xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 
24 #define DRV_NAME	"rvu_af"
25 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407 
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 	u64 cfg;
411 
412 	/* Get numVFs attached to this PF and first HWVF */
413 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 	if (numvfs)
415 		*numvfs = (cfg >> 12) & 0xFF;
416 	if (hwvf)
417 		*hwvf = cfg & 0xFFF;
418 }
419 
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 	int pf, func;
423 	u64 cfg;
424 
425 	pf = rvu_get_pf(pcifunc);
426 	func = pcifunc & RVU_PFVF_FUNC_MASK;
427 
428 	/* Get first HWVF attached to this PF */
429 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430 
431 	return ((cfg & 0xFFF) + func - 1);
432 }
433 
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 	/* Check if it is a PF or VF */
437 	if (pcifunc & RVU_PFVF_FUNC_MASK)
438 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 	else
440 		return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442 
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 	int pf, vf, nvfs;
446 	u64 cfg;
447 
448 	pf = rvu_get_pf(pcifunc);
449 	if (pf >= rvu->hw->total_pfs)
450 		return false;
451 
452 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 		return true;
454 
455 	/* Check if VF is within number of VFs attached to this PF */
456 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 	nvfs = (cfg >> 12) & 0xFF;
459 	if (vf >= nvfs)
460 		return false;
461 
462 	return true;
463 }
464 
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 	struct rvu_block *block;
468 
469 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 		return false;
471 
472 	block = &hw->block[blkaddr];
473 	return block->implemented;
474 }
475 
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 	struct rvu_hwinfo *hw = rvu->hw;
479 	struct rvu_block *block;
480 	int blkid;
481 	u64 cfg;
482 
483 	/* For each block check if 'implemented' bit is set */
484 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 		block = &hw->block[blkid];
486 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 		if (cfg & BIT_ULL(11))
488 			block->implemented = true;
489 	}
490 }
491 
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 	rvu_write64(rvu, BLKADDR_RVUM,
495 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 		    RVU_BLK_RVUM_REVID);
497 }
498 
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 	rvu_write64(rvu, BLKADDR_RVUM,
502 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504 
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 	int err;
508 
509 	if (!block->implemented)
510 		return 0;
511 
512 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 			   true);
515 	return err;
516 }
517 
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 	struct rvu_block *block = &rvu->hw->block[blkaddr];
521 	int err;
522 
523 	if (!block->implemented)
524 		return;
525 
526 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 	if (err) {
529 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 			;
532 	}
533 }
534 
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 	/* Do a HW reset of all RVU blocks */
538 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552 
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 	struct rvu_pfvf *pfvf;
556 	u64 cfg;
557 	int lf;
558 
559 	for (lf = 0; lf < block->lf.max; lf++) {
560 		cfg = rvu_read64(rvu, block->addr,
561 				 block->lfcfg_reg | (lf << block->lfshift));
562 		if (!(cfg & BIT_ULL(63)))
563 			continue;
564 
565 		/* Set this resource as being used */
566 		__set_bit(lf, block->lf.bmap);
567 
568 		/* Get, to whom this LF is attached */
569 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 		rvu_update_rsrc_map(rvu, pfvf, block,
571 				    (cfg >> 8) & 0xFFFF, lf, true);
572 
573 		/* Set start MSIX vector for this LF within this PF/VF */
574 		rvu_set_msix_offset(rvu, pfvf, block, lf);
575 	}
576 }
577 
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 	int min_vecs;
581 
582 	if (!vf)
583 		goto check_pf;
584 
585 	if (!nvecs) {
586 		dev_warn(rvu->dev,
587 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 			 pf, vf - 1, nvecs);
589 	}
590 	return;
591 
592 check_pf:
593 	if (pf == 0)
594 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 	else
596 		min_vecs = RVU_PF_INT_VEC_CNT;
597 
598 	if (!(nvecs < min_vecs))
599 		return;
600 	dev_warn(rvu->dev,
601 		 "PF%d is configured with too few vectors, %d, min is %d\n",
602 		 pf, nvecs, min_vecs);
603 }
604 
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 	struct rvu_hwinfo *hw = rvu->hw;
608 	int pf, vf, numvfs, hwvf, err;
609 	int nvecs, offset, max_msix;
610 	struct rvu_pfvf *pfvf;
611 	u64 cfg, phy_addr;
612 	dma_addr_t iova;
613 
614 	for (pf = 0; pf < hw->total_pfs; pf++) {
615 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 		/* If PF is not enabled, nothing to do */
617 		if (!((cfg >> 20) & 0x01))
618 			continue;
619 
620 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621 
622 		pfvf = &rvu->pf[pf];
623 		/* Get num of MSIX vectors attached to this PF */
624 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627 
628 		/* Alloc msix bitmap for this PF */
629 		err = rvu_alloc_bitmap(&pfvf->msix);
630 		if (err)
631 			return err;
632 
633 		/* Allocate memory for MSIX vector to RVU block LF mapping */
634 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 						sizeof(u16), GFP_KERNEL);
636 		if (!pfvf->msix_lfmap)
637 			return -ENOMEM;
638 
639 		/* For PF0 (AF) firmware will set msix vector offsets for
640 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 		 */
642 		if (!pf)
643 			goto setup_vfmsix;
644 
645 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 		 * These are allocated on driver init and never freed,
647 		 * so no need to set 'msix_lfmap' for these.
