xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision fb7399cf2d0b33825b8039f95c45395c7deba25c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 
24 #define DRV_NAME	"rvu_af"
25 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407 
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 	u64 cfg;
411 
412 	/* Get numVFs attached to this PF and first HWVF */
413 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 	if (numvfs)
415 		*numvfs = (cfg >> 12) & 0xFF;
416 	if (hwvf)
417 		*hwvf = cfg & 0xFFF;
418 }
419 
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 	int pf, func;
423 	u64 cfg;
424 
425 	pf = rvu_get_pf(pcifunc);
426 	func = pcifunc & RVU_PFVF_FUNC_MASK;
427 
428 	/* Get first HWVF attached to this PF */
429 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430 
431 	return ((cfg & 0xFFF) + func - 1);
432 }
433 
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 	/* Check if it is a PF or VF */
437 	if (pcifunc & RVU_PFVF_FUNC_MASK)
438 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 	else
440 		return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442 
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 	int pf, vf, nvfs;
446 	u64 cfg;
447 
448 	pf = rvu_get_pf(pcifunc);
449 	if (pf >= rvu->hw->total_pfs)
450 		return false;
451 
452 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 		return true;
454 
455 	/* Check if VF is within number of VFs attached to this PF */
456 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 	nvfs = (cfg >> 12) & 0xFF;
459 	if (vf >= nvfs)
460 		return false;
461 
462 	return true;
463 }
464 
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 	struct rvu_block *block;
468 
469 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 		return false;
471 
472 	block = &hw->block[blkaddr];
473 	return block->implemented;
474 }
475 
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 	struct rvu_hwinfo *hw = rvu->hw;
479 	struct rvu_block *block;
480 	int blkid;
481 	u64 cfg;
482 
483 	/* For each block check if 'implemented' bit is set */
484 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 		block = &hw->block[blkid];
486 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 		if (cfg & BIT_ULL(11))
488 			block->implemented = true;
489 	}
490 }
491 
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 	rvu_write64(rvu, BLKADDR_RVUM,
495 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 		    RVU_BLK_RVUM_REVID);
497 }
498 
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 	rvu_write64(rvu, BLKADDR_RVUM,
502 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504 
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 	int err;
508 
509 	if (!block->implemented)
510 		return 0;
511 
512 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 			   true);
515 	return err;
516 }
517 
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 	struct rvu_block *block = &rvu->hw->block[blkaddr];
521 	int err;
522 
523 	if (!block->implemented)
524 		return;
525 
526 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 	if (err) {
529 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 			;
532 	}
533 }
534 
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 	/* Do a HW reset of all RVU blocks */
538 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552 
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 	struct rvu_pfvf *pfvf;
556 	u64 cfg;
557 	int lf;
558 
559 	for (lf = 0; lf < block->lf.max; lf++) {
560 		cfg = rvu_read64(rvu, block->addr,
561 				 block->lfcfg_reg | (lf << block->lfshift));
562 		if (!(cfg & BIT_ULL(63)))
563 			continue;
564 
565 		/* Set this resource as being used */
566 		__set_bit(lf, block->lf.bmap);
567 
568 		/* Get, to whom this LF is attached */
569 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 		rvu_update_rsrc_map(rvu, pfvf, block,
571 				    (cfg >> 8) & 0xFFFF, lf, true);
572 
573 		/* Set start MSIX vector for this LF within this PF/VF */
574 		rvu_set_msix_offset(rvu, pfvf, block, lf);
575 	}
576 }
577 
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 	int min_vecs;
581 
582 	if (!vf)
583 		goto check_pf;
584 
585 	if (!nvecs) {
586 		dev_warn(rvu->dev,
587 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 			 pf, vf - 1, nvecs);
589 	}
590 	return;
591 
592 check_pf:
593 	if (pf == 0)
594 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 	else
596 		min_vecs = RVU_PF_INT_VEC_CNT;
597 
598 	if (!(nvecs < min_vecs))
599 		return;
600 	dev_warn(rvu->dev,
601 		 "PF%d is configured with too few vectors, %d, min is %d\n",
602 		 pf, nvecs, min_vecs);
603 }
604 
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 	struct rvu_hwinfo *hw = rvu->hw;
608 	int pf, vf, numvfs, hwvf, err;
609 	int nvecs, offset, max_msix;
610 	struct rvu_pfvf *pfvf;
611 	u64 cfg, phy_addr;
612 	dma_addr_t iova;
613 
614 	for (pf = 0; pf < hw->total_pfs; pf++) {
615 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 		/* If PF is not enabled, nothing to do */
617 		if (!((cfg >> 20) & 0x01))
618 			continue;
619 
620 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621 
622 		pfvf = &rvu->pf[pf];
623 		/* Get num of MSIX vectors attached to this PF */
624 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627 
628 		/* Alloc msix bitmap for this PF */
629 		err = rvu_alloc_bitmap(&pfvf->msix);
630 		if (err)
631 			return err;
632 
633 		/* Allocate memory for MSIX vector to RVU block LF mapping */
634 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 						sizeof(u16), GFP_KERNEL);
636 		if (!pfvf->msix_lfmap)
637 			return -ENOMEM;
638 
639 		/* For PF0 (AF) firmware will set msix vector offsets for
640 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 		 */
642 		if (!pf)
643 			goto setup_vfmsix;
644 
645 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 		 * These are allocated on driver init and never freed,
647 		 * so no need to set 'msix_lfmap' for these.
648 		 */
649 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 		nvecs = (cfg >> 12) & 0xFF;
651 		cfg &= ~0x7FFULL;
652 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 		rvu_write64(rvu, BLKADDR_RVUM,
654 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 		/* Alloc msix bitmap for VFs */
657 		for (vf = 0; vf < numvfs; vf++) {
658 			pfvf =  &rvu->hwvf[hwvf + vf];
659 			/* Get num of MSIX vectors attached to this VF */
660 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 					 RVU_PRIV_PFX_MSIX_CFG(pf));
662 			pfvf->msix.max = (cfg & 0xFFF) + 1;
663 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664 
665 			/* Alloc msix bitmap for this VF */
666 			err = rvu_alloc_bitmap(&pfvf->msix);
667 			if (err)
668 				return err;
669 
670 			pfvf->msix_lfmap =
671 				devm_kcalloc(rvu->dev, pfvf->msix.max,
672 					     sizeof(u16), GFP_KERNEL);
673 			if (!pfvf->msix_lfmap)
674 				return -ENOMEM;
675 
676 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 			 * These are allocated on driver init and never freed,
678 			 * so no need to set 'msix_lfmap' for these.
679 			 */
680 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 			nvecs = (cfg >> 12) & 0xFF;
683 			cfg &= ~0x7FFULL;
684 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 			rvu_write64(rvu, BLKADDR_RVUM,
686 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 				    cfg | offset);
688 		}
689 	}
690 
691 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 	 * create an IOMMU mapping for the physical address configured by
693 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 	 */
695 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 	max_msix = cfg & 0xFFFFF;
697 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 		phy_addr = rvu->fwdata->msixtr_base;
699 	else
700 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701 
702 	iova = dma_map_resource(rvu->dev, phy_addr,
703 				max_msix * PCI_MSIX_ENTRY_SIZE,
704 				DMA_BIDIRECTIONAL, 0);
705 
706 	if (dma_mapping_error(rvu->dev, iova))
707 		return -ENOMEM;
708 
709 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 	rvu->msix_base_iova = iova;
711 	rvu->msixtr_base_phy = phy_addr;
712 
713 	return 0;
714 }
715 
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 	/* Restore msixtr base register */
719 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 		    rvu->msixtr_base_phy);
721 }
722 
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 	struct rvu_hwinfo *hw = rvu->hw;
726 	struct rvu_block *block;
727 	struct rvu_pfvf  *pfvf;
728 	int id, max_msix;
729 	u64 cfg;
730 
731 	rvu_npa_freemem(rvu);
732 	rvu_npc_freemem(rvu);
733 	rvu_nix_freemem(rvu);
734 
735 	/* Free block LF bitmaps */
736 	for (id = 0; id < BLK_COUNT; id++) {
737 		block = &hw->block[id];
738 		kfree(block->lf.bmap);
739 	}
740 
741 	/* Free MSIX bitmaps */
742 	for (id = 0; id < hw->total_pfs; id++) {
743 		pfvf = &rvu->pf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	for (id = 0; id < hw->total_vfs; id++) {
748 		pfvf = &rvu->hwvf[id];
749 		kfree(pfvf->msix.bmap);
750 	}
751 
752 	/* Unmap MSIX vector base IOVA mapping */
753 	if (!rvu->msix_base_iova)
754 		return;
755 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 	max_msix = cfg & 0xFFFFF;
757 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 			   max_msix * PCI_MSIX_ENTRY_SIZE,
759 			   DMA_BIDIRECTIONAL, 0);
760 
761 	rvu_reset_msix(rvu);
762 	mutex_destroy(&rvu->rsrc_lock);
763 }
764 
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 
821 	BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
823 	if (!rvu->fwdata)
824 		goto fail;
825 	if (!is_rvu_fwdata_valid(rvu)) {
826 		dev_err(rvu->dev,
827 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
828 		iounmap(rvu->fwdata);
829 		rvu->fwdata = NULL;
830 		return -EINVAL;
831 	}
832 	return 0;
833 fail:
834 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835 	return -EIO;
836 }
837 
838 static void rvu_fwdata_exit(struct rvu *rvu)
839 {
840 	if (rvu->fwdata)
841 		iounmap(rvu->fwdata);
842 }
843 
844 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 	struct rvu_hwinfo *hw = rvu->hw;
