xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_cpt.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/pci.h>
10 #include "rvu_struct.h"
11 #include "rvu_reg.h"
12 #include "mbox.h"
13 #include "rvu.h"
14 
15 /* CPT PF device id */
16 #define	PCI_DEVID_OTX2_CPT_PF	0xA0FD
17 #define	PCI_DEVID_OTX2_CPT10K_PF 0xA0F2
18 
19 /* Length of initial context fetch in 128 byte words */
20 #define CPT_CTX_ILEN    1ULL
21 
22 /* Interrupt vector count of CPT RVU and RAS interrupts */
23 #define CPT_10K_AF_RVU_RAS_INT_VEC_CNT  2
24 
25 /* Default CPT_AF_RXC_CFG1:max_rxc_icb_cnt */
26 #define CPT_DFLT_MAX_RXC_ICB_CNT  0xC0ULL
27 
28 #define cpt_get_eng_sts(e_min, e_max, rsp, etype)                   \
29 ({                                                                  \
30 	u64 free_sts = 0, busy_sts = 0;                             \
31 	typeof(rsp) _rsp = rsp;                                     \
32 	u32 e, i;                                                   \
33 								    \
34 	for (e = (e_min), i = 0; e < (e_max); e++, i++) {           \
35 		reg = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(e)); \
36 		if (reg & 0x1)                                      \
37 			busy_sts |= 1ULL << i;                      \
38 								    \
39 		if (reg & 0x2)                                      \
40 			free_sts |= 1ULL << i;                      \
41 	}                                                           \
42 	(_rsp)->busy_sts_##etype = busy_sts;                        \
43 	(_rsp)->free_sts_##etype = free_sts;                        \
44 })
45 
46 #define MAX_AE  GENMASK_ULL(47, 32)
47 #define MAX_IE  GENMASK_ULL(31, 16)
48 #define MAX_SE  GENMASK_ULL(15, 0)
49 
50 static u16 cpt_max_engines_get(struct rvu *rvu)
51 {
52 	u16 max_ses, max_ies, max_aes;
53 	u64 reg;
54 
55 	reg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS1);
56 	max_ses = FIELD_GET(MAX_SE, reg);
57 	max_ies = FIELD_GET(MAX_IE, reg);
58 	max_aes = FIELD_GET(MAX_AE, reg);
59 
60 	return max_ses + max_ies + max_aes;
61 }
62 
63 /* Number of flt interrupt vectors are depends on number of engines that the
64  * chip has. Each flt vector represents 64 engines.
65  */
66 static int cpt_10k_flt_nvecs_get(struct rvu *rvu, u16 max_engs)
67 {
68 	int flt_vecs;
69 
70 	flt_vecs = DIV_ROUND_UP(max_engs, 64);
71 
72 	if (flt_vecs > CPT_10K_AF_INT_VEC_FLT_MAX) {
73 		dev_warn_once(rvu->dev, "flt_vecs:%d exceeds the max vectors:%d\n",
74 			      flt_vecs, CPT_10K_AF_INT_VEC_FLT_MAX);
75 		flt_vecs = CPT_10K_AF_INT_VEC_FLT_MAX;
76 	}
77 
78 	return flt_vecs;
79 }
80 
81 static irqreturn_t cpt_af_flt_intr_handler(int vec, void *ptr)
82 {
83 	struct rvu_block *block = ptr;
84 	struct rvu *rvu = block->rvu;
85 	int blkaddr = block->addr;
86 	u64 reg, val;
87 	int i, eng;
88 	u8 grp;
89 
90 	reg = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(vec));
91 	dev_err_ratelimited(rvu->dev, "Received CPTAF FLT%d irq : 0x%llx", vec, reg);
92 
93 	i = -1;
94 	while ((i = find_next_bit((unsigned long *)&reg, 64, i + 1)) < 64) {
95 		switch (vec) {
96 		case 0:
97 			eng = i;
98 			break;
99 		case 1:
100 			eng = i + 64;
101 			break;
102 		case 2:
103 			eng = i + 128;
104 			break;
105 		}
106 		grp = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng)) & 0xFF;
107 		/* Disable and enable the engine which triggers fault */
108 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), 0x0);
109 		val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng));
110 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val & ~1ULL);
111 
112 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), grp);
113 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val | 1ULL);
114 
115 		spin_lock(&rvu->cpt_intr_lock);
116 		block->cpt_flt_eng_map[vec] |= BIT_ULL(i);
117 		val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(eng));
118 		val = val & 0x3;
119 		if (val == 0x1 || val == 0x2)
120 			block->cpt_rcvrd_eng_map[vec] |= BIT_ULL(i);
121 		spin_unlock(&rvu->cpt_intr_lock);
122 	}
123 	rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(vec), reg);
124 
125 	return IRQ_HANDLED;
126 }
127 
128 static irqreturn_t rvu_cpt_af_flt0_intr_handler(int irq, void *ptr)
129 {
130 	return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT0, ptr);
131 }
132 
133 static irqreturn_t rvu_cpt_af_flt1_intr_handler(int irq, void *ptr)
134 {
135 	return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT1, ptr);
136 }
137 
138 static irqreturn_t rvu_cpt_af_flt2_intr_handler(int irq, void *ptr)
139 {
140 	return cpt_af_flt_intr_handler(CPT_10K_AF_INT_VEC_FLT2, ptr);
141 }
142 
143 static irqreturn_t rvu_cpt_af_rvu_intr_handler(int irq, void *ptr)
144 {
145 	struct rvu_block *block = ptr;
146 	struct rvu *rvu = block->rvu;
147 	int blkaddr = block->addr;
148 	u64 reg;
149 
150 	reg = rvu_read64(rvu, blkaddr, CPT_AF_RVU_INT);
151 	dev_err_ratelimited(rvu->dev, "Received CPTAF RVU irq : 0x%llx", reg);
152 
153 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT, reg);
154 	return IRQ_HANDLED;
155 }
156 
157 static irqreturn_t rvu_cpt_af_ras_intr_handler(int irq, void *ptr)
