xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 920c293af8d01942caa10300ad97eabf778e8598)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 #include "ptp.h"
22 
23 #include "rvu_trace.h"
24 
25 #define DRV_NAME	"rvu_af"
26 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
27 
28 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
29 
30 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				struct rvu_block *block, int lf);
32 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
33 				  struct rvu_block *block, int lf);
34 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
35 
36 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
37 			 int type, int num,
38 			 void (mbox_handler)(struct work_struct *),
39 			 void (mbox_up_handler)(struct work_struct *));
40 enum {
41 	TYPE_AFVF,
42 	TYPE_AFPF,
43 };
44 
45 /* Supported devices */
46 static const struct pci_device_id rvu_id_table[] = {
47 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
48 	{ 0, }  /* end of table */
49 };
50 
51 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
52 MODULE_DESCRIPTION(DRV_STRING);
53 MODULE_LICENSE("GPL v2");
54 MODULE_DEVICE_TABLE(pci, rvu_id_table);
55 
56 static char *mkex_profile; /* MKEX profile name */
57 module_param(mkex_profile, charp, 0000);
58 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
59 
60 static char *kpu_profile; /* KPU profile name */
61 module_param(kpu_profile, charp, 0000);
62 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
63 
64 static void rvu_setup_hw_capabilities(struct rvu *rvu)
65 {
66 	struct rvu_hwinfo *hw = rvu->hw;
67 
68 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
69 	hw->cap.nix_fixed_txschq_mapping = false;
70 	hw->cap.nix_shaping = true;
71 	hw->cap.nix_tx_link_bp = true;
72 	hw->cap.nix_rx_multicast = true;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_96xx_B0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
96 	void __iomem *reg;
97 	u64 reg_val;
98 
99 	reg = rvu->afreg_base + ((block << 28) | offset);
100 again:
101 	reg_val = readq(reg);
102 	if (zero && !(reg_val & mask))
103 		return 0;
104 	if (!zero && (reg_val & mask))
105 		return 0;
106 	if (time_before(jiffies, timeout)) {
107 		usleep_range(1, 5);
108 		goto again;
109 	}
110 	return -EBUSY;
111 }
112 
113 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
114 {
115 	int id;
116 
117 	if (!rsrc->bmap)
118 		return -EINVAL;
119 
120 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
121 	if (id >= rsrc->max)
122 		return -ENOSPC;
123 
124 	__set_bit(id, rsrc->bmap);
125 
126 	return id;
127 }
128 
129 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
130 {
131 	int start;
132 
133 	if (!rsrc->bmap)
134 		return -EINVAL;
135 
136 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
137 	if (start >= rsrc->max)
138 		return -ENOSPC;
139 
140 	bitmap_set(rsrc->bmap, start, nrsrc);
141 	return start;
142 }
143 
144 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
145 {
146 	if (!rsrc->bmap)
147 		return;
148 	if (start >= rsrc->max)
149 		return;
150 
151 	bitmap_clear(rsrc->bmap, start, nrsrc);
152 }
153 
154 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
155 {
156 	int start;
157 
158 	if (!rsrc->bmap)
159 		return false;
160 
161 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
162 	if (start >= rsrc->max)
163 		return false;
164 
165 	return true;
166 }
167 
168 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
169 {
170 	if (!rsrc->bmap)
171 		return;
172 
173 	__clear_bit(id, rsrc->bmap);
174 }
175 
176 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
177 {
178 	int used;
179 
180 	if (!rsrc->bmap)
181 		return 0;
182 
183 	used = bitmap_weight(rsrc->bmap, rsrc->max);
184 	return (rsrc->max - used);
185 }
186 
187 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
188 {
189 	if (!rsrc->bmap)
190 		return false;
191 
192 	return !test_bit(id, rsrc->bmap);
193 }
194 
195 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
196 {
197 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
198 			     sizeof(long), GFP_KERNEL);
199 	if (!rsrc->bmap)
200 		return -ENOMEM;
201 	return 0;
202 }
203 
204 /* Get block LF's HW index from a PF_FUNC's block slot number */
205 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
206 {
207 	u16 match = 0;
208 	int lf;
209 
210 	mutex_lock(&rvu->rsrc_lock);
211 	for (lf = 0; lf < block->lf.max; lf++) {
212 		if (block->fn_map[lf] == pcifunc) {
213 			if (slot == match) {
214 				mutex_unlock(&rvu->rsrc_lock);
215 				return lf;
216 			}
217 			match++;
218 		}
219 	}
220 	mutex_unlock(&rvu->rsrc_lock);
221 	return -ENODEV;
222 }
223 
224 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
225  * Some silicon variants of OcteonTX2 supports
226  * multiple blocks of same type.
227  *
228  * @pcifunc has to be zero when no LF is yet attached.
229  *
230  * For a pcifunc if LFs are attached from multiple blocks of same type, then
231  * return blkaddr of first encountered block.
232  */
233 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
234 {
235 	int devnum, blkaddr = -ENODEV;
236 	u64 cfg, reg;
237 	bool is_pf;
238 
239 	switch (blktype) {
240 	case BLKTYPE_NPC:
241 		blkaddr = BLKADDR_NPC;
242 		goto exit;
243 	case BLKTYPE_NPA:
244 		blkaddr = BLKADDR_NPA;
245 		goto exit;
246 	case BLKTYPE_NIX:
247 		/* For now assume NIX0 */
248 		if (!pcifunc) {
249 			blkaddr = BLKADDR_NIX0;
250 			goto exit;
251 		}
252 		break;
253 	case BLKTYPE_SSO:
254 		blkaddr = BLKADDR_SSO;
255 		goto exit;
256 	case BLKTYPE_SSOW:
257 		blkaddr = BLKADDR_SSOW;
258 		goto exit;
259 	case BLKTYPE_TIM:
260 		blkaddr = BLKADDR_TIM;
261 		goto exit;
262 	case BLKTYPE_CPT:
263 		/* For now assume CPT0 */
264 		if (!pcifunc) {
265 			blkaddr = BLKADDR_CPT0;
266 			goto exit;
267 		}
268 		break;
269 	}
270 
271 	/* Check if this is a RVU PF or VF */
272 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
273 		is_pf = false;
274 		devnum = rvu_get_hwvf(rvu, pcifunc);
275 	} else {
276 		is_pf = true;
277 		devnum = rvu_get_pf(pcifunc);
278 	}
279 
280 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
281 	 * 'BLKADDR_NIX1'.
282 	 */
283 	if (blktype == BLKTYPE_NIX) {
284 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
285 			RVU_PRIV_HWVFX_NIXX_CFG(0);
286 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
287 		if (cfg) {
288 			blkaddr = BLKADDR_NIX0;
289 			goto exit;
290 		}
291 
292 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
293 			RVU_PRIV_HWVFX_NIXX_CFG(1);
294 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
295 		if (cfg)
296 			blkaddr = BLKADDR_NIX1;
297 	}
298 
299 	if (blktype == BLKTYPE_CPT) {
300 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
301 			RVU_PRIV_HWVFX_CPTX_CFG(0);
302 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
303 		if (cfg) {
304 			blkaddr = BLKADDR_CPT0;
305 			goto exit;
306 		}
307 
308 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
309 			RVU_PRIV_HWVFX_CPTX_CFG(1);
310 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
311 		if (cfg)
312 			blkaddr = BLKADDR_CPT1;
313 	}
314 
315 exit:
316 	if (is_block_implemented(rvu->hw, blkaddr))
317 		return blkaddr;
318 	return -ENODEV;
319 }
320 
321 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
322 				struct rvu_block *block, u16 pcifunc,
323 				u16 lf, bool attach)
324 {
325 	int devnum, num_lfs = 0;
326 	bool is_pf;
327 	u64 reg;
328 
329 	if (lf >= block->lf.max) {
330 		dev_err(&rvu->pdev->dev,
331 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
332 			__func__, lf, block->name, block->lf.max);
333 		return;
334 	}
335 
336 	/* Check if this is for a RVU PF or VF */
337 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
338 		is_pf = false;
339 		devnum = rvu_get_hwvf(rvu, pcifunc);
340 	} else {
341 		is_pf = true;
342 		devnum = rvu_get_pf(pcifunc);
343 	}
344 
345 	block->fn_map[lf] = attach ? pcifunc : 0;
346 
347 	switch (block->addr) {
348 	case BLKADDR_NPA:
349 		pfvf->npalf = attach ? true : false;
350 		num_lfs = pfvf->npalf;
351 		break;
352 	case BLKADDR_NIX0:
353 	case BLKADDR_NIX1:
354 		pfvf->nixlf = attach ? true : false;
355 		num_lfs = pfvf->nixlf;
356 		break;
357 	case BLKADDR_SSO:
358 		attach ? pfvf->sso++ : pfvf->sso--;
359 		num_lfs = pfvf->sso;
360 		break;
361 	case BLKADDR_SSOW:
362 		attach ? pfvf->ssow++ : pfvf->ssow--;
363 		num_lfs = pfvf->ssow;
364 		break;
365 	case BLKADDR_TIM:
366 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
367 		num_lfs = pfvf->timlfs;
368 		break;
369 	case BLKADDR_CPT0:
370 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
371 		num_lfs = pfvf->cptlfs;
372 		break;
373 	case BLKADDR_CPT1:
374 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
375 		num_lfs = pfvf->cpt1_lfs;
376 		break;
377 	}
378 
379 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
380 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
381 }
382 
383 inline int rvu_get_pf(u16 pcifunc)
384 {
385 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
386 }
387 
388 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
389 {
390 	u64 cfg;
391 
392 	/* Get numVFs attached to this PF and first HWVF */
393 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
394 	if (numvfs)
395 		*numvfs = (cfg >> 12) & 0xFF;
396 	if (hwvf)
397 		*hwvf = cfg & 0xFFF;
398 }
399 
400 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
401 {
402 	int pf, func;
403 	u64 cfg;
404 
405 	pf = rvu_get_pf(pcifunc);
406 	func = pcifunc & RVU_PFVF_FUNC_MASK;
407 
408 	/* Get first HWVF attached to this PF */
409 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
410 
411 	return ((cfg & 0xFFF) + func - 1);
412 }
413 
414 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
415 {
416 	/* Check if it is a PF or VF */
417 	if (pcifunc & RVU_PFVF_FUNC_MASK)
418 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
419 	else
420 		return &rvu->pf[rvu_get_pf(pcifunc)];
421 }
422 
423 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
424 {
425 	int pf, vf, nvfs;
426 	u64 cfg;
427 
428 	pf = rvu_get_pf(pcifunc);
429 	if (pf >= rvu->hw->total_pfs)
430 		return false;
431 
432 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
433 		return true;
434 
435 	/* Check if VF is within number of VFs attached to this PF */
436 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
437 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
438 	nvfs = (cfg >> 12) & 0xFF;
439 	if (vf >= nvfs)
440 		return false;
441 
442 	return true;
443 }
444 
445 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
446 {
447 	struct rvu_block *block;
448 
449 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
450 		return false;
451 
452 	block = &hw->block[blkaddr];
453 	return block->implemented;
454 }
455 
456 static void rvu_check_block_implemented(struct rvu *rvu)
457 {