847 	struct rvu_block *block;
848 	int blkid;
849 	u64 cfg;
850 
851 	/* Init NIX LF's bitmap */
852 	block = &hw->block[blkaddr];
853 	if (!block->implemented)
854 		return 0;
855 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
857 	block->lf.max = cfg & 0xFFF;
858 	block->addr = blkaddr;
859 	block->type = BLKTYPE_NIX;
860 	block->lfshift = 8;
861 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866 	block->lfreset_reg = NIX_AF_LF_RST;
867 	block->rvu = rvu;
868 	sprintf(block->name, "NIX%d", blkid);
869 	rvu->nix_blkaddr[blkid] = blkaddr;
870 	return rvu_alloc_bitmap(&block->lf);
871 }
872 
873 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874 {
875 	struct rvu_hwinfo *hw = rvu->hw;
876 	struct rvu_block *block;
877 	int blkid;
878 	u64 cfg;
879 
880 	/* Init CPT LF's bitmap */
881 	block = &hw->block[blkaddr];
882 	if (!block->implemented)
883 		return 0;
884 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
886 	block->lf.max = cfg & 0xFF;
887 	block->addr = blkaddr;
888 	block->type = BLKTYPE_CPT;
889 	block->multislot = true;
890 	block->lfshift = 3;
891 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896 	block->lfreset_reg = CPT_AF_LF_RST;
897 	block->rvu = rvu;
898 	sprintf(block->name, "CPT%d", blkid);
899 	return rvu_alloc_bitmap(&block->lf);
900 }
901 
902 static void rvu_get_lbk_bufsize(struct rvu *rvu)
903 {
904 	struct pci_dev *pdev = NULL;
905 	void __iomem *base;
906 	u64 lbk_const;
907 
908 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
910 	if (!pdev)
911 		return;
912 
913 	base = pci_ioremap_bar(pdev, 0);
914 	if (!base)
915 		goto err_put;
916 
917 	lbk_const = readq(base + LBK_CONST);
918 
919 	/* cache fifo size */
920 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921 
922 	iounmap(base);
923 err_put:
924 	pci_dev_put(pdev);
925 }
926 
927 static int rvu_setup_hw_resources(struct rvu *rvu)
928 {
929 	struct rvu_hwinfo *hw = rvu->hw;
930 	struct rvu_block *block;
931 	int blkid, err;
932 	u64 cfg;
933 
934 	/* Get HW supported max RVU PF & VF count */
935 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
936 	hw->total_pfs = (cfg >> 32) & 0xFF;
937 	hw->total_vfs = (cfg >> 20) & 0xFFF;
938 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939 
940 	if (!is_rvu_otx2(rvu))
941 		rvu_apr_block_cn10k_init(rvu);
942 
943 	/* Init NPA LF's bitmap */
944 	block = &hw->block[BLKADDR_NPA];
945 	if (!block->implemented)
946 		goto nix;
947 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
948 	block->lf.max = (cfg >> 16) & 0xFFF;
949 	block->addr = BLKADDR_NPA;
950 	block->type = BLKTYPE_NPA;
951 	block->lfshift = 8;
952 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957 	block->lfreset_reg = NPA_AF_LF_RST;
958 	block->rvu = rvu;
959 	sprintf(block->name, "NPA");
960 	err = rvu_alloc_bitmap(&block->lf);
961 	if (err) {
962 		dev_err(rvu->dev,
963 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
964 		return err;
965 	}
966 
967 nix:
968 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
969 	if (err) {
970 		dev_err(rvu->dev,
971 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972 		return err;
973 	}
974 
975 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
976 	if (err) {
977 		dev_err(rvu->dev,
978 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979 		return err;
980 	}
981 
982 	/* Init SSO group's bitmap */
983 	block = &hw->block[BLKADDR_SSO];
984 	if (!block->implemented)
985 		goto ssow;
986 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
987 	block->lf.max = cfg & 0xFFFF;
988 	block->addr = BLKADDR_SSO;
989 	block->type = BLKTYPE_SSO;
990 	block->multislot = true;
991 	block->lfshift = 3;
992 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998 	block->rvu = rvu;
999 	sprintf(block->name, "SSO GROUP");
1000 	err = rvu_alloc_bitmap(&block->lf);
1001 	if (err) {
1002 		dev_err(rvu->dev,
1003 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
1004 		return err;
1005 	}
1006 
1007 ssow:
1008 	/* Init SSO workslot's bitmap */
1009 	block = &hw->block[BLKADDR_SSOW];
1010 	if (!block->implemented)
1011 		goto tim;
1012 	block->lf.max = (cfg >> 56) & 0xFF;
1013 	block->addr = BLKADDR_SSOW;
1014 	block->type = BLKTYPE_SSOW;
1015 	block->multislot = true;
1016 	block->lfshift = 3;
1017 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023 	block->rvu = rvu;
1024 	sprintf(block->name, "SSOWS");
1025 	err = rvu_alloc_bitmap(&block->lf);
1026 	if (err) {
1027 		dev_err(rvu->dev,
1028 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029 		return err;
1030 	}
1031 
1032 tim:
1033 	/* Init TIM LF's bitmap */
1034 	block = &hw->block[BLKADDR_TIM];
1035 	if (!block->implemented)
1036 		goto cpt;
1037 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1038 	block->lf.max = cfg & 0xFFFF;
1039 	block->addr = BLKADDR_TIM;
1040 	block->type = BLKTYPE_TIM;
1041 	block->multislot = true;
1042 	block->lfshift = 3;
1043 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048 	block->lfreset_reg = TIM_AF_LF_RST;
1049 	block->rvu = rvu;
1050 	sprintf(block->name, "TIM");
1051 	err = rvu_alloc_bitmap(&block->lf);
1052 	if (err) {
1053 		dev_err(rvu->dev,
1054 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1055 		return err;
1056 	}
1057 
1058 cpt:
1059 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1060 	if (err) {
1061 		dev_err(rvu->dev,
1062 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063 		return err;
1064 	}
1065 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1066 	if (err) {
1067 		dev_err(rvu->dev,
1068 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069 		return err;
1070 	}
1071 
1072 	/* Allocate memory for PFVF data */
1073 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1074 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1075 	if (!rvu->pf) {
1076 		dev_err(rvu->dev,
1077 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078 		return -ENOMEM;
1079 	}
1080 
1081 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1082 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1083 	if (!rvu->hwvf) {
1084 		dev_err(rvu->dev,
1085 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086 		return -ENOMEM;
1087 	}
1088 
1089 	mutex_init(&rvu->rsrc_lock);
1090 
1091 	rvu_fwdata_init(rvu);
1092 
1093 	err = rvu_setup_msix_resources(rvu);
1094 	if (err) {
1095 		dev_err(rvu->dev,
1096 			"%s: Failed to setup MSIX resources\n", __func__);
1097 		return err;
1098 	}
1099 
1100 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101 		block = &hw->block[blkid];
1102 		if (!block->lf.bmap)
1103 			continue;
1104 
1105 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1106 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1107 					     sizeof(u16), GFP_KERNEL);
1108 		if (!block->fn_map) {
1109 			err = -ENOMEM;
1110 			goto msix_err;
1111 		}
1112 
1113 		/* Scan all blocks to check if low level firmware has
1114 		 * already provisioned any of the resources to a PF/VF.
1115 		 */
1116 		rvu_scan_block(rvu, block);
1117 	}
1118 
1119 	err = rvu_set_channels_base(rvu);
1120 	if (err)
1121 		goto msix_err;
1122 
1123 	err = rvu_npc_init(rvu);
1124 	if (err) {
1125 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126 		goto npc_err;
1127 	}
1128 
1129 	err = rvu_cgx_init(rvu);
1130 	if (err) {
1131 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132 		goto cgx_err;
1133 	}
1134 
1135 	err = rvu_npc_exact_init(rvu);
1136 	if (err) {
1137 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1138 		return err;
1139 	}
1140 
1141 	/* Assign MACs for CGX mapped functions */
1142 	rvu_setup_pfvf_macaddress(rvu);
1143 
1144 	err = rvu_npa_init(rvu);
1145 	if (err) {
1146 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147 		goto npa_err;
1148 	}
1149 
1150 	rvu_get_lbk_bufsize(rvu);
1151 
1152 	err = rvu_nix_init(rvu);
1153 	if (err) {
1154 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155 		goto nix_err;
1156 	}
1157 
1158 	err = rvu_sdp_init(rvu);
1159 	if (err) {
1160 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161 		goto nix_err;
1162 	}
1163 
1164 	rvu_program_channels(rvu);
1165 	cgx_start_linkup(rvu);
1166 
1167 	err = rvu_mcs_init(rvu);
1168 	if (err) {
1169 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1170 		goto nix_err;
1171 	}
1172 
1173 	err = rvu_cpt_init(rvu);
1174 	if (err) {
1175 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1176 		goto mcs_err;
1177 	}
1178 
1179 	return 0;
1180 
1181 mcs_err:
1182 	rvu_mcs_exit(rvu);
1183 nix_err:
1184 	rvu_nix_freemem(rvu);
1185 npa_err:
1186 	rvu_npa_freemem(rvu);
1187 cgx_err:
1188 	rvu_cgx_exit(rvu);
1189 npc_err:
1190 	rvu_npc_freemem(rvu);
1191 	rvu_fwdata_exit(rvu);
1192 msix_err:
1193 	rvu_reset_msix(rvu);
1194 	return err;
1195 }
1196 
1197 /* NPA and NIX admin queue APIs */
1198 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1199 {
1200 	if (!aq)
1201 		return;
1202 
1203 	qmem_free(rvu->dev, aq->inst);
1204 	qmem_free(rvu->dev, aq->res);
1205 	devm_kfree(rvu->dev, aq);
1206 }
1207 
1208 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1209 		 int qsize, int inst_size, int res_size)
1210 {
1211 	struct admin_queue *aq;
1212 	int err;
1213 
1214 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1215 	if (!*ad_queue)
1216 		return -ENOMEM;
1217 	aq = *ad_queue;
1218 
1219 	/* Alloc memory for instructions i.e AQ */
1220 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1221 	if (err) {
1222 		devm_kfree(rvu->dev, aq);
1223 		return err;
1224 	}
1225 
1226 	/* Alloc memory for results */
1227 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1228 	if (err) {
1229 		rvu_aq_free(rvu, aq);
1230 		return err;
1231 	}
1232 
1233 	spin_lock_init(&aq->lock);
1234 	return 0;
1235 }
1236 
1237 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1238 			   struct ready_msg_rsp *rsp)
1239 {
1240 	if (rvu->fwdata) {
1241 		rsp->rclk_freq = rvu->fwdata->rclk;
1242 		rsp->sclk_freq = rvu->fwdata->sclk;
1243 	}
1244 	return 0;
1245 }
1246 
1247 /* Get current count of a RVU block's LF/slots
1248  * provisioned to a given RVU func.
