xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision ba1dc7f273c73b93e0e1dd9707b239ed69eebd70)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 
20 #include "rvu_trace.h"
21 
22 #define DRV_NAME	"rvu_af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 
25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->rvu = rvu;
72 
73 	if (is_rvu_pre_96xx_C0(rvu)) {
74 		hw->cap.nix_fixed_txschq_mapping = true;
75 		hw->cap.nix_txsch_per_cgx_lmac = 4;
76 		hw->cap.nix_txsch_per_lbk_lmac = 132;
77 		hw->cap.nix_txsch_per_sdp_lmac = 76;
78 		hw->cap.nix_shaping = false;
79 		hw->cap.nix_tx_link_bp = false;
80 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
81 			hw->cap.nix_rx_multicast = false;
82 	}
83 	if (!is_rvu_pre_96xx_C0(rvu))
84 		hw->cap.nix_shaper_toggle_wait = true;
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
96 	void __iomem *reg;
97 	u64 reg_val;
98 
99 	reg = rvu->afreg_base + ((block << 28) | offset);
100 again:
101 	reg_val = readq(reg);
102 	if (zero && !(reg_val & mask))
103 		return 0;
104 	if (!zero && (reg_val & mask))
105 		return 0;
106 	if (time_before(jiffies, timeout)) {
107 		usleep_range(1, 5);
108 		goto again;
109 	}
110 	return -EBUSY;
111 }
112 
113 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
114 {
115 	int id;
116 
117 	if (!rsrc->bmap)
118 		return -EINVAL;
119 
120 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
121 	if (id >= rsrc->max)
122 		return -ENOSPC;
123 
124 	__set_bit(id, rsrc->bmap);
125 
126 	return id;
127 }
128 
129 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
130 {
131 	int start;
132 
133 	if (!rsrc->bmap)
134 		return -EINVAL;
135 
136 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
137 	if (start >= rsrc->max)
138 		return -ENOSPC;
139 
140 	bitmap_set(rsrc->bmap, start, nrsrc);
141 	return start;
142 }
143 
144 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
145 {
146 	if (!rsrc->bmap)
147 		return;
148 	if (start >= rsrc->max)
149 		return;
150 
151 	bitmap_clear(rsrc->bmap, start, nrsrc);
152 }
153 
154 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
155 {
156 	int start;
157 
158 	if (!rsrc->bmap)
159 		return false;
160 
161 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
162 	if (start >= rsrc->max)
163 		return false;
164 
165 	return true;
166 }
167 
168 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
169 {
170 	if (!rsrc->bmap)
171 		return;
172 
173 	__clear_bit(id, rsrc->bmap);
174 }
175 
176 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
177 {
178 	int used;
179 
180 	if (!rsrc->bmap)
181 		return 0;
182 
183 	used = bitmap_weight(rsrc->bmap, rsrc->max);
184 	return (rsrc->max - used);
185 }
186 
187 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
188 {
189 	if (!rsrc->bmap)
190 		return false;
191 
192 	return !test_bit(id, rsrc->bmap);
193 }
194 
195 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
196 {
197 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
198 			     sizeof(long), GFP_KERNEL);
199 	if (!rsrc->bmap)
200 		return -ENOMEM;
201 	return 0;
202 }
203 
204 /* Get block LF's HW index from a PF_FUNC's block slot number */
205 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
206 {
207 	u16 match = 0;
208 	int lf;
209 
210 	mutex_lock(&rvu->rsrc_lock);
211 	for (lf = 0; lf < block->lf.max; lf++) {
212 		if (block->fn_map[lf] == pcifunc) {
213 			if (slot == match) {
214 				mutex_unlock(&rvu->rsrc_lock);
215 				return lf;
216 			}
217 			match++;
218 		}
219 	}
220 	mutex_unlock(&rvu->rsrc_lock);
221 	return -ENODEV;
222 }
223 
224 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
225  * Some silicon variants of OcteonTX2 supports
226  * multiple blocks of same type.
227  *
228  * @pcifunc has to be zero when no LF is yet attached.
229  *
230  * For a pcifunc if LFs are attached from multiple blocks of same type, then
231  * return blkaddr of first encountered block.
232  */
233 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
234 {
235 	int devnum, blkaddr = -ENODEV;
236 	u64 cfg, reg;
237 	bool is_pf;
238 
239 	switch (blktype) {
240 	case BLKTYPE_NPC:
241 		blkaddr = BLKADDR_NPC;
242 		goto exit;
243 	case BLKTYPE_NPA:
244 		blkaddr = BLKADDR_NPA;
245 		goto exit;
246 	case BLKTYPE_NIX:
247 		/* For now assume NIX0 */
248 		if (!pcifunc) {
249 			blkaddr = BLKADDR_NIX0;
250 			goto exit;
251 		}
252 		break;
253 	case BLKTYPE_SSO:
254 		blkaddr = BLKADDR_SSO;
255 		goto exit;
256 	case BLKTYPE_SSOW:
257 		blkaddr = BLKADDR_SSOW;
258 		goto exit;
259 	case BLKTYPE_TIM:
260 		blkaddr = BLKADDR_TIM;
261 		goto exit;
262 	case BLKTYPE_CPT:
263 		/* For now assume CPT0 */
264 		if (!pcifunc) {
265 			blkaddr = BLKADDR_CPT0;
266 			goto exit;
267 		}
268 		break;
269 	}
270 
271 	/* Check if this is a RVU PF or VF */
272 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
273 		is_pf = false;
274 		devnum = rvu_get_hwvf(rvu, pcifunc);
275 	} else {
276 		is_pf = true;
277 		devnum = rvu_get_pf(pcifunc);
278 	}
279 
280 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
281 	 * 'BLKADDR_NIX1'.
282 	 */
283 	if (blktype == BLKTYPE_NIX) {
284 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
285 			RVU_PRIV_HWVFX_NIXX_CFG(0);
286 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
287 		if (cfg) {
288 			blkaddr = BLKADDR_NIX0;
289 			goto exit;
290 		}
291 
292 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
293 			RVU_PRIV_HWVFX_NIXX_CFG(1);
294 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
295 		if (cfg)
296 			blkaddr = BLKADDR_NIX1;
297 	}
298 
299 	if (blktype == BLKTYPE_CPT) {
300 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
301 			RVU_PRIV_HWVFX_CPTX_CFG(0);
302 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
303 		if (cfg) {
304 			blkaddr = BLKADDR_CPT0;
305 			goto exit;
306 		}
307 
308 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
309 			RVU_PRIV_HWVFX_CPTX_CFG(1);
310 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
311 		if (cfg)
312 			blkaddr = BLKADDR_CPT1;
313 	}
314 
315 exit:
316 	if (is_block_implemented(rvu->hw, blkaddr))
317 		return blkaddr;
318 	return -ENODEV;
319 }
320 
321 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
322 				struct rvu_block *block, u16 pcifunc,
323 				u16 lf, bool attach)
324 {
325 	int devnum, num_lfs = 0;
326 	bool is_pf;
327 	u64 reg;
328 
329 	if (lf >= block->lf.max) {
330 		dev_err(&rvu->pdev->dev,
331 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
332 			__func__, lf, block->name, block->lf.max);
333 		return;
334 	}
335 
336 	/* Check if this is for a RVU PF or VF */
337 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
338 		is_pf = false;
339 		devnum = rvu_get_hwvf(rvu, pcifunc);
340 	} else {
341 		is_pf = true;
342 		devnum = rvu_get_pf(pcifunc);
343 	}
344 
345 	block->fn_map[lf] = attach ? pcifunc : 0;
346 
347 	switch (block->addr) {
348 	case BLKADDR_NPA:
349 		pfvf->npalf = attach ? true : false;
350 		num_lfs = pfvf->npalf;
351 		break;
352 	case BLKADDR_NIX0:
353 	case BLKADDR_NIX1:
354 		pfvf->nixlf = attach ? true : false;
355 		num_lfs = pfvf->nixlf;
356 		break;
357 	case BLKADDR_SSO:
358 		attach ? pfvf->sso++ : pfvf->sso--;
359 		num_lfs = pfvf->sso;
360 		break;
361 	case BLKADDR_SSOW:
362 		attach ? pfvf->ssow++ : pfvf->ssow--;
363 		num_lfs = pfvf->ssow;
364 		break;
365 	case BLKADDR_TIM:
366 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
367 		num_lfs = pfvf->timlfs;
368 		break;
369 	case BLKADDR_CPT0:
370 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
371 		num_lfs = pfvf->cptlfs;
372 		break;
373 	case BLKADDR_CPT1:
374 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
375 		num_lfs = pfvf->cpt1_lfs;
376 		break;
377 	}
378 
379 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
380 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
381 }
382 
383 inline int rvu_get_pf(u16 pcifunc)
384 {
385 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
386 }
387 
388 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
389 {
390 	u64 cfg;
391 
392 	/* Get numVFs attached to this PF and first HWVF */
393 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
394 	if (numvfs)
395 		*numvfs = (cfg >> 12) & 0xFF;
396 	if (hwvf)
397 		*hwvf = cfg & 0xFFF;
398 }
399 
400 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
401 {
402 	int pf, func;
403 	u64 cfg;
404 
405 	pf = rvu_get_pf(pcifunc);
406 	func = pcifunc & RVU_PFVF_FUNC_MASK;
407 
408 	/* Get first HWVF attached to this PF */
409 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
410 
411 	return ((cfg & 0xFFF) + func - 1);
412 }
413 
414 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
415 {
416 	/* Check if it is a PF or VF */
417 	if (pcifunc & RVU_PFVF_FUNC_MASK)
418 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
419 	else
420 		return &rvu->pf[rvu_get_pf(pcifunc)];
421 }
422 
423 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
424 {
425 	int pf, vf, nvfs;
426 	u64 cfg;
427 
428 	pf = rvu_get_pf(pcifunc);
429 	if (pf >= rvu->hw->total_pfs)
430 		return false;
431 
432 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
433 		return true;
434 
435 	/* Check if VF is within number of VFs attached to this PF */
436 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
437 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
438 	nvfs = (cfg >> 12) & 0xFF;
439 	if (vf >= nvfs)
440 		return false;
441 
442 	return true;
443 }
444 
445 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
446 {
447 	struct rvu_block *block;
448 
449 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
450 		return false;
451 
452 	block = &hw->block[blkaddr];
453 	return block->implemented;
454 }
455 
456 static void rvu_check_block_implemented(struct rvu *rvu)
457 {
458 	struct rvu_hwinfo *hw = rvu->hw;
459 	struct rvu_block *block;
460 	int blkid;
461 	u64 cfg;
462 
463 	/* For each block check if 'implemented' bit is set */
464 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
465 		block = &hw->block[blkid];
466 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
467 		if (cfg & BIT_ULL(11))
468 			block->implemented = true;
469 	}
470 }
471 
472 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
473 {
474 	rvu_write64(rvu, BLKADDR_RVUM,
475 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
476 		    RVU_BLK_RVUM_REVID);
477 }
478 
479 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
480 {
481 	rvu_write64(rvu, BLKADDR_RVUM,
482 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
483 }
484 
485 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
486 {
487 	int err;
488 
489 	if (!block->implemented)
490 		return 0;
491 
492 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
493 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
494 			   true);
495 	return err;
496 }
497 
498 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
499 {
500 	struct rvu_block *block = &rvu->hw->block[blkaddr];
501 	int err;
502 
503 	if (!block->implemented)
504 		return;
505 
506 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
507 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
508 	if (err)
509 		dev_err(rvu->dev, "HW block:%d reset failed\n", blkaddr);
510 }
511 
512 static void rvu_reset_all_blocks(struct rvu *rvu)
513 {
514 	/* Do a HW reset of all RVU blocks */
515 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
516 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
517 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
518 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
519 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
520 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
521 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
522 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
523 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