648 		 */
649 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 		nvecs = (cfg >> 12) & 0xFF;
651 		cfg &= ~0x7FFULL;
652 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 		rvu_write64(rvu, BLKADDR_RVUM,
654 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 		/* Alloc msix bitmap for VFs */
657 		for (vf = 0; vf < numvfs; vf++) {
658 			pfvf =  &rvu->hwvf[hwvf + vf];
659 			/* Get num of MSIX vectors attached to this VF */
660 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 					 RVU_PRIV_PFX_MSIX_CFG(pf));
662 			pfvf->msix.max = (cfg & 0xFFF) + 1;
663 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664 
665 			/* Alloc msix bitmap for this VF */
666 			err = rvu_alloc_bitmap(&pfvf->msix);
667 			if (err)
668 				return err;
669 
670 			pfvf->msix_lfmap =
671 				devm_kcalloc(rvu->dev, pfvf->msix.max,
672 					     sizeof(u16), GFP_KERNEL);
673 			if (!pfvf->msix_lfmap)
674 				return -ENOMEM;
675 
676 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 			 * These are allocated on driver init and never freed,
678 			 * so no need to set 'msix_lfmap' for these.
679 			 */
680 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 			nvecs = (cfg >> 12) & 0xFF;
683 			cfg &= ~0x7FFULL;
684 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 			rvu_write64(rvu, BLKADDR_RVUM,
686 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 				    cfg | offset);
688 		}
689 	}
690 
691 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 	 * create an IOMMU mapping for the physical address configured by
693 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 	 */
695 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 	max_msix = cfg & 0xFFFFF;
697 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 		phy_addr = rvu->fwdata->msixtr_base;
699 	else
700 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701 
702 	iova = dma_map_resource(rvu->dev, phy_addr,
703 				max_msix * PCI_MSIX_ENTRY_SIZE,
704 				DMA_BIDIRECTIONAL, 0);
705 
706 	if (dma_mapping_error(rvu->dev, iova))
707 		return -ENOMEM;
708 
709 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 	rvu->msix_base_iova = iova;
711 	rvu->msixtr_base_phy = phy_addr;
712 
713 	return 0;
714 }
715 
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 	/* Restore msixtr base register */
719 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 		    rvu->msixtr_base_phy);
721 }
722 
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 	struct rvu_hwinfo *hw = rvu->hw;
726 	struct rvu_block *block;
727 	struct rvu_pfvf  *pfvf;
728 	int id, max_msix;
729 	u64 cfg;
730 
731 	rvu_npa_freemem(rvu);
732 	rvu_npc_freemem(rvu);
733 	rvu_nix_freemem(rvu);
734 
735 	/* Free block LF bitmaps */
736 	for (id = 0; id < BLK_COUNT; id++) {
737 		block = &hw->block[id];
738 		kfree(block->lf.bmap);
739 	}
740 
741 	/* Free MSIX bitmaps */
742 	for (id = 0; id < hw->total_pfs; id++) {
743 		pfvf = &rvu->pf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	for (id = 0; id < hw->total_vfs; id++) {
748 		pfvf = &rvu->hwvf[id];
749 		kfree(pfvf->msix.bmap);
750 	}
751 
752 	/* Unmap MSIX vector base IOVA mapping */
753 	if (!rvu->msix_base_iova)
754 		return;
755 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 	max_msix = cfg & 0xFFFFF;
757 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 			   max_msix * PCI_MSIX_ENTRY_SIZE,
759 			   DMA_BIDIRECTIONAL, 0);
760 
761 	rvu_reset_msix(rvu);
762 	mutex_destroy(&rvu->rsrc_lock);
763 }
764 
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 
821 	BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
823 	if (!rvu->fwdata)
824 		goto fail;
825 	if (!is_rvu_fwdata_valid(rvu)) {
826 		dev_err(rvu->dev,
