xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 572af9f284669d31d9175122bbef9bc62cea8ded)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 
24 #define DRV_NAME	"rvu_af"
25 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407 
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 	u64 cfg;
411 
412 	/* Get numVFs attached to this PF and first HWVF */
413 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 	if (numvfs)
415 		*numvfs = (cfg >> 12) & 0xFF;
416 	if (hwvf)
417 		*hwvf = cfg & 0xFFF;
418 }
419 
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 	int pf, func;
423 	u64 cfg;
424 
425 	pf = rvu_get_pf(pcifunc);
426 	func = pcifunc & RVU_PFVF_FUNC_MASK;
427 
428 	/* Get first HWVF attached to this PF */
429 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430 
431 	return ((cfg & 0xFFF) + func - 1);
432 }
433 
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 	/* Check if it is a PF or VF */
437 	if (pcifunc & RVU_PFVF_FUNC_MASK)
438 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 	else
440 		return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442 
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 	int pf, vf, nvfs;
446 	u64 cfg;
447 
448 	pf = rvu_get_pf(pcifunc);
449 	if (pf >= rvu->hw->total_pfs)
450 		return false;
451 
452 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 		return true;
454 
455 	/* Check if VF is within number of VFs attached to this PF */
456 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 	nvfs = (cfg >> 12) & 0xFF;
459 	if (vf >= nvfs)
460 		return false;
461 
462 	return true;
463 }
464 
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 	struct rvu_block *block;
468 
469 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 		return false;
471 
472 	block = &hw->block[blkaddr];
473 	return block->implemented;
474 }
475 
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 	struct rvu_hwinfo *hw = rvu->hw;
479 	struct rvu_block *block;
480 	int blkid;
481 	u64 cfg;
482 
483 	/* For each block check if 'implemented' bit is set */
484 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 		block = &hw->block[blkid];
486 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 		if (cfg & BIT_ULL(11))
488 			block->implemented = true;
489 	}
490 }
491 
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 	rvu_write64(rvu, BLKADDR_RVUM,
495 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 		    RVU_BLK_RVUM_REVID);
497 }
498 
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 	rvu_write64(rvu, BLKADDR_RVUM,
502 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504 
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 	int err;
508 
509 	if (!block->implemented)
510 		return 0;
511 
512 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 			   true);
515 	return err;
516 }
517 
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 	struct rvu_block *block = &rvu->hw->block[blkaddr];
521 	int err;
522 
523 	if (!block->implemented)
524 		return;
525 
526 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 	if (err) {
529 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 			;
532 	}
533 }
534 
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 	/* Do a HW reset of all RVU blocks */
538 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552 
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 	struct rvu_pfvf *pfvf;
556 	u64 cfg;
557 	int lf;
558 
559 	for (lf = 0; lf < block->lf.max; lf++) {
560 		cfg = rvu_read64(rvu, block->addr,
561 				 block->lfcfg_reg | (lf << block->lfshift));
562 		if (!(cfg & BIT_ULL(63)))
563 			continue;
564 
565 		/* Set this resource as being used */
566 		__set_bit(lf, block->lf.bmap);
567 
568 		/* Get, to whom this LF is attached */
569 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 		rvu_update_rsrc_map(rvu, pfvf, block,
571 				    (cfg >> 8) & 0xFFFF, lf, true);
572 
573 		/* Set start MSIX vector for this LF within this PF/VF */
574 		rvu_set_msix_offset(rvu, pfvf, block, lf);
575 	}
576 }
577 
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 	int min_vecs;
581 
582 	if (!vf)
583 		goto check_pf;
584 
585 	if (!nvecs) {
586 		dev_warn(rvu->dev,
587 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 			 pf, vf - 1, nvecs);
589 	}
590 	return;
591 
592 check_pf:
593 	if (pf == 0)
594 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 	else
596 		min_vecs = RVU_PF_INT_VEC_CNT;
597 
598 	if (!(nvecs < min_vecs))
599 		return;
600 	dev_warn(rvu->dev,
601 		 "PF%d is configured with too few vectors, %d, min is %d\n",
602 		 pf, nvecs, min_vecs);
603 }
604 
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 	struct rvu_hwinfo *hw = rvu->hw;
608 	int pf, vf, numvfs, hwvf, err;
609 	int nvecs, offset, max_msix;
610 	struct rvu_pfvf *pfvf;
611 	u64 cfg, phy_addr;
612 	dma_addr_t iova;
613 
614 	for (pf = 0; pf < hw->total_pfs; pf++) {
615 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 		/* If PF is not enabled, nothing to do */
617 		if (!((cfg >> 20) & 0x01))
618 			continue;
619 
620 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621 
622 		pfvf = &rvu->pf[pf];
623 		/* Get num of MSIX vectors attached to this PF */
624 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627 
628 		/* Alloc msix bitmap for this PF */
629 		err = rvu_alloc_bitmap(&pfvf->msix);
630 		if (err)
631 			return err;
632 
633 		/* Allocate memory for MSIX vector to RVU block LF mapping */
634 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 						sizeof(u16), GFP_KERNEL);
636 		if (!pfvf->msix_lfmap)
637 			return -ENOMEM;
638 
639 		/* For PF0 (AF) firmware will set msix vector offsets for
640 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 		 */
642 		if (!pf)
643 			goto setup_vfmsix;
644 
645 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 		 * These are allocated on driver init and never freed,
647 		 * so no need to set 'msix_lfmap' for these.
648 		 */
649 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 		nvecs = (cfg >> 12) & 0xFF;
651 		cfg &= ~0x7FFULL;
652 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 		rvu_write64(rvu, BLKADDR_RVUM,
654 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 		/* Alloc msix bitmap for VFs */
657 		for (vf = 0; vf < numvfs; vf++) {
658 			pfvf =  &rvu->hwvf[hwvf + vf];
659 			/* Get num of MSIX vectors attached to this VF */
660 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 					 RVU_PRIV_PFX_MSIX_CFG(pf));
662 			pfvf->msix.max = (cfg & 0xFFF) + 1;
663 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664 
665 			/* Alloc msix bitmap for this VF */
666 			err = rvu_alloc_bitmap(&pfvf->msix);
667 			if (err)
668 				return err;
669 
670 			pfvf->msix_lfmap =
671 				devm_kcalloc(rvu->dev, pfvf->msix.max,
672 					     sizeof(u16), GFP_KERNEL);
673 			if (!pfvf->msix_lfmap)
674 				return -ENOMEM;
675 
676 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 			 * These are allocated on driver init and never freed,
678 			 * so no need to set 'msix_lfmap' for these.
679 			 */
680 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 			nvecs = (cfg >> 12) & 0xFF;
683 			cfg &= ~0x7FFULL;
684 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 			rvu_write64(rvu, BLKADDR_RVUM,
686 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 				    cfg | offset);
688 		}
689 	}
690 
691 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 	 * create an IOMMU mapping for the physical address configured by
693 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 	 */
695 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 	max_msix = cfg & 0xFFFFF;
697 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 		phy_addr = rvu->fwdata->msixtr_base;
699 	else
700 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701 
702 	iova = dma_map_resource(rvu->dev, phy_addr,
703 				max_msix * PCI_MSIX_ENTRY_SIZE,
704 				DMA_BIDIRECTIONAL, 0);
705 
706 	if (dma_mapping_error(rvu->dev, iova))
707 		return -ENOMEM;
708 
709 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 	rvu->msix_base_iova = iova;
711 	rvu->msixtr_base_phy = phy_addr;
712 
713 	return 0;
714 }
715 
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 	/* Restore msixtr base register */
719 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 		    rvu->msixtr_base_phy);
721 }
722 
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 	struct rvu_hwinfo *hw = rvu->hw;
726 	struct rvu_block *block;
727 	struct rvu_pfvf  *pfvf;
728 	int id, max_msix;
729 	u64 cfg;
730 
731 	rvu_npa_freemem(rvu);
732 	rvu_npc_freemem(rvu);
733 	rvu_nix_freemem(rvu);
734 
735 	/* Free block LF bitmaps */
736 	for (id = 0; id < BLK_COUNT; id++) {
737 		block = &hw->block[id];
738 		kfree(block->lf.bmap);
739 	}
740 
741 	/* Free MSIX bitmaps */
742 	for (id = 0; id < hw->total_pfs; id++) {
743 		pfvf = &rvu->pf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	for (id = 0; id < hw->total_vfs; id++) {
748 		pfvf = &rvu->hwvf[id];
749 		kfree(pfvf->msix.bmap);
750 	}
751 
752 	/* Unmap MSIX vector base IOVA mapping */
753 	if (!rvu->msix_base_iova)
754 		return;
755 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 	max_msix = cfg & 0xFFFFF;
757 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 			   max_msix * PCI_MSIX_ENTRY_SIZE,
759 			   DMA_BIDIRECTIONAL, 0);
760 
761 	rvu_reset_msix(rvu);
762 	mutex_destroy(&rvu->rsrc_lock);
763 }
764 
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 
821 	BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
823 	if (!rvu->fwdata)
824 		goto fail;
825 	if (!is_rvu_fwdata_valid(rvu)) {
826 		dev_err(rvu->dev,
827 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
828 		iounmap(rvu->fwdata);
829 		rvu->fwdata = NULL;
830 		return -EINVAL;
831 	}
832 	return 0;
833 fail:
834 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835 	return -EIO;
836 }
837 
838 static void rvu_fwdata_exit(struct rvu *rvu)
839 {
840 	if (rvu->fwdata)
841 		iounmap(rvu->fwdata);
842 }
843 
844 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 	struct rvu_hwinfo *hw = rvu->hw;