1249  */
1250 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1251 {
1252 	switch (blkaddr) {
1253 	case BLKADDR_NPA:
1254 		return pfvf->npalf ? 1 : 0;
1255 	case BLKADDR_NIX0:
1256 	case BLKADDR_NIX1:
1257 		return pfvf->nixlf ? 1 : 0;
1258 	case BLKADDR_SSO:
1259 		return pfvf->sso;
1260 	case BLKADDR_SSOW:
1261 		return pfvf->ssow;
1262 	case BLKADDR_TIM:
1263 		return pfvf->timlfs;
1264 	case BLKADDR_CPT0:
1265 		return pfvf->cptlfs;
1266 	case BLKADDR_CPT1:
1267 		return pfvf->cpt1_lfs;
1268 	}
1269 	return 0;
1270 }
1271 
1272 /* Return true if LFs of block type are attached to pcifunc */
1273 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1274 {
1275 	switch (blktype) {
1276 	case BLKTYPE_NPA:
1277 		return pfvf->npalf ? 1 : 0;
1278 	case BLKTYPE_NIX:
1279 		return pfvf->nixlf ? 1 : 0;
1280 	case BLKTYPE_SSO:
1281 		return !!pfvf->sso;
1282 	case BLKTYPE_SSOW:
1283 		return !!pfvf->ssow;
1284 	case BLKTYPE_TIM:
1285 		return !!pfvf->timlfs;
1286 	case BLKTYPE_CPT:
1287 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1288 	}
1289 
1290 	return false;
1291 }
1292 
1293 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1294 {
1295 	struct rvu_pfvf *pfvf;
1296 
1297 	if (!is_pf_func_valid(rvu, pcifunc))
1298 		return false;
1299 
1300 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1301 
1302 	/* Check if this PFFUNC has a LF of type blktype attached */
1303 	if (!is_blktype_attached(pfvf, blktype))
1304 		return false;
1305 
1306 	return true;
1307 }
1308 
1309 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1310 			   int pcifunc, int slot)
1311 {
1312 	u64 val;
1313 
1314 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1315 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1316 	/* Wait for the lookup to finish */
1317 	/* TODO: put some timeout here */
1318 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1319 		;
1320 
1321 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1322 
1323 	/* Check LF valid bit */
1324 	if (!(val & (1ULL << 12)))
1325 		return -1;
1326 
1327 	return (val & 0xFFF);
1328 }
1329 
1330 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1331 			      u16 global_slot, u16 *slot_in_block)
1332 {
1333 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1334 	int numlfs, total_lfs = 0, nr_blocks = 0;
1335 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1336 	struct rvu_block *block;
1337 	int blkaddr;
1338 	u16 start_slot;
1339 
1340 	if (!is_blktype_attached(pfvf, blktype))
1341 		return -ENODEV;
1342 
1343 	/* Get all the block addresses from which LFs are attached to
1344 	 * the given pcifunc in num_blkaddr[].
1345 	 */
1346 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1347 		block = &rvu->hw->block[blkaddr];
1348 		if (block->type != blktype)
1349 			continue;
1350 		if (!is_block_implemented(rvu->hw, blkaddr))
1351 			continue;
1352 
1353 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1354 		if (numlfs) {
1355 			total_lfs += numlfs;
1356 			num_blkaddr[nr_blocks] = blkaddr;
1357 			nr_blocks++;
1358 		}
1359 	}
1360 
1361 	if (global_slot >= total_lfs)
1362 		return -ENODEV;
1363 
1364 	/* Based on the given global slot number retrieve the
1365 	 * correct block address out of all attached block
1366 	 * addresses and slot number in that block.
1367 	 */
1368 	total_lfs = 0;
1369 	blkaddr = -ENODEV;
1370 	for (i = 0; i < nr_blocks; i++) {
1371 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1372 		total_lfs += numlfs;
1373 		if (global_slot < total_lfs) {
1374 			blkaddr = num_blkaddr[i];
1375 			start_slot = total_lfs - numlfs;
1376 			*slot_in_block = global_slot - start_slot;
1377 			break;
1378 		}
1379 	}
1380 
1381 	return blkaddr;
1382 }
1383 
1384 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1385 {
1386 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1387 	struct rvu_hwinfo *hw = rvu->hw;
1388 	struct rvu_block *block;
1389 	int slot, lf, num_lfs;
1390 	int blkaddr;
1391 
1392 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1393 	if (blkaddr < 0)
1394 		return;
1395 
1396 
1397 	block = &hw->block[blkaddr];
1398 
1399 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1400 	if (!num_lfs)
1401 		return;
1402 
1403 	for (slot = 0; slot < num_lfs; slot++) {
1404 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1405 		if (lf < 0) /* This should never happen */
1406 			continue;
1407 
1408 		if (blktype == BLKTYPE_NIX) {
1409 			rvu_nix_reset_mac(pfvf, pcifunc);
1410 			rvu_npc_clear_ucast_entry(rvu, pcifunc, lf);
1411 		}
1412 		/* Disable the LF */
1413 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1414 			    (lf << block->lfshift), 0x00ULL);
1415 
1416 		/* Update SW maintained mapping info as well */
1417 		rvu_update_rsrc_map(rvu, pfvf, block,
1418 				    pcifunc, lf, false);
1419 
1420 		/* Free the resource */
1421 		rvu_free_rsrc(&block->lf, lf);
1422 
1423 		/* Clear MSIX vector offset for this LF */
1424 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1425 	}
1426 }
1427 
1428 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1429 			    u16 pcifunc)
1430 {
1431 	struct rvu_hwinfo *hw = rvu->hw;
1432 	bool detach_all = true;
1433 	struct rvu_block *block;
1434 	int blkid;
1435 
1436 	mutex_lock(&rvu->rsrc_lock);
1437 
1438 	/* Check for partial resource detach */
1439 	if (detach && detach->partial)
1440 		detach_all = false;
1441 
1442 	/* Check for RVU block's LFs attached to this func,
1443 	 * if so, detach them.
1444 	 */
1445 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1446 		block = &hw->block[blkid];
1447 		if (!block->lf.bmap)
1448 			continue;
1449 		if (!detach_all && detach) {
1450 			if (blkid == BLKADDR_NPA && !detach->npalf)
1451 				continue;
1452 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1453 				continue;
1454 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1455 				continue;
1456 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1457 				continue;
1458 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1459 				continue;
1460 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1461 				continue;
1462 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1463 				continue;
1464 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1465 				continue;
1466 		}
1467 		rvu_detach_block(rvu, pcifunc, block->type);
1468 	}
1469 
1470 	mutex_unlock(&rvu->rsrc_lock);
1471 	return 0;
1472 }
1473 
1474 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1475 				      struct rsrc_detach *detach,
1476 				      struct msg_rsp *rsp)
1477 {
1478 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1479 }
1480 
1481 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1482 {
1483 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1484 	int blkaddr = BLKADDR_NIX0, vf;
1485 	struct rvu_pfvf *pf;
1486 
1487 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1488 
1489 	/* All CGX mapped PFs are set with assigned NIX block during init */
1490 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1491 		blkaddr = pf->nix_blkaddr;
1492 	} else if (is_lbk_vf(rvu, pcifunc)) {
1493 		vf = pcifunc - 1;
1494 		/* Assign NIX based on VF number. All even numbered VFs get
1495 		 * NIX0 and odd numbered gets NIX1
1496 		 */
1497 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1498 		/* NIX1 is not present on all silicons */
1499 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1500 			blkaddr = BLKADDR_NIX0;
1501 	}
1502 
1503 	/* if SDP1 then the blkaddr is NIX1 */
1504 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1505 		blkaddr = BLKADDR_NIX1;
1506 
1507 	switch (blkaddr) {
1508 	case BLKADDR_NIX1:
1509 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1510 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1511 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1512 		break;
1513 	case BLKADDR_NIX0:
1514 	default:
1515 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1516 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1517 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1518 		break;
1519 	}
1520 
1521 	return pfvf->nix_blkaddr;
1522 }
1523 
1524 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1525 				  u16 pcifunc, struct rsrc_attach *attach)
1526 {
1527 	int blkaddr;
1528 
1529 	switch (blktype) {
1530 	case BLKTYPE_NIX:
1531 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1532 		break;
1533 	case BLKTYPE_CPT:
1534 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1535 			return rvu_get_blkaddr(rvu, blktype, 0);
1536 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1537 			  BLKADDR_CPT0;
1538 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1539 			return -ENODEV;
1540 		break;
1541 	default:
1542 		return rvu_get_blkaddr(rvu, blktype, 0);
1543 	}
1544 
1545 	if (is_block_implemented(rvu->hw, blkaddr))
1546 		return blkaddr;
1547 
1548 	return -ENODEV;
1549 }
1550 
1551 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1552 			     int num_lfs, struct rsrc_attach *attach)
1553 {
1554 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1555 	struct rvu_hwinfo *hw = rvu->hw;
1556 	struct rvu_block *block;
1557 	int slot, lf;
1558 	int blkaddr;
1559 	u64 cfg;
1560 
1561 	if (!num_lfs)
1562 		return;
1563 
1564 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1565 	if (blkaddr < 0)
1566 		return;
1567 
1568 	block = &hw->block[blkaddr];
1569 	if (!block->lf.bmap)
1570 		return;
1571 
1572 	for (slot = 0; slot < num_lfs; slot++) {
1573 		/* Allocate the resource */
1574 		lf = rvu_alloc_rsrc(&block->lf);
1575 		if (lf < 0)
1576 			return;
1577 
1578 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1579 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1580 			    (lf << block->lfshift), cfg);
1581 		rvu_update_rsrc_map(rvu, pfvf, block,
1582 				    pcifunc, lf, true);
1583 
1584 		/* Set start MSIX vector for this LF within this PF/VF */
1585 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1586 	}
1587 }
1588 
1589 static int rvu_check_rsrc_availability(struct rvu *rvu,
1590 				       struct rsrc_attach *req, u16 pcifunc)
1591 {
1592 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1593 	int free_lfs, mappedlfs, blkaddr;
1594 	struct rvu_hwinfo *hw = rvu->hw;
1595 	struct rvu_block *block;
1596 
1597 	/* Only one NPA LF can be attached */
1598 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1599 		block = &hw->block[BLKADDR_NPA];
1600 		free_lfs = rvu_rsrc_free_count(&block->lf);
1601 		if (!free_lfs)
1602 			goto fail;
1603 	} else if (req->npalf) {
1604 		dev_err(&rvu->pdev->dev,
1605 			"Func 0x%x: Invalid req, already has NPA\n",
1606 			 pcifunc);
1607 		return -EINVAL;
1608 	}
1609 
1610 	/* Only one NIX LF can be attached */
1611 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1612 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1613 						 pcifunc, req);
1614 		if (blkaddr < 0)
1615 			return blkaddr;
1616 		block = &hw->block[blkaddr];
1617 		free_lfs = rvu_rsrc_free_count(&block->lf);
1618 		if (!free_lfs)
1619 			goto fail;
1620 	} else if (req->nixlf) {
1621 		dev_err(&rvu->pdev->dev,
1622 			"Func 0x%x: Invalid req, already has NIX\n",
1623 			pcifunc);
1624 		return -EINVAL;
1625 	}
1626 
1627 	if (req->sso) {
1628 		block = &hw->block[BLKADDR_SSO];
1629 		/* Is request within limits ? */
1630 		if (req->sso > block->lf.max) {
1631 			dev_err(&rvu->pdev->dev,
1632 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1633 				 pcifunc, req->sso, block->lf.max);
1634 			return -EINVAL;
1635 		}
1636 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1637 		free_lfs = rvu_rsrc_free_count(&block->lf);
1638 		/* Check if additional resources are available */
1639 		if (req->sso > mappedlfs &&
1640 		    ((req->sso - mappedlfs) > free_lfs))
1641 			goto fail;
1642 	}
1643 
1644 	if (req->ssow) {
1645 		block = &hw->block[BLKADDR_SSOW];
1646 		if (req->ssow > block->lf.max) {
1647 			dev_err(&rvu->pdev->dev,
1648 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1649 				 pcifunc, req->ssow, block->lf.max);
1650 			return -EINVAL;
1651 		}
1652 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1653 		free_lfs = rvu_rsrc_free_count(&block->lf);
1654 		if (req->ssow > mappedlfs &&
1655 		    ((req->ssow - mappedlfs) > free_lfs))
1656 			goto fail;
1657 	}
1658 
1659 	if (req->timlfs) {
1660 		block = &hw->block[BLKADDR_TIM];
1661 		if (req->timlfs > block->lf.max) {
1662 			dev_err(&rvu->pdev->dev,
1663 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1664 				 pcifunc, req->timlfs, block->lf.max);
1665 			return -EINVAL;
1666 		}
1667 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1668 		free_lfs = rvu_rsrc_free_count(&block->lf);
1669 		if (req->timlfs > mappedlfs &&
1670 		    ((req->timlfs - mappedlfs) > free_lfs))
1671 			goto fail;
1672 	}
1673 
1674 	if (req->cptlfs) {
1675 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1676 						 pcifunc, req);
1677 		if (blkaddr < 0)
1678 			return blkaddr;
1679 		block = &hw->block[blkaddr];
1680 		if (req->cptlfs > block->lf.max) {
1681 			dev_err(&rvu->pdev->dev,
1682 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1683 				 pcifunc, req->cptlfs, block->lf.max);
1684 			return -EINVAL;
1685 		}
1686 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1687 		free_lfs = rvu_rsrc_free_count(&block->lf);
1688 		if (req->cptlfs > mappedlfs &&
1689 		    ((req->cptlfs - mappedlfs) > free_lfs))
1690 			goto fail;
1691 	}
1692 
1693 	return 0;
1694 
1695 fail:
1696 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1697 	return -ENOSPC;
1698 }
1699 
1700 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1701 				       struct rsrc_attach *attach)
1702 {
1703 	int blkaddr, num_lfs;
1704 
1705 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1706 					 attach->hdr.pcifunc, attach);
1707 	if (blkaddr < 0)
1708 		return false;
1709 
1710 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1711 					blkaddr);
1712 	/* Requester already has LFs from given block ? */
1713 	return !!num_lfs;
1714 }
1715 
1716 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1717 				      struct rsrc_attach *attach,
1718 				      struct msg_rsp *rsp)
1719 {
1720 	u16 pcifunc = attach->hdr.pcifunc;
1721 	int err;
1722 
1723 	/* If first request, detach all existing attached resources */
1724 	if (!attach->modify)
1725 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1726 
1727 	mutex_lock(&rvu->rsrc_lock);
1728 
1729 	/* Check if the request can be accommodated */
1730 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1731 	if (err)
1732 		goto exit;
1733 
1734 	/* Now attach the requested resources */
1735 	if (attach->npalf)
1736 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1737 
1738 	if (attach->nixlf)
1739 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1740 
1741 	if (attach->sso) {
1742 		/* RVU func doesn't know which exact LF or slot is attached
1743 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1744 		 * request, simply detach all existing attached LFs/slots
1745 		 * and attach a fresh.