458 	struct rvu_hwinfo *hw = rvu->hw;
459 	struct rvu_block *block;
460 	int blkid;
461 	u64 cfg;
462 
463 	/* For each block check if 'implemented' bit is set */
464 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
465 		block = &hw->block[blkid];
466 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
467 		if (cfg & BIT_ULL(11))
468 			block->implemented = true;
469 	}
470 }
471 
472 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
473 {
474 	rvu_write64(rvu, BLKADDR_RVUM,
475 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
476 		    RVU_BLK_RVUM_REVID);
477 }
478 
479 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
480 {
481 	rvu_write64(rvu, BLKADDR_RVUM,
482 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
483 }
484 
485 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
486 {
487 	int err;
488 
489 	if (!block->implemented)
490 		return 0;
491 
492 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
493 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
494 			   true);
495 	return err;
496 }
497 
498 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
499 {
500 	struct rvu_block *block = &rvu->hw->block[blkaddr];
501 
502 	if (!block->implemented)
503 		return;
504 
505 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
506 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
507 }
508 
509 static void rvu_reset_all_blocks(struct rvu *rvu)
510 {
511 	/* Do a HW reset of all RVU blocks */
512 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
513 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
514 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
515 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
516 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
517 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
518 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
519 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
520 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
521 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
522 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
523 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
524 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
525 }
526 
527 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
528 {
529 	struct rvu_pfvf *pfvf;
530 	u64 cfg;
531 	int lf;
532 
533 	for (lf = 0; lf < block->lf.max; lf++) {
534 		cfg = rvu_read64(rvu, block->addr,
535 				 block->lfcfg_reg | (lf << block->lfshift));
536 		if (!(cfg & BIT_ULL(63)))
537 			continue;
538 
539 		/* Set this resource as being used */
540 		__set_bit(lf, block->lf.bmap);
541 
542 		/* Get, to whom this LF is attached */
543 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
544 		rvu_update_rsrc_map(rvu, pfvf, block,
545 				    (cfg >> 8) & 0xFFFF, lf, true);
546 
547 		/* Set start MSIX vector for this LF within this PF/VF */
548 		rvu_set_msix_offset(rvu, pfvf, block, lf);
549 	}
550 }
551 
552 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
553 {
554 	int min_vecs;
555 
556 	if (!vf)
557 		goto check_pf;
558 
559 	if (!nvecs) {
560 		dev_warn(rvu->dev,
561 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
562 			 pf, vf - 1, nvecs);
563 	}
564 	return;
565 
566 check_pf:
567 	if (pf == 0)
568 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
569 	else
570 		min_vecs = RVU_PF_INT_VEC_CNT;
571 
572 	if (!(nvecs < min_vecs))
573 		return;
574 	dev_warn(rvu->dev,
575 		 "PF%d is configured with too few vectors, %d, min is %d\n",
576 		 pf, nvecs, min_vecs);
577 }
578 
579 static int rvu_setup_msix_resources(struct rvu *rvu)
580 {
581 	struct rvu_hwinfo *hw = rvu->hw;
582 	int pf, vf, numvfs, hwvf, err;
583 	int nvecs, offset, max_msix;
584 	struct rvu_pfvf *pfvf;
585 	u64 cfg, phy_addr;
586 	dma_addr_t iova;
587 
588 	for (pf = 0; pf < hw->total_pfs; pf++) {
589 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
590 		/* If PF is not enabled, nothing to do */
591 		if (!((cfg >> 20) & 0x01))
592 			continue;
593 
594 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
595 
596 		pfvf = &rvu->pf[pf];
597 		/* Get num of MSIX vectors attached to this PF */
598 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
599 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
600 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
601 
602 		/* Alloc msix bitmap for this PF */
603 		err = rvu_alloc_bitmap(&pfvf->msix);
604 		if (err)
605 			return err;
606 
607 		/* Allocate memory for MSIX vector to RVU block LF mapping */
608 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
609 						sizeof(u16), GFP_KERNEL);
610 		if (!pfvf->msix_lfmap)
611 			return -ENOMEM;
612 
613 		/* For PF0 (AF) firmware will set msix vector offsets for
614 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
615 		 */
616 		if (!pf)
617 			goto setup_vfmsix;
618 
619 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
620 		 * These are allocated on driver init and never freed,
621 		 * so no need to set 'msix_lfmap' for these.
622 		 */
623 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
624 		nvecs = (cfg >> 12) & 0xFF;
625 		cfg &= ~0x7FFULL;
626 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
627 		rvu_write64(rvu, BLKADDR_RVUM,
628 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
629 setup_vfmsix:
630 		/* Alloc msix bitmap for VFs */
631 		for (vf = 0; vf < numvfs; vf++) {
632 			pfvf =  &rvu->hwvf[hwvf + vf];
633 			/* Get num of MSIX vectors attached to this VF */
634 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
635 					 RVU_PRIV_PFX_MSIX_CFG(pf));
636 			pfvf->msix.max = (cfg & 0xFFF) + 1;
637 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
638 
639 			/* Alloc msix bitmap for this VF */
640 			err = rvu_alloc_bitmap(&pfvf->msix);
641 			if (err)
642 				return err;
643 
644 			pfvf->msix_lfmap =
645 				devm_kcalloc(rvu->dev, pfvf->msix.max,
646 					     sizeof(u16), GFP_KERNEL);
647 			if (!pfvf->msix_lfmap)
648 				return -ENOMEM;
649 
650 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
651 			 * These are allocated on driver init and never freed,
652 			 * so no need to set 'msix_lfmap' for these.
653 			 */
654 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
655 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
656 			nvecs = (cfg >> 12) & 0xFF;
657 			cfg &= ~0x7FFULL;
658 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
659 			rvu_write64(rvu, BLKADDR_RVUM,
660 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
661 				    cfg | offset);
662 		}
663 	}
664 
665 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
666 	 * create an IOMMU mapping for the physical address configured by
667 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
668 	 */
669 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
670 	max_msix = cfg & 0xFFFFF;
671 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
672 		phy_addr = rvu->fwdata->msixtr_base;
673 	else
674 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
675 
676 	iova = dma_map_resource(rvu->dev, phy_addr,
677 				max_msix * PCI_MSIX_ENTRY_SIZE,
678 				DMA_BIDIRECTIONAL, 0);
679 
680 	if (dma_mapping_error(rvu->dev, iova))
681 		return -ENOMEM;
682 
683 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
684 	rvu->msix_base_iova = iova;
685 	rvu->msixtr_base_phy = phy_addr;
686 
687 	return 0;
688 }
689 
690 static void rvu_reset_msix(struct rvu *rvu)
691 {
692 	/* Restore msixtr base register */
693 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
694 		    rvu->msixtr_base_phy);
695 }
696 
697 static void rvu_free_hw_resources(struct rvu *rvu)
698 {
699 	struct rvu_hwinfo *hw = rvu->hw;
700 	struct rvu_block *block;
701 	struct rvu_pfvf  *pfvf;
702 	int id, max_msix;
703 	u64 cfg;
704 
705 	rvu_npa_freemem(rvu);
706 	rvu_npc_freemem(rvu);
707 	rvu_nix_freemem(rvu);
708 
709 	/* Free block LF bitmaps */
710 	for (id = 0; id < BLK_COUNT; id++) {
711 		block = &hw->block[id];
712 		kfree(block->lf.bmap);
713 	}
714 
715 	/* Free MSIX bitmaps */
716 	for (id = 0; id < hw->total_pfs; id++) {
717 		pfvf = &rvu->pf[id];
718 		kfree(pfvf->msix.bmap);
719 	}
720 
721 	for (id = 0; id < hw->total_vfs; id++) {
722 		pfvf = &rvu->hwvf[id];
723 		kfree(pfvf->msix.bmap);
724 	}
725 
726 	/* Unmap MSIX vector base IOVA mapping */
727 	if (!rvu->msix_base_iova)
728 		return;
729 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
730 	max_msix = cfg & 0xFFFFF;
731 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
732 			   max_msix * PCI_MSIX_ENTRY_SIZE,
733 			   DMA_BIDIRECTIONAL, 0);
734 
735 	rvu_reset_msix(rvu);
736 	mutex_destroy(&rvu->rsrc_lock);
737 }
738 
739 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
740 {
741 	struct rvu_hwinfo *hw = rvu->hw;
742 	int pf, vf, numvfs, hwvf;
743 	struct rvu_pfvf *pfvf;
744 	u64 *mac;
745 
746 	for (pf = 0; pf < hw->total_pfs; pf++) {
747 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
748 		if (!pf)
749 			goto lbkvf;
750 
751 		if (!is_pf_cgxmapped(rvu, pf))
752 			continue;
753 		/* Assign MAC address to PF */
754 		pfvf = &rvu->pf[pf];
755 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
756 			mac = &rvu->fwdata->pf_macs[pf];
757 			if (*mac)
758 				u64_to_ether_addr(*mac, pfvf->mac_addr);
759 			else
760 				eth_random_addr(pfvf->mac_addr);
761 		} else {
762 			eth_random_addr(pfvf->mac_addr);
763 		}
764 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
765 
766 lbkvf:
767 		/* Assign MAC address to VFs*/
768 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
769 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
770 			pfvf = &rvu->hwvf[hwvf];
771 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
772 				mac = &rvu->fwdata->vf_macs[hwvf];
773 				if (*mac)
774 					u64_to_ether_addr(*mac, pfvf->mac_addr);
775 				else
776 					eth_random_addr(pfvf->mac_addr);
777 			} else {
778 				eth_random_addr(pfvf->mac_addr);
779 			}
780 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
781 		}
782 	}
783 }
784 
785 static int rvu_fwdata_init(struct rvu *rvu)
786 {
787 	u64 fwdbase;
788 	int err;
789 
790 	/* Get firmware data base address */
791 	err = cgx_get_fwdata_base(&fwdbase);
792 	if (err)
793 		goto fail;
794 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
795 	if (!rvu->fwdata)
796 		goto fail;
797 	if (!is_rvu_fwdata_valid(rvu)) {
798 		dev_err(rvu->dev,
799 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
800 		iounmap(rvu->fwdata);
801 		rvu->fwdata = NULL;
802 		return -EINVAL;
803 	}
804 	return 0;
805 fail:
806 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
807 	return -EIO;
808 }
809 
810 static void rvu_fwdata_exit(struct rvu *rvu)
811 {
812 	if (rvu->fwdata)
813 		iounmap(rvu->fwdata);
814 }
815 
816 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
817 {
818 	struct rvu_hwinfo *hw = rvu->hw;
819 	struct rvu_block *block;