847 	struct rvu_block *block;
848 	int blkid;
849 	u64 cfg;
850 
851 	/* Init NIX LF's bitmap */
852 	block = &hw->block[blkaddr];
853 	if (!block->implemented)
854 		return 0;
855 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
857 	block->lf.max = cfg & 0xFFF;
858 	block->addr = blkaddr;
859 	block->type = BLKTYPE_NIX;
860 	block->lfshift = 8;
861 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866 	block->lfreset_reg = NIX_AF_LF_RST;
867 	block->rvu = rvu;
868 	sprintf(block->name, "NIX%d", blkid);
869 	rvu->nix_blkaddr[blkid] = blkaddr;
870 	return rvu_alloc_bitmap(&block->lf);
871 }
872 
873 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874 {
875 	struct rvu_hwinfo *hw = rvu->hw;
876 	struct rvu_block *block;
877 	int blkid;
878 	u64 cfg;
879 
880 	/* Init CPT LF's bitmap */
881 	block = &hw->block[blkaddr];
882 	if (!block->implemented)
883 		return 0;
884 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
886 	block->lf.max = cfg & 0xFF;
887 	block->addr = blkaddr;
888 	block->type = BLKTYPE_CPT;
889 	block->multislot = true;
890 	block->lfshift = 3;
891 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896 	block->lfreset_reg = CPT_AF_LF_RST;
897 	block->rvu = rvu;
898 	sprintf(block->name, "CPT%d", blkid);
899 	return rvu_alloc_bitmap(&block->lf);
900 }
901 
902 static void rvu_get_lbk_bufsize(struct rvu *rvu)
903 {
904 	struct pci_dev *pdev = NULL;
905 	void __iomem *base;
906 	u64 lbk_const;
907 
908 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
910 	if (!pdev)
911 		return;
912 
913 	base = pci_ioremap_bar(pdev, 0);
914 	if (!base)
915 		goto err_put;
916 
917 	lbk_const = readq(base + LBK_CONST);
918 
919 	/* cache fifo size */
920 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921 
922 	iounmap(base);
923 err_put:
924 	pci_dev_put(pdev);
925 }
926 
927 static int rvu_setup_hw_resources(struct rvu *rvu)
928 {
929 	struct rvu_hwinfo *hw = rvu->hw;
930 	struct rvu_block *block;
931 	int blkid, err;
932 	u64 cfg;
933 
934 	/* Get HW supported max RVU PF & VF count */
935 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
936 	hw->total_pfs = (cfg >> 32) & 0xFF;
937 	hw->total_vfs = (cfg >> 20) & 0xFFF;
938 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939 
940 	if (!is_rvu_otx2(rvu))
941 		rvu_apr_block_cn10k_init(rvu);
942 
943 	/* Init NPA LF's bitmap */
944 	block = &hw->block[BLKADDR_NPA];
945 	if (!block->implemented)
946 		goto nix;
947 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
948 	block->lf.max = (cfg >> 16) & 0xFFF;
949 	block->addr = BLKADDR_NPA;
950 	block->type = BLKTYPE_NPA;
951 	block->lfshift = 8;
952 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957 	block->lfreset_reg = NPA_AF_LF_RST;
958 	block->rvu = rvu;
959 	sprintf(block->name, "NPA");
960 	err = rvu_alloc_bitmap(&block->lf);
961 	if (err) {
962 		dev_err(rvu->dev,
963 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
964 		return err;
965 	}
966 
967 nix:
968 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
969 	if (err) {
970 		dev_err(rvu->dev,
971 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972 		return err;
973 	}
974 
975 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
976 	if (err) {
977 		dev_err(rvu->dev,
978 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979 		return err;
980 	}
981 
982 	/* Init SSO group's bitmap */
983 	block = &hw->block[BLKADDR_SSO];
984 	if (!block->implemented)
985 		goto ssow;
986 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
987 	block->lf.max = cfg & 0xFFFF;
988 	block->addr = BLKADDR_SSO;
989 	block->type = BLKTYPE_SSO;
990 	block->multislot = true;
991 	block->lfshift = 3;
992 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998 	block->rvu = rvu;
999 	sprintf(block->name, "SSO GROUP");
1000 	err = rvu_alloc_bitmap(&block->lf);
1001 	if (err) {
1002 		dev_err(rvu->dev,
1003 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
1004 		return err;
1005 	}
1006 
1007 ssow:
1008 	/* Init SSO workslot's bitmap */
1009 	block = &hw->block[BLKADDR_SSOW];
1010 	if (!block->implemented)
1011 		goto tim;
1012 	block->lf.max = (cfg >> 56) & 0xFF;
1013 	block->addr = BLKADDR_SSOW;
1014 	block->type = BLKTYPE_SSOW;
1015 	block->multislot = true;
1016 	block->lfshift = 3;
1017 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023 	block->rvu = rvu;
1024 	sprintf(block->name, "SSOWS");
1025 	err = rvu_alloc_bitmap(&block->lf);
1026 	if (err) {
1027 		dev_err(rvu->dev,
1028 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029 		return err;
1030 	}
1031 
1032 tim:
1033 	/* Init TIM LF's bitmap */
1034 	block = &hw->block[BLKADDR_TIM];
1035 	if (!block->implemented)
1036 		goto cpt;
1037 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1038 	block->lf.max = cfg & 0xFFFF;
1039 	block->addr = BLKADDR_TIM;
1040 	block->type = BLKTYPE_TIM;
1041 	block->multislot = true;
1042 	block->lfshift = 3;
1043 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048 	block->lfreset_reg = TIM_AF_LF_RST;
1049 	block->rvu = rvu;
1050 	sprintf(block->name, "TIM");
1051 	err = rvu_alloc_bitmap(&block->lf);
1052 	if (err) {
1053 		dev_err(rvu->dev,
1054 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1055 		return err;
1056 	}
1057 
1058 cpt:
1059 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1060 	if (err) {
1061 		dev_err(rvu->dev,
1062 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063 		return err;
1064 	}
1065 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1066 	if (err) {
1067 		dev_err(rvu->dev,
1068 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069 		return err;
1070 	}
1071 
1072 	/* Allocate memory for PFVF data */
1073 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1074 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1075 	if (!rvu->pf) {
1076 		dev_err(rvu->dev,
1077 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078 		return -ENOMEM;
1079 	}
1080 
1081 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1082 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1083 	if (!rvu->hwvf) {
1084 		dev_err(rvu->dev,
1085 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086 		return -ENOMEM;
1087 	}
1088 
1089 	mutex_init(&rvu->rsrc_lock);
1090 
1091 	rvu_fwdata_init(rvu);
1092 
1093 	err = rvu_setup_msix_resources(rvu);
1094 	if (err) {
1095 		dev_err(rvu->dev,
1096 			"%s: Failed to setup MSIX resources\n", __func__);
1097 		return err;
1098 	}
1099 
1100 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101 		block = &hw->block[blkid];
1102 		if (!block->lf.bmap)
1103 			continue;
1104 
1105 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1106 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1107 					     sizeof(u16), GFP_KERNEL);
1108 		if (!block->fn_map) {
1109 			err = -ENOMEM;
1110 			goto msix_err;
1111 		}
1112 
1113 		/* Scan all blocks to check if low level firmware has
1114 		 * already provisioned any of the resources to a PF/VF.
1115 		 */
1116 		rvu_scan_block(rvu, block);
1117 	}
1118 
1119 	err = rvu_set_channels_base(rvu);
1120 	if (err)
1121 		goto msix_err;
1122 
1123 	err = rvu_npc_init(rvu);
1124 	if (err) {
1125 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126 		goto npc_err;
1127 	}
1128 
1129 	err = rvu_cgx_init(rvu);
1130 	if (err) {
1131 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132 		goto cgx_err;
1133 	}
1134 
1135 	err = rvu_npc_exact_init(rvu);
1136 	if (err) {
1137 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1138 		return err;
1139 	}
1140 
1141 	/* Assign MACs for CGX mapped functions */
1142 	rvu_setup_pfvf_macaddress(rvu);
1143 
1144 	err = rvu_npa_init(rvu);
1145 	if (err) {
1146 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147 		goto npa_err;
1148 	}
1149 
1150 	rvu_get_lbk_bufsize(rvu);
1151 
1152 	err = rvu_nix_init(rvu);
1153 	if (err) {
1154 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155 		goto nix_err;
1156 	}
1157 
1158 	err = rvu_sdp_init(rvu);
1159 	if (err) {
1160 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161 		goto nix_err;
1162 	}
1163 
1164 	rvu_program_channels(rvu);
1165 	cgx_start_linkup(rvu);
1166 
1167 	err = rvu_mcs_init(rvu);
1168 	if (err) {
1169 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1170 		goto nix_err;
1171 	}
1172 
1173 	err = rvu_cpt_init(rvu);
1174 	if (err) {
1175 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1176 		goto mcs_err;
1177 	}
1178 
1179 	return 0;
1180 
1181 mcs_err:
1182 	rvu_mcs_exit(rvu);
1183 nix_err:
1184 	rvu_nix_freemem(rvu);
1185 npa_err:
1186 	rvu_npa_freemem(rvu);
1187 cgx_err:
1188 	rvu_cgx_exit(rvu);
1189 npc_err:
1190 	rvu_npc_freemem(rvu);
1191 	rvu_fwdata_exit(rvu);
1192 msix_err:
1193 	rvu_reset_msix(rvu);
1194 	return err;
1195 }
1196 
1197 /* NPA and NIX admin queue APIs */
1198 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1199 {
1200 	if (!aq)
1201 		return;
1202 
1203 	qmem_free(rvu->dev, aq->inst);
1204 	qmem_free(rvu->dev, aq->res);
1205 	devm_kfree(rvu->dev, aq);
1206 }
1207 
1208 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1209 		 int qsize, int inst_size, int res_size)
1210 {
1211 	struct admin_queue *aq;
1212 	int err;
1213 
1214 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1215 	if (!*ad_queue)
1216 		return -ENOMEM;
1217 	aq = *ad_queue;
1218 
1219 	/* Alloc memory for instructions i.e AQ */
1220 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1221 	if (err) {
1222 		devm_kfree(rvu->dev, aq);
1223 		return err;
1224 	}
1225 
1226 	/* Alloc memory for results */
1227 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1228 	if (err) {
1229 		rvu_aq_free(rvu, aq);
1230 		return err;
1231 	}
1232 
1233 	spin_lock_init(&aq->lock);
1234 	return 0;
1235 }
1236 
1237 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1238 			   struct ready_msg_rsp *rsp)
1239 {
1240 	if (rvu->fwdata) {
1241 		rsp->rclk_freq = rvu->fwdata->rclk;
1242 		rsp->sclk_freq = rvu->fwdata->sclk;
1243 	}
1244 	return 0;
1245 }
1246 
1247 /* Get current count of a RVU block's LF/slots
1248  * provisioned to a given RVU func.