158 {
159 	struct rvu_block *block = ptr;
160 	struct rvu *rvu = block->rvu;
161 	int blkaddr = block->addr;
162 	u64 reg;
163 
164 	reg = rvu_read64(rvu, blkaddr, CPT_AF_RAS_INT);
165 	dev_err_ratelimited(rvu->dev, "Received CPTAF RAS irq : 0x%llx", reg);
166 
167 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT, reg);
168 	return IRQ_HANDLED;
169 }
170 
171 static int rvu_cpt_do_register_interrupt(struct rvu_block *block, int irq_offs,
172 					 irq_handler_t handler,
173 					 const char *name)
174 {
175 	struct rvu *rvu = block->rvu;
176 	int ret;
177 
178 	ret = request_irq(pci_irq_vector(rvu->pdev, irq_offs), handler, 0,
179 			  name, block);
180 	if (ret) {
181 		dev_err(rvu->dev, "RVUAF: %s irq registration failed", name);
182 		return ret;
183 	}
184 
185 	WARN_ON(rvu->irq_allocated[irq_offs]);
186 	rvu->irq_allocated[irq_offs] = true;
187 	return 0;
188 }
189 
190 static void cpt_10k_unregister_interrupts(struct rvu_block *block, int off)
191 {
192 	struct rvu *rvu = block->rvu;
193 	int blkaddr = block->addr;
194 	int i, flt_vecs;
195 	u16 max_engs;
196 	u8 nr;
197 
198 	max_engs = cpt_max_engines_get(rvu);
199 	flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs);
200 
201 	/* Disable all CPT AF interrupts */
202 	for (i = CPT_10K_AF_INT_VEC_FLT0; i < flt_vecs; i++) {
203 		nr = (max_engs > 64) ? 64 : max_engs;
204 		max_engs -= nr;
205 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i),
206 			    INTR_MASK(nr));
207 	}
208 
209 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
210 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
211 
212 	/* CPT AF interrupt vectors are flt_int, rvu_int and ras_int. */
213 	for (i = 0; i < flt_vecs + CPT_10K_AF_RVU_RAS_INT_VEC_CNT; i++)
214 		if (rvu->irq_allocated[off + i]) {
215 			free_irq(pci_irq_vector(rvu->pdev, off + i), block);
216 			rvu->irq_allocated[off + i] = false;
217 		}
218 }
219 
220 static void cpt_unregister_interrupts(struct rvu *rvu, int blkaddr)
221 {
222 	struct rvu_hwinfo *hw = rvu->hw;
223 	struct rvu_block *block;
224 	int i, offs;
225 
226 	if (!is_block_implemented(rvu->hw, blkaddr))
227 		return;
228 	offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
229 	if (!offs) {
230 		dev_warn(rvu->dev,
231 			 "Failed to get CPT_AF_INT vector offsets\n");
232 		return;
233 	}
234 	block = &hw->block[blkaddr];
235 	if (!is_rvu_otx2(rvu))
236 		return cpt_10k_unregister_interrupts(block, offs);
237 
238 	/* Disable all CPT AF interrupts */
239 	for (i = 0; i < CPT_AF_INT_VEC_RVU; i++)
240 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), ~0ULL);
241 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
242 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
243 
244 	for (i = 0; i < CPT_AF_INT_VEC_CNT; i++)
245 		if (rvu->irq_allocated[offs + i]) {
246 			free_irq(pci_irq_vector(rvu->pdev, offs + i), block);
247 			rvu->irq_allocated[offs + i] = false;
248 		}
249 }
250 
251 void rvu_cpt_unregister_interrupts(struct rvu *rvu)
252 {
253 	cpt_unregister_interrupts(rvu, BLKADDR_CPT0);
254 	cpt_unregister_interrupts(rvu, BLKADDR_CPT1);
255 }
256 
257 static int cpt_10k_register_interrupts(struct rvu_block *block, int off)
258 {
259 	int rvu_intr_vec, ras_intr_vec;
260 	struct rvu *rvu = block->rvu;
261 	int blkaddr = block->addr;
262 	irq_handler_t flt_fn;
263 	int i, ret, flt_vecs;
264 	u16 max_engs;
265 	u8 nr;
266 
267 	max_engs = cpt_max_engines_get(rvu);
268 	flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs);
269 
270 	for (i = CPT_10K_AF_INT_VEC_FLT0; i < flt_vecs; i++) {
271 		sprintf(&rvu->irq_name[(off + i) * NAME_SIZE], "CPTAF FLT%d", i);
272 
273 		switch (i) {
274 		case CPT_10K_AF_INT_VEC_FLT0:
275 			flt_fn = rvu_cpt_af_flt0_intr_handler;
276 			break;
277 		case CPT_10K_AF_INT_VEC_FLT1:
278 			flt_fn = rvu_cpt_af_flt1_intr_handler;
279 			break;
280 		case CPT_10K_AF_INT_VEC_FLT2:
281 			flt_fn = rvu_cpt_af_flt2_intr_handler;
282 			break;
283 		}
284 		ret = rvu_cpt_do_register_interrupt(block, off + i,
285 						    flt_fn, &rvu->irq_name[(off + i) * NAME_SIZE]);
286 		if (ret)
287 			goto err;
288 
289 		nr = (max_engs > 64) ? 64 : max_engs;
290 		max_engs -= nr;
291 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i),
292 			    INTR_MASK(nr));
293 	}
294 
295 	rvu_intr_vec = flt_vecs;
296 	ras_intr_vec = rvu_intr_vec + 1;
297 
298 	ret = rvu_cpt_do_register_interrupt(block, off + rvu_intr_vec,
299 					    rvu_cpt_af_rvu_intr_handler,
300 					    "CPTAF RVU");
301 	if (ret)
302 		goto err;
303 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
304 
305 	ret = rvu_cpt_do_register_interrupt(block, off + ras_intr_vec,
306 					    rvu_cpt_af_ras_intr_handler,
307 					    "CPTAF RAS");
308 	if (ret)
309 		goto err;
310 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
311 
312 	return 0;
313 err:
314 	rvu_cpt_unregister_interrupts(rvu);
315 	return ret;
316 }
317 
318 static int cpt_register_interrupts(struct rvu *rvu, int blkaddr)
319 {
320 	struct rvu_hwinfo *hw = rvu->hw;
321 	struct rvu_block *block;
322 	irq_handler_t flt_fn;