1746 		 */
1747 		if (attach->modify)
1748 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1749 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1750 				 attach->sso, attach);
1751 	}
1752 
1753 	if (attach->ssow) {
1754 		if (attach->modify)
1755 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1756 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1757 				 attach->ssow, attach);
1758 	}
1759 
1760 	if (attach->timlfs) {
1761 		if (attach->modify)
1762 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1763 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1764 				 attach->timlfs, attach);
1765 	}
1766 
1767 	if (attach->cptlfs) {
1768 		if (attach->modify &&
1769 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1770 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1771 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1772 				 attach->cptlfs, attach);
1773 	}
1774 
1775 exit:
1776 	mutex_unlock(&rvu->rsrc_lock);
1777 	return err;
1778 }
1779 
1780 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1781 			       int blkaddr, int lf)
1782 {
1783 	u16 vec;
1784 
1785 	if (lf < 0)
1786 		return MSIX_VECTOR_INVALID;
1787 
1788 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1789 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1790 			return vec;
1791 	}
1792 	return MSIX_VECTOR_INVALID;
1793 }
1794 
1795 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1796 				struct rvu_block *block, int lf)
1797 {
1798 	u16 nvecs, vec, offset;
1799 	u64 cfg;
1800 
1801 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1802 			 (lf << block->lfshift));
1803 	nvecs = (cfg >> 12) & 0xFF;
1804 
1805 	/* Check and alloc MSIX vectors, must be contiguous */
1806 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1807 		return;
1808 
1809 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1810 
1811 	/* Config MSIX offset in LF */
1812 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1813 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1814 
1815 	/* Update the bitmap as well */
1816 	for (vec = 0; vec < nvecs; vec++)
1817 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1818 }
1819 
1820 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1821 				  struct rvu_block *block, int lf)
1822 {
1823 	u16 nvecs, vec, offset;
1824 	u64 cfg;
1825 
1826 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1827 			 (lf << block->lfshift));
1828 	nvecs = (cfg >> 12) & 0xFF;
1829 
1830 	/* Clear MSIX offset in LF */
1831 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1832 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1833 
1834 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1835 
1836 	/* Update the mapping */
1837 	for (vec = 0; vec < nvecs; vec++)
1838 		pfvf->msix_lfmap[offset + vec] = 0;
1839 
1840 	/* Free the same in MSIX bitmap */
1841 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1842 }
1843 
1844 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1845 				 struct msix_offset_rsp *rsp)
1846 {
1847 	struct rvu_hwinfo *hw = rvu->hw;
1848 	u16 pcifunc = req->hdr.pcifunc;
1849 	struct rvu_pfvf *pfvf;
1850 	int lf, slot, blkaddr;
1851 
1852 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1853 	if (!pfvf->msix.bmap)
1854 		return 0;
1855 
1856 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1857 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1858 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1859 
1860 	/* Get BLKADDR from which LFs are attached to pcifunc */
1861 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1862 	if (blkaddr < 0) {
1863 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1864 	} else {
1865 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1866 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1867 	}
1868 
1869 	rsp->sso = pfvf->sso;
1870 	for (slot = 0; slot < rsp->sso; slot++) {
1871 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1872 		rsp->sso_msixoff[slot] =
1873 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1874 	}
1875 
1876 	rsp->ssow = pfvf->ssow;
1877 	for (slot = 0; slot < rsp->ssow; slot++) {
1878 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1879 		rsp->ssow_msixoff[slot] =
1880 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1881 	}
1882 
1883 	rsp->timlfs = pfvf->timlfs;
1884 	for (slot = 0; slot < rsp->timlfs; slot++) {
1885 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1886 		rsp->timlf_msixoff[slot] =
1887 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1888 	}
1889 
1890 	rsp->cptlfs = pfvf->cptlfs;
1891 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1892 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1893 		rsp->cptlf_msixoff[slot] =
1894 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1895 	}
1896 
1897 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1898 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1899 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1900 		rsp->cpt1_lf_msixoff[slot] =
1901 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1908 				   struct free_rsrcs_rsp *rsp)
1909 {
1910 	struct rvu_hwinfo *hw = rvu->hw;
1911 	struct rvu_block *block;
1912 	struct nix_txsch *txsch;
1913 	struct nix_hw *nix_hw;
1914 
1915 	mutex_lock(&rvu->rsrc_lock);
1916 
1917 	block = &hw->block[BLKADDR_NPA];
1918 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1919 
1920 	block = &hw->block[BLKADDR_NIX0];
1921 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1922 
1923 	block = &hw->block[BLKADDR_NIX1];
1924 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1925 
1926 	block = &hw->block[BLKADDR_SSO];
1927 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1928 
1929 	block = &hw->block[BLKADDR_SSOW];
1930 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1931 
1932 	block = &hw->block[BLKADDR_TIM];
1933 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1934 
1935 	block = &hw->block[BLKADDR_CPT0];
1936 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1937 
1938 	block = &hw->block[BLKADDR_CPT1];
1939 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1940 
1941 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1942 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1943 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1944 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1945 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1946 		/* NIX1 */
1947 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1948 			goto out;
1949 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1950 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1951 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1952 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1953 	} else {
1954 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1955 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1956 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1957 				rvu_rsrc_free_count(&txsch->schq);
1958 
1959 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1960 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1961 				rvu_rsrc_free_count(&txsch->schq);
1962 
1963 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1964 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1965 				rvu_rsrc_free_count(&txsch->schq);
1966 
1967 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1968 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1969 				rvu_rsrc_free_count(&txsch->schq);
1970 
1971 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1972 			goto out;
1973 
1974 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1975 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1976 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1977 				rvu_rsrc_free_count(&txsch->schq);
1978 
1979 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1980 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1981 				rvu_rsrc_free_count(&txsch->schq);
1982 
1983 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1984 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1985 				rvu_rsrc_free_count(&txsch->schq);
1986 
1987 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1988 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1989 				rvu_rsrc_free_count(&txsch->schq);
1990 	}
1991 
1992 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1993 out:
1994 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1995 	mutex_unlock(&rvu->rsrc_lock);
1996 
1997 	return 0;
1998 }
1999 
2000 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
2001 			    struct msg_rsp *rsp)
2002 {
2003 	u16 pcifunc = req->hdr.pcifunc;
2004 	u16 vf, numvfs;
2005 	u64 cfg;
2006 
2007 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2008 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2009 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2010 	numvfs = (cfg >> 12) & 0xFF;
2011 
2012 	if (vf && vf <= numvfs)
2013 		__rvu_flr_handler(rvu, pcifunc);
2014 	else
2015 		return RVU_INVALID_VF_ID;
2016 
2017 	return 0;
2018 }
2019 
2020 int rvu_ndc_sync(struct rvu *rvu, int lfblkaddr, int lfidx, u64 lfoffset)
2021 {
2022 	/* Sync cached info for this LF in NDC to LLC/DRAM */
2023 	rvu_write64(rvu, lfblkaddr, lfoffset, BIT_ULL(12) | lfidx);
2024 	return rvu_poll_reg(rvu, lfblkaddr, lfoffset, BIT_ULL(12), true);
2025 }
2026 
2027 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2028 				struct get_hw_cap_rsp *rsp)
2029 {
2030 	struct rvu_hwinfo *hw = rvu->hw;
2031 
2032 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2033 	rsp->nix_shaping = hw->cap.nix_shaping;
2034 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2035 
2036 	if (rvu->mcs_blk_cnt)
2037 		rsp->hw_caps = HW_CAP_MACSEC;
2038 
2039 	return 0;
2040 }
2041 
2042 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2043 				 struct msg_rsp *rsp)
2044 {
2045 	struct rvu_hwinfo *hw = rvu->hw;
2046 	u16 pcifunc = req->hdr.pcifunc;
2047 	struct rvu_pfvf *pfvf;
2048 	int blkaddr, nixlf;
2049 	u16 target;
2050 
2051 	/* Only PF can add VF permissions */
2052 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2053 		return -EOPNOTSUPP;
2054 
2055 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2056 	pfvf = rvu_get_pfvf(rvu, target);
