC_DMAC)) {
1376 		if (is_unicast_ether_addr(req->packet.dmac)) {
1377 			dev_warn(rvu->dev,
1378 				 "%s: mkex profile does not support ucast flow\n",
1379 				 __func__);
1380 			return NPC_FLOW_NOT_SUPPORTED;
1381 		}
1382 
1383 		if (!npc_is_field_present(rvu, NPC_LXMB, req->intf)) {
1384 			dev_warn(rvu->dev,
1385 				 "%s: mkex profile does not support bcast/mcast flow",
1386 				 __func__);
1387 			return NPC_FLOW_NOT_SUPPORTED;
1388 		}
1389 
1390 		/* Modify feature to use LXMB instead of DMAC */
1391 		req->features &= ~BIT_ULL(NPC_DMAC);
1392 		req->features |= BIT_ULL(NPC_LXMB);
1393 	}
1394 
1395 process_flow:
1396 	if (from_vf && req->default_rule)
1397 		return NPC_FLOW_VF_PERM_DENIED;
1398 
1399 	/* Each PF/VF info is maintained in struct rvu_pfvf.
1400 	 * rvu_pfvf for the target PF/VF needs to be retrieved
1401 	 * hence modify pcifunc accordingly.
1402 	 */
1403 
1404 	/* AF installing for a PF/VF */
1405 	if (!req->hdr.pcifunc)
1406 		target = req->vf;
1407 	/* PF installing for its VF */
1408 	else if (!from_vf && req->vf) {
1409 		target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
1410 		pf_set_vfs_mac = req->default_rule &&
1411 				(req->features & BIT_ULL(NPC_DMAC));
1412 	}
1413 	/* msg received from PF/VF */
1414 	else
1415 		target = req->hdr.pcifunc;
1416 
1417 	/* ignore chan_mask in case pf func is not AF, revisit later */
1418 	if (!is_pffunc_af(req->hdr.pcifunc))
1419 		req->chan_mask = 0xFFF;
1420 
1421 	err = npc_check_unsupported_flows(rvu, req->features, req->intf);
1422 	if (err)
1423 		return NPC_FLOW_NOT_SUPPORTED;
1424 
1425 	pfvf = rvu_get_pfvf(rvu, target);
1426 
1427 	/* PF installing for its VF */
1428 	if (req->hdr.pcifunc && !from_vf && req->vf)
1429 		set_bit(PF_SET_VF_CFG, &pfvf->flags);
1430 
1431 	/* update req destination mac addr */
1432 	if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
1433 	    is_zero_ether_addr(req->packet.dmac)) {
1434 		ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
1435 		eth_broadcast_addr((u8 *)&req->mask.dmac);
1436 	}
1437 
1438 	/* Proceed if NIXLF is attached or not for TX rules */
1439 	err = nix_get_nixlf(rvu, target, &nixlf, NULL);
1440 	if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
1441 		return NPC_FLOW_NO_NIXLF;
1442 
1443 	/* don't enable rule when nixlf not attached or initialized */
1444 	if (!(is_nixlf_attached(rvu, target) &&
1445 	      test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
1446 		enable = false;
1447 
1448 	/* Packets reaching NPC in Tx path implies that a
1449 	 * NIXLF is properly setup and transmitting.
1450 	 * Hence rules can be enabled for Tx.
