xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 
22 #define DRV_NAME	"octeontx2-af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 #define DRV_VERSION	"1.0"
25 
26 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
27 
28 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
29 				struct rvu_block *block, int lf);
30 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				  struct rvu_block *block, int lf);
32 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
33 
34 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
35 			 int type, int num,
36 			 void (mbox_handler)(struct work_struct *),
37 			 void (mbox_up_handler)(struct work_struct *));
38 enum {
39 	TYPE_AFVF,
40 	TYPE_AFPF,
41 };
42 
43 /* Supported devices */
44 static const struct pci_device_id rvu_id_table[] = {
45 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
46 	{ 0, }  /* end of table */
47 };
48 
49 MODULE_AUTHOR("Marvell International Ltd.");
50 MODULE_DESCRIPTION(DRV_STRING);
51 MODULE_LICENSE("GPL v2");
52 MODULE_VERSION(DRV_VERSION);
53 MODULE_DEVICE_TABLE(pci, rvu_id_table);
54 
55 static char *mkex_profile; /* MKEX profile name */
56 module_param(mkex_profile, charp, 0000);
57 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
58 
59 static void rvu_setup_hw_capabilities(struct rvu *rvu)
60 {
61 	struct rvu_hwinfo *hw = rvu->hw;
62 
63 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
64 	hw->cap.nix_fixed_txschq_mapping = false;
65 	hw->cap.nix_shaping = true;
66 	hw->cap.nix_tx_link_bp = true;
67 	hw->cap.nix_rx_multicast = true;
68 
69 	if (is_rvu_96xx_B0(rvu)) {
70 		hw->cap.nix_fixed_txschq_mapping = true;
71 		hw->cap.nix_txsch_per_cgx_lmac = 4;
72 		hw->cap.nix_txsch_per_lbk_lmac = 132;
73 		hw->cap.nix_txsch_per_sdp_lmac = 76;
74 		hw->cap.nix_shaping = false;
75 		hw->cap.nix_tx_link_bp = false;
76 		if (is_rvu_96xx_A0(rvu))
77 			hw->cap.nix_rx_multicast = false;
78 	}
79 }
80 
81 /* Poll a RVU block's register 'offset', for a 'zero'
82  * or 'nonzero' at bits specified by 'mask'
83  */
84 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
85 {
86 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
87 	void __iomem *reg;
88 	u64 reg_val;
89 
90 	reg = rvu->afreg_base + ((block << 28) | offset);
91 	while (time_before(jiffies, timeout)) {
92 		reg_val = readq(reg);
93 		if (zero && !(reg_val & mask))
94 			return 0;
95 		if (!zero && (reg_val & mask))
96 			return 0;
97 		usleep_range(1, 5);
98 	}
99 	return -EBUSY;
100 }
101 
102 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
103 {
104 	int id;
105 
106 	if (!rsrc->bmap)
107 		return -EINVAL;
108 
109 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
110 	if (id >= rsrc->max)
111 		return -ENOSPC;
112 
113 	__set_bit(id, rsrc->bmap);
114 
115 	return id;
116 }
117 
118 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
119 {
120 	int start;
121 
122 	if (!rsrc->bmap)
123 		return -EINVAL;
124 
125 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
126 	if (start >= rsrc->max)
127 		return -ENOSPC;
128 
129 	bitmap_set(rsrc->bmap, start, nrsrc);
130 	return start;
131 }
132 
133 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
134 {
135 	if (!rsrc->bmap)
136 		return;
137 	if (start >= rsrc->max)
138 		return;
139 
140 	bitmap_clear(rsrc->bmap, start, nrsrc);
141 }
142 
143 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
144 {
145 	int start;
146 
147 	if (!rsrc->bmap)
148 		return false;
149 
150 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
151 	if (start >= rsrc->max)
152 		return false;
153 
154 	return true;
155 }
156 
157 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
158 {
159 	if (!rsrc->bmap)
160 		return;
161 
162 	__clear_bit(id, rsrc->bmap);
163 }
164 
165 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
166 {
167 	int used;
168 
169 	if (!rsrc->bmap)
170 		return 0;
171 
172 	used = bitmap_weight(rsrc->bmap, rsrc->max);
173 	return (rsrc->max - used);
174 }
175 
176 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
177 {
178 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
179 			     sizeof(long), GFP_KERNEL);
180 	if (!rsrc->bmap)
181 		return -ENOMEM;
182 	return 0;
183 }
184 
185 /* Get block LF's HW index from a PF_FUNC's block slot number */
186 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
187 {
188 	u16 match = 0;
189 	int lf;
190 
191 	mutex_lock(&rvu->rsrc_lock);
192 	for (lf = 0; lf < block->lf.max; lf++) {
193 		if (block->fn_map[lf] == pcifunc) {
194 			if (slot == match) {
195 				mutex_unlock(&rvu->rsrc_lock);
196 				return lf;
197 			}
198 			match++;
199 		}
200 	}
201 	mutex_unlock(&rvu->rsrc_lock);
202 	return -ENODEV;
203 }
204 
205 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
206  * Some silicon variants of OcteonTX2 supports
207  * multiple blocks of same type.
208  *
209  * @pcifunc has to be zero when no LF is yet attached.
210  */
211 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
212 {
213 	int devnum, blkaddr = -ENODEV;
214 	u64 cfg, reg;
215 	bool is_pf;
216 
217 	switch (blktype) {
218 	case BLKTYPE_NPC:
219 		blkaddr = BLKADDR_NPC;
220 		goto exit;
221 	case BLKTYPE_NPA:
222 		blkaddr = BLKADDR_NPA;
223 		goto exit;
224 	case BLKTYPE_NIX:
225 		/* For now assume NIX0 */
226 		if (!pcifunc) {
227 			blkaddr = BLKADDR_NIX0;
228 			goto exit;
229 		}
230 		break;
231 	case BLKTYPE_SSO:
232 		blkaddr = BLKADDR_SSO;
233 		goto exit;
234 	case BLKTYPE_SSOW:
235 		blkaddr = BLKADDR_SSOW;
236 		goto exit;
237 	case BLKTYPE_TIM:
238 		blkaddr = BLKADDR_TIM;
239 		goto exit;
240 	case BLKTYPE_CPT:
241 		/* For now assume CPT0 */
242 		if (!pcifunc) {
243 			blkaddr = BLKADDR_CPT0;
244 			goto exit;
245 		}
246 		break;
247 	}
248 
249 	/* Check if this is a RVU PF or VF */
250 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
251 		is_pf = false;
252 		devnum = rvu_get_hwvf(rvu, pcifunc);
253 	} else {
254 		is_pf = true;
255 		devnum = rvu_get_pf(pcifunc);
256 	}
257 
258 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
259 	if (blktype == BLKTYPE_NIX) {
260 		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
261 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
262 		if (cfg)
263 			blkaddr = BLKADDR_NIX0;
264 	}
265 
266 	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
267 	if (blktype == BLKTYPE_CPT) {
268 		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
269 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
270 		if (cfg)
271 			blkaddr = BLKADDR_CPT0;
272 	}
273 
274 exit:
275 	if (is_block_implemented(rvu->hw, blkaddr))
276 		return blkaddr;
277 	return -ENODEV;
278 }
279 
280 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
281 				struct rvu_block *block, u16 pcifunc,
282 				u16 lf, bool attach)
283 {
284 	int devnum, num_lfs = 0;
285 	bool is_pf;
286 	u64 reg;
287 
288 	if (lf >= block->lf.max) {
289 		dev_err(&rvu->pdev->dev,
290 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
291 			__func__, lf, block->name, block->lf.max);
292 		return;
293 	}
294 
295 	/* Check if this is for a RVU PF or VF */
296 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
297 		is_pf = false;
298 		devnum = rvu_get_hwvf(rvu, pcifunc);
299 	} else {
300 		is_pf = true;
301 		devnum = rvu_get_pf(pcifunc);
302 	}
303 
304 	block->fn_map[lf] = attach ? pcifunc : 0;
305 
306 	switch (block->type) {
307 	case BLKTYPE_NPA:
308 		pfvf->npalf = attach ? true : false;
309 		num_lfs = pfvf->npalf;
310 		break;
311 	case BLKTYPE_NIX:
312 		pfvf->nixlf = attach ? true : false;
313 		num_lfs = pfvf->nixlf;
314 		break;
315 	case BLKTYPE_SSO:
316 		attach ? pfvf->sso++ : pfvf->sso--;
317 		num_lfs = pfvf->sso;
318 		break;
319 	case BLKTYPE_SSOW:
320 		attach ? pfvf->ssow++ : pfvf->ssow--;
321 		num_lfs = pfvf->ssow;
322 		break;
323 	case BLKTYPE_TIM:
324 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
325 		num_lfs = pfvf->timlfs;
326 		break;
327 	case BLKTYPE_CPT:
328 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
329 		num_lfs = pfvf->cptlfs;
330 		break;
331 	}
332 
333 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
334 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
335 }
336 
337 inline int rvu_get_pf(u16 pcifunc)
338 {
339 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
340 }
341 
342 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
343 {
344 	u64 cfg;
345 
346 	/* Get numVFs attached to this PF and first HWVF */
347 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
348 	*numvfs = (cfg >> 12) & 0xFF;
349 	*hwvf = cfg & 0xFFF;
350 }
351 
352 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
353 {
354 	int pf, func;
355 	u64 cfg;
356 
357 	pf = rvu_get_pf(pcifunc);
358 	func = pcifunc & RVU_PFVF_FUNC_MASK;
359 
360 	/* Get first HWVF attached to this PF */
361 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
362 
363 	return ((cfg & 0xFFF) + func - 1);
364 }
365 
366 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
367 {
368 	/* Check if it is a PF or VF */
369 	if (pcifunc & RVU_PFVF_FUNC_MASK)
370 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
371 	else
372 		return &rvu->pf[rvu_get_pf(pcifunc)];
373 }
374 
375 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
376 {
377 	int pf, vf, nvfs;
378 	u64 cfg;
379 
380 	pf = rvu_get_pf(pcifunc);
381 	if (pf >= rvu->hw->total_pfs)
382 		return false;
383 
384 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
385 		return true;
386 
387 	/* Check if VF is within number of VFs attached to this PF */
388 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
389 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
390 	nvfs = (cfg >> 12) & 0xFF;
391 	if (vf >= nvfs)
392 		return false;
393 
394 	return true;
395 }
396 
397 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
398 {
399 	struct rvu_block *block;
400 
401 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
402 		return false;
403 
404 	block = &hw->block[blkaddr];
405 	return block->implemented;
406 }
407 
408 static void rvu_check_block_implemented(struct rvu *rvu)
409 {
410 	struct rvu_hwinfo *hw = rvu->hw;
411 	struct rvu_block *block;
412 	int blkid;
413 	u64 cfg;
414 
415 	/* For each block check if 'implemented' bit is set */
416 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
417 		block = &hw->block[blkid];
418 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
419 		if (cfg & BIT_ULL(11))
420 			block->implemented = true;
421 	}
422 }
423 
424 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
425 {
426 	int err;
427 
428 	if (!block->implemented)
429 		return 0;
430 
431 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
432 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
433 			   true);
434 	return err;
435 }
436 
437 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
438 {
439 	struct rvu_block *block = &rvu->hw->block[blkaddr];
440 
441 	if (!block->implemented)
442 		return;
443 
444 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
445 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
446 }
447 
448 static void rvu_reset_all_blocks(struct rvu *rvu)
449 {
450 	/* Do a HW reset of all RVU blocks */
451 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
452 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
453 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
454 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
455 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
456 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
457 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
458 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
459 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
460 }
461 
462 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
463 {
464 	struct rvu_pfvf *pfvf;
465 	u64 cfg;
466 	int lf;
467 
468 	for (lf = 0; lf < block->lf.max; lf++) {
469 		cfg = rvu_read64(rvu, block->addr,
470 				 block->lfcfg_reg | (lf << block->lfshift));
471 		if (!(cfg & BIT_ULL(63)))
472 			continue;
473 
474 		/* Set this resource as being used */
475 		__set_bit(lf, block->lf.bmap);
476 
477 		/* Get, to whom this LF is attached */
478 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
479 		rvu_update_rsrc_map(rvu, pfvf, block,
480 				    (cfg >> 8) & 0xFFFF, lf, true);
481 
482 		/* Set start MSIX vector for this LF within this PF/VF */
483 		rvu_set_msix_offset(rvu, pfvf, block, lf);
484 	}
485 }
486 
487 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
488 {
489 	int min_vecs;
490 
491 	if (!vf)
492 		goto check_pf;
493 
494 	if (!nvecs) {
495 		dev_warn(rvu->dev,
496 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
497 			 pf, vf - 1, nvecs);
498 	}
499 	return;
500 
501 check_pf:
502 	if (pf == 0)
503 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
504 	else
505 		min_vecs = RVU_PF_INT_VEC_CNT;
506 
507 	if (!(nvecs < min_vecs))
508 		return;
509 	dev_warn(rvu->dev,
510 		 "PF%d is configured with too few vectors, %d, min is %d\n",
511 		 pf, nvecs, min_vecs);
512 }
513 
514 static int rvu_setup_msix_resources(struct rvu *rvu)
515 {
516 	struct rvu_hwinfo *hw = rvu->hw;
517 	int pf, vf, numvfs, hwvf, err;
518 	int nvecs, offset, max_msix;
519 	struct rvu_pfvf *pfvf;
520 	u64 cfg, phy_addr;
521 	dma_addr_t iova;
522 
523 	for (pf = 0; pf < hw->total_pfs; pf++) {
524 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
525 		/* If PF is not enabled, nothing to do */
526 		if (!((cfg >> 20) & 0x01))
527 			continue;
528 
529 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
530 
531 		pfvf = &rvu->pf[pf];
532 		/* Get num of MSIX vectors attached to this PF */
533 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
534 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
535 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
536 
537 		/* Alloc msix bitmap for this PF */
538 		err = rvu_alloc_bitmap(&pfvf->msix);
539 		if (err)
540 			return err;
541 
542 		/* Allocate memory for MSIX vector to RVU block LF mapping */
543 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
544 						sizeof(u16), GFP_KERNEL);
545 		if (!pfvf->msix_lfmap)
546 			return -ENOMEM;
547 
548 		/* For PF0 (AF) firmware will set msix vector offsets for
549 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
550 		 */
551 		if (!pf)
552 			goto setup_vfmsix;
553 
554 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
555 		 * These are allocated on driver init and never freed,
556 		 * so no need to set 'msix_lfmap' for these.
557 		 */
558 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
559 		nvecs = (cfg >> 12) & 0xFF;
560 		cfg &= ~0x7FFULL;
561 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
562 		rvu_write64(rvu, BLKADDR_RVUM,
563 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
564 setup_vfmsix:
565 		/* Alloc msix bitmap for VFs */
566 		for (vf = 0; vf < numvfs; vf++) {
567 			pfvf =  &rvu->hwvf[hwvf + vf];
568 			/* Get num of MSIX vectors attached to this VF */
569 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
570 					 RVU_PRIV_PFX_MSIX_CFG(pf));
571 			pfvf->msix.max = (cfg & 0xFFF) + 1;
572 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
573 
574 			/* Alloc msix bitmap for this VF */
575 			err = rvu_alloc_bitmap(&pfvf->msix);
576 			if (err)
577 				return err;
578 
579 			pfvf->msix_lfmap =
580 				devm_kcalloc(rvu->dev, pfvf->msix.max,
581 					     sizeof(u16), GFP_KERNEL);
582 			if (!pfvf->msix_lfmap)
583 				return -ENOMEM;
584 
585 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
586 			 * These are allocated on driver init and never freed,
587 			 * so no need to set 'msix_lfmap' for these.
