xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_cpt.c (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/pci.h>
10 #include "rvu_struct.h"
11 #include "rvu_reg.h"
12 #include "mbox.h"
13 #include "rvu.h"
14 
15 /* CPT PF device id */
16 #define	PCI_DEVID_OTX2_CPT_PF	0xA0FD
17 #define	PCI_DEVID_OTX2_CPT10K_PF 0xA0F2
18 
19 /* Length of initial context fetch in 128 byte words */
20 #define CPT_CTX_ILEN    2
21 
22 #define cpt_get_eng_sts(e_min, e_max, rsp, etype)                   \
23 ({                                                                  \
24 	u64 free_sts = 0, busy_sts = 0;                             \
25 	typeof(rsp) _rsp = rsp;                                     \
26 	u32 e, i;                                                   \
27 								    \
28 	for (e = (e_min), i = 0; e < (e_max); e++, i++) {           \
29 		reg = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(e)); \
30 		if (reg & 0x1)                                      \
31 			busy_sts |= 1ULL << i;                      \
32 								    \
33 		if (reg & 0x2)                                      \
34 			free_sts |= 1ULL << i;                      \
35 	}                                                           \
36 	(_rsp)->busy_sts_##etype = busy_sts;                        \
37 	(_rsp)->free_sts_##etype = free_sts;                        \
38 })
39 
40 static irqreturn_t rvu_cpt_af_flt_intr_handler(int irq, void *ptr)
41 {
42 	struct rvu_block *block = ptr;
43 	struct rvu *rvu = block->rvu;
44 	int blkaddr = block->addr;
45 	u64 reg0, reg1, reg2;
46 
47 	reg0 = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(0));
48 	reg1 = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(1));
49 	if (!is_rvu_otx2(rvu)) {
50 		reg2 = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(2));
51 		dev_err_ratelimited(rvu->dev,
52 				    "Received CPTAF FLT irq : 0x%llx, 0x%llx, 0x%llx",
53 				     reg0, reg1, reg2);
54 	} else {
55 		dev_err_ratelimited(rvu->dev,
56 				    "Received CPTAF FLT irq : 0x%llx, 0x%llx",
57 				     reg0, reg1);
58 	}
59 
60 	rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(0), reg0);
61 	rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(1), reg1);
62 	if (!is_rvu_otx2(rvu))
63 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(2), reg2);
64 
65 	return IRQ_HANDLED;
66 }
67 
68 static irqreturn_t rvu_cpt_af_rvu_intr_handler(int irq, void *ptr)
69 {
70 	struct rvu_block *block = ptr;
71 	struct rvu *rvu = block->rvu;
72 	int blkaddr = block->addr;
73 	u64 reg;
74 
75 	reg = rvu_read64(rvu, blkaddr, CPT_AF_RVU_INT);
76 	dev_err_ratelimited(rvu->dev, "Received CPTAF RVU irq : 0x%llx", reg);
77 
78 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT, reg);
79 	return IRQ_HANDLED;
80 }
81 
82 static irqreturn_t rvu_cpt_af_ras_intr_handler(int irq, void *ptr)
83 {
84 	struct rvu_block *block = ptr;
85 	struct rvu *rvu = block->rvu;
86 	int blkaddr = block->addr;
87 	u64 reg;
88 
89 	reg = rvu_read64(rvu, blkaddr, CPT_AF_RAS_INT);
90 	dev_err_ratelimited(rvu->dev, "Received CPTAF RAS irq : 0x%llx", reg);
91 
92 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT, reg);
93 	return IRQ_HANDLED;
94 }
95 
96 static int rvu_cpt_do_register_interrupt(struct rvu_block *block, int irq_offs,
97 					 irq_handler_t handler,
98 					 const char *name)
99 {
100 	struct rvu *rvu = block->rvu;
101 	int ret;
102 
103 	ret = request_irq(pci_irq_vector(rvu->pdev, irq_offs), handler, 0,
104 			  name, block);
105 	if (ret) {
106 		dev_err(rvu->dev, "RVUAF: %s irq registration failed", name);
107 		return ret;
108 	}
109 
110 	WARN_ON(rvu->irq_allocated[irq_offs]);
111 	rvu->irq_allocated[irq_offs] = true;
112 	return 0;
113 }
114 
115 static void cpt_10k_unregister_interrupts(struct rvu_block *block, int off)
116 {
117 	struct rvu *rvu = block->rvu;
118 	int blkaddr = block->addr;
119 	int i;
120 
121 	/* Disable all CPT AF interrupts */
122 	for (i = 0; i < CPT_10K_AF_INT_VEC_RVU; i++)
123 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), 0x1);
124 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
125 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
126 
127 	for (i = 0; i < CPT_10K_AF_INT_VEC_CNT; i++)
128 		if (rvu->irq_allocated[off + i]) {
129 			free_irq(pci_irq_vector(rvu->pdev, off + i), block);
130 			rvu->irq_allocated[off + i] = false;
131 		}
