xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 80154575849778e40d9d87aa7ab14491ac401948)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 
24 #define DRV_NAME	"rvu_af"
25 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407 
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 	u64 cfg;
411 
412 	/* Get numVFs attached to this PF and first HWVF */
413 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 	if (numvfs)
415 		*numvfs = (cfg >> 12) & 0xFF;
416 	if (hwvf)
417 		*hwvf = cfg & 0xFFF;
418 }
419 
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 	int pf, func;
423 	u64 cfg;
424 
425 	pf = rvu_get_pf(pcifunc);
426 	func = pcifunc & RVU_PFVF_FUNC_MASK;
427 
428 	/* Get first HWVF attached to this PF */
429 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430 
431 	return ((cfg & 0xFFF) + func - 1);
432 }
433 
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 	/* Check if it is a PF or VF */
437 	if (pcifunc & RVU_PFVF_FUNC_MASK)
438 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 	else
440 		return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442 
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 	int pf, vf, nvfs;
446 	u64 cfg;
447 
448 	pf = rvu_get_pf(pcifunc);
449 	if (pf >= rvu->hw->total_pfs)
450 		return false;
451 
452 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 		return true;
454 
455 	/* Check if VF is within number of VFs attached to this PF */
456 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 	nvfs = (cfg >> 12) & 0xFF;
459 	if (vf >= nvfs)
460 		return false;
461 
462 	return true;
463 }
464 
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 	struct rvu_block *block;
468 
469 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 		return false;
471 
472 	block = &hw->block[blkaddr];
473 	return block->implemented;
474 }
475 
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 	struct rvu_hwinfo *hw = rvu->hw;
479 	struct rvu_block *block;
480 	int blkid;
481 	u64 cfg;
482 
483 	/* For each block check if 'implemented' bit is set */
484 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 		block = &hw->block[blkid];
486 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 		if (cfg & BIT_ULL(11))
488 			block->implemented = true;
489 	}
490 }
491 
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 	rvu_write64(rvu, BLKADDR_RVUM,
495 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 		    RVU_BLK_RVUM_REVID);
497 }
498 
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 	rvu_write64(rvu, BLKADDR_RVUM,
502 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504 
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 	int err;
508 
509 	if (!block->implemented)
510 		return 0;
511 
512 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 			   true);
515 	return err;
516 }
517 
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 	struct rvu_block *block = &rvu->hw->block[blkaddr];
521 	int err;
522 
523 	if (!block->implemented)
524 		return;
525 
526 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 	if (err) {
529 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 			;
532 	}
533 }
534 
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 	/* Do a HW reset of all RVU blocks */
538 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552 
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 	struct rvu_pfvf *pfvf;
556 	u64 cfg;
557 	int lf;
558 
559 	for (lf = 0; lf < block->lf.max; lf++) {
560 		cfg = rvu_read64(rvu, block->addr,
561 				 block->lfcfg_reg | (lf << block->lfshift));
562 		if (!(cfg & BIT_ULL(63)))
563 			continue;
564 
565 		/* Set this resource as being used */
566 		__set_bit(lf, block->lf.bmap);
567 
568 		/* Get, to whom this LF is attached */
569 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 		rvu_update_rsrc_map(rvu, pfvf, block,
571 				    (cfg >> 8) & 0xFFFF, lf, true);
572 
573 		/* Set start MSIX vector for this LF within this PF/VF */
574 		rvu_set_msix_offset(rvu, pfvf, block, lf);
575 	}
576 }
577 
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 	int min_vecs;
581 
582 	if (!vf)
583 		goto check_pf;
584 
585 	if (!nvecs) {
586 		dev_warn(rvu->dev,
587 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 			 pf, vf - 1, nvecs);
589 	}
590 	return;
591 
592 check_pf:
593 	if (pf == 0)
594 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 	else
596 		min_vecs = RVU_PF_INT_VEC_CNT;
597 
598 	if (!(nvecs < min_vecs))
599 		return;
600 	dev_warn(rvu->dev,
601 		 "PF%d is configured with too few vectors, %d, min is %d\n",
602 		 pf, nvecs, min_vecs);
603 }
604 
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 	struct rvu_hwinfo *hw = rvu->hw;
608 	int pf, vf, numvfs, hwvf, err;
609 	int nvecs, offset, max_msix;
610 	struct rvu_pfvf *pfvf;
611 	u64 cfg, phy_addr;
612 	dma_addr_t iova;
613 
614 	for (pf = 0; pf < hw->total_pfs; pf++) {
615 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 		/* If PF is not enabled, nothing to do */
617 		if (!((cfg >> 20) & 0x01))
618 			continue;
619 
620 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621 
622 		pfvf = &rvu->pf[pf];
623 		/* Get num of MSIX vectors attached to this PF */
624 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627 
628 		/* Alloc msix bitmap for this PF */
629 		err = rvu_alloc_bitmap(&pfvf->msix);
630 		if (err)
631 			return err;
632 
633 		/* Allocate memory for MSIX vector to RVU block LF mapping */
634 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 						sizeof(u16), GFP_KERNEL);
636 		if (!pfvf->msix_lfmap)
637 			return -ENOMEM;
638 
639 		/* For PF0 (AF) firmware will set msix vector offsets for
640 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 		 */
642 		if (!pf)
643 			goto setup_vfmsix;
644 
645 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 		 * These are allocated on driver init and never freed,
647 		 * so no need to set 'msix_lfmap' for these.
648 		 */
649 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 		nvecs = (cfg >> 12) & 0xFF;
651 		cfg &= ~0x7FFULL;
652 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 		rvu_write64(rvu, BLKADDR_RVUM,
654 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 		/* Alloc msix bitmap for VFs */
657 		for (vf = 0; vf < numvfs; vf++) {
658 			pfvf =  &rvu->hwvf[hwvf + vf];
659 			/* Get num of MSIX vectors attached to this VF */
660 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 					 RVU_PRIV_PFX_MSIX_CFG(pf));
662 			pfvf->msix.max = (cfg & 0xFFF) + 1;
663 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664 
665 			/* Alloc msix bitmap for this VF */
666 			err = rvu_alloc_bitmap(&pfvf->msix);
667 			if (err)
668 				return err;
669 
670 			pfvf->msix_lfmap =
671 				devm_kcalloc(rvu->dev, pfvf->msix.max,
672 					     sizeof(u16), GFP_KERNEL);
673 			if (!pfvf->msix_lfmap)
674 				return -ENOMEM;
675 
676 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 			 * These are allocated on driver init and never freed,
678 			 * so no need to set 'msix_lfmap' for these.
679 			 */
680 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 			nvecs = (cfg >> 12) & 0xFF;
683 			cfg &= ~0x7FFULL;
684 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 			rvu_write64(rvu, BLKADDR_RVUM,
686 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 				    cfg | offset);
688 		}
689 	}
690 
691 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 	 * create an IOMMU mapping for the physical address configured by
693 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 	 */
695 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 	max_msix = cfg & 0xFFFFF;
697 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 		phy_addr = rvu->fwdata->msixtr_base;
699 	else
700 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701 
702 	iova = dma_map_resource(rvu->dev, phy_addr,
703 				max_msix * PCI_MSIX_ENTRY_SIZE,
704 				DMA_BIDIRECTIONAL, 0);
705 
706 	if (dma_mapping_error(rvu->dev, iova))
707 		return -ENOMEM;
708 
709 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 	rvu->msix_base_iova = iova;
711 	rvu->msixtr_base_phy = phy_addr;
712 
713 	return 0;
714 }
715 
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 	/* Restore msixtr base register */
719 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 		    rvu->msixtr_base_phy);
721 }
722 
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 	struct rvu_hwinfo *hw = rvu->hw;
726 	struct rvu_block *block;
727 	struct rvu_pfvf  *pfvf;
728 	int id, max_msix;
729 	u64 cfg;
730 
731 	rvu_npa_freemem(rvu);
732 	rvu_npc_freemem(rvu);
733 	rvu_nix_freemem(rvu);
734 
735 	/* Free block LF bitmaps */
736 	for (id = 0; id < BLK_COUNT; id++) {
737 		block = &hw->block[id];
738 		kfree(block->lf.bmap);
739 	}
740 
741 	/* Free MSIX bitmaps */
742 	for (id = 0; id < hw->total_pfs; id++) {
743 		pfvf = &rvu->pf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	for (id = 0; id < hw->total_vfs; id++) {
748 		pfvf = &rvu->hwvf[id];
749 		kfree(pfvf->msix.bmap);
750 	}
751 
752 	/* Unmap MSIX vector base IOVA mapping */
753 	if (!rvu->msix_base_iova)
754 		return;
755 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 	max_msix = cfg & 0xFFFFF;
757 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 			   max_msix * PCI_MSIX_ENTRY_SIZE,
759 			   DMA_BIDIRECTIONAL, 0);
760 
761 	rvu_reset_msix(rvu);
762 	mutex_destroy(&rvu->rsrc_lock);
763 }
764 
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
821 	if (!rvu->fwdata)
822 		goto fail;
823 	if (!is_rvu_fwdata_valid(rvu)) {
824 		dev_err(rvu->dev,
825 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
826 		iounmap(rvu->fwdata);
827 		rvu->fwdata = NULL;
828 		return -EINVAL;
829 	}
830 	return 0;
831 fail:
832 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
833 	return -EIO;
834 }
835 
836 static void rvu_fwdata_exit(struct rvu *rvu)
837 {
838 	if (rvu->fwdata)
839 		iounmap(rvu->fwdata);
840 }
841 
842 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
843 {
844 	struct rvu_hwinfo *hw = rvu->hw;
845 	struct rvu_block *block;
846 	int blkid;
847 	u64 cfg;
848 
849 	/* Init NIX LF's bitmap */
850 	block = &hw->block[blkaddr];
851 	if (!block->implemented)
852 		return 0;
853 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
854 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
855 	block->lf.max = cfg & 0xFFF;
856 	block->addr = blkaddr;
857 	block->type = BLKTYPE_NIX;
858 	block->lfshift = 8;
859 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
860 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
861 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
862 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
863 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
864 	block->lfreset_reg = NIX_AF_LF_RST;
865 	block->rvu = rvu;
866 	sprintf(block->name, "NIX%d", blkid);
867 	rvu->nix_blkaddr[blkid] = blkaddr;