1249  */
1250 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1251 {
1252 	switch (blkaddr) {
1253 	case BLKADDR_NPA:
1254 		return pfvf->npalf ? 1 : 0;
1255 	case BLKADDR_NIX0:
1256 	case BLKADDR_NIX1:
1257 		return pfvf->nixlf ? 1 : 0;
1258 	case BLKADDR_SSO:
1259 		return pfvf->sso;
1260 	case BLKADDR_SSOW:
1261 		return pfvf->ssow;
1262 	case BLKADDR_TIM:
1263 		return pfvf->timlfs;
1264 	case BLKADDR_CPT0:
1265 		return pfvf->cptlfs;
1266 	case BLKADDR_CPT1:
1267 		return pfvf->cpt1_lfs;
1268 	}
1269 	return 0;
1270 }
1271 
1272 /* Return true if LFs of block type are attached to pcifunc */
1273 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1274 {
1275 	switch (blktype) {
1276 	case BLKTYPE_NPA:
1277 		return pfvf->npalf ? 1 : 0;
1278 	case BLKTYPE_NIX:
1279 		return pfvf->nixlf ? 1 : 0;
1280 	case BLKTYPE_SSO:
1281 		return !!pfvf->sso;
1282 	case BLKTYPE_SSOW:
1283 		return !!pfvf->ssow;
1284 	case BLKTYPE_TIM:
1285 		return !!pfvf->timlfs;
1286 	case BLKTYPE_CPT:
1287 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1288 	}
1289 
1290 	return false;
1291 }
1292 
1293 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1294 {
1295 	struct rvu_pfvf *pfvf;
1296 
1297 	if (!is_pf_func_valid(rvu, pcifunc))
1298 		return false;
1299 
1300 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1301 
1302 	/* Check if this PFFUNC has a LF of type blktype attached */
1303 	if (!is_blktype_attached(pfvf, blktype))
1304 		return false;
1305 
1306 	return true;
1307 }
1308 
1309 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1310 			   int pcifunc, int slot)
1311 {
1312 	u64 val;
1313 
1314 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1315 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1316 	/* Wait for the lookup to finish */
1317 	/* TODO: put some timeout here */
1318 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1319 		;
1320 
1321 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1322 
1323 	/* Check LF valid bit */
1324 	if (!(val & (1ULL << 12)))
1325 		return -1;
1326 
1327 	return (val & 0xFFF);
1328 }
1329 
1330 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1331 			      u16 global_slot, u16 *slot_in_block)
1332 {
1333 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1334 	int numlfs, total_lfs = 0, nr_blocks = 0;
1335 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1336 	struct rvu_block *block;
1337 	int blkaddr;
1338 	u16 start_slot;
1339 
1340 	if (!is_blktype_attached(pfvf, blktype))
1341 		return -ENODEV;
1342 
1343 	/* Get all the block addresses from which LFs are attached to
1344 	 * the given pcifunc in num_blkaddr[].
1345 	 */
1346 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1347 		block = &rvu->hw->block[blkaddr];
1348 		if (block->type != blktype)
1349 			continue;
1350 		if (!is_block_implemented(rvu->hw, blkaddr))
1351 			continue;
1352 
1353 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1354 		if (numlfs) {
1355 			total_lfs += numlfs;
1356 			num_blkaddr[nr_blocks] = blkaddr;
1357 			nr_blocks++;
1358 		}
1359 	}
1360 
1361 	if (global_slot >= total_lfs)
1362 		return -ENODEV;
1363 
1364 	/* Based on the given global slot number retrieve the
1365 	 * correct block address out of all attached block
1366 	 * addresses and slot number in that block.
1367 	 */
1368 	total_lfs = 0;
1369 	blkaddr = -ENODEV;
1370 	for (i = 0; i < nr_blocks; i++) {
1371 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1372 		total_lfs += numlfs;
1373 		if (global_slot < total_lfs) {
1374 			blkaddr = num_blkaddr[i];
1375 			start_slot = total_lfs - numlfs;
1376 			*slot_in_block = global_slot - start_slot;
1377 			break;
1378 		}
1379 	}
1380 
1381 	return blkaddr;
1382 }
1383 
1384 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1385 {
1386 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1387 	struct rvu_hwinfo *hw = rvu->hw;
1388 	struct rvu_block *block;
1389 	int slot, lf, num_lfs;
1390 	int blkaddr;
1391 
1392 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1393 	if (blkaddr < 0)
1394 		return;
1395 
1396 	if (blktype == BLKTYPE_NIX)
1397 		rvu_nix_reset_mac(pfvf, pcifunc);
1398 
1399 	block = &hw->block[blkaddr];
1400 
1401 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1402 	if (!num_lfs)
1403 		return;
1404 
1405 	for (slot = 0; slot < num_lfs; slot++) {
1406 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1407 		if (lf < 0) /* This should never happen */
1408 			continue;
1409 
1410 		/* Disable the LF */
1411 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1412 			    (lf << block->lfshift), 0x00ULL);
1413 
1414 		/* Update SW maintained mapping info as well */
1415 		rvu_update_rsrc_map(rvu, pfvf, block,
1416 				    pcifunc, lf, false);
1417 
1418 		/* Free the resource */
1419 		rvu_free_rsrc(&block->lf, lf);
1420 
1421 		/* Clear MSIX vector offset for this LF */
1422 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1423 	}
1424 }
1425 
1426 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1427 			    u16 pcifunc)
1428 {
1429 	struct rvu_hwinfo *hw = rvu->hw;
1430 	bool detach_all = true;
1431 	struct rvu_block *block;
1432 	int blkid;
1433 
1434 	mutex_lock(&rvu->rsrc_lock);
1435 
1436 	/* Check for partial resource detach */
1437 	if (detach && detach->partial)
1438 		detach_all = false;
1439 
1440 	/* Check for RVU block's LFs attached to this func,
1441 	 * if so, detach them.
1442 	 */
1443 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1444 		block = &hw->block[blkid];
1445 		if (!block->lf.bmap)
1446 			continue;
1447 		if (!detach_all && detach) {
1448 			if (blkid == BLKADDR_NPA && !detach->npalf)
1449 				continue;
1450 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1451 				continue;
1452 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1453 				continue;
1454 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1455 				continue;
1456 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1457 				continue;
1458 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1459 				continue;
1460 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1461 				continue;
1462 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1463 				continue;
1464 		}
1465 		rvu_detach_block(rvu, pcifunc, block->type);
1466 	}
1467 
1468 	mutex_unlock(&rvu->rsrc_lock);
1469 	return 0;
1470 }
1471 
1472 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1473 				      struct rsrc_detach *detach,
1474 				      struct msg_rsp *rsp)
1475 {
1476 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1477 }
1478 
1479 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1480 {
1481 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1482 	int blkaddr = BLKADDR_NIX0, vf;
1483 	struct rvu_pfvf *pf;
1484 
1485 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1486 
1487 	/* All CGX mapped PFs are set with assigned NIX block during init */
1488 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1489 		blkaddr = pf->nix_blkaddr;
1490 	} else if (is_lbk_vf(rvu, pcifunc)) {
1491 		vf = pcifunc - 1;
1492 		/* Assign NIX based on VF number. All even numbered VFs get
1493 		 * NIX0 and odd numbered gets NIX1
1494 		 */
1495 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1496 		/* NIX1 is not present on all silicons */
1497 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1498 			blkaddr = BLKADDR_NIX0;
1499 	}
1500 
1501 	/* if SDP1 then the blkaddr is NIX1 */
1502 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1503 		blkaddr = BLKADDR_NIX1;
1504 
1505 	switch (blkaddr) {
1506 	case BLKADDR_NIX1:
1507 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1508 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1509 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1510 		break;
1511 	case BLKADDR_NIX0:
1512 	default:
1513 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1514 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1515 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1516 		break;
1517 	}
1518 
1519 	return pfvf->nix_blkaddr;
1520 }
1521 
1522 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1523 				  u16 pcifunc, struct rsrc_attach *attach)
1524 {
1525 	int blkaddr;
1526 
1527 	switch (blktype) {
1528 	case BLKTYPE_NIX:
1529 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1530 		break;
1531 	case BLKTYPE_CPT:
1532 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1533 			return rvu_get_blkaddr(rvu, blktype, 0);
1534 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1535 			  BLKADDR_CPT0;
1536 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1537 			return -ENODEV;
1538 		break;
1539 	default:
1540 		return rvu_get_blkaddr(rvu, blktype, 0);
1541 	}
1542 
1543 	if (is_block_implemented(rvu->hw, blkaddr))
1544 		return blkaddr;
1545 
1546 	return -ENODEV;
1547 }
1548 
1549 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1550 			     int num_lfs, struct rsrc_attach *attach)
1551 {
1552 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1553 	struct rvu_hwinfo *hw = rvu->hw;
1554 	struct rvu_block *block;
1555 	int slot, lf;
1556 	int blkaddr;
1557 	u64 cfg;
1558 
1559 	if (!num_lfs)
1560 		return;
1561 
1562 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1563 	if (blkaddr < 0)
1564 		return;
1565 
1566 	block = &hw->block[blkaddr];
1567 	if (!block->lf.bmap)
1568 		return;
1569 
1570 	for (slot = 0; slot < num_lfs; slot++) {
1571 		/* Allocate the resource */
1572 		lf = rvu_alloc_rsrc(&block->lf);
1573 		if (lf < 0)
1574 			return;
1575 
1576 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1577 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1578 			    (lf << block->lfshift), cfg);
1579 		rvu_update_rsrc_map(rvu, pfvf, block,
1580 				    pcifunc, lf, true);
1581 
1582 		/* Set start MSIX vector for this LF within this PF/VF */
1583 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1584 	}
1585 }
1586 
1587 static int rvu_check_rsrc_availability(struct rvu *rvu,
1588 				       struct rsrc_attach *req, u16 pcifunc)
1589 {
1590 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1591 	int free_lfs, mappedlfs, blkaddr;
1592 	struct rvu_hwinfo *hw = rvu->hw;
1593 	struct rvu_block *block;
1594 
1595 	/* Only one NPA LF can be attached */
1596 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1597 		block = &hw->block[BLKADDR_NPA];
1598 		free_lfs = rvu_rsrc_free_count(&block->lf);
1599 		if (!free_lfs)
1600 			goto fail;
1601 	} else if (req->npalf) {
1602 		dev_err(&rvu->pdev->dev,
1603 			"Func 0x%x: Invalid req, already has NPA\n",
1604 			 pcifunc);
1605 		return -EINVAL;
1606 	}
1607 
1608 	/* Only one NIX LF can be attached */
1609 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1610 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1611 						 pcifunc, req);
1612 		if (blkaddr < 0)
1613 			return blkaddr;
1614 		block = &hw->block[blkaddr];
1615 		free_lfs = rvu_rsrc_free_count(&block->lf);
1616 		if (!free_lfs)
1617 			goto fail;
1618 	} else if (req->nixlf) {
1619 		dev_err(&rvu->pdev->dev,
1620 			"Func 0x%x: Invalid req, already has NIX\n",
1621 			pcifunc);
1622 		return -EINVAL;
1623 	}
1624 
1625 	if (req->sso) {
1626 		block = &hw->block[BLKADDR_SSO];
1627 		/* Is request within limits ? */
1628 		if (req->sso > block->lf.max) {
1629 			dev_err(&rvu->pdev->dev,
1630 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1631 				 pcifunc, req->sso, block->lf.max);
1632 			return -EINVAL;
1633 		}
1634 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1635 		free_lfs = rvu_rsrc_free_count(&block->lf);
1636 		/* Check if additional resources are available */
1637 		if (req->sso > mappedlfs &&
1638 		    ((req->sso - mappedlfs) > free_lfs))
1639 			goto fail;
1640 	}
1641 
1642 	if (req->ssow) {
1643 		block = &hw->block[BLKADDR_SSOW];
1644 		if (req->ssow > block->lf.max) {
1645 			dev_err(&rvu->pdev->dev,
1646 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1647 				 pcifunc, req->ssow, block->lf.max);
1648 			return -EINVAL;
1649 		}
1650 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1651 		free_lfs = rvu_rsrc_free_count(&block->lf);
1652 		if (req->ssow > mappedlfs &&
1653 		    ((req->ssow - mappedlfs) > free_lfs))
1654 			goto fail;
1655 	}
1656 
1657 	if (req->timlfs) {
1658 		block = &hw->block[BLKADDR_TIM];
1659 		if (req->timlfs > block->lf.max) {
1660 			dev_err(&rvu->pdev->dev,
1661 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1662 				 pcifunc, req->timlfs, block->lf.max);
1663 			return -EINVAL;
1664 		}
1665 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1666 		free_lfs = rvu_rsrc_free_count(&block->lf);
1667 		if (req->timlfs > mappedlfs &&
1668 		    ((req->timlfs - mappedlfs) > free_lfs))
1669 			goto fail;
1670 	}
1671 
1672 	if (req->cptlfs) {
1673 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1674 						 pcifunc, req);
1675 		if (blkaddr < 0)
1676 			return blkaddr;
1677 		block = &hw->block[blkaddr];
1678 		if (req->cptlfs > block->lf.max) {
1679 			dev_err(&rvu->pdev->dev,
1680 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1681 				 pcifunc, req->cptlfs, block->lf.max);
1682 			return -EINVAL;
1683 		}
1684 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1685 		free_lfs = rvu_rsrc_free_count(&block->lf);
1686 		if (req->cptlfs > mappedlfs &&
1687 		    ((req->cptlfs - mappedlfs) > free_lfs))
1688 			goto fail;
1689 	}
1690 
1691 	return 0;
1692 
1693 fail:
1694 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1695 	return -ENOSPC;
1696 }
1697 
1698 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1699 				       struct rsrc_attach *attach)
1700 {
1701 	int blkaddr, num_lfs;
1702 
1703 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1704 					 attach->hdr.pcifunc, attach);
1705 	if (blkaddr < 0)
1706 		return false;
1707 
1708 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1709 					blkaddr);
1710 	/* Requester already has LFs from given block ? */
1711 	return !!num_lfs;
1712 }
1713 
1714 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1715 				      struct rsrc_attach *attach,
1716 				      struct msg_rsp *rsp)
1717 {
1718 	u16 pcifunc = attach->hdr.pcifunc;
1719 	int err;
1720 
1721 	/* If first request, detach all existing attached resources */
1722 	if (!attach->modify)
1723 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1724 
1725 	mutex_lock(&rvu->rsrc_lock);
1726 
1727 	/* Check if the request can be accommodated */
1728 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1729 	if (err)
1730 		goto exit;
1731 
1732 	/* Now attach the requested resources */
1733 	if (attach->npalf)
1734 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1735 
1736 	if (attach->nixlf)
1737 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1738 
1739 	if (attach->sso) {
1740 		/* RVU func doesn't know which exact LF or slot is attached
1741 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1742 		 * request, simply detach all existing attached LFs/slots
1743 		 * and attach a fresh.