132 }
133 
134 static void cpt_unregister_interrupts(struct rvu *rvu, int blkaddr)
135 {
136 	struct rvu_hwinfo *hw = rvu->hw;
137 	struct rvu_block *block;
138 	int i, offs;
139 
140 	if (!is_block_implemented(rvu->hw, blkaddr))
141 		return;
142 	offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
143 	if (!offs) {
144 		dev_warn(rvu->dev,
145 			 "Failed to get CPT_AF_INT vector offsets\n");
146 		return;
147 	}
148 	block = &hw->block[blkaddr];
149 	if (!is_rvu_otx2(rvu))
150 		return cpt_10k_unregister_interrupts(block, offs);
151 
152 	/* Disable all CPT AF interrupts */
153 	for (i = 0; i < CPT_AF_INT_VEC_RVU; i++)
154 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), 0x1);
155 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
156 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
157 
158 	for (i = 0; i < CPT_AF_INT_VEC_CNT; i++)
159 		if (rvu->irq_allocated[offs + i]) {
160 			free_irq(pci_irq_vector(rvu->pdev, offs + i), block);
161 			rvu->irq_allocated[offs + i] = false;
162 		}
163 }
164 
165 void rvu_cpt_unregister_interrupts(struct rvu *rvu)
166 {
167 	cpt_unregister_interrupts(rvu, BLKADDR_CPT0);
168 	cpt_unregister_interrupts(rvu, BLKADDR_CPT1);
169 }
170 
171 static int cpt_10k_register_interrupts(struct rvu_block *block, int off)
172 {
173 	struct rvu *rvu = block->rvu;
174 	int blkaddr = block->addr;
175 	int i, ret;
176 
177 	for (i = CPT_10K_AF_INT_VEC_FLT0; i < CPT_10K_AF_INT_VEC_RVU; i++) {
178 		sprintf(&rvu->irq_name[(off + i) * NAME_SIZE], "CPTAF FLT%d", i);
179 		ret = rvu_cpt_do_register_interrupt(block, off + i,
180 						    rvu_cpt_af_flt_intr_handler,
181 						    &rvu->irq_name[(off + i) * NAME_SIZE]);
182 		if (ret)
183 			goto err;
184 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), 0x1);
185 	}
186 
187 	ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RVU,
188 					    rvu_cpt_af_rvu_intr_handler,
189 					    "CPTAF RVU");
190 	if (ret)
191 		goto err;
192 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
193 
194 	ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RAS,
195 					    rvu_cpt_af_ras_intr_handler,
196 					    "CPTAF RAS");
197 	if (ret)
198 		goto err;
199 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
200 
201 	return 0;
202 err:
203 	rvu_cpt_unregister_interrupts(rvu);
204 	return ret;
205 }
206 
207 static int cpt_register_interrupts(struct rvu *rvu, int blkaddr)
208 {
209 	struct rvu_hwinfo *hw = rvu->hw;
210 	struct rvu_block *block;
211 	int i, offs, ret = 0;
212 	char irq_name[16];
213 
214 	if (!is_block_implemented(rvu->hw, blkaddr))
215 		return 0;
216 
217 	block = &hw->block[blkaddr];
218 	offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
219 	if (!offs) {
220 		dev_warn(rvu->dev,
221 			 "Failed to get CPT_AF_INT vector offsets\n");
222 		return 0;
223 	}
224 
225 	if (!is_rvu_otx2(rvu))
226 		return cpt_10k_register_interrupts(block, offs);
227 
228 	for (i = CPT_AF_INT_VEC_FLT0; i < CPT_AF_INT_VEC_RVU; i++) {
229 		snprintf(irq_name, sizeof(irq_name), "CPTAF FLT%d", i);
230 		ret = rvu_cpt_do_register_interrupt(block, offs + i,
231 						    rvu_cpt_af_flt_intr_handler,
232 						    irq_name);
233 		if (ret)
234 			goto err;
235 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), 0x1);
236 	}
237 
238 	ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RVU,
239 					    rvu_cpt_af_rvu_intr_handler,
240 					    "CPTAF RVU");
241 	if (ret)
242 		goto err;
243 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
244 
245 	ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RAS,
246 					    rvu_cpt_af_ras_intr_handler,
247 					    "CPTAF RAS");
248 	if (ret)
249 		goto err;
250 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
251 
252 	return 0;
253 err:
254 	rvu_cpt_unregister_interrupts(rvu);
255 	return ret;
256 }
257 
258 int rvu_cpt_register_interrupts(struct rvu *rvu)
259 {
260 	int ret;
261 
262 	ret = cpt_register_interrupts(rvu, BLKADDR_CPT0);
263 	if (ret)
264 		return ret;
265 
266 	return cpt_register_interrupts(rvu, BLKADDR_CPT1);
267 }
268 
269 static int get_cpt_pf_num(struct rvu *rvu)
270 {
271 	int i, domain_nr, cpt_pf_num = -1;
272 	struct pci_dev *pdev;
273 
274 	domain_nr = pci_domain_nr(rvu->pdev->bus);
275 	for (i = 0; i < rvu->hw->total_pfs; i++) {
276 		pdev = pci_get_domain_bus_and_slot(domain_nr, i + 1, 0);
277 		if (!pdev)