868 	return rvu_alloc_bitmap(&block->lf);
869 }
870 
871 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
872 {
873 	struct rvu_hwinfo *hw = rvu->hw;
874 	struct rvu_block *block;
875 	int blkid;
876 	u64 cfg;
877 
878 	/* Init CPT LF's bitmap */
879 	block = &hw->block[blkaddr];
880 	if (!block->implemented)
881 		return 0;
882 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
883 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
884 	block->lf.max = cfg & 0xFF;
885 	block->addr = blkaddr;
886 	block->type = BLKTYPE_CPT;
887 	block->multislot = true;
888 	block->lfshift = 3;
889 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
890 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
891 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
892 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
893 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
894 	block->lfreset_reg = CPT_AF_LF_RST;
895 	block->rvu = rvu;
896 	sprintf(block->name, "CPT%d", blkid);
897 	return rvu_alloc_bitmap(&block->lf);
898 }
899 
900 static void rvu_get_lbk_bufsize(struct rvu *rvu)
901 {
902 	struct pci_dev *pdev = NULL;
903 	void __iomem *base;
904 	u64 lbk_const;
905 
906 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
907 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
908 	if (!pdev)
909 		return;
910 
911 	base = pci_ioremap_bar(pdev, 0);
912 	if (!base)
913 		goto err_put;
914 
915 	lbk_const = readq(base + LBK_CONST);
916 
917 	/* cache fifo size */
918 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
919 
920 	iounmap(base);
921 err_put:
922 	pci_dev_put(pdev);
923 }
924 
925 static int rvu_setup_hw_resources(struct rvu *rvu)
926 {
927 	struct rvu_hwinfo *hw = rvu->hw;
928 	struct rvu_block *block;
929 	int blkid, err;
930 	u64 cfg;
931 
932 	/* Get HW supported max RVU PF & VF count */
933 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
934 	hw->total_pfs = (cfg >> 32) & 0xFF;
935 	hw->total_vfs = (cfg >> 20) & 0xFFF;
936 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
937 
938 	if (!is_rvu_otx2(rvu))
939 		rvu_apr_block_cn10k_init(rvu);
940 
941 	/* Init NPA LF's bitmap */
942 	block = &hw->block[BLKADDR_NPA];
943 	if (!block->implemented)
944 		goto nix;
945 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
946 	block->lf.max = (cfg >> 16) & 0xFFF;
947 	block->addr = BLKADDR_NPA;
948 	block->type = BLKTYPE_NPA;
949 	block->lfshift = 8;
950 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
951 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
952 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
953 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
954 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
955 	block->lfreset_reg = NPA_AF_LF_RST;
956 	block->rvu = rvu;
957 	sprintf(block->name, "NPA");
958 	err = rvu_alloc_bitmap(&block->lf);
959 	if (err) {
960 		dev_err(rvu->dev,
961 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
962 		return err;
963 	}
964 
965 nix:
966 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
967 	if (err) {
968 		dev_err(rvu->dev,
969 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
970 		return err;
971 	}
972 
973 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
974 	if (err) {
975 		dev_err(rvu->dev,
976 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
977 		return err;
978 	}
979 
980 	/* Init SSO group's bitmap */
981 	block = &hw->block[BLKADDR_SSO];
982 	if (!block->implemented)
983 		goto ssow;
984 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
985 	block->lf.max = cfg & 0xFFFF;
986 	block->addr = BLKADDR_SSO;
987 	block->type = BLKTYPE_SSO;
988 	block->multislot = true;
989 	block->lfshift = 3;
990 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
991 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
992 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
993 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
994 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
995 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
996 	block->rvu = rvu;
997 	sprintf(block->name, "SSO GROUP");
998 	err = rvu_alloc_bitmap(&block->lf);
999 	if (err) {
1000 		dev_err(rvu->dev,
1001 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
1002 		return err;
1003 	}
1004 
1005 ssow:
1006 	/* Init SSO workslot's bitmap */
1007 	block = &hw->block[BLKADDR_SSOW];
1008 	if (!block->implemented)
1009 		goto tim;
1010 	block->lf.max = (cfg >> 56) & 0xFF;
1011 	block->addr = BLKADDR_SSOW;
1012 	block->type = BLKTYPE_SSOW;
1013 	block->multislot = true;
1014 	block->lfshift = 3;
1015 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1016 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1017 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1018 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1019 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1020 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1021 	block->rvu = rvu;
1022 	sprintf(block->name, "SSOWS");
1023 	err = rvu_alloc_bitmap(&block->lf);
1024 	if (err) {
1025 		dev_err(rvu->dev,
1026 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1027 		return err;
1028 	}
1029 
1030 tim:
1031 	/* Init TIM LF's bitmap */
1032 	block = &hw->block[BLKADDR_TIM];
1033 	if (!block->implemented)
1034 		goto cpt;
1035 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1036 	block->lf.max = cfg & 0xFFFF;
1037 	block->addr = BLKADDR_TIM;
1038 	block->type = BLKTYPE_TIM;
1039 	block->multislot = true;
1040 	block->lfshift = 3;
1041 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1042 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1043 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1044 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1045 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1046 	block->lfreset_reg = TIM_AF_LF_RST;
1047 	block->rvu = rvu;
1048 	sprintf(block->name, "TIM");
1049 	err = rvu_alloc_bitmap(&block->lf);
1050 	if (err) {
1051 		dev_err(rvu->dev,
1052 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1053 		return err;
1054 	}
1055 
1056 cpt:
1057 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1058 	if (err) {
1059 		dev_err(rvu->dev,
1060 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1061 		return err;
1062 	}
1063 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1064 	if (err) {
1065 		dev_err(rvu->dev,
1066 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1067 		return err;
1068 	}
1069 
1070 	/* Allocate memory for PFVF data */
1071 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1072 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1073 	if (!rvu->pf) {
1074 		dev_err(rvu->dev,
1075 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1076 		return -ENOMEM;
1077 	}
1078 
1079 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1080 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1081 	if (!rvu->hwvf) {
1082 		dev_err(rvu->dev,
1083 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1084 		return -ENOMEM;
1085 	}
1086 
1087 	mutex_init(&rvu->rsrc_lock);
1088 
1089 	rvu_fwdata_init(rvu);
1090 
1091 	err = rvu_setup_msix_resources(rvu);
1092 	if (err) {
1093 		dev_err(rvu->dev,
1094 			"%s: Failed to setup MSIX resources\n", __func__);
1095 		return err;
1096 	}
1097 
1098 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1099 		block = &hw->block[blkid];
1100 		if (!block->lf.bmap)
1101 			continue;
1102 
1103 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1104 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1105 					     sizeof(u16), GFP_KERNEL);
1106 		if (!block->fn_map) {
1107 			err = -ENOMEM;
1108 			goto msix_err;
1109 		}
1110 
1111 		/* Scan all blocks to check if low level firmware has
1112 		 * already provisioned any of the resources to a PF/VF.
1113 		 */
1114 		rvu_scan_block(rvu, block);
1115 	}
1116 
1117 	err = rvu_set_channels_base(rvu);
1118 	if (err)
1119 		goto msix_err;
1120 
1121 	err = rvu_npc_init(rvu);
1122 	if (err) {
1123 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1124 		goto npc_err;
1125 	}
1126 
1127 	err = rvu_cgx_init(rvu);
1128 	if (err) {
1129 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1130 		goto cgx_err;
1131 	}
1132 
1133 	err = rvu_npc_exact_init(rvu);
1134 	if (err) {
1135 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1136 		return err;
1137 	}
1138 
1139 	/* Assign MACs for CGX mapped functions */
1140 	rvu_setup_pfvf_macaddress(rvu);
1141 
1142 	err = rvu_npa_init(rvu);
1143 	if (err) {
1144 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1145 		goto npa_err;
1146 	}
1147 
1148 	rvu_get_lbk_bufsize(rvu);
1149 
1150 	err = rvu_nix_init(rvu);
1151 	if (err) {
1152 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1153 		goto nix_err;
1154 	}
1155 
1156 	err = rvu_sdp_init(rvu);
1157 	if (err) {
1158 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1159 		goto nix_err;
1160 	}
1161 
1162 	rvu_program_channels(rvu);
1163 
1164 	err = rvu_mcs_init(rvu);
1165 	if (err) {
1166 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1167 		goto nix_err;
1168 	}
1169 
1170 	err = rvu_cpt_init(rvu);
1171 	if (err) {
1172 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1173 		goto mcs_err;
1174 	}
1175 
1176 	return 0;
1177 
1178 mcs_err:
1179 	rvu_mcs_exit(rvu);
1180 nix_err:
1181 	rvu_nix_freemem(rvu);
1182 npa_err:
1183 	rvu_npa_freemem(rvu);
1184 cgx_err:
1185 	rvu_cgx_exit(rvu);
1186 npc_err:
1187 	rvu_npc_freemem(rvu);
1188 	rvu_fwdata_exit(rvu);
1189 msix_err:
1190 	rvu_reset_msix(rvu);
1191 	return err;
1192 }
1193 
1194 /* NPA and NIX admin queue APIs */
1195 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1196 {
1197 	if (!aq)
1198 		return;
1199 
1200 	qmem_free(rvu->dev, aq->inst);
1201 	qmem_free(rvu->dev, aq->res);
1202 	devm_kfree(rvu->dev, aq);
1203 }
1204 
1205 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1206 		 int qsize, int inst_size, int res_size)
1207 {
1208 	struct admin_queue *aq;
1209 	int err;
1210 
1211 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1212 	if (!*ad_queue)
1213 		return -ENOMEM;
1214 	aq = *ad_queue;
1215 
1216 	/* Alloc memory for instructions i.e AQ */
1217 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1218 	if (err) {
1219 		devm_kfree(rvu->dev, aq);
1220 		return err;
1221 	}
1222 
1223 	/* Alloc memory for results */
1224 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1225 	if (err) {
1226 		rvu_aq_free(rvu, aq);
1227 		return err;
1228 	}
1229 
1230 	spin_lock_init(&aq->lock);
1231 	return 0;
1232 }
1233 
1234 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1235 			   struct ready_msg_rsp *rsp)
1236 {
1237 	if (rvu->fwdata) {
1238 		rsp->rclk_freq = rvu->fwdata->rclk;
1239 		rsp->sclk_freq = rvu->fwdata->sclk;
1240 	}
1241 	return 0;
1242 }
1243 
1244 /* Get current count of a RVU block's LF/slots
1245  * provisioned to a given RVU func.