323 	int i, offs, ret = 0;
324 
325 	if (!is_block_implemented(rvu->hw, blkaddr))
326 		return 0;
327 
328 	block = &hw->block[blkaddr];
329 	offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
330 	if (!offs) {
331 		dev_warn(rvu->dev,
332 			 "Failed to get CPT_AF_INT vector offsets\n");
333 		return 0;
334 	}
335 
336 	if (!is_rvu_otx2(rvu))
337 		return cpt_10k_register_interrupts(block, offs);
338 
339 	for (i = CPT_AF_INT_VEC_FLT0; i < CPT_AF_INT_VEC_RVU; i++) {
340 		sprintf(&rvu->irq_name[(offs + i) * NAME_SIZE], "CPTAF FLT%d", i);
341 		switch (i) {
342 		case CPT_AF_INT_VEC_FLT0:
343 			flt_fn = rvu_cpt_af_flt0_intr_handler;
344 			break;
345 		case CPT_AF_INT_VEC_FLT1:
346 			flt_fn = rvu_cpt_af_flt1_intr_handler;
347 			break;
348 		}
349 		ret = rvu_cpt_do_register_interrupt(block, offs + i,
350 						    flt_fn, &rvu->irq_name[(offs + i) * NAME_SIZE]);
351 		if (ret)
352 			goto err;
353 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL);
354 	}
355 
356 	ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RVU,
357 					    rvu_cpt_af_rvu_intr_handler,
358 					    "CPTAF RVU");
359 	if (ret)
360 		goto err;
361 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
362 
363 	ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RAS,
364 					    rvu_cpt_af_ras_intr_handler,
365 					    "CPTAF RAS");
366 	if (ret)
367 		goto err;
368 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
369 
370 	return 0;
371 err:
372 	rvu_cpt_unregister_interrupts(rvu);
373 	return ret;
374 }
375 
376 int rvu_cpt_register_interrupts(struct rvu *rvu)
377 {
378 	int ret;
379 
380 	ret = cpt_register_interrupts(rvu, BLKADDR_CPT0);
381 	if (ret)
382 		return ret;
383 
384 	return cpt_register_interrupts(rvu, BLKADDR_CPT1);
385 }
386 
387 static int get_cpt_pf_num(struct rvu *rvu)
388 {
389 	int i, domain_nr, cpt_pf_num = -1;
390 	struct pci_dev *pdev;
391 
392 	domain_nr = pci_domain_nr(rvu->pdev->bus);
393 	for (i = 0; i < rvu->hw->total_pfs; i++) {
394 		pdev = pci_get_domain_bus_and_slot(domain_nr, i + 1, 0);
395 		if (!pdev)
396 			continue;
397 
398 		if (pdev->device == PCI_DEVID_OTX2_CPT_PF ||
399 		    pdev->device == PCI_DEVID_OTX2_CPT10K_PF) {
400 			cpt_pf_num = i;
401 			put_device(&pdev->dev);
402 			break;
403 		}
404 		put_device(&pdev->dev);
405 	}
406 	return cpt_pf_num;
407 }
408 
409 static bool is_cpt_pf(struct rvu *rvu, u16 pcifunc)
410 {
411 	int cpt_pf_num = rvu->cpt_pf_num;
412 
413 	if (rvu_get_pf(pcifunc) != cpt_pf_num)
414 		return false;
415 	if (pcifunc & RVU_PFVF_FUNC_MASK)
416 		return false;
417 
418 	return true;
419 }
420 
421 static bool is_cpt_vf(struct rvu *rvu, u16 pcifunc)
422 {
423 	int cpt_pf_num = rvu->cpt_pf_num;
424 
425 	if (rvu_get_pf(pcifunc) != cpt_pf_num)
426 		return false;
427 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
428 		return false;
429 
430 	return true;
431 }
432 
433 static int validate_and_get_cpt_blkaddr(int req_blkaddr)
434 {
435 	int blkaddr;
436 
437 	blkaddr = req_blkaddr ? req_blkaddr : BLKADDR_CPT0;
438 	if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
439 		return -EINVAL;
440 
441 	return blkaddr;
442 }
443 
444 int rvu_mbox_handler_cpt_lf_alloc(struct rvu *rvu,
445 				  struct cpt_lf_alloc_req_msg *req,
446 				  struct msg_rsp *rsp)
447 {
448 	u16 pcifunc = req->hdr.pcifunc;
449 	struct rvu_block *block;
450 	int cptlf, blkaddr;
451 	int num_lfs, slot;
452 	u64 val;
453 
454 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
455 	if (blkaddr < 0)
456 		return blkaddr;
457 
458 	if (req->eng_grpmsk == 0x0)
459 		return CPT_AF_ERR_GRP_INVALID;
460 
461 	block = &rvu->hw->block[blkaddr];
462 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
463 					block->addr);
464 	if (!num_lfs)
465 		return CPT_AF_ERR_LF_INVALID;
466 
467 	/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
468 	if (req->nix_pf_func) {
469 		/* If default, use 'this' CPTLF's PFFUNC */
470 		if (req->nix_pf_func == RVU_DEFAULT_PF_FUNC)
471 			req->nix_pf_func = pcifunc;
472 		if (!is_pffunc_map_valid(rvu, req->nix_pf_func, BLKTYPE_NIX))
473 			return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
474 	}
475 
476 	/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
477 	if (req->sso_pf_func) {
478 		/* If default, use 'this' CPTLF's PFFUNC */
479 		if (req->sso_pf_func == RVU_DEFAULT_PF_FUNC)
480 			req->sso_pf_func = pcifunc;
481 		if (!is_pffunc_map_valid(rvu, req->sso_pf_func, BLKTYPE_SSO))
482 			return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
483 	}
484 
485 	for (slot = 0; slot < num_lfs; slot++) {
486 		cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
487 		if (cptlf < 0)
488 			return CPT_AF_ERR_LF_INVALID;
489 
490 		/* Set CPT LF group and priority */
491 		val = (u64)req->eng_grpmsk << 48 | 1;
492 		if (!is_rvu_otx2(rvu)) {
493 			if (req->ctx_ilen_valid)
494 				val |= (req->ctx_ilen << 17);
495 			else
496 				val |= (CPT_CTX_ILEN << 17);
497 		}
498 
499 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
500 
501 		/* Set CPT LF NIX_PF_FUNC and SSO_PF_FUNC. EXE_LDWB is set
502 		 * on reset.