2057 
2058 	if (req->flags & RESET_VF_PERM) {
2059 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2060 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2061 		 (req->flags & VF_TRUSTED)) {
2062 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2063 		/* disable multicast and promisc entries */
2064 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2065 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2066 			if (blkaddr < 0)
2067 				return 0;
2068 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2069 					   target, 0);
2070 			if (nixlf < 0)
2071 				return 0;
2072 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2073 						     NIXLF_ALLMULTI_ENTRY,
2074 						     false);
2075 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2076 						     NIXLF_PROMISC_ENTRY,
2077 						     false);
2078 		}
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 int rvu_mbox_handler_ndc_sync_op(struct rvu *rvu,
2085 				 struct ndc_sync_op *req,
2086 				 struct msg_rsp *rsp)
2087 {
2088 	struct rvu_hwinfo *hw = rvu->hw;
2089 	u16 pcifunc = req->hdr.pcifunc;
2090 	int err, lfidx, lfblkaddr;
2091 
2092 	if (req->npa_lf_sync) {
2093 		/* Get NPA LF data */
2094 		lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
2095 		if (lfblkaddr < 0)
2096 			return NPA_AF_ERR_AF_LF_INVALID;
2097 
2098 		lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2099 		if (lfidx < 0)
2100 			return NPA_AF_ERR_AF_LF_INVALID;
2101 
2102 		/* Sync NPA NDC */
2103 		err = rvu_ndc_sync(rvu, lfblkaddr,
2104 				   lfidx, NPA_AF_NDC_SYNC);
2105 		if (err)
2106 			dev_err(rvu->dev,
2107 				"NDC-NPA sync failed for LF %u\n", lfidx);
2108 	}
2109 
2110 	if (!req->nix_lf_tx_sync && !req->nix_lf_rx_sync)
2111 		return 0;
2112 
2113 	/* Get NIX LF data */
2114 	lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
2115 	if (lfblkaddr < 0)
2116 		return NIX_AF_ERR_AF_LF_INVALID;
2117 
2118 	lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2119 	if (lfidx < 0)
2120 		return NIX_AF_ERR_AF_LF_INVALID;
2121 
2122 	if (req->nix_lf_tx_sync) {
2123 		/* Sync NIX TX NDC */
2124 		err = rvu_ndc_sync(rvu, lfblkaddr,
2125 				   lfidx, NIX_AF_NDC_TX_SYNC);
2126 		if (err)
2127 			dev_err(rvu->dev,
2128 				"NDC-NIX-TX sync fail for LF %u\n", lfidx);
2129 	}
2130 
2131 	if (req->nix_lf_rx_sync) {
2132 		/* Sync NIX RX NDC */
2133 		err = rvu_ndc_sync(rvu, lfblkaddr,
2134 				   lfidx, NIX_AF_NDC_RX_SYNC);
2135 		if (err)
2136 			dev_err(rvu->dev,
2137 				"NDC-NIX-RX sync failed for LF %u\n", lfidx);
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2144 				struct mbox_msghdr *req)
2145 {
2146 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2147 
2148 	/* Check if valid, if not reply with a invalid msg */
2149 	if (req->sig != OTX2_MBOX_REQ_SIG)
2150 		goto bad_message;
2151 
2152 	switch (req->id) {
2153 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2154 	case _id: {							\
2155 		struct _rsp_type *rsp;					\
2156 		int err;						\
2157 									\
2158 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2159 			mbox, devid,					\
2160 			sizeof(struct _rsp_type));			\
2161 		/* some handlers should complete even if reply */	\
2162 		/* could not be allocated */				\
2163 		if (!rsp &&						\
2164 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2165 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2166 		    _id != MBOX_MSG_VF_FLR)				\
2167 			return -ENOMEM;					\
2168 		if (rsp) {						\
2169 			rsp->hdr.id = _id;				\
2170 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2171 			rsp->hdr.pcifunc = req->pcifunc;		\
2172 			rsp->hdr.rc = 0;				\
2173 		}							\
2174 									\
2175 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2176 						    (struct _req_type *)req, \
2177 						    rsp);		\
2178 		if (rsp && err)						\
2179 			rsp->hdr.rc = err;				\
2180 									\
2181 		trace_otx2_msg_process(mbox->pdev, _id, err, req->pcifunc); \
2182 		return rsp ? err : -ENOMEM;				\
2183 	}
2184 MBOX_MESSAGES
2185 #undef M
2186 
2187 bad_message:
2188 	default:
2189 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2190 		return -ENODEV;
2191 	}
2192 }
2193 
2194 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2195 {
2196 	struct rvu *rvu = mwork->rvu;
2197 	int offset, err, id, devid;
2198 	struct otx2_mbox_dev *mdev;
2199 	struct mbox_hdr *req_hdr;
2200 	struct mbox_msghdr *msg;
2201 	struct mbox_wq_info *mw;
2202 	struct otx2_mbox *mbox;
2203 
2204 	switch (type) {
2205 	case TYPE_AFPF:
2206 		mw = &rvu->afpf_wq_info;
2207 		break;
2208 	case TYPE_AFVF:
2209 		mw = &rvu->afvf_wq_info;
2210 		break;
2211 	default:
2212 		return;
2213 	}
2214 
2215 	devid = mwork - mw->mbox_wrk;
2216 	mbox = &mw->mbox;
2217 	mdev = &mbox->dev[devid];
2218 
2219 	/* Process received mbox messages */
2220 	req_hdr = mdev->mbase + mbox->rx_start;
2221 	if (mw->mbox_wrk[devid].num_msgs == 0)
2222 		return;
2223 
2224 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2225 
2226 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2227 		msg = mdev->mbase + offset;
2228 
2229 		/* Set which PF/VF sent this message based on mbox IRQ */
2230 		switch (type) {
2231 		case TYPE_AFPF:
2232 			msg->pcifunc &=
2233 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2234 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2235 			break;
2236 		case TYPE_AFVF:
2237 			msg->pcifunc &=
2238 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2239 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2240 			break;
2241 		}
2242 
2243 		err = rvu_process_mbox_msg(mbox, devid, msg);
2244 		if (!err) {
2245 			offset = mbox->rx_start + msg->next_msgoff;
2246 			continue;
2247 		}
2248 
2249 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2250 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2251 				 err, otx2_mbox_id2name(msg->id),
2252 				 msg->id, rvu_get_pf(msg->pcifunc),
2253 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2254 		else
2255 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2256 				 err, otx2_mbox_id2name(msg->id),
2257 				 msg->id, devid);
2258 	}
2259 	mw->mbox_wrk[devid].num_msgs = 0;
2260 
2261 	if (poll)
2262 		otx2_mbox_wait_for_zero(mbox, devid);
2263 
2264 	/* Send mbox responses to VF/PF */
2265 	otx2_mbox_msg_send(mbox, devid);
2266 }
2267 
2268 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2269 {
2270 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2271 	struct rvu *rvu = mwork->rvu;
2272 
2273 	mutex_lock(&rvu->mbox_lock);
2274 	__rvu_mbox_handler(mwork, TYPE_AFPF, true);
2275 	mutex_unlock(&rvu->mbox_lock);
2276 }
2277 
2278 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2279 {
2280 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2281 
2282 	__rvu_mbox_handler(mwork, TYPE_AFVF, false);
2283 }
2284 
2285 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2286 {
2287 	struct rvu *rvu = mwork->rvu;
2288 	struct otx2_mbox_dev *mdev;
2289 	struct mbox_hdr *rsp_hdr;
2290 	struct mbox_msghdr *msg;
2291 	struct mbox_wq_info *mw;
2292 	struct otx2_mbox *mbox;
2293 	int offset, id, devid;
2294 
2295 	switch (type) {
2296 	case TYPE_AFPF:
2297 		mw = &rvu->afpf_wq_info;
2298 		break;
2299 	case TYPE_AFVF:
2300 		mw = &rvu->afvf_wq_info;
2301 		break;
2302 	default:
2303 		return;
2304 	}
2305 
2306 	devid = mwork - mw->mbox_wrk_up;
2307 	mbox = &mw->mbox_up;
2308 	mdev = &mbox->dev[devid];
2309 
2310 	rsp_hdr = mdev->mbase + mbox->rx_start;
2311 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2312 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2313 		return;
2314 	}
2315 
2316 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2317 
2318 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2319 		msg = mdev->mbase + offset;
2320 
2321 		if (msg->id >= MBOX_MSG_MAX) {
2322 			dev_err(rvu->dev,
2323 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2324 			goto end;
2325 		}
2326 
2327 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2328 			dev_err(rvu->dev,
2329 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2330 				msg->sig, msg->id);
2331 			goto end;
2332 		}
2333 
2334 		switch (msg->id) {
2335 		case MBOX_MSG_CGX_LINK_EVENT:
2336 			break;
2337 		default:
2338 			if (msg->rc)
2339 				dev_err(rvu->dev,
2340 					"Mbox msg response has err %d, ID 0x%x\n",
2341 					msg->rc, msg->id);
2342 			break;
2343 		}
2344 end:
2345 		offset = mbox->rx_start + msg->next_msgoff;
2346 		mdev->msgs_acked++;
2347 	}
2348 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2349 
2350 	otx2_mbox_reset(mbox, devid);
2351 }
2352 
2353 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2354 {
2355 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2356 
2357 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2358 }
2359 
2360 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2361 {
2362 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2363 
2364 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2365 }
2366 
2367 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2368 				int num, int type, unsigned long *pf_bmap)
2369 {
2370 	struct rvu_hwinfo *hw = rvu->hw;
2371 	int region;
2372 	u64 bar4;
2373 
2374 	/* For cn10k platform VF mailbox regions of a PF follows after the
2375 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2376 	 * RVU_PF_VF_BAR4_ADDR register.
2377 	 */
2378 	if (type == TYPE_AFVF) {
2379 		for (region = 0; region < num; region++) {
2380 			if (!test_bit(region, pf_bmap))
2381 				continue;
2382 
2383 			if (hw->cap.per_pf_mbox_regs) {
2384 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2385 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2386 						  MBOX_SIZE;
2387 				bar4 += region * MBOX_SIZE;
2388 			} else {
2389 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2390 				bar4 += region * MBOX_SIZE;
2391 			}
2392 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2393 			if (!mbox_addr[region])
2394 				goto error;
2395 		}
2396 		return 0;
2397 	}
2398 
2399 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2400 	 * PF registers. Whereas for Octeontx2 it is read from
2401 	 * RVU_AF_PF_BAR4_ADDR register.