278 			continue;
279 
280 		if (pdev->device == PCI_DEVID_OTX2_CPT_PF ||
281 		    pdev->device == PCI_DEVID_OTX2_CPT10K_PF) {
282 			cpt_pf_num = i;
283 			put_device(&pdev->dev);
284 			break;
285 		}
286 		put_device(&pdev->dev);
287 	}
288 	return cpt_pf_num;
289 }
290 
291 static bool is_cpt_pf(struct rvu *rvu, u16 pcifunc)
292 {
293 	int cpt_pf_num = get_cpt_pf_num(rvu);
294 
295 	if (rvu_get_pf(pcifunc) != cpt_pf_num)
296 		return false;
297 	if (pcifunc & RVU_PFVF_FUNC_MASK)
298 		return false;
299 
300 	return true;
301 }
302 
303 static bool is_cpt_vf(struct rvu *rvu, u16 pcifunc)
304 {
305 	int cpt_pf_num = get_cpt_pf_num(rvu);
306 
307 	if (rvu_get_pf(pcifunc) != cpt_pf_num)
308 		return false;
309 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
310 		return false;
311 
312 	return true;
313 }
314 
315 static int validate_and_get_cpt_blkaddr(int req_blkaddr)
316 {
317 	int blkaddr;
318 
319 	blkaddr = req_blkaddr ? req_blkaddr : BLKADDR_CPT0;
320 	if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
321 		return -EINVAL;
322 
323 	return blkaddr;
324 }
325 
326 int rvu_mbox_handler_cpt_lf_alloc(struct rvu *rvu,
327 				  struct cpt_lf_alloc_req_msg *req,
328 				  struct msg_rsp *rsp)
329 {
330 	u16 pcifunc = req->hdr.pcifunc;
331 	struct rvu_block *block;
332 	int cptlf, blkaddr;
333 	int num_lfs, slot;
334 	u64 val;
335 
336 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
337 	if (blkaddr < 0)
338 		return blkaddr;
339 
340 	if (req->eng_grpmsk == 0x0)
341 		return CPT_AF_ERR_GRP_INVALID;
342 
343 	block = &rvu->hw->block[blkaddr];
344 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
345 					block->addr);
346 	if (!num_lfs)
347 		return CPT_AF_ERR_LF_INVALID;
348 
349 	/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
350 	if (req->nix_pf_func) {
351 		/* If default, use 'this' CPTLF's PFFUNC */
352 		if (req->nix_pf_func == RVU_DEFAULT_PF_FUNC)
353 			req->nix_pf_func = pcifunc;
354 		if (!is_pffunc_map_valid(rvu, req->nix_pf_func, BLKTYPE_NIX))
355 			return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
356 	}
357 
358 	/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
359 	if (req->sso_pf_func) {
360 		/* If default, use 'this' CPTLF's PFFUNC */
361 		if (req->sso_pf_func == RVU_DEFAULT_PF_FUNC)
362 			req->sso_pf_func = pcifunc;
363 		if (!is_pffunc_map_valid(rvu, req->sso_pf_func, BLKTYPE_SSO))
364 			return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
365 	}
366 
367 	for (slot = 0; slot < num_lfs; slot++) {
368 		cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
369 		if (cptlf < 0)
370 			return CPT_AF_ERR_LF_INVALID;
371 
372 		/* Set CPT LF group and priority */
373 		val = (u64)req->eng_grpmsk << 48 | 1;
374 		if (!is_rvu_otx2(rvu))
375 			val |= (CPT_CTX_ILEN << 17);
376 
377 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
378 
379 		/* Set CPT LF NIX_PF_FUNC and SSO_PF_FUNC. EXE_LDWB is set
380 		 * on reset.
381 		 */
382 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
383 		val &= ~(GENMASK_ULL(63, 48) | GENMASK_ULL(47, 32));
384 		val |= ((u64)req->nix_pf_func << 48 |
385 			(u64)req->sso_pf_func << 32);
386 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
387 	}
388 
389 	return 0;
390 }
391 
392 static int cpt_lf_free(struct rvu *rvu, struct msg_req *req, int blkaddr)
393 {
394 	u16 pcifunc = req->hdr.pcifunc;
395 	int num_lfs, cptlf, slot, err;
396 	struct rvu_block *block;
397 
398 	block = &rvu->hw->block[blkaddr];
399 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
400 					block->addr);
401 	if (!num_lfs)
402 		return 0;
403 
404 	for (slot = 0; slot < num_lfs; slot++) {
405 		cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
406 		if (cptlf < 0)
407 			return CPT_AF_ERR_LF_INVALID;
408 
409 		/* Perform teardown */
410 		rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr, cptlf, slot);
411 
412 		/* Reset LF */
413 		err = rvu_lf_reset(rvu, block, cptlf);
414 		if (err) {
415 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
416 				block->addr, cptlf);
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 int rvu_mbox_handler_cpt_lf_free(struct rvu *rvu, struct msg_req *req,
424 				 struct msg_rsp *rsp)
425 {
426 	int ret;
427 
428 	ret = cpt_lf_free(rvu, req, BLKADDR_CPT0);
429 	if (ret)
430 		return ret;
431 
432 	if (is_block_implemented(rvu->hw, BLKADDR_CPT1))