1246  */
1247 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1248 {
1249 	switch (blkaddr) {
1250 	case BLKADDR_NPA:
1251 		return pfvf->npalf ? 1 : 0;
1252 	case BLKADDR_NIX0:
1253 	case BLKADDR_NIX1:
1254 		return pfvf->nixlf ? 1 : 0;
1255 	case BLKADDR_SSO:
1256 		return pfvf->sso;
1257 	case BLKADDR_SSOW:
1258 		return pfvf->ssow;
1259 	case BLKADDR_TIM:
1260 		return pfvf->timlfs;
1261 	case BLKADDR_CPT0:
1262 		return pfvf->cptlfs;
1263 	case BLKADDR_CPT1:
1264 		return pfvf->cpt1_lfs;
1265 	}
1266 	return 0;
1267 }
1268 
1269 /* Return true if LFs of block type are attached to pcifunc */
1270 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1271 {
1272 	switch (blktype) {
1273 	case BLKTYPE_NPA:
1274 		return pfvf->npalf ? 1 : 0;
1275 	case BLKTYPE_NIX:
1276 		return pfvf->nixlf ? 1 : 0;
1277 	case BLKTYPE_SSO:
1278 		return !!pfvf->sso;
1279 	case BLKTYPE_SSOW:
1280 		return !!pfvf->ssow;
1281 	case BLKTYPE_TIM:
1282 		return !!pfvf->timlfs;
1283 	case BLKTYPE_CPT:
1284 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1285 	}
1286 
1287 	return false;
1288 }
1289 
1290 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1291 {
1292 	struct rvu_pfvf *pfvf;
1293 
1294 	if (!is_pf_func_valid(rvu, pcifunc))
1295 		return false;
1296 
1297 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1298 
1299 	/* Check if this PFFUNC has a LF of type blktype attached */
1300 	if (!is_blktype_attached(pfvf, blktype))
1301 		return false;
1302 
1303 	return true;
1304 }
1305 
1306 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1307 			   int pcifunc, int slot)
1308 {
1309 	u64 val;
1310 
1311 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1312 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1313 	/* Wait for the lookup to finish */
1314 	/* TODO: put some timeout here */
1315 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1316 		;
1317 
1318 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1319 
1320 	/* Check LF valid bit */
1321 	if (!(val & (1ULL << 12)))
1322 		return -1;
1323 
1324 	return (val & 0xFFF);
1325 }
1326 
1327 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1328 			      u16 global_slot, u16 *slot_in_block)
1329 {
1330 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1331 	int numlfs, total_lfs = 0, nr_blocks = 0;
1332 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1333 	struct rvu_block *block;
1334 	int blkaddr;
1335 	u16 start_slot;
1336 
1337 	if (!is_blktype_attached(pfvf, blktype))
1338 		return -ENODEV;
1339 
1340 	/* Get all the block addresses from which LFs are attached to
1341 	 * the given pcifunc in num_blkaddr[].
1342 	 */
1343 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1344 		block = &rvu->hw->block[blkaddr];
1345 		if (block->type != blktype)
1346 			continue;
1347 		if (!is_block_implemented(rvu->hw, blkaddr))
1348 			continue;
1349 
1350 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1351 		if (numlfs) {
1352 			total_lfs += numlfs;
1353 			num_blkaddr[nr_blocks] = blkaddr;
1354 			nr_blocks++;
1355 		}
1356 	}
1357 
1358 	if (global_slot >= total_lfs)
1359 		return -ENODEV;
1360 
1361 	/* Based on the given global slot number retrieve the
1362 	 * correct block address out of all attached block
1363 	 * addresses and slot number in that block.
1364 	 */
1365 	total_lfs = 0;
1366 	blkaddr = -ENODEV;
1367 	for (i = 0; i < nr_blocks; i++) {
1368 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1369 		total_lfs += numlfs;
1370 		if (global_slot < total_lfs) {
1371 			blkaddr = num_blkaddr[i];
1372 			start_slot = total_lfs - numlfs;
1373 			*slot_in_block = global_slot - start_slot;
1374 			break;
1375 		}
1376 	}
1377 
1378 	return blkaddr;
1379 }
1380 
1381 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1382 {
1383 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1384 	struct rvu_hwinfo *hw = rvu->hw;
1385 	struct rvu_block *block;
1386 	int slot, lf, num_lfs;
1387 	int blkaddr;
1388 
1389 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1390 	if (blkaddr < 0)
1391 		return;
1392 
1393 	if (blktype == BLKTYPE_NIX)
1394 		rvu_nix_reset_mac(pfvf, pcifunc);
1395 
1396 	block = &hw->block[blkaddr];
1397 
1398 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1399 	if (!num_lfs)
1400 		return;
1401 
1402 	for (slot = 0; slot < num_lfs; slot++) {
1403 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1404 		if (lf < 0) /* This should never happen */
1405 			continue;
1406 
1407 		/* Disable the LF */
1408 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1409 			    (lf << block->lfshift), 0x00ULL);
1410 
1411 		/* Update SW maintained mapping info as well */
1412 		rvu_update_rsrc_map(rvu, pfvf, block,
1413 				    pcifunc, lf, false);
1414 
1415 		/* Free the resource */
1416 		rvu_free_rsrc(&block->lf, lf);
1417 
1418 		/* Clear MSIX vector offset for this LF */
1419 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1420 	}
1421 }
1422 
1423 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1424 			    u16 pcifunc)
1425 {
1426 	struct rvu_hwinfo *hw = rvu->hw;
1427 	bool detach_all = true;
1428 	struct rvu_block *block;
1429 	int blkid;
1430 
1431 	mutex_lock(&rvu->rsrc_lock);
1432 
1433 	/* Check for partial resource detach */
1434 	if (detach && detach->partial)
1435 		detach_all = false;
1436 
1437 	/* Check for RVU block's LFs attached to this func,
1438 	 * if so, detach them.
1439 	 */
1440 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1441 		block = &hw->block[blkid];
1442 		if (!block->lf.bmap)
1443 			continue;
1444 		if (!detach_all && detach) {
1445 			if (blkid == BLKADDR_NPA && !detach->npalf)
1446 				continue;
1447 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1448 				continue;
1449 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1450 				continue;
1451 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1452 				continue;
1453 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1454 				continue;
1455 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1456 				continue;
1457 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1458 				continue;
1459 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1460 				continue;
1461 		}
1462 		rvu_detach_block(rvu, pcifunc, block->type);
1463 	}
1464 
1465 	mutex_unlock(&rvu->rsrc_lock);
1466 	return 0;
1467 }
1468 
1469 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1470 				      struct rsrc_detach *detach,
1471 				      struct msg_rsp *rsp)
1472 {
1473 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1474 }
1475 
1476 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1477 {
1478 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1479 	int blkaddr = BLKADDR_NIX0, vf;
1480 	struct rvu_pfvf *pf;
1481 
1482 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1483 
1484 	/* All CGX mapped PFs are set with assigned NIX block during init */
1485 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1486 		blkaddr = pf->nix_blkaddr;
1487 	} else if (is_afvf(pcifunc)) {
1488 		vf = pcifunc - 1;
1489 		/* Assign NIX based on VF number. All even numbered VFs get
1490 		 * NIX0 and odd numbered gets NIX1
1491 		 */
1492 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1493 		/* NIX1 is not present on all silicons */
1494 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1495 			blkaddr = BLKADDR_NIX0;
1496 	}
1497 
1498 	/* if SDP1 then the blkaddr is NIX1 */
1499 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1500 		blkaddr = BLKADDR_NIX1;
1501 
1502 	switch (blkaddr) {
1503 	case BLKADDR_NIX1:
1504 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1505 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1506 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1507 		break;
1508 	case BLKADDR_NIX0:
1509 	default:
1510 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1511 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1512 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1513 		break;
1514 	}
1515 
1516 	return pfvf->nix_blkaddr;
1517 }
1518 
1519 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1520 				  u16 pcifunc, struct rsrc_attach *attach)
1521 {
1522 	int blkaddr;
1523 
1524 	switch (blktype) {
1525 	case BLKTYPE_NIX:
1526 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1527 		break;
1528 	case BLKTYPE_CPT:
1529 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1530 			return rvu_get_blkaddr(rvu, blktype, 0);
1531 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1532 			  BLKADDR_CPT0;
1533 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1534 			return -ENODEV;
1535 		break;
1536 	default:
1537 		return rvu_get_blkaddr(rvu, blktype, 0);
1538 	}
1539 
1540 	if (is_block_implemented(rvu->hw, blkaddr))
1541 		return blkaddr;
1542 
1543 	return -ENODEV;
1544 }
1545 
1546 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1547 			     int num_lfs, struct rsrc_attach *attach)
1548 {
1549 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1550 	struct rvu_hwinfo *hw = rvu->hw;
1551 	struct rvu_block *block;
1552 	int slot, lf;
1553 	int blkaddr;
1554 	u64 cfg;
1555 
1556 	if (!num_lfs)
1557 		return;
1558 
1559 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1560 	if (blkaddr < 0)
1561 		return;
1562 
1563 	block = &hw->block[blkaddr];
1564 	if (!block->lf.bmap)
1565 		return;
1566 
1567 	for (slot = 0; slot < num_lfs; slot++) {
1568 		/* Allocate the resource */
1569 		lf = rvu_alloc_rsrc(&block->lf);
1570 		if (lf < 0)
1571 			return;
1572 
1573 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1574 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1575 			    (lf << block->lfshift), cfg);
1576 		rvu_update_rsrc_map(rvu, pfvf, block,
1577 				    pcifunc, lf, true);
1578 
1579 		/* Set start MSIX vector for this LF within this PF/VF */
1580 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1581 	}
1582 }
1583 
1584 static int rvu_check_rsrc_availability(struct rvu *rvu,
1585 				       struct rsrc_attach *req, u16 pcifunc)
1586 {
1587 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1588 	int free_lfs, mappedlfs, blkaddr;
1589 	struct rvu_hwinfo *hw = rvu->hw;
1590 	struct rvu_block *block;
1591 
1592 	/* Only one NPA LF can be attached */
1593 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1594 		block = &hw->block[BLKADDR_NPA];
1595 		free_lfs = rvu_rsrc_free_count(&block->lf);
1596 		if (!free_lfs)
1597 			goto fail;
1598 	} else if (req->npalf) {
1599 		dev_err(&rvu->pdev->dev,
1600 			"Func 0x%x: Invalid req, already has NPA\n",
1601 			 pcifunc);
1602 		return -EINVAL;
1603 	}
1604 
1605 	/* Only one NIX LF can be attached */
1606 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1607 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1608 						 pcifunc, req);
1609 		if (blkaddr < 0)
1610 			return blkaddr;
1611 		block = &hw->block[blkaddr];
1612 		free_lfs = rvu_rsrc_free_count(&block->lf);
1613 		if (!free_lfs)
1614 			goto fail;
1615 	} else if (req->nixlf) {
1616 		dev_err(&rvu->pdev->dev,