1744 		 */
1745 		if (attach->modify)
1746 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1747 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1748 				 attach->sso, attach);
1749 	}
1750 
1751 	if (attach->ssow) {
1752 		if (attach->modify)
1753 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1754 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1755 				 attach->ssow, attach);
1756 	}
1757 
1758 	if (attach->timlfs) {
1759 		if (attach->modify)
1760 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1761 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1762 				 attach->timlfs, attach);
1763 	}
1764 
1765 	if (attach->cptlfs) {
1766 		if (attach->modify &&
1767 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1768 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1769 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1770 				 attach->cptlfs, attach);
1771 	}
1772 
1773 exit:
1774 	mutex_unlock(&rvu->rsrc_lock);
1775 	return err;
1776 }
1777 
1778 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1779 			       int blkaddr, int lf)
1780 {
1781 	u16 vec;
1782 
1783 	if (lf < 0)
1784 		return MSIX_VECTOR_INVALID;
1785 
1786 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1787 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1788 			return vec;
1789 	}
1790 	return MSIX_VECTOR_INVALID;
1791 }
1792 
1793 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1794 				struct rvu_block *block, int lf)
1795 {
1796 	u16 nvecs, vec, offset;
1797 	u64 cfg;
1798 
1799 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1800 			 (lf << block->lfshift));
1801 	nvecs = (cfg >> 12) & 0xFF;
1802 
1803 	/* Check and alloc MSIX vectors, must be contiguous */
1804 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1805 		return;
1806 
1807 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1808 
1809 	/* Config MSIX offset in LF */
1810 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1811 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1812 
1813 	/* Update the bitmap as well */
1814 	for (vec = 0; vec < nvecs; vec++)
1815 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1816 }
1817 
1818 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1819 				  struct rvu_block *block, int lf)
1820 {
1821 	u16 nvecs, vec, offset;
1822 	u64 cfg;
1823 
1824 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1825 			 (lf << block->lfshift));
1826 	nvecs = (cfg >> 12) & 0xFF;
1827 
1828 	/* Clear MSIX offset in LF */
1829 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1830 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1831 
1832 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1833 
1834 	/* Update the mapping */
1835 	for (vec = 0; vec < nvecs; vec++)
1836 		pfvf->msix_lfmap[offset + vec] = 0;
1837 
1838 	/* Free the same in MSIX bitmap */
1839 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1840 }
1841 
1842 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1843 				 struct msix_offset_rsp *rsp)
1844 {
1845 	struct rvu_hwinfo *hw = rvu->hw;
1846 	u16 pcifunc = req->hdr.pcifunc;
1847 	struct rvu_pfvf *pfvf;
1848 	int lf, slot, blkaddr;
1849 
1850 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1851 	if (!pfvf->msix.bmap)
1852 		return 0;
1853 
1854 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1855 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1856 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1857 
1858 	/* Get BLKADDR from which LFs are attached to pcifunc */
1859 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1860 	if (blkaddr < 0) {
1861 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1862 	} else {
1863 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1864 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1865 	}
1866 
1867 	rsp->sso = pfvf->sso;
1868 	for (slot = 0; slot < rsp->sso; slot++) {
1869 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1870 		rsp->sso_msixoff[slot] =
1871 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1872 	}
1873 
1874 	rsp->ssow = pfvf->ssow;
1875 	for (slot = 0; slot < rsp->ssow; slot++) {
1876 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1877 		rsp->ssow_msixoff[slot] =
1878 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1879 	}
1880 
1881 	rsp->timlfs = pfvf->timlfs;
1882 	for (slot = 0; slot < rsp->timlfs; slot++) {
1883 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1884 		rsp->timlf_msixoff[slot] =
1885 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1886 	}
1887 
1888 	rsp->cptlfs = pfvf->cptlfs;
1889 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1890 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1891 		rsp->cptlf_msixoff[slot] =
1892 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1893 	}
1894 
1895 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1896 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1897 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1898 		rsp->cpt1_lf_msixoff[slot] =
1899 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1906 				   struct free_rsrcs_rsp *rsp)
1907 {
1908 	struct rvu_hwinfo *hw = rvu->hw;
1909 	struct rvu_block *block;
1910 	struct nix_txsch *txsch;
1911 	struct nix_hw *nix_hw;
1912 
1913 	mutex_lock(&rvu->rsrc_lock);
1914 
1915 	block = &hw->block[BLKADDR_NPA];
1916 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1917 
1918 	block = &hw->block[BLKADDR_NIX0];
1919 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1920 
1921 	block = &hw->block[BLKADDR_NIX1];
1922 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1923 
1924 	block = &hw->block[BLKADDR_SSO];
1925 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1926 
1927 	block = &hw->block[BLKADDR_SSOW];
1928 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1929 
1930 	block = &hw->block[BLKADDR_TIM];
1931 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1932 
1933 	block = &hw->block[BLKADDR_CPT0];
1934 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1935 
1936 	block = &hw->block[BLKADDR_CPT1];
1937 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1938 
1939 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1940 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1941 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1942 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1943 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1944 		/* NIX1 */
1945 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1946 			goto out;
1947 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1948 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1949 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1950 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1951 	} else {
1952 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1953 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1954 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1955 				rvu_rsrc_free_count(&txsch->schq);
1956 
1957 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1958 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1959 				rvu_rsrc_free_count(&txsch->schq);
1960 
1961 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1962 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1963 				rvu_rsrc_free_count(&txsch->schq);
1964 
1965 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1966 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1967 				rvu_rsrc_free_count(&txsch->schq);
1968 
1969 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1970 			goto out;
1971 
1972 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1973 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1974 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1975 				rvu_rsrc_free_count(&txsch->schq);
1976 
1977 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1978 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1979 				rvu_rsrc_free_count(&txsch->schq);
1980 
1981 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1982 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1983 				rvu_rsrc_free_count(&txsch->schq);
1984 
1985 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1986 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1987 				rvu_rsrc_free_count(&txsch->schq);
1988 	}
1989 
1990 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1991 out:
1992 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1993 	mutex_unlock(&rvu->rsrc_lock);
1994 
1995 	return 0;
1996 }
1997 
1998 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1999 			    struct msg_rsp *rsp)
2000 {
2001 	u16 pcifunc = req->hdr.pcifunc;
2002 	u16 vf, numvfs;
2003 	u64 cfg;
2004 
2005 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2006 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2007 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2008 	numvfs = (cfg >> 12) & 0xFF;
2009 
2010 	if (vf && vf <= numvfs)
2011 		__rvu_flr_handler(rvu, pcifunc);
2012 	else
2013 		return RVU_INVALID_VF_ID;
2014 
2015 	return 0;
2016 }
2017 
2018 int rvu_ndc_sync(struct rvu *rvu, int lfblkaddr, int lfidx, u64 lfoffset)
2019 {
2020 	/* Sync cached info for this LF in NDC to LLC/DRAM */
2021 	rvu_write64(rvu, lfblkaddr, lfoffset, BIT_ULL(12) | lfidx);
2022 	return rvu_poll_reg(rvu, lfblkaddr, lfoffset, BIT_ULL(12), true);
2023 }
2024 
2025 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2026 				struct get_hw_cap_rsp *rsp)
2027 {
2028 	struct rvu_hwinfo *hw = rvu->hw;
2029 
2030 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2031 	rsp->nix_shaping = hw->cap.nix_shaping;
2032 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2033 
2034 	return 0;
2035 }
2036 
2037 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2038 				 struct msg_rsp *rsp)
2039 {
2040 	struct rvu_hwinfo *hw = rvu->hw;
2041 	u16 pcifunc = req->hdr.pcifunc;
2042 	struct rvu_pfvf *pfvf;
2043 	int blkaddr, nixlf;
2044 	u16 target;
2045 
2046 	/* Only PF can add VF permissions */
2047 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2048 		return -EOPNOTSUPP;
2049 
2050 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2051 	pfvf = rvu_get_pfvf(rvu, target);