503 		 */
504 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
505 		val &= ~(GENMASK_ULL(63, 48) | GENMASK_ULL(47, 32));
506 		val |= ((u64)req->nix_pf_func << 48 |
507 			(u64)req->sso_pf_func << 32);
508 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
509 	}
510 
511 	return 0;
512 }
513 
514 static int cpt_lf_free(struct rvu *rvu, struct msg_req *req, int blkaddr)
515 {
516 	u16 pcifunc = req->hdr.pcifunc;
517 	int num_lfs, cptlf, slot, err;
518 	struct rvu_block *block;
519 
520 	block = &rvu->hw->block[blkaddr];
521 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
522 					block->addr);
523 	if (!num_lfs)
524 		return 0;
525 
526 	for (slot = 0; slot < num_lfs; slot++) {
527 		cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
528 		if (cptlf < 0)
529 			return CPT_AF_ERR_LF_INVALID;
530 
531 		/* Perform teardown */
532 		rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr, cptlf, slot);
533 
534 		/* Reset LF */
535 		err = rvu_lf_reset(rvu, block, cptlf);
536 		if (err) {
537 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
538 				block->addr, cptlf);
539 		}
540 	}
541 
542 	return 0;
543 }
544 
545 int rvu_mbox_handler_cpt_lf_free(struct rvu *rvu, struct msg_req *req,
546 				 struct msg_rsp *rsp)
547 {
548 	int ret;
549 
550 	ret = cpt_lf_free(rvu, req, BLKADDR_CPT0);
551 	if (ret)
552 		return ret;
553 
554 	if (is_block_implemented(rvu->hw, BLKADDR_CPT1))
555 		ret = cpt_lf_free(rvu, req, BLKADDR_CPT1);
556 
557 	return ret;
558 }
559 
560 static int cpt_inline_ipsec_cfg_inbound(struct rvu *rvu, int blkaddr, u8 cptlf,
561 					struct cpt_inline_ipsec_cfg_msg *req)
562 {
563 	u16 sso_pf_func = req->sso_pf_func;
564 	u8 nix_sel;
565 	u64 val;
566 
567 	val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
568 	if (req->enable && (val & BIT_ULL(16))) {
569 		/* IPSec inline outbound path is already enabled for a given
570 		 * CPT LF, HRM states that inline inbound & outbound paths
571 		 * must not be enabled at the same time for a given CPT LF
572 		 */
573 		return CPT_AF_ERR_INLINE_IPSEC_INB_ENA;
574 	}
575 	/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
576 	if (sso_pf_func && !is_pffunc_map_valid(rvu, sso_pf_func, BLKTYPE_SSO))
577 		return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
578 
579 	nix_sel = (blkaddr == BLKADDR_CPT1) ? 1 : 0;
580 	/* Enable CPT LF for IPsec inline inbound operations */
581 	if (req->enable)
582 		val |= BIT_ULL(9);
583 	else
584 		val &= ~BIT_ULL(9);
585 
586 	val |= (u64)nix_sel << 8;
587 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
588 
589 	if (sso_pf_func) {
590 		/* Set SSO_PF_FUNC */
591 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
592 		val |= (u64)sso_pf_func << 32;
593 		val |= (u64)req->nix_pf_func << 48;
594 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
595 	}
596 	if (req->sso_pf_func_ovrd)
597 		/* Set SSO_PF_FUNC_OVRD for inline IPSec */
598 		rvu_write64(rvu, blkaddr, CPT_AF_ECO, 0x1);
599 
600 	/* Configure the X2P Link register with the cpt base channel number and
601 	 * range of channels it should propagate to X2P
602 	 */
603 	if (!is_rvu_otx2(rvu)) {
604 		val = (ilog2(NIX_CHAN_CPT_X2P_MASK + 1) << 16);
605 		val |= (u64)rvu->hw->cpt_chan_base;
606 
607 		rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0), val);
608 		rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1), val);
609 	}
610 
611 	return 0;
612 }
613 
614 static int cpt_inline_ipsec_cfg_outbound(struct rvu *rvu, int blkaddr, u8 cptlf,
615 					 struct cpt_inline_ipsec_cfg_msg *req)
616 {
617 	u16 nix_pf_func = req->nix_pf_func;
618 	int nix_blkaddr;
619 	u8 nix_sel;
620 	u64 val;
621 
622 	val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
623 	if (req->enable && (val & BIT_ULL(9))) {
624 		/* IPSec inline inbound path is already enabled for a given
625 		 * CPT LF, HRM states that inline inbound & outbound paths
626 		 * must not be enabled at the same time for a given CPT LF
627 		 */
628 		return CPT_AF_ERR_INLINE_IPSEC_OUT_ENA;
629 	}
630 
631 	/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
632 	if (nix_pf_func && !is_pffunc_map_valid(rvu, nix_pf_func, BLKTYPE_NIX))
633 		return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
634 
635 	/* Enable CPT LF for IPsec inline outbound operations */
636 	if (req->enable)
637 		val |= BIT_ULL(16);
638 	else
639 		val &= ~BIT_ULL(16);
640 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
641 
642 	if (nix_pf_func) {
643 		/* Set NIX_PF_FUNC */
644 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
645 		val |= (u64)nix_pf_func << 48;
646 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
647 
648 		nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, nix_pf_func);
649 		nix_sel = (nix_blkaddr == BLKADDR_NIX0) ? 0 : 1;
650 
651 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
652 		val |= (u64)nix_sel << 8;
653 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
654 	}
655 
656 	return 0;
657 }
658 
659 int rvu_mbox_handler_cpt_inline_ipsec_cfg(struct rvu *rvu,
660 					  struct cpt_inline_ipsec_cfg_msg *req,
661 					  struct msg_rsp *rsp)
662 {
663 	u16 pcifunc = req->hdr.pcifunc;
664 	struct rvu_block *block;
665 	int cptlf, blkaddr, ret;
666 	u16 actual_slot;
667 
668 	blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc,
669 					    req->slot, &actual_slot);
670 	if (blkaddr < 0)
671 		return CPT_AF_ERR_LF_INVALID;
672 
673 	block = &rvu->hw->block[blkaddr];
674 
675 	cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot);
676 	if (cptlf < 0)
677 		return CPT_AF_ERR_LF_INVALID;
678 
679 	switch (req->dir) {
680 	case CPT_INLINE_INBOUND:
681 		ret = cpt_inline_ipsec_cfg_inbound(rvu, blkaddr, cptlf, req);
682 		break;
683 
684 	case CPT_INLINE_OUTBOUND:
685 		ret = cpt_inline_ipsec_cfg_outbound(rvu, blkaddr, cptlf, req);
686 		break;
687 
688 	default:
689 		return CPT_AF_ERR_PARAM;
690 	}
691 
692 	return ret;
693 }
694 
695 static bool validate_and_update_reg_offset(struct rvu *rvu,
696 					   struct cpt_rd_wr_reg_msg *req,
697 					   u64 *reg_offset)
698 {
699 	u64 offset = req->reg_offset;
700 	int blkaddr, num_lfs, lf;
701 	struct rvu_block *block;
702 	struct rvu_pfvf *pfvf;
703 
704 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
705 	if (blkaddr < 0)
706 		return false;
707 
708 	/* Registers that can be accessed from PF/VF */
709 	if ((offset & 0xFF000) ==  CPT_AF_LFX_CTL(0) ||
710 	    (offset & 0xFF000) ==  CPT_AF_LFX_CTL2(0)) {
711 		if (offset & 7)
712 			return false;
713 
714 		lf = (offset & 0xFFF) >> 3;
715 		block = &rvu->hw->block[blkaddr];
716 		pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
717 		num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
718 		if (lf >= num_lfs)
719 			/* Slot is not valid for that PF/VF */
720 			return false;
721 
722 		/* Translate local LF used by VFs to global CPT LF */
723 		lf = rvu_get_lf(rvu, &rvu->hw->block[blkaddr],
724 				req->hdr.pcifunc, lf);
725 		if (lf < 0)
726 			return false;
727 
728 		/* Translate local LF's offset to global CPT LF's offset to
729 		 * access LFX register.