1617 			"Func 0x%x: Invalid req, already has NIX\n",
1618 			pcifunc);
1619 		return -EINVAL;
1620 	}
1621 
1622 	if (req->sso) {
1623 		block = &hw->block[BLKADDR_SSO];
1624 		/* Is request within limits ? */
1625 		if (req->sso > block->lf.max) {
1626 			dev_err(&rvu->pdev->dev,
1627 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1628 				 pcifunc, req->sso, block->lf.max);
1629 			return -EINVAL;
1630 		}
1631 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1632 		free_lfs = rvu_rsrc_free_count(&block->lf);
1633 		/* Check if additional resources are available */
1634 		if (req->sso > mappedlfs &&
1635 		    ((req->sso - mappedlfs) > free_lfs))
1636 			goto fail;
1637 	}
1638 
1639 	if (req->ssow) {
1640 		block = &hw->block[BLKADDR_SSOW];
1641 		if (req->ssow > block->lf.max) {
1642 			dev_err(&rvu->pdev->dev,
1643 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1644 				 pcifunc, req->sso, block->lf.max);
1645 			return -EINVAL;
1646 		}
1647 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1648 		free_lfs = rvu_rsrc_free_count(&block->lf);
1649 		if (req->ssow > mappedlfs &&
1650 		    ((req->ssow - mappedlfs) > free_lfs))
1651 			goto fail;
1652 	}
1653 
1654 	if (req->timlfs) {
1655 		block = &hw->block[BLKADDR_TIM];
1656 		if (req->timlfs > block->lf.max) {
1657 			dev_err(&rvu->pdev->dev,
1658 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1659 				 pcifunc, req->timlfs, block->lf.max);
1660 			return -EINVAL;
1661 		}
1662 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1663 		free_lfs = rvu_rsrc_free_count(&block->lf);
1664 		if (req->timlfs > mappedlfs &&
1665 		    ((req->timlfs - mappedlfs) > free_lfs))
1666 			goto fail;
1667 	}
1668 
1669 	if (req->cptlfs) {
1670 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1671 						 pcifunc, req);
1672 		if (blkaddr < 0)
1673 			return blkaddr;
1674 		block = &hw->block[blkaddr];
1675 		if (req->cptlfs > block->lf.max) {
1676 			dev_err(&rvu->pdev->dev,
1677 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1678 				 pcifunc, req->cptlfs, block->lf.max);
1679 			return -EINVAL;
1680 		}
1681 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1682 		free_lfs = rvu_rsrc_free_count(&block->lf);
1683 		if (req->cptlfs > mappedlfs &&
1684 		    ((req->cptlfs - mappedlfs) > free_lfs))
1685 			goto fail;
1686 	}
1687 
1688 	return 0;
1689 
1690 fail:
1691 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1692 	return -ENOSPC;
1693 }
1694 
1695 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1696 				       struct rsrc_attach *attach)
1697 {
1698 	int blkaddr, num_lfs;
1699 
1700 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1701 					 attach->hdr.pcifunc, attach);
1702 	if (blkaddr < 0)
1703 		return false;
1704 
1705 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1706 					blkaddr);
1707 	/* Requester already has LFs from given block ? */
1708 	return !!num_lfs;
1709 }
1710 
1711 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1712 				      struct rsrc_attach *attach,
1713 				      struct msg_rsp *rsp)
1714 {
1715 	u16 pcifunc = attach->hdr.pcifunc;
1716 	int err;
1717 
1718 	/* If first request, detach all existing attached resources */
1719 	if (!attach->modify)
1720 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1721 
1722 	mutex_lock(&rvu->rsrc_lock);
1723 
1724 	/* Check if the request can be accommodated */
1725 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1726 	if (err)
1727 		goto exit;
1728 
1729 	/* Now attach the requested resources */
1730 	if (attach->npalf)
1731 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1732 
1733 	if (attach->nixlf)
1734 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1735 
1736 	if (attach->sso) {
1737 		/* RVU func doesn't know which exact LF or slot is attached
1738 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1739 		 * request, simply detach all existing attached LFs/slots
1740 		 * and attach a fresh.
1741 		 */
1742 		if (attach->modify)
1743 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1744 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1745 				 attach->sso, attach);
1746 	}
1747 
1748 	if (attach->ssow) {
1749 		if (attach->modify)
1750 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1751 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1752 				 attach->ssow, attach);
1753 	}
1754 
1755 	if (attach->timlfs) {
1756 		if (attach->modify)
1757 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1758 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1759 				 attach->timlfs, attach);
1760 	}
1761 
1762 	if (attach->cptlfs) {
1763 		if (attach->modify &&
1764 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1765 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1766 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1767 				 attach->cptlfs, attach);
1768 	}
1769 
1770 exit:
1771 	mutex_unlock(&rvu->rsrc_lock);
1772 	return err;
1773 }
1774 
1775 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1776 			       int blkaddr, int lf)
1777 {
1778 	u16 vec;
1779 
1780 	if (lf < 0)
1781 		return MSIX_VECTOR_INVALID;
1782 
1783 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1784 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1785 			return vec;
1786 	}
1787 	return MSIX_VECTOR_INVALID;
1788 }
1789 
1790 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1791 				struct rvu_block *block, int lf)
1792 {
1793 	u16 nvecs, vec, offset;
1794 	u64 cfg;
1795 
1796 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1797 			 (lf << block->lfshift));
1798 	nvecs = (cfg >> 12) & 0xFF;
1799 
1800 	/* Check and alloc MSIX vectors, must be contiguous */
1801 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1802 		return;
1803 
1804 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1805 
1806 	/* Config MSIX offset in LF */
1807 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1808 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1809 
1810 	/* Update the bitmap as well */
1811 	for (vec = 0; vec < nvecs; vec++)
1812 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1813 }
1814 
1815 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1816 				  struct rvu_block *block, int lf)
1817 {
1818 	u16 nvecs, vec, offset;
1819 	u64 cfg;
1820 
1821 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1822 			 (lf << block->lfshift));
1823 	nvecs = (cfg >> 12) & 0xFF;
1824 
1825 	/* Clear MSIX offset in LF */
1826 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1827 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1828 
1829 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1830 
1831 	/* Update the mapping */
1832 	for (vec = 0; vec < nvecs; vec++)
1833 		pfvf->msix_lfmap[offset + vec] = 0;
1834 
1835 	/* Free the same in MSIX bitmap */
1836 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1837 }
1838 
1839 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1840 				 struct msix_offset_rsp *rsp)
1841 {
1842 	struct rvu_hwinfo *hw = rvu->hw;
1843 	u16 pcifunc = req->hdr.pcifunc;
1844 	struct rvu_pfvf *pfvf;
1845 	int lf, slot, blkaddr;
1846 
1847 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1848 	if (!pfvf->msix.bmap)
1849 		return 0;
1850 
1851 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1852 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1853 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1854 
1855 	/* Get BLKADDR from which LFs are attached to pcifunc */
1856 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1857 	if (blkaddr < 0) {
1858 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1859 	} else {
1860 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1861 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1862 	}
1863 
1864 	rsp->sso = pfvf->sso;
1865 	for (slot = 0; slot < rsp->sso; slot++) {
1866 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1867 		rsp->sso_msixoff[slot] =
1868 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1869 	}
1870 
1871 	rsp->ssow = pfvf->ssow;
1872 	for (slot = 0; slot < rsp->ssow; slot++) {
1873 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1874 		rsp->ssow_msixoff[slot] =
1875 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1876 	}
1877 
1878 	rsp->timlfs = pfvf->timlfs;
1879 	for (slot = 0; slot < rsp->timlfs; slot++) {
1880 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1881 		rsp->timlf_msixoff[slot] =
1882 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1883 	}
1884 
1885 	rsp->cptlfs = pfvf->cptlfs;
1886 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1887 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1888 		rsp->cptlf_msixoff[slot] =
1889 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1890 	}
1891 
1892 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1893 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1894 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1895 		rsp->cpt1_lf_msixoff[slot] =
1896 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1903 				   struct free_rsrcs_rsp *rsp)
1904 {
1905 	struct rvu_hwinfo *hw = rvu->hw;
1906 	struct rvu_block *block;
1907 	struct nix_txsch *txsch;
1908 	struct nix_hw *nix_hw;
1909 
1910 	mutex_lock(&rvu->rsrc_lock);
1911 
1912 	block = &hw->block[BLKADDR_NPA];
1913 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1914 
1915 	block = &hw->block[BLKADDR_NIX0];
1916 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1917 
1918 	block = &hw->block[BLKADDR_NIX1];
1919 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1920 
1921 	block = &hw->block[BLKADDR_SSO];
1922 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1923 
1924 	block = &hw->block[BLKADDR_SSOW];
1925 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1926 
1927 	block = &hw->block[BLKADDR_TIM];
1928 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1929 
1930 	block = &hw->block[BLKADDR_CPT0];
1931 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1932 
1933 	block = &hw->block[BLKADDR_CPT1];
1934 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1935 
1936 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1937 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1938 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1939 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1940 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1941 		/* NIX1 */
1942 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1943 			goto out;
1944 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1945 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1946 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1947 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1948 	} else {
1949 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1950 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1951 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1952 				rvu_rsrc_free_count(&txsch->schq);
1953 
1954 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1955 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1956 				rvu_rsrc_free_count(&txsch->schq);