827 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
828 		iounmap(rvu->fwdata);
829 		rvu->fwdata = NULL;
830 		return -EINVAL;
831 	}
832 	return 0;
833 fail:
834 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835 	return -EIO;
836 }
837 
838 static void rvu_fwdata_exit(struct rvu *rvu)
839 {
840 	if (rvu->fwdata)
841 		iounmap(rvu->fwdata);
842 }
843 
844 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 	struct rvu_hwinfo *hw = rvu->hw;
847 	struct rvu_block *block;
848 	int blkid;
849 	u64 cfg;
850 
851 	/* Init NIX LF's bitmap */
852 	block = &hw->block[blkaddr];
853 	if (!block->implemented)
854 		return 0;
855 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
857 	block->lf.max = cfg & 0xFFF;
858 	block->addr = blkaddr;
859 	block->type = BLKTYPE_NIX;
860 	block->lfshift = 8;
861 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866 	block->lfreset_reg = NIX_AF_LF_RST;
867 	block->rvu = rvu;
868 	sprintf(block->name, "NIX%d", blkid);
869 	rvu->nix_blkaddr[blkid] = blkaddr;
870 	return rvu_alloc_bitmap(&block->lf);
871 }
872 
873 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874 {
875 	struct rvu_hwinfo *hw = rvu->hw;
876 	struct rvu_block *block;
877 	int blkid;
878 	u64 cfg;
879 
880 	/* Init CPT LF's bitmap */
881 	block = &hw->block[blkaddr];
882 	if (!block->implemented)
883 		return 0;
884 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
886 	block->lf.max = cfg & 0xFF;
887 	block->addr = blkaddr;
888 	block->type = BLKTYPE_CPT;
889 	block->multislot = true;
890 	block->lfshift = 3;
891 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896 	block->lfreset_reg = CPT_AF_LF_RST;
897 	block->rvu = rvu;
898 	sprintf(block->name, "CPT%d", blkid);
899 	return rvu_alloc_bitmap(&block->lf);
900 }
901 
902 static void rvu_get_lbk_bufsize(struct rvu *rvu)
903 {
904 	struct pci_dev *pdev = NULL;
905 	void __iomem *base;
906 	u64 lbk_const;
907 
908 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
910 	if (!pdev)
911 		return;
912 
913 	base = pci_ioremap_bar(pdev, 0);
914 	if (!base)
915 		goto err_put;
916 
917 	lbk_const = readq(base + LBK_CONST);
918 
919 	/* cache fifo size */
920 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921 
922 	iounmap(base);
923 err_put:
924 	pci_dev_put(pdev);
925 }
926 
927 static int rvu_setup_hw_resources(struct rvu *rvu)
928 {
929 	struct rvu_hwinfo *hw = rvu->hw;
930 	struct rvu_block *block;
931 	int blkid, err;
932 	u64 cfg;
933 
934 	/* Get HW supported max RVU PF & VF count */
935 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
936 	hw->total_pfs = (cfg >> 32) & 0xFF;
937 	hw->total_vfs = (cfg >> 20) & 0xFFF;
938 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939 
940 	if (!is_rvu_otx2(rvu))
941 		rvu_apr_block_cn10k_init(rvu);
942 
943 	/* Init NPA LF's bitmap */
944 	block = &hw->block[BLKADDR_NPA];
945 	if (!block->implemented)
946 		goto nix;
947 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
948 	block->lf.max = (cfg >> 16) & 0xFFF;
949 	block->addr = BLKADDR_NPA;
950 	block->type = BLKTYPE_NPA;
951 	block->lfshift = 8;
952 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957 	block->lfreset_reg = NPA_AF_LF_RST;
958 	block->rvu = rvu;
959 	sprintf(block->name, "NPA");
960 	err = rvu_alloc_bitmap(&block->lf);
961 	if (err) {
962 		dev_err(rvu->dev,
963 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
964 		return err;
965 	}
966 
967 nix:
968 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
969 	if (err) {
970 		dev_err(rvu->dev,
971 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972 		return err;
973 	}
974 
975 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
976 	if (err) {
977 		dev_err(rvu->dev,