730 		 */
731 		*reg_offset = (req->reg_offset & 0xFF000) + (lf << 3);
732 
733 		return true;
734 	} else if (!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK)) {
735 		/* Registers that can be accessed from PF */
736 		switch (offset) {
737 		case CPT_AF_DIAG:
738 		case CPT_AF_CTL:
739 		case CPT_AF_PF_FUNC:
740 		case CPT_AF_BLK_RST:
741 		case CPT_AF_CONSTANTS1:
742 		case CPT_AF_CTX_FLUSH_TIMER:
743 		case CPT_AF_RXC_CFG1:
744 			return true;
745 		}
746 
747 		switch (offset & 0xFF000) {
748 		case CPT_AF_EXEX_STS(0):
749 		case CPT_AF_EXEX_CTL(0):
750 		case CPT_AF_EXEX_CTL2(0):
751 		case CPT_AF_EXEX_UCODE_BASE(0):
752 			if (offset & 7)
753 				return false;
754 			break;
755 		default:
756 			return false;
757 		}
758 		return true;
759 	}
760 	return false;
761 }
762 
763 int rvu_mbox_handler_cpt_rd_wr_register(struct rvu *rvu,
764 					struct cpt_rd_wr_reg_msg *req,
765 					struct cpt_rd_wr_reg_msg *rsp)
766 {
767 	u64 offset = req->reg_offset;
768 	int blkaddr;
769 
770 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
771 	if (blkaddr < 0)
772 		return blkaddr;
773 
774 	/* This message is accepted only if sent from CPT PF/VF */
775 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
776 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
777 		return CPT_AF_ERR_ACCESS_DENIED;
778 
779 	if (!validate_and_update_reg_offset(rvu, req, &offset))
780 		return CPT_AF_ERR_ACCESS_DENIED;
781 
782 	rsp->reg_offset = req->reg_offset;
783 	rsp->ret_val = req->ret_val;
784 	rsp->is_write = req->is_write;
785 
786 	if (req->is_write)
787 		rvu_write64(rvu, blkaddr, offset, req->val);
788 	else
789 		rsp->val = rvu_read64(rvu, blkaddr, offset);
790 
791 	return 0;
792 }
793 
794 static void get_ctx_pc(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
795 {
796 	struct rvu_hwinfo *hw = rvu->hw;
797 
798 	if (is_rvu_otx2(rvu))
799 		return;
800 
801 	rsp->ctx_mis_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_MIS_PC);
802 	rsp->ctx_hit_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_HIT_PC);
803 	rsp->ctx_aop_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_PC);
804 	rsp->ctx_aop_lat_pc = rvu_read64(rvu, blkaddr,
805 					 CPT_AF_CTX_AOP_LATENCY_PC);
806 	rsp->ctx_ifetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_PC);
807 	rsp->ctx_ifetch_lat_pc = rvu_read64(rvu, blkaddr,
808 					    CPT_AF_CTX_IFETCH_LATENCY_PC);
809 	rsp->ctx_ffetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
810 	rsp->ctx_ffetch_lat_pc = rvu_read64(rvu, blkaddr,
811 					    CPT_AF_CTX_FFETCH_LATENCY_PC);
812 	rsp->ctx_wback_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
813 	rsp->ctx_wback_lat_pc = rvu_read64(rvu, blkaddr,
814 					   CPT_AF_CTX_FFETCH_LATENCY_PC);
815 	rsp->ctx_psh_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
816 	rsp->ctx_psh_lat_pc = rvu_read64(rvu, blkaddr,
817 					 CPT_AF_CTX_FFETCH_LATENCY_PC);
818 	rsp->ctx_err = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ERR);
819 	rsp->ctx_enc_id = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ENC_ID);
820 	rsp->ctx_flush_timer = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FLUSH_TIMER);
821 	rsp->x2p_link_cfg0 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0));
822 	rsp->x2p_link_cfg1 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1));
823 
824 	if (!hw->cap.cpt_rxc)
825 		return;
826 	rsp->rxc_time = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME);
827 	rsp->rxc_time_cfg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG);
828 	rsp->rxc_active_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
829 	rsp->rxc_zombie_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
830 	rsp->rxc_dfrg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG);
831 }
832 
833 static void get_eng_sts(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
834 {
835 	u16 max_ses, max_ies, max_aes;
836 	u32 e_min = 0, e_max = 0;
837 	u64 reg;
838 
839 	reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS1);
840 	max_ses = reg & 0xffff;
841 	max_ies = (reg >> 16) & 0xffff;
842 	max_aes = (reg >> 32) & 0xffff;
843 
844 	/* Get AE status */
845 	e_min = max_ses + max_ies;
846 	e_max = max_ses + max_ies + max_aes;
847 	cpt_get_eng_sts(e_min, e_max, rsp, ae);
848 	/* Get SE status */
849 	e_min = 0;
850 	e_max = max_ses;
851 	cpt_get_eng_sts(e_min, e_max, rsp, se);
852 	/* Get IE status */
853 	e_min = max_ses;
854 	e_max = max_ses + max_ies;
855 	cpt_get_eng_sts(e_min, e_max, rsp, ie);
856 }
857 
858 int rvu_mbox_handler_cpt_sts(struct rvu *rvu, struct cpt_sts_req *req,
859 			     struct cpt_sts_rsp *rsp)
860 {
861 	int blkaddr;
862 
863 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
864 	if (blkaddr < 0)
865 		return blkaddr;
866 
867 	/* This message is accepted only if sent from CPT PF/VF */
868 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
869 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
870 		return CPT_AF_ERR_ACCESS_DENIED;
871 
872 	get_ctx_pc(rvu, rsp, blkaddr);
873 
874 	/* Get CPT engines status */
875 	get_eng_sts(rvu, rsp, blkaddr);
876 
877 	/* Read CPT instruction PC registers */