1957 
1958 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1959 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1960 				rvu_rsrc_free_count(&txsch->schq);
1961 
1962 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1963 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1964 				rvu_rsrc_free_count(&txsch->schq);
1965 
1966 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1967 			goto out;
1968 
1969 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1970 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1971 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1972 				rvu_rsrc_free_count(&txsch->schq);
1973 
1974 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1975 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1976 				rvu_rsrc_free_count(&txsch->schq);
1977 
1978 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1979 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1980 				rvu_rsrc_free_count(&txsch->schq);
1981 
1982 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1983 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1984 				rvu_rsrc_free_count(&txsch->schq);
1985 	}
1986 
1987 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1988 out:
1989 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1990 	mutex_unlock(&rvu->rsrc_lock);
1991 
1992 	return 0;
1993 }
1994 
1995 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1996 			    struct msg_rsp *rsp)
1997 {
1998 	u16 pcifunc = req->hdr.pcifunc;
1999 	u16 vf, numvfs;
2000 	u64 cfg;
2001 
2002 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2003 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2004 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2005 	numvfs = (cfg >> 12) & 0xFF;
2006 
2007 	if (vf && vf <= numvfs)
2008 		__rvu_flr_handler(rvu, pcifunc);
2009 	else
2010 		return RVU_INVALID_VF_ID;
2011 
2012 	return 0;
2013 }
2014 
2015 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2016 				struct get_hw_cap_rsp *rsp)
2017 {
2018 	struct rvu_hwinfo *hw = rvu->hw;
2019 
2020 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2021 	rsp->nix_shaping = hw->cap.nix_shaping;
2022 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2023 
2024 	return 0;
2025 }
2026 
2027 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2028 				 struct msg_rsp *rsp)
2029 {
2030 	struct rvu_hwinfo *hw = rvu->hw;
2031 	u16 pcifunc = req->hdr.pcifunc;
2032 	struct rvu_pfvf *pfvf;
2033 	int blkaddr, nixlf;
2034 	u16 target;
2035 
2036 	/* Only PF can add VF permissions */
2037 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2038 		return -EOPNOTSUPP;
2039 
2040 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2041 	pfvf = rvu_get_pfvf(rvu, target);
2042 
2043 	if (req->flags & RESET_VF_PERM) {
2044 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2045 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2046 		 (req->flags & VF_TRUSTED)) {
2047 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2048 		/* disable multicast and promisc entries */
2049 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2050 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2051 			if (blkaddr < 0)
2052 				return 0;
2053 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2054 					   target, 0);
2055 			if (nixlf < 0)
2056 				return 0;
2057 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2058 						     NIXLF_ALLMULTI_ENTRY,
2059 						     false);
2060 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2061 						     NIXLF_PROMISC_ENTRY,
2062 						     false);
2063 		}
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2070 				struct mbox_msghdr *req)
2071 {
2072 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2073 
2074 	/* Check if valid, if not reply with a invalid msg */
2075 	if (req->sig != OTX2_MBOX_REQ_SIG)
2076 		goto bad_message;
2077 
2078 	switch (req->id) {
2079 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2080 	case _id: {							\
2081 		struct _rsp_type *rsp;					\
2082 		int err;						\
2083 									\
2084 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2085 			mbox, devid,					\
2086 			sizeof(struct _rsp_type));			\
2087 		/* some handlers should complete even if reply */	\
2088 		/* could not be allocated */				\
2089 		if (!rsp &&						\
2090 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2091 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2092 		    _id != MBOX_MSG_VF_FLR)				\
2093 			return -ENOMEM;					\
2094 		if (rsp) {						\
2095 			rsp->hdr.id = _id;				\
2096 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2097 			rsp->hdr.pcifunc = req->pcifunc;		\
2098 			rsp->hdr.rc = 0;				\
2099 		}							\
2100 									\
2101 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2102 						    (struct _req_type *)req, \
2103 						    rsp);		\
2104 		if (rsp && err)						\
2105 			rsp->hdr.rc = err;				\
2106 									\
2107 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2108 		return rsp ? err : -ENOMEM;				\
2109 	}
2110 MBOX_MESSAGES
2111 #undef M
2112 
2113 bad_message:
2114 	default:
2115 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2116 		return -ENODEV;
2117 	}
2118 }
2119 
2120 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2121 {
2122 	struct rvu *rvu = mwork->rvu;
2123 	int offset, err, id, devid;
2124 	struct otx2_mbox_dev *mdev;
2125 	struct mbox_hdr *req_hdr;
2126 	struct mbox_msghdr *msg;
2127 	struct mbox_wq_info *mw;
2128 	struct otx2_mbox *mbox;
2129 
2130 	switch (type) {
2131 	case TYPE_AFPF:
2132 		mw = &rvu->afpf_wq_info;
2133 		break;
2134 	case TYPE_AFVF:
2135 		mw = &rvu->afvf_wq_info;
2136 		break;
2137 	default:
2138 		return;
2139 	}
2140 
2141 	devid = mwork - mw->mbox_wrk;
2142 	mbox = &mw->mbox;
2143 	mdev = &mbox->dev[devid];
2144 
2145 	/* Process received mbox messages */
2146 	req_hdr = mdev->mbase + mbox->rx_start;
2147 	if (mw->mbox_wrk[devid].num_msgs == 0)
2148 		return;
2149 
2150 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2151 
2152 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2153 		msg = mdev->mbase + offset;
2154 
2155 		/* Set which PF/VF sent this message based on mbox IRQ */
2156 		switch (type) {
2157 		case TYPE_AFPF:
2158 			msg->pcifunc &=
2159 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2160 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2161 			break;
2162 		case TYPE_AFVF:
2163 			msg->pcifunc &=
2164 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2165 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2166 			break;
2167 		}
2168 
2169 		err = rvu_process_mbox_msg(mbox, devid, msg);
2170 		if (!err) {
2171 			offset = mbox->rx_start + msg->next_msgoff;
2172 			continue;
2173 		}
2174 
2175 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2176 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2177 				 err, otx2_mbox_id2name(msg->id),
2178 				 msg->id, rvu_get_pf(msg->pcifunc),
2179 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2180 		else
2181 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2182 				 err, otx2_mbox_id2name(msg->id),
2183 				 msg->id, devid);
2184 	}
2185 	mw->mbox_wrk[devid].num_msgs = 0;
2186 
2187 	/* Send mbox responses to VF/PF */
2188 	otx2_mbox_msg_send(mbox, devid);
2189 }
2190 
2191 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2192 {
2193 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2194 
2195 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2196 }
2197 
2198 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2199 {
2200 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2201 
2202 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2203 }
2204 
2205 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2206 {
2207 	struct rvu *rvu = mwork->rvu;
2208 	struct otx2_mbox_dev *mdev;
2209 	struct mbox_hdr *rsp_hdr;
2210 	struct mbox_msghdr *msg;
2211 	struct mbox_wq_info *mw;
2212 	struct otx2_mbox *mbox;
2213 	int offset, id, devid;
2214 
2215 	switch (type) {
2216 	case TYPE_AFPF:
2217 		mw = &rvu->afpf_wq_info;
2218 		break;
2219 	case TYPE_AFVF:
2220 		mw = &rvu->afvf_wq_info;
2221 		break;
2222 	default:
2223 		return;
2224 	}
2225 
2226 	devid = mwork - mw->mbox_wrk_up;
2227 	mbox = &mw->mbox_up;
2228 	mdev = &mbox->dev[devid];
2229 
2230 	rsp_hdr = mdev->mbase + mbox->rx_start;
2231 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2232 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2233 		return;
2234 	}
2235 
2236 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2237 
2238 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2239 		msg = mdev->mbase + offset;
2240 
2241 		if (msg->id >= MBOX_MSG_MAX) {
2242 			dev_err(rvu->dev,
2243 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2244 			goto end;
2245 		}
2246 
2247 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2248 			dev_err(rvu->dev,
2249 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2250 				msg->sig, msg->id);
2251 			goto end;
2252 		}
2253 
2254 		switch (msg->id) {
2255 		case MBOX_MSG_CGX_LINK_EVENT:
2256 			break;
2257 		default:
2258 			if (msg->rc)
2259 				dev_err(rvu->dev,
2260 					"Mbox msg response has err %d, ID 0x%x\n",
2261 					msg->rc, msg->id);
2262 			break;
2263 		}
2264 end:
2265 		offset = mbox->rx_start + msg->next_msgoff;
2266 		mdev->msgs_acked++;
2267 	}
2268 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2269 
2270 	otx2_mbox_reset(mbox, devid);
2271 }
2272 
2273 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2274 {
2275 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2276 
2277 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2278 }
2279 
2280 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2281 {
2282 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2283 
2284 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2285 }
2286 
2287 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2288 				int num, int type, unsigned long *pf_bmap)
2289 {
2290 	struct rvu_hwinfo *hw = rvu->hw;
2291 	int region;
2292 	u64 bar4;
2293 
2294 	/* For cn10k platform VF mailbox regions of a PF follows after the
2295 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2296 	 * RVU_PF_VF_BAR4_ADDR register.
2297 	 */
2298 	if (type == TYPE_AFVF) {
2299 		for (region = 0; region < num; region++) {
2300 			if (!test_bit(region, pf_bmap))
2301 				continue;
2302 
2303 			if (hw->cap.per_pf_mbox_regs) {
2304 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2305 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2306 						  MBOX_SIZE;
2307 				bar4 += region * MBOX_SIZE;
2308 			} else {
2309 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2310 				bar4 += region * MBOX_SIZE;
2311 			}
2312 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2313 			if (!mbox_addr[region])
2314 				goto error;
2315 		}
2316 		return 0;
2317 	}
2318 
2319 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2320 	 * PF registers. Whereas for Octeontx2 it is read from
2321 	 * RVU_AF_PF_BAR4_ADDR register.