433 		ret = cpt_lf_free(rvu, req, BLKADDR_CPT1);
434 
435 	return ret;
436 }
437 
438 static int cpt_inline_ipsec_cfg_inbound(struct rvu *rvu, int blkaddr, u8 cptlf,
439 					struct cpt_inline_ipsec_cfg_msg *req)
440 {
441 	u16 sso_pf_func = req->sso_pf_func;
442 	u8 nix_sel;
443 	u64 val;
444 
445 	val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
446 	if (req->enable && (val & BIT_ULL(16))) {
447 		/* IPSec inline outbound path is already enabled for a given
448 		 * CPT LF, HRM states that inline inbound & outbound paths
449 		 * must not be enabled at the same time for a given CPT LF
450 		 */
451 		return CPT_AF_ERR_INLINE_IPSEC_INB_ENA;
452 	}
453 	/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
454 	if (sso_pf_func && !is_pffunc_map_valid(rvu, sso_pf_func, BLKTYPE_SSO))
455 		return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
456 
457 	nix_sel = (blkaddr == BLKADDR_CPT1) ? 1 : 0;
458 	/* Enable CPT LF for IPsec inline inbound operations */
459 	if (req->enable)
460 		val |= BIT_ULL(9);
461 	else
462 		val &= ~BIT_ULL(9);
463 
464 	val |= (u64)nix_sel << 8;
465 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
466 
467 	if (sso_pf_func) {
468 		/* Set SSO_PF_FUNC */
469 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
470 		val |= (u64)sso_pf_func << 32;
471 		val |= (u64)req->nix_pf_func << 48;
472 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
473 	}
474 	if (req->sso_pf_func_ovrd)
475 		/* Set SSO_PF_FUNC_OVRD for inline IPSec */
476 		rvu_write64(rvu, blkaddr, CPT_AF_ECO, 0x1);
477 
478 	/* Configure the X2P Link register with the cpt base channel number and
479 	 * range of channels it should propagate to X2P
480 	 */
481 	if (!is_rvu_otx2(rvu)) {
482 		val = (ilog2(NIX_CHAN_CPT_X2P_MASK + 1) << 16);
483 		val |= rvu->hw->cpt_chan_base;
484 
485 		rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0), val);
486 		rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1), val);
487 	}
488 
489 	return 0;
490 }
491 
492 static int cpt_inline_ipsec_cfg_outbound(struct rvu *rvu, int blkaddr, u8 cptlf,
493 					 struct cpt_inline_ipsec_cfg_msg *req)
494 {
495 	u16 nix_pf_func = req->nix_pf_func;
496 	int nix_blkaddr;
497 	u8 nix_sel;
498 	u64 val;
499 
500 	val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
501 	if (req->enable && (val & BIT_ULL(9))) {
502 		/* IPSec inline inbound path is already enabled for a given
503 		 * CPT LF, HRM states that inline inbound & outbound paths
504 		 * must not be enabled at the same time for a given CPT LF
505 		 */
506 		return CPT_AF_ERR_INLINE_IPSEC_OUT_ENA;
507 	}
508 
509 	/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
510 	if (nix_pf_func && !is_pffunc_map_valid(rvu, nix_pf_func, BLKTYPE_NIX))
511 		return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
512 
513 	/* Enable CPT LF for IPsec inline outbound operations */
514 	if (req->enable)
515 		val |= BIT_ULL(16);
516 	else
517 		val &= ~BIT_ULL(16);
518 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
519 
520 	if (nix_pf_func) {
521 		/* Set NIX_PF_FUNC */
522 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
523 		val |= (u64)nix_pf_func << 48;
524 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
525 
526 		nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, nix_pf_func);
527 		nix_sel = (nix_blkaddr == BLKADDR_NIX0) ? 0 : 1;
528 
529 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
530 		val |= (u64)nix_sel << 8;
531 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
532 	}
533 
534 	return 0;
535 }
536 
537 int rvu_mbox_handler_cpt_inline_ipsec_cfg(struct rvu *rvu,
538 					  struct cpt_inline_ipsec_cfg_msg *req,
539 					  struct msg_rsp *rsp)
540 {
541 	u16 pcifunc = req->hdr.pcifunc;
542 	struct rvu_block *block;
543 	int cptlf, blkaddr, ret;
544 	u16 actual_slot;
545 
546 	blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc,
547 					    req->slot, &actual_slot);
548 	if (blkaddr < 0)
549 		return CPT_AF_ERR_LF_INVALID;
550 
551 	block = &rvu->hw->block[blkaddr];
552 
553 	cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot);
554 	if (cptlf < 0)
555 		return CPT_AF_ERR_LF_INVALID;
556 
557 	switch (req->dir) {
558 	case CPT_INLINE_INBOUND:
559 		ret = cpt_inline_ipsec_cfg_inbound(rvu, blkaddr, cptlf, req);
560 		break;
561 
562 	case CPT_INLINE_OUTBOUND:
563 		ret = cpt_inline_ipsec_cfg_outbound(rvu, blkaddr, cptlf, req);
564 		break;
565 
566 	default:
567 		return CPT_AF_ERR_PARAM;
568 	}
569 
570 	return ret;
571 }
572 
573 static bool is_valid_offset(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req)
574 {
575 	u64 offset = req->reg_offset;
576 	int blkaddr, num_lfs, lf;
577 	struct rvu_block *block;
578 	struct rvu_pfvf *pfvf;
579 
580 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
581 	if (blkaddr < 0)
582 		return blkaddr;
583 
584 	/* Registers that can be accessed from PF/VF */
585 	if ((offset & 0xFF000) ==  CPT_AF_LFX_CTL(0) ||
586 	    (offset & 0xFF000) ==  CPT_AF_LFX_CTL2(0)) {
587 		if (offset & 7)
588 			return false;
589 
590 		lf = (offset & 0xFFF) >> 3;
591 		block = &rvu->hw->block[blkaddr];
592 		pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
593 		num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
594 		if (lf >= num_lfs)
595 			/* Slot is not valid for that PF/VF */
596 			return false;
597 
598 		/* Translate local LF used by VFs to global CPT LF */
599 		lf = rvu_get_lf(rvu, &rvu->hw->block[blkaddr],
600 				req->hdr.pcifunc, lf);
601 		if (lf < 0)
602 			return false;
603 
604 		return true;
605 	} else if (!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK)) {
606 		/* Registers that can be accessed from PF */
607 		switch (offset) {
608 		case CPT_AF_DIAG:
609 		case CPT_AF_CTL:
610 		case CPT_AF_PF_FUNC:
611 		case CPT_AF_BLK_RST:
612 		case CPT_AF_CONSTANTS1:
613 		case CPT_AF_CTX_FLUSH_TIMER:
614 			return true;
615 		}
616 
617 		switch (offset & 0xFF000) {
618 		case CPT_AF_EXEX_STS(0):
619 		case CPT_AF_EXEX_CTL(0):
620 		case CPT_AF_EXEX_CTL2(0):
621 		case CPT_AF_EXEX_UCODE_BASE(0):
622 			if (offset & 7)
623 				return false;
624 			break;
625 		default:
626 			return false;
627 		}
628 		return true;
629 	}
630 	return false;
631 }
632 
633 int rvu_mbox_handler_cpt_rd_wr_register(struct rvu *rvu,
634 					struct cpt_rd_wr_reg_msg *req,
635 					struct cpt_rd_wr_reg_msg *rsp)
636 {
637 	int blkaddr;
638 
639 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
640 	if (blkaddr < 0)
641 		return blkaddr;
642 
643 	/* This message is accepted only if sent from CPT PF/VF */
644 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
645 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
646 		return CPT_AF_ERR_ACCESS_DENIED;
647 
648 	rsp->reg_offset = req->reg_offset;
649 	rsp->ret_val = req->ret_val;
650 	rsp->is_write = req->is_write;
651 
652 	if (!is_valid_offset(rvu, req))
653 		return CPT_AF_ERR_ACCESS_DENIED;
654 
655 	if (req->is_write)
656 		rvu_write64(rvu, blkaddr, req->reg_offset, req->val);
657 	else
658 		rsp->val = rvu_read64(rvu, blkaddr, req->reg_offset);
659 
660 	return 0;
661 }
662 
663 static void get_ctx_pc(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
664 {
665 	if (is_rvu_otx2(rvu))
666 		return;
667 
668 	rsp->ctx_mis_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_MIS_PC);
669 	rsp->ctx_hit_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_HIT_PC);
670 	rsp->ctx_aop_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_PC);
671 	rsp->ctx_aop_lat_pc = rvu_read64(rvu, blkaddr,
672 					 CPT_AF_CTX_AOP_LATENCY_PC);
673 	rsp->ctx_ifetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_PC);
674 	rsp->ctx_ifetch_lat_pc = rvu_read64(rvu, blkaddr,
675 					    CPT_AF_CTX_IFETCH_LATENCY_PC);
676 	rsp->ctx_ffetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
677 	rsp->ctx_ffetch_lat_pc = rvu_read64(rvu, blkaddr,
678 					    CPT_AF_CTX_FFETCH_LATENCY_PC);
679 	rsp->ctx_wback_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
680 	rsp->ctx_wback_lat_pc = rvu_read64(rvu, blkaddr,
681 					   CPT_AF_CTX_FFETCH_LATENCY_PC);
682 	rsp->ctx_psh_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
683 	rsp->ctx_psh_lat_pc = rvu_read64(rvu, blkaddr,
684 					 CPT_AF_CTX_FFETCH_LATENCY_PC);
685 	rsp->ctx_err = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ERR);
686 	rsp->ctx_enc_id = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ENC_ID);
687 	rsp->ctx_flush_timer = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FLUSH_TIMER);
688 
689 	rsp->rxc_time = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME);
690 	rsp->rxc_time_cfg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG);