820 	int blkid;
821 	u64 cfg;
822 
823 	/* Init NIX LF's bitmap */
824 	block = &hw->block[blkaddr];
825 	if (!block->implemented)
826 		return 0;
827 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
828 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
829 	block->lf.max = cfg & 0xFFF;
830 	block->addr = blkaddr;
831 	block->type = BLKTYPE_NIX;
832 	block->lfshift = 8;
833 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
834 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
835 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
836 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
837 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
838 	block->lfreset_reg = NIX_AF_LF_RST;
839 	sprintf(block->name, "NIX%d", blkid);
840 	rvu->nix_blkaddr[blkid] = blkaddr;
841 	return rvu_alloc_bitmap(&block->lf);
842 }
843 
844 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 	struct rvu_hwinfo *hw = rvu->hw;
847 	struct rvu_block *block;
848 	int blkid;
849 	u64 cfg;
850 
851 	/* Init CPT LF's bitmap */
852 	block = &hw->block[blkaddr];
853 	if (!block->implemented)
854 		return 0;
855 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
856 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
857 	block->lf.max = cfg & 0xFF;
858 	block->addr = blkaddr;
859 	block->type = BLKTYPE_CPT;
860 	block->multislot = true;
861 	block->lfshift = 3;
862 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
863 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
864 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
865 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
866 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
867 	block->lfreset_reg = CPT_AF_LF_RST;
868 	sprintf(block->name, "CPT%d", blkid);
869 	return rvu_alloc_bitmap(&block->lf);
870 }
871 
872 static void rvu_get_lbk_bufsize(struct rvu *rvu)
873 {
874 	struct pci_dev *pdev = NULL;
875 	void __iomem *base;
876 	u64 lbk_const;
877 
878 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
879 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
880 	if (!pdev)
881 		return;
882 
883 	base = pci_ioremap_bar(pdev, 0);
884 	if (!base)
885 		goto err_put;
886 
887 	lbk_const = readq(base + LBK_CONST);
888 
889 	/* cache fifo size */
890 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
891 
892 	iounmap(base);
893 err_put:
894 	pci_dev_put(pdev);
895 }
896 
897 static int rvu_setup_hw_resources(struct rvu *rvu)
898 {
899 	struct rvu_hwinfo *hw = rvu->hw;
900 	struct rvu_block *block;
901 	int blkid, err;
902 	u64 cfg;
903 
904 	/* Get HW supported max RVU PF & VF count */
905 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
906 	hw->total_pfs = (cfg >> 32) & 0xFF;
907 	hw->total_vfs = (cfg >> 20) & 0xFFF;
908 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
909 
910 	/* Init NPA LF's bitmap */
911 	block = &hw->block[BLKADDR_NPA];
912 	if (!block->implemented)
913 		goto nix;
914 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
915 	block->lf.max = (cfg >> 16) & 0xFFF;
916 	block->addr = BLKADDR_NPA;
917 	block->type = BLKTYPE_NPA;
918 	block->lfshift = 8;
919 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
920 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
921 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
922 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
923 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
924 	block->lfreset_reg = NPA_AF_LF_RST;
925 	sprintf(block->name, "NPA");
926 	err = rvu_alloc_bitmap(&block->lf);
927 	if (err) {
928 		dev_err(rvu->dev,
929 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
930 		return err;
931 	}
932 
933 nix:
934 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
935 	if (err) {
936 		dev_err(rvu->dev,
937 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
938 		return err;
939 	}
940 
941 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
942 	if (err) {
943 		dev_err(rvu->dev,
944 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
945 		return err;
946 	}
947 
948 	/* Init SSO group's bitmap */
949 	block = &hw->block[BLKADDR_SSO];
950 	if (!block->implemented)
951 		goto ssow;
952 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
953 	block->lf.max = cfg & 0xFFFF;
954 	block->addr = BLKADDR_SSO;
955 	block->type = BLKTYPE_SSO;
956 	block->multislot = true;
957 	block->lfshift = 3;
958 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
959 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
960 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
961 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
962 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
963 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
964 	sprintf(block->name, "SSO GROUP");
965 	err = rvu_alloc_bitmap(&block->lf);
966 	if (err) {
967 		dev_err(rvu->dev,
968 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
969 		return err;
970 	}
971 
972 ssow:
973 	/* Init SSO workslot's bitmap */
974 	block = &hw->block[BLKADDR_SSOW];
975 	if (!block->implemented)
976 		goto tim;
977 	block->lf.max = (cfg >> 56) & 0xFF;
978 	block->addr = BLKADDR_SSOW;
979 	block->type = BLKTYPE_SSOW;
980 	block->multislot = true;
981 	block->lfshift = 3;
982 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
983 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
984 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
985 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
986 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
987 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
988 	sprintf(block->name, "SSOWS");
989 	err = rvu_alloc_bitmap(&block->lf);
990 	if (err) {
991 		dev_err(rvu->dev,
992 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
993 		return err;
994 	}
995 
996 tim:
997 	/* Init TIM LF's bitmap */
998 	block = &hw->block[BLKADDR_TIM];
999 	if (!block->implemented)
1000 		goto cpt;
1001 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1002 	block->lf.max = cfg & 0xFFFF;
1003 	block->addr = BLKADDR_TIM;
1004 	block->type = BLKTYPE_TIM;
1005 	block->multislot = true;
1006 	block->lfshift = 3;
1007 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1008 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1009 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1010 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1011 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1012 	block->lfreset_reg = TIM_AF_LF_RST;
1013 	sprintf(block->name, "TIM");
1014 	err = rvu_alloc_bitmap(&block->lf);
1015 	if (err) {
1016 		dev_err(rvu->dev,
1017 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1018 		return err;
1019 	}
1020 
1021 cpt:
1022 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1023 	if (err) {
1024 		dev_err(rvu->dev,
1025 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1026 		return err;
1027 	}
1028 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1029 	if (err) {
1030 		dev_err(rvu->dev,
1031 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1032 		return err;
1033 	}
1034 
1035 	/* Allocate memory for PFVF data */
1036 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1037 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1038 	if (!rvu->pf) {
1039 		dev_err(rvu->dev,
1040 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1041 		return -ENOMEM;
1042 	}
1043 
1044 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1045 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1046 	if (!rvu->hwvf) {
1047 		dev_err(rvu->dev,
1048 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1049 		return -ENOMEM;
1050 	}
1051 
1052 	mutex_init(&rvu->rsrc_lock);
1053 
1054 	rvu_fwdata_init(rvu);
1055 
1056 	err = rvu_setup_msix_resources(rvu);
1057 	if (err) {
1058 		dev_err(rvu->dev,
1059 			"%s: Failed to setup MSIX resources\n", __func__);
1060 		return err;
1061 	}
1062 
1063 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1064 		block = &hw->block[blkid];
1065 		if (!block->lf.bmap)
1066 			continue;
1067 
1068 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1069 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1070 					     sizeof(u16), GFP_KERNEL);
1071 		if (!block->fn_map) {
1072 			err = -ENOMEM;
1073 			goto msix_err;
1074 		}
1075 
1076 		/* Scan all blocks to check if low level firmware has
1077 		 * already provisioned any of the resources to a PF/VF.
1078 		 */
1079 		rvu_scan_block(rvu, block);
1080 	}
1081 
1082 	err = rvu_set_channels_base(rvu);
1083 	if (err)
1084 		goto msix_err;
1085 
1086 	err = rvu_npc_init(rvu);
1087 	if (err) {
1088 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1089 		goto npc_err;
1090 	}
1091 
1092 	err = rvu_cgx_init(rvu);
1093 	if (err) {
1094 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1095 		goto cgx_err;
1096 	}
1097 
1098 	/* Assign MACs for CGX mapped functions */
1099 	rvu_setup_pfvf_macaddress(rvu);
1100 
1101 	err = rvu_npa_init(rvu);
1102 	if (err) {
1103 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1104 		goto npa_err;
1105 	}
1106 
1107 	rvu_get_lbk_bufsize(rvu);
1108 
1109 	err = rvu_nix_init(rvu);
1110 	if (err) {
1111 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1112 		goto nix_err;
1113 	}
1114 
1115 	rvu_program_channels(rvu);
1116 
1117 	return 0;
1118 
1119 nix_err:
1120 	rvu_nix_freemem(rvu);
1121 npa_err:
1122 	rvu_npa_freemem(rvu);
1123 cgx_err:
1124 	rvu_cgx_exit(rvu);
1125 npc_err:
1126 	rvu_npc_freemem(rvu);
1127 	rvu_fwdata_exit(rvu);
1128 msix_err:
1129 	rvu_reset_msix(rvu);
1130 	return err;
1131 }
1132 
1133 /* NPA and NIX admin queue APIs */
1134 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1135 {
1136 	if (!aq)
1137 		return;
1138 
1139 	qmem_free(rvu->dev, aq->inst);
1140 	qmem_free(rvu->dev, aq->res);
1141 	devm_kfree(rvu->dev, aq);
1142 }
1143 
1144 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1145 		 int qsize, int inst_size, int res_size)
1146 {
1147 	struct admin_queue *aq;
1148 	int err;
1149 
1150 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1151 	if (!*ad_queue)
1152 		return -ENOMEM;
1153 	aq = *ad_queue;
1154 
1155 	/* Alloc memory for instructions i.e AQ */
1156 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1157 	if (err) {
1158 		devm_kfree(rvu->dev, aq);
1159 		return err;
1160 	}
1161 
1162 	/* Alloc memory for results */
1163 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1164 	if (err) {
1165 		rvu_aq_free(rvu, aq);
1166 		return err;
1167 	}
1168 
1169 	spin_lock_init(&aq->lock);
1170 	return 0;
1171 }
1172 
1173 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1174 			   struct ready_msg_rsp *rsp)
1175 {
1176 	if (rvu->fwdata) {
1177 		rsp->rclk_freq = rvu->fwdata->rclk;
1178 		rsp->sclk_freq = rvu->fwdata->sclk;
1179 	}
1180 	return 0;
1181 }
1182 
1183 /* Get current count of a RVU block's LF/slots
1184  * provisioned to a given RVU func.