2052 
2053 	if (req->flags & RESET_VF_PERM) {
2054 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2055 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2056 		 (req->flags & VF_TRUSTED)) {
2057 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2058 		/* disable multicast and promisc entries */
2059 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2060 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2061 			if (blkaddr < 0)
2062 				return 0;
2063 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2064 					   target, 0);
2065 			if (nixlf < 0)
2066 				return 0;
2067 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2068 						     NIXLF_ALLMULTI_ENTRY,
2069 						     false);
2070 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2071 						     NIXLF_PROMISC_ENTRY,
2072 						     false);
2073 		}
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 int rvu_mbox_handler_ndc_sync_op(struct rvu *rvu,
2080 				 struct ndc_sync_op *req,
2081 				 struct msg_rsp *rsp)
2082 {
2083 	struct rvu_hwinfo *hw = rvu->hw;
2084 	u16 pcifunc = req->hdr.pcifunc;
2085 	int err, lfidx, lfblkaddr;
2086 
2087 	if (req->npa_lf_sync) {
2088 		/* Get NPA LF data */
2089 		lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
2090 		if (lfblkaddr < 0)
2091 			return NPA_AF_ERR_AF_LF_INVALID;
2092 
2093 		lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2094 		if (lfidx < 0)
2095 			return NPA_AF_ERR_AF_LF_INVALID;
2096 
2097 		/* Sync NPA NDC */
2098 		err = rvu_ndc_sync(rvu, lfblkaddr,
2099 				   lfidx, NPA_AF_NDC_SYNC);
2100 		if (err)
2101 			dev_err(rvu->dev,
2102 				"NDC-NPA sync failed for LF %u\n", lfidx);
2103 	}
2104 
2105 	if (!req->nix_lf_tx_sync && !req->nix_lf_rx_sync)
2106 		return 0;
2107 
2108 	/* Get NIX LF data */
2109 	lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
2110 	if (lfblkaddr < 0)
2111 		return NIX_AF_ERR_AF_LF_INVALID;
2112 
2113 	lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2114 	if (lfidx < 0)
2115 		return NIX_AF_ERR_AF_LF_INVALID;
2116 
2117 	if (req->nix_lf_tx_sync) {
2118 		/* Sync NIX TX NDC */
2119 		err = rvu_ndc_sync(rvu, lfblkaddr,
2120 				   lfidx, NIX_AF_NDC_TX_SYNC);
2121 		if (err)
2122 			dev_err(rvu->dev,
2123 				"NDC-NIX-TX sync fail for LF %u\n", lfidx);
2124 	}
2125 
2126 	if (req->nix_lf_rx_sync) {
2127 		/* Sync NIX RX NDC */
2128 		err = rvu_ndc_sync(rvu, lfblkaddr,
2129 				   lfidx, NIX_AF_NDC_RX_SYNC);
2130 		if (err)
2131 			dev_err(rvu->dev,
2132 				"NDC-NIX-RX sync failed for LF %u\n", lfidx);
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2139 				struct mbox_msghdr *req)
2140 {
2141 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2142 
2143 	/* Check if valid, if not reply with a invalid msg */
2144 	if (req->sig != OTX2_MBOX_REQ_SIG)
2145 		goto bad_message;
2146 
2147 	switch (req->id) {
2148 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2149 	case _id: {							\
2150 		struct _rsp_type *rsp;					\
2151 		int err;						\
2152 									\
2153 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2154 			mbox, devid,					\
2155 			sizeof(struct _rsp_type));			\
2156 		/* some handlers should complete even if reply */	\
2157 		/* could not be allocated */				\
2158 		if (!rsp &&						\
2159 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2160 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2161 		    _id != MBOX_MSG_VF_FLR)				\
2162 			return -ENOMEM;					\
2163 		if (rsp) {						\
2164 			rsp->hdr.id = _id;				\
2165 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2166 			rsp->hdr.pcifunc = req->pcifunc;		\
2167 			rsp->hdr.rc = 0;				\
2168 		}							\
2169 									\
2170 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2171 						    (struct _req_type *)req, \
2172 						    rsp);		\
2173 		if (rsp && err)						\
2174 			rsp->hdr.rc = err;				\
2175 									\
2176 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2177 		return rsp ? err : -ENOMEM;				\
2178 	}
2179 MBOX_MESSAGES
2180 #undef M
2181 
2182 bad_message:
2183 	default:
2184 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2185 		return -ENODEV;
2186 	}
2187 }
2188 
2189 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2190 {
2191 	struct rvu *rvu = mwork->rvu;
2192 	int offset, err, id, devid;
2193 	struct otx2_mbox_dev *mdev;
2194 	struct mbox_hdr *req_hdr;
2195 	struct mbox_msghdr *msg;
2196 	struct mbox_wq_info *mw;
2197 	struct otx2_mbox *mbox;
2198 
2199 	switch (type) {
2200 	case TYPE_AFPF:
2201 		mw = &rvu->afpf_wq_info;
2202 		break;
2203 	case TYPE_AFVF:
2204 		mw = &rvu->afvf_wq_info;
2205 		break;
2206 	default:
2207 		return;
2208 	}
2209 
2210 	devid = mwork - mw->mbox_wrk;
2211 	mbox = &mw->mbox;
2212 	mdev = &mbox->dev[devid];
2213 
2214 	/* Process received mbox messages */
2215 	req_hdr = mdev->mbase + mbox->rx_start;
2216 	if (mw->mbox_wrk[devid].num_msgs == 0)
2217 		return;
2218 
2219 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2220 
2221 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2222 		msg = mdev->mbase + offset;
2223 
2224 		/* Set which PF/VF sent this message based on mbox IRQ */
2225 		switch (type) {
2226 		case TYPE_AFPF:
2227 			msg->pcifunc &=
2228 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2229 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2230 			break;
2231 		case TYPE_AFVF:
2232 			msg->pcifunc &=
2233 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2234 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2235 			break;
2236 		}
2237 
2238 		err = rvu_process_mbox_msg(mbox, devid, msg);
2239 		if (!err) {
2240 			offset = mbox->rx_start + msg->next_msgoff;
2241 			continue;
2242 		}
2243 
2244 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2245 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2246 				 err, otx2_mbox_id2name(msg->id),
2247 				 msg->id, rvu_get_pf(msg->pcifunc),
2248 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2249 		else
2250 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2251 				 err, otx2_mbox_id2name(msg->id),
2252 				 msg->id, devid);
2253 	}
2254 	mw->mbox_wrk[devid].num_msgs = 0;
2255 
2256 	if (poll)
2257 		otx2_mbox_wait_for_zero(mbox, devid);
2258 
2259 	/* Send mbox responses to VF/PF */
2260 	otx2_mbox_msg_send(mbox, devid);
2261 }
2262 
2263 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2264 {
2265 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2266 	struct rvu *rvu = mwork->rvu;
2267 
2268 	mutex_lock(&rvu->mbox_lock);
2269 	__rvu_mbox_handler(mwork, TYPE_AFPF, true);
2270 	mutex_unlock(&rvu->mbox_lock);
2271 }
2272 
2273 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2274 {
2275 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2276 
2277 	__rvu_mbox_handler(mwork, TYPE_AFVF, false);
2278 }
2279 
2280 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2281 {
2282 	struct rvu *rvu = mwork->rvu;
2283 	struct otx2_mbox_dev *mdev;
2284 	struct mbox_hdr *rsp_hdr;
2285 	struct mbox_msghdr *msg;
2286 	struct mbox_wq_info *mw;
2287 	struct otx2_mbox *mbox;
2288 	int offset, id, devid;
2289 
2290 	switch (type) {
2291 	case TYPE_AFPF:
2292 		mw = &rvu->afpf_wq_info;
2293 		break;
2294 	case TYPE_AFVF:
2295 		mw = &rvu->afvf_wq_info;
2296 		break;
2297 	default:
2298 		return;
2299 	}
2300 
2301 	devid = mwork - mw->mbox_wrk_up;
2302 	mbox = &mw->mbox_up;
2303 	mdev = &mbox->dev[devid];
2304 
2305 	rsp_hdr = mdev->mbase + mbox->rx_start;
2306 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2307 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2308 		return;
2309 	}
2310 
2311 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2312 
2313 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2314 		msg = mdev->mbase + offset;
2315 
2316 		if (msg->id >= MBOX_MSG_MAX) {
2317 			dev_err(rvu->dev,
2318 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2319 			goto end;
2320 		}
2321 
2322 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2323 			dev_err(rvu->dev,
2324 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2325 				msg->sig, msg->id);
2326 			goto end;
2327 		}
2328 
2329 		switch (msg->id) {
2330 		case MBOX_MSG_CGX_LINK_EVENT:
2331 			break;
2332 		default:
2333 			if (msg->rc)
2334 				dev_err(rvu->dev,
2335 					"Mbox msg response has err %d, ID 0x%x\n",
2336 					msg->rc, msg->id);
2337 			break;
2338 		}
2339 end:
2340 		offset = mbox->rx_start + msg->next_msgoff;
2341 		mdev->msgs_acked++;
2342 	}
2343 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2344 
2345 	otx2_mbox_reset(mbox, devid);
2346 }
2347 
2348 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2349 {
2350 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2351 
2352 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2353 }
2354 
2355 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2356 {
2357 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2358 
2359 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2360 }
2361 
2362 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2363 				int num, int type, unsigned long *pf_bmap)
2364 {
2365 	struct rvu_hwinfo *hw = rvu->hw;
2366 	int region;
2367 	u64 bar4;
2368 
2369 	/* For cn10k platform VF mailbox regions of a PF follows after the
2370 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2371 	 * RVU_PF_VF_BAR4_ADDR register.
2372 	 */
2373 	if (type == TYPE_AFVF) {
2374 		for (region = 0; region < num; region++) {
2375 			if (!test_bit(region, pf_bmap))
2376 				continue;
2377 
2378 			if (hw->cap.per_pf_mbox_regs) {
2379 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2380 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2381 						  MBOX_SIZE;
2382 				bar4 += region * MBOX_SIZE;
2383 			} else {
2384 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2385 				bar4 += region * MBOX_SIZE;
2386 			}
2387 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2388 			if (!mbox_addr[region])
2389 				goto error;
2390 		}
2391 		return 0;
2392 	}
2393 
2394 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2395 	 * PF registers. Whereas for Octeontx2 it is read from
2396 	 * RVU_AF_PF_BAR4_ADDR register.