2322 	 */
2323 	for (region = 0; region < num; region++) {
2324 		if (!test_bit(region, pf_bmap))
2325 			continue;
2326 
2327 		if (hw->cap.per_pf_mbox_regs) {
2328 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2329 					  RVU_AF_PFX_BAR4_ADDR(region));
2330 		} else {
2331 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2332 					  RVU_AF_PF_BAR4_ADDR);
2333 			bar4 += region * MBOX_SIZE;
2334 		}
2335 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2336 		if (!mbox_addr[region])
2337 			goto error;
2338 	}
2339 	return 0;
2340 
2341 error:
2342 	while (region--)
2343 		iounmap((void __iomem *)mbox_addr[region]);
2344 	return -ENOMEM;
2345 }
2346 
2347 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2348 			 int type, int num,
2349 			 void (mbox_handler)(struct work_struct *),
2350 			 void (mbox_up_handler)(struct work_struct *))
2351 {
2352 	int err = -EINVAL, i, dir, dir_up;
2353 	void __iomem *reg_base;
2354 	struct rvu_work *mwork;
2355 	unsigned long *pf_bmap;
2356 	void **mbox_regions;
2357 	const char *name;
2358 	u64 cfg;
2359 
2360 	pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2361 	if (!pf_bmap)
2362 		return -ENOMEM;
2363 
2364 	/* RVU VFs */
2365 	if (type == TYPE_AFVF)
2366 		bitmap_set(pf_bmap, 0, num);
2367 
2368 	if (type == TYPE_AFPF) {
2369 		/* Mark enabled PFs in bitmap */
2370 		for (i = 0; i < num; i++) {
2371 			cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2372 			if (cfg & BIT_ULL(20))
2373 				set_bit(i, pf_bmap);
2374 		}
2375 	}
2376 
2377 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2378 	if (!mbox_regions) {
2379 		err = -ENOMEM;
2380 		goto free_bitmap;
2381 	}
2382 
2383 	switch (type) {
2384 	case TYPE_AFPF:
2385 		name = "rvu_afpf_mailbox";
2386 		dir = MBOX_DIR_AFPF;
2387 		dir_up = MBOX_DIR_AFPF_UP;
2388 		reg_base = rvu->afreg_base;
2389 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2390 		if (err)
2391 			goto free_regions;
2392 		break;
2393 	case TYPE_AFVF:
2394 		name = "rvu_afvf_mailbox";
2395 		dir = MBOX_DIR_PFVF;
2396 		dir_up = MBOX_DIR_PFVF_UP;
2397 		reg_base = rvu->pfreg_base;
2398 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2399 		if (err)
2400 			goto free_regions;
2401 		break;
2402 	default:
2403 		goto free_regions;
2404 	}
2405 
2406 	mw->mbox_wq = alloc_workqueue(name,
2407 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2408 				      num);
2409 	if (!mw->mbox_wq) {
2410 		err = -ENOMEM;
2411 		goto unmap_regions;
2412 	}
2413 
2414 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2415 				    sizeof(struct rvu_work), GFP_KERNEL);
2416 	if (!mw->mbox_wrk) {
2417 		err = -ENOMEM;
2418 		goto exit;
2419 	}
2420 
2421 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2422 				       sizeof(struct rvu_work), GFP_KERNEL);
2423 	if (!mw->mbox_wrk_up) {
2424 		err = -ENOMEM;
2425 		goto exit;
2426 	}
2427 
2428 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2429 				     reg_base, dir, num, pf_bmap);
2430 	if (err)
2431 		goto exit;
2432 
2433 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2434 				     reg_base, dir_up, num, pf_bmap);
2435 	if (err)
2436 		goto exit;
2437 
2438 	for (i = 0; i < num; i++) {
2439 		if (!test_bit(i, pf_bmap))
2440 			continue;
2441 
2442 		mwork = &mw->mbox_wrk[i];
2443 		mwork->rvu = rvu;
2444 		INIT_WORK(&mwork->work, mbox_handler);
2445 
2446 		mwork = &mw->mbox_wrk_up[i];
2447 		mwork->rvu = rvu;
2448 		INIT_WORK(&mwork->work, mbox_up_handler);
2449 	}
2450 	goto free_regions;
2451 
2452 exit:
2453 	destroy_workqueue(mw->mbox_wq);
2454 unmap_regions:
2455 	while (num--)
2456 		iounmap((void __iomem *)mbox_regions[num]);
2457 free_regions:
2458 	kfree(mbox_regions);
2459 free_bitmap:
2460 	bitmap_free(pf_bmap);
2461 	return err;
2462 }
2463 
2464 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2465 {
2466 	struct otx2_mbox *mbox = &mw->mbox;
2467 	struct otx2_mbox_dev *mdev;
2468 	int devid;
2469 
2470 	if (mw->mbox_wq) {
2471 		destroy_workqueue(mw->mbox_wq);
2472 		mw->mbox_wq = NULL;
2473 	}
2474 
2475 	for (devid = 0; devid < mbox->ndevs; devid++) {
2476 		mdev = &mbox->dev[devid];
2477 		if (mdev->hwbase)
2478 			iounmap((void __iomem *)mdev->hwbase);
2479 	}
2480 
2481 	otx2_mbox_destroy(&mw->mbox);
2482 	otx2_mbox_destroy(&mw->mbox_up);
2483 }
2484 
2485 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2486 			   int mdevs, u64 intr)
2487 {
2488 	struct otx2_mbox_dev *mdev;
2489 	struct otx2_mbox *mbox;
2490 	struct mbox_hdr *hdr;
2491 	int i;
2492 
2493 	for (i = first; i < mdevs; i++) {
2494 		/* start from 0 */
2495 		if (!(intr & BIT_ULL(i - first)))
2496 			continue;
2497 
2498 		mbox = &mw->mbox;
2499 		mdev = &mbox->dev[i];
2500 		hdr = mdev->mbase + mbox->rx_start;
2501 
2502 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2503 		 * handler to  ensure that it holds a correct value next time
2504 		 * when the interrupt handler is called.
2505 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2506 		 * pf>mbox.up_num_msgs holds the data for use in
2507 		 * pfaf_mbox_up_handler.
2508 		 */
2509 
2510 		if (hdr->num_msgs) {
2511 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2512 			hdr->num_msgs = 0;
2513 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2514 		}
2515 		mbox = &mw->mbox_up;
2516 		mdev = &mbox->dev[i];
2517 		hdr = mdev->mbase + mbox->rx_start;
2518 		if (hdr->num_msgs) {
2519 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2520 			hdr->num_msgs = 0;
2521 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2522 		}
2523 	}
2524 }
2525 
2526 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2527 {
2528 	struct rvu *rvu = (struct rvu *)rvu_irq;
2529 	int vfs = rvu->vfs;
2530 	u64 intr;
2531 
2532 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2533 	/* Clear interrupts */
2534 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2535 	if (intr)
2536 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2537 
2538 	/* Sync with mbox memory region */
2539 	rmb();
2540 
2541 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2542 
2543 	/* Handle VF interrupts */
2544 	if (vfs > 64) {
2545 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2546 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2547 
2548 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2549 		vfs -= 64;
2550 	}
2551 
2552 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2553 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2554 	if (intr)
2555 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2556 
2557 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2558 
2559 	return IRQ_HANDLED;
2560 }
2561 
2562 static void rvu_enable_mbox_intr(struct rvu *rvu)
2563 {
2564 	struct rvu_hwinfo *hw = rvu->hw;
2565 
2566 	/* Clear spurious irqs, if any */
2567 	rvu_write64(rvu, BLKADDR_RVUM,
2568 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2569 
2570 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2571 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2572 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2573 }
2574 
2575 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2576 {
2577 	struct rvu_block *block;
2578 	int slot, lf, num_lfs;
2579 	int err;
2580 
2581 	block = &rvu->hw->block[blkaddr];
2582 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2583 					block->addr);
2584 	if (!num_lfs)
2585 		return;
2586 	for (slot = 0; slot < num_lfs; slot++) {
2587 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2588 		if (lf < 0)
2589 			continue;
2590 
2591 		/* Cleanup LF and reset it */
2592 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2593 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2594 		else if (block->addr == BLKADDR_NPA)
2595 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2596 		else if ((block->addr == BLKADDR_CPT0) ||
2597 			 (block->addr == BLKADDR_CPT1))
2598 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2599 					    slot);
2600 
2601 		err = rvu_lf_reset(rvu, block, lf);
2602 		if (err) {
2603 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2604 				block->addr, lf);
2605 		}
2606 	}
2607 }
2608 
2609 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2610 {
2611 	if (rvu_npc_exact_has_match_table(rvu))
2612 		rvu_npc_exact_reset(rvu, pcifunc);
2613 
2614 	mutex_lock(&rvu->flr_lock);
2615 	/* Reset order should reflect inter-block dependencies:
2616 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2617 	 * 2. Flush and reset SSO/SSOW
2618 	 * 3. Cleanup pools (NPA)
2619 	 */
2620 
2621 	/* Free multicast/mirror node associated with the 'pcifunc' */
2622 	rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2623 
2624 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2625 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2626 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2627 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2628 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2629 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2630 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2631 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2632 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2633 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2634 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2635 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2636 	 * Since LF is detached use LF number as -1.
2637 	 */
2638 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2639 	rvu_mac_reset(rvu, pcifunc);
2640 
2641 	if (rvu->mcs_blk_cnt)
2642 		rvu_mcs_flr_handler(rvu, pcifunc);
2643 
2644 	mutex_unlock(&rvu->flr_lock);
2645 }
2646 
2647 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2648 {
2649 	int reg = 0;
2650 
2651 	/* pcifunc = 0(PF0) | (vf + 1) */
2652 	__rvu_flr_handler(rvu, vf + 1);
2653 
2654 	if (vf >= 64) {
2655 		reg = 1;
2656 		vf = vf - 64;
2657 	}
2658 
2659 	/* Signal FLR finish and enable IRQ */
2660 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2661 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2662 }
2663 
2664 static void rvu_flr_handler(struct work_struct *work)
2665 {
2666 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2667 	struct rvu *rvu = flrwork->rvu;
2668 	u16 pcifunc, numvfs, vf;
2669 	u64 cfg;
2670 	int pf;
2671 
2672 	pf = flrwork - rvu->flr_wrk;
2673 	if (pf >= rvu->hw->total_pfs) {
2674 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2675 		return;
2676 	}
2677 
2678 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2679 	numvfs = (cfg >> 12) & 0xFF;
2680 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2681 
2682 	for (vf = 0; vf < numvfs; vf++)
2683 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2684 
2685 	__rvu_flr_handler(rvu, pcifunc);
2686 
2687 	/* Signal FLR finish */
2688 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2689 
2690 	/* Enable interrupt */
2691 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2692 }
2693 
2694 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2695 {
2696 	int dev, vf, reg = 0;
2697 	u64 intr;
2698 
2699 	if (start_vf >= 64)
2700 		reg = 1;
2701 
2702 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2703 	if (!intr)
2704 		return;
2705 
2706 	for (vf = 0; vf < numvfs; vf++) {
2707 		if (!(intr & BIT_ULL(vf)))
2708 			continue;
2709 		/* Clear and disable the interrupt */
2710 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2711 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2712 
2713 		dev = vf + start_vf + rvu->hw->total_pfs;
2714 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2715 	}
2716 }
2717 
2718 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2719 {
2720 	struct rvu *rvu = (struct rvu *)rvu_irq;
2721 	u64 intr;
2722 	u8  pf;
2723 
2724 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2725 	if (!intr)
2726 		goto afvf_flr;
2727 
2728 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2729 		if (intr & (1ULL << pf)) {
2730 			/* clear interrupt */
2731 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2732 				    BIT_ULL(pf));
2733 			/* Disable the interrupt */
2734 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2735 				    BIT_ULL(pf));
2736 			/* PF is already dead do only AF related operations */
2737 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2738 		}
2739 	}
2740 
2741 afvf_flr:
2742 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2743 	if (rvu->vfs > 64)
2744 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2745 
2746 	return IRQ_HANDLED;
2747 }
2748 
2749 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2750 {
2751 	int vf;
2752 
2753 	/* Nothing to be done here other than clearing the
2754 	 * TRPEND bit.