1185  */
1186 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1187 {
1188 	switch (blkaddr) {
1189 	case BLKADDR_NPA:
1190 		return pfvf->npalf ? 1 : 0;
1191 	case BLKADDR_NIX0:
1192 	case BLKADDR_NIX1:
1193 		return pfvf->nixlf ? 1 : 0;
1194 	case BLKADDR_SSO:
1195 		return pfvf->sso;
1196 	case BLKADDR_SSOW:
1197 		return pfvf->ssow;
1198 	case BLKADDR_TIM:
1199 		return pfvf->timlfs;
1200 	case BLKADDR_CPT0:
1201 		return pfvf->cptlfs;
1202 	case BLKADDR_CPT1:
1203 		return pfvf->cpt1_lfs;
1204 	}
1205 	return 0;
1206 }
1207 
1208 /* Return true if LFs of block type are attached to pcifunc */
1209 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1210 {
1211 	switch (blktype) {
1212 	case BLKTYPE_NPA:
1213 		return pfvf->npalf ? 1 : 0;
1214 	case BLKTYPE_NIX:
1215 		return pfvf->nixlf ? 1 : 0;
1216 	case BLKTYPE_SSO:
1217 		return !!pfvf->sso;
1218 	case BLKTYPE_SSOW:
1219 		return !!pfvf->ssow;
1220 	case BLKTYPE_TIM:
1221 		return !!pfvf->timlfs;
1222 	case BLKTYPE_CPT:
1223 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1224 	}
1225 
1226 	return false;
1227 }
1228 
1229 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1230 {
1231 	struct rvu_pfvf *pfvf;
1232 
1233 	if (!is_pf_func_valid(rvu, pcifunc))
1234 		return false;
1235 
1236 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1237 
1238 	/* Check if this PFFUNC has a LF of type blktype attached */
1239 	if (!is_blktype_attached(pfvf, blktype))
1240 		return false;
1241 
1242 	return true;
1243 }
1244 
1245 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1246 			   int pcifunc, int slot)
1247 {
1248 	u64 val;
1249 
1250 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1251 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1252 	/* Wait for the lookup to finish */
1253 	/* TODO: put some timeout here */
1254 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1255 		;
1256 
1257 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1258 
1259 	/* Check LF valid bit */
1260 	if (!(val & (1ULL << 12)))
1261 		return -1;
1262 
1263 	return (val & 0xFFF);
1264 }
1265 
1266 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1267 {
1268 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1269 	struct rvu_hwinfo *hw = rvu->hw;
1270 	struct rvu_block *block;
1271 	int slot, lf, num_lfs;
1272 	int blkaddr;
1273 
1274 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1275 	if (blkaddr < 0)
1276 		return;
1277 
1278 	if (blktype == BLKTYPE_NIX)
1279 		rvu_nix_reset_mac(pfvf, pcifunc);
1280 
1281 	block = &hw->block[blkaddr];
1282 
1283 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1284 	if (!num_lfs)
1285 		return;
1286 
1287 	for (slot = 0; slot < num_lfs; slot++) {
1288 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1289 		if (lf < 0) /* This should never happen */
1290 			continue;
1291 
1292 		/* Disable the LF */
1293 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1294 			    (lf << block->lfshift), 0x00ULL);
1295 
1296 		/* Update SW maintained mapping info as well */
1297 		rvu_update_rsrc_map(rvu, pfvf, block,
1298 				    pcifunc, lf, false);
1299 
1300 		/* Free the resource */
1301 		rvu_free_rsrc(&block->lf, lf);
1302 
1303 		/* Clear MSIX vector offset for this LF */
1304 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1305 	}
1306 }
1307 
1308 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1309 			    u16 pcifunc)
1310 {
1311 	struct rvu_hwinfo *hw = rvu->hw;
1312 	bool detach_all = true;
1313 	struct rvu_block *block;
1314 	int blkid;
1315 
1316 	mutex_lock(&rvu->rsrc_lock);
1317 
1318 	/* Check for partial resource detach */
1319 	if (detach && detach->partial)
1320 		detach_all = false;
1321 
1322 	/* Check for RVU block's LFs attached to this func,
1323 	 * if so, detach them.
1324 	 */
1325 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1326 		block = &hw->block[blkid];
1327 		if (!block->lf.bmap)
1328 			continue;
1329 		if (!detach_all && detach) {
1330 			if (blkid == BLKADDR_NPA && !detach->npalf)
1331 				continue;
1332 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1333 				continue;
1334 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1335 				continue;
1336 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1337 				continue;
1338 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1339 				continue;
1340 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1341 				continue;
1342 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1343 				continue;
1344 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1345 				continue;
1346 		}
1347 		rvu_detach_block(rvu, pcifunc, block->type);
1348 	}
1349 
1350 	mutex_unlock(&rvu->rsrc_lock);
1351 	return 0;
1352 }
1353 
1354 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1355 				      struct rsrc_detach *detach,
1356 				      struct msg_rsp *rsp)
1357 {
1358 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1359 }
1360 
1361 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1362 {
1363 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1364 	int blkaddr = BLKADDR_NIX0, vf;
1365 	struct rvu_pfvf *pf;
1366 
1367 	/* All CGX mapped PFs are set with assigned NIX block during init */
1368 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1369 		pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1370 		blkaddr = pf->nix_blkaddr;
1371 	} else if (is_afvf(pcifunc)) {
1372 		vf = pcifunc - 1;
1373 		/* Assign NIX based on VF number. All even numbered VFs get
1374 		 * NIX0 and odd numbered gets NIX1
1375 		 */
1376 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1377 		/* NIX1 is not present on all silicons */
1378 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1379 			blkaddr = BLKADDR_NIX0;
1380 	}
1381 
1382 	switch (blkaddr) {
1383 	case BLKADDR_NIX1:
1384 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1385 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1386 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1387 		break;
1388 	case BLKADDR_NIX0:
1389 	default:
1390 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1391 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1392 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1393 		break;
1394 	}
1395 
1396 	return pfvf->nix_blkaddr;
1397 }
1398 
1399 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1400 				  u16 pcifunc, struct rsrc_attach *attach)
1401 {
1402 	int blkaddr;
1403 
1404 	switch (blktype) {
1405 	case BLKTYPE_NIX:
1406 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1407 		break;
1408 	case BLKTYPE_CPT:
1409 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1410 			return rvu_get_blkaddr(rvu, blktype, 0);
1411 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1412 			  BLKADDR_CPT0;
1413 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1414 			return -ENODEV;
1415 		break;
1416 	default:
1417 		return rvu_get_blkaddr(rvu, blktype, 0);
1418 	}
1419 
1420 	if (is_block_implemented(rvu->hw, blkaddr))
1421 		return blkaddr;
1422 
1423 	return -ENODEV;
1424 }
1425 
1426 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1427 			     int num_lfs, struct rsrc_attach *attach)
1428 {
1429 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1430 	struct rvu_hwinfo *hw = rvu->hw;
1431 	struct rvu_block *block;
1432 	int slot, lf;
1433 	int blkaddr;
1434 	u64 cfg;
1435 
1436 	if (!num_lfs)
1437 		return;
1438 
1439 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1440 	if (blkaddr < 0)
1441 		return;
1442 
1443 	block = &hw->block[blkaddr];
1444 	if (!block->lf.bmap)
1445 		return;
1446 
1447 	for (slot = 0; slot < num_lfs; slot++) {
1448 		/* Allocate the resource */
1449 		lf = rvu_alloc_rsrc(&block->lf);
1450 		if (lf < 0)
1451 			return;
1452 
1453 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1454 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1455 			    (lf << block->lfshift), cfg);
1456 		rvu_update_rsrc_map(rvu, pfvf, block,
1457 				    pcifunc, lf, true);
1458 
1459 		/* Set start MSIX vector for this LF within this PF/VF */
1460 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1461 	}
1462 }
1463 
1464 static int rvu_check_rsrc_availability(struct rvu *rvu,
1465 				       struct rsrc_attach *req, u16 pcifunc)
1466 {
1467 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1468 	int free_lfs, mappedlfs, blkaddr;
1469 	struct rvu_hwinfo *hw = rvu->hw;
1470 	struct rvu_block *block;
1471 
1472 	/* Only one NPA LF can be attached */
1473 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1474 		block = &hw->block[BLKADDR_NPA];
1475 		free_lfs = rvu_rsrc_free_count(&block->lf);
1476 		if (!free_lfs)
1477 			goto fail;
1478 	} else if (req->npalf) {
1479 		dev_err(&rvu->pdev->dev,
1480 			"Func 0x%x: Invalid req, already has NPA\n",
1481 			 pcifunc);
1482 		return -EINVAL;
1483 	}
1484 
1485 	/* Only one NIX LF can be attached */
1486 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1487 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1488 						 pcifunc, req);
1489 		if (blkaddr < 0)
1490 			return blkaddr;
1491 		block = &hw->block[blkaddr];
1492 		free_lfs = rvu_rsrc_free_count(&block->lf);
1493 		if (!free_lfs)
1494 			goto fail;
1495 	} else if (req->nixlf) {
1496 		dev_err(&rvu->pdev->dev,
1497 			"Func 0x%x: Invalid req, already has NIX\n",
1498 			pcifunc);
1499 		return -EINVAL;
1500 	}
1501 
1502 	if (req->sso) {
1503 		block = &hw->block[BLKADDR_SSO];
1504 		/* Is request within limits ? */
1505 		if (req->sso > block->lf.max) {
1506 			dev_err(&rvu->pdev->dev,
1507 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1508 				 pcifunc, req->sso, block->lf.max);
1509 			return -EINVAL;
1510 		}
1511 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1512 		free_lfs = rvu_rsrc_free_count(&block->lf);
1513 		/* Check if additional resources are available */
1514 		if (req->sso > mappedlfs &&
1515 		    ((req->sso - mappedlfs) > free_lfs))
1516 			goto fail;
1517 	}
1518 
1519 	if (req->ssow) {
1520 		block = &hw->block[BLKADDR_SSOW];
1521 		if (req->ssow > block->lf.max) {
1522 			dev_err(&rvu->pdev->dev,
1523 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1524 				 pcifunc, req->sso, block->lf.max);
1525 			return -EINVAL;
1526 		}
1527 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1528 		free_lfs = rvu_rsrc_free_count(&block->lf);
1529 		if (req->ssow > mappedlfs &&
1530 		    ((req->ssow - mappedlfs) > free_lfs))
1531 			goto fail;
1532 	}
1533 
1534 	if (req->timlfs) {
1535 		block = &hw->block[BLKADDR_TIM];
1536 		if (req->timlfs > block->lf.max) {
1537 			dev_err(&rvu->pdev->dev,
1538 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1539 				 pcifunc, req->timlfs, block->lf.max);
1540 			return -EINVAL;
1541 		}
1542 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1543 		free_lfs = rvu_rsrc_free_count(&block->lf);
1544 		if (req->timlfs > mappedlfs &&
1545 		    ((req->timlfs - mappedlfs) > free_lfs))
1546 			goto fail;
1547 	}
1548 
1549 	if (req->cptlfs) {
1550 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1551 						 pcifunc, req);
1552 		if (blkaddr < 0)
1553 			return blkaddr;
1554 		block = &hw->block[blkaddr];
1555 		if (req->cptlfs > block->lf.max) {
1556 			dev_err(&rvu->pdev->dev,
1557 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1558 				 pcifunc, req->cptlfs, block->lf.max);
1559 			return -EINVAL;
1560 		}
1561 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1562 		free_lfs = rvu_rsrc_free_count(&block->lf);
1563 		if (req->cptlfs > mappedlfs &&
1564 		    ((req->cptlfs - mappedlfs) > free_lfs))
1565 			goto fail;
1566 	}
1567 
1568 	return 0;
1569 
1570 fail:
1571 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1572 	return -ENOSPC;
1573 }
1574 
1575 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1576 				       struct rsrc_attach *attach)
1577 {
1578 	int blkaddr, num_lfs;
1579 
1580 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1581 					 attach->hdr.pcifunc, attach);
1582 	if (blkaddr < 0)
1583 		return false;
1584 
1585 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1586 					blkaddr);
1587 	/* Requester already has LFs from given block ? */
1588 	return !!num_lfs;
1589 }
1590 
1591 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1592 				      struct rsrc_attach *attach,
1593 				      struct msg_rsp *rsp)
1594 {
1595 	u16 pcifunc = attach->hdr.pcifunc;
1596 	int err;
1597 
1598 	/* If first request, detach all existing attached resources */
1599 	if (!attach->modify)
1600 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1601 
1602 	mutex_lock(&rvu->rsrc_lock);
1603 
1604 	/* Check if the request can be accommodated */
1605 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1606 	if (err)
1607 		goto exit;
1608 
1609 	/* Now attach the requested resources */
1610 	if (attach->npalf)
1611 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1612 
1613 	if (attach->nixlf)
1614 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1615 
1616 	if (attach->sso) {
1617 		/* RVU func doesn't know which exact LF or slot is attached
1618 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1619 		 * request, simply detach all existing attached LFs/slots
1620 		 * and attach a fresh.