2397 	 */
2398 	for (region = 0; region < num; region++) {
2399 		if (!test_bit(region, pf_bmap))
2400 			continue;
2401 
2402 		if (hw->cap.per_pf_mbox_regs) {
2403 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2404 					  RVU_AF_PFX_BAR4_ADDR(region));
2405 		} else {
2406 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2407 					  RVU_AF_PF_BAR4_ADDR);
2408 			bar4 += region * MBOX_SIZE;
2409 		}
2410 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2411 		if (!mbox_addr[region])
2412 			goto error;
2413 	}
2414 	return 0;
2415 
2416 error:
2417 	while (region--)
2418 		iounmap((void __iomem *)mbox_addr[region]);
2419 	return -ENOMEM;
2420 }
2421 
2422 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2423 			 int type, int num,
2424 			 void (mbox_handler)(struct work_struct *),
2425 			 void (mbox_up_handler)(struct work_struct *))
2426 {
2427 	int err = -EINVAL, i, dir, dir_up;
2428 	void __iomem *reg_base;
2429 	struct rvu_work *mwork;
2430 	unsigned long *pf_bmap;
2431 	void **mbox_regions;
2432 	const char *name;
2433 	u64 cfg;
2434 
2435 	pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2436 	if (!pf_bmap)
2437 		return -ENOMEM;
2438 
2439 	/* RVU VFs */
2440 	if (type == TYPE_AFVF)
2441 		bitmap_set(pf_bmap, 0, num);
2442 
2443 	if (type == TYPE_AFPF) {
2444 		/* Mark enabled PFs in bitmap */
2445 		for (i = 0; i < num; i++) {
2446 			cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2447 			if (cfg & BIT_ULL(20))
2448 				set_bit(i, pf_bmap);
2449 		}
2450 	}
2451 
2452 	mutex_init(&rvu->mbox_lock);
2453 
2454 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2455 	if (!mbox_regions) {
2456 		err = -ENOMEM;
2457 		goto free_bitmap;
2458 	}
2459 
2460 	switch (type) {
2461 	case TYPE_AFPF:
2462 		name = "rvu_afpf_mailbox";
2463 		dir = MBOX_DIR_AFPF;
2464 		dir_up = MBOX_DIR_AFPF_UP;
2465 		reg_base = rvu->afreg_base;
2466 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2467 		if (err)
2468 			goto free_regions;
2469 		break;
2470 	case TYPE_AFVF:
2471 		name = "rvu_afvf_mailbox";
2472 		dir = MBOX_DIR_PFVF;
2473 		dir_up = MBOX_DIR_PFVF_UP;
2474 		reg_base = rvu->pfreg_base;
2475 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2476 		if (err)
2477 			goto free_regions;
2478 		break;
2479 	default:
2480 		goto free_regions;
2481 	}
2482 
2483 	mw->mbox_wq = alloc_workqueue("%s",
2484 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2485 				      num, name);
2486 	if (!mw->mbox_wq) {
2487 		err = -ENOMEM;
2488 		goto unmap_regions;
2489 	}
2490 
2491 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2492 				    sizeof(struct rvu_work), GFP_KERNEL);
2493 	if (!mw->mbox_wrk) {
2494 		err = -ENOMEM;
2495 		goto exit;
2496 	}
2497 
2498 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2499 				       sizeof(struct rvu_work), GFP_KERNEL);
2500 	if (!mw->mbox_wrk_up) {
2501 		err = -ENOMEM;
2502 		goto exit;
2503 	}
2504 
2505 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2506 				     reg_base, dir, num, pf_bmap);
2507 	if (err)
2508 		goto exit;
2509 
2510 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2511 				     reg_base, dir_up, num, pf_bmap);
2512 	if (err)
2513 		goto exit;
2514 
2515 	for (i = 0; i < num; i++) {
2516 		if (!test_bit(i, pf_bmap))
2517 			continue;
2518 
2519 		mwork = &mw->mbox_wrk[i];
2520 		mwork->rvu = rvu;
2521 		INIT_WORK(&mwork->work, mbox_handler);
2522 
2523 		mwork = &mw->mbox_wrk_up[i];
2524 		mwork->rvu = rvu;
2525 		INIT_WORK(&mwork->work, mbox_up_handler);
2526 	}
2527 	goto free_regions;
2528 
2529 exit:
2530 	destroy_workqueue(mw->mbox_wq);
2531 unmap_regions:
2532 	while (num--)
2533 		iounmap((void __iomem *)mbox_regions[num]);
2534 free_regions:
2535 	kfree(mbox_regions);
2536 free_bitmap:
2537 	bitmap_free(pf_bmap);
2538 	return err;
2539 }
2540 
2541 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2542 {
2543 	struct otx2_mbox *mbox = &mw->mbox;
2544 	struct otx2_mbox_dev *mdev;
2545 	int devid;
2546 
2547 	if (mw->mbox_wq) {
2548 		destroy_workqueue(mw->mbox_wq);
2549 		mw->mbox_wq = NULL;
2550 	}
2551 
2552 	for (devid = 0; devid < mbox->ndevs; devid++) {
2553 		mdev = &mbox->dev[devid];
2554 		if (mdev->hwbase)
2555 			iounmap((void __iomem *)mdev->hwbase);
2556 	}
2557 
2558 	otx2_mbox_destroy(&mw->mbox);
2559 	otx2_mbox_destroy(&mw->mbox_up);
2560 }
2561 
2562 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2563 			   int mdevs, u64 intr)
2564 {
2565 	struct otx2_mbox_dev *mdev;
2566 	struct otx2_mbox *mbox;
2567 	struct mbox_hdr *hdr;
2568 	int i;
2569 
2570 	for (i = first; i < mdevs; i++) {
2571 		/* start from 0 */
2572 		if (!(intr & BIT_ULL(i - first)))
2573 			continue;
2574 
2575 		mbox = &mw->mbox;
2576 		mdev = &mbox->dev[i];
2577 		hdr = mdev->mbase + mbox->rx_start;
2578 
2579 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2580 		 * handler to  ensure that it holds a correct value next time
2581 		 * when the interrupt handler is called.
2582 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2583 		 * pf>mbox.up_num_msgs holds the data for use in
2584 		 * pfaf_mbox_up_handler.
2585 		 */
2586 
2587 		if (hdr->num_msgs) {
2588 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2589 			hdr->num_msgs = 0;
2590 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2591 		}
2592 		mbox = &mw->mbox_up;
2593 		mdev = &mbox->dev[i];
2594 		hdr = mdev->mbase + mbox->rx_start;
2595 		if (hdr->num_msgs) {
2596 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2597 			hdr->num_msgs = 0;
2598 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2599 		}
2600 	}
2601 }
2602 
2603 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2604 {
2605 	struct rvu *rvu = (struct rvu *)rvu_irq;
2606 	u64 intr;
2607 
2608 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2609 	/* Clear interrupts */
2610 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2611 	if (intr)
2612 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2613 
2614 	/* Sync with mbox memory region */
2615 	rmb();
2616 
2617 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2618 
2619 	return IRQ_HANDLED;
2620 }
2621 
2622 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2623 {
2624 	struct rvu *rvu = (struct rvu *)rvu_irq;
2625 	int vfs = rvu->vfs;
2626 	u64 intr;
2627 
2628 	/* Sync with mbox memory region */
2629 	rmb();
2630 
2631 	/* Handle VF interrupts */
2632 	if (vfs > 64) {
2633 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2634 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2635 
2636 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2637 		vfs -= 64;
2638 	}
2639 
2640 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2641 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2642 	if (intr)
2643 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2644 
2645 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2646 
2647 	return IRQ_HANDLED;
2648 }
2649 
2650 static void rvu_enable_mbox_intr(struct rvu *rvu)
2651 {
2652 	struct rvu_hwinfo *hw = rvu->hw;
2653 
2654 	/* Clear spurious irqs, if any */
2655 	rvu_write64(rvu, BLKADDR_RVUM,
2656 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2657 
2658 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2659 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2660 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2661 }
2662 
2663 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2664 {
2665 	struct rvu_block *block;
2666 	int slot, lf, num_lfs;
2667 	int err;
2668 
2669 	block = &rvu->hw->block[blkaddr];
2670 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2671 					block->addr);
2672 	if (!num_lfs)
2673 		return;
2674 	for (slot = 0; slot < num_lfs; slot++) {
2675 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2676 		if (lf < 0)
2677 			continue;
2678 
2679 		/* Cleanup LF and reset it */
2680 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2681 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2682 		else if (block->addr == BLKADDR_NPA)
2683 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2684 		else if ((block->addr == BLKADDR_CPT0) ||
2685 			 (block->addr == BLKADDR_CPT1))
2686 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2687 					    slot);
2688 
2689 		err = rvu_lf_reset(rvu, block, lf);
2690 		if (err) {
2691 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2692 				block->addr, lf);
2693 		}
2694 	}
2695 }
2696 
2697 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2698 {
2699 	if (rvu_npc_exact_has_match_table(rvu))
2700 		rvu_npc_exact_reset(rvu, pcifunc);
2701 
2702 	mutex_lock(&rvu->flr_lock);
2703 	/* Reset order should reflect inter-block dependencies:
2704 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2705 	 * 2. Flush and reset SSO/SSOW
2706 	 * 3. Cleanup pools (NPA)
2707 	 */
2708 
2709 	/* Free allocated BPIDs */
2710 	rvu_nix_flr_free_bpids(rvu, pcifunc);
2711 
2712 	/* Free multicast/mirror node associated with the 'pcifunc' */
2713 	rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2714 
2715 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2716 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2717 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2718 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2719 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2720 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2721 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2722 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2723 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2724 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2725 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2726 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2727 	 * Since LF is detached use LF number as -1.