588 			 */
589 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
590 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
591 			nvecs = (cfg >> 12) & 0xFF;
592 			cfg &= ~0x7FFULL;
593 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
594 			rvu_write64(rvu, BLKADDR_RVUM,
595 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
596 				    cfg | offset);
597 		}
598 	}
599 
600 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
601 	 * create a IOMMU mapping for the physcial address configured by
602 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
603 	 */
604 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
605 	max_msix = cfg & 0xFFFFF;
606 	phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
607 	iova = dma_map_resource(rvu->dev, phy_addr,
608 				max_msix * PCI_MSIX_ENTRY_SIZE,
609 				DMA_BIDIRECTIONAL, 0);
610 
611 	if (dma_mapping_error(rvu->dev, iova))
612 		return -ENOMEM;
613 
614 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
615 	rvu->msix_base_iova = iova;
616 
617 	return 0;
618 }
619 
620 static void rvu_free_hw_resources(struct rvu *rvu)
621 {
622 	struct rvu_hwinfo *hw = rvu->hw;
623 	struct rvu_block *block;
624 	struct rvu_pfvf  *pfvf;
625 	int id, max_msix;
626 	u64 cfg;
627 
628 	rvu_npa_freemem(rvu);
629 	rvu_npc_freemem(rvu);
630 	rvu_nix_freemem(rvu);
631 
632 	/* Free block LF bitmaps */
633 	for (id = 0; id < BLK_COUNT; id++) {
634 		block = &hw->block[id];
635 		kfree(block->lf.bmap);
636 	}
637 
638 	/* Free MSIX bitmaps */
639 	for (id = 0; id < hw->total_pfs; id++) {
640 		pfvf = &rvu->pf[id];
641 		kfree(pfvf->msix.bmap);
642 	}
643 
644 	for (id = 0; id < hw->total_vfs; id++) {
645 		pfvf = &rvu->hwvf[id];
646 		kfree(pfvf->msix.bmap);
647 	}
648 
649 	/* Unmap MSIX vector base IOVA mapping */
650 	if (!rvu->msix_base_iova)
651 		return;
652 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
653 	max_msix = cfg & 0xFFFFF;
654 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
655 			   max_msix * PCI_MSIX_ENTRY_SIZE,
656 			   DMA_BIDIRECTIONAL, 0);
657 
658 	mutex_destroy(&rvu->rsrc_lock);
659 }
660 
661 static int rvu_setup_hw_resources(struct rvu *rvu)
662 {
663 	struct rvu_hwinfo *hw = rvu->hw;
664 	struct rvu_block *block;
665 	int blkid, err;
666 	u64 cfg;
667 
668 	/* Get HW supported max RVU PF & VF count */
669 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
670 	hw->total_pfs = (cfg >> 32) & 0xFF;
671 	hw->total_vfs = (cfg >> 20) & 0xFFF;
672 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
673 
674 	/* Init NPA LF's bitmap */
675 	block = &hw->block[BLKADDR_NPA];
676 	if (!block->implemented)
677 		goto nix;
678 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
679 	block->lf.max = (cfg >> 16) & 0xFFF;
680 	block->addr = BLKADDR_NPA;
681 	block->type = BLKTYPE_NPA;
682 	block->lfshift = 8;
683 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
684 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
685 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
686 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
687 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
688 	block->lfreset_reg = NPA_AF_LF_RST;
689 	sprintf(block->name, "NPA");
690 	err = rvu_alloc_bitmap(&block->lf);
691 	if (err)
692 		return err;
693 
694 nix:
695 	/* Init NIX LF's bitmap */
696 	block = &hw->block[BLKADDR_NIX0];
697 	if (!block->implemented)
698 		goto sso;
699 	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
700 	block->lf.max = cfg & 0xFFF;
701 	block->addr = BLKADDR_NIX0;
702 	block->type = BLKTYPE_NIX;
703 	block->lfshift = 8;
704 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
705 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
706 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
707 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
708 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
709 	block->lfreset_reg = NIX_AF_LF_RST;
710 	sprintf(block->name, "NIX");
711 	err = rvu_alloc_bitmap(&block->lf);
712 	if (err)
713 		return err;
714 
715 sso:
716 	/* Init SSO group's bitmap */
717 	block = &hw->block[BLKADDR_SSO];
718 	if (!block->implemented)
719 		goto ssow;
720 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
721 	block->lf.max = cfg & 0xFFFF;
722 	block->addr = BLKADDR_SSO;
723 	block->type = BLKTYPE_SSO;
724 	block->multislot = true;
725 	block->lfshift = 3;
726 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
727 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
728 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
729 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
730 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
731 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
732 	sprintf(block->name, "SSO GROUP");
733 	err = rvu_alloc_bitmap(&block->lf);
734 	if (err)
735 		return err;
736 
737 ssow:
738 	/* Init SSO workslot's bitmap */
739 	block = &hw->block[BLKADDR_SSOW];
740 	if (!block->implemented)
741 		goto tim;
742 	block->lf.max = (cfg >> 56) & 0xFF;
743 	block->addr = BLKADDR_SSOW;
744 	block->type = BLKTYPE_SSOW;
745 	block->multislot = true;
746 	block->lfshift = 3;
747 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
748 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
749 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
750 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
751 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
752 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
753 	sprintf(block->name, "SSOWS");
754 	err = rvu_alloc_bitmap(&block->lf);
755 	if (err)
756 		return err;
757 
758 tim:
759 	/* Init TIM LF's bitmap */
760 	block = &hw->block[BLKADDR_TIM];
761 	if (!block->implemented)
762 		goto cpt;
763 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
764 	block->lf.max = cfg & 0xFFFF;
765 	block->addr = BLKADDR_TIM;
766 	block->type = BLKTYPE_TIM;
767 	block->multislot = true;
768 	block->lfshift = 3;
769 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
770 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
771 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
772 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
773 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
774 	block->lfreset_reg = TIM_AF_LF_RST;
775 	sprintf(block->name, "TIM");
776 	err = rvu_alloc_bitmap(&block->lf);
777 	if (err)
778 		return err;
779 
780 cpt:
781 	/* Init CPT LF's bitmap */
782 	block = &hw->block[BLKADDR_CPT0];
783 	if (!block->implemented)
784 		goto init;
785 	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
786 	block->lf.max = cfg & 0xFF;
787 	block->addr = BLKADDR_CPT0;
788 	block->type = BLKTYPE_CPT;
789 	block->multislot = true;
790 	block->lfshift = 3;
791 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
792 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
793 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
794 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
795 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
796 	block->lfreset_reg = CPT_AF_LF_RST;
797 	sprintf(block->name, "CPT");
798 	err = rvu_alloc_bitmap(&block->lf);
799 	if (err)
800 		return err;
801 
802 init:
803 	/* Allocate memory for PFVF data */
804 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
805 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
806 	if (!rvu->pf)
807 		return -ENOMEM;
808 
809 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
810 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
811 	if (!rvu->hwvf)
812 		return -ENOMEM;
813 
814 	mutex_init(&rvu->rsrc_lock);
815 
816 	err = rvu_setup_msix_resources(rvu);
817 	if (err)
818 		return err;
819 
820 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
821 		block = &hw->block[blkid];
822 		if (!block->lf.bmap)
823 			continue;
824 
825 		/* Allocate memory for block LF/slot to pcifunc mapping info */
826 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
827 					     sizeof(u16), GFP_KERNEL);
828 		if (!block->fn_map)
829 			return -ENOMEM;
830 
831 		/* Scan all blocks to check if low level firmware has
832 		 * already provisioned any of the resources to a PF/VF.
833 		 */
834 		rvu_scan_block(rvu, block);
835 	}
836 
837 	err = rvu_npc_init(rvu);
838 	if (err)
839 		goto exit;
840 
841 	err = rvu_cgx_init(rvu);
842 	if (err)
843 		goto exit;
844 
845 	err = rvu_npa_init(rvu);
846 	if (err)
847 		goto cgx_err;
848 
849 	err = rvu_nix_init(rvu);
850 	if (err)
851 		goto cgx_err;
852 
853 	return 0;
854 
855 cgx_err:
856 	rvu_cgx_exit(rvu);
857 exit:
858 	return err;
859 }
860 
861 /* NPA and NIX admin queue APIs */
862 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
863 {
864 	if (!aq)
865 		return;
866 
867 	qmem_free(rvu->dev, aq->inst);
868 	qmem_free(rvu->dev, aq->res);
869 	devm_kfree(rvu->dev, aq);
870 }
871 
872 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
873 		 int qsize, int inst_size, int res_size)
874 {
875 	struct admin_queue *aq;
876 	int err;
877 
878 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
879 	if (!*ad_queue)
880 		return -ENOMEM;
881 	aq = *ad_queue;
882 
883 	/* Alloc memory for instructions i.e AQ */
884 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
885 	if (err) {
886 		devm_kfree(rvu->dev, aq);
887 		return err;
888 	}
889 
890 	/* Alloc memory for results */
891 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
892 	if (err) {
893 		rvu_aq_free(rvu, aq);
894 		return err;
895 	}
896 
897 	spin_lock_init(&aq->lock);
898 	return 0;
899 }
900 
901 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
902 			   struct ready_msg_rsp *rsp)
903 {
904 	return 0;
905 }
906 
907 /* Get current count of a RVU block's LF/slots
908  * provisioned to a given RVU func.
909  */
910 static u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blktype)
911 {
912 	switch (blktype) {
913 	case BLKTYPE_NPA:
914 		return pfvf->npalf ? 1 : 0;
915 	case BLKTYPE_NIX:
916 		return pfvf->nixlf ? 1 : 0;
917 	case BLKTYPE_SSO:
918 		return pfvf->sso;
919 	case BLKTYPE_SSOW:
920 		return pfvf->ssow;
921 	case BLKTYPE_TIM:
922 		return pfvf->timlfs;
923 	case BLKTYPE_CPT:
924 		return pfvf->cptlfs;
925 	}
926 	return 0;
927 }
928 
929 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
930 {
931 	struct rvu_pfvf *pfvf;
932 
933 	if (!is_pf_func_valid(rvu, pcifunc))
934 		return false;
935 
936 	pfvf = rvu_get_pfvf(rvu, pcifunc);
937 
938 	/* Check if this PFFUNC has a LF of type blktype attached */
939 	if (!rvu_get_rsrc_mapcount(pfvf, blktype))
940 		return false;
941 
942 	return true;
943 }
944 
945 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
946 			   int pcifunc, int slot)
947 {
948 	u64 val;
949 
950 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
951 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
952 	/* Wait for the lookup to finish */
953 	/* TODO: put some timeout here */
954 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
955 		;
956 
957 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
958 
959 	/* Check LF valid bit */
960 	if (!(val & (1ULL << 12)))
961 		return -1;
962 
963 	return (val & 0xFFF);
964 }
965 
966 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
967 {
968 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
969 	struct rvu_hwinfo *hw = rvu->hw;
970 	struct rvu_block *block;
971 	int slot, lf, num_lfs;
972 	int blkaddr;
973 
974 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
975 	if (blkaddr < 0)
976 		return;
977 
978 	block = &hw->block[blkaddr];
979 
980 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->type);
981 	if (!num_lfs)
982 		return;
983 
984 	for (slot = 0; slot < num_lfs; slot++) {
985 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
986 		if (lf < 0) /* This should never happen */
987 			continue;
988 
989 		/* Disable the LF */
990 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
991 			    (lf << block->lfshift), 0x00ULL);
992 
993 		/* Update SW maintained mapping info as well */
994 		rvu_update_rsrc_map(rvu, pfvf, block,
995 				    pcifunc, lf, false);
996 
997 		/* Free the resource */
998 		rvu_free_rsrc(&block->lf, lf);
999 
1000 		/* Clear MSIX vector offset for this LF */
1001 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1002 	}
1003 }
1004 
1005 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1006 			    u16 pcifunc)
1007 {
1008 	struct rvu_hwinfo *hw = rvu->hw;
1009 	bool detach_all = true;
1010 	struct rvu_block *block;
1011 	int blkid;
1012 
1013 	mutex_lock(&rvu->rsrc_lock);
1014 
1015 	/* Check for partial resource detach */
1016 	if (detach && detach->partial)
1017 		detach_all = false;
1018 
1019 	/* Check for RVU block's LFs attached to this func,
1020 	 * if so, detach them.