524 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
525 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
526 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
527 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
528 }
529 
530 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
531 {
532 	struct rvu_pfvf *pfvf;
533 	u64 cfg;
534 	int lf;
535 
536 	for (lf = 0; lf < block->lf.max; lf++) {
537 		cfg = rvu_read64(rvu, block->addr,
538 				 block->lfcfg_reg | (lf << block->lfshift));
539 		if (!(cfg & BIT_ULL(63)))
540 			continue;
541 
542 		/* Set this resource as being used */
543 		__set_bit(lf, block->lf.bmap);
544 
545 		/* Get, to whom this LF is attached */
546 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
547 		rvu_update_rsrc_map(rvu, pfvf, block,
548 				    (cfg >> 8) & 0xFFFF, lf, true);
549 
550 		/* Set start MSIX vector for this LF within this PF/VF */
551 		rvu_set_msix_offset(rvu, pfvf, block, lf);
552 	}
553 }
554 
555 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
556 {
557 	int min_vecs;
558 
559 	if (!vf)
560 		goto check_pf;
561 
562 	if (!nvecs) {
563 		dev_warn(rvu->dev,
564 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
565 			 pf, vf - 1, nvecs);
566 	}
567 	return;
568 
569 check_pf:
570 	if (pf == 0)
571 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
572 	else
573 		min_vecs = RVU_PF_INT_VEC_CNT;
574 
575 	if (!(nvecs < min_vecs))
576 		return;
577 	dev_warn(rvu->dev,
578 		 "PF%d is configured with too few vectors, %d, min is %d\n",
579 		 pf, nvecs, min_vecs);
580 }
581 
582 static int rvu_setup_msix_resources(struct rvu *rvu)
583 {
584 	struct rvu_hwinfo *hw = rvu->hw;
585 	int pf, vf, numvfs, hwvf, err;
586 	int nvecs, offset, max_msix;
587 	struct rvu_pfvf *pfvf;
588 	u64 cfg, phy_addr;
589 	dma_addr_t iova;
590 
591 	for (pf = 0; pf < hw->total_pfs; pf++) {
592 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
593 		/* If PF is not enabled, nothing to do */
594 		if (!((cfg >> 20) & 0x01))
595 			continue;
596 
597 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
598 
599 		pfvf = &rvu->pf[pf];
600 		/* Get num of MSIX vectors attached to this PF */
601 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
602 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
603 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
604 
605 		/* Alloc msix bitmap for this PF */
606 		err = rvu_alloc_bitmap(&pfvf->msix);
607 		if (err)
608 			return err;
609 
610 		/* Allocate memory for MSIX vector to RVU block LF mapping */
611 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
612 						sizeof(u16), GFP_KERNEL);
613 		if (!pfvf->msix_lfmap)
614 			return -ENOMEM;
615 
616 		/* For PF0 (AF) firmware will set msix vector offsets for
617 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
618 		 */
619 		if (!pf)
620 			goto setup_vfmsix;
621 
622 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
623 		 * These are allocated on driver init and never freed,
624 		 * so no need to set 'msix_lfmap' for these.
625 		 */
626 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
627 		nvecs = (cfg >> 12) & 0xFF;
628 		cfg &= ~0x7FFULL;
629 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
630 		rvu_write64(rvu, BLKADDR_RVUM,
631 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
632 setup_vfmsix:
633 		/* Alloc msix bitmap for VFs */
634 		for (vf = 0; vf < numvfs; vf++) {
635 			pfvf =  &rvu->hwvf[hwvf + vf];
636 			/* Get num of MSIX vectors attached to this VF */
637 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
638 					 RVU_PRIV_PFX_MSIX_CFG(pf));
639 			pfvf->msix.max = (cfg & 0xFFF) + 1;
640 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
641 
642 			/* Alloc msix bitmap for this VF */
643 			err = rvu_alloc_bitmap(&pfvf->msix);
644 			if (err)
645 				return err;
646 
647 			pfvf->msix_lfmap =
648 				devm_kcalloc(rvu->dev, pfvf->msix.max,
649 					     sizeof(u16), GFP_KERNEL);
650 			if (!pfvf->msix_lfmap)
651 				return -ENOMEM;
652 
653 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
654 			 * These are allocated on driver init and never freed,
655 			 * so no need to set 'msix_lfmap' for these.
656 			 */
657 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
658 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
659 			nvecs = (cfg >> 12) & 0xFF;
660 			cfg &= ~0x7FFULL;
661 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
662 			rvu_write64(rvu, BLKADDR_RVUM,
663 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
664 				    cfg | offset);
665 		}
666 	}
667 
668 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
669 	 * create an IOMMU mapping for the physical address configured by
670 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
671 	 */
672 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
673 	max_msix = cfg & 0xFFFFF;
674 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
675 		phy_addr = rvu->fwdata->msixtr_base;
676 	else
677 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
678 
679 	iova = dma_map_resource(rvu->dev, phy_addr,
680 				max_msix * PCI_MSIX_ENTRY_SIZE,
681 				DMA_BIDIRECTIONAL, 0);
682 
683 	if (dma_mapping_error(rvu->dev, iova))
684 		return -ENOMEM;
685 
686 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
687 	rvu->msix_base_iova = iova;
688 	rvu->msixtr_base_phy = phy_addr;
689 
690 	return 0;
691 }
692 
693 static void rvu_reset_msix(struct rvu *rvu)
694 {
695 	/* Restore msixtr base register */
696 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
697 		    rvu->msixtr_base_phy);
698 }
699 
700 static void rvu_free_hw_resources(struct rvu *rvu)
701 {
702 	struct rvu_hwinfo *hw = rvu->hw;
703 	struct rvu_block *block;
704 	struct rvu_pfvf  *pfvf;
705 	int id, max_msix;
706 	u64 cfg;
707 
708 	rvu_npa_freemem(rvu);
709 	rvu_npc_freemem(rvu);
710 	rvu_nix_freemem(rvu);
711 
712 	/* Free block LF bitmaps */
713 	for (id = 0; id < BLK_COUNT; id++) {
714 		block = &hw->block[id];
715 		kfree(block->lf.bmap);
716 	}
717 
718 	/* Free MSIX bitmaps */
719 	for (id = 0; id < hw->total_pfs; id++) {
720 		pfvf = &rvu->pf[id];
721 		kfree(pfvf->msix.bmap);
722 	}
723 
724 	for (id = 0; id < hw->total_vfs; id++) {
725 		pfvf = &rvu->hwvf[id];
726 		kfree(pfvf->msix.bmap);
727 	}
728 
729 	/* Unmap MSIX vector base IOVA mapping */
730 	if (!rvu->msix_base_iova)
731 		return;
732 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
733 	max_msix = cfg & 0xFFFFF;
734 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
735 			   max_msix * PCI_MSIX_ENTRY_SIZE,
736 			   DMA_BIDIRECTIONAL, 0);
737 
738 	rvu_reset_msix(rvu);
739 	mutex_destroy(&rvu->rsrc_lock);
740 }
741 
742 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
743 {
744 	struct rvu_hwinfo *hw = rvu->hw;
745 	int pf, vf, numvfs, hwvf;
746 	struct rvu_pfvf *pfvf;
747 	u64 *mac;
748 
749 	for (pf = 0; pf < hw->total_pfs; pf++) {
750 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
751 		if (!pf)
752 			goto lbkvf;
753 
754 		if (!is_pf_cgxmapped(rvu, pf))
755 			continue;
756 		/* Assign MAC address to PF */
757 		pfvf = &rvu->pf[pf];
758 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
759 			mac = &rvu->fwdata->pf_macs[pf];
760 			if (*mac)
761 				u64_to_ether_addr(*mac, pfvf->mac_addr);
762 			else
763 				eth_random_addr(pfvf->mac_addr);
764 		} else {
765 			eth_random_addr(pfvf->mac_addr);
766 		}
767 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
768 
769 lbkvf:
770 		/* Assign MAC address to VFs*/
771 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
772 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
773 			pfvf = &rvu->hwvf[hwvf];
774 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
775 				mac = &rvu->fwdata->vf_macs[hwvf];
776 				if (*mac)
777 					u64_to_ether_addr(*mac, pfvf->mac_addr);
778 				else
779 					eth_random_addr(pfvf->mac_addr);
780 			} else {
781 				eth_random_addr(pfvf->mac_addr);
782 			}
783 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
784 		}
785 	}
786 }
787 
788 static int rvu_fwdata_init(struct rvu *rvu)
789 {
790 	u64 fwdbase;
791 	int err;
792 
793 	/* Get firmware data base address */
794 	err = cgx_get_fwdata_base(&fwdbase);
795 	if (err)
796 		goto fail;
797 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
798 	if (!rvu->fwdata)
799 		goto fail;
800 	if (!is_rvu_fwdata_valid(rvu)) {
801 		dev_err(rvu->dev,
802 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
803 		iounmap(rvu->fwdata);
804 		rvu->fwdata = NULL;
805 		return -EINVAL;
806 	}
807 	return 0;
808 fail:
809 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
810 	return -EIO;
811 }
812 
813 static void rvu_fwdata_exit(struct rvu *rvu)
814 {
815 	if (rvu->fwdata)
816 		iounmap(rvu->fwdata);
817 }
818 
819 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
820 {
821 	struct rvu_hwinfo *hw = rvu->hw;
822 	struct rvu_block *block;
823 	int blkid;
824 	u64 cfg;
825 
826 	/* Init NIX LF's bitmap */
827 	block = &hw->block[blkaddr];
828 	if (!block->implemented)
829 		return 0;
830 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
831 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
832 	block->lf.max = cfg & 0xFFF;
833 	block->addr = blkaddr;
834 	block->type = BLKTYPE_NIX;
835 	block->lfshift = 8;
836 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
837 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
838 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
839 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
840 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
841 	block->lfreset_reg = NIX_AF_LF_RST;
842 	sprintf(block->name, "NIX%d", blkid);
843 	rvu->nix_blkaddr[blkid] = blkaddr;
844 	return rvu_alloc_bitmap(&block->lf);
845 }
846 
847 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
848 {
849 	struct rvu_hwinfo *hw = rvu->hw;
850 	struct rvu_block *block;
851 	int blkid;
852 	u64 cfg;
853 
854 	/* Init CPT LF's bitmap */
855 	block = &hw->block[blkaddr];
856 	if (!block->implemented)
857 		return 0;
858 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
859 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
860 	block->lf.max = cfg & 0xFF;
861 	block->addr = blkaddr;
862 	block->type = BLKTYPE_CPT;
863 	block->multislot = true;
864 	block->lfshift = 3;
865 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
866 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
867 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
868 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
869 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
870 	block->lfreset_reg = CPT_AF_LF_RST;
871 	sprintf(block->name, "CPT%d", blkid);
872 	return rvu_alloc_bitmap(&block->lf);
873 }
874 
875 static void rvu_get_lbk_bufsize(struct rvu *rvu)
876 {
877 	struct pci_dev *pdev = NULL;
878 	void __iomem *base;
879 	u64 lbk_const;
880 
881 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
882 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
883 	if (!pdev)
884 		return;
885 
886 	base = pci_ioremap_bar(pdev, 0);
887 	if (!base)
888 		goto err_put;
889 
890 	lbk_const = readq(base + LBK_CONST);
891 
892 	/* cache fifo size */
893 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
894 
895 	iounmap(base);
896 err_put:
897 	pci_dev_put(pdev);
898 }
899 
900 static int rvu_setup_hw_resources(struct rvu *rvu)
901 {
902 	struct rvu_hwinfo *hw = rvu->hw;
903 	struct rvu_block *block;
904 	int blkid, err;
905 	u64 cfg;
906 
907 	/* Get HW supported max RVU PF & VF count */
908 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
909 	hw->total_pfs = (cfg >> 32) & 0xFF;
910 	hw->total_vfs = (cfg >> 20) & 0xFFF;
911 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
912 
913 	/* Init NPA LF's bitmap */
914 	block = &hw->block[BLKADDR_NPA];