978 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979 		return err;
980 	}
981 
982 	/* Init SSO group's bitmap */
983 	block = &hw->block[BLKADDR_SSO];
984 	if (!block->implemented)
985 		goto ssow;
986 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
987 	block->lf.max = cfg & 0xFFFF;
988 	block->addr = BLKADDR_SSO;
989 	block->type = BLKTYPE_SSO;
990 	block->multislot = true;
991 	block->lfshift = 3;
992 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998 	block->rvu = rvu;
999 	sprintf(block->name, "SSO GROUP");
1000 	err = rvu_alloc_bitmap(&block->lf);
1001 	if (err) {
1002 		dev_err(rvu->dev,
1003 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
1004 		return err;
1005 	}
1006 
1007 ssow:
1008 	/* Init SSO workslot's bitmap */
1009 	block = &hw->block[BLKADDR_SSOW];
1010 	if (!block->implemented)
1011 		goto tim;
1012 	block->lf.max = (cfg >> 56) & 0xFF;
1013 	block->addr = BLKADDR_SSOW;
1014 	block->type = BLKTYPE_SSOW;
1015 	block->multislot = true;
1016 	block->lfshift = 3;
1017 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023 	block->rvu = rvu;
1024 	sprintf(block->name, "SSOWS");
1025 	err = rvu_alloc_bitmap(&block->lf);
1026 	if (err) {
1027 		dev_err(rvu->dev,
1028 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029 		return err;
1030 	}
1031 
1032 tim:
1033 	/* Init TIM LF's bitmap */
1034 	block = &hw->block[BLKADDR_TIM];
1035 	if (!block->implemented)
1036 		goto cpt;
1037 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1038 	block->lf.max = cfg & 0xFFFF;
1039 	block->addr = BLKADDR_TIM;
1040 	block->type = BLKTYPE_TIM;
1041 	block->multislot = true;
1042 	block->lfshift = 3;
1043 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048 	block->lfreset_reg = TIM_AF_LF_RST;
1049 	block->rvu = rvu;
1050 	sprintf(block->name, "TIM");
1051 	err = rvu_alloc_bitmap(&block->lf);
1052 	if (err) {
1053 		dev_err(rvu->dev,
1054 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1055 		return err;
1056 	}
1057 
1058 cpt:
1059 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1060 	if (err) {
1061 		dev_err(rvu->dev,
1062 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063 		return err;
1064 	}
1065 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1066 	if (err) {
1067 		dev_err(rvu->dev,
1068 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069 		return err;
1070 	}
1071 
1072 	/* Allocate memory for PFVF data */
1073 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1074 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1075 	if (!rvu->pf) {
1076 		dev_err(rvu->dev,
1077 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078 		return -ENOMEM;
1079 	}
1080 
1081 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1082 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1083 	if (!rvu->hwvf) {
1084 		dev_err(rvu->dev,
1085 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086 		return -ENOMEM;
1087 	}
1088 
1089 	mutex_init(&rvu->rsrc_lock);
1090 
1091 	rvu_fwdata_init(rvu);
1092 
1093 	err = rvu_setup_msix_resources(rvu);
1094 	if (err) {
1095 		dev_err(rvu->dev,
1096 			"%s: Failed to setup MSIX resources\n", __func__);
1097 		return err;
1098 	}
1099 
1100 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101 		block = &hw->block[blkid];
1102 		if (!block->lf.bmap)
1103 			continue;
1104 
1105 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1106 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1107 					     sizeof(u16), GFP_KERNEL);
1108 		if (!block->fn_map) {
1109 			err = -ENOMEM;
1110 			goto msix_err;
1111 		}
1112 
1113 		/* Scan all blocks to check if low level firmware has
1114 		 * already provisioned any of the resources to a PF/VF.