1021 	 */
1022 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1023 		block = &hw->block[blkid];
1024 		if (!block->lf.bmap)
1025 			continue;
1026 		if (!detach_all && detach) {
1027 			if (blkid == BLKADDR_NPA && !detach->npalf)
1028 				continue;
1029 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1030 				continue;
1031 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1032 				continue;
1033 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1034 				continue;
1035 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1036 				continue;
1037 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1038 				continue;
1039 		}
1040 		rvu_detach_block(rvu, pcifunc, block->type);
1041 	}
1042 
1043 	mutex_unlock(&rvu->rsrc_lock);
1044 	return 0;
1045 }
1046 
1047 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1048 				      struct rsrc_detach *detach,
1049 				      struct msg_rsp *rsp)
1050 {
1051 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1052 }
1053 
1054 static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1055 			     int blktype, int num_lfs)
1056 {
1057 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1058 	struct rvu_hwinfo *hw = rvu->hw;
1059 	struct rvu_block *block;
1060 	int slot, lf;
1061 	int blkaddr;
1062 	u64 cfg;
1063 
1064 	if (!num_lfs)
1065 		return;
1066 
1067 	blkaddr = rvu_get_blkaddr(rvu, blktype, 0);
1068 	if (blkaddr < 0)
1069 		return;
1070 
1071 	block = &hw->block[blkaddr];
1072 	if (!block->lf.bmap)
1073 		return;
1074 
1075 	for (slot = 0; slot < num_lfs; slot++) {
1076 		/* Allocate the resource */
1077 		lf = rvu_alloc_rsrc(&block->lf);
1078 		if (lf < 0)
1079 			return;
1080 
1081 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1082 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1083 			    (lf << block->lfshift), cfg);
1084 		rvu_update_rsrc_map(rvu, pfvf, block,
1085 				    pcifunc, lf, true);
1086 
1087 		/* Set start MSIX vector for this LF within this PF/VF */
1088 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1089 	}
1090 }
1091 
1092 static int rvu_check_rsrc_availability(struct rvu *rvu,
1093 				       struct rsrc_attach *req, u16 pcifunc)
1094 {
1095 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1096 	struct rvu_hwinfo *hw = rvu->hw;
1097 	struct rvu_block *block;
1098 	int free_lfs, mappedlfs;
1099 
1100 	/* Only one NPA LF can be attached */
1101 	if (req->npalf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NPA)) {
1102 		block = &hw->block[BLKADDR_NPA];
1103 		free_lfs = rvu_rsrc_free_count(&block->lf);
1104 		if (!free_lfs)
1105 			goto fail;
1106 	} else if (req->npalf) {
1107 		dev_err(&rvu->pdev->dev,
1108 			"Func 0x%x: Invalid req, already has NPA\n",
1109 			 pcifunc);
1110 		return -EINVAL;
1111 	}
1112 
1113 	/* Only one NIX LF can be attached */
1114 	if (req->nixlf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NIX)) {
1115 		block = &hw->block[BLKADDR_NIX0];
1116 		free_lfs = rvu_rsrc_free_count(&block->lf);
1117 		if (!free_lfs)
1118 			goto fail;
1119 	} else if (req->nixlf) {
1120 		dev_err(&rvu->pdev->dev,
1121 			"Func 0x%x: Invalid req, already has NIX\n",
1122 			pcifunc);
1123 		return -EINVAL;
1124 	}
1125 
1126 	if (req->sso) {
1127 		block = &hw->block[BLKADDR_SSO];
1128 		/* Is request within limits ? */
1129 		if (req->sso > block->lf.max) {
1130 			dev_err(&rvu->pdev->dev,
1131 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1132 				 pcifunc, req->sso, block->lf.max);
1133 			return -EINVAL;
1134 		}
1135 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1136 		free_lfs = rvu_rsrc_free_count(&block->lf);
1137 		/* Check if additional resources are available */
1138 		if (req->sso > mappedlfs &&
1139 		    ((req->sso - mappedlfs) > free_lfs))
1140 			goto fail;
1141 	}
1142 
1143 	if (req->ssow) {
1144 		block = &hw->block[BLKADDR_SSOW];
1145 		if (req->ssow > block->lf.max) {
1146 			dev_err(&rvu->pdev->dev,
1147 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1148 				 pcifunc, req->sso, block->lf.max);
1149 			return -EINVAL;
1150 		}
1151 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1152 		free_lfs = rvu_rsrc_free_count(&block->lf);
1153 		if (req->ssow > mappedlfs &&
1154 		    ((req->ssow - mappedlfs) > free_lfs))
1155 			goto fail;
1156 	}
1157 
1158 	if (req->timlfs) {
1159 		block = &hw->block[BLKADDR_TIM];
1160 		if (req->timlfs > block->lf.max) {
1161 			dev_err(&rvu->pdev->dev,
1162 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1163 				 pcifunc, req->timlfs, block->lf.max);
1164 			return -EINVAL;
1165 		}
1166 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1167 		free_lfs = rvu_rsrc_free_count(&block->lf);
1168 		if (req->timlfs > mappedlfs &&
1169 		    ((req->timlfs - mappedlfs) > free_lfs))
1170 			goto fail;
1171 	}
1172 
1173 	if (req->cptlfs) {
1174 		block = &hw->block[BLKADDR_CPT0];
1175 		if (req->cptlfs > block->lf.max) {
1176 			dev_err(&rvu->pdev->dev,
1177 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1178 				 pcifunc, req->cptlfs, block->lf.max);
1179 			return -EINVAL;
1180 		}
1181 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1182 		free_lfs = rvu_rsrc_free_count(&block->lf);
1183 		if (req->cptlfs > mappedlfs &&
1184 		    ((req->cptlfs - mappedlfs) > free_lfs))
1185 			goto fail;
1186 	}
1187 
1188 	return 0;
1189 
1190 fail:
1191 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1192 	return -ENOSPC;
1193 }
1194 
1195 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1196 				      struct rsrc_attach *attach,
1197 				      struct msg_rsp *rsp)
1198 {
1199 	u16 pcifunc = attach->hdr.pcifunc;
1200 	int err;
1201 
1202 	/* If first request, detach all existing attached resources */
1203 	if (!attach->modify)
1204 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1205 
1206 	mutex_lock(&rvu->rsrc_lock);
1207 
1208 	/* Check if the request can be accommodated */
1209 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1210 	if (err)
1211 		goto exit;
1212 
1213 	/* Now attach the requested resources */
1214 	if (attach->npalf)
1215 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1216 
1217 	if (attach->nixlf)
1218 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1219 
1220 	if (attach->sso) {
1221 		/* RVU func doesn't know which exact LF or slot is attached
1222 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1223 		 * request, simply detach all existing attached LFs/slots
1224 		 * and attach a fresh.