2728 	 */
2729 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2730 	rvu_mac_reset(rvu, pcifunc);
2731 
2732 	if (rvu->mcs_blk_cnt)
2733 		rvu_mcs_flr_handler(rvu, pcifunc);
2734 
2735 	mutex_unlock(&rvu->flr_lock);
2736 }
2737 
2738 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2739 {
2740 	int reg = 0;
2741 
2742 	/* pcifunc = 0(PF0) | (vf + 1) */
2743 	__rvu_flr_handler(rvu, vf + 1);
2744 
2745 	if (vf >= 64) {
2746 		reg = 1;
2747 		vf = vf - 64;
2748 	}
2749 
2750 	/* Signal FLR finish and enable IRQ */
2751 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2752 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2753 }
2754 
2755 static void rvu_flr_handler(struct work_struct *work)
2756 {
2757 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2758 	struct rvu *rvu = flrwork->rvu;
2759 	u16 pcifunc, numvfs, vf;
2760 	u64 cfg;
2761 	int pf;
2762 
2763 	pf = flrwork - rvu->flr_wrk;
2764 	if (pf >= rvu->hw->total_pfs) {
2765 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2766 		return;
2767 	}
2768 
2769 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2770 	numvfs = (cfg >> 12) & 0xFF;
2771 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2772 
2773 	for (vf = 0; vf < numvfs; vf++)
2774 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2775 
2776 	__rvu_flr_handler(rvu, pcifunc);
2777 
2778 	/* Signal FLR finish */
2779 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2780 
2781 	/* Enable interrupt */
2782 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2783 }
2784 
2785 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2786 {
2787 	int dev, vf, reg = 0;
2788 	u64 intr;
2789 
2790 	if (start_vf >= 64)
2791 		reg = 1;
2792 
2793 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2794 	if (!intr)
2795 		return;
2796 
2797 	for (vf = 0; vf < numvfs; vf++) {
2798 		if (!(intr & BIT_ULL(vf)))
2799 			continue;
2800 		/* Clear and disable the interrupt */
2801 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2802 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2803 
2804 		dev = vf + start_vf + rvu->hw->total_pfs;
2805 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2806 	}
2807 }
2808 
2809 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2810 {
2811 	struct rvu *rvu = (struct rvu *)rvu_irq;
2812 	u64 intr;
2813 	u8  pf;
2814 
2815 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2816 	if (!intr)
2817 		goto afvf_flr;
2818 
2819 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2820 		if (intr & (1ULL << pf)) {
2821 			/* clear interrupt */
2822 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2823 				    BIT_ULL(pf));
2824 			/* Disable the interrupt */
2825 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2826 				    BIT_ULL(pf));
2827 			/* PF is already dead do only AF related operations */
2828 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2829 		}
2830 	}
2831 
2832 afvf_flr:
2833 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2834 	if (rvu->vfs > 64)
2835 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2836 
2837 	return IRQ_HANDLED;
2838 }
2839 
2840 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2841 {
2842 	int vf;
2843 
2844 	/* Nothing to be done here other than clearing the
2845 	 * TRPEND bit.
2846 	 */
2847 	for (vf = 0; vf < 64; vf++) {
2848 		if (intr & (1ULL << vf)) {
2849 			/* clear the trpend due to ME(master enable) */
2850 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2851 			/* clear interrupt */
2852 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2853 		}
2854 	}
2855 }
2856 
2857 /* Handles ME interrupts from VFs of AF */
2858 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2859 {
2860 	struct rvu *rvu = (struct rvu *)rvu_irq;
2861 	int vfset;
2862 	u64 intr;
2863 
2864 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2865 
2866 	for (vfset = 0; vfset <= 1; vfset++) {
2867 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2868 		if (intr)
2869 			rvu_me_handle_vfset(rvu, vfset, intr);
2870 	}
2871 
2872 	return IRQ_HANDLED;
2873 }
2874 
2875 /* Handles ME interrupts from PFs */
2876 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2877 {
2878 	struct rvu *rvu = (struct rvu *)rvu_irq;
2879 	u64 intr;
2880 	u8  pf;
2881 
2882 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2883 
2884 	/* Nothing to be done here other than clearing the
2885 	 * TRPEND bit.
2886 	 */
2887 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2888 		if (intr & (1ULL << pf)) {
2889 			/* clear the trpend due to ME(master enable) */
2890 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2891 				    BIT_ULL(pf));
2892 			/* clear interrupt */
2893 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2894 				    BIT_ULL(pf));
2895 		}
2896 	}
2897 
2898 	return IRQ_HANDLED;
2899 }
2900 
2901 static void rvu_unregister_interrupts(struct rvu *rvu)
2902 {
2903 	int irq;
2904 
2905 	rvu_cpt_unregister_interrupts(rvu);
2906 
2907 	/* Disable the Mbox interrupt */
2908 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2909 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2910 
2911 	/* Disable the PF FLR interrupt */
2912 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2913 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2914 
2915 	/* Disable the PF ME interrupt */
2916 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2917 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2918 
2919 	for (irq = 0; irq < rvu->num_vec; irq++) {
2920 		if (rvu->irq_allocated[irq]) {
2921 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2922 			rvu->irq_allocated[irq] = false;
2923 		}
2924 	}
2925 
2926 	pci_free_irq_vectors(rvu->pdev);
2927 	rvu->num_vec = 0;
2928 }
2929 
2930 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2931 {
2932 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2933 	int offset;
2934 
2935 	pfvf = &rvu->pf[0];
2936 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2937 
2938 	/* Make sure there are enough MSIX vectors configured so that
2939 	 * VF interrupts can be handled. Offset equal to zero means
2940 	 * that PF vectors are not configured and overlapping AF vectors.
2941 	 */
2942 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2943 	       offset;
2944 }
2945 
2946 static int rvu_register_interrupts(struct rvu *rvu)
2947 {
2948 	int ret, offset, pf_vec_start;
2949 
2950 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2951 
2952 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2953 					   NAME_SIZE, GFP_KERNEL);
2954 	if (!rvu->irq_name)
2955 		return -ENOMEM;
2956 
2957 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2958 					  sizeof(bool), GFP_KERNEL);
2959 	if (!rvu->irq_allocated)
2960 		return -ENOMEM;
2961 
2962 	/* Enable MSI-X */
2963 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2964 				    rvu->num_vec, PCI_IRQ_MSIX);
2965 	if (ret < 0) {
2966 		dev_err(rvu->dev,
2967 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2968 			rvu->num_vec, ret);
2969 		return ret;
2970 	}
2971 
2972 	/* Register mailbox interrupt handler */
2973 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2974 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2975 			  rvu_mbox_pf_intr_handler, 0,
2976 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2977 	if (ret) {
2978 		dev_err(rvu->dev,
2979 			"RVUAF: IRQ registration failed for mbox irq\n");
2980 		goto fail;
2981 	}
2982 
2983 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2984 
2985 	/* Enable mailbox interrupts from all PFs */
2986 	rvu_enable_mbox_intr(rvu);
2987 
2988 	/* Register FLR interrupt handler */
2989 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2990 		"RVUAF FLR");
2991 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2992 			  rvu_flr_intr_handler, 0,
2993 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2994 			  rvu);
2995 	if (ret) {
2996 		dev_err(rvu->dev,
2997 			"RVUAF: IRQ registration failed for FLR\n");
2998 		goto fail;
2999 	}
3000 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
3001 
3002 	/* Enable FLR interrupt for all PFs*/
3003 	rvu_write64(rvu, BLKADDR_RVUM,
3004 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
3005 
3006 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
3007 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3008 
3009 	/* Register ME interrupt handler */
3010 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3011 		"RVUAF ME");
3012 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
3013 			  rvu_me_pf_intr_handler, 0,
3014 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3015 			  rvu);
3016 	if (ret) {
3017 		dev_err(rvu->dev,
3018 			"RVUAF: IRQ registration failed for ME\n");
3019 	}
3020 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
3021 
3022 	/* Clear TRPEND bit for all PF */
3023 	rvu_write64(rvu, BLKADDR_RVUM,
3024 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
3025 	/* Enable ME interrupt for all PFs*/
3026 	rvu_write64(rvu, BLKADDR_RVUM,
3027 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
3028 
3029 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
3030 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3031 
3032 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
3033 		return 0;
3034 
3035 	/* Get PF MSIX vectors offset. */
3036 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
3037 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
3038 
3039 	/* Register MBOX0 interrupt. */
3040 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
3041 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
3042 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3043 			  rvu_mbox_intr_handler, 0,
3044 			  &rvu->irq_name[offset * NAME_SIZE],
3045 			  rvu);
3046 	if (ret)
3047 		dev_err(rvu->dev,
3048 			"RVUAF: IRQ registration failed for Mbox0\n");
3049 
3050 	rvu->irq_allocated[offset] = true;
3051 
3052 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
3053 	 * simply increment current offset by 1.
3054 	 */
3055 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
3056 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
3057 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3058 			  rvu_mbox_intr_handler, 0,
3059 			  &rvu->irq_name[offset * NAME_SIZE],
3060 			  rvu);
3061 	if (ret)
3062 		dev_err(rvu->dev,
3063 			"RVUAF: IRQ registration failed for Mbox1\n");
3064 
3065 	rvu->irq_allocated[offset] = true;
3066 
3067 	/* Register FLR interrupt handler for AF's VFs */
3068 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
3069 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
3070 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3071 			  rvu_flr_intr_handler, 0,
3072 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3073 	if (ret) {
3074 		dev_err(rvu->dev,
3075 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
3076 		goto fail;
3077 	}
3078 	rvu->irq_allocated[offset] = true;
3079 
3080 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3081 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3082 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3083 			  rvu_flr_intr_handler, 0,
3084 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3085 	if (ret) {
3086 		dev_err(rvu->dev,
3087 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3088 		goto fail;
3089 	}
3090 	rvu->irq_allocated[offset] = true;
3091 
3092 	/* Register ME interrupt handler for AF's VFs */
3093 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3094 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3095 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3096 			  rvu_me_vf_intr_handler, 0,
3097 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3098 	if (ret) {
3099 		dev_err(rvu->dev,
3100 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3101 		goto fail;
3102 	}
3103 	rvu->irq_allocated[offset] = true;
3104 
3105 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3106 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3107 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3108 			  rvu_me_vf_intr_handler, 0,
3109 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3110 	if (ret) {
3111 		dev_err(rvu->dev,
3112 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3113 		goto fail;
3114 	}
3115 	rvu->irq_allocated[offset] = true;
3116 
3117 	ret = rvu_cpt_register_interrupts(rvu);
3118 	if (ret)
3119 		goto fail;
3120 
3121 	return 0;
3122 
3123 fail:
3124 	rvu_unregister_interrupts(rvu);
3125 	return ret;
3126 }
3127 
3128 static void rvu_flr_wq_destroy(struct rvu *rvu)
3129 {
3130 	if (rvu->flr_wq) {
3131 		destroy_workqueue(rvu->flr_wq);
3132 		rvu->flr_wq = NULL;
3133 	}
3134 }
3135 
3136 static int rvu_flr_init(struct rvu *rvu)
3137 {
3138 	int dev, num_devs;
3139 	u64 cfg;
3140 	int pf;
3141 
3142 	/* Enable FLR for all PFs*/
3143 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3144 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3145 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3146 			    cfg | BIT_ULL(22));
3147 	}
3148 
3149 	rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3150 					      WQ_HIGHPRI | WQ_MEM_RECLAIM);
3151 	if (!rvu->flr_wq)
3152 		return -ENOMEM;
3153 
3154 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3155 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3156 				    sizeof(struct rvu_work), GFP_KERNEL);
3157 	if (!rvu->flr_wrk) {
3158 		destroy_workqueue(rvu->flr_wq);
3159 		return -ENOMEM;
3160 	}
3161 
3162 	for (dev = 0; dev < num_devs; dev++) {
3163 		rvu->flr_wrk[dev].rvu = rvu;
3164 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3165 	}
3166 
3167 	mutex_init(&rvu->flr_lock);
3168 
3169 	return 0;
3170 }
3171 
3172 static void rvu_disable_afvf_intr(struct rvu *rvu)
3173 {
3174 	int vfs = rvu->vfs;
3175 
3176 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3177 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3178 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3179 	if (vfs <= 64)
3180 		return;
3181 
3182 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3183 		      INTR_MASK(vfs - 64));
3184 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3185 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3186 }
3187 
3188 static void rvu_enable_afvf_intr(struct rvu *rvu)
3189 {
3190 	int vfs = rvu->vfs;
3191 
3192 	/* Clear any pending interrupts and enable AF VF interrupts for
3193 	 * the first 64 VFs.