1115 		 */
1116 		rvu_scan_block(rvu, block);
1117 	}
1118 
1119 	err = rvu_set_channels_base(rvu);
1120 	if (err)
1121 		goto msix_err;
1122 
1123 	err = rvu_npc_init(rvu);
1124 	if (err) {
1125 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126 		goto npc_err;
1127 	}
1128 
1129 	err = rvu_cgx_init(rvu);
1130 	if (err) {
1131 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132 		goto cgx_err;
1133 	}
1134 
1135 	err = rvu_npc_exact_init(rvu);
1136 	if (err) {
1137 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1138 		return err;
1139 	}
1140 
1141 	/* Assign MACs for CGX mapped functions */
1142 	rvu_setup_pfvf_macaddress(rvu);
1143 
1144 	err = rvu_npa_init(rvu);
1145 	if (err) {
1146 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147 		goto npa_err;
1148 	}
1149 
1150 	rvu_get_lbk_bufsize(rvu);
1151 
1152 	err = rvu_nix_init(rvu);
1153 	if (err) {
1154 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155 		goto nix_err;
1156 	}
1157 
1158 	err = rvu_sdp_init(rvu);
1159 	if (err) {
1160 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161 		goto nix_err;
1162 	}
1163 
1164 	rvu_program_channels(rvu);
1165 
1166 	err = rvu_mcs_init(rvu);
1167 	if (err) {
1168 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1169 		goto nix_err;
1170 	}
1171 
1172 	err = rvu_cpt_init(rvu);
1173 	if (err) {
1174 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1175 		goto mcs_err;
1176 	}
1177 
1178 	return 0;
1179 
1180 mcs_err:
1181 	rvu_mcs_exit(rvu);
1182 nix_err:
1183 	rvu_nix_freemem(rvu);
1184 npa_err:
1185 	rvu_npa_freemem(rvu);
1186 cgx_err:
1187 	rvu_cgx_exit(rvu);
1188 npc_err:
1189 	rvu_npc_freemem(rvu);
1190 	rvu_fwdata_exit(rvu);
1191 msix_err:
1192 	rvu_reset_msix(rvu);
1193 	return err;
1194 }
1195 
1196 /* NPA and NIX admin queue APIs */
1197 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1198 {
1199 	if (!aq)
1200 		return;
1201 
1202 	qmem_free(rvu->dev, aq->inst);
1203 	qmem_free(rvu->dev, aq->res);
1204 	devm_kfree(rvu->dev, aq);
1205 }
1206 
1207 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1208 		 int qsize, int inst_size, int res_size)
1209 {
1210 	struct admin_queue *aq;
1211 	int err;
1212 
1213 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1214 	if (!*ad_queue)
1215 		return -ENOMEM;
1216 	aq = *ad_queue;
1217 
1218 	/* Alloc memory for instructions i.e AQ */
1219 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1220 	if (err) {
1221 		devm_kfree(rvu->dev, aq);
1222 		return err;
1223 	}
1224 
1225 	/* Alloc memory for results */
1226 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1227 	if (err) {
1228 		rvu_aq_free(rvu, aq);
1229 		return err;
1230 	}
1231 
1232 	spin_lock_init(&aq->lock);
1233 	return 0;
1234 }
1235 
1236 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1237 			   struct ready_msg_rsp *rsp)
1238 {
1239 	if (rvu->fwdata) {
1240 		rsp->rclk_freq = rvu->fwdata->rclk;
1241 		rsp->sclk_freq = rvu->fwdata->sclk;
1242 	}
1243 	return 0;
1244 }
1245 
1246 /* Get current count of a RVU block's LF/slots
1247  * provisioned to a given RVU func.
1248  */
1249 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1250 {
1251 	switch (blkaddr) {
1252 	case BLKADDR_NPA:
1253 		return pfvf->npalf ? 1 : 0;
1254 	case BLKADDR_NIX0:
1255 	case BLKADDR_NIX1:
1256 		return pfvf->nixlf ? 1 : 0;
1257 	case BLKADDR_SSO:
1258 		return pfvf->sso;
1259 	case BLKADDR_SSOW:
1260 		return pfvf->ssow;
1261 	case BLKADDR_TIM:
1262 		return pfvf->timlfs;
1263 	case BLKADDR_CPT0:
1264 		return pfvf->cptlfs;
1265 	case BLKADDR_CPT1:
1266 		return pfvf->cpt1_lfs;
1267 	}
1268 	return 0;
1269 }
1270 
1271 /* Return true if LFs of block type are attached to pcifunc */
1272 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1273 {
1274 	switch (blktype) {
1275 	case BLKTYPE_NPA:
1276 		return pfvf->npalf ? 1 : 0;
1277 	case BLKTYPE_NIX:
1278 		return pfvf->nixlf ? 1 : 0;
1279 	case BLKTYPE_SSO:
1280 		return !!pfvf->sso;
1281 	case BLKTYPE_SSOW:
1282 		return !!pfvf->ssow;
1283 	case BLKTYPE_TIM:
1284 		return !!pfvf->timlfs;
1285 	case BLKTYPE_CPT:
1286 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1287 	}
1288 
1289 	return false;
1290 }
1291 
1292 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1293 {
1294 	struct rvu_pfvf *pfvf;
1295 
1296 	if (!is_pf_func_valid(rvu, pcifunc))
1297 		return false;
1298 
1299 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1300 
1301 	/* Check if this PFFUNC has a LF of type blktype attached */
1302 	if (!is_blktype_attached(pfvf, blktype))
1303 		return false;
1304 
1305 	return true;
1306 }
1307 
1308 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1309 			   int pcifunc, int slot)
1310 {
1311 	u64 val;
1312 
1313 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1314 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1315 	/* Wait for the lookup to finish */
1316 	/* TODO: put some timeout here */
1317 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1318 		;
1319 
1320 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1321 
1322 	/* Check LF valid bit */
1323 	if (!(val & (1ULL << 12)))
1324 		return -1;
1325 
1326 	return (val & 0xFFF);
1327 }
1328 
1329 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1330 			      u16 global_slot, u16 *slot_in_block)
1331 {
1332 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1333 	int numlfs, total_lfs = 0, nr_blocks = 0;
1334 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1335 	struct rvu_block *block;
1336 	int blkaddr;
1337 	u16 start_slot;
1338 
1339 	if (!is_blktype_attached(pfvf, blktype))
1340 		return -ENODEV;
1341 
1342 	/* Get all the block addresses from which LFs are attached to
1343 	 * the given pcifunc in num_blkaddr[].