1225 		 */
1226 		if (attach->modify)
1227 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1228 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1229 	}
1230 
1231 	if (attach->ssow) {
1232 		if (attach->modify)
1233 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1234 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1235 	}
1236 
1237 	if (attach->timlfs) {
1238 		if (attach->modify)
1239 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1240 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1241 	}
1242 
1243 	if (attach->cptlfs) {
1244 		if (attach->modify)
1245 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1246 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1247 	}
1248 
1249 exit:
1250 	mutex_unlock(&rvu->rsrc_lock);
1251 	return err;
1252 }
1253 
1254 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1255 			       int blkaddr, int lf)
1256 {
1257 	u16 vec;
1258 
1259 	if (lf < 0)
1260 		return MSIX_VECTOR_INVALID;
1261 
1262 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1263 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1264 			return vec;
1265 	}
1266 	return MSIX_VECTOR_INVALID;
1267 }
1268 
1269 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1270 				struct rvu_block *block, int lf)
1271 {
1272 	u16 nvecs, vec, offset;
1273 	u64 cfg;
1274 
1275 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1276 			 (lf << block->lfshift));
1277 	nvecs = (cfg >> 12) & 0xFF;
1278 
1279 	/* Check and alloc MSIX vectors, must be contiguous */
1280 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1281 		return;
1282 
1283 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1284 
1285 	/* Config MSIX offset in LF */
1286 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1287 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1288 
1289 	/* Update the bitmap as well */
1290 	for (vec = 0; vec < nvecs; vec++)
1291 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1292 }
1293 
1294 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1295 				  struct rvu_block *block, int lf)
1296 {
1297 	u16 nvecs, vec, offset;
1298 	u64 cfg;
1299 
1300 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1301 			 (lf << block->lfshift));
1302 	nvecs = (cfg >> 12) & 0xFF;
1303 
1304 	/* Clear MSIX offset in LF */
1305 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1306 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1307 
1308 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1309 
1310 	/* Update the mapping */
1311 	for (vec = 0; vec < nvecs; vec++)
1312 		pfvf->msix_lfmap[offset + vec] = 0;
1313 
1314 	/* Free the same in MSIX bitmap */
1315 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1316 }
1317 
1318 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1319 				 struct msix_offset_rsp *rsp)
1320 {
1321 	struct rvu_hwinfo *hw = rvu->hw;
1322 	u16 pcifunc = req->hdr.pcifunc;
1323 	struct rvu_pfvf *pfvf;
1324 	int lf, slot;
1325 
1326 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1327 	if (!pfvf->msix.bmap)
1328 		return 0;
1329 
1330 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1331 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1332 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1333 
1334 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1335 	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1336 
1337 	rsp->sso = pfvf->sso;
1338 	for (slot = 0; slot < rsp->sso; slot++) {
1339 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1340 		rsp->sso_msixoff[slot] =
1341 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1342 	}
1343 
1344 	rsp->ssow = pfvf->ssow;
1345 	for (slot = 0; slot < rsp->ssow; slot++) {
1346 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1347 		rsp->ssow_msixoff[slot] =
1348 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1349 	}
1350 
1351 	rsp->timlfs = pfvf->timlfs;
1352 	for (slot = 0; slot < rsp->timlfs; slot++) {
1353 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1354 		rsp->timlf_msixoff[slot] =
1355 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1356 	}
1357 
1358 	rsp->cptlfs = pfvf->cptlfs;
1359 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1360 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1361 		rsp->cptlf_msixoff[slot] =
1362 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1363 	}
1364 	return 0;
1365 }
1366 
1367 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1368 			    struct msg_rsp *rsp)
1369 {
1370 	u16 pcifunc = req->hdr.pcifunc;
1371 	u16 vf, numvfs;
1372 	u64 cfg;
1373 
1374 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1375 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1376 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1377 	numvfs = (cfg >> 12) & 0xFF;
1378 
1379 	if (vf && vf <= numvfs)
1380 		__rvu_flr_handler(rvu, pcifunc);
1381 	else
1382 		return RVU_INVALID_VF_ID;
1383 
1384 	return 0;
1385 }
1386 
1387 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1388 				struct get_hw_cap_rsp *rsp)
1389 {
1390 	struct rvu_hwinfo *hw = rvu->hw;
1391 
1392 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1393 	rsp->nix_shaping = hw->cap.nix_shaping;
1394 
1395 	return 0;
1396 }
1397 
1398 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1399 				struct mbox_msghdr *req)
1400 {
1401 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1402 
1403 	/* Check if valid, if not reply with a invalid msg */
1404 	if (req->sig != OTX2_MBOX_REQ_SIG)
1405 		goto bad_message;
1406 
1407 	switch (req->id) {
1408 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1409 	case _id: {							\
1410 		struct _rsp_type *rsp;					\
1411 		int err;						\
1412 									\
1413 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1414 			mbox, devid,					\
1415 			sizeof(struct _rsp_type));			\
1416 		/* some handlers should complete even if reply */	\
1417 		/* could not be allocated */				\
1418 		if (!rsp &&						\
1419 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1420 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1421 		    _id != MBOX_MSG_VF_FLR)				\
1422 			return -ENOMEM;					\
1423 		if (rsp) {						\
1424 			rsp->hdr.id = _id;				\
1425 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1426 			rsp->hdr.pcifunc = req->pcifunc;		\
1427 			rsp->hdr.rc = 0;				\
1428 		}							\
1429 									\
1430 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1431 						    (struct _req_type *)req, \
1432 						    rsp);		\
1433 		if (rsp && err)						\
1434 			rsp->hdr.rc = err;				\
1435 									\
1436 		return rsp ? err : -ENOMEM;				\
1437 	}
1438 MBOX_MESSAGES
1439 #undef M
1440 
1441 bad_message:
1442 	default:
1443 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1444 		return -ENODEV;
1445 	}
1446 }
1447 
1448 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1449 {
1450 	struct rvu *rvu = mwork->rvu;
1451 	int offset, err, id, devid;
1452 	struct otx2_mbox_dev *mdev;
1453 	struct mbox_hdr *req_hdr;
1454 	struct mbox_msghdr *msg;
1455 	struct mbox_wq_info *mw;
1456 	struct otx2_mbox *mbox;
1457 
1458 	switch (type) {
1459 	case TYPE_AFPF:
1460 		mw = &rvu->afpf_wq_info;
1461 		break;
1462 	case TYPE_AFVF:
1463 		mw = &rvu->afvf_wq_info;
1464 		break;
1465 	default:
1466 		return;
1467 	}
1468 
1469 	devid = mwork - mw->mbox_wrk;
1470 	mbox = &mw->mbox;
1471 	mdev = &mbox->dev[devid];
1472 
1473 	/* Process received mbox messages */
1474 	req_hdr = mdev->mbase + mbox->rx_start;
1475 	if (mw->mbox_wrk[devid].num_msgs == 0)
1476 		return;
1477 
1478 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1479 
1480 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1481 		msg = mdev->mbase + offset;
1482 
1483 		/* Set which PF/VF sent this message based on mbox IRQ */
1484 		switch (type) {
1485 		case TYPE_AFPF:
1486 			msg->pcifunc &=
1487 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1488 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1489 			break;
1490 		case TYPE_AFVF:
1491 			msg->pcifunc &=
1492 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1493 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1494 			break;
1495 		}
1496 
1497 		err = rvu_process_mbox_msg(mbox, devid, msg);
1498 		if (!err) {
1499 			offset = mbox->rx_start + msg->next_msgoff;
1500 			continue;
1501 		}
1502 
1503 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1504 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1505 				 err, otx2_mbox_id2name(msg->id),
1506 				 msg->id, rvu_get_pf(msg->pcifunc),
1507 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1508 		else
1509 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1510 				 err, otx2_mbox_id2name(msg->id),
1511 				 msg->id, devid);
1512 	}
1513 	mw->mbox_wrk[devid].num_msgs = 0;
1514 
1515 	/* Send mbox responses to VF/PF */
1516 	otx2_mbox_msg_send(mbox, devid);
1517 }
1518 
1519 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1520 {
1521 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1522 
1523 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1524 }
1525 
1526 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1527 {
1528 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1529 
1530 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1531 }
1532 
1533 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1534 {
1535 	struct rvu *rvu = mwork->rvu;
1536 	struct otx2_mbox_dev *mdev;
1537 	struct mbox_hdr *rsp_hdr;
1538 	struct mbox_msghdr *msg;
1539 	struct mbox_wq_info *mw;
1540 	struct otx2_mbox *mbox;
1541 	int offset, id, devid;
1542 
1543 	switch (type) {
1544 	case TYPE_AFPF:
1545 		mw = &rvu->afpf_wq_info;
1546 		break;
1547 	case TYPE_AFVF:
1548 		mw = &rvu->afvf_wq_info;
1549 		break;
1550 	default:
1551 		return;
1552 	}
1553 
1554 	devid = mwork - mw->mbox_wrk_up;
1555 	mbox = &mw->mbox_up;
1556 	mdev = &mbox->dev[devid];
1557 
1558 	rsp_hdr = mdev->mbase + mbox->rx_start;
1559 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1560 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1561 		return;
1562 	}
1563 
1564 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1565 
1566 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1567 		msg = mdev->mbase + offset;
1568 
1569 		if (msg->id >= MBOX_MSG_MAX) {
1570 			dev_err(rvu->dev,
1571 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1572 			goto end;
1573 		}
1574 
1575 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1576 			dev_err(rvu->dev,
1577 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1578 				msg->sig, msg->id);
1579 			goto end;
1580 		}
1581 
1582 		switch (msg->id) {
1583 		case MBOX_MSG_CGX_LINK_EVENT:
1584 			break;
1585 		default:
1586 			if (msg->rc)
1587 				dev_err(rvu->dev,
1588 					"Mbox msg response has err %d, ID 0x%x\n",
1589 					msg->rc, msg->id);
1590 			break;
1591 		}
1592 end:
1593 		offset = mbox->rx_start + msg->next_msgoff;
1594 		mdev->msgs_acked++;
1595 	}
1596 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
1597 
1598 	otx2_mbox_reset(mbox, devid);
1599 }
1600 
1601 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1602 {
1603 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1604 
1605 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1606 }
1607 
1608 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1609 {
1610 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1611 
1612 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1613 }
1614 
1615 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1616 			 int type, int num,
1617 			 void (mbox_handler)(struct work_struct *),
1618 			 void (mbox_up_handler)(struct work_struct *))
1619 {
1620 	void __iomem *hwbase = NULL, *reg_base;
1621 	int err, i, dir, dir_up;
1622 	struct rvu_work *mwork;
1623 	const char *name;
1624 	u64 bar4_addr;
1625 
1626 	switch (type) {
1627 	case TYPE_AFPF:
1628 		name = "rvu_afpf_mailbox";
1629 		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1630 		dir = MBOX_DIR_AFPF;
1631 		dir_up = MBOX_DIR_AFPF_UP;
1632 		reg_base = rvu->afreg_base;
1633 		break;
1634 	case TYPE_AFVF:
1635 		name = "rvu_afvf_mailbox";
1636 		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1637 		dir = MBOX_DIR_PFVF;
1638 		dir_up = MBOX_DIR_PFVF_UP;
1639 		reg_base = rvu->pfreg_base;
1640 		break;
1641 	default:
1642 		return -EINVAL;
1643 	}
1644 
1645 	mw->mbox_wq = alloc_workqueue(name,
1646 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1647 				      num);
1648 	if (!mw->mbox_wq)
1649 		return -ENOMEM;
1650 
1651 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1652 				    sizeof(struct rvu_work), GFP_KERNEL);
1653 	if (!mw->mbox_wrk) {
1654 		err = -ENOMEM;
1655 		goto exit;
1656 	}
1657 
1658 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1659 				       sizeof(struct rvu_work), GFP_KERNEL);
1660 	if (!mw->mbox_wrk_up) {
1661 		err = -ENOMEM;
1662 		goto exit;
1663 	}
1664 
1665 	/* Mailbox is a reserved memory (in RAM) region shared between
1666 	 * RVU devices, shouldn't be mapped as device memory to allow
1667 	 * unaligned accesses.