915 	if (!block->implemented)
916 		goto nix;
917 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
918 	block->lf.max = (cfg >> 16) & 0xFFF;
919 	block->addr = BLKADDR_NPA;
920 	block->type = BLKTYPE_NPA;
921 	block->lfshift = 8;
922 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
923 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
924 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
925 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
926 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
927 	block->lfreset_reg = NPA_AF_LF_RST;
928 	sprintf(block->name, "NPA");
929 	err = rvu_alloc_bitmap(&block->lf);
930 	if (err) {
931 		dev_err(rvu->dev,
932 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
933 		return err;
934 	}
935 
936 nix:
937 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
938 	if (err) {
939 		dev_err(rvu->dev,
940 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
941 		return err;
942 	}
943 
944 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
945 	if (err) {
946 		dev_err(rvu->dev,
947 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
948 		return err;
949 	}
950 
951 	/* Init SSO group's bitmap */
952 	block = &hw->block[BLKADDR_SSO];
953 	if (!block->implemented)
954 		goto ssow;
955 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
956 	block->lf.max = cfg & 0xFFFF;
957 	block->addr = BLKADDR_SSO;
958 	block->type = BLKTYPE_SSO;
959 	block->multislot = true;
960 	block->lfshift = 3;
961 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
962 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
963 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
964 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
965 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
966 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
967 	sprintf(block->name, "SSO GROUP");
968 	err = rvu_alloc_bitmap(&block->lf);
969 	if (err) {
970 		dev_err(rvu->dev,
971 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
972 		return err;
973 	}
974 
975 ssow:
976 	/* Init SSO workslot's bitmap */
977 	block = &hw->block[BLKADDR_SSOW];
978 	if (!block->implemented)
979 		goto tim;
980 	block->lf.max = (cfg >> 56) & 0xFF;
981 	block->addr = BLKADDR_SSOW;
982 	block->type = BLKTYPE_SSOW;
983 	block->multislot = true;
984 	block->lfshift = 3;
985 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
986 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
987 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
988 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
989 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
990 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
991 	sprintf(block->name, "SSOWS");
992 	err = rvu_alloc_bitmap(&block->lf);
993 	if (err) {
994 		dev_err(rvu->dev,
995 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
996 		return err;
997 	}
998 
999 tim:
1000 	/* Init TIM LF's bitmap */
1001 	block = &hw->block[BLKADDR_TIM];
1002 	if (!block->implemented)
1003 		goto cpt;
1004 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1005 	block->lf.max = cfg & 0xFFFF;
1006 	block->addr = BLKADDR_TIM;
1007 	block->type = BLKTYPE_TIM;
1008 	block->multislot = true;
1009 	block->lfshift = 3;
1010 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1011 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1012 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1013 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1014 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1015 	block->lfreset_reg = TIM_AF_LF_RST;
1016 	sprintf(block->name, "TIM");
1017 	err = rvu_alloc_bitmap(&block->lf);
1018 	if (err) {
1019 		dev_err(rvu->dev,
1020 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1021 		return err;
1022 	}
1023 
1024 cpt:
1025 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1026 	if (err) {
1027 		dev_err(rvu->dev,
1028 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1029 		return err;
1030 	}
1031 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1032 	if (err) {
1033 		dev_err(rvu->dev,
1034 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1035 		return err;
1036 	}
1037 
1038 	/* Allocate memory for PFVF data */
1039 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1040 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1041 	if (!rvu->pf) {
1042 		dev_err(rvu->dev,
1043 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1044 		return -ENOMEM;
1045 	}
1046 
1047 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1048 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1049 	if (!rvu->hwvf) {
1050 		dev_err(rvu->dev,
1051 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1052 		return -ENOMEM;
1053 	}
1054 
1055 	mutex_init(&rvu->rsrc_lock);
1056 
1057 	rvu_fwdata_init(rvu);
1058 
1059 	err = rvu_setup_msix_resources(rvu);
1060 	if (err) {
1061 		dev_err(rvu->dev,
1062 			"%s: Failed to setup MSIX resources\n", __func__);
1063 		return err;
1064 	}
1065 
1066 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1067 		block = &hw->block[blkid];
1068 		if (!block->lf.bmap)
1069 			continue;
1070 
1071 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1072 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1073 					     sizeof(u16), GFP_KERNEL);
1074 		if (!block->fn_map) {
1075 			err = -ENOMEM;
1076 			goto msix_err;
1077 		}
1078 
1079 		/* Scan all blocks to check if low level firmware has
1080 		 * already provisioned any of the resources to a PF/VF.
1081 		 */
1082 		rvu_scan_block(rvu, block);
1083 	}
1084 
1085 	err = rvu_set_channels_base(rvu);
1086 	if (err)
1087 		goto msix_err;
1088 
1089 	err = rvu_npc_init(rvu);
1090 	if (err) {
1091 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1092 		goto npc_err;
1093 	}
1094 
1095 	err = rvu_cgx_init(rvu);
1096 	if (err) {
1097 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1098 		goto cgx_err;
1099 	}
1100 
1101 	/* Assign MACs for CGX mapped functions */
1102 	rvu_setup_pfvf_macaddress(rvu);
1103 
1104 	err = rvu_npa_init(rvu);
1105 	if (err) {
1106 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1107 		goto npa_err;
1108 	}
1109 
1110 	rvu_get_lbk_bufsize(rvu);
1111 
1112 	err = rvu_nix_init(rvu);
1113 	if (err) {
1114 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1115 		goto nix_err;
1116 	}
1117 
1118 	err = rvu_sdp_init(rvu);
1119 	if (err) {
1120 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1121 		goto nix_err;
1122 	}
1123 
1124 	rvu_program_channels(rvu);
1125 
1126 	return 0;
1127 
1128 nix_err:
1129 	rvu_nix_freemem(rvu);
1130 npa_err:
1131 	rvu_npa_freemem(rvu);
1132 cgx_err:
1133 	rvu_cgx_exit(rvu);
1134 npc_err:
1135 	rvu_npc_freemem(rvu);
1136 	rvu_fwdata_exit(rvu);
1137 msix_err:
1138 	rvu_reset_msix(rvu);
1139 	return err;
1140 }
1141 
1142 /* NPA and NIX admin queue APIs */
1143 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1144 {
1145 	if (!aq)
1146 		return;
1147 
1148 	qmem_free(rvu->dev, aq->inst);
1149 	qmem_free(rvu->dev, aq->res);
1150 	devm_kfree(rvu->dev, aq);
1151 }
1152 
1153 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1154 		 int qsize, int inst_size, int res_size)
1155 {
1156 	struct admin_queue *aq;
1157 	int err;
1158 
1159 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1160 	if (!*ad_queue)
1161 		return -ENOMEM;
1162 	aq = *ad_queue;
1163 
1164 	/* Alloc memory for instructions i.e AQ */
1165 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1166 	if (err) {
1167 		devm_kfree(rvu->dev, aq);
1168 		return err;
1169 	}
1170 
1171 	/* Alloc memory for results */
1172 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1173 	if (err) {
1174 		rvu_aq_free(rvu, aq);
1175 		return err;
1176 	}
1177 
1178 	spin_lock_init(&aq->lock);
1179 	return 0;
1180 }
1181 
1182 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1183 			   struct ready_msg_rsp *rsp)
1184 {
1185 	if (rvu->fwdata) {
1186 		rsp->rclk_freq = rvu->fwdata->rclk;
1187 		rsp->sclk_freq = rvu->fwdata->sclk;
1188 	}
1189 	return 0;
1190 }
1191 
1192 /* Get current count of a RVU block's LF/slots
1193  * provisioned to a given RVU func.
1194  */
1195 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1196 {
1197 	switch (blkaddr) {
1198 	case BLKADDR_NPA:
1199 		return pfvf->npalf ? 1 : 0;
1200 	case BLKADDR_NIX0:
1201 	case BLKADDR_NIX1:
1202 		return pfvf->nixlf ? 1 : 0;
1203 	case BLKADDR_SSO:
1204 		return pfvf->sso;
1205 	case BLKADDR_SSOW:
1206 		return pfvf->ssow;
1207 	case BLKADDR_TIM:
1208 		return pfvf->timlfs;
1209 	case BLKADDR_CPT0:
1210 		return pfvf->cptlfs;
1211 	case BLKADDR_CPT1:
1212 		return pfvf->cpt1_lfs;
1213 	}
1214 	return 0;
1215 }
1216 
1217 /* Return true if LFs of block type are attached to pcifunc */
1218 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1219 {
1220 	switch (blktype) {
1221 	case BLKTYPE_NPA:
1222 		return pfvf->npalf ? 1 : 0;
1223 	case BLKTYPE_NIX:
1224 		return pfvf->nixlf ? 1 : 0;
1225 	case BLKTYPE_SSO:
1226 		return !!pfvf->sso;
1227 	case BLKTYPE_SSOW:
1228 		return !!pfvf->ssow;
1229 	case BLKTYPE_TIM:
1230 		return !!pfvf->timlfs;
1231 	case BLKTYPE_CPT:
1232 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1233 	}
1234 
1235 	return false;
1236 }
1237 
1238 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1239 {
1240 	struct rvu_pfvf *pfvf;
1241 
1242 	if (!is_pf_func_valid(rvu, pcifunc))
1243 		return false;
1244 
1245 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1246 
1247 	/* Check if this PFFUNC has a LF of type blktype attached */
1248 	if (!is_blktype_attached(pfvf, blktype))
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1255 			   int pcifunc, int slot)
1256 {
1257 	u64 val;
1258 
1259 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1260 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1261 	/* Wait for the lookup to finish */
1262 	/* TODO: put some timeout here */
1263 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1264 		;
1265 
1266 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1267 
1268 	/* Check LF valid bit */
1269 	if (!(val & (1ULL << 12)))
1270 		return -1;
1271 
1272 	return (val & 0xFFF);
1273 }
1274 
1275 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1276 {
1277 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1278 	struct rvu_hwinfo *hw = rvu->hw;
1279 	struct rvu_block *block;
1280 	int slot, lf, num_lfs;
1281 	int blkaddr;
1282 
1283 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1284 	if (blkaddr < 0)
1285 		return;
1286 
1287 	if (blktype == BLKTYPE_NIX)
1288 		rvu_nix_reset_mac(pfvf, pcifunc);
1289 
1290 	block = &hw->block[blkaddr];
1291 
1292 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1293 	if (!num_lfs)
1294 		return;
1295 
1296 	for (slot = 0; slot < num_lfs; slot++) {
1297 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1298 		if (lf < 0) /* This should never happen */
1299 			continue;
1300 
1301 		/* Disable the LF */
1302 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1303 			    (lf << block->lfshift), 0x00ULL);
1304 
1305 		/* Update SW maintained mapping info as well */
1306 		rvu_update_rsrc_map(rvu, pfvf, block,
1307 				    pcifunc, lf, false);
1308 
1309 		/* Free the resource */
1310 		rvu_free_rsrc(&block->lf, lf);
1311 
1312 		/* Clear MSIX vector offset for this LF */
1313 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1314 	}
1315 }
1316 
1317 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1318 			    u16 pcifunc)
1319 {
1320 	struct rvu_hwinfo *hw = rvu->hw;
1321 	bool detach_all = true;
1322 	struct rvu_block *block;
1323 	int blkid;
1324 
1325 	mutex_lock(&rvu->rsrc_lock);
1326 
1327 	/* Check for partial resource detach */
1328 	if (detach && detach->partial)
1329 		detach_all = false;
1330 
1331 	/* Check for RVU block's LFs attached to this func,
1332 	 * if so, detach them.