2755 	 */
2756 	for (vf = 0; vf < 64; vf++) {
2757 		if (intr & (1ULL << vf)) {
2758 			/* clear the trpend due to ME(master enable) */
2759 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2760 			/* clear interrupt */
2761 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2762 		}
2763 	}
2764 }
2765 
2766 /* Handles ME interrupts from VFs of AF */
2767 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2768 {
2769 	struct rvu *rvu = (struct rvu *)rvu_irq;
2770 	int vfset;
2771 	u64 intr;
2772 
2773 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2774 
2775 	for (vfset = 0; vfset <= 1; vfset++) {
2776 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2777 		if (intr)
2778 			rvu_me_handle_vfset(rvu, vfset, intr);
2779 	}
2780 
2781 	return IRQ_HANDLED;
2782 }
2783 
2784 /* Handles ME interrupts from PFs */
2785 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2786 {
2787 	struct rvu *rvu = (struct rvu *)rvu_irq;
2788 	u64 intr;
2789 	u8  pf;
2790 
2791 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2792 
2793 	/* Nothing to be done here other than clearing the
2794 	 * TRPEND bit.
2795 	 */
2796 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2797 		if (intr & (1ULL << pf)) {
2798 			/* clear the trpend due to ME(master enable) */
2799 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2800 				    BIT_ULL(pf));
2801 			/* clear interrupt */
2802 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2803 				    BIT_ULL(pf));
2804 		}
2805 	}
2806 
2807 	return IRQ_HANDLED;
2808 }
2809 
2810 static void rvu_unregister_interrupts(struct rvu *rvu)
2811 {
2812 	int irq;
2813 
2814 	rvu_cpt_unregister_interrupts(rvu);
2815 
2816 	/* Disable the Mbox interrupt */
2817 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2818 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2819 
2820 	/* Disable the PF FLR interrupt */
2821 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2822 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2823 
2824 	/* Disable the PF ME interrupt */
2825 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2826 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2827 
2828 	for (irq = 0; irq < rvu->num_vec; irq++) {
2829 		if (rvu->irq_allocated[irq]) {
2830 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2831 			rvu->irq_allocated[irq] = false;
2832 		}
2833 	}
2834 
2835 	pci_free_irq_vectors(rvu->pdev);
2836 	rvu->num_vec = 0;
2837 }
2838 
2839 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2840 {
2841 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2842 	int offset;
2843 
2844 	pfvf = &rvu->pf[0];
2845 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2846 
2847 	/* Make sure there are enough MSIX vectors configured so that
2848 	 * VF interrupts can be handled. Offset equal to zero means
2849 	 * that PF vectors are not configured and overlapping AF vectors.
2850 	 */
2851 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2852 	       offset;
2853 }
2854 
2855 static int rvu_register_interrupts(struct rvu *rvu)
2856 {
2857 	int ret, offset, pf_vec_start;
2858 
2859 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2860 
2861 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2862 					   NAME_SIZE, GFP_KERNEL);
2863 	if (!rvu->irq_name)
2864 		return -ENOMEM;
2865 
2866 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2867 					  sizeof(bool), GFP_KERNEL);
2868 	if (!rvu->irq_allocated)
2869 		return -ENOMEM;
2870 
2871 	/* Enable MSI-X */
2872 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2873 				    rvu->num_vec, PCI_IRQ_MSIX);
2874 	if (ret < 0) {
2875 		dev_err(rvu->dev,
2876 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2877 			rvu->num_vec, ret);
2878 		return ret;
2879 	}
2880 
2881 	/* Register mailbox interrupt handler */
2882 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2883 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2884 			  rvu_mbox_intr_handler, 0,
2885 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2886 	if (ret) {
2887 		dev_err(rvu->dev,
2888 			"RVUAF: IRQ registration failed for mbox irq\n");
2889 		goto fail;
2890 	}
2891 
2892 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2893 
2894 	/* Enable mailbox interrupts from all PFs */
2895 	rvu_enable_mbox_intr(rvu);
2896 
2897 	/* Register FLR interrupt handler */
2898 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2899 		"RVUAF FLR");
2900 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2901 			  rvu_flr_intr_handler, 0,
2902 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2903 			  rvu);
2904 	if (ret) {
2905 		dev_err(rvu->dev,
2906 			"RVUAF: IRQ registration failed for FLR\n");
2907 		goto fail;
2908 	}
2909 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2910 
2911 	/* Enable FLR interrupt for all PFs*/
2912 	rvu_write64(rvu, BLKADDR_RVUM,
2913 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2914 
2915 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2916 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2917 
2918 	/* Register ME interrupt handler */
2919 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2920 		"RVUAF ME");
2921 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2922 			  rvu_me_pf_intr_handler, 0,
2923 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2924 			  rvu);
2925 	if (ret) {
2926 		dev_err(rvu->dev,
2927 			"RVUAF: IRQ registration failed for ME\n");
2928 	}
2929 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2930 
2931 	/* Clear TRPEND bit for all PF */
2932 	rvu_write64(rvu, BLKADDR_RVUM,
2933 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2934 	/* Enable ME interrupt for all PFs*/
2935 	rvu_write64(rvu, BLKADDR_RVUM,
2936 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2937 
2938 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2939 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2940 
2941 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2942 		return 0;
2943 
2944 	/* Get PF MSIX vectors offset. */
2945 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2946 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2947 
2948 	/* Register MBOX0 interrupt. */
2949 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2950 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2951 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2952 			  rvu_mbox_intr_handler, 0,
2953 			  &rvu->irq_name[offset * NAME_SIZE],
2954 			  rvu);
2955 	if (ret)
2956 		dev_err(rvu->dev,
2957 			"RVUAF: IRQ registration failed for Mbox0\n");
2958 
2959 	rvu->irq_allocated[offset] = true;
2960 
2961 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2962 	 * simply increment current offset by 1.
2963 	 */
2964 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2965 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2966 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2967 			  rvu_mbox_intr_handler, 0,
2968 			  &rvu->irq_name[offset * NAME_SIZE],
2969 			  rvu);
2970 	if (ret)
2971 		dev_err(rvu->dev,
2972 			"RVUAF: IRQ registration failed for Mbox1\n");
2973 
2974 	rvu->irq_allocated[offset] = true;
2975 
2976 	/* Register FLR interrupt handler for AF's VFs */
2977 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2978 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2979 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2980 			  rvu_flr_intr_handler, 0,
2981 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2982 	if (ret) {
2983 		dev_err(rvu->dev,
2984 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2985 		goto fail;
2986 	}
2987 	rvu->irq_allocated[offset] = true;
2988 
2989 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2990 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2991 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2992 			  rvu_flr_intr_handler, 0,
2993 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2994 	if (ret) {
2995 		dev_err(rvu->dev,
2996 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2997 		goto fail;
2998 	}
2999 	rvu->irq_allocated[offset] = true;
3000 
3001 	/* Register ME interrupt handler for AF's VFs */
3002 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3003 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3004 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3005 			  rvu_me_vf_intr_handler, 0,
3006 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3007 	if (ret) {
3008 		dev_err(rvu->dev,
3009 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3010 		goto fail;
3011 	}
3012 	rvu->irq_allocated[offset] = true;
3013 
3014 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3015 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3016 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3017 			  rvu_me_vf_intr_handler, 0,
3018 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3019 	if (ret) {
3020 		dev_err(rvu->dev,
3021 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3022 		goto fail;
3023 	}
3024 	rvu->irq_allocated[offset] = true;
3025 
3026 	ret = rvu_cpt_register_interrupts(rvu);
3027 	if (ret)
3028 		goto fail;
3029 
3030 	return 0;
3031 
3032 fail:
3033 	rvu_unregister_interrupts(rvu);
3034 	return ret;
3035 }
3036 
3037 static void rvu_flr_wq_destroy(struct rvu *rvu)
3038 {
3039 	if (rvu->flr_wq) {
3040 		destroy_workqueue(rvu->flr_wq);
3041 		rvu->flr_wq = NULL;
3042 	}
3043 }
3044 
3045 static int rvu_flr_init(struct rvu *rvu)
3046 {
3047 	int dev, num_devs;
3048 	u64 cfg;
3049 	int pf;
3050 
3051 	/* Enable FLR for all PFs*/
3052 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3053 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3054 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3055 			    cfg | BIT_ULL(22));
3056 	}
3057 
3058 	rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3059 					      WQ_HIGHPRI | WQ_MEM_RECLAIM);
3060 	if (!rvu->flr_wq)
3061 		return -ENOMEM;
3062 
3063 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3064 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3065 				    sizeof(struct rvu_work), GFP_KERNEL);
3066 	if (!rvu->flr_wrk) {
3067 		destroy_workqueue(rvu->flr_wq);
3068 		return -ENOMEM;
3069 	}
3070 
3071 	for (dev = 0; dev < num_devs; dev++) {
3072 		rvu->flr_wrk[dev].rvu = rvu;
3073 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3074 	}
3075 
3076 	mutex_init(&rvu->flr_lock);
3077 
3078 	return 0;
3079 }
3080 
3081 static void rvu_disable_afvf_intr(struct rvu *rvu)
3082 {
3083 	int vfs = rvu->vfs;
3084 
3085 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3086 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3087 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3088 	if (vfs <= 64)
3089 		return;
3090 
3091 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3092 		      INTR_MASK(vfs - 64));
3093 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3094 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3095 }
3096 
3097 static void rvu_enable_afvf_intr(struct rvu *rvu)
3098 {
3099 	int vfs = rvu->vfs;
3100 
3101 	/* Clear any pending interrupts and enable AF VF interrupts for
3102 	 * the first 64 VFs.