1668 	 */
1669 	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1670 	if (!hwbase) {
1671 		dev_err(rvu->dev, "Unable to map mailbox region\n");
1672 		err = -ENOMEM;
1673 		goto exit;
1674 	}
1675 
1676 	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1677 	if (err)
1678 		goto exit;
1679 
1680 	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1681 			     reg_base, dir_up, num);
1682 	if (err)
1683 		goto exit;
1684 
1685 	for (i = 0; i < num; i++) {
1686 		mwork = &mw->mbox_wrk[i];
1687 		mwork->rvu = rvu;
1688 		INIT_WORK(&mwork->work, mbox_handler);
1689 
1690 		mwork = &mw->mbox_wrk_up[i];
1691 		mwork->rvu = rvu;
1692 		INIT_WORK(&mwork->work, mbox_up_handler);
1693 	}
1694 
1695 	return 0;
1696 exit:
1697 	if (hwbase)
1698 		iounmap((void __iomem *)hwbase);
1699 	destroy_workqueue(mw->mbox_wq);
1700 	return err;
1701 }
1702 
1703 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1704 {
1705 	if (mw->mbox_wq) {
1706 		flush_workqueue(mw->mbox_wq);
1707 		destroy_workqueue(mw->mbox_wq);
1708 		mw->mbox_wq = NULL;
1709 	}
1710 
1711 	if (mw->mbox.hwbase)
1712 		iounmap((void __iomem *)mw->mbox.hwbase);
1713 
1714 	otx2_mbox_destroy(&mw->mbox);
1715 	otx2_mbox_destroy(&mw->mbox_up);
1716 }
1717 
1718 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1719 			   int mdevs, u64 intr)
1720 {
1721 	struct otx2_mbox_dev *mdev;
1722 	struct otx2_mbox *mbox;
1723 	struct mbox_hdr *hdr;
1724 	int i;
1725 
1726 	for (i = first; i < mdevs; i++) {
1727 		/* start from 0 */
1728 		if (!(intr & BIT_ULL(i - first)))
1729 			continue;
1730 
1731 		mbox = &mw->mbox;
1732 		mdev = &mbox->dev[i];
1733 		hdr = mdev->mbase + mbox->rx_start;
1734 
1735 		/*The hdr->num_msgs is set to zero immediately in the interrupt
1736 		 * handler to  ensure that it holds a correct value next time
1737 		 * when the interrupt handler is called.
1738 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
1739 		 * pf>mbox.up_num_msgs holds the data for use in
1740 		 * pfaf_mbox_up_handler.
1741 		 */
1742 
1743 		if (hdr->num_msgs) {
1744 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
1745 			hdr->num_msgs = 0;
1746 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1747 		}
1748 		mbox = &mw->mbox_up;
1749 		mdev = &mbox->dev[i];
1750 		hdr = mdev->mbase + mbox->rx_start;
1751 		if (hdr->num_msgs) {
1752 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
1753 			hdr->num_msgs = 0;
1754 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1755 		}
1756 	}
1757 }
1758 
1759 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1760 {
1761 	struct rvu *rvu = (struct rvu *)rvu_irq;
1762 	int vfs = rvu->vfs;
1763 	u64 intr;
1764 
1765 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1766 	/* Clear interrupts */
1767 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1768 
1769 	/* Sync with mbox memory region */
1770 	rmb();
1771 
1772 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1773 
1774 	/* Handle VF interrupts */
1775 	if (vfs > 64) {
1776 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1777 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1778 
1779 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1780 		vfs -= 64;
1781 	}
1782 
1783 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1784 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
1785 
1786 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
1787 
1788 	return IRQ_HANDLED;
1789 }
1790 
1791 static void rvu_enable_mbox_intr(struct rvu *rvu)
1792 {
1793 	struct rvu_hwinfo *hw = rvu->hw;
1794 
1795 	/* Clear spurious irqs, if any */
1796 	rvu_write64(rvu, BLKADDR_RVUM,
1797 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
1798 
1799 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
1800 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
1801 		    INTR_MASK(hw->total_pfs) & ~1ULL);
1802 }
1803 
1804 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
1805 {
1806 	struct rvu_block *block;
1807 	int slot, lf, num_lfs;
1808 	int err;
1809 
1810 	block = &rvu->hw->block[blkaddr];
1811 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1812 					block->type);
1813 	if (!num_lfs)
1814 		return;
1815 	for (slot = 0; slot < num_lfs; slot++) {
1816 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
1817 		if (lf < 0)
1818 			continue;
1819 
1820 		/* Cleanup LF and reset it */
1821 		if (block->addr == BLKADDR_NIX0)
1822 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
1823 		else if (block->addr == BLKADDR_NPA)
1824 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
1825 
1826 		err = rvu_lf_reset(rvu, block, lf);
1827 		if (err) {
1828 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
1829 				block->addr, lf);
1830 		}
1831 	}
1832 }
1833 
1834 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
1835 {
1836 	mutex_lock(&rvu->flr_lock);
1837 	/* Reset order should reflect inter-block dependencies:
1838 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
1839 	 * 2. Flush and reset SSO/SSOW
1840 	 * 3. Cleanup pools (NPA)
1841 	 */
1842 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
1843 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
1844 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
1845 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
1846 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
1847 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
1848 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
1849 	mutex_unlock(&rvu->flr_lock);
1850 }
1851 
1852 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
1853 {
1854 	int reg = 0;
1855 
1856 	/* pcifunc = 0(PF0) | (vf + 1) */
1857 	__rvu_flr_handler(rvu, vf + 1);
1858 
1859 	if (vf >= 64) {
1860 		reg = 1;
1861 		vf = vf - 64;
1862 	}
1863 
1864 	/* Signal FLR finish and enable IRQ */
1865 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
1866 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
1867 }
1868 
1869 static void rvu_flr_handler(struct work_struct *work)
1870 {
1871 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
1872 	struct rvu *rvu = flrwork->rvu;
1873 	u16 pcifunc, numvfs, vf;
1874 	u64 cfg;
1875 	int pf;
1876 
1877 	pf = flrwork - rvu->flr_wrk;
1878 	if (pf >= rvu->hw->total_pfs) {
1879 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
1880 		return;
1881 	}
1882 
1883 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
1884 	numvfs = (cfg >> 12) & 0xFF;
1885 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
1886 
1887 	for (vf = 0; vf < numvfs; vf++)
1888 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
1889 
1890 	__rvu_flr_handler(rvu, pcifunc);
1891 
1892 	/* Signal FLR finish */
1893 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
1894 
1895 	/* Enable interrupt */
1896 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
1897 }
1898 
1899 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
1900 {
1901 	int dev, vf, reg = 0;
1902 	u64 intr;
1903 
1904 	if (start_vf >= 64)
1905 		reg = 1;
1906 
1907 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
1908 	if (!intr)
1909 		return;
1910 
1911 	for (vf = 0; vf < numvfs; vf++) {
1912 		if (!(intr & BIT_ULL(vf)))
1913 			continue;
1914 		dev = vf + start_vf + rvu->hw->total_pfs;
1915 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
1916 		/* Clear and disable the interrupt */
1917 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
1918 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
1919 	}
1920 }
1921 
1922 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
1923 {
1924 	struct rvu *rvu = (struct rvu *)rvu_irq;
1925 	u64 intr;
1926 	u8  pf;
1927 
1928 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
1929 	if (!intr)
1930 		goto afvf_flr;
1931 
1932 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
1933 		if (intr & (1ULL << pf)) {
1934 			/* PF is already dead do only AF related operations */
1935 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
1936 			/* clear interrupt */
1937 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
1938 				    BIT_ULL(pf));
1939 			/* Disable the interrupt */
1940 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
1941 				    BIT_ULL(pf));
1942 		}
1943 	}
1944 
1945 afvf_flr:
1946 	rvu_afvf_queue_flr_work(rvu, 0, 64);
1947 	if (rvu->vfs > 64)
1948 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
1949 
1950 	return IRQ_HANDLED;
1951 }
1952 
1953 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
1954 {
1955 	int vf;
1956 
1957 	/* Nothing to be done here other than clearing the
1958 	 * TRPEND bit.