691 	rsp->rxc_active_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
692 	rsp->rxc_zombie_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
693 	rsp->rxc_dfrg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG);
694 	rsp->x2p_link_cfg0 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0));
695 	rsp->x2p_link_cfg1 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1));
696 }
697 
698 static void get_eng_sts(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
699 {
700 	u16 max_ses, max_ies, max_aes;
701 	u32 e_min = 0, e_max = 0;
702 	u64 reg;
703 
704 	reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS1);
705 	max_ses = reg & 0xffff;
706 	max_ies = (reg >> 16) & 0xffff;
707 	max_aes = (reg >> 32) & 0xffff;
708 
709 	/* Get AE status */
710 	e_min = max_ses + max_ies;
711 	e_max = max_ses + max_ies + max_aes;
712 	cpt_get_eng_sts(e_min, e_max, rsp, ae);
713 	/* Get SE status */
714 	e_min = 0;
715 	e_max = max_ses;
716 	cpt_get_eng_sts(e_min, e_max, rsp, se);
717 	/* Get IE status */
718 	e_min = max_ses;
719 	e_max = max_ses + max_ies;
720 	cpt_get_eng_sts(e_min, e_max, rsp, ie);
721 }
722 
723 int rvu_mbox_handler_cpt_sts(struct rvu *rvu, struct cpt_sts_req *req,
724 			     struct cpt_sts_rsp *rsp)
725 {
726 	int blkaddr;
727 
728 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
729 	if (blkaddr < 0)
730 		return blkaddr;
731 
732 	/* This message is accepted only if sent from CPT PF/VF */
733 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
734 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
735 		return CPT_AF_ERR_ACCESS_DENIED;
736 
737 	get_ctx_pc(rvu, rsp, blkaddr);
738 
739 	/* Get CPT engines status */
740 	get_eng_sts(rvu, rsp, blkaddr);
741 
742 	/* Read CPT instruction PC registers */
743 	rsp->inst_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_REQ_PC);
744 	rsp->inst_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_LATENCY_PC);
745 	rsp->rd_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_REQ_PC);
746 	rsp->rd_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_LATENCY_PC);
747 	rsp->rd_uc_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_UC_PC);
748 	rsp->active_cycles_pc = rvu_read64(rvu, blkaddr,
749 					   CPT_AF_ACTIVE_CYCLES_PC);
750 	rsp->exe_err_info = rvu_read64(rvu, blkaddr, CPT_AF_EXE_ERR_INFO);
751 	rsp->cptclk_cnt = rvu_read64(rvu, blkaddr, CPT_AF_CPTCLK_CNT);
752 	rsp->diag = rvu_read64(rvu, blkaddr, CPT_AF_DIAG);
753 
754 	return 0;
755 }
756 
757 #define RXC_ZOMBIE_THRES  GENMASK_ULL(59, 48)
758 #define RXC_ZOMBIE_LIMIT  GENMASK_ULL(43, 32)
759 #define RXC_ACTIVE_THRES  GENMASK_ULL(27, 16)
760 #define RXC_ACTIVE_LIMIT  GENMASK_ULL(11, 0)
761 #define RXC_ACTIVE_COUNT  GENMASK_ULL(60, 48)
762 #define RXC_ZOMBIE_COUNT  GENMASK_ULL(60, 48)
763 
764 static void cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req,
765 			     int blkaddr)
766 {
767 	u64 dfrg_reg;
768 
769 	dfrg_reg = FIELD_PREP(RXC_ZOMBIE_THRES, req->zombie_thres);
770 	dfrg_reg |= FIELD_PREP(RXC_ZOMBIE_LIMIT, req->zombie_limit);
771 	dfrg_reg |= FIELD_PREP(RXC_ACTIVE_THRES, req->active_thres);
772 	dfrg_reg |= FIELD_PREP(RXC_ACTIVE_LIMIT, req->active_limit);
773 
774 	rvu_write64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG, req->step);
775 	rvu_write64(rvu, blkaddr, CPT_AF_RXC_DFRG, dfrg_reg);
776 }
777 
778 int rvu_mbox_handler_cpt_rxc_time_cfg(struct rvu *rvu,
779 				      struct cpt_rxc_time_cfg_req *req,
780 				      struct msg_rsp *rsp)
781 {
782 	int blkaddr;
783 
784 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
785 	if (blkaddr < 0)
786 		return blkaddr;
787 
788 	/* This message is accepted only if sent from CPT PF/VF */
789 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
790 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
791 		return CPT_AF_ERR_ACCESS_DENIED;
792 
793 	cpt_rxc_time_cfg(rvu, req, blkaddr);
794 
795 	return 0;
796 }
797 
798 int rvu_mbox_handler_cpt_ctx_cache_sync(struct rvu *rvu, struct msg_req *req,
799 					struct msg_rsp *rsp)
800 {
801 	return rvu_cpt_ctx_flush(rvu, req->hdr.pcifunc);
802 }
803 
804 static void cpt_rxc_teardown(struct rvu *rvu, int blkaddr)
805 {
806 	struct cpt_rxc_time_cfg_req req;
807 	int timeout = 2000;
808 	u64 reg;
809 
810 	if (is_rvu_otx2(rvu))
811 		return;
812 
813 	/* Set time limit to minimum values, so that rxc entries will be
814 	 * flushed out quickly.