1451 	 */
1452 	if (is_npc_intf_tx(req->intf))
1453 		enable = true;
1454 
1455 	/* Do not allow requests from uninitialized VFs */
1456 	if (from_vf && !enable)
1457 		return NPC_FLOW_VF_NOT_INIT;
1458 
1459 	/* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
1460 	if (pf_set_vfs_mac && !enable) {
1461 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1462 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1463 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1464 		return 0;
1465 	}
1466 
1467 	mutex_lock(&rswitch->switch_lock);
1468 	err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf,
1469 			       req, rsp, enable, pf_set_vfs_mac);
1470 	mutex_unlock(&rswitch->switch_lock);
1471 
1472 	return err;
1473 }
1474 
1475 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
1476 			   u16 pcifunc)
1477 {
1478 	struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
1479 	struct msg_rsp dis_rsp;
1480 
1481 	if (rule->default_rule)
1482 		return 0;
1483 
1484 	if (rule->has_cntr)
1485 		rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1486 
1487 	dis_req.hdr.pcifunc = pcifunc;
1488 	dis_req.entry = rule->entry;
1489 
1490 	list_del(&rule->list);
1491 	kfree(rule);
1492 
1493 	return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
1494 }
1495 
1496 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
1497 				     struct npc_delete_flow_req *req,
1498 				     struct npc_delete_flow_rsp *rsp)
1499 {
1500 	struct npc_mcam *mcam = &rvu->hw->mcam;
1501 	struct rvu_npc_mcam_rule *iter, *tmp;
1502 	u16 pcifunc = req->hdr.pcifunc;
1503 	struct list_head del_list;
1504 	int blkaddr;
1505 
1506 	INIT_LIST_HEAD(&del_list);
1507 
1508 	mutex_lock(&mcam->lock);
1509 	list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
1510 		if (iter->owner == pcifunc) {
1511 			/* All rules */
1512 			if (req->all) {
1513 				list_move_tail(&iter->list, &del_list);
1514 			/* Range of rules */
1515 			} else if (req->end && iter->entry >= req->start &&
1516 				   iter->entry <= req->end) {
1517 				list_move_tail(&iter->list, &del_list);
1518 			/* single rule */
1519 			} else if (req->entry == iter->entry) {
1520 				blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1521 				if (blkaddr)
1522 					rsp->cntr_val = rvu_read64(rvu, blkaddr,
1523 								   NPC_AF_MATCH_STATX(iter->cntr));
1524 				list_move_tail(&iter->list, &del_list);
1525 				break;
1526 			}
1527 		}
1528 	}
1529 	mutex_unlock(&mcam->lock);
1530 
1531 	list_for_each_entry_safe(iter, tmp, &del_list, list) {
1532 		u16 entry = iter->entry;
1533 
1534 		/* clear the mcam entry target pcifunc */
1535 		mcam->entry2target_pffunc[entry] = 0x0;
1536 		if (npc_delete_flow(rvu, iter, pcifunc))
1537 			dev_err(rvu->dev, "rule deletion failed for entry:%u",
1538 				entry);
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
1545 				 struct rvu_npc_mcam_rule *rule,
1546 				 struct rvu_pfvf *pfvf)
1547 {
1548 	struct npc_mcam_write_entry_req write_req = { 0 };
1549 	struct mcam_entry *entry = &write_req.entry_data;
1550 	struct npc_mcam *mcam = &rvu->hw->mcam;
1551 	struct msg_rsp rsp;
1552 	u8 intf, enable;
1553 	int err;
1554 
1555 	ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
1556 
1557 	npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
1558 			    entry, &intf,  &enable);
1559 
1560 	npc_update_entry(rvu, NPC_DMAC, entry,
1561 			 ether_addr_to_u64(pfvf->mac_addr), 0,
1562 			 0xffffffffffffull, 0, intf);
1563 
1564 	write_req.hdr.pcifunc = rule->owner;
1565 	write_req.entry = rule->entry;
1566 	write_req.intf = pfvf->nix_rx_intf;
1567 
1568 	mutex_unlock(&mcam->lock);
1569 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
1570 	mutex_lock(&mcam->lock);
1571 
1572 	return err;
1573 }
1574 
1575 void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
1576 {
1577 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
1578 	struct rvu_npc_mcam_rule *def_ucast_rule;
1579 	struct npc_mcam *mcam = &rvu->hw->mcam;
1580 	struct rvu_npc_mcam_rule *rule;
1581 	int blkaddr, bank, index;
1582 	u64 def_action;
1583 
1584 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1585 	if (blkaddr < 0)
1586 		return;
1587 
1588 	def_ucast_rule = pfvf->def_ucast_rule;
1589 
1590 	mutex_lock(&mcam->lock);
1591 	list_for_each_entry(rule, &mcam->mcam_rules, list) {
1592 		if (is_npc_intf_rx(rule->intf) &&
1593 		    rule->rx_action.pf_func == target && !rule->enable) {
1594 			if (rule->default_rule) {
1595 				npc_enable_mcam_entry(rvu, mcam, blkaddr,
1596 						      rule->entry, true);
1597 				rule->enable = true;
1598 				continue;
1599 			}
1600 
1601 			if (rule->vfvlan_cfg)
1602 				npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
1603 
1604 			if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
1605 				if (!def_ucast_rule)
1606 					continue;
1607 				/* Use default unicast entry action */
1608 				rule->rx_action = def_ucast_rule->rx_action;
1609 				def_action = *(u64 *)&def_ucast_rule->rx_action;
1610 				bank = npc_get_bank(mcam, rule->entry);
1611 				rvu_write64(rvu, blkaddr,
1612 					    NPC_AF_MCAMEX_BANKX_ACTION
1613 					    (rule->entry, bank), def_action);
1614 			}
1615 
1616 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1617 					      rule->entry, true);
1618 			rule->enable = true;
1619 		}
1620 	}
1621 
1622 	/* Enable MCAM entries installed by PF with target as VF pcifunc */
1623 	for (index = 0; index < mcam->bmap_entries; index++) {
1624 		if (mcam->entry2target_pffunc[index] == target)
1625 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1626 					      index, true);
1627 	}
1628 	mutex_unlock(&mcam->lock);
1629 }
1630 
1631 void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
1632 {
1633 	struct npc_mcam *mcam = &rvu->hw->mcam;
1634 	int blkaddr, index;
1635 
1636 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1637 	if (blkaddr < 0)
1638 		return;
1639 
1640 	mutex_lock(&mcam->lock);
1641 	/* Disable MCAM entries installed by PF with target as VF pcifunc */
1642 	for (index = 0; index < mcam->bmap_entries; index++) {
1643 		if (mcam->entry2target_pffunc[index] == target)
1644 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1645 					      index, false);
1646 	}
1647 	mutex_unlock(&mcam->lock);
1648 }
1649 
1650 /* single drop on non hit rule starting from 0th index. This an extension
1651  * to RPM mac filter to support more rules.