1959 	 */
1960 	for (vf = 0; vf < 64; vf++) {
1961 		if (intr & (1ULL << vf)) {
1962 			/* clear the trpend due to ME(master enable) */
1963 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
1964 			/* clear interrupt */
1965 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
1966 		}
1967 	}
1968 }
1969 
1970 /* Handles ME interrupts from VFs of AF */
1971 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
1972 {
1973 	struct rvu *rvu = (struct rvu *)rvu_irq;
1974 	int vfset;
1975 	u64 intr;
1976 
1977 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1978 
1979 	for (vfset = 0; vfset <= 1; vfset++) {
1980 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
1981 		if (intr)
1982 			rvu_me_handle_vfset(rvu, vfset, intr);
1983 	}
1984 
1985 	return IRQ_HANDLED;
1986 }
1987 
1988 /* Handles ME interrupts from PFs */
1989 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
1990 {
1991 	struct rvu *rvu = (struct rvu *)rvu_irq;
1992 	u64 intr;
1993 	u8  pf;
1994 
1995 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1996 
1997 	/* Nothing to be done here other than clearing the
1998 	 * TRPEND bit.
1999 	 */
2000 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2001 		if (intr & (1ULL << pf)) {
2002 			/* clear the trpend due to ME(master enable) */
2003 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2004 				    BIT_ULL(pf));
2005 			/* clear interrupt */
2006 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2007 				    BIT_ULL(pf));
2008 		}
2009 	}
2010 
2011 	return IRQ_HANDLED;
2012 }
2013 
2014 static void rvu_unregister_interrupts(struct rvu *rvu)
2015 {
2016 	int irq;
2017 
2018 	/* Disable the Mbox interrupt */
2019 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2020 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2021 
2022 	/* Disable the PF FLR interrupt */
2023 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2024 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2025 
2026 	/* Disable the PF ME interrupt */
2027 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2028 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2029 
2030 	for (irq = 0; irq < rvu->num_vec; irq++) {
2031 		if (rvu->irq_allocated[irq])
2032 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2033 	}
2034 
2035 	pci_free_irq_vectors(rvu->pdev);
2036 	rvu->num_vec = 0;
2037 }
2038 
2039 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2040 {
2041 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2042 	int offset;
2043 
2044 	pfvf = &rvu->pf[0];
2045 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2046 
2047 	/* Make sure there are enough MSIX vectors configured so that
2048 	 * VF interrupts can be handled. Offset equal to zero means
2049 	 * that PF vectors are not configured and overlapping AF vectors.
2050 	 */
2051 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2052 	       offset;
2053 }
2054 
2055 static int rvu_register_interrupts(struct rvu *rvu)
2056 {
2057 	int ret, offset, pf_vec_start;
2058 
2059 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2060 
2061 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2062 					   NAME_SIZE, GFP_KERNEL);
2063 	if (!rvu->irq_name)
2064 		return -ENOMEM;
2065 
2066 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2067 					  sizeof(bool), GFP_KERNEL);
2068 	if (!rvu->irq_allocated)
2069 		return -ENOMEM;
2070 
2071 	/* Enable MSI-X */
2072 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2073 				    rvu->num_vec, PCI_IRQ_MSIX);
2074 	if (ret < 0) {
2075 		dev_err(rvu->dev,
2076 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2077 			rvu->num_vec, ret);
2078 		return ret;
2079 	}
2080 
2081 	/* Register mailbox interrupt handler */
2082 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2083 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2084 			  rvu_mbox_intr_handler, 0,
2085 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2086 	if (ret) {
2087 		dev_err(rvu->dev,
2088 			"RVUAF: IRQ registration failed for mbox irq\n");
2089 		goto fail;
2090 	}
2091 
2092 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2093 
2094 	/* Enable mailbox interrupts from all PFs */
2095 	rvu_enable_mbox_intr(rvu);
2096 
2097 	/* Register FLR interrupt handler */
2098 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2099 		"RVUAF FLR");
2100 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2101 			  rvu_flr_intr_handler, 0,
2102 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2103 			  rvu);
2104 	if (ret) {
2105 		dev_err(rvu->dev,
2106 			"RVUAF: IRQ registration failed for FLR\n");
2107 		goto fail;
2108 	}
2109 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2110 
2111 	/* Enable FLR interrupt for all PFs*/
2112 	rvu_write64(rvu, BLKADDR_RVUM,
2113 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2114 
2115 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2116 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2117 
2118 	/* Register ME interrupt handler */
2119 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2120 		"RVUAF ME");
2121 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2122 			  rvu_me_pf_intr_handler, 0,
2123 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2124 			  rvu);
2125 	if (ret) {
2126 		dev_err(rvu->dev,
2127 			"RVUAF: IRQ registration failed for ME\n");
2128 	}
2129 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2130 
2131 	/* Enable ME interrupt for all PFs*/
2132 	rvu_write64(rvu, BLKADDR_RVUM,
2133 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2134 
2135 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2136 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2137 
2138 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2139 		return 0;
2140 
2141 	/* Get PF MSIX vectors offset. */
2142 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2143 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2144 
2145 	/* Register MBOX0 interrupt. */
2146 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2147 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2148 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2149 			  rvu_mbox_intr_handler, 0,
2150 			  &rvu->irq_name[offset * NAME_SIZE],
2151 			  rvu);
2152 	if (ret)
2153 		dev_err(rvu->dev,
2154 			"RVUAF: IRQ registration failed for Mbox0\n");
2155 
2156 	rvu->irq_allocated[offset] = true;
2157 
2158 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2159 	 * simply increment current offset by 1.
2160 	 */
2161 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2162 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2163 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2164 			  rvu_mbox_intr_handler, 0,
2165 			  &rvu->irq_name[offset * NAME_SIZE],
2166 			  rvu);
2167 	if (ret)
2168 		dev_err(rvu->dev,
2169 			"RVUAF: IRQ registration failed for Mbox1\n");
2170 
2171 	rvu->irq_allocated[offset] = true;
2172 
2173 	/* Register FLR interrupt handler for AF's VFs */
2174 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2175 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2176 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2177 			  rvu_flr_intr_handler, 0,
2178 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2179 	if (ret) {
2180 		dev_err(rvu->dev,
2181 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2182 		goto fail;
2183 	}
2184 	rvu->irq_allocated[offset] = true;
2185 
2186 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2187 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2188 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2189 			  rvu_flr_intr_handler, 0,
2190 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2191 	if (ret) {
2192 		dev_err(rvu->dev,
2193 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2194 		goto fail;
2195 	}
2196 	rvu->irq_allocated[offset] = true;
2197 
2198 	/* Register ME interrupt handler for AF's VFs */
2199 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2200 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2201 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2202 			  rvu_me_vf_intr_handler, 0,
2203 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2204 	if (ret) {
2205 		dev_err(rvu->dev,
2206 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2207 		goto fail;
2208 	}
2209 	rvu->irq_allocated[offset] = true;
2210 
2211 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2212 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2213 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2214 			  rvu_me_vf_intr_handler, 0,
2215 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2216 	if (ret) {
2217 		dev_err(rvu->dev,
2218 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2219 		goto fail;
2220 	}
2221 	rvu->irq_allocated[offset] = true;
2222 	return 0;
2223 
2224 fail:
2225 	rvu_unregister_interrupts(rvu);
2226 	return ret;
2227 }
2228 
2229 static void rvu_flr_wq_destroy(struct rvu *rvu)
2230 {
2231 	if (rvu->flr_wq) {
2232 		flush_workqueue(rvu->flr_wq);
2233 		destroy_workqueue(rvu->flr_wq);
2234 		rvu->flr_wq = NULL;
2235 	}
2236 }
2237 
2238 static int rvu_flr_init(struct rvu *rvu)
2239 {
2240 	int dev, num_devs;
2241 	u64 cfg;
2242 	int pf;
2243 
2244 	/* Enable FLR for all PFs*/
2245 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2246 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2247 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2248 			    cfg | BIT_ULL(22));
2249 	}
2250 
2251 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2252 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2253 				       1);
2254 	if (!rvu->flr_wq)
2255 		return -ENOMEM;
2256 
2257 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2258 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2259 				    sizeof(struct rvu_work), GFP_KERNEL);
2260 	if (!rvu->flr_wrk) {
2261 		destroy_workqueue(rvu->flr_wq);
2262 		return -ENOMEM;
2263 	}
2264 
2265 	for (dev = 0; dev < num_devs; dev++) {
2266 		rvu->flr_wrk[dev].rvu = rvu;
2267 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2268 	}
2269 
2270 	mutex_init(&rvu->flr_lock);
2271 
2272 	return 0;
2273 }
2274 
2275 static void rvu_disable_afvf_intr(struct rvu *rvu)
2276 {
2277 	int vfs = rvu->vfs;
2278 
2279 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2280 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2281 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2282 	if (vfs <= 64)
2283 		return;
2284 
2285 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2286 		      INTR_MASK(vfs - 64));
2287 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2288 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2289 }
2290 
2291 static void rvu_enable_afvf_intr(struct rvu *rvu)
2292 {
2293 	int vfs = rvu->vfs;
2294 
2295 	/* Clear any pending interrupts and enable AF VF interrupts for
2296 	 * the first 64 VFs.