1621 		 */
1622 		if (attach->modify)
1623 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1624 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1625 				 attach->sso, attach);
1626 	}
1627 
1628 	if (attach->ssow) {
1629 		if (attach->modify)
1630 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1631 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1632 				 attach->ssow, attach);
1633 	}
1634 
1635 	if (attach->timlfs) {
1636 		if (attach->modify)
1637 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1638 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1639 				 attach->timlfs, attach);
1640 	}
1641 
1642 	if (attach->cptlfs) {
1643 		if (attach->modify &&
1644 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1645 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1646 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1647 				 attach->cptlfs, attach);
1648 	}
1649 
1650 exit:
1651 	mutex_unlock(&rvu->rsrc_lock);
1652 	return err;
1653 }
1654 
1655 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1656 			       int blkaddr, int lf)
1657 {
1658 	u16 vec;
1659 
1660 	if (lf < 0)
1661 		return MSIX_VECTOR_INVALID;
1662 
1663 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1664 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1665 			return vec;
1666 	}
1667 	return MSIX_VECTOR_INVALID;
1668 }
1669 
1670 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1671 				struct rvu_block *block, int lf)
1672 {
1673 	u16 nvecs, vec, offset;
1674 	u64 cfg;
1675 
1676 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1677 			 (lf << block->lfshift));
1678 	nvecs = (cfg >> 12) & 0xFF;
1679 
1680 	/* Check and alloc MSIX vectors, must be contiguous */
1681 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1682 		return;
1683 
1684 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1685 
1686 	/* Config MSIX offset in LF */
1687 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1688 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1689 
1690 	/* Update the bitmap as well */
1691 	for (vec = 0; vec < nvecs; vec++)
1692 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1693 }
1694 
1695 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1696 				  struct rvu_block *block, int lf)
1697 {
1698 	u16 nvecs, vec, offset;
1699 	u64 cfg;
1700 
1701 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1702 			 (lf << block->lfshift));
1703 	nvecs = (cfg >> 12) & 0xFF;
1704 
1705 	/* Clear MSIX offset in LF */
1706 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1707 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1708 
1709 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1710 
1711 	/* Update the mapping */
1712 	for (vec = 0; vec < nvecs; vec++)
1713 		pfvf->msix_lfmap[offset + vec] = 0;
1714 
1715 	/* Free the same in MSIX bitmap */
1716 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1717 }
1718 
1719 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1720 				 struct msix_offset_rsp *rsp)
1721 {
1722 	struct rvu_hwinfo *hw = rvu->hw;
1723 	u16 pcifunc = req->hdr.pcifunc;
1724 	struct rvu_pfvf *pfvf;
1725 	int lf, slot, blkaddr;
1726 
1727 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1728 	if (!pfvf->msix.bmap)
1729 		return 0;
1730 
1731 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1732 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1733 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1734 
1735 	/* Get BLKADDR from which LFs are attached to pcifunc */
1736 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1737 	if (blkaddr < 0) {
1738 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1739 	} else {
1740 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1741 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1742 	}
1743 
1744 	rsp->sso = pfvf->sso;
1745 	for (slot = 0; slot < rsp->sso; slot++) {
1746 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1747 		rsp->sso_msixoff[slot] =
1748 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1749 	}
1750 
1751 	rsp->ssow = pfvf->ssow;
1752 	for (slot = 0; slot < rsp->ssow; slot++) {
1753 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1754 		rsp->ssow_msixoff[slot] =
1755 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1756 	}
1757 
1758 	rsp->timlfs = pfvf->timlfs;
1759 	for (slot = 0; slot < rsp->timlfs; slot++) {
1760 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1761 		rsp->timlf_msixoff[slot] =
1762 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1763 	}
1764 
1765 	rsp->cptlfs = pfvf->cptlfs;
1766 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1767 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1768 		rsp->cptlf_msixoff[slot] =
1769 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1770 	}
1771 
1772 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1773 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1774 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1775 		rsp->cpt1_lf_msixoff[slot] =
1776 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1783 			    struct msg_rsp *rsp)
1784 {
1785 	u16 pcifunc = req->hdr.pcifunc;
1786 	u16 vf, numvfs;
1787 	u64 cfg;
1788 
1789 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1790 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1791 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1792 	numvfs = (cfg >> 12) & 0xFF;
1793 
1794 	if (vf && vf <= numvfs)
1795 		__rvu_flr_handler(rvu, pcifunc);
1796 	else
1797 		return RVU_INVALID_VF_ID;
1798 
1799 	return 0;
1800 }
1801 
1802 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1803 				struct get_hw_cap_rsp *rsp)
1804 {
1805 	struct rvu_hwinfo *hw = rvu->hw;
1806 
1807 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1808 	rsp->nix_shaping = hw->cap.nix_shaping;
1809 
1810 	return 0;
1811 }
1812 
1813 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1814 				 struct msg_rsp *rsp)
1815 {
1816 	struct rvu_hwinfo *hw = rvu->hw;
1817 	u16 pcifunc = req->hdr.pcifunc;
1818 	struct rvu_pfvf *pfvf;
1819 	int blkaddr, nixlf;
1820 	u16 target;
1821 
1822 	/* Only PF can add VF permissions */
1823 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
1824 		return -EOPNOTSUPP;
1825 
1826 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
1827 	pfvf = rvu_get_pfvf(rvu, target);
1828 
1829 	if (req->flags & RESET_VF_PERM) {
1830 		pfvf->flags &= RVU_CLEAR_VF_PERM;
1831 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
1832 		 (req->flags & VF_TRUSTED)) {
1833 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
1834 		/* disable multicast and promisc entries */
1835 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
1836 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
1837 			if (blkaddr < 0)
1838 				return 0;
1839 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
1840 					   target, 0);
1841 			if (nixlf < 0)
1842 				return 0;
1843 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1844 						     NIXLF_ALLMULTI_ENTRY,
1845 						     false);
1846 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1847 						     NIXLF_PROMISC_ENTRY,
1848 						     false);
1849 		}
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1856 				struct mbox_msghdr *req)
1857 {
1858 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1859 
1860 	/* Check if valid, if not reply with a invalid msg */
1861 	if (req->sig != OTX2_MBOX_REQ_SIG)
1862 		goto bad_message;
1863 
1864 	switch (req->id) {
1865 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1866 	case _id: {							\
1867 		struct _rsp_type *rsp;					\
1868 		int err;						\
1869 									\
1870 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1871 			mbox, devid,					\
1872 			sizeof(struct _rsp_type));			\
1873 		/* some handlers should complete even if reply */	\
1874 		/* could not be allocated */				\
1875 		if (!rsp &&						\
1876 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1877 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1878 		    _id != MBOX_MSG_VF_FLR)				\
1879 			return -ENOMEM;					\
1880 		if (rsp) {						\
1881 			rsp->hdr.id = _id;				\
1882 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1883 			rsp->hdr.pcifunc = req->pcifunc;		\
1884 			rsp->hdr.rc = 0;				\
1885 		}							\
1886 									\
1887 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1888 						    (struct _req_type *)req, \
1889 						    rsp);		\
1890 		if (rsp && err)						\
1891 			rsp->hdr.rc = err;				\
1892 									\
1893 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
1894 		return rsp ? err : -ENOMEM;				\
1895 	}
1896 MBOX_MESSAGES
1897 #undef M
1898 
1899 bad_message:
1900 	default:
1901 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1902 		return -ENODEV;
1903 	}
1904 }
1905 
1906 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1907 {
1908 	struct rvu *rvu = mwork->rvu;
1909 	int offset, err, id, devid;
1910 	struct otx2_mbox_dev *mdev;
1911 	struct mbox_hdr *req_hdr;
1912 	struct mbox_msghdr *msg;
1913 	struct mbox_wq_info *mw;
1914 	struct otx2_mbox *mbox;
1915 
1916 	switch (type) {
1917 	case TYPE_AFPF:
1918 		mw = &rvu->afpf_wq_info;
1919 		break;
1920 	case TYPE_AFVF:
1921 		mw = &rvu->afvf_wq_info;
1922 		break;
1923 	default:
1924 		return;
1925 	}
1926 
1927 	devid = mwork - mw->mbox_wrk;
1928 	mbox = &mw->mbox;
1929 	mdev = &mbox->dev[devid];
1930 
1931 	/* Process received mbox messages */
1932 	req_hdr = mdev->mbase + mbox->rx_start;
1933 	if (mw->mbox_wrk[devid].num_msgs == 0)
1934 		return;
1935 
1936 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1937 
1938 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1939 		msg = mdev->mbase + offset;
1940 
1941 		/* Set which PF/VF sent this message based on mbox IRQ */
1942 		switch (type) {
1943 		case TYPE_AFPF:
1944 			msg->pcifunc &=
1945 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1946 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1947 			break;
1948 		case TYPE_AFVF:
1949 			msg->pcifunc &=
1950 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1951 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1952 			break;
1953 		}
1954 
1955 		err = rvu_process_mbox_msg(mbox, devid, msg);
1956 		if (!err) {
1957 			offset = mbox->rx_start + msg->next_msgoff;
1958 			continue;
1959 		}
1960 
1961 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1962 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1963 				 err, otx2_mbox_id2name(msg->id),
1964 				 msg->id, rvu_get_pf(msg->pcifunc),
1965 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1966 		else
1967 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1968 				 err, otx2_mbox_id2name(msg->id),
1969 				 msg->id, devid);
1970 	}
1971 	mw->mbox_wrk[devid].num_msgs = 0;
1972 
1973 	/* Send mbox responses to VF/PF */
1974 	otx2_mbox_msg_send(mbox, devid);
1975 }
1976 
1977 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1978 {
1979 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1980 
1981 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1982 }
1983 
1984 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1985 {
1986 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1987 
1988 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1989 }
1990 
1991 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1992 {
1993 	struct rvu *rvu = mwork->rvu;
1994 	struct otx2_mbox_dev *mdev;
1995 	struct mbox_hdr *rsp_hdr;
1996 	struct mbox_msghdr *msg;
1997 	struct mbox_wq_info *mw;
1998 	struct otx2_mbox *mbox;
1999 	int offset, id, devid;
2000 
2001 	switch (type) {
2002 	case TYPE_AFPF:
2003 		mw = &rvu->afpf_wq_info;
2004 		break;
2005 	case TYPE_AFVF:
2006 		mw = &rvu->afvf_wq_info;
2007 		break;
2008 	default:
2009 		return;
2010 	}
2011 
2012 	devid = mwork - mw->mbox_wrk_up;
2013 	mbox = &mw->mbox_up;
2014 	mdev = &mbox->dev[devid];
2015 
2016 	rsp_hdr = mdev->mbase + mbox->rx_start;
2017 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2018 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2019 		return;
2020 	}
2021 
2022 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2023 
2024 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2025 		msg = mdev->mbase + offset;
2026 
2027 		if (msg->id >= MBOX_MSG_MAX) {
2028 			dev_err(rvu->dev,
2029 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2030 			goto end;
2031 		}
2032 
2033 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2034 			dev_err(rvu->dev,
2035 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2036 				msg->sig, msg->id);
2037 			goto end;
2038 		}
2039 
2040 		switch (msg->id) {
2041 		case MBOX_MSG_CGX_LINK_EVENT:
2042 			break;
2043 		default:
2044 			if (msg->rc)
2045 				dev_err(rvu->dev,
2046 					"Mbox msg response has err %d, ID 0x%x\n",
2047 					msg->rc, msg->id);
2048 			break;
2049 		}
2050 end:
2051 		offset = mbox->rx_start + msg->next_msgoff;
2052 		mdev->msgs_acked++;
2053 	}
2054 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2055 
2056 	otx2_mbox_reset(mbox, devid);
2057 }
2058 
2059 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2060 {
2061 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2062 
2063 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2064 }
2065 
2066 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2067 {
2068 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2069 
2070 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2071 }
2072 
2073 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2074 				int num, int type)
2075 {
2076 	struct rvu_hwinfo *hw = rvu->hw;
2077 	int region;
2078 	u64 bar4;
2079 
2080 	/* For cn10k platform VF mailbox regions of a PF follows after the
2081 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2082 	 * RVU_PF_VF_BAR4_ADDR register.