3194 	 */
3195 	/* Mbox */
3196 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3197 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3198 
3199 	/* FLR */
3200 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3201 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3202 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3203 
3204 	/* Same for remaining VFs, if any. */
3205 	if (vfs <= 64)
3206 		return;
3207 
3208 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3209 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3210 		      INTR_MASK(vfs - 64));
3211 
3212 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3213 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3214 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3215 }
3216 
3217 int rvu_get_num_lbk_chans(void)
3218 {
3219 	struct pci_dev *pdev;
3220 	void __iomem *base;
3221 	int ret = -EIO;
3222 
3223 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3224 			      NULL);
3225 	if (!pdev)
3226 		goto err;
3227 
3228 	base = pci_ioremap_bar(pdev, 0);
3229 	if (!base)
3230 		goto err_put;
3231 
3232 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3233 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3234 	iounmap(base);
3235 err_put:
3236 	pci_dev_put(pdev);
3237 err:
3238 	return ret;
3239 }
3240 
3241 static int rvu_enable_sriov(struct rvu *rvu)
3242 {
3243 	struct pci_dev *pdev = rvu->pdev;
3244 	int err, chans, vfs;
3245 	int pos = 0;
3246 
3247 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3248 		dev_warn(&pdev->dev,
3249 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3250 		return 0;
3251 	}
3252 
3253 	/* Get RVU VFs device id */
3254 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3255 	if (!pos)
3256 		return 0;
3257 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &rvu->vf_devid);
3258 
3259 	chans = rvu_get_num_lbk_chans();
3260 	if (chans < 0)
3261 		return chans;
3262 
3263 	vfs = pci_sriov_get_totalvfs(pdev);
3264 
3265 	/* Limit VFs in case we have more VFs than LBK channels available. */
3266 	if (vfs > chans)
3267 		vfs = chans;
3268 
3269 	if (!vfs)
3270 		return 0;
3271 
3272 	/* LBK channel number 63 is used for switching packets between
3273 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3274 	 */
3275 	if (vfs > 62)
3276 		vfs = 62;
3277 
3278 	/* Save VFs number for reference in VF interrupts handlers.
3279 	 * Since interrupts might start arriving during SRIOV enablement
3280 	 * ordinary API cannot be used to get number of enabled VFs.
3281 	 */
3282 	rvu->vfs = vfs;
3283 
3284 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3285 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3286 	if (err)
3287 		return err;
3288 
3289 	rvu_enable_afvf_intr(rvu);
3290 	/* Make sure IRQs are enabled before SRIOV. */
3291 	mb();
3292 
3293 	err = pci_enable_sriov(pdev, vfs);
3294 	if (err) {
3295 		rvu_disable_afvf_intr(rvu);
3296 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3297 		return err;
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 static void rvu_disable_sriov(struct rvu *rvu)
3304 {
3305 	rvu_disable_afvf_intr(rvu);
3306 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3307 	pci_disable_sriov(rvu->pdev);
3308 }
3309 
3310 static void rvu_update_module_params(struct rvu *rvu)
3311 {
3312 	const char *default_pfl_name = "default";
3313 
3314 	strscpy(rvu->mkex_pfl_name,
3315 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3316 	strscpy(rvu->kpu_pfl_name,
3317 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3318 }
3319 
3320 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3321 {
3322 	struct device *dev = &pdev->dev;
3323 	struct rvu *rvu;
3324 	int    err;
3325 
3326 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3327 	if (!rvu)
3328 		return -ENOMEM;
3329 
3330 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3331 	if (!rvu->hw) {
3332 		devm_kfree(dev, rvu);
3333 		return -ENOMEM;
3334 	}
3335 
3336 	pci_set_drvdata(pdev, rvu);
3337 	rvu->pdev = pdev;
3338 	rvu->dev = &pdev->dev;
3339 
3340 	err = pci_enable_device(pdev);
3341 	if (err) {
3342 		dev_err(dev, "Failed to enable PCI device\n");
3343 		goto err_freemem;
3344 	}
3345 
3346 	err = pci_request_regions(pdev, DRV_NAME);
3347 	if (err) {
3348 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3349 		goto err_disable_device;
3350 	}
3351 
3352 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3353 	if (err) {
3354 		dev_err(dev, "DMA mask config failed, abort\n");
3355 		goto err_release_regions;
3356 	}
3357 
3358 	pci_set_master(pdev);
3359 
3360 	rvu->ptp = ptp_get();
3361 	if (IS_ERR(rvu->ptp)) {
3362 		err = PTR_ERR(rvu->ptp);
3363 		if (err)
3364 			goto err_release_regions;
3365 		rvu->ptp = NULL;
3366 	}
3367 
3368 	/* Map Admin function CSRs */
3369 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3370 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3371 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3372 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3373 		err = -ENOMEM;
3374 		goto err_put_ptp;
3375 	}
3376 
3377 	/* Store module params in rvu structure */
3378 	rvu_update_module_params(rvu);
3379 
3380 	/* Check which blocks the HW supports */
3381 	rvu_check_block_implemented(rvu);
3382 
3383 	rvu_reset_all_blocks(rvu);
3384 
3385 	rvu_setup_hw_capabilities(rvu);
3386 
3387 	err = rvu_setup_hw_resources(rvu);
3388 	if (err)
3389 		goto err_put_ptp;
3390 
3391 	/* Init mailbox btw AF and PFs */
3392 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3393 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3394 			    rvu_afpf_mbox_up_handler);
3395 	if (err) {
3396 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3397 		goto err_hwsetup;
3398 	}
3399 
3400 	err = rvu_flr_init(rvu);
3401 	if (err) {
3402 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3403 		goto err_mbox;
3404 	}
3405 
3406 	err = rvu_register_interrupts(rvu);
3407 	if (err) {
3408 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3409 		goto err_flr;
3410 	}
3411 
3412 	err = rvu_register_dl(rvu);
3413 	if (err) {
3414 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3415 		goto err_irq;
3416 	}
3417 
3418 	rvu_setup_rvum_blk_revid(rvu);
3419 
3420 	/* Enable AF's VFs (if any) */
3421 	err = rvu_enable_sriov(rvu);
3422 	if (err) {
3423 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3424 		goto err_dl;
3425 	}
3426 
3427 	/* Initialize debugfs */
3428 	rvu_dbg_init(rvu);
3429 
3430 	mutex_init(&rvu->rswitch.switch_lock);
3431 
3432 	if (rvu->fwdata)
3433 		ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3434 			  rvu->fwdata->ptp_ext_tstamp);
3435 
3436 	return 0;
3437 err_dl:
3438 	rvu_unregister_dl(rvu);
3439 err_irq:
3440 	rvu_unregister_interrupts(rvu);
3441 err_flr:
3442 	rvu_flr_wq_destroy(rvu);
3443 err_mbox:
3444 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3445 err_hwsetup:
3446 	rvu_cgx_exit(rvu);
3447 	rvu_fwdata_exit(rvu);
3448 	rvu_mcs_exit(rvu);
3449 	rvu_reset_all_blocks(rvu);
3450 	rvu_free_hw_resources(rvu);
3451 	rvu_clear_rvum_blk_revid(rvu);
3452 err_put_ptp:
3453 	ptp_put(rvu->ptp);
3454 err_release_regions:
3455 	pci_release_regions(pdev);
3456 err_disable_device:
3457 	pci_disable_device(pdev);
3458 err_freemem:
3459 	pci_set_drvdata(pdev, NULL);
3460 	devm_kfree(&pdev->dev, rvu->hw);
3461 	devm_kfree(dev, rvu);
3462 	return err;
3463 }
3464 
3465 static void rvu_remove(struct pci_dev *pdev)
3466 {
3467 	struct rvu *rvu = pci_get_drvdata(pdev);
3468 
3469 	rvu_dbg_exit(rvu);
3470 	rvu_unregister_dl(rvu);
3471 	rvu_unregister_interrupts(rvu);
3472 	rvu_flr_wq_destroy(rvu);
3473 	rvu_cgx_exit(rvu);
3474 	rvu_fwdata_exit(rvu);
3475 	rvu_mcs_exit(rvu);
3476 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3477 	rvu_disable_sriov(rvu);
3478 	rvu_reset_all_blocks(rvu);
3479 	rvu_free_hw_resources(rvu);
3480 	rvu_clear_rvum_blk_revid(rvu);
3481 	ptp_put(rvu->ptp);
3482 	pci_release_regions(pdev);
3483 	pci_disable_device(pdev);
3484 	pci_set_drvdata(pdev, NULL);
3485 
3486 	devm_kfree(&pdev->dev, rvu->hw);
3487 	devm_kfree(&pdev->dev, rvu);
3488 }
3489 
3490 static struct pci_driver rvu_driver = {
3491 	.name = DRV_NAME,
3492 	.id_table = rvu_id_table,
3493 	.probe = rvu_probe,
3494 	.remove = rvu_remove,
3495 };
3496 
3497 static int __init rvu_init_module(void)
3498 {
3499 	int err;
3500 
3501 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3502 
3503 	err = pci_register_driver(&cgx_driver);
3504 	if (err < 0)
3505 		return err;
3506 
3507 	err = pci_register_driver(&ptp_driver);
3508 	if (err < 0)
3509 		goto ptp_err;
3510 
3511 	err = pci_register_driver(&mcs_driver);
3512 	if (err < 0)
3513 		goto mcs_err;
3514 
3515 	err =  pci_register_driver(&rvu_driver);
3516 	if (err < 0)
3517 		goto rvu_err;
3518 
3519 	return 0;
3520 rvu_err:
3521 	pci_unregister_driver(&mcs_driver);
3522 mcs_err:
3523 	pci_unregister_driver(&ptp_driver);
3524 ptp_err:
3525 	pci_unregister_driver(&cgx_driver);
3526 
3527 	return err;
3528 }
3529 
3530 static void __exit rvu_cleanup_module(void)
3531 {
3532 	pci_unregister_driver(&rvu_driver);
3533 	pci_unregister_driver(&mcs_driver);
3534 	pci_unregister_driver(&ptp_driver);
3535 	pci_unregister_driver(&cgx_driver);
3536 }
3537 
3538 module_init(rvu_init_module);
3539 module_exit(rvu_cleanup_module);
3540