1344 	 */
1345 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1346 		block = &rvu->hw->block[blkaddr];
1347 		if (block->type != blktype)
1348 			continue;
1349 		if (!is_block_implemented(rvu->hw, blkaddr))
1350 			continue;
1351 
1352 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1353 		if (numlfs) {
1354 			total_lfs += numlfs;
1355 			num_blkaddr[nr_blocks] = blkaddr;
1356 			nr_blocks++;
1357 		}
1358 	}
1359 
1360 	if (global_slot >= total_lfs)
1361 		return -ENODEV;
1362 
1363 	/* Based on the given global slot number retrieve the
1364 	 * correct block address out of all attached block
1365 	 * addresses and slot number in that block.
1366 	 */
1367 	total_lfs = 0;
1368 	blkaddr = -ENODEV;
1369 	for (i = 0; i < nr_blocks; i++) {
1370 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1371 		total_lfs += numlfs;
1372 		if (global_slot < total_lfs) {
1373 			blkaddr = num_blkaddr[i];
1374 			start_slot = total_lfs - numlfs;
1375 			*slot_in_block = global_slot - start_slot;
1376 			break;
1377 		}
1378 	}
1379 
1380 	return blkaddr;
1381 }
1382 
1383 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1384 {
1385 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1386 	struct rvu_hwinfo *hw = rvu->hw;
1387 	struct rvu_block *block;
1388 	int slot, lf, num_lfs;
1389 	int blkaddr;
1390 
1391 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1392 	if (blkaddr < 0)
1393 		return;
1394 
1395 	if (blktype == BLKTYPE_NIX)
1396 		rvu_nix_reset_mac(pfvf, pcifunc);
1397 
1398 	block = &hw->block[blkaddr];
1399 
1400 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1401 	if (!num_lfs)
1402 		return;
1403 
1404 	for (slot = 0; slot < num_lfs; slot++) {
1405 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1406 		if (lf < 0) /* This should never happen */
1407 			continue;
1408 
1409 		/* Disable the LF */
1410 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1411 			    (lf << block->lfshift), 0x00ULL);
1412 
1413 		/* Update SW maintained mapping info as well */
1414 		rvu_update_rsrc_map(rvu, pfvf, block,
1415 				    pcifunc, lf, false);
1416 
1417 		/* Free the resource */
1418 		rvu_free_rsrc(&block->lf, lf);
1419 
1420 		/* Clear MSIX vector offset for this LF */
1421 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1422 	}
1423 }
1424 
1425 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1426 			    u16 pcifunc)
1427 {
1428 	struct rvu_hwinfo *hw = rvu->hw;
1429 	bool detach_all = true;
1430 	struct rvu_block *block;
1431 	int blkid;
1432 
1433 	mutex_lock(&rvu->rsrc_lock);
1434 
1435 	/* Check for partial resource detach */
1436 	if (detach && detach->partial)
1437 		detach_all = false;
1438 
1439 	/* Check for RVU block's LFs attached to this func,
1440 	 * if so, detach them.