2083 	 */
2084 	if (type == TYPE_AFVF) {
2085 		for (region = 0; region < num; region++) {
2086 			if (hw->cap.per_pf_mbox_regs) {
2087 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2088 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2089 						  MBOX_SIZE;
2090 				bar4 += region * MBOX_SIZE;
2091 			} else {
2092 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2093 				bar4 += region * MBOX_SIZE;
2094 			}
2095 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2096 			if (!mbox_addr[region])
2097 				goto error;
2098 		}
2099 		return 0;
2100 	}
2101 
2102 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2103 	 * PF registers. Whereas for Octeontx2 it is read from
2104 	 * RVU_AF_PF_BAR4_ADDR register.
2105 	 */
2106 	for (region = 0; region < num; region++) {
2107 		if (hw->cap.per_pf_mbox_regs) {
2108 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2109 					  RVU_AF_PFX_BAR4_ADDR(region));
2110 		} else {
2111 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2112 					  RVU_AF_PF_BAR4_ADDR);
2113 			bar4 += region * MBOX_SIZE;
2114 		}
2115 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2116 		if (!mbox_addr[region])
2117 			goto error;
2118 	}
2119 	return 0;
2120 
2121 error:
2122 	while (region--)
2123 		iounmap((void __iomem *)mbox_addr[region]);
2124 	return -ENOMEM;
2125 }
2126 
2127 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2128 			 int type, int num,
2129 			 void (mbox_handler)(struct work_struct *),
2130 			 void (mbox_up_handler)(struct work_struct *))
2131 {
2132 	int err = -EINVAL, i, dir, dir_up;
2133 	void __iomem *reg_base;
2134 	struct rvu_work *mwork;
2135 	void **mbox_regions;
2136 	const char *name;
2137 
2138 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2139 	if (!mbox_regions)
2140 		return -ENOMEM;
2141 
2142 	switch (type) {
2143 	case TYPE_AFPF:
2144 		name = "rvu_afpf_mailbox";
2145 		dir = MBOX_DIR_AFPF;
2146 		dir_up = MBOX_DIR_AFPF_UP;
2147 		reg_base = rvu->afreg_base;
2148 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2149 		if (err)
2150 			goto free_regions;
2151 		break;
2152 	case TYPE_AFVF:
2153 		name = "rvu_afvf_mailbox";
2154 		dir = MBOX_DIR_PFVF;
2155 		dir_up = MBOX_DIR_PFVF_UP;
2156 		reg_base = rvu->pfreg_base;
2157 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2158 		if (err)
2159 			goto free_regions;
2160 		break;
2161 	default:
2162 		return err;
2163 	}
2164 
2165 	mw->mbox_wq = alloc_workqueue(name,
2166 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2167 				      num);
2168 	if (!mw->mbox_wq) {
2169 		err = -ENOMEM;
2170 		goto unmap_regions;
2171 	}
2172 
2173 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2174 				    sizeof(struct rvu_work), GFP_KERNEL);
2175 	if (!mw->mbox_wrk) {
2176 		err = -ENOMEM;
2177 		goto exit;
2178 	}
2179 
2180 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2181 				       sizeof(struct rvu_work), GFP_KERNEL);
2182 	if (!mw->mbox_wrk_up) {
2183 		err = -ENOMEM;
2184 		goto exit;
2185 	}
2186 
2187 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2188 				     reg_base, dir, num);
2189 	if (err)
2190 		goto exit;
2191 
2192 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2193 				     reg_base, dir_up, num);
2194 	if (err)
2195 		goto exit;
2196 
2197 	for (i = 0; i < num; i++) {
2198 		mwork = &mw->mbox_wrk[i];
2199 		mwork->rvu = rvu;
2200 		INIT_WORK(&mwork->work, mbox_handler);
2201 
2202 		mwork = &mw->mbox_wrk_up[i];
2203 		mwork->rvu = rvu;
2204 		INIT_WORK(&mwork->work, mbox_up_handler);
2205 	}
2206 	kfree(mbox_regions);
2207 	return 0;
2208 
2209 exit:
2210 	destroy_workqueue(mw->mbox_wq);
2211 unmap_regions:
2212 	while (num--)
2213 		iounmap((void __iomem *)mbox_regions[num]);
2214 free_regions:
2215 	kfree(mbox_regions);
2216 	return err;
2217 }
2218 
2219 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2220 {
2221 	struct otx2_mbox *mbox = &mw->mbox;
2222 	struct otx2_mbox_dev *mdev;
2223 	int devid;
2224 
2225 	if (mw->mbox_wq) {
2226 		flush_workqueue(mw->mbox_wq);
2227 		destroy_workqueue(mw->mbox_wq);
2228 		mw->mbox_wq = NULL;
2229 	}
2230 
2231 	for (devid = 0; devid < mbox->ndevs; devid++) {
2232 		mdev = &mbox->dev[devid];
2233 		if (mdev->hwbase)
2234 			iounmap((void __iomem *)mdev->hwbase);
2235 	}
2236 
2237 	otx2_mbox_destroy(&mw->mbox);
2238 	otx2_mbox_destroy(&mw->mbox_up);
2239 }
2240 
2241 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2242 			   int mdevs, u64 intr)
2243 {
2244 	struct otx2_mbox_dev *mdev;
2245 	struct otx2_mbox *mbox;
2246 	struct mbox_hdr *hdr;
2247 	int i;
2248 
2249 	for (i = first; i < mdevs; i++) {
2250 		/* start from 0 */
2251 		if (!(intr & BIT_ULL(i - first)))
2252 			continue;
2253 
2254 		mbox = &mw->mbox;
2255 		mdev = &mbox->dev[i];
2256 		hdr = mdev->mbase + mbox->rx_start;
2257 
2258 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2259 		 * handler to  ensure that it holds a correct value next time
2260 		 * when the interrupt handler is called.
2261 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2262 		 * pf>mbox.up_num_msgs holds the data for use in
2263 		 * pfaf_mbox_up_handler.