2402 	 */
2403 	for (region = 0; region < num; region++) {
2404 		if (!test_bit(region, pf_bmap))
2405 			continue;
2406 
2407 		if (hw->cap.per_pf_mbox_regs) {
2408 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2409 					  RVU_AF_PFX_BAR4_ADDR(region));
2410 		} else {
2411 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2412 					  RVU_AF_PF_BAR4_ADDR);
2413 			bar4 += region * MBOX_SIZE;
2414 		}
2415 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2416 		if (!mbox_addr[region])
2417 			goto error;
2418 	}
2419 	return 0;
2420 
2421 error:
2422 	while (region--)
2423 		iounmap((void __iomem *)mbox_addr[region]);
2424 	return -ENOMEM;
2425 }
2426 
2427 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2428 			 int type, int num,
2429 			 void (mbox_handler)(struct work_struct *),
2430 			 void (mbox_up_handler)(struct work_struct *))
2431 {
2432 	int err = -EINVAL, i, dir, dir_up;
2433 	void __iomem *reg_base;
2434 	struct rvu_work *mwork;
2435 	unsigned long *pf_bmap;
2436 	void **mbox_regions;
2437 	const char *name;
2438 	u64 cfg;
2439 
2440 	pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2441 	if (!pf_bmap)
2442 		return -ENOMEM;
2443 
2444 	/* RVU VFs */
2445 	if (type == TYPE_AFVF)
2446 		bitmap_set(pf_bmap, 0, num);
2447 
2448 	if (type == TYPE_AFPF) {
2449 		/* Mark enabled PFs in bitmap */
2450 		for (i = 0; i < num; i++) {
2451 			cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2452 			if (cfg & BIT_ULL(20))
2453 				set_bit(i, pf_bmap);
2454 		}
2455 	}
2456 
2457 	mutex_init(&rvu->mbox_lock);
2458 
2459 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2460 	if (!mbox_regions) {
2461 		err = -ENOMEM;
2462 		goto free_bitmap;
2463 	}
2464 
2465 	switch (type) {
2466 	case TYPE_AFPF:
2467 		name = "rvu_afpf_mailbox";
2468 		dir = MBOX_DIR_AFPF;
2469 		dir_up = MBOX_DIR_AFPF_UP;
2470 		reg_base = rvu->afreg_base;
2471 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2472 		if (err)
2473 			goto free_regions;
2474 		break;
2475 	case TYPE_AFVF:
2476 		name = "rvu_afvf_mailbox";
2477 		dir = MBOX_DIR_PFVF;
2478 		dir_up = MBOX_DIR_PFVF_UP;
2479 		reg_base = rvu->pfreg_base;
2480 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2481 		if (err)
2482 			goto free_regions;
2483 		break;
2484 	default:
2485 		goto free_regions;
2486 	}
2487 
2488 	mw->mbox_wq = alloc_workqueue("%s",
2489 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2490 				      num, name);
2491 	if (!mw->mbox_wq) {
2492 		err = -ENOMEM;
2493 		goto unmap_regions;
2494 	}
2495 
2496 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2497 				    sizeof(struct rvu_work), GFP_KERNEL);
2498 	if (!mw->mbox_wrk) {
2499 		err = -ENOMEM;
2500 		goto exit;
2501 	}
2502 
2503 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2504 				       sizeof(struct rvu_work), GFP_KERNEL);
2505 	if (!mw->mbox_wrk_up) {
2506 		err = -ENOMEM;
2507 		goto exit;
2508 	}
2509 
2510 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2511 				     reg_base, dir, num, pf_bmap);
2512 	if (err)
2513 		goto exit;
2514 
2515 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2516 				     reg_base, dir_up, num, pf_bmap);
2517 	if (err)
2518 		goto exit;
2519 
2520 	for (i = 0; i < num; i++) {
2521 		if (!test_bit(i, pf_bmap))
2522 			continue;
2523 
2524 		mwork = &mw->mbox_wrk[i];
2525 		mwork->rvu = rvu;
2526 		INIT_WORK(&mwork->work, mbox_handler);
2527 
2528 		mwork = &mw->mbox_wrk_up[i];
2529 		mwork->rvu = rvu;
2530 		INIT_WORK(&mwork->work, mbox_up_handler);
2531 	}
2532 	goto free_regions;
2533 
2534 exit:
2535 	destroy_workqueue(mw->mbox_wq);
2536 unmap_regions:
2537 	while (num--)
2538 		iounmap((void __iomem *)mbox_regions[num]);
2539 free_regions:
2540 	kfree(mbox_regions);
2541 free_bitmap:
2542 	bitmap_free(pf_bmap);
2543 	return err;
2544 }
2545 
2546 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2547 {
2548 	struct otx2_mbox *mbox = &mw->mbox;
2549 	struct otx2_mbox_dev *mdev;
2550 	int devid;
2551 
2552 	if (mw->mbox_wq) {
2553 		destroy_workqueue(mw->mbox_wq);
2554 		mw->mbox_wq = NULL;
2555 	}
2556 
2557 	for (devid = 0; devid < mbox->ndevs; devid++) {
2558 		mdev = &mbox->dev[devid];
2559 		if (mdev->hwbase)
2560 			iounmap((void __iomem *)mdev->hwbase);
2561 	}
2562 
2563 	otx2_mbox_destroy(&mw->mbox);
2564 	otx2_mbox_destroy(&mw->mbox_up);
2565 }
2566 
2567 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2568 			   int mdevs, u64 intr)
2569 {
2570 	struct otx2_mbox_dev *mdev;
2571 	struct otx2_mbox *mbox;
2572 	struct mbox_hdr *hdr;
2573 	int i;
2574 
2575 	for (i = first; i < mdevs; i++) {
2576 		/* start from 0 */
2577 		if (!(intr & BIT_ULL(i - first)))
2578 			continue;
2579 
2580 		mbox = &mw->mbox;
2581 		mdev = &mbox->dev[i];
2582 		hdr = mdev->mbase + mbox->rx_start;
2583 
2584 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2585 		 * handler to  ensure that it holds a correct value next time
2586 		 * when the interrupt handler is called.
2587 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2588 		 * pf>mbox.up_num_msgs holds the data for use in
2589 		 * pfaf_mbox_up_handler.
2590 		 */
2591 
2592 		if (hdr->num_msgs) {
2593 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2594 			hdr->num_msgs = 0;
2595 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2596 		}
2597 		mbox = &mw->mbox_up;
2598 		mdev = &mbox->dev[i];
2599 		hdr = mdev->mbase + mbox->rx_start;
2600 		if (hdr->num_msgs) {
2601 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2602 			hdr->num_msgs = 0;
2603 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2604 		}
2605 	}
2606 }
2607 
2608 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2609 {
2610 	struct rvu *rvu = (struct rvu *)rvu_irq;
2611 	u64 intr;
2612 
2613 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2614 	/* Clear interrupts */
2615 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2616 	if (intr)
2617 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2618 
2619 	/* Sync with mbox memory region */
2620 	rmb();
2621 
2622 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2623 
2624 	return IRQ_HANDLED;
2625 }
2626 
2627 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2628 {
2629 	struct rvu *rvu = (struct rvu *)rvu_irq;
2630 	int vfs = rvu->vfs;
2631 	u64 intr;
2632 
2633 	/* Sync with mbox memory region */
2634 	rmb();
2635 
2636 	/* Handle VF interrupts */
2637 	if (vfs > 64) {
2638 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2639 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2640 
2641 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2642 		vfs = 64;
2643 	}
2644 
2645 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2646 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2647 	if (intr)
2648 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2649 
2650 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2651 
2652 	return IRQ_HANDLED;
2653 }
2654 
2655 static void rvu_enable_mbox_intr(struct rvu *rvu)
2656 {
2657 	struct rvu_hwinfo *hw = rvu->hw;
2658 
2659 	/* Clear spurious irqs, if any */
2660 	rvu_write64(rvu, BLKADDR_RVUM,
2661 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2662 
2663 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2664 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2665 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2666 }
2667 
2668 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2669 {
2670 	struct rvu_block *block;
2671 	int slot, lf, num_lfs;
2672 	int err;
2673 
2674 	block = &rvu->hw->block[blkaddr];
2675 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2676 					block->addr);
2677 	if (!num_lfs)
2678 		return;
2679 	for (slot = 0; slot < num_lfs; slot++) {
2680 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2681 		if (lf < 0)
2682 			continue;
2683 
2684 		/* Cleanup LF and reset it */
2685 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2686 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2687 		else if (block->addr == BLKADDR_NPA)
2688 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2689 		else if ((block->addr == BLKADDR_CPT0) ||
2690 			 (block->addr == BLKADDR_CPT1))
2691 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2692 					    slot);
2693 
2694 		err = rvu_lf_reset(rvu, block, lf);
2695 		if (err) {
2696 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2697 				block->addr, lf);
2698 		}
2699 	}
2700 }
2701 
2702 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2703 {
2704 	if (rvu_npc_exact_has_match_table(rvu))
2705 		rvu_npc_exact_reset(rvu, pcifunc);
2706 
2707 	mutex_lock(&rvu->flr_lock);
2708 	/* Reset order should reflect inter-block dependencies:
2709 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2710 	 * 2. Flush and reset SSO/SSOW
2711 	 * 3. Cleanup pools (NPA)
2712 	 */
2713 
2714 	/* Free allocated BPIDs */
2715 	rvu_nix_flr_free_bpids(rvu, pcifunc);
2716 
2717 	/* Free multicast/mirror node associated with the 'pcifunc' */
2718 	rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2719 
2720 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2721 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2722 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2723 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2724 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2725 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2726 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2727 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2728 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2729 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2730 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2731 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2732 	 * Since LF is detached use LF number as -1.