1333 	 */
1334 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1335 		block = &hw->block[blkid];
1336 		if (!block->lf.bmap)
1337 			continue;
1338 		if (!detach_all && detach) {
1339 			if (blkid == BLKADDR_NPA && !detach->npalf)
1340 				continue;
1341 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1342 				continue;
1343 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1344 				continue;
1345 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1346 				continue;
1347 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1348 				continue;
1349 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1350 				continue;
1351 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1352 				continue;
1353 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1354 				continue;
1355 		}
1356 		rvu_detach_block(rvu, pcifunc, block->type);
1357 	}
1358 
1359 	mutex_unlock(&rvu->rsrc_lock);
1360 	return 0;
1361 }
1362 
1363 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1364 				      struct rsrc_detach *detach,
1365 				      struct msg_rsp *rsp)
1366 {
1367 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1368 }
1369 
1370 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1371 {
1372 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1373 	int blkaddr = BLKADDR_NIX0, vf;
1374 	struct rvu_pfvf *pf;
1375 
1376 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1377 
1378 	/* All CGX mapped PFs are set with assigned NIX block during init */
1379 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1380 		blkaddr = pf->nix_blkaddr;
1381 	} else if (is_afvf(pcifunc)) {
1382 		vf = pcifunc - 1;
1383 		/* Assign NIX based on VF number. All even numbered VFs get
1384 		 * NIX0 and odd numbered gets NIX1
1385 		 */
1386 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1387 		/* NIX1 is not present on all silicons */
1388 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1389 			blkaddr = BLKADDR_NIX0;
1390 	}
1391 
1392 	/* if SDP1 then the blkaddr is NIX1 */
1393 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1394 		blkaddr = BLKADDR_NIX1;
1395 
1396 	switch (blkaddr) {
1397 	case BLKADDR_NIX1:
1398 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1399 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1400 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1401 		break;
1402 	case BLKADDR_NIX0:
1403 	default:
1404 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1405 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1406 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1407 		break;
1408 	}
1409 
1410 	return pfvf->nix_blkaddr;
1411 }
1412 
1413 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1414 				  u16 pcifunc, struct rsrc_attach *attach)
1415 {
1416 	int blkaddr;
1417 
1418 	switch (blktype) {
1419 	case BLKTYPE_NIX:
1420 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1421 		break;
1422 	case BLKTYPE_CPT:
1423 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1424 			return rvu_get_blkaddr(rvu, blktype, 0);
1425 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1426 			  BLKADDR_CPT0;
1427 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1428 			return -ENODEV;
1429 		break;
1430 	default:
1431 		return rvu_get_blkaddr(rvu, blktype, 0);
1432 	}
1433 
1434 	if (is_block_implemented(rvu->hw, blkaddr))
1435 		return blkaddr;
1436 
1437 	return -ENODEV;
1438 }
1439 
1440 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1441 			     int num_lfs, struct rsrc_attach *attach)
1442 {
1443 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1444 	struct rvu_hwinfo *hw = rvu->hw;
1445 	struct rvu_block *block;
1446 	int slot, lf;
1447 	int blkaddr;
1448 	u64 cfg;
1449 
1450 	if (!num_lfs)
1451 		return;
1452 
1453 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1454 	if (blkaddr < 0)
1455 		return;
1456 
1457 	block = &hw->block[blkaddr];
1458 	if (!block->lf.bmap)
1459 		return;
1460 
1461 	for (slot = 0; slot < num_lfs; slot++) {
1462 		/* Allocate the resource */
1463 		lf = rvu_alloc_rsrc(&block->lf);
1464 		if (lf < 0)
1465 			return;
1466 
1467 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1468 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1469 			    (lf << block->lfshift), cfg);
1470 		rvu_update_rsrc_map(rvu, pfvf, block,
1471 				    pcifunc, lf, true);
1472 
1473 		/* Set start MSIX vector for this LF within this PF/VF */
1474 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1475 	}
1476 }
1477 
1478 static int rvu_check_rsrc_availability(struct rvu *rvu,
1479 				       struct rsrc_attach *req, u16 pcifunc)
1480 {
1481 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1482 	int free_lfs, mappedlfs, blkaddr;
1483 	struct rvu_hwinfo *hw = rvu->hw;
1484 	struct rvu_block *block;
1485 
1486 	/* Only one NPA LF can be attached */
1487 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1488 		block = &hw->block[BLKADDR_NPA];
1489 		free_lfs = rvu_rsrc_free_count(&block->lf);
1490 		if (!free_lfs)
1491 			goto fail;
1492 	} else if (req->npalf) {
1493 		dev_err(&rvu->pdev->dev,
1494 			"Func 0x%x: Invalid req, already has NPA\n",
1495 			 pcifunc);
1496 		return -EINVAL;
1497 	}
1498 
1499 	/* Only one NIX LF can be attached */
1500 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1501 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1502 						 pcifunc, req);
1503 		if (blkaddr < 0)
1504 			return blkaddr;
1505 		block = &hw->block[blkaddr];
1506 		free_lfs = rvu_rsrc_free_count(&block->lf);
1507 		if (!free_lfs)
1508 			goto fail;
1509 	} else if (req->nixlf) {
1510 		dev_err(&rvu->pdev->dev,
1511 			"Func 0x%x: Invalid req, already has NIX\n",
1512 			pcifunc);
1513 		return -EINVAL;
1514 	}
1515 
1516 	if (req->sso) {
1517 		block = &hw->block[BLKADDR_SSO];
1518 		/* Is request within limits ? */
1519 		if (req->sso > block->lf.max) {
1520 			dev_err(&rvu->pdev->dev,
1521 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1522 				 pcifunc, req->sso, block->lf.max);
1523 			return -EINVAL;
1524 		}
1525 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1526 		free_lfs = rvu_rsrc_free_count(&block->lf);
1527 		/* Check if additional resources are available */
1528 		if (req->sso > mappedlfs &&
1529 		    ((req->sso - mappedlfs) > free_lfs))
1530 			goto fail;
1531 	}
1532 
1533 	if (req->ssow) {
1534 		block = &hw->block[BLKADDR_SSOW];
1535 		if (req->ssow > block->lf.max) {
1536 			dev_err(&rvu->pdev->dev,
1537 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1538 				 pcifunc, req->sso, block->lf.max);
1539 			return -EINVAL;
1540 		}
1541 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1542 		free_lfs = rvu_rsrc_free_count(&block->lf);
1543 		if (req->ssow > mappedlfs &&
1544 		    ((req->ssow - mappedlfs) > free_lfs))
1545 			goto fail;
1546 	}
1547 
1548 	if (req->timlfs) {
1549 		block = &hw->block[BLKADDR_TIM];
1550 		if (req->timlfs > block->lf.max) {
1551 			dev_err(&rvu->pdev->dev,
1552 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1553 				 pcifunc, req->timlfs, block->lf.max);
1554 			return -EINVAL;
1555 		}
1556 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1557 		free_lfs = rvu_rsrc_free_count(&block->lf);
1558 		if (req->timlfs > mappedlfs &&
1559 		    ((req->timlfs - mappedlfs) > free_lfs))
1560 			goto fail;
1561 	}
1562 
1563 	if (req->cptlfs) {
1564 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1565 						 pcifunc, req);
1566 		if (blkaddr < 0)
1567 			return blkaddr;
1568 		block = &hw->block[blkaddr];
1569 		if (req->cptlfs > block->lf.max) {
1570 			dev_err(&rvu->pdev->dev,
1571 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1572 				 pcifunc, req->cptlfs, block->lf.max);
1573 			return -EINVAL;
1574 		}
1575 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1576 		free_lfs = rvu_rsrc_free_count(&block->lf);
1577 		if (req->cptlfs > mappedlfs &&
1578 		    ((req->cptlfs - mappedlfs) > free_lfs))
1579 			goto fail;
1580 	}
1581 
1582 	return 0;
1583 
1584 fail:
1585 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1586 	return -ENOSPC;
1587 }
1588 
1589 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1590 				       struct rsrc_attach *attach)
1591 {
1592 	int blkaddr, num_lfs;
1593 
1594 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1595 					 attach->hdr.pcifunc, attach);
1596 	if (blkaddr < 0)
1597 		return false;
1598 
1599 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1600 					blkaddr);
1601 	/* Requester already has LFs from given block ? */
1602 	return !!num_lfs;
1603 }
1604 
1605 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1606 				      struct rsrc_attach *attach,
1607 				      struct msg_rsp *rsp)
1608 {
1609 	u16 pcifunc = attach->hdr.pcifunc;
1610 	int err;
1611 
1612 	/* If first request, detach all existing attached resources */
1613 	if (!attach->modify)
1614 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1615 
1616 	mutex_lock(&rvu->rsrc_lock);
1617 
1618 	/* Check if the request can be accommodated */
1619 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1620 	if (err)
1621 		goto exit;
1622 
1623 	/* Now attach the requested resources */
1624 	if (attach->npalf)
1625 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1626 
1627 	if (attach->nixlf)
1628 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1629 
1630 	if (attach->sso) {
1631 		/* RVU func doesn't know which exact LF or slot is attached
1632 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1633 		 * request, simply detach all existing attached LFs/slots
1634 		 * and attach a fresh.