1441 	 */
1442 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1443 		block = &hw->block[blkid];
1444 		if (!block->lf.bmap)
1445 			continue;
1446 		if (!detach_all && detach) {
1447 			if (blkid == BLKADDR_NPA && !detach->npalf)
1448 				continue;
1449 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1450 				continue;
1451 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1452 				continue;
1453 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1454 				continue;
1455 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1456 				continue;
1457 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1458 				continue;
1459 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1460 				continue;
1461 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1462 				continue;
1463 		}
1464 		rvu_detach_block(rvu, pcifunc, block->type);
1465 	}
1466 
1467 	mutex_unlock(&rvu->rsrc_lock);
1468 	return 0;
1469 }
1470 
1471 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1472 				      struct rsrc_detach *detach,
1473 				      struct msg_rsp *rsp)
1474 {
1475 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1476 }
1477 
1478 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1479 {
1480 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1481 	int blkaddr = BLKADDR_NIX0, vf;
1482 	struct rvu_pfvf *pf;
1483 
1484 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1485 
1486 	/* All CGX mapped PFs are set with assigned NIX block during init */
1487 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1488 		blkaddr = pf->nix_blkaddr;
1489 	} else if (is_lbk_vf(rvu, pcifunc)) {
1490 		vf = pcifunc - 1;
1491 		/* Assign NIX based on VF number. All even numbered VFs get
1492 		 * NIX0 and odd numbered gets NIX1
1493 		 */
1494 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1495 		/* NIX1 is not present on all silicons */
1496 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1497 			blkaddr = BLKADDR_NIX0;
1498 	}
1499 
1500 	/* if SDP1 then the blkaddr is NIX1 */
1501 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1502 		blkaddr = BLKADDR_NIX1;
1503 
1504 	switch (blkaddr) {
1505 	case BLKADDR_NIX1:
1506 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1507 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1508 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1509 		break;
1510 	case BLKADDR_NIX0:
1511 	default:
1512 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1513 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1514 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1515 		break;
1516 	}
1517 
1518 	return pfvf->nix_blkaddr;
1519 }
1520 
1521 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1522 				  u16 pcifunc, struct rsrc_attach *attach)
1523 {
1524 	int blkaddr;
1525 
1526 	switch (blktype) {
1527 	case BLKTYPE_NIX:
1528 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1529 		break;
1530 	case BLKTYPE_CPT:
1531 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1532 			return rvu_get_blkaddr(rvu, blktype, 0);
1533 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1534 			  BLKADDR_CPT0;
1535 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1536 			return -ENODEV;
1537 		break;
1538 	default:
1539 		return rvu_get_blkaddr(rvu, blktype, 0);
1540 	}
1541 
1542 	if (is_block_implemented(rvu->hw, blkaddr))
1543 		return blkaddr;
1544 
1545 	return -ENODEV;
1546 }
1547 
1548 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1549 			     int num_lfs, struct rsrc_attach *attach)
1550 {
1551 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1552 	struct rvu_hwinfo *hw = rvu->hw;
1553 	struct rvu_block *block;
1554 	int slot, lf;
1555 	int blkaddr;
1556 	u64 cfg;
1557 
1558 	if (!num_lfs)
1559 		return;
1560 
1561 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1562 	if (blkaddr < 0)
1563 		return;
1564 
1565 	block = &hw->block[blkaddr];
1566 	if (!block->lf.bmap)
1567 		return;
1568 
1569 	for (slot = 0; slot < num_lfs; slot++) {
1570 		/* Allocate the resource */
1571 		lf = rvu_alloc_rsrc(&block->lf);
1572 		if (lf < 0)
1573 			return;
1574 
1575 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1576 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1577 			    (lf << block->lfshift), cfg);
1578 		rvu_update_rsrc_map(rvu, pfvf, block,
1579 				    pcifunc, lf, true);
1580 
1581 		/* Set start MSIX vector for this LF within this PF/VF */
1582 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1583 	}
1584 }
1585 
1586 static int rvu_check_rsrc_availability(struct rvu *rvu,
1587 				       struct rsrc_attach *req, u16 pcifunc)
1588 {
1589 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1590 	int free_lfs, mappedlfs, blkaddr;
1591 	struct rvu_hwinfo *hw = rvu->hw;
1592 	struct rvu_block *block;
1593 
1594 	/* Only one NPA LF can be attached */
1595 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1596 		block = &hw->block[BLKADDR_NPA];
1597 		free_lfs = rvu_rsrc_free_count(&block->lf);
1598 		if (!free_lfs)
1599 			goto fail;
1600 	} else if (req->npalf) {
1601 		dev_err(&rvu->pdev->dev,