1652  */
1653 int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx,
1654 			       u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask,
1655 			       u64 bcast_mcast_val, u64 bcast_mcast_mask)
1656 {
1657 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
1658 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1659 	struct npc_mcam_write_entry_req req = { 0 };
1660 	struct npc_mcam *mcam = &rvu->hw->mcam;
1661 	struct rvu_npc_mcam_rule *rule;
1662 	struct msg_rsp rsp;
1663 	bool enabled;
1664 	int blkaddr;
1665 	int err;
1666 
1667 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1668 	if (blkaddr < 0) {
1669 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1670 		return -ENODEV;
1671 	}
1672 
1673 	/* Bail out if no exact match support */
1674 	if (!rvu_npc_exact_has_match_table(rvu)) {
1675 		dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__);
1676 		return -EINVAL;
1677 	}
1678 
1679 	/* If 0th entry is already used, return err */
1680 	enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx);
1681 	if (enabled) {
1682 		dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n",
1683 			__func__, mcam_idx);
1684 		return	-EINVAL;
1685 	}
1686 
1687 	/* Add this entry to mcam rules list */
1688 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1689 	if (!rule)
1690 		return -ENOMEM;
1691 
1692 	/* Disable rule by default. Enable rule when first dmac filter is
1693 	 * installed
1694 	 */
1695 	rule->enable = false;
1696 	rule->chan = chan_val;
1697 	rule->chan_mask = chan_mask;
1698 	rule->entry = mcam_idx;
1699 	rvu_mcam_add_rule(mcam, rule);
1700 
1701 	/* Reserve slot 0 */
1702 	npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx);
1703 
1704 	/* Allocate counter for this single drop on non hit rule */
1705 	cntr_req.hdr.pcifunc = 0; /* AF request */
1706 	cntr_req.contig = true;
1707 	cntr_req.count = 1;
1708 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp);
1709 	if (err) {
1710 		dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n",
1711 			__func__, err);
1712 		return	-EFAULT;
1713 	}
1714 	*counter_idx = cntr_rsp.cntr;
1715 
1716 	/* Fill in fields for this mcam entry */
1717 	npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0,
1718 			 exact_mask, 0, NIX_INTF_RX);
1719 	npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0,
1720 			 chan_mask, 0, NIX_INTF_RX);
1721 	npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0,
1722 			 bcast_mcast_mask, 0, NIX_INTF_RX);
1723 
1724 	req.intf = NIX_INTF_RX;
1725 	req.set_cntr = true;
1726 	req.cntr = cntr_rsp.cntr;
1727 	req.entry = mcam_idx;
1728 
1729 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp);
1730 	if (err) {
1731 		dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n",
1732 			__func__, mcam_idx);
1733 		return err;
1734 	}
1735 
1736 	dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n",
1737 		__func__, mcam_idx, req.cntr);
1738 
1739 	/* disable entry at Bank 0, index 0 */
1740 	npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false);
1741 
1742 	return 0;
1743 }
1744 
1745 int rvu_mbox_handler_npc_get_field_status(struct rvu *rvu,
1746 					  struct npc_get_field_status_req *req,
1747 					  struct npc_get_field_status_rsp *rsp)
1748 {
1749 	int blkaddr;
1750 
1751 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1752 	if (blkaddr < 0)
1753 		return NPC_MCAM_INVALID_REQ;
1754 
1755 	if (!is_npc_interface_valid(rvu, req->intf))
1756 		return NPC_FLOW_INTF_INVALID;
1757 
1758 	if (npc_check_field(rvu, blkaddr, req->field, req->intf))
1759 		rsp->enable = 1;
1760 
1761 	return 0;
1762 }
1763