2297 	 */
2298 	/* Mbox */
2299 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2300 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2301 
2302 	/* FLR */
2303 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2304 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2305 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2306 
2307 	/* Same for remaining VFs, if any. */
2308 	if (vfs <= 64)
2309 		return;
2310 
2311 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2312 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2313 		      INTR_MASK(vfs - 64));
2314 
2315 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2316 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2317 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2318 }
2319 
2320 #define PCI_DEVID_OCTEONTX2_LBK 0xA061
2321 
2322 static int lbk_get_num_chans(void)
2323 {
2324 	struct pci_dev *pdev;
2325 	void __iomem *base;
2326 	int ret = -EIO;
2327 
2328 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2329 			      NULL);
2330 	if (!pdev)
2331 		goto err;
2332 
2333 	base = pci_ioremap_bar(pdev, 0);
2334 	if (!base)
2335 		goto err_put;
2336 
2337 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2338 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2339 	iounmap(base);
2340 err_put:
2341 	pci_dev_put(pdev);
2342 err:
2343 	return ret;
2344 }
2345 
2346 static int rvu_enable_sriov(struct rvu *rvu)
2347 {
2348 	struct pci_dev *pdev = rvu->pdev;
2349 	int err, chans, vfs;
2350 
2351 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2352 		dev_warn(&pdev->dev,
2353 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2354 		return 0;
2355 	}
2356 
2357 	chans = lbk_get_num_chans();
2358 	if (chans < 0)
2359 		return chans;
2360 
2361 	vfs = pci_sriov_get_totalvfs(pdev);
2362 
2363 	/* Limit VFs in case we have more VFs than LBK channels available. */
2364 	if (vfs > chans)
2365 		vfs = chans;
2366 
2367 	if (!vfs)
2368 		return 0;
2369 
2370 	/* Save VFs number for reference in VF interrupts handlers.
2371 	 * Since interrupts might start arriving during SRIOV enablement
2372 	 * ordinary API cannot be used to get number of enabled VFs.
2373 	 */
2374 	rvu->vfs = vfs;
2375 
2376 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2377 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2378 	if (err)
2379 		return err;
2380 
2381 	rvu_enable_afvf_intr(rvu);
2382 	/* Make sure IRQs are enabled before SRIOV. */
2383 	mb();
2384 
2385 	err = pci_enable_sriov(pdev, vfs);
2386 	if (err) {
2387 		rvu_disable_afvf_intr(rvu);
2388 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2389 		return err;
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static void rvu_disable_sriov(struct rvu *rvu)
2396 {
2397 	rvu_disable_afvf_intr(rvu);
2398 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2399 	pci_disable_sriov(rvu->pdev);
2400 }
2401 
2402 static void rvu_update_module_params(struct rvu *rvu)
2403 {
2404 	const char *default_pfl_name = "default";
2405 
2406 	strscpy(rvu->mkex_pfl_name,
2407 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2408 }
2409 
2410 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2411 {
2412 	struct device *dev = &pdev->dev;
2413 	struct rvu *rvu;
2414 	int    err;
2415 
2416 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2417 	if (!rvu)
2418 		return -ENOMEM;
2419 
2420 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2421 	if (!rvu->hw) {
2422 		devm_kfree(dev, rvu);
2423 		return -ENOMEM;
2424 	}
2425 
2426 	pci_set_drvdata(pdev, rvu);
2427 	rvu->pdev = pdev;
2428 	rvu->dev = &pdev->dev;
2429 
2430 	err = pci_enable_device(pdev);
2431 	if (err) {
2432 		dev_err(dev, "Failed to enable PCI device\n");
2433 		goto err_freemem;
2434 	}
2435 
2436 	err = pci_request_regions(pdev, DRV_NAME);
2437 	if (err) {
2438 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2439 		goto err_disable_device;
2440 	}
2441 
2442 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2443 	if (err) {
2444 		dev_err(dev, "Unable to set DMA mask\n");
2445 		goto err_release_regions;
2446 	}
2447 
2448 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2449 	if (err) {
2450 		dev_err(dev, "Unable to set consistent DMA mask\n");
2451 		goto err_release_regions;
2452 	}
2453 
2454 	/* Map Admin function CSRs */
2455 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2456 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2457 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2458 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2459 		err = -ENOMEM;
2460 		goto err_release_regions;
2461 	}
2462 
2463 	/* Store module params in rvu structure */
2464 	rvu_update_module_params(rvu);
2465 
2466 	/* Check which blocks the HW supports */
2467 	rvu_check_block_implemented(rvu);
2468 
2469 	rvu_reset_all_blocks(rvu);
2470 
2471 	rvu_setup_hw_capabilities(rvu);
2472 
2473 	err = rvu_setup_hw_resources(rvu);
2474 	if (err)
2475 		goto err_release_regions;
2476 
2477 	/* Init mailbox btw AF and PFs */
2478 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2479 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2480 			    rvu_afpf_mbox_up_handler);
2481 	if (err)
2482 		goto err_hwsetup;
2483 
2484 	err = rvu_flr_init(rvu);
2485 	if (err)
2486 		goto err_mbox;
2487 
2488 	err = rvu_register_interrupts(rvu);
2489 	if (err)
2490 		goto err_flr;
2491 
2492 	/* Enable AF's VFs (if any) */
2493 	err = rvu_enable_sriov(rvu);
2494 	if (err)
2495 		goto err_irq;
2496 
2497 	/* Initialize debugfs */
2498 	rvu_dbg_init(rvu);
2499 
2500 	return 0;
2501 err_irq:
2502 	rvu_unregister_interrupts(rvu);
2503 err_flr:
2504 	rvu_flr_wq_destroy(rvu);
2505 err_mbox:
2506 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2507 err_hwsetup:
2508 	rvu_cgx_exit(rvu);
2509 	rvu_reset_all_blocks(rvu);
2510 	rvu_free_hw_resources(rvu);
2511 err_release_regions:
2512 	pci_release_regions(pdev);
2513 err_disable_device:
2514 	pci_disable_device(pdev);
2515 err_freemem:
2516 	pci_set_drvdata(pdev, NULL);
2517 	devm_kfree(&pdev->dev, rvu->hw);
2518 	devm_kfree(dev, rvu);
2519 	return err;
2520 }
2521 
2522 static void rvu_remove(struct pci_dev *pdev)
2523 {
2524 	struct rvu *rvu = pci_get_drvdata(pdev);
2525 
2526 	rvu_dbg_exit(rvu);
2527 	rvu_unregister_interrupts(rvu);
2528 	rvu_flr_wq_destroy(rvu);
2529 	rvu_cgx_exit(rvu);
2530 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2531 	rvu_disable_sriov(rvu);
2532 	rvu_reset_all_blocks(rvu);
2533 	rvu_free_hw_resources(rvu);
2534 
2535 	pci_release_regions(pdev);
2536 	pci_disable_device(pdev);
2537 	pci_set_drvdata(pdev, NULL);
2538 
2539 	devm_kfree(&pdev->dev, rvu->hw);
2540 	devm_kfree(&pdev->dev, rvu);
2541 }
2542 
2543 static struct pci_driver rvu_driver = {
2544 	.name = DRV_NAME,
2545 	.id_table = rvu_id_table,
2546 	.probe = rvu_probe,
2547 	.remove = rvu_remove,
2548 };
2549 
2550 static int __init rvu_init_module(void)
2551 {
2552 	int err;
2553 
2554 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2555 
2556 	err = pci_register_driver(&cgx_driver);
2557 	if (err < 0)
2558 		return err;
2559 
2560 	err =  pci_register_driver(&rvu_driver);
2561 	if (err < 0)
2562 		pci_unregister_driver(&cgx_driver);
2563 
2564 	return err;
2565 }
2566 
2567 static void __exit rvu_cleanup_module(void)
2568 {
2569 	pci_unregister_driver(&rvu_driver);
2570 	pci_unregister_driver(&cgx_driver);
2571 }
2572 
2573 module_init(rvu_init_module);
2574 module_exit(rvu_cleanup_module);
2575