815 	 */
816 	req.step = 1;
817 	req.zombie_thres = 1;
818 	req.zombie_limit = 1;
819 	req.active_thres = 1;
820 	req.active_limit = 1;
821 
822 	cpt_rxc_time_cfg(rvu, &req, blkaddr);
823 
824 	do {
825 		reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
826 		udelay(1);
827 		if (FIELD_GET(RXC_ACTIVE_COUNT, reg))
828 			timeout--;
829 		else
830 			break;
831 	} while (timeout);
832 
833 	if (timeout == 0)
834 		dev_warn(rvu->dev, "Poll for RXC active count hits hard loop counter\n");
835 
836 	timeout = 2000;
837 	do {
838 		reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
839 		udelay(1);
840 		if (FIELD_GET(RXC_ZOMBIE_COUNT, reg))
841 			timeout--;
842 		else
843 			break;
844 	} while (timeout);
845 
846 	if (timeout == 0)
847 		dev_warn(rvu->dev, "Poll for RXC zombie count hits hard loop counter\n");
848 }
849 
850 #define INPROG_INFLIGHT(reg)    ((reg) & 0x1FF)
851 #define INPROG_GRB_PARTIAL(reg) ((reg) & BIT_ULL(31))
852 #define INPROG_GRB(reg)         (((reg) >> 32) & 0xFF)
853 #define INPROG_GWB(reg)         (((reg) >> 40) & 0xFF)
854 
855 static void cpt_lf_disable_iqueue(struct rvu *rvu, int blkaddr, int slot)
856 {
857 	int i = 0, hard_lp_ctr = 100000;
858 	u64 inprog, grp_ptr;
859 	u16 nq_ptr, dq_ptr;
860 
861 	/* Disable instructions enqueuing */
862 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTL), 0x0);
863 
864 	/* Disable executions in the LF's queue */
865 	inprog = rvu_read64(rvu, blkaddr,
866 			    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
867 	inprog &= ~BIT_ULL(16);
868 	rvu_write64(rvu, blkaddr,
869 		    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), inprog);
870 
871 	/* Wait for CPT queue to become execution-quiescent */
872 	do {
873 		inprog = rvu_read64(rvu, blkaddr,
874 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
875 		if (INPROG_GRB_PARTIAL(inprog)) {
876 			i = 0;
877 			hard_lp_ctr--;
878 		} else {
879 			i++;
880 		}
881 
882 		grp_ptr = rvu_read64(rvu, blkaddr,
883 				     CPT_AF_BAR2_ALIASX(slot,
884 							CPT_LF_Q_GRP_PTR));
885 		nq_ptr = (grp_ptr >> 32) & 0x7FFF;
886 		dq_ptr = grp_ptr & 0x7FFF;
887 
888 	} while (hard_lp_ctr && (i < 10) && (nq_ptr != dq_ptr));
889 
890 	if (hard_lp_ctr == 0)
891 		dev_warn(rvu->dev, "CPT FLR hits hard loop counter\n");
892 
893 	i = 0;
894 	hard_lp_ctr = 100000;
895 	do {
896 		inprog = rvu_read64(rvu, blkaddr,
897 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
898 
899 		if ((INPROG_INFLIGHT(inprog) == 0) &&
900 		    (INPROG_GWB(inprog) < 40) &&
901 		    ((INPROG_GRB(inprog) == 0) ||
902 		     (INPROG_GRB((inprog)) == 40))) {
903 			i++;
904 		} else {
905 			i = 0;
906 			hard_lp_ctr--;
907 		}
908 	} while (hard_lp_ctr && (i < 10));
909 
910 	if (hard_lp_ctr == 0)
911 		dev_warn(rvu->dev, "CPT FLR hits hard loop counter\n");
912 }
913 
914 int rvu_cpt_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int lf, int slot)
915 {
916 	u64 reg;
917 
918 	if (is_cpt_pf(rvu, pcifunc) || is_cpt_vf(rvu, pcifunc))
919 		cpt_rxc_teardown(rvu, blkaddr);
920 
921 	/* Enable BAR2 ALIAS for this pcifunc. */
922 	reg = BIT_ULL(16) | pcifunc;
923 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
924 
925 	cpt_lf_disable_iqueue(rvu, blkaddr, slot);
926 
927 	/* Set group drop to help clear out hardware */
928 	reg = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
929 	reg |= BIT_ULL(17);
930 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), reg);
931 
932 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
933 
934 	return 0;
935 }
936 
937 #define CPT_RES_LEN    16
938 #define CPT_SE_IE_EGRP 1ULL
939 
940 static int cpt_inline_inb_lf_cmd_send(struct rvu *rvu, int blkaddr,
941 				      int nix_blkaddr)
942 {
943 	int cpt_pf_num = get_cpt_pf_num(rvu);
944 	struct cpt_inst_lmtst_req *req;
945 	dma_addr_t res_daddr;
946 	int timeout = 3000;
947 	u8 cpt_idx;
948 	u64 *inst;
949 	u16 *res;
950 	int rc;
951 
952 	res = kzalloc(CPT_RES_LEN, GFP_KERNEL);
953 	if (!res)
954 		return -ENOMEM;
955 
956 	res_daddr = dma_map_single(rvu->dev, res, CPT_RES_LEN,
957 				   DMA_BIDIRECTIONAL);
958 	if (dma_mapping_error(rvu->dev, res_daddr)) {
959 		dev_err(rvu->dev, "DMA mapping failed for CPT result\n");
960 		rc = -EFAULT;
961 		goto res_free;
962 	}
963 	*res = 0xFFFF;
964 
965 	/* Send mbox message to CPT PF */
966 	req = (struct cpt_inst_lmtst_req *)
967 	       otx2_mbox_alloc_msg_rsp(&rvu->afpf_wq_info.mbox_up,
968 				       cpt_pf_num, sizeof(*req),
969 				       sizeof(struct msg_rsp));
970 	if (!req) {
971 		rc = -ENOMEM;
972 		goto res_daddr_unmap;
973 	}
974 	req->hdr.sig = OTX2_MBOX_REQ_SIG;
975 	req->hdr.id = MBOX_MSG_CPT_INST_LMTST;
976 
977 	inst = req->inst;
978 	/* Prepare CPT_INST_S */
979 	inst[0] = 0;
980 	inst[1] = res_daddr;
981 	/* AF PF FUNC */
982 	inst[2] = 0;
983 	/* Set QORD */
984 	inst[3] = 1;
985 	inst[4] = 0;
986 	inst[5] = 0;
987 	inst[6] = 0;
988 	/* Set EGRP */
989 	inst[7] = CPT_SE_IE_EGRP << 61;
990 
991 	/* Subtract 1 from the NIX-CPT credit count to preserve
992 	 * credit counts.