1635 		 */
1636 		if (attach->modify)
1637 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1638 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1639 				 attach->sso, attach);
1640 	}
1641 
1642 	if (attach->ssow) {
1643 		if (attach->modify)
1644 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1645 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1646 				 attach->ssow, attach);
1647 	}
1648 
1649 	if (attach->timlfs) {
1650 		if (attach->modify)
1651 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1652 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1653 				 attach->timlfs, attach);
1654 	}
1655 
1656 	if (attach->cptlfs) {
1657 		if (attach->modify &&
1658 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1659 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1660 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1661 				 attach->cptlfs, attach);
1662 	}
1663 
1664 exit:
1665 	mutex_unlock(&rvu->rsrc_lock);
1666 	return err;
1667 }
1668 
1669 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1670 			       int blkaddr, int lf)
1671 {
1672 	u16 vec;
1673 
1674 	if (lf < 0)
1675 		return MSIX_VECTOR_INVALID;
1676 
1677 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1678 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1679 			return vec;
1680 	}
1681 	return MSIX_VECTOR_INVALID;
1682 }
1683 
1684 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1685 				struct rvu_block *block, int lf)
1686 {
1687 	u16 nvecs, vec, offset;
1688 	u64 cfg;
1689 
1690 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1691 			 (lf << block->lfshift));
1692 	nvecs = (cfg >> 12) & 0xFF;
1693 
1694 	/* Check and alloc MSIX vectors, must be contiguous */
1695 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1696 		return;
1697 
1698 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1699 
1700 	/* Config MSIX offset in LF */
1701 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1702 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1703 
1704 	/* Update the bitmap as well */
1705 	for (vec = 0; vec < nvecs; vec++)
1706 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1707 }
1708 
1709 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1710 				  struct rvu_block *block, int lf)
1711 {
1712 	u16 nvecs, vec, offset;
1713 	u64 cfg;
1714 
1715 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1716 			 (lf << block->lfshift));
1717 	nvecs = (cfg >> 12) & 0xFF;
1718 
1719 	/* Clear MSIX offset in LF */
1720 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1721 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1722 
1723 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1724 
1725 	/* Update the mapping */
1726 	for (vec = 0; vec < nvecs; vec++)
1727 		pfvf->msix_lfmap[offset + vec] = 0;
1728 
1729 	/* Free the same in MSIX bitmap */
1730 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1731 }
1732 
1733 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1734 				 struct msix_offset_rsp *rsp)
1735 {
1736 	struct rvu_hwinfo *hw = rvu->hw;
1737 	u16 pcifunc = req->hdr.pcifunc;
1738 	struct rvu_pfvf *pfvf;
1739 	int lf, slot, blkaddr;
1740 
1741 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1742 	if (!pfvf->msix.bmap)
1743 		return 0;
1744 
1745 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1746 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1747 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1748 
1749 	/* Get BLKADDR from which LFs are attached to pcifunc */
1750 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1751 	if (blkaddr < 0) {
1752 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1753 	} else {
1754 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1755 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1756 	}
1757 
1758 	rsp->sso = pfvf->sso;
1759 	for (slot = 0; slot < rsp->sso; slot++) {
1760 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1761 		rsp->sso_msixoff[slot] =
1762 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1763 	}
1764 
1765 	rsp->ssow = pfvf->ssow;
1766 	for (slot = 0; slot < rsp->ssow; slot++) {
1767 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1768 		rsp->ssow_msixoff[slot] =
1769 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1770 	}
1771 
1772 	rsp->timlfs = pfvf->timlfs;
1773 	for (slot = 0; slot < rsp->timlfs; slot++) {
1774 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1775 		rsp->timlf_msixoff[slot] =
1776 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1777 	}
1778 
1779 	rsp->cptlfs = pfvf->cptlfs;
1780 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1781 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1782 		rsp->cptlf_msixoff[slot] =
1783 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1784 	}
1785 
1786 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1787 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1788 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1789 		rsp->cpt1_lf_msixoff[slot] =
1790 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1797 				   struct free_rsrcs_rsp *rsp)
1798 {
1799 	struct rvu_hwinfo *hw = rvu->hw;
1800 	struct rvu_block *block;
1801 	struct nix_txsch *txsch;
1802 	struct nix_hw *nix_hw;
1803 
1804 	mutex_lock(&rvu->rsrc_lock);
1805 
1806 	block = &hw->block[BLKADDR_NPA];
1807 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1808 
1809 	block = &hw->block[BLKADDR_NIX0];
1810 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1811 
1812 	block = &hw->block[BLKADDR_NIX1];
1813 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1814 
1815 	block = &hw->block[BLKADDR_SSO];
1816 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1817 
1818 	block = &hw->block[BLKADDR_SSOW];
1819 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1820 
1821 	block = &hw->block[BLKADDR_TIM];
1822 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1823 
1824 	block = &hw->block[BLKADDR_CPT0];
1825 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1826 
1827 	block = &hw->block[BLKADDR_CPT1];
1828 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1829 
1830 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1831 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1832 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1833 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1834 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1835 		/* NIX1 */
1836 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1837 			goto out;
1838 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1839 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1840 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1841 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1842 	} else {
1843 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1844 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1845 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1846 				rvu_rsrc_free_count(&txsch->schq);
1847 
1848 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1849 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1850 				rvu_rsrc_free_count(&txsch->schq);
1851 
1852 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1853 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1854 				rvu_rsrc_free_count(&txsch->schq);
1855 
1856 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1857 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1858 				rvu_rsrc_free_count(&txsch->schq);
1859 
1860 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1861 			goto out;
1862 
1863 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1864 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1865 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1866 				rvu_rsrc_free_count(&txsch->schq);
1867 
1868 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1869 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1870 				rvu_rsrc_free_count(&txsch->schq);
1871 
1872 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1873 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1874 				rvu_rsrc_free_count(&txsch->schq);
1875 
1876 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1877 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1878 				rvu_rsrc_free_count(&txsch->schq);
1879 	}
1880 
1881 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1882 out:
1883 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1884 	mutex_unlock(&rvu->rsrc_lock);
1885 
1886 	return 0;
1887 }
1888 
1889 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1890 			    struct msg_rsp *rsp)
1891 {
1892 	u16 pcifunc = req->hdr.pcifunc;
1893 	u16 vf, numvfs;
1894 	u64 cfg;
1895 
1896 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1897 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1898 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1899 	numvfs = (cfg >> 12) & 0xFF;
1900 
1901 	if (vf && vf <= numvfs)
1902 		__rvu_flr_handler(rvu, pcifunc);
1903 	else
1904 		return RVU_INVALID_VF_ID;
1905 
1906 	return 0;
1907 }
1908 
1909 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1910 				struct get_hw_cap_rsp *rsp)
1911 {
1912 	struct rvu_hwinfo *hw = rvu->hw;
1913 
1914 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1915 	rsp->nix_shaping = hw->cap.nix_shaping;
1916 
1917 	return 0;
1918 }
1919 
1920 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1921 				 struct msg_rsp *rsp)
1922 {
1923 	struct rvu_hwinfo *hw = rvu->hw;
1924 	u16 pcifunc = req->hdr.pcifunc;
1925 	struct rvu_pfvf *pfvf;
1926 	int blkaddr, nixlf;
1927 	u16 target;
1928 
1929 	/* Only PF can add VF permissions */
1930 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
1931 		return -EOPNOTSUPP;
1932 
1933 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
1934 	pfvf = rvu_get_pfvf(rvu, target);
1935 
1936 	if (req->flags & RESET_VF_PERM) {
1937 		pfvf->flags &= RVU_CLEAR_VF_PERM;
1938 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
1939 		 (req->flags & VF_TRUSTED)) {
1940 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
1941 		/* disable multicast and promisc entries */
1942 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
1943 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
1944 			if (blkaddr < 0)
1945 				return 0;
1946 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
1947 					   target, 0);
1948 			if (nixlf < 0)
1949 				return 0;
1950 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1951 						     NIXLF_ALLMULTI_ENTRY,
1952 						     false);
1953 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1954 						     NIXLF_PROMISC_ENTRY,
1955 						     false);
1956 		}
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1963 				struct mbox_msghdr *req)
1964 {
1965 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1966 
1967 	/* Check if valid, if not reply with a invalid msg */
1968 	if (req->sig != OTX2_MBOX_REQ_SIG)
1969 		goto bad_message;
1970 
1971 	switch (req->id) {
1972 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1973 	case _id: {							\
1974 		struct _rsp_type *rsp;					\
1975 		int err;						\
1976 									\
1977 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1978 			mbox, devid,					\
1979 			sizeof(struct _rsp_type));			\
1980 		/* some handlers should complete even if reply */	\
1981 		/* could not be allocated */				\
1982 		if (!rsp &&						\
1983 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1984 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1985 		    _id != MBOX_MSG_VF_FLR)				\
1986 			return -ENOMEM;					\
1987 		if (rsp) {						\
1988 			rsp->hdr.id = _id;				\
1989 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1990 			rsp->hdr.pcifunc = req->pcifunc;		\
1991 			rsp->hdr.rc = 0;				\
1992 		}							\
1993 									\
1994 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1995 						    (struct _req_type *)req, \
1996 						    rsp);		\
1997 		if (rsp && err)						\
1998 			rsp->hdr.rc = err;				\
1999 									\
2000 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2001 		return rsp ? err : -ENOMEM;				\
2002 	}
2003 MBOX_MESSAGES
2004 #undef M
2005 
2006 bad_message:
2007 	default:
2008 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2009 		return -ENODEV;
2010 	}
2011 }
2012 
2013 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2014 {
2015 	struct rvu *rvu = mwork->rvu;
2016 	int offset, err, id, devid;
2017 	struct otx2_mbox_dev *mdev;
2018 	struct mbox_hdr *req_hdr;
2019 	struct mbox_msghdr *msg;
2020 	struct mbox_wq_info *mw;
2021 	struct otx2_mbox *mbox;
2022 
2023 	switch (type) {
2024 	case TYPE_AFPF:
2025 		mw = &rvu->afpf_wq_info;
2026 		break;
2027 	case TYPE_AFVF:
2028 		mw = &rvu->afvf_wq_info;
2029 		break;
2030 	default:
2031 		return;
2032 	}
2033 
2034 	devid = mwork - mw->mbox_wrk;
2035 	mbox = &mw->mbox;
2036 	mdev = &mbox->dev[devid];
2037 
2038 	/* Process received mbox messages */
2039 	req_hdr = mdev->mbase + mbox->rx_start;
2040 	if (mw->mbox_wrk[devid].num_msgs == 0)
2041 		return;
2042 
2043 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2044 
2045 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2046 		msg = mdev->mbase + offset;
2047 
2048 		/* Set which PF/VF sent this message based on mbox IRQ */
2049 		switch (type) {
2050 		case TYPE_AFPF:
2051 			msg->pcifunc &=
2052 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2053 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2054 			break;
2055 		case TYPE_AFVF:
2056 			msg->pcifunc &=
2057 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2058 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2059 			break;
2060 		}
2061 
2062 		err = rvu_process_mbox_msg(mbox, devid, msg);
2063 		if (!err) {
2064 			offset = mbox->rx_start + msg->next_msgoff;
2065 			continue;
2066 		}
2067 
2068 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2069 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2070 				 err, otx2_mbox_id2name(msg->id),
2071 				 msg->id, rvu_get_pf(msg->pcifunc),
2072 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2073 		else
2074 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2075 				 err, otx2_mbox_id2name(msg->id),
2076 				 msg->id, devid);
2077 	}
2078 	mw->mbox_wrk[devid].num_msgs = 0;
2079 
2080 	/* Send mbox responses to VF/PF */
2081 	otx2_mbox_msg_send(mbox, devid);
2082 }
2083 
2084 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2085 {
2086 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2087 
2088 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2089 }
2090 
2091 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2092 {
2093 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2094 
2095 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2096 }
2097 
2098 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2099 {
2100 	struct rvu *rvu = mwork->rvu;
2101 	struct otx2_mbox_dev *mdev;
2102 	struct mbox_hdr *rsp_hdr;
2103 	struct mbox_msghdr *msg;
2104 	struct mbox_wq_info *mw;
2105 	struct otx2_mbox *mbox;
2106 	int offset, id, devid;
2107 
2108 	switch (type) {
2109 	case TYPE_AFPF:
2110 		mw = &rvu->afpf_wq_info;
2111 		break;
2112 	case TYPE_AFVF:
2113 		mw = &rvu->afvf_wq_info;
2114 		break;
2115 	default:
2116 		return;
2117 	}
2118 
2119 	devid = mwork - mw->mbox_wrk_up;
2120 	mbox = &mw->mbox_up;
2121 	mdev = &mbox->dev[devid];
2122 
2123 	rsp_hdr = mdev->mbase + mbox->rx_start;
2124 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2125 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2126 		return;
2127 	}
2128 
2129 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2130 
2131 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2132 		msg = mdev->mbase + offset;
2133 
2134 		if (msg->id >= MBOX_MSG_MAX) {
2135 			dev_err(rvu->dev,
2136 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2137 			goto end;
2138 		}
2139 
2140 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2141 			dev_err(rvu->dev,
2142 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2143 				msg->sig, msg->id);
2144 			goto end;
2145 		}
2146 
2147 		switch (msg->id) {
2148 		case MBOX_MSG_CGX_LINK_EVENT:
2149 			break;
2150 		default:
2151 			if (msg->rc)
2152 				dev_err(rvu->dev,
2153 					"Mbox msg response has err %d, ID 0x%x\n",
2154 					msg->rc, msg->id);
2155 			break;
2156 		}
2157 end:
2158 		offset = mbox->rx_start + msg->next_msgoff;
2159 		mdev->msgs_acked++;
2160 	}
2161 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2162 
2163 	otx2_mbox_reset(mbox, devid);
2164 }
2165 
2166 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2167 {
2168 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2169 
2170 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2171 }
2172 
2173 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2174 {
2175 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2176 
2177 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2178 }
2179 
2180 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2181 				int num, int type)
2182 {
2183 	struct rvu_hwinfo *hw = rvu->hw;
2184 	int region;
2185 	u64 bar4;
2186 
2187 	/* For cn10k platform VF mailbox regions of a PF follows after the
2188 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2189 	 * RVU_PF_VF_BAR4_ADDR register.