2733 	 */
2734 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2735 	rvu_mac_reset(rvu, pcifunc);
2736 
2737 	if (rvu->mcs_blk_cnt)
2738 		rvu_mcs_flr_handler(rvu, pcifunc);
2739 
2740 	mutex_unlock(&rvu->flr_lock);
2741 }
2742 
2743 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2744 {
2745 	int reg = 0;
2746 
2747 	/* pcifunc = 0(PF0) | (vf + 1) */
2748 	__rvu_flr_handler(rvu, vf + 1);
2749 
2750 	if (vf >= 64) {
2751 		reg = 1;
2752 		vf = vf - 64;
2753 	}
2754 
2755 	/* Signal FLR finish and enable IRQ */
2756 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2757 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2758 }
2759 
2760 static void rvu_flr_handler(struct work_struct *work)
2761 {
2762 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2763 	struct rvu *rvu = flrwork->rvu;
2764 	u16 pcifunc, numvfs, vf;
2765 	u64 cfg;
2766 	int pf;
2767 
2768 	pf = flrwork - rvu->flr_wrk;
2769 	if (pf >= rvu->hw->total_pfs) {
2770 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2771 		return;
2772 	}
2773 
2774 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2775 	numvfs = (cfg >> 12) & 0xFF;
2776 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2777 
2778 	for (vf = 0; vf < numvfs; vf++)
2779 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2780 
2781 	__rvu_flr_handler(rvu, pcifunc);
2782 
2783 	/* Signal FLR finish */
2784 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2785 
2786 	/* Enable interrupt */
2787 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2788 }
2789 
2790 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2791 {
2792 	int dev, vf, reg = 0;
2793 	u64 intr;
2794 
2795 	if (start_vf >= 64)
2796 		reg = 1;
2797 
2798 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2799 	if (!intr)
2800 		return;
2801 
2802 	for (vf = 0; vf < numvfs; vf++) {
2803 		if (!(intr & BIT_ULL(vf)))
2804 			continue;
2805 		/* Clear and disable the interrupt */
2806 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2807 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2808 
2809 		dev = vf + start_vf + rvu->hw->total_pfs;
2810 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2811 	}
2812 }
2813 
2814 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2815 {
2816 	struct rvu *rvu = (struct rvu *)rvu_irq;
2817 	u64 intr;
2818 	u8  pf;
2819 
2820 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2821 	if (!intr)
2822 		goto afvf_flr;
2823 
2824 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2825 		if (intr & (1ULL << pf)) {
2826 			/* clear interrupt */
2827 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2828 				    BIT_ULL(pf));
2829 			/* Disable the interrupt */
2830 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2831 				    BIT_ULL(pf));
2832 			/* PF is already dead do only AF related operations */
2833 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2834 		}
2835 	}
2836 
2837 afvf_flr:
2838 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2839 	if (rvu->vfs > 64)
2840 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2841 
2842 	return IRQ_HANDLED;
2843 }
2844 
2845 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2846 {
2847 	int vf;
2848 
2849 	/* Nothing to be done here other than clearing the
2850 	 * TRPEND bit.
2851 	 */
2852 	for (vf = 0; vf < 64; vf++) {
2853 		if (intr & (1ULL << vf)) {
2854 			/* clear the trpend due to ME(master enable) */
2855 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2856 			/* clear interrupt */
2857 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2858 		}
2859 	}
2860 }
2861 
2862 /* Handles ME interrupts from VFs of AF */
2863 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2864 {
2865 	struct rvu *rvu = (struct rvu *)rvu_irq;
2866 	int vfset;
2867 	u64 intr;
2868 
2869 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2870 
2871 	for (vfset = 0; vfset <= 1; vfset++) {
2872 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2873 		if (intr)
2874 			rvu_me_handle_vfset(rvu, vfset, intr);
2875 	}
2876 
2877 	return IRQ_HANDLED;
2878 }
2879 
2880 /* Handles ME interrupts from PFs */
2881 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2882 {
2883 	struct rvu *rvu = (struct rvu *)rvu_irq;
2884 	u64 intr;
2885 	u8  pf;
2886 
2887 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2888 
2889 	/* Nothing to be done here other than clearing the
2890 	 * TRPEND bit.
2891 	 */
2892 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2893 		if (intr & (1ULL << pf)) {
2894 			/* clear the trpend due to ME(master enable) */
2895 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2896 				    BIT_ULL(pf));
2897 			/* clear interrupt */
2898 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2899 				    BIT_ULL(pf));
2900 		}
2901 	}
2902 
2903 	return IRQ_HANDLED;
2904 }
2905 
2906 static void rvu_unregister_interrupts(struct rvu *rvu)
2907 {
2908 	int irq;
2909 
2910 	rvu_cpt_unregister_interrupts(rvu);
2911 
2912 	/* Disable the Mbox interrupt */
2913 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2914 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2915 
2916 	/* Disable the PF FLR interrupt */
2917 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2918 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2919 
2920 	/* Disable the PF ME interrupt */
2921 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2922 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2923 
2924 	for (irq = 0; irq < rvu->num_vec; irq++) {
2925 		if (rvu->irq_allocated[irq]) {
2926 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2927 			rvu->irq_allocated[irq] = false;
2928 		}
2929 	}
2930 
2931 	pci_free_irq_vectors(rvu->pdev);
2932 	rvu->num_vec = 0;
2933 }
2934 
2935 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2936 {
2937 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2938 	int offset;
2939 
2940 	pfvf = &rvu->pf[0];
2941 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2942 
2943 	/* Make sure there are enough MSIX vectors configured so that
2944 	 * VF interrupts can be handled. Offset equal to zero means
2945 	 * that PF vectors are not configured and overlapping AF vectors.
2946 	 */
2947 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2948 	       offset;
2949 }
2950 
2951 static int rvu_register_interrupts(struct rvu *rvu)
2952 {
2953 	int ret, offset, pf_vec_start;
2954 
2955 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2956 
2957 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2958 					   NAME_SIZE, GFP_KERNEL);
2959 	if (!rvu->irq_name)
2960 		return -ENOMEM;
2961 
2962 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2963 					  sizeof(bool), GFP_KERNEL);
2964 	if (!rvu->irq_allocated)
2965 		return -ENOMEM;
2966 
2967 	/* Enable MSI-X */
2968 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2969 				    rvu->num_vec, PCI_IRQ_MSIX);
2970 	if (ret < 0) {
2971 		dev_err(rvu->dev,
2972 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2973 			rvu->num_vec, ret);
2974 		return ret;
2975 	}
2976 
2977 	/* Register mailbox interrupt handler */
2978 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2979 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2980 			  rvu_mbox_pf_intr_handler, 0,
2981 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2982 	if (ret) {
2983 		dev_err(rvu->dev,
2984 			"RVUAF: IRQ registration failed for mbox irq\n");
2985 		goto fail;
2986 	}
2987 
2988 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2989 
2990 	/* Enable mailbox interrupts from all PFs */
2991 	rvu_enable_mbox_intr(rvu);
2992 
2993 	/* Register FLR interrupt handler */
2994 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2995 		"RVUAF FLR");
2996 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2997 			  rvu_flr_intr_handler, 0,
2998 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2999 			  rvu);
3000 	if (ret) {
3001 		dev_err(rvu->dev,
3002 			"RVUAF: IRQ registration failed for FLR\n");
3003 		goto fail;
3004 	}
3005 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
3006 
3007 	/* Enable FLR interrupt for all PFs*/
3008 	rvu_write64(rvu, BLKADDR_RVUM,
3009 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
3010 
3011 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
3012 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3013 
3014 	/* Register ME interrupt handler */
3015 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3016 		"RVUAF ME");
3017 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
3018 			  rvu_me_pf_intr_handler, 0,
3019 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3020 			  rvu);
3021 	if (ret) {
3022 		dev_err(rvu->dev,
3023 			"RVUAF: IRQ registration failed for ME\n");
3024 	}
3025 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
3026 
3027 	/* Clear TRPEND bit for all PF */
3028 	rvu_write64(rvu, BLKADDR_RVUM,
3029 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
3030 	/* Enable ME interrupt for all PFs*/
3031 	rvu_write64(rvu, BLKADDR_RVUM,
3032 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
3033 
3034 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
3035 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3036 
3037 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
3038 		return 0;
3039 
3040 	/* Get PF MSIX vectors offset. */
3041 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
3042 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
3043 
3044 	/* Register MBOX0 interrupt. */
3045 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
3046 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
3047 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3048 			  rvu_mbox_intr_handler, 0,
3049 			  &rvu->irq_name[offset * NAME_SIZE],
3050 			  rvu);
3051 	if (ret)
3052 		dev_err(rvu->dev,
3053 			"RVUAF: IRQ registration failed for Mbox0\n");
3054 
3055 	rvu->irq_allocated[offset] = true;
3056 
3057 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
3058 	 * simply increment current offset by 1.
3059 	 */
3060 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
3061 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
3062 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3063 			  rvu_mbox_intr_handler, 0,
3064 			  &rvu->irq_name[offset * NAME_SIZE],
3065 			  rvu);
3066 	if (ret)
3067 		dev_err(rvu->dev,
3068 			"RVUAF: IRQ registration failed for Mbox1\n");
3069 
3070 	rvu->irq_allocated[offset] = true;
3071 
3072 	/* Register FLR interrupt handler for AF's VFs */
3073 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
3074 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
3075 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3076 			  rvu_flr_intr_handler, 0,
3077 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3078 	if (ret) {
3079 		dev_err(rvu->dev,
3080 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
3081 		goto fail;
3082 	}
3083 	rvu->irq_allocated[offset] = true;
3084 
3085 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3086 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3087 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3088 			  rvu_flr_intr_handler, 0,
3089 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3090 	if (ret) {
3091 		dev_err(rvu->dev,
3092 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3093 		goto fail;
3094 	}
3095 	rvu->irq_allocated[offset] = true;
3096 
3097 	/* Register ME interrupt handler for AF's VFs */
3098 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3099 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3100 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3101 			  rvu_me_vf_intr_handler, 0,
3102 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3103 	if (ret) {
3104 		dev_err(rvu->dev,
3105 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3106 		goto fail;
3107 	}
3108 	rvu->irq_allocated[offset] = true;
3109 
3110 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3111 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3112 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3113 			  rvu_me_vf_intr_handler, 0,
3114 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3115 	if (ret) {
3116 		dev_err(rvu->dev,
3117 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3118 		goto fail;
3119 	}
3120 	rvu->irq_allocated[offset] = true;
3121 
3122 	ret = rvu_cpt_register_interrupts(rvu);
3123 	if (ret)
3124 		goto fail;
3125 
3126 	return 0;
3127 
3128 fail:
3129 	rvu_unregister_interrupts(rvu);
3130 	return ret;
3131 }
3132 
3133 static void rvu_flr_wq_destroy(struct rvu *rvu)
3134 {
3135 	if (rvu->flr_wq) {
3136 		destroy_workqueue(rvu->flr_wq);
3137 		rvu->flr_wq = NULL;
3138 	}
3139 }
3140 
3141 static int rvu_flr_init(struct rvu *rvu)
3142 {
3143 	int dev, num_devs;
3144 	u64 cfg;
3145 	int pf;
3146 
3147 	/* Enable FLR for all PFs*/
3148 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3149 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3150 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3151 			    cfg | BIT_ULL(22));
3152 	}
3153 
3154 	rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3155 					      WQ_HIGHPRI | WQ_MEM_RECLAIM);
3156 	if (!rvu->flr_wq)
3157 		return -ENOMEM;
3158 
3159 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3160 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3161 				    sizeof(struct rvu_work), GFP_KERNEL);
3162 	if (!rvu->flr_wrk) {
3163 		destroy_workqueue(rvu->flr_wq);
3164 		return -ENOMEM;
3165 	}
3166 
3167 	for (dev = 0; dev < num_devs; dev++) {
3168 		rvu->flr_wrk[dev].rvu = rvu;
3169 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3170 	}
3171 
3172 	mutex_init(&rvu->flr_lock);
3173 
3174 	return 0;
3175 }
3176 
3177 static void rvu_disable_afvf_intr(struct rvu *rvu)
3178 {
3179 	int vfs = rvu->vfs;
3180 
3181 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3182 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3183 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3184 	if (vfs <= 64)
3185 		return;
3186 
3187 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3188 		      INTR_MASK(vfs - 64));
3189 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3190 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3191 }
3192 
3193 static void rvu_enable_afvf_intr(struct rvu *rvu)
3194 {
3195 	int vfs = rvu->vfs;
3196 
3197 	/* Clear any pending interrupts and enable AF VF interrupts for
3198 	 * the first 64 VFs.