2264 		 */
2265 
2266 		if (hdr->num_msgs) {
2267 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2268 			hdr->num_msgs = 0;
2269 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2270 		}
2271 		mbox = &mw->mbox_up;
2272 		mdev = &mbox->dev[i];
2273 		hdr = mdev->mbase + mbox->rx_start;
2274 		if (hdr->num_msgs) {
2275 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2276 			hdr->num_msgs = 0;
2277 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2278 		}
2279 	}
2280 }
2281 
2282 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2283 {
2284 	struct rvu *rvu = (struct rvu *)rvu_irq;
2285 	int vfs = rvu->vfs;
2286 	u64 intr;
2287 
2288 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2289 	/* Clear interrupts */
2290 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2291 	if (intr)
2292 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2293 
2294 	/* Sync with mbox memory region */
2295 	rmb();
2296 
2297 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2298 
2299 	/* Handle VF interrupts */
2300 	if (vfs > 64) {
2301 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2302 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2303 
2304 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2305 		vfs -= 64;
2306 	}
2307 
2308 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2309 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2310 	if (intr)
2311 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2312 
2313 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2314 
2315 	return IRQ_HANDLED;
2316 }
2317 
2318 static void rvu_enable_mbox_intr(struct rvu *rvu)
2319 {
2320 	struct rvu_hwinfo *hw = rvu->hw;
2321 
2322 	/* Clear spurious irqs, if any */
2323 	rvu_write64(rvu, BLKADDR_RVUM,
2324 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2325 
2326 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2327 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2328 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2329 }
2330 
2331 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2332 {
2333 	struct rvu_block *block;
2334 	int slot, lf, num_lfs;
2335 	int err;
2336 
2337 	block = &rvu->hw->block[blkaddr];
2338 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2339 					block->addr);
2340 	if (!num_lfs)
2341 		return;
2342 	for (slot = 0; slot < num_lfs; slot++) {
2343 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2344 		if (lf < 0)
2345 			continue;
2346 
2347 		/* Cleanup LF and reset it */
2348 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2349 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2350 		else if (block->addr == BLKADDR_NPA)
2351 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2352 		else if ((block->addr == BLKADDR_CPT0) ||
2353 			 (block->addr == BLKADDR_CPT1))
2354 			rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2355 
2356 		err = rvu_lf_reset(rvu, block, lf);
2357 		if (err) {
2358 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2359 				block->addr, lf);
2360 		}
2361 	}
2362 }
2363 
2364 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2365 {
2366 	mutex_lock(&rvu->flr_lock);
2367 	/* Reset order should reflect inter-block dependencies:
2368 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2369 	 * 2. Flush and reset SSO/SSOW
2370 	 * 3. Cleanup pools (NPA)
2371 	 */
2372 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2373 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2374 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2375 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2376 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2377 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2378 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2379 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2380 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2381 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2382 	mutex_unlock(&rvu->flr_lock);
2383 }
2384 
2385 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2386 {
2387 	int reg = 0;
2388 
2389 	/* pcifunc = 0(PF0) | (vf + 1) */
2390 	__rvu_flr_handler(rvu, vf + 1);
2391 
2392 	if (vf >= 64) {
2393 		reg = 1;
2394 		vf = vf - 64;
2395 	}
2396 
2397 	/* Signal FLR finish and enable IRQ */
2398 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2399 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2400 }
2401 
2402 static void rvu_flr_handler(struct work_struct *work)
2403 {
2404 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2405 	struct rvu *rvu = flrwork->rvu;
2406 	u16 pcifunc, numvfs, vf;
2407 	u64 cfg;
2408 	int pf;
2409 
2410 	pf = flrwork - rvu->flr_wrk;
2411 	if (pf >= rvu->hw->total_pfs) {
2412 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2413 		return;
2414 	}
2415 
2416 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2417 	numvfs = (cfg >> 12) & 0xFF;
2418 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2419 
2420 	for (vf = 0; vf < numvfs; vf++)
2421 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2422 
2423 	__rvu_flr_handler(rvu, pcifunc);
2424 
2425 	/* Signal FLR finish */
2426 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2427 
2428 	/* Enable interrupt */
2429 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2430 }
2431 
2432 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2433 {
2434 	int dev, vf, reg = 0;
2435 	u64 intr;
2436 
2437 	if (start_vf >= 64)
2438 		reg = 1;
2439 
2440 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2441 	if (!intr)
2442 		return;
2443 
2444 	for (vf = 0; vf < numvfs; vf++) {
2445 		if (!(intr & BIT_ULL(vf)))
2446 			continue;
2447 		dev = vf + start_vf + rvu->hw->total_pfs;
2448 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2449 		/* Clear and disable the interrupt */
2450 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2451 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2452 	}
2453 }
2454 
2455 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2456 {
2457 	struct rvu *rvu = (struct rvu *)rvu_irq;
2458 	u64 intr;
2459 	u8  pf;
2460 
2461 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2462 	if (!intr)
2463 		goto afvf_flr;
2464 
2465 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2466 		if (intr & (1ULL << pf)) {
2467 			/* PF is already dead do only AF related operations */
2468 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2469 			/* clear interrupt */
2470 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2471 				    BIT_ULL(pf));
2472 			/* Disable the interrupt */
2473 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2474 				    BIT_ULL(pf));
2475 		}
2476 	}
2477 
2478 afvf_flr:
2479 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2480 	if (rvu->vfs > 64)
2481 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2482 
2483 	return IRQ_HANDLED;
2484 }
2485 
2486 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2487 {
2488 	int vf;
2489 
2490 	/* Nothing to be done here other than clearing the
2491 	 * TRPEND bit.
2492 	 */
2493 	for (vf = 0; vf < 64; vf++) {
2494 		if (intr & (1ULL << vf)) {
2495 			/* clear the trpend due to ME(master enable) */
2496 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2497 			/* clear interrupt */
2498 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2499 		}
2500 	}
2501 }
2502 
2503 /* Handles ME interrupts from VFs of AF */
2504 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2505 {
2506 	struct rvu *rvu = (struct rvu *)rvu_irq;
2507 	int vfset;
2508 	u64 intr;
2509 
2510 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2511 
2512 	for (vfset = 0; vfset <= 1; vfset++) {
2513 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2514 		if (intr)
2515 			rvu_me_handle_vfset(rvu, vfset, intr);
2516 	}
2517 
2518 	return IRQ_HANDLED;
2519 }
2520 
2521 /* Handles ME interrupts from PFs */
2522 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2523 {
2524 	struct rvu *rvu = (struct rvu *)rvu_irq;
2525 	u64 intr;
2526 	u8  pf;
2527 
2528 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2529 
2530 	/* Nothing to be done here other than clearing the
2531 	 * TRPEND bit.
2532 	 */
2533 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2534 		if (intr & (1ULL << pf)) {
2535 			/* clear the trpend due to ME(master enable) */
2536 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2537 				    BIT_ULL(pf));
2538 			/* clear interrupt */
2539 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2540 				    BIT_ULL(pf));
2541 		}
2542 	}
2543 
2544 	return IRQ_HANDLED;
2545 }
2546 
2547 static void rvu_unregister_interrupts(struct rvu *rvu)
2548 {
2549 	int irq;
2550 
2551 	/* Disable the Mbox interrupt */
2552 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2553 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2554 
2555 	/* Disable the PF FLR interrupt */
2556 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2557 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2558 
2559 	/* Disable the PF ME interrupt */
2560 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2561 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2562 
2563 	for (irq = 0; irq < rvu->num_vec; irq++) {
2564 		if (rvu->irq_allocated[irq]) {
2565 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2566 			rvu->irq_allocated[irq] = false;
2567 		}
2568 	}
2569 
2570 	pci_free_irq_vectors(rvu->pdev);
2571 	rvu->num_vec = 0;
2572 }
2573 
2574 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2575 {
2576 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2577 	int offset;
2578 
2579 	pfvf = &rvu->pf[0];
2580 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2581 
2582 	/* Make sure there are enough MSIX vectors configured so that
2583 	 * VF interrupts can be handled. Offset equal to zero means
2584 	 * that PF vectors are not configured and overlapping AF vectors.
2585 	 */
2586 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2587 	       offset;
2588 }
2589 
2590 static int rvu_register_interrupts(struct rvu *rvu)
2591 {
2592 	int ret, offset, pf_vec_start;
2593 
2594 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2595 
2596 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2597 					   NAME_SIZE, GFP_KERNEL);
2598 	if (!rvu->irq_name)
2599 		return -ENOMEM;
2600 
2601 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2602 					  sizeof(bool), GFP_KERNEL);
2603 	if (!rvu->irq_allocated)
2604 		return -ENOMEM;
2605 
2606 	/* Enable MSI-X */
2607 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2608 				    rvu->num_vec, PCI_IRQ_MSIX);
2609 	if (ret < 0) {
2610 		dev_err(rvu->dev,
2611 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2612 			rvu->num_vec, ret);
2613 		return ret;
2614 	}
2615 
2616 	/* Register mailbox interrupt handler */
2617 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2618 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2619 			  rvu_mbox_intr_handler, 0,
2620 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2621 	if (ret) {
2622 		dev_err(rvu->dev,
2623 			"RVUAF: IRQ registration failed for mbox irq\n");
2624 		goto fail;
2625 	}
2626 
2627 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2628 
2629 	/* Enable mailbox interrupts from all PFs */
2630 	rvu_enable_mbox_intr(rvu);
2631 
2632 	/* Register FLR interrupt handler */
2633 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2634 		"RVUAF FLR");
2635 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2636 			  rvu_flr_intr_handler, 0,
2637 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2638 			  rvu);
2639 	if (ret) {
2640 		dev_err(rvu->dev,
2641 			"RVUAF: IRQ registration failed for FLR\n");
2642 		goto fail;
2643 	}
2644 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2645 
2646 	/* Enable FLR interrupt for all PFs*/
2647 	rvu_write64(rvu, BLKADDR_RVUM,
2648 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2649 
2650 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2651 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2652 
2653 	/* Register ME interrupt handler */
2654 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2655 		"RVUAF ME");
2656 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2657 			  rvu_me_pf_intr_handler, 0,
2658 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2659 			  rvu);
2660 	if (ret) {
2661 		dev_err(rvu->dev,
2662 			"RVUAF: IRQ registration failed for ME\n");
2663 	}
2664 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2665 
2666 	/* Clear TRPEND bit for all PF */
2667 	rvu_write64(rvu, BLKADDR_RVUM,
2668 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2669 	/* Enable ME interrupt for all PFs*/
2670 	rvu_write64(rvu, BLKADDR_RVUM,
2671 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2672 
2673 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2674 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2675 
2676 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2677 		return 0;
2678 
2679 	/* Get PF MSIX vectors offset. */
2680 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2681 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2682 
2683 	/* Register MBOX0 interrupt. */
2684 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2685 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2686 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2687 			  rvu_mbox_intr_handler, 0,
2688 			  &rvu->irq_name[offset * NAME_SIZE],
2689 			  rvu);
2690 	if (ret)
2691 		dev_err(rvu->dev,
2692 			"RVUAF: IRQ registration failed for Mbox0\n");
2693 
2694 	rvu->irq_allocated[offset] = true;
2695 
2696 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2697 	 * simply increment current offset by 1.
2698 	 */
2699 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2700 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2701 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2702 			  rvu_mbox_intr_handler, 0,
2703 			  &rvu->irq_name[offset * NAME_SIZE],
2704 			  rvu);
2705 	if (ret)
2706 		dev_err(rvu->dev,
2707 			"RVUAF: IRQ registration failed for Mbox1\n");
2708 
2709 	rvu->irq_allocated[offset] = true;
2710 
2711 	/* Register FLR interrupt handler for AF's VFs */
2712 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2713 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2714 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2715 			  rvu_flr_intr_handler, 0,
2716 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2717 	if (ret) {
2718 		dev_err(rvu->dev,
2719 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2720 		goto fail;
2721 	}
2722 	rvu->irq_allocated[offset] = true;
2723 
2724 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2725 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2726 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2727 			  rvu_flr_intr_handler, 0,
2728 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2729 	if (ret) {
2730 		dev_err(rvu->dev,
2731 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2732 		goto fail;
2733 	}
2734 	rvu->irq_allocated[offset] = true;
2735 
2736 	/* Register ME interrupt handler for AF's VFs */
2737 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2738 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2739 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2740 			  rvu_me_vf_intr_handler, 0,
2741 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2742 	if (ret) {
2743 		dev_err(rvu->dev,
2744 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2745 		goto fail;
2746 	}
2747 	rvu->irq_allocated[offset] = true;
2748 
2749 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2750 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2751 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2752 			  rvu_me_vf_intr_handler, 0,
2753 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2754 	if (ret) {
2755 		dev_err(rvu->dev,
2756 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2757 		goto fail;
2758 	}
2759 	rvu->irq_allocated[offset] = true;
2760 	return 0;
2761 
2762 fail:
2763 	rvu_unregister_interrupts(rvu);
2764 	return ret;
2765 }
2766 
2767 static void rvu_flr_wq_destroy(struct rvu *rvu)
2768 {
2769 	if (rvu->flr_wq) {
2770 		flush_workqueue(rvu->flr_wq);
2771 		destroy_workqueue(rvu->flr_wq);
2772 		rvu->flr_wq = NULL;
2773 	}
2774 }
2775 
2776 static int rvu_flr_init(struct rvu *rvu)
2777 {
2778 	int dev, num_devs;
2779 	u64 cfg;
2780 	int pf;
2781 
2782 	/* Enable FLR for all PFs*/
2783 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2784 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2785 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2786 			    cfg | BIT_ULL(22));
2787 	}
2788 
2789 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2790 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2791 				       1);
2792 	if (!rvu->flr_wq)
2793 		return -ENOMEM;
2794 
2795 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2796 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2797 				    sizeof(struct rvu_work), GFP_KERNEL);
2798 	if (!rvu->flr_wrk) {
2799 		destroy_workqueue(rvu->flr_wq);
2800 		return -ENOMEM;
2801 	}
2802 
2803 	for (dev = 0; dev < num_devs; dev++) {
2804 		rvu->flr_wrk[dev].rvu = rvu;
2805 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2806 	}
2807 
2808 	mutex_init(&rvu->flr_lock);
2809 
2810 	return 0;
2811 }
2812 
2813 static void rvu_disable_afvf_intr(struct rvu *rvu)
2814 {
2815 	int vfs = rvu->vfs;
2816 
2817 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2818 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2819 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2820 	if (vfs <= 64)
2821 		return;
2822 
2823 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2824 		      INTR_MASK(vfs - 64));
2825 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2826 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2827 }
2828 
2829 static void rvu_enable_afvf_intr(struct rvu *rvu)
2830 {
2831 	int vfs = rvu->vfs;
2832 
2833 	/* Clear any pending interrupts and enable AF VF interrupts for
2834 	 * the first 64 VFs.