2190 	 */
2191 	if (type == TYPE_AFVF) {
2192 		for (region = 0; region < num; region++) {
2193 			if (hw->cap.per_pf_mbox_regs) {
2194 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2195 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2196 						  MBOX_SIZE;
2197 				bar4 += region * MBOX_SIZE;
2198 			} else {
2199 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2200 				bar4 += region * MBOX_SIZE;
2201 			}
2202 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2203 			if (!mbox_addr[region])
2204 				goto error;
2205 		}
2206 		return 0;
2207 	}
2208 
2209 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2210 	 * PF registers. Whereas for Octeontx2 it is read from
2211 	 * RVU_AF_PF_BAR4_ADDR register.
2212 	 */
2213 	for (region = 0; region < num; region++) {
2214 		if (hw->cap.per_pf_mbox_regs) {
2215 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2216 					  RVU_AF_PFX_BAR4_ADDR(region));
2217 		} else {
2218 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2219 					  RVU_AF_PF_BAR4_ADDR);
2220 			bar4 += region * MBOX_SIZE;
2221 		}
2222 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2223 		if (!mbox_addr[region])
2224 			goto error;
2225 	}
2226 	return 0;
2227 
2228 error:
2229 	while (region--)
2230 		iounmap((void __iomem *)mbox_addr[region]);
2231 	return -ENOMEM;
2232 }
2233 
2234 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2235 			 int type, int num,
2236 			 void (mbox_handler)(struct work_struct *),
2237 			 void (mbox_up_handler)(struct work_struct *))
2238 {
2239 	int err = -EINVAL, i, dir, dir_up;
2240 	void __iomem *reg_base;
2241 	struct rvu_work *mwork;
2242 	void **mbox_regions;
2243 	const char *name;
2244 
2245 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2246 	if (!mbox_regions)
2247 		return -ENOMEM;
2248 
2249 	switch (type) {
2250 	case TYPE_AFPF:
2251 		name = "rvu_afpf_mailbox";
2252 		dir = MBOX_DIR_AFPF;
2253 		dir_up = MBOX_DIR_AFPF_UP;
2254 		reg_base = rvu->afreg_base;
2255 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2256 		if (err)
2257 			goto free_regions;
2258 		break;
2259 	case TYPE_AFVF:
2260 		name = "rvu_afvf_mailbox";
2261 		dir = MBOX_DIR_PFVF;
2262 		dir_up = MBOX_DIR_PFVF_UP;
2263 		reg_base = rvu->pfreg_base;
2264 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2265 		if (err)
2266 			goto free_regions;
2267 		break;
2268 	default:
2269 		return err;
2270 	}
2271 
2272 	mw->mbox_wq = alloc_workqueue(name,
2273 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2274 				      num);
2275 	if (!mw->mbox_wq) {
2276 		err = -ENOMEM;
2277 		goto unmap_regions;
2278 	}
2279 
2280 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2281 				    sizeof(struct rvu_work), GFP_KERNEL);
2282 	if (!mw->mbox_wrk) {
2283 		err = -ENOMEM;
2284 		goto exit;
2285 	}
2286 
2287 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2288 				       sizeof(struct rvu_work), GFP_KERNEL);
2289 	if (!mw->mbox_wrk_up) {
2290 		err = -ENOMEM;
2291 		goto exit;
2292 	}
2293 
2294 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2295 				     reg_base, dir, num);
2296 	if (err)
2297 		goto exit;
2298 
2299 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2300 				     reg_base, dir_up, num);
2301 	if (err)
2302 		goto exit;
2303 
2304 	for (i = 0; i < num; i++) {
2305 		mwork = &mw->mbox_wrk[i];
2306 		mwork->rvu = rvu;
2307 		INIT_WORK(&mwork->work, mbox_handler);
2308 
2309 		mwork = &mw->mbox_wrk_up[i];
2310 		mwork->rvu = rvu;
2311 		INIT_WORK(&mwork->work, mbox_up_handler);
2312 	}
2313 	kfree(mbox_regions);
2314 	return 0;
2315 
2316 exit:
2317 	destroy_workqueue(mw->mbox_wq);
2318 unmap_regions:
2319 	while (num--)
2320 		iounmap((void __iomem *)mbox_regions[num]);
2321 free_regions:
2322 	kfree(mbox_regions);
2323 	return err;
2324 }
2325 
2326 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2327 {
2328 	struct otx2_mbox *mbox = &mw->mbox;
2329 	struct otx2_mbox_dev *mdev;
2330 	int devid;
2331 
2332 	if (mw->mbox_wq) {
2333 		flush_workqueue(mw->mbox_wq);
2334 		destroy_workqueue(mw->mbox_wq);
2335 		mw->mbox_wq = NULL;
2336 	}
2337 
2338 	for (devid = 0; devid < mbox->ndevs; devid++) {
2339 		mdev = &mbox->dev[devid];
2340 		if (mdev->hwbase)
2341 			iounmap((void __iomem *)mdev->hwbase);
2342 	}
2343 
2344 	otx2_mbox_destroy(&mw->mbox);
2345 	otx2_mbox_destroy(&mw->mbox_up);
2346 }
2347 
2348 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2349 			   int mdevs, u64 intr)
2350 {
2351 	struct otx2_mbox_dev *mdev;
2352 	struct otx2_mbox *mbox;
2353 	struct mbox_hdr *hdr;
2354 	int i;
2355 
2356 	for (i = first; i < mdevs; i++) {
2357 		/* start from 0 */
2358 		if (!(intr & BIT_ULL(i - first)))
2359 			continue;
2360 
2361 		mbox = &mw->mbox;
2362 		mdev = &mbox->dev[i];
2363 		hdr = mdev->mbase + mbox->rx_start;
2364 
2365 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2366 		 * handler to  ensure that it holds a correct value next time
2367 		 * when the interrupt handler is called.
2368 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2369 		 * pf>mbox.up_num_msgs holds the data for use in
2370 		 * pfaf_mbox_up_handler.