3199 	 */
3200 	/* Mbox */
3201 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3202 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3203 
3204 	/* FLR */
3205 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3206 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3207 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3208 
3209 	/* Same for remaining VFs, if any. */
3210 	if (vfs <= 64)
3211 		return;
3212 
3213 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3214 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3215 		      INTR_MASK(vfs - 64));
3216 
3217 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3218 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3219 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3220 }
3221 
3222 int rvu_get_num_lbk_chans(void)
3223 {
3224 	struct pci_dev *pdev;
3225 	void __iomem *base;
3226 	int ret = -EIO;
3227 
3228 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3229 			      NULL);
3230 	if (!pdev)
3231 		goto err;
3232 
3233 	base = pci_ioremap_bar(pdev, 0);
3234 	if (!base)
3235 		goto err_put;
3236 
3237 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3238 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3239 	iounmap(base);
3240 err_put:
3241 	pci_dev_put(pdev);
3242 err:
3243 	return ret;
3244 }
3245 
3246 static int rvu_enable_sriov(struct rvu *rvu)
3247 {
3248 	struct pci_dev *pdev = rvu->pdev;
3249 	int err, chans, vfs;
3250 	int pos = 0;
3251 
3252 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3253 		dev_warn(&pdev->dev,
3254 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3255 		return 0;
3256 	}
3257 
3258 	/* Get RVU VFs device id */
3259 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3260 	if (!pos)
3261 		return 0;
3262 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &rvu->vf_devid);
3263 
3264 	chans = rvu_get_num_lbk_chans();
3265 	if (chans < 0)
3266 		return chans;
3267 
3268 	vfs = pci_sriov_get_totalvfs(pdev);
3269 
3270 	/* Limit VFs in case we have more VFs than LBK channels available. */
3271 	if (vfs > chans)
3272 		vfs = chans;
3273 
3274 	if (!vfs)
3275 		return 0;
3276 
3277 	/* LBK channel number 63 is used for switching packets between
3278 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3279 	 */
3280 	if (vfs > 62)
3281 		vfs = 62;
3282 
3283 	/* Save VFs number for reference in VF interrupts handlers.
3284 	 * Since interrupts might start arriving during SRIOV enablement
3285 	 * ordinary API cannot be used to get number of enabled VFs.
3286 	 */
3287 	rvu->vfs = vfs;
3288 
3289 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3290 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3291 	if (err)
3292 		return err;
3293 
3294 	rvu_enable_afvf_intr(rvu);
3295 	/* Make sure IRQs are enabled before SRIOV. */
3296 	mb();
3297 
3298 	err = pci_enable_sriov(pdev, vfs);
3299 	if (err) {
3300 		rvu_disable_afvf_intr(rvu);
3301 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3302 		return err;
3303 	}
3304 
3305 	return 0;
3306 }
3307 
3308 static void rvu_disable_sriov(struct rvu *rvu)
3309 {
3310 	rvu_disable_afvf_intr(rvu);
3311 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3312 	pci_disable_sriov(rvu->pdev);
3313 }
3314 
3315 static void rvu_update_module_params(struct rvu *rvu)
3316 {
3317 	const char *default_pfl_name = "default";
3318 
3319 	strscpy(rvu->mkex_pfl_name,
3320 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3321 	strscpy(rvu->kpu_pfl_name,
3322 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3323 }
3324 
3325 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3326 {
3327 	struct device *dev = &pdev->dev;
3328 	struct rvu *rvu;
3329 	int    err;
3330 
3331 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3332 	if (!rvu)
3333 		return -ENOMEM;
3334 
3335 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3336 	if (!rvu->hw) {
3337 		devm_kfree(dev, rvu);
3338 		return -ENOMEM;
3339 	}
3340 
3341 	pci_set_drvdata(pdev, rvu);
3342 	rvu->pdev = pdev;
3343 	rvu->dev = &pdev->dev;
3344 
3345 	err = pci_enable_device(pdev);
3346 	if (err) {
3347 		dev_err(dev, "Failed to enable PCI device\n");
3348 		goto err_freemem;
3349 	}
3350 
3351 	err = pci_request_regions(pdev, DRV_NAME);
3352 	if (err) {
3353 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3354 		goto err_disable_device;
3355 	}
3356 
3357 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3358 	if (err) {
3359 		dev_err(dev, "DMA mask config failed, abort\n");
3360 		goto err_release_regions;
3361 	}
3362 
3363 	pci_set_master(pdev);
3364 
3365 	rvu->ptp = ptp_get();
3366 	if (IS_ERR(rvu->ptp)) {
3367 		err = PTR_ERR(rvu->ptp);
3368 		if (err)
3369 			goto err_release_regions;
3370 		rvu->ptp = NULL;
3371 	}
3372 
3373 	/* Map Admin function CSRs */
3374 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3375 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3376 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3377 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3378 		err = -ENOMEM;
3379 		goto err_put_ptp;
3380 	}
3381 
3382 	/* Store module params in rvu structure */
3383 	rvu_update_module_params(rvu);
3384 
3385 	/* Check which blocks the HW supports */
3386 	rvu_check_block_implemented(rvu);
3387 
3388 	rvu_reset_all_blocks(rvu);
3389 
3390 	rvu_setup_hw_capabilities(rvu);
3391 
3392 	err = rvu_setup_hw_resources(rvu);
3393 	if (err)
3394 		goto err_put_ptp;
3395 
3396 	/* Init mailbox btw AF and PFs */
3397 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3398 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3399 			    rvu_afpf_mbox_up_handler);
3400 	if (err) {
3401 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3402 		goto err_hwsetup;
3403 	}
3404 
3405 	err = rvu_flr_init(rvu);
3406 	if (err) {
3407 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3408 		goto err_mbox;
3409 	}
3410 
3411 	err = rvu_register_interrupts(rvu);
3412 	if (err) {
3413 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3414 		goto err_flr;
3415 	}
3416 
3417 	err = rvu_register_dl(rvu);
3418 	if (err) {
3419 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3420 		goto err_irq;
3421 	}
3422 
3423 	rvu_setup_rvum_blk_revid(rvu);
3424 
3425 	/* Enable AF's VFs (if any) */
3426 	err = rvu_enable_sriov(rvu);
3427 	if (err) {
3428 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3429 		goto err_dl;
3430 	}
3431 
3432 	/* Initialize debugfs */
3433 	rvu_dbg_init(rvu);
3434 
3435 	mutex_init(&rvu->rswitch.switch_lock);
3436 
3437 	if (rvu->fwdata)
3438 		ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3439 			  rvu->fwdata->ptp_ext_tstamp);
3440 
3441 	return 0;
3442 err_dl:
3443 	rvu_unregister_dl(rvu);
3444 err_irq:
3445 	rvu_unregister_interrupts(rvu);
3446 err_flr:
3447 	rvu_flr_wq_destroy(rvu);
3448 err_mbox:
3449 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3450 err_hwsetup:
3451 	rvu_cgx_exit(rvu);
3452 	rvu_fwdata_exit(rvu);
3453 	rvu_mcs_exit(rvu);
3454 	rvu_reset_all_blocks(rvu);
3455 	rvu_free_hw_resources(rvu);
3456 	rvu_clear_rvum_blk_revid(rvu);
3457 err_put_ptp:
3458 	ptp_put(rvu->ptp);
3459 err_release_regions:
3460 	pci_release_regions(pdev);
3461 err_disable_device:
3462 	pci_disable_device(pdev);
3463 err_freemem:
3464 	pci_set_drvdata(pdev, NULL);
3465 	devm_kfree(&pdev->dev, rvu->hw);
3466 	devm_kfree(dev, rvu);
3467 	return err;
3468 }
3469 
3470 static void rvu_remove(struct pci_dev *pdev)
3471 {
3472 	struct rvu *rvu = pci_get_drvdata(pdev);
3473 
3474 	rvu_dbg_exit(rvu);
3475 	rvu_unregister_dl(rvu);
3476 	rvu_unregister_interrupts(rvu);
3477 	rvu_flr_wq_destroy(rvu);
3478 	rvu_cgx_exit(rvu);
3479 	rvu_fwdata_exit(rvu);
3480 	rvu_mcs_exit(rvu);
3481 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3482 	rvu_disable_sriov(rvu);
3483 	rvu_reset_all_blocks(rvu);
3484 	rvu_free_hw_resources(rvu);
3485 	rvu_clear_rvum_blk_revid(rvu);
3486 	ptp_put(rvu->ptp);
3487 	pci_release_regions(pdev);
3488 	pci_disable_device(pdev);
3489 	pci_set_drvdata(pdev, NULL);
3490 
3491 	devm_kfree(&pdev->dev, rvu->hw);
3492 	devm_kfree(&pdev->dev, rvu);
3493 }
3494 
3495 static struct pci_driver rvu_driver = {
3496 	.name = DRV_NAME,
3497 	.id_table = rvu_id_table,
3498 	.probe = rvu_probe,
3499 	.remove = rvu_remove,
3500 };
3501 
3502 static int __init rvu_init_module(void)
3503 {
3504 	int err;
3505 
3506 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3507 
3508 	err = pci_register_driver(&cgx_driver);
3509 	if (err < 0)
3510 		return err;
3511 
3512 	err = pci_register_driver(&ptp_driver);
3513 	if (err < 0)
3514 		goto ptp_err;
3515 
3516 	err = pci_register_driver(&mcs_driver);
3517 	if (err < 0)
3518 		goto mcs_err;
3519 
3520 	err =  pci_register_driver(&rvu_driver);
3521 	if (err < 0)
3522 		goto rvu_err;
3523 
3524 	return 0;
3525 rvu_err:
3526 	pci_unregister_driver(&mcs_driver);
3527 mcs_err:
3528 	pci_unregister_driver(&ptp_driver);
3529 ptp_err:
3530 	pci_unregister_driver(&cgx_driver);
3531 
3532 	return err;
3533 }
3534 
3535 static void __exit rvu_cleanup_module(void)
3536 {
3537 	pci_unregister_driver(&rvu_driver);
3538 	pci_unregister_driver(&mcs_driver);
3539 	pci_unregister_driver(&ptp_driver);
3540 	pci_unregister_driver(&cgx_driver);
3541 }
3542 
3543 module_init(rvu_init_module);
3544 module_exit(rvu_cleanup_module);
3545