993 	 */
994 	cpt_idx = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
995 	rvu_write64(rvu, nix_blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx),
996 		    BIT_ULL(22) - 1);
997 
998 	otx2_mbox_msg_send(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
999 	rc = otx2_mbox_wait_for_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
1000 	if (rc)
1001 		dev_warn(rvu->dev, "notification to pf %d failed\n",
1002 			 cpt_pf_num);
1003 	/* Wait for CPT instruction to be completed */
1004 	do {
1005 		mdelay(1);
1006 		if (*res == 0xFFFF)
1007 			timeout--;
1008 		else
1009 			break;
1010 	} while (timeout);
1011 
1012 	if (timeout == 0)
1013 		dev_warn(rvu->dev, "Poll for result hits hard loop counter\n");
1014 
1015 res_daddr_unmap:
1016 	dma_unmap_single(rvu->dev, res_daddr, CPT_RES_LEN, DMA_BIDIRECTIONAL);
1017 res_free:
1018 	kfree(res);
1019 
1020 	return 0;
1021 }
1022 
1023 #define CTX_CAM_PF_FUNC   GENMASK_ULL(61, 46)
1024 #define CTX_CAM_CPTR      GENMASK_ULL(45, 0)
1025 
1026 int rvu_cpt_ctx_flush(struct rvu *rvu, u16 pcifunc)
1027 {
1028 	int nix_blkaddr, blkaddr;
1029 	u16 max_ctx_entries, i;
1030 	int slot = 0, num_lfs;
1031 	u64 reg, cam_data;
1032 	int rc;
1033 
1034 	nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1035 	if (nix_blkaddr < 0)
1036 		return -EINVAL;
1037 
1038 	if (is_rvu_otx2(rvu))
1039 		return 0;
1040 
1041 	blkaddr = (nix_blkaddr == BLKADDR_NIX1) ? BLKADDR_CPT1 : BLKADDR_CPT0;
1042 
1043 	/* Submit CPT_INST_S to track when all packets have been
1044 	 * flushed through for the NIX PF FUNC in inline inbound case.
1045 	 */
1046 	rc = cpt_inline_inb_lf_cmd_send(rvu, blkaddr, nix_blkaddr);
1047 	if (rc)
1048 		return rc;
1049 
1050 	/* Wait for rxc entries to be flushed out */
1051 	cpt_rxc_teardown(rvu, blkaddr);
1052 
1053 	reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
1054 	max_ctx_entries = (reg >> 48) & 0xFFF;
1055 
1056 	mutex_lock(&rvu->rsrc_lock);
1057 
1058 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1059 					blkaddr);
1060 	if (num_lfs == 0) {
1061 		dev_warn(rvu->dev, "CPT LF is not configured\n");
1062 		goto unlock;
1063 	}
1064 
1065 	/* Enable BAR2 ALIAS for this pcifunc. */
1066 	reg = BIT_ULL(16) | pcifunc;
1067 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
1068 
1069 	for (i = 0; i < max_ctx_entries; i++) {
1070 		cam_data = rvu_read64(rvu, blkaddr, CPT_AF_CTX_CAM_DATA(i));
1071 
1072 		if ((FIELD_GET(CTX_CAM_PF_FUNC, cam_data) == pcifunc) &&
1073 		    FIELD_GET(CTX_CAM_CPTR, cam_data)) {
1074 			reg = BIT_ULL(46) | FIELD_GET(CTX_CAM_CPTR, cam_data);
1075 			rvu_write64(rvu, blkaddr,
1076 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTX_FLUSH),
1077 				    reg);
1078 		}
1079 	}
1080 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
1081 
1082 unlock:
1083 	mutex_unlock(&rvu->rsrc_lock);
1084 
1085 	return 0;
1086 }
1087