2371 		 */
2372 
2373 		if (hdr->num_msgs) {
2374 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2375 			hdr->num_msgs = 0;
2376 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2377 		}
2378 		mbox = &mw->mbox_up;
2379 		mdev = &mbox->dev[i];
2380 		hdr = mdev->mbase + mbox->rx_start;
2381 		if (hdr->num_msgs) {
2382 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2383 			hdr->num_msgs = 0;
2384 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2385 		}
2386 	}
2387 }
2388 
2389 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2390 {
2391 	struct rvu *rvu = (struct rvu *)rvu_irq;
2392 	int vfs = rvu->vfs;
2393 	u64 intr;
2394 
2395 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2396 	/* Clear interrupts */
2397 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2398 	if (intr)
2399 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2400 
2401 	/* Sync with mbox memory region */
2402 	rmb();
2403 
2404 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2405 
2406 	/* Handle VF interrupts */
2407 	if (vfs > 64) {
2408 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2409 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2410 
2411 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2412 		vfs -= 64;
2413 	}
2414 
2415 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2416 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2417 	if (intr)
2418 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2419 
2420 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2421 
2422 	return IRQ_HANDLED;
2423 }
2424 
2425 static void rvu_enable_mbox_intr(struct rvu *rvu)
2426 {
2427 	struct rvu_hwinfo *hw = rvu->hw;
2428 
2429 	/* Clear spurious irqs, if any */
2430 	rvu_write64(rvu, BLKADDR_RVUM,
2431 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2432 
2433 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2434 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2435 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2436 }
2437 
2438 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2439 {
2440 	struct rvu_block *block;
2441 	int slot, lf, num_lfs;
2442 	int err;
2443 
2444 	block = &rvu->hw->block[blkaddr];
2445 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2446 					block->addr);
2447 	if (!num_lfs)
2448 		return;
2449 	for (slot = 0; slot < num_lfs; slot++) {
2450 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2451 		if (lf < 0)
2452 			continue;
2453 
2454 		/* Cleanup LF and reset it */
2455 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2456 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2457 		else if (block->addr == BLKADDR_NPA)
2458 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2459 		else if ((block->addr == BLKADDR_CPT0) ||
2460 			 (block->addr == BLKADDR_CPT1))
2461 			rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2462 
2463 		err = rvu_lf_reset(rvu, block, lf);
2464 		if (err) {
2465 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2466 				block->addr, lf);
2467 		}
2468 	}
2469 }
2470 
2471 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2472 {
2473 	mutex_lock(&rvu->flr_lock);
2474 	/* Reset order should reflect inter-block dependencies:
2475 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2476 	 * 2. Flush and reset SSO/SSOW
2477 	 * 3. Cleanup pools (NPA)
2478 	 */
2479 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2480 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2481 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2482 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2483 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2484 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2485 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2486 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2487 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2488 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2489 	mutex_unlock(&rvu->flr_lock);
2490 }
2491 
2492 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2493 {
2494 	int reg = 0;
2495 
2496 	/* pcifunc = 0(PF0) | (vf + 1) */
2497 	__rvu_flr_handler(rvu, vf + 1);
2498 
2499 	if (vf >= 64) {
2500 		reg = 1;
2501 		vf = vf - 64;
2502 	}
2503 
2504 	/* Signal FLR finish and enable IRQ */
2505 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2506 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2507 }
2508 
2509 static void rvu_flr_handler(struct work_struct *work)
2510 {
2511 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2512 	struct rvu *rvu = flrwork->rvu;
2513 	u16 pcifunc, numvfs, vf;
2514 	u64 cfg;
2515 	int pf;
2516 
2517 	pf = flrwork - rvu->flr_wrk;
2518 	if (pf >= rvu->hw->total_pfs) {
2519 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2520 		return;
2521 	}
2522 
2523 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2524 	numvfs = (cfg >> 12) & 0xFF;
2525 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2526 
2527 	for (vf = 0; vf < numvfs; vf++)
2528 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2529 
2530 	__rvu_flr_handler(rvu, pcifunc);
2531 
2532 	/* Signal FLR finish */
2533 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2534 
2535 	/* Enable interrupt */
2536 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2537 }
2538 
2539 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2540 {
2541 	int dev, vf, reg = 0;
2542 	u64 intr;
2543 
2544 	if (start_vf >= 64)
2545 		reg = 1;
2546 
2547 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2548 	if (!intr)
2549 		return;
2550 
2551 	for (vf = 0; vf < numvfs; vf++) {
2552 		if (!(intr & BIT_ULL(vf)))
2553 			continue;
2554 		/* Clear and disable the interrupt */
2555 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2556 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2557 
2558 		dev = vf + start_vf + rvu->hw->total_pfs;
2559 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2560 	}
2561 }
2562 
2563 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2564 {
2565 	struct rvu *rvu = (struct rvu *)rvu_irq;
2566 	u64 intr;
2567 	u8  pf;
2568 
2569 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2570 	if (!intr)
2571 		goto afvf_flr;
2572 
2573 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2574 		if (intr & (1ULL << pf)) {
2575 			/* clear interrupt */
2576 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2577 				    BIT_ULL(pf));
2578 			/* Disable the interrupt */
2579 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2580 				    BIT_ULL(pf));
2581 			/* PF is already dead do only AF related operations */
2582 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2583 		}
2584 	}
2585 
2586 afvf_flr:
2587 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2588 	if (rvu->vfs > 64)
2589 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2590 
2591 	return IRQ_HANDLED;
2592 }
2593 
2594 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2595 {
2596 	int vf;
2597 
2598 	/* Nothing to be done here other than clearing the
2599 	 * TRPEND bit.
2600 	 */
2601 	for (vf = 0; vf < 64; vf++) {
2602 		if (intr & (1ULL << vf)) {
2603 			/* clear the trpend due to ME(master enable) */
2604 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2605 			/* clear interrupt */
2606 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2607 		}
2608 	}
2609 }
2610 
2611 /* Handles ME interrupts from VFs of AF */
2612 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2613 {
2614 	struct rvu *rvu = (struct rvu *)rvu_irq;
2615 	int vfset;
2616 	u64 intr;
2617 
2618 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2619 
2620 	for (vfset = 0; vfset <= 1; vfset++) {
2621 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2622 		if (intr)
2623 			rvu_me_handle_vfset(rvu, vfset, intr);
2624 	}
2625 
2626 	return IRQ_HANDLED;
2627 }
2628 
2629 /* Handles ME interrupts from PFs */
2630 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2631 {
2632 	struct rvu *rvu = (struct rvu *)rvu_irq;
2633 	u64 intr;
2634 	u8  pf;
2635 
2636 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2637 
2638 	/* Nothing to be done here other than clearing the
2639 	 * TRPEND bit.
2640 	 */
2641 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2642 		if (intr & (1ULL << pf)) {
2643 			/* clear the trpend due to ME(master enable) */
2644 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2645 				    BIT_ULL(pf));
2646 			/* clear interrupt */
2647 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2648 				    BIT_ULL(pf));
2649 		}
2650 	}
2651 
2652 	return IRQ_HANDLED;
2653 }
2654 
2655 static void rvu_unregister_interrupts(struct rvu *rvu)
2656 {
2657 	int irq;
2658 
2659 	/* Disable the Mbox interrupt */
2660 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2661 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2662 
2663 	/* Disable the PF FLR interrupt */
2664 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2665 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2666 
2667 	/* Disable the PF ME interrupt */
2668 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2669 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2670 
2671 	for (irq = 0; irq < rvu->num_vec; irq++) {
2672 		if (rvu->irq_allocated[irq]) {
2673 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2674 			rvu->irq_allocated[irq] = false;
2675 		}
2676 	}
2677 
2678 	pci_free_irq_vectors(rvu->pdev);
2679 	rvu->num_vec = 0;
2680 }
2681 
2682 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2683 {
2684 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2685 	int offset;
2686 
2687 	pfvf = &rvu->pf[0];
2688 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2689 
2690 	/* Make sure there are enough MSIX vectors configured so that
2691 	 * VF interrupts can be handled. Offset equal to zero means
2692 	 * that PF vectors are not configured and overlapping AF vectors.
2693 	 */
2694 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2695 	       offset;
2696 }
2697 
2698 static int rvu_register_interrupts(struct rvu *rvu)
2699 {
2700 	int ret, offset, pf_vec_start;
2701 
2702 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2703 
2704 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2705 					   NAME_SIZE, GFP_KERNEL);
2706 	if (!rvu->irq_name)
2707 		return -ENOMEM;
2708 
2709 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2710 					  sizeof(bool), GFP_KERNEL);
2711 	if (!rvu->irq_allocated)
2712 		return -ENOMEM;
2713 
2714 	/* Enable MSI-X */
2715 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2716 				    rvu->num_vec, PCI_IRQ_MSIX);
2717 	if (ret < 0) {
2718 		dev_err(rvu->dev,
2719 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2720 			rvu->num_vec, ret);
2721 		return ret;
2722 	}
2723 
2724 	/* Register mailbox interrupt handler */
2725 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2726 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2727 			  rvu_mbox_intr_handler, 0,
2728 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2729 	if (ret) {
2730 		dev_err(rvu->dev,
2731 			"RVUAF: IRQ registration failed for mbox irq\n");
2732 		goto fail;
2733 	}
2734 
2735 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2736 
2737 	/* Enable mailbox interrupts from all PFs */
2738 	rvu_enable_mbox_intr(rvu);
2739 
2740 	/* Register FLR interrupt handler */
2741 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2742 		"RVUAF FLR");
2743 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2744 			  rvu_flr_intr_handler, 0,
2745 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2746 			  rvu);
2747 	if (ret) {
2748 		dev_err(rvu->dev,
2749 			"RVUAF: IRQ registration failed for FLR\n");
2750 		goto fail;
2751 	}
2752 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2753 
2754 	/* Enable FLR interrupt for all PFs*/
2755 	rvu_write64(rvu, BLKADDR_RVUM,
2756 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2757 
2758 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2759 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2760 
2761 	/* Register ME interrupt handler */
2762 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2763 		"RVUAF ME");
2764 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2765 			  rvu_me_pf_intr_handler, 0,
2766 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2767 			  rvu);
2768 	if (ret) {
2769 		dev_err(rvu->dev,
2770 			"RVUAF: IRQ registration failed for ME\n");
2771 	}
2772 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2773 
2774 	/* Clear TRPEND bit for all PF */
2775 	rvu_write64(rvu, BLKADDR_RVUM,
2776 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2777 	/* Enable ME interrupt for all PFs*/
2778 	rvu_write64(rvu, BLKADDR_RVUM,
2779 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2780 
2781 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2782 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2783 
2784 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2785 		return 0;
2786 
2787 	/* Get PF MSIX vectors offset. */
2788 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2789 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2790 
2791 	/* Register MBOX0 interrupt. */
2792 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2793 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2794 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2795 			  rvu_mbox_intr_handler, 0,
2796 			  &rvu->irq_name[offset * NAME_SIZE],
2797 			  rvu);
2798 	if (ret)
2799 		dev_err(rvu->dev,
2800 			"RVUAF: IRQ registration failed for Mbox0\n");
2801 
2802 	rvu->irq_allocated[offset] = true;
2803 
2804 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2805 	 * simply increment current offset by 1.
2806 	 */
2807 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2808 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2809 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2810 			  rvu_mbox_intr_handler, 0,
2811 			  &rvu->irq_name[offset * NAME_SIZE],
2812 			  rvu);
2813 	if (ret)
2814 		dev_err(rvu->dev,
2815 			"RVUAF: IRQ registration failed for Mbox1\n");
2816 
2817 	rvu->irq_allocated[offset] = true;
2818 
2819 	/* Register FLR interrupt handler for AF's VFs */
2820 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2821 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2822 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2823 			  rvu_flr_intr_handler, 0,
2824 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2825 	if (ret) {
2826 		dev_err(rvu->dev,
2827 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2828 		goto fail;
2829 	}
2830 	rvu->irq_allocated[offset] = true;
2831 
2832 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2833 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2834 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2835 			  rvu_flr_intr_handler, 0,
2836 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2837 	if (ret) {
2838 		dev_err(rvu->dev,
2839 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2840 		goto fail;
2841 	}
2842 	rvu->irq_allocated[offset] = true;
2843 
2844 	/* Register ME interrupt handler for AF's VFs */
2845 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2846 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2847 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2848 			  rvu_me_vf_intr_handler, 0,
2849 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2850 	if (ret) {
2851 		dev_err(rvu->dev,
2852 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2853 		goto fail;
2854 	}
2855 	rvu->irq_allocated[offset] = true;
2856 
2857 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2858 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2859 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2860 			  rvu_me_vf_intr_handler, 0,
2861 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2862 	if (ret) {
2863 		dev_err(rvu->dev,
2864 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2865 		goto fail;
2866 	}
2867 	rvu->irq_allocated[offset] = true;
2868 	return 0;
2869 
2870 fail:
2871 	rvu_unregister_interrupts(rvu);
2872 	return ret;
2873 }
2874 
2875 static void rvu_flr_wq_destroy(struct rvu *rvu)
2876 {
2877 	if (rvu->flr_wq) {
2878 		flush_workqueue(rvu->flr_wq);
2879 		destroy_workqueue(rvu->flr_wq);
2880 		rvu->flr_wq = NULL;
2881 	}
2882 }
2883 
2884 static int rvu_flr_init(struct rvu *rvu)
2885 {
2886 	int dev, num_devs;
2887 	u64 cfg;
2888 	int pf;
2889 
2890 	/* Enable FLR for all PFs*/
2891 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2892 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2893 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2894 			    cfg | BIT_ULL(22));
2895 	}
2896 
2897 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2898 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2899 				       1);
2900 	if (!rvu->flr_wq)
2901 		return -ENOMEM;
2902 
2903 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2904 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2905 				    sizeof(struct rvu_work), GFP_KERNEL);
2906 	if (!rvu->flr_wrk) {
2907 		destroy_workqueue(rvu->flr_wq);
2908 		return -ENOMEM;
2909 	}
2910 
2911 	for (dev = 0; dev < num_devs; dev++) {
2912 		rvu->flr_wrk[dev].rvu = rvu;
2913 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2914 	}
2915 
2916 	mutex_init(&rvu->flr_lock);
2917 
2918 	return 0;
2919 }
2920 
2921 static void rvu_disable_afvf_intr(struct rvu *rvu)
2922 {
2923 	int vfs = rvu->vfs;
2924 
2925 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2926 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2927 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2928 	if (vfs <= 64)
2929 		return;
2930 
2931 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2932 		      INTR_MASK(vfs - 64));
2933 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2934 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2935 }
2936 
2937 static void rvu_enable_afvf_intr(struct rvu *rvu)
2938 {
2939 	int vfs = rvu->vfs;
2940 
2941 	/* Clear any pending interrupts and enable AF VF interrupts for
2942 	 * the first 64 VFs.