2835 	 */
2836 	/* Mbox */
2837 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2838 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2839 
2840 	/* FLR */
2841 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2842 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2843 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2844 
2845 	/* Same for remaining VFs, if any. */
2846 	if (vfs <= 64)
2847 		return;
2848 
2849 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2850 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2851 		      INTR_MASK(vfs - 64));
2852 
2853 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2854 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2855 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2856 }
2857 
2858 int rvu_get_num_lbk_chans(void)
2859 {
2860 	struct pci_dev *pdev;
2861 	void __iomem *base;
2862 	int ret = -EIO;
2863 
2864 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2865 			      NULL);
2866 	if (!pdev)
2867 		goto err;
2868 
2869 	base = pci_ioremap_bar(pdev, 0);
2870 	if (!base)
2871 		goto err_put;
2872 
2873 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2874 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2875 	iounmap(base);
2876 err_put:
2877 	pci_dev_put(pdev);
2878 err:
2879 	return ret;
2880 }
2881 
2882 static int rvu_enable_sriov(struct rvu *rvu)
2883 {
2884 	struct pci_dev *pdev = rvu->pdev;
2885 	int err, chans, vfs;
2886 
2887 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2888 		dev_warn(&pdev->dev,
2889 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2890 		return 0;
2891 	}
2892 
2893 	chans = rvu_get_num_lbk_chans();
2894 	if (chans < 0)
2895 		return chans;
2896 
2897 	vfs = pci_sriov_get_totalvfs(pdev);
2898 
2899 	/* Limit VFs in case we have more VFs than LBK channels available. */
2900 	if (vfs > chans)
2901 		vfs = chans;
2902 
2903 	if (!vfs)
2904 		return 0;
2905 
2906 	/* LBK channel number 63 is used for switching packets between
2907 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
2908 	 */
2909 	if (vfs > 62)
2910 		vfs = 62;
2911 
2912 	/* Save VFs number for reference in VF interrupts handlers.
2913 	 * Since interrupts might start arriving during SRIOV enablement
2914 	 * ordinary API cannot be used to get number of enabled VFs.
2915 	 */
2916 	rvu->vfs = vfs;
2917 
2918 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2919 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2920 	if (err)
2921 		return err;
2922 
2923 	rvu_enable_afvf_intr(rvu);
2924 	/* Make sure IRQs are enabled before SRIOV. */
2925 	mb();
2926 
2927 	err = pci_enable_sriov(pdev, vfs);
2928 	if (err) {
2929 		rvu_disable_afvf_intr(rvu);
2930 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2931 		return err;
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 static void rvu_disable_sriov(struct rvu *rvu)
2938 {
2939 	rvu_disable_afvf_intr(rvu);
2940 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2941 	pci_disable_sriov(rvu->pdev);
2942 }
2943 
2944 static void rvu_update_module_params(struct rvu *rvu)
2945 {
2946 	const char *default_pfl_name = "default";
2947 
2948 	strscpy(rvu->mkex_pfl_name,
2949 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2950 	strscpy(rvu->kpu_pfl_name,
2951 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
2952 }
2953 
2954 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2955 {
2956 	struct device *dev = &pdev->dev;
2957 	struct rvu *rvu;
2958 	int    err;
2959 
2960 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2961 	if (!rvu)
2962 		return -ENOMEM;
2963 
2964 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2965 	if (!rvu->hw) {
2966 		devm_kfree(dev, rvu);
2967 		return -ENOMEM;
2968 	}
2969 
2970 	pci_set_drvdata(pdev, rvu);
2971 	rvu->pdev = pdev;
2972 	rvu->dev = &pdev->dev;
2973 
2974 	err = pci_enable_device(pdev);
2975 	if (err) {
2976 		dev_err(dev, "Failed to enable PCI device\n");
2977 		goto err_freemem;
2978 	}
2979 
2980 	err = pci_request_regions(pdev, DRV_NAME);
2981 	if (err) {
2982 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2983 		goto err_disable_device;
2984 	}
2985 
2986 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2987 	if (err) {
2988 		dev_err(dev, "DMA mask config failed, abort\n");
2989 		goto err_release_regions;
2990 	}
2991 
2992 	pci_set_master(pdev);
2993 
2994 	rvu->ptp = ptp_get();
2995 	if (IS_ERR(rvu->ptp)) {
2996 		err = PTR_ERR(rvu->ptp);
2997 		if (err == -EPROBE_DEFER)
2998 			goto err_release_regions;
2999 		rvu->ptp = NULL;
3000 	}
3001 
3002 	/* Map Admin function CSRs */
3003 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3004 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3005 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3006 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3007 		err = -ENOMEM;
3008 		goto err_put_ptp;
3009 	}
3010 
3011 	/* Store module params in rvu structure */
3012 	rvu_update_module_params(rvu);
3013 
3014 	/* Check which blocks the HW supports */
3015 	rvu_check_block_implemented(rvu);
3016 
3017 	rvu_reset_all_blocks(rvu);
3018 
3019 	rvu_setup_hw_capabilities(rvu);
3020 
3021 	err = rvu_setup_hw_resources(rvu);
3022 	if (err)
3023 		goto err_put_ptp;
3024 
3025 	/* Init mailbox btw AF and PFs */
3026 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3027 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3028 			    rvu_afpf_mbox_up_handler);
3029 	if (err) {
3030 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3031 		goto err_hwsetup;
3032 	}
3033 
3034 	err = rvu_flr_init(rvu);
3035 	if (err) {
3036 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3037 		goto err_mbox;
3038 	}
3039 
3040 	err = rvu_register_interrupts(rvu);
3041 	if (err) {
3042 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3043 		goto err_flr;
3044 	}
3045 
3046 	err = rvu_register_dl(rvu);
3047 	if (err) {
3048 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3049 		goto err_irq;
3050 	}
3051 
3052 	rvu_setup_rvum_blk_revid(rvu);
3053 
3054 	/* Enable AF's VFs (if any) */
3055 	err = rvu_enable_sriov(rvu);
3056 	if (err) {
3057 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3058 		goto err_dl;
3059 	}
3060 
3061 	/* Initialize debugfs */
3062 	rvu_dbg_init(rvu);
3063 
3064 	mutex_init(&rvu->rswitch.switch_lock);
3065 
3066 	return 0;
3067 err_dl:
3068 	rvu_unregister_dl(rvu);
3069 err_irq:
3070 	rvu_unregister_interrupts(rvu);
3071 err_flr:
3072 	rvu_flr_wq_destroy(rvu);
3073 err_mbox:
3074 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3075 err_hwsetup:
3076 	rvu_cgx_exit(rvu);
3077 	rvu_fwdata_exit(rvu);
3078 	rvu_reset_all_blocks(rvu);
3079 	rvu_free_hw_resources(rvu);
3080 	rvu_clear_rvum_blk_revid(rvu);
3081 err_put_ptp:
3082 	ptp_put(rvu->ptp);
3083 err_release_regions:
3084 	pci_release_regions(pdev);
3085 err_disable_device:
3086 	pci_disable_device(pdev);
3087 err_freemem:
3088 	pci_set_drvdata(pdev, NULL);
3089 	devm_kfree(&pdev->dev, rvu->hw);
3090 	devm_kfree(dev, rvu);
3091 	return err;
3092 }
3093 
3094 static void rvu_remove(struct pci_dev *pdev)
3095 {
3096 	struct rvu *rvu = pci_get_drvdata(pdev);
3097 
3098 	rvu_dbg_exit(rvu);
3099 	rvu_unregister_dl(rvu);
3100 	rvu_unregister_interrupts(rvu);
3101 	rvu_flr_wq_destroy(rvu);
3102 	rvu_cgx_exit(rvu);
3103 	rvu_fwdata_exit(rvu);
3104 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3105 	rvu_disable_sriov(rvu);
3106 	rvu_reset_all_blocks(rvu);
3107 	rvu_free_hw_resources(rvu);
3108 	rvu_clear_rvum_blk_revid(rvu);
3109 	ptp_put(rvu->ptp);
3110 	pci_release_regions(pdev);
3111 	pci_disable_device(pdev);
3112 	pci_set_drvdata(pdev, NULL);
3113 
3114 	devm_kfree(&pdev->dev, rvu->hw);
3115 	devm_kfree(&pdev->dev, rvu);
3116 }
3117 
3118 static struct pci_driver rvu_driver = {
3119 	.name = DRV_NAME,
3120 	.id_table = rvu_id_table,
3121 	.probe = rvu_probe,
3122 	.remove = rvu_remove,
3123 };
3124 
3125 static int __init rvu_init_module(void)
3126 {
3127 	int err;
3128 
3129 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3130 
3131 	err = pci_register_driver(&cgx_driver);
3132 	if (err < 0)
3133 		return err;
3134 
3135 	err = pci_register_driver(&ptp_driver);
3136 	if (err < 0)
3137 		goto ptp_err;
3138 
3139 	err =  pci_register_driver(&rvu_driver);
3140 	if (err < 0)
3141 		goto rvu_err;
3142 
3143 	return 0;
3144 rvu_err:
3145 	pci_unregister_driver(&ptp_driver);
3146 ptp_err:
3147 	pci_unregister_driver(&cgx_driver);
3148 
3149 	return err;
3150 }
3151 
3152 static void __exit rvu_cleanup_module(void)
3153 {
3154 	pci_unregister_driver(&rvu_driver);
3155 	pci_unregister_driver(&ptp_driver);
3156 	pci_unregister_driver(&cgx_driver);
3157 }
3158 
3159 module_init(rvu_init_module);
3160 module_exit(rvu_cleanup_module);
3161