878 	rsp->inst_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_REQ_PC);
879 	rsp->inst_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_LATENCY_PC);
880 	rsp->rd_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_REQ_PC);
881 	rsp->rd_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_LATENCY_PC);
882 	rsp->rd_uc_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_UC_PC);
883 	rsp->active_cycles_pc = rvu_read64(rvu, blkaddr,
884 					   CPT_AF_ACTIVE_CYCLES_PC);
885 	rsp->exe_err_info = rvu_read64(rvu, blkaddr, CPT_AF_EXE_ERR_INFO);
886 	rsp->cptclk_cnt = rvu_read64(rvu, blkaddr, CPT_AF_CPTCLK_CNT);
887 	rsp->diag = rvu_read64(rvu, blkaddr, CPT_AF_DIAG);
888 
889 	return 0;
890 }
891 
892 #define RXC_ZOMBIE_THRES  GENMASK_ULL(59, 48)
893 #define RXC_ZOMBIE_LIMIT  GENMASK_ULL(43, 32)
894 #define RXC_ACTIVE_THRES  GENMASK_ULL(27, 16)
895 #define RXC_ACTIVE_LIMIT  GENMASK_ULL(11, 0)
896 #define RXC_ACTIVE_COUNT  GENMASK_ULL(60, 48)
897 #define RXC_ZOMBIE_COUNT  GENMASK_ULL(60, 48)
898 
899 static void cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req,
900 			     int blkaddr, struct cpt_rxc_time_cfg_req *save)
901 {
902 	u64 dfrg_reg;
903 
904 	if (save) {
905 		/* Save older config */
906 		dfrg_reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG);
907 		save->zombie_thres = FIELD_GET(RXC_ZOMBIE_THRES, dfrg_reg);
908 		save->zombie_limit = FIELD_GET(RXC_ZOMBIE_LIMIT, dfrg_reg);
909 		save->active_thres = FIELD_GET(RXC_ACTIVE_THRES, dfrg_reg);
910 		save->active_limit = FIELD_GET(RXC_ACTIVE_LIMIT, dfrg_reg);
911 
912 		save->step = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG);
913 	}
914 
915 	dfrg_reg = FIELD_PREP(RXC_ZOMBIE_THRES, req->zombie_thres);
916 	dfrg_reg |= FIELD_PREP(RXC_ZOMBIE_LIMIT, req->zombie_limit);
917 	dfrg_reg |= FIELD_PREP(RXC_ACTIVE_THRES, req->active_thres);
918 	dfrg_reg |= FIELD_PREP(RXC_ACTIVE_LIMIT, req->active_limit);
919 
920 	rvu_write64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG, req->step);
921 	rvu_write64(rvu, blkaddr, CPT_AF_RXC_DFRG, dfrg_reg);
922 }
923 
924 int rvu_mbox_handler_cpt_rxc_time_cfg(struct rvu *rvu,
925 				      struct cpt_rxc_time_cfg_req *req,
926 				      struct msg_rsp *rsp)
927 {
928 	int blkaddr;
929 
930 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
931 	if (blkaddr < 0)
932 		return blkaddr;
933 
934 	/* This message is accepted only if sent from CPT PF/VF */
935 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
936 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
937 		return CPT_AF_ERR_ACCESS_DENIED;
938 
939 	cpt_rxc_time_cfg(rvu, req, blkaddr, NULL);
940 
941 	return 0;
942 }
943 
944 int rvu_mbox_handler_cpt_ctx_cache_sync(struct rvu *rvu, struct msg_req *req,
945 					struct msg_rsp *rsp)
946 {
947 	return rvu_cpt_ctx_flush(rvu, req->hdr.pcifunc);
948 }
949 
950 int rvu_mbox_handler_cpt_lf_reset(struct rvu *rvu, struct cpt_lf_rst_req *req,
951 				  struct msg_rsp *rsp)
952 {
953 	u16 pcifunc = req->hdr.pcifunc;
954 	struct rvu_block *block;
955 	int cptlf, blkaddr, ret;
956 	u16 actual_slot;
957 	u64 ctl, ctl2;
958 
959 	blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc,
960 					    req->slot, &actual_slot);
961 	if (blkaddr < 0)
962 		return CPT_AF_ERR_LF_INVALID;
963 
964 	block = &rvu->hw->block[blkaddr];
965 
966 	cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot);
967 	if (cptlf < 0)
968 		return CPT_AF_ERR_LF_INVALID;
969 	ctl = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
970 	ctl2 = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
971 
972 	ret = rvu_lf_reset(rvu, block, cptlf);
973 	if (ret)
974 		dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
975 			block->addr, cptlf);
976 
977 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), ctl);
978 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), ctl2);
979 
980 	return 0;
981 }
982 
983 int rvu_mbox_handler_cpt_flt_eng_info(struct rvu *rvu, struct cpt_flt_eng_info_req *req,
984 				      struct cpt_flt_eng_info_rsp *rsp)
985 {
986 	struct rvu_block *block;
987 	unsigned long flags;
988 	int blkaddr, vec;
989 	int flt_vecs;
990 	u16 max_engs;
991 
992 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
993 	if (blkaddr < 0)
994 		return blkaddr;
995 
996 	block = &rvu->hw->block[blkaddr];
997 	max_engs = cpt_max_engines_get(rvu);
998 	flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs);
999 	for (vec = 0; vec < flt_vecs; vec++) {
1000 		spin_lock_irqsave(&rvu->cpt_intr_lock, flags);
1001 		rsp->flt_eng_map[vec] = block->cpt_flt_eng_map[vec];
1002 		rsp->rcvrd_eng_map[vec] = block->cpt_rcvrd_eng_map[vec];
1003 		if (req->reset) {
1004 			block->cpt_flt_eng_map[vec] = 0x0;
1005 			block->cpt_rcvrd_eng_map[vec] = 0x0;
1006 		}
1007 		spin_unlock_irqrestore(&rvu->cpt_intr_lock, flags);
1008 	}
1009 	return 0;
1010 }
1011 
1012 static void cpt_rxc_teardown(struct rvu *rvu, int blkaddr)
1013 {
1014 	struct cpt_rxc_time_cfg_req req, prev;
1015 	struct rvu_hwinfo *hw = rvu->hw;
1016 	int timeout = 2000;
1017 	u64 reg;
1018 
1019 	if (!hw->cap.cpt_rxc)
1020 		return;
1021 
1022 	/* Set time limit to minimum values, so that rxc entries will be
1023 	 * flushed out quickly.