2943 	 */
2944 	/* Mbox */
2945 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2946 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2947 
2948 	/* FLR */
2949 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2950 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2951 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2952 
2953 	/* Same for remaining VFs, if any. */
2954 	if (vfs <= 64)
2955 		return;
2956 
2957 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2958 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2959 		      INTR_MASK(vfs - 64));
2960 
2961 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2962 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2963 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2964 }
2965 
2966 int rvu_get_num_lbk_chans(void)
2967 {
2968 	struct pci_dev *pdev;
2969 	void __iomem *base;
2970 	int ret = -EIO;
2971 
2972 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2973 			      NULL);
2974 	if (!pdev)
2975 		goto err;
2976 
2977 	base = pci_ioremap_bar(pdev, 0);
2978 	if (!base)
2979 		goto err_put;
2980 
2981 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2982 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2983 	iounmap(base);
2984 err_put:
2985 	pci_dev_put(pdev);
2986 err:
2987 	return ret;
2988 }
2989 
2990 static int rvu_enable_sriov(struct rvu *rvu)
2991 {
2992 	struct pci_dev *pdev = rvu->pdev;
2993 	int err, chans, vfs;
2994 
2995 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2996 		dev_warn(&pdev->dev,
2997 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2998 		return 0;
2999 	}
3000 
3001 	chans = rvu_get_num_lbk_chans();
3002 	if (chans < 0)
3003 		return chans;
3004 
3005 	vfs = pci_sriov_get_totalvfs(pdev);
3006 
3007 	/* Limit VFs in case we have more VFs than LBK channels available. */
3008 	if (vfs > chans)
3009 		vfs = chans;
3010 
3011 	if (!vfs)
3012 		return 0;
3013 
3014 	/* LBK channel number 63 is used for switching packets between
3015 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3016 	 */
3017 	if (vfs > 62)
3018 		vfs = 62;
3019 
3020 	/* Save VFs number for reference in VF interrupts handlers.
3021 	 * Since interrupts might start arriving during SRIOV enablement
3022 	 * ordinary API cannot be used to get number of enabled VFs.
3023 	 */
3024 	rvu->vfs = vfs;
3025 
3026 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3027 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3028 	if (err)
3029 		return err;
3030 
3031 	rvu_enable_afvf_intr(rvu);
3032 	/* Make sure IRQs are enabled before SRIOV. */
3033 	mb();
3034 
3035 	err = pci_enable_sriov(pdev, vfs);
3036 	if (err) {
3037 		rvu_disable_afvf_intr(rvu);
3038 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3039 		return err;
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 static void rvu_disable_sriov(struct rvu *rvu)
3046 {
3047 	rvu_disable_afvf_intr(rvu);
3048 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3049 	pci_disable_sriov(rvu->pdev);
3050 }
3051 
3052 static void rvu_update_module_params(struct rvu *rvu)
3053 {
3054 	const char *default_pfl_name = "default";
3055 
3056 	strscpy(rvu->mkex_pfl_name,
3057 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3058 	strscpy(rvu->kpu_pfl_name,
3059 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3060 }
3061 
3062 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3063 {
3064 	struct device *dev = &pdev->dev;
3065 	struct rvu *rvu;
3066 	int    err;
3067 
3068 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3069 	if (!rvu)
3070 		return -ENOMEM;
3071 
3072 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3073 	if (!rvu->hw) {
3074 		devm_kfree(dev, rvu);
3075 		return -ENOMEM;
3076 	}
3077 
3078 	pci_set_drvdata(pdev, rvu);
3079 	rvu->pdev = pdev;
3080 	rvu->dev = &pdev->dev;
3081 
3082 	err = pci_enable_device(pdev);
3083 	if (err) {
3084 		dev_err(dev, "Failed to enable PCI device\n");
3085 		goto err_freemem;
3086 	}
3087 
3088 	err = pci_request_regions(pdev, DRV_NAME);
3089 	if (err) {
3090 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3091 		goto err_disable_device;
3092 	}
3093 
3094 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3095 	if (err) {
3096 		dev_err(dev, "DMA mask config failed, abort\n");
3097 		goto err_release_regions;
3098 	}
3099 
3100 	pci_set_master(pdev);
3101 
3102 	rvu->ptp = ptp_get();
3103 	if (IS_ERR(rvu->ptp)) {
3104 		err = PTR_ERR(rvu->ptp);
3105 		if (err == -EPROBE_DEFER)
3106 			goto err_release_regions;
3107 		rvu->ptp = NULL;
3108 	}
3109 
3110 	/* Map Admin function CSRs */
3111 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3112 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3113 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3114 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3115 		err = -ENOMEM;
3116 		goto err_put_ptp;
3117 	}
3118 
3119 	/* Store module params in rvu structure */
3120 	rvu_update_module_params(rvu);
3121 
3122 	/* Check which blocks the HW supports */
3123 	rvu_check_block_implemented(rvu);
3124 
3125 	rvu_reset_all_blocks(rvu);
3126 
3127 	rvu_setup_hw_capabilities(rvu);
3128 
3129 	err = rvu_setup_hw_resources(rvu);
3130 	if (err)
3131 		goto err_put_ptp;
3132 
3133 	/* Init mailbox btw AF and PFs */
3134 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3135 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3136 			    rvu_afpf_mbox_up_handler);
3137 	if (err) {
3138 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3139 		goto err_hwsetup;
3140 	}
3141 
3142 	err = rvu_flr_init(rvu);
3143 	if (err) {
3144 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3145 		goto err_mbox;
3146 	}
3147 
3148 	err = rvu_register_interrupts(rvu);
3149 	if (err) {
3150 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3151 		goto err_flr;
3152 	}
3153 
3154 	err = rvu_register_dl(rvu);
3155 	if (err) {
3156 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3157 		goto err_irq;
3158 	}
3159 
3160 	rvu_setup_rvum_blk_revid(rvu);
3161 
3162 	/* Enable AF's VFs (if any) */
3163 	err = rvu_enable_sriov(rvu);
3164 	if (err) {
3165 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3166 		goto err_dl;
3167 	}
3168 
3169 	/* Initialize debugfs */
3170 	rvu_dbg_init(rvu);
3171 
3172 	mutex_init(&rvu->rswitch.switch_lock);
3173 
3174 	return 0;
3175 err_dl:
3176 	rvu_unregister_dl(rvu);
3177 err_irq:
3178 	rvu_unregister_interrupts(rvu);
3179 err_flr:
3180 	rvu_flr_wq_destroy(rvu);
3181 err_mbox:
3182 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3183 err_hwsetup:
3184 	rvu_cgx_exit(rvu);
3185 	rvu_fwdata_exit(rvu);
3186 	rvu_reset_all_blocks(rvu);
3187 	rvu_free_hw_resources(rvu);
3188 	rvu_clear_rvum_blk_revid(rvu);
3189 err_put_ptp:
3190 	ptp_put(rvu->ptp);
3191 err_release_regions:
3192 	pci_release_regions(pdev);
3193 err_disable_device:
3194 	pci_disable_device(pdev);
3195 err_freemem:
3196 	pci_set_drvdata(pdev, NULL);
3197 	devm_kfree(&pdev->dev, rvu->hw);
3198 	devm_kfree(dev, rvu);
3199 	return err;
3200 }
3201 
3202 static void rvu_remove(struct pci_dev *pdev)
3203 {
3204 	struct rvu *rvu = pci_get_drvdata(pdev);
3205 
3206 	rvu_dbg_exit(rvu);
3207 	rvu_unregister_dl(rvu);
3208 	rvu_unregister_interrupts(rvu);
3209 	rvu_flr_wq_destroy(rvu);
3210 	rvu_cgx_exit(rvu);
3211 	rvu_fwdata_exit(rvu);
3212 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3213 	rvu_disable_sriov(rvu);
3214 	rvu_reset_all_blocks(rvu);
3215 	rvu_free_hw_resources(rvu);
3216 	rvu_clear_rvum_blk_revid(rvu);
3217 	ptp_put(rvu->ptp);
3218 	pci_release_regions(pdev);
3219 	pci_disable_device(pdev);
3220 	pci_set_drvdata(pdev, NULL);
3221 
3222 	devm_kfree(&pdev->dev, rvu->hw);
3223 	devm_kfree(&pdev->dev, rvu);
3224 }
3225 
3226 static struct pci_driver rvu_driver = {
3227 	.name = DRV_NAME,
3228 	.id_table = rvu_id_table,
3229 	.probe = rvu_probe,
3230 	.remove = rvu_remove,
3231 };
3232 
3233 static int __init rvu_init_module(void)
3234 {
3235 	int err;
3236 
3237 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3238 
3239 	err = pci_register_driver(&cgx_driver);
3240 	if (err < 0)
3241 		return err;
3242 
3243 	err = pci_register_driver(&ptp_driver);
3244 	if (err < 0)
3245 		goto ptp_err;
3246 
3247 	err =  pci_register_driver(&rvu_driver);
3248 	if (err < 0)
3249 		goto rvu_err;
3250 
3251 	return 0;
3252 rvu_err:
3253 	pci_unregister_driver(&ptp_driver);
3254 ptp_err:
3255 	pci_unregister_driver(&cgx_driver);
3256 
3257 	return err;
3258 }
3259 
3260 static void __exit rvu_cleanup_module(void)
3261 {
3262 	pci_unregister_driver(&rvu_driver);
3263 	pci_unregister_driver(&ptp_driver);
3264 	pci_unregister_driver(&cgx_driver);
3265 }
3266 
3267 module_init(rvu_init_module);
3268 module_exit(rvu_cleanup_module);
3269