3103 	 */
3104 	/* Mbox */
3105 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3106 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3107 
3108 	/* FLR */
3109 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3110 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3111 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3112 
3113 	/* Same for remaining VFs, if any. */
3114 	if (vfs <= 64)
3115 		return;
3116 
3117 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3118 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3119 		      INTR_MASK(vfs - 64));
3120 
3121 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3122 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3123 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3124 }
3125 
3126 int rvu_get_num_lbk_chans(void)
3127 {
3128 	struct pci_dev *pdev;
3129 	void __iomem *base;
3130 	int ret = -EIO;
3131 
3132 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3133 			      NULL);
3134 	if (!pdev)
3135 		goto err;
3136 
3137 	base = pci_ioremap_bar(pdev, 0);
3138 	if (!base)
3139 		goto err_put;
3140 
3141 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3142 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3143 	iounmap(base);
3144 err_put:
3145 	pci_dev_put(pdev);
3146 err:
3147 	return ret;
3148 }
3149 
3150 static int rvu_enable_sriov(struct rvu *rvu)
3151 {
3152 	struct pci_dev *pdev = rvu->pdev;
3153 	int err, chans, vfs;
3154 
3155 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3156 		dev_warn(&pdev->dev,
3157 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3158 		return 0;
3159 	}
3160 
3161 	chans = rvu_get_num_lbk_chans();
3162 	if (chans < 0)
3163 		return chans;
3164 
3165 	vfs = pci_sriov_get_totalvfs(pdev);
3166 
3167 	/* Limit VFs in case we have more VFs than LBK channels available. */
3168 	if (vfs > chans)
3169 		vfs = chans;
3170 
3171 	if (!vfs)
3172 		return 0;
3173 
3174 	/* LBK channel number 63 is used for switching packets between
3175 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3176 	 */
3177 	if (vfs > 62)
3178 		vfs = 62;
3179 
3180 	/* Save VFs number for reference in VF interrupts handlers.
3181 	 * Since interrupts might start arriving during SRIOV enablement
3182 	 * ordinary API cannot be used to get number of enabled VFs.
3183 	 */
3184 	rvu->vfs = vfs;
3185 
3186 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3187 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3188 	if (err)
3189 		return err;
3190 
3191 	rvu_enable_afvf_intr(rvu);
3192 	/* Make sure IRQs are enabled before SRIOV. */
3193 	mb();
3194 
3195 	err = pci_enable_sriov(pdev, vfs);
3196 	if (err) {
3197 		rvu_disable_afvf_intr(rvu);
3198 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3199 		return err;
3200 	}
3201 
3202 	return 0;
3203 }
3204 
3205 static void rvu_disable_sriov(struct rvu *rvu)
3206 {
3207 	rvu_disable_afvf_intr(rvu);
3208 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3209 	pci_disable_sriov(rvu->pdev);
3210 }
3211 
3212 static void rvu_update_module_params(struct rvu *rvu)
3213 {
3214 	const char *default_pfl_name = "default";
3215 
3216 	strscpy(rvu->mkex_pfl_name,
3217 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3218 	strscpy(rvu->kpu_pfl_name,
3219 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3220 }
3221 
3222 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3223 {
3224 	struct device *dev = &pdev->dev;
3225 	struct rvu *rvu;
3226 	int    err;
3227 
3228 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3229 	if (!rvu)
3230 		return -ENOMEM;
3231 
3232 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3233 	if (!rvu->hw) {
3234 		devm_kfree(dev, rvu);
3235 		return -ENOMEM;
3236 	}
3237 
3238 	pci_set_drvdata(pdev, rvu);
3239 	rvu->pdev = pdev;
3240 	rvu->dev = &pdev->dev;
3241 
3242 	err = pci_enable_device(pdev);
3243 	if (err) {
3244 		dev_err(dev, "Failed to enable PCI device\n");
3245 		goto err_freemem;
3246 	}
3247 
3248 	err = pci_request_regions(pdev, DRV_NAME);
3249 	if (err) {
3250 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3251 		goto err_disable_device;
3252 	}
3253 
3254 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3255 	if (err) {
3256 		dev_err(dev, "DMA mask config failed, abort\n");
3257 		goto err_release_regions;
3258 	}
3259 
3260 	pci_set_master(pdev);
3261 
3262 	rvu->ptp = ptp_get();
3263 	if (IS_ERR(rvu->ptp)) {
3264 		err = PTR_ERR(rvu->ptp);
3265 		if (err)
3266 			goto err_release_regions;
3267 		rvu->ptp = NULL;
3268 	}
3269 
3270 	/* Map Admin function CSRs */
3271 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3272 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3273 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3274 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3275 		err = -ENOMEM;
3276 		goto err_put_ptp;
3277 	}
3278 
3279 	/* Store module params in rvu structure */
3280 	rvu_update_module_params(rvu);
3281 
3282 	/* Check which blocks the HW supports */
3283 	rvu_check_block_implemented(rvu);
3284 
3285 	rvu_reset_all_blocks(rvu);
3286 
3287 	rvu_setup_hw_capabilities(rvu);
3288 
3289 	err = rvu_setup_hw_resources(rvu);
3290 	if (err)
3291 		goto err_put_ptp;
3292 
3293 	/* Init mailbox btw AF and PFs */
3294 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3295 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3296 			    rvu_afpf_mbox_up_handler);
3297 	if (err) {
3298 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3299 		goto err_hwsetup;
3300 	}
3301 
3302 	err = rvu_flr_init(rvu);
3303 	if (err) {
3304 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3305 		goto err_mbox;
3306 	}
3307 
3308 	err = rvu_register_interrupts(rvu);
3309 	if (err) {
3310 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3311 		goto err_flr;
3312 	}
3313 
3314 	err = rvu_register_dl(rvu);
3315 	if (err) {
3316 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3317 		goto err_irq;
3318 	}
3319 
3320 	rvu_setup_rvum_blk_revid(rvu);
3321 
3322 	/* Enable AF's VFs (if any) */
3323 	err = rvu_enable_sriov(rvu);
3324 	if (err) {
3325 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3326 		goto err_dl;
3327 	}
3328 
3329 	/* Initialize debugfs */
3330 	rvu_dbg_init(rvu);
3331 
3332 	mutex_init(&rvu->rswitch.switch_lock);
3333 
3334 	if (rvu->fwdata)
3335 		ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3336 			  rvu->fwdata->ptp_ext_tstamp);
3337 
3338 	return 0;
3339 err_dl:
3340 	rvu_unregister_dl(rvu);
3341 err_irq:
3342 	rvu_unregister_interrupts(rvu);
3343 err_flr:
3344 	rvu_flr_wq_destroy(rvu);
3345 err_mbox:
3346 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3347 err_hwsetup:
3348 	rvu_cgx_exit(rvu);
3349 	rvu_fwdata_exit(rvu);
3350 	rvu_mcs_exit(rvu);
3351 	rvu_reset_all_blocks(rvu);
3352 	rvu_free_hw_resources(rvu);
3353 	rvu_clear_rvum_blk_revid(rvu);
3354 err_put_ptp:
3355 	ptp_put(rvu->ptp);
3356 err_release_regions:
3357 	pci_release_regions(pdev);
3358 err_disable_device:
3359 	pci_disable_device(pdev);
3360 err_freemem:
3361 	pci_set_drvdata(pdev, NULL);
3362 	devm_kfree(&pdev->dev, rvu->hw);
3363 	devm_kfree(dev, rvu);
3364 	return err;
3365 }
3366 
3367 static void rvu_remove(struct pci_dev *pdev)
3368 {
3369 	struct rvu *rvu = pci_get_drvdata(pdev);
3370 
3371 	rvu_dbg_exit(rvu);
3372 	rvu_unregister_dl(rvu);
3373 	rvu_unregister_interrupts(rvu);
3374 	rvu_flr_wq_destroy(rvu);
3375 	rvu_cgx_exit(rvu);
3376 	rvu_fwdata_exit(rvu);
3377 	rvu_mcs_exit(rvu);
3378 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3379 	rvu_disable_sriov(rvu);
3380 	rvu_reset_all_blocks(rvu);
3381 	rvu_free_hw_resources(rvu);
3382 	rvu_clear_rvum_blk_revid(rvu);
3383 	ptp_put(rvu->ptp);
3384 	pci_release_regions(pdev);
3385 	pci_disable_device(pdev);
3386 	pci_set_drvdata(pdev, NULL);
3387 
3388 	devm_kfree(&pdev->dev, rvu->hw);
3389 	devm_kfree(&pdev->dev, rvu);
3390 }
3391 
3392 static struct pci_driver rvu_driver = {
3393 	.name = DRV_NAME,
3394 	.id_table = rvu_id_table,
3395 	.probe = rvu_probe,
3396 	.remove = rvu_remove,
3397 };
3398 
3399 static int __init rvu_init_module(void)
3400 {
3401 	int err;
3402 
3403 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3404 
3405 	err = pci_register_driver(&cgx_driver);
3406 	if (err < 0)
3407 		return err;
3408 
3409 	err = pci_register_driver(&ptp_driver);
3410 	if (err < 0)
3411 		goto ptp_err;
3412 
3413 	err = pci_register_driver(&mcs_driver);
3414 	if (err < 0)
3415 		goto mcs_err;
3416 
3417 	err =  pci_register_driver(&rvu_driver);
3418 	if (err < 0)
3419 		goto rvu_err;
3420 
3421 	return 0;
3422 rvu_err:
3423 	pci_unregister_driver(&mcs_driver);
3424 mcs_err:
3425 	pci_unregister_driver(&ptp_driver);
3426 ptp_err:
3427 	pci_unregister_driver(&cgx_driver);
3428 
3429 	return err;
3430 }
3431 
3432 static void __exit rvu_cleanup_module(void)
3433 {
3434 	pci_unregister_driver(&rvu_driver);
3435 	pci_unregister_driver(&mcs_driver);
3436 	pci_unregister_driver(&ptp_driver);
3437 	pci_unregister_driver(&cgx_driver);
3438 }
3439 
3440 module_init(rvu_init_module);
3441 module_exit(rvu_cleanup_module);
3442