1024 	 */
1025 	req.step = 1;
1026 	req.zombie_thres = 1;
1027 	req.zombie_limit = 1;
1028 	req.active_thres = 1;
1029 	req.active_limit = 1;
1030 
1031 	cpt_rxc_time_cfg(rvu, &req, blkaddr, &prev);
1032 
1033 	do {
1034 		reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
1035 		udelay(1);
1036 		if (FIELD_GET(RXC_ACTIVE_COUNT, reg))
1037 			timeout--;
1038 		else
1039 			break;
1040 	} while (timeout);
1041 
1042 	if (timeout == 0)
1043 		dev_warn(rvu->dev, "Poll for RXC active count hits hard loop counter\n");
1044 
1045 	timeout = 2000;
1046 	do {
1047 		reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
1048 		udelay(1);
1049 		if (FIELD_GET(RXC_ZOMBIE_COUNT, reg))
1050 			timeout--;
1051 		else
1052 			break;
1053 	} while (timeout);
1054 
1055 	if (timeout == 0)
1056 		dev_warn(rvu->dev, "Poll for RXC zombie count hits hard loop counter\n");
1057 
1058 	/* Restore config */
1059 	cpt_rxc_time_cfg(rvu, &prev, blkaddr, NULL);
1060 }
1061 
1062 #define INFLIGHT   GENMASK_ULL(8, 0)
1063 #define GRB_CNT    GENMASK_ULL(39, 32)
1064 #define GWB_CNT    GENMASK_ULL(47, 40)
1065 #define XQ_XOR     GENMASK_ULL(63, 63)
1066 #define DQPTR      GENMASK_ULL(19, 0)
1067 #define NQPTR      GENMASK_ULL(51, 32)
1068 
1069 static void cpt_lf_disable_iqueue(struct rvu *rvu, int blkaddr, int slot)
1070 {
1071 	int timeout = 1000000;
1072 	u64 inprog, inst_ptr;
1073 	u64 qsize, pending;
1074 	int i = 0;
1075 
1076 	/* Disable instructions enqueuing */
1077 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTL), 0x0);
1078 
1079 	inprog = rvu_read64(rvu, blkaddr,
1080 			    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
1081 	inprog |= BIT_ULL(16);
1082 	rvu_write64(rvu, blkaddr,
1083 		    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), inprog);
1084 
1085 	qsize = rvu_read64(rvu, blkaddr,
1086 			   CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_SIZE)) & 0x7FFF;
1087 	do {
1088 		inst_ptr = rvu_read64(rvu, blkaddr,
1089 				      CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_INST_PTR));
1090 		pending = (FIELD_GET(XQ_XOR, inst_ptr) * qsize * 40) +
1091 			  FIELD_GET(NQPTR, inst_ptr) -
1092 			  FIELD_GET(DQPTR, inst_ptr);
1093 		udelay(1);
1094 		timeout--;
1095 	} while ((pending != 0) && (timeout != 0));
1096 
1097 	if (timeout == 0)
1098 		dev_warn(rvu->dev, "TIMEOUT: CPT poll on pending instructions\n");
1099 
1100 	timeout = 1000000;
1101 	/* Wait for CPT queue to become execution-quiescent */
1102 	do {
1103 		inprog = rvu_read64(rvu, blkaddr,
1104 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
1105 
1106 		if ((FIELD_GET(INFLIGHT, inprog) == 0) &&
1107 		    (FIELD_GET(GRB_CNT, inprog) == 0)) {
1108 			i++;
1109 		} else {
1110 			i = 0;
1111 			timeout--;
1112 		}
1113 	} while ((timeout != 0) && (i < 10));
1114 
1115 	if (timeout == 0)
1116 		dev_warn(rvu->dev, "TIMEOUT: CPT poll on inflight count\n");
1117 	/* Wait for 2 us to flush all queue writes to memory */
1118 	udelay(2);
1119 }
1120 
1121 int rvu_cpt_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int lf, int slot)
1122 {
1123 	u64 reg;
1124 
1125 	if (is_cpt_pf(rvu, pcifunc) || is_cpt_vf(rvu, pcifunc))
1126 		cpt_rxc_teardown(rvu, blkaddr);
1127 
1128 	mutex_lock(&rvu->alias_lock);
1129 	/* Enable BAR2 ALIAS for this pcifunc. */
1130 	reg = BIT_ULL(16) | pcifunc;
1131 	rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
1132 
1133 	cpt_lf_disable_iqueue(rvu, blkaddr, slot);
1134 
1135 	rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
1136 	mutex_unlock(&rvu->alias_lock);
1137 
1138 	return 0;
1139 }
1140 
1141 #define CPT_RES_LEN    16
1142 #define CPT_SE_IE_EGRP 1ULL
1143 
1144 static int cpt_inline_inb_lf_cmd_send(struct rvu *rvu, int blkaddr,
1145 				      int nix_blkaddr)
1146 {
1147 	int cpt_pf_num = rvu->cpt_pf_num;
1148 	struct cpt_inst_lmtst_req *req;
1149 	dma_addr_t res_daddr;
1150 	int timeout = 3000;
1151 	u8 cpt_idx;
1152 	u64 *inst;
1153 	u16 *res;
1154 	int rc;
1155 
1156 	res = kzalloc(CPT_RES_LEN, GFP_KERNEL);
1157 	if (!res)
1158 		return -ENOMEM;
1159 
1160 	res_daddr = dma_map_single(rvu->dev, res, CPT_RES_LEN,
1161 				   DMA_BIDIRECTIONAL);
1162 	if (dma_mapping_error(rvu->dev, res_daddr)) {
1163 		dev_err(rvu->dev, "DMA mapping failed for CPT result\n");
1164 		rc = -EFAULT;
1165 		goto res_free;
1166 	}
1167 	*res = 0xFFFF;
1168 
1169 	/* Send mbox message to CPT PF */
1170 	req = (struct cpt_inst_lmtst_req *)
1171 	       otx2_mbox_alloc_msg_rsp(&rvu->afpf_wq_info.mbox_up,
1172 				       cpt_pf_num, sizeof(*req),
1173 				       sizeof(struct msg_rsp));
1174 	if (!req) {
1175 		rc = -ENOMEM;
1176 		goto res_daddr_unmap;
1177 	}
1178 	req->hdr.sig = OTX2_MBOX_REQ_SIG;
1179 	req->hdr.id = MBOX_MSG_CPT_INST_LMTST;
1180 
1181 	inst = req->inst;
1182 	/* Prepare CPT_INST_S */
1183 	inst[0] = 0;
1184 	inst[1] = res_daddr;
1185 	/* AF PF FUNC */
1186 	inst[2] = 0;
1187 	/* Set QORD */
1188 	inst[3] = 1;
1189 	inst[4] = 0;
1190 	inst[5] = 0;
1191 	inst[6] = 0;
1192 	/* Set EGRP */
1193 	inst[7] = CPT_SE_IE_EGRP << 61;
1194 
1195 	/* Subtract 1 from the NIX-CPT credit count to preserve
1196 	 * credit counts.
1197 	 */
1198 	cpt_idx = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
1199 	rvu_write64(rvu, nix_blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx),
1200 		    BIT_ULL(22) - 1);
1201 
1202 	otx2_mbox_msg_send(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
1203 	rc = otx2_mbox_wait_for_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
1204 	if (rc)
1205 		dev_warn(rvu->dev, "notification to pf %d failed\n",
1206 			 cpt_pf_num);
1207 	/* Wait for CPT instruction to be completed */
1208 	do {
1209 		mdelay(1);
1210 		if (*res == 0xFFFF)
1211 			timeout--;
1212 		else
1213 			break;
1214 	} while (timeout);
1215 
1216 	if (timeout == 0)
1217 		dev_warn(rvu->dev, "Poll for result hits hard loop counter\n");
1218 
1219 res_daddr_unmap:
1220 	dma_unmap_single(rvu->dev, res_daddr, CPT_RES_LEN, DMA_BIDIRECTIONAL);
1221 res_free:
1222 	kfree(res);
1223 
1224 	return 0;
1225 }
1226 
1227 #define CTX_CAM_PF_FUNC   GENMASK_ULL(61, 46)
1228 #define CTX_CAM_CPTR      GENMASK_ULL(45, 0)
1229 
1230 int rvu_cpt_ctx_flush(struct rvu *rvu, u16 pcifunc)
1231 {
1232 	int nix_blkaddr, blkaddr;
1233 	u16 max_ctx_entries, i;
1234 	int slot = 0, num_lfs;
1235 	u64 reg, cam_data;
1236 	int rc;
1237 
1238 	nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1239 	if (nix_blkaddr < 0)
1240 		return -EINVAL;
1241 
1242 	if (is_rvu_otx2(rvu))
1243 		return 0;
1244 
1245 	blkaddr = (nix_blkaddr == BLKADDR_NIX1) ? BLKADDR_CPT1 : BLKADDR_CPT0;
1246 
1247 	/* Submit CPT_INST_S to track when all packets have been
1248 	 * flushed through for the NIX PF FUNC in inline inbound case.
1249 	 */
1250 	rc = cpt_inline_inb_lf_cmd_send(rvu, blkaddr, nix_blkaddr);
1251 	if (rc)
1252 		return rc;
1253 
1254 	/* Wait for rxc entries to be flushed out */
1255 	cpt_rxc_teardown(rvu, blkaddr);
1256 
1257 	reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
1258 	max_ctx_entries = (reg >> 48) & 0xFFF;
1259 
1260 	mutex_lock(&rvu->rsrc_lock);
1261 
1262 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1263 					blkaddr);
1264 	if (num_lfs == 0) {
1265 		dev_warn(rvu->dev, "CPT LF is not configured\n");
1266 		goto unlock;
1267 	}
1268 
1269 	/* Enable BAR2 ALIAS for this pcifunc. */
1270 	reg = BIT_ULL(16) | pcifunc;
1271 	rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
1272 
1273 	for (i = 0; i < max_ctx_entries; i++) {
1274 		cam_data = rvu_read64(rvu, blkaddr, CPT_AF_CTX_CAM_DATA(i));
1275 
1276 		if ((FIELD_GET(CTX_CAM_PF_FUNC, cam_data) == pcifunc) &&
1277 		    FIELD_GET(CTX_CAM_CPTR, cam_data)) {
1278 			reg = BIT_ULL(46) | FIELD_GET(CTX_CAM_CPTR, cam_data);
1279 			rvu_write64(rvu, blkaddr,
1280 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTX_FLUSH),
1281 				    reg);
1282 		}
1283 	}
1284 	rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
1285 
1286 unlock:
1287 	mutex_unlock(&rvu->rsrc_lock);
1288 
1289 	return 0;
1290 }
1291 
1292 #define MAX_RXC_ICB_CNT  GENMASK_ULL(40, 32)
1293 
1294 int rvu_cpt_init(struct rvu *rvu)
1295 {
1296 	struct rvu_hwinfo *hw = rvu->hw;
1297 	u64 reg_val;
1298 
1299 	/* Retrieve CPT PF number */
1300 	rvu->cpt_pf_num = get_cpt_pf_num(rvu);
1301 	if (is_block_implemented(rvu->hw, BLKADDR_CPT0) && !is_rvu_otx2(rvu) &&
1302 	    !is_cn10kb(rvu))
1303 		hw->cap.cpt_rxc = true;
1304 
1305 	if (hw->cap.cpt_rxc && !is_cn10ka_a0(rvu) && !is_cn10ka_a1(rvu)) {
1306 		/* Set CPT_AF_RXC_CFG1:max_rxc_icb_cnt to 0xc0 to not effect
1307 		 * inline inbound peak performance
1308 		 */
1309 		reg_val = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_RXC_CFG1);
1310 		reg_val &= ~MAX_RXC_ICB_CNT;
1311 		reg_val |= FIELD_PREP(MAX_RXC_ICB_CNT,
1312 				      CPT_DFLT_MAX_RXC_ICB_CNT);
1313 		rvu_write64(rvu, BLKADDR_CPT0, CPT_AF_RXC_CFG1, reg_val);
1314 	}
1315 
1316 	spin_lock_init(&rvu->cpt_intr_lock);
1317 
1318 	return 0;
1319 }
1320