1602 			"Func 0x%x: Invalid req, already has NPA\n",
1603 			 pcifunc);
1604 		return -EINVAL;
1605 	}
1606 
1607 	/* Only one NIX LF can be attached */
1608 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1609 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1610 						 pcifunc, req);
1611 		if (blkaddr < 0)
1612 			return blkaddr;
1613 		block = &hw->block[blkaddr];
1614 		free_lfs = rvu_rsrc_free_count(&block->lf);
1615 		if (!free_lfs)
1616 			goto fail;
1617 	} else if (req->nixlf) {
1618 		dev_err(&rvu->pdev->dev,
1619 			"Func 0x%x: Invalid req, already has NIX\n",
1620 			pcifunc);
1621 		return -EINVAL;
1622 	}
1623 
1624 	if (req->sso) {
1625 		block = &hw->block[BLKADDR_SSO];
1626 		/* Is request within limits ? */
1627 		if (req->sso > block->lf.max) {
1628 			dev_err(&rvu->pdev->dev,
1629 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1630 				 pcifunc, req->sso, block->lf.max);
1631 			return -EINVAL;
1632 		}
1633 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1634 		free_lfs = rvu_rsrc_free_count(&block->lf);
1635 		/* Check if additional resources are available */
1636 		if (req->sso > mappedlfs &&
1637 		    ((req->sso - mappedlfs) > free_lfs))
1638 			goto fail;
1639 	}
1640 
1641 	if (req->ssow) {
1642 		block = &hw->block[BLKADDR_SSOW];
1643 		if (req->ssow > block->lf.max) {
1644 			dev_err(&rvu->pdev->dev,
1645 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1646 				 pcifunc, req->ssow, block->lf.max);
1647 			return -EINVAL;
1648 		}
1649 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1650 		free_lfs = rvu_rsrc_free_count(&block->lf);
1651 		if (req->ssow > mappedlfs &&
1652 		    ((req->ssow - mappedlfs) > free_lfs))
1653 			goto fail;
1654 	}
1655 
1656 	if (req->timlfs) {
1657 		block = &hw->block[BLKADDR_TIM];
1658 		if (req->timlfs > block->lf.max) {
1659 			dev_err(&rvu->pdev->dev,
1660 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1661 				 pcifunc, req->timlfs, block->lf.max);
1662 			return -EINVAL;
1663 		}
1664 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1665 		free_lfs = rvu_rsrc_free_count(&block->lf);
1666 		if (req->timlfs > mappedlfs &&
1667 		    ((req->timlfs - mappedlfs) > free_lfs))
1668 			goto fail;
1669 	}
1670 
1671 	if (req->cptlfs) {
1672 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1673 						 pcifunc, req);
1674 		if (blkaddr < 0)
1675 			return blkaddr;
1676 		block = &hw->block[blkaddr];
1677 		if (req->cptlfs > block->lf.max) {
1678 			dev_err(&rvu->pdev->dev,
1679 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1680 				 pcifunc, req->cptlfs, block->lf.max);
1681 			return -EINVAL;
1682 		}
1683 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1684 		free_lfs = rvu_rsrc_free_count(&block->lf);
1685 		if (req->cptlfs > mappedlfs &&
1686 		    ((req->cptlfs - mappedlfs) > free_lfs))
1687 			goto fail;
1688 	}
1689 
1690 	return 0;
1691 
1692 fail:
1693 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1694 	return -ENOSPC;
1695 }
1696 
1697 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1698 				       struct rsrc_attach *attach)
1699 {
1700 	int blkaddr, num_lfs;
1701 
1702 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1703 					 attach->hdr.pcifunc, attach);
1704 	if (blkaddr < 0)
1705 		return false;
1706 
1707 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1708 					blkaddr);
1709 	/* Requester already has LFs from given block ? */
1710 	return !!num_lfs;
1711 }
1712 
1713 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1714 				      struct rsrc_attach *attach,
1715 				      struct msg_rsp *rsp)
1716 {
1717 	u16 pcifunc = attach->hdr.pcifunc;
1718 	int err;
1719 
1720 	/* If first request, detach all existing attached resources */
1721 	if (!attach->modify)
1722 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1723 
1724 	mutex_lock(&rvu->rsrc_lock);
1725 
1726 	/* Check if the request can be accommodated */
1727 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1728 	if (err)
1729 		goto exit;
1730 
1731 	/* Now attach the requested resources */
1732 	if (attach->npalf)
1733 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1734 
1735 	if (attach->nixlf)
1736 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1737 
1738 	if (attach->sso) {
1739 		/* RVU func doesn't know which exact LF or slot is attached
1740 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1741 		 * request, simply detach all existing attached LFs/slots
1742 		 * and attach a fresh.
1743 		 */
1744 		if (attach->modify)
1745 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1746 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1747 				 attach->sso, attach);
1748 	}
1749 
1750 	if (attach->ssow) {
1751 		if (attach->modify)
1752 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1753 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1754 				 attach->ssow, attach);
1755 	}
1756 
1757 	if (attach->timlfs) {
1758 		if (attach->modify)
1759 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1760 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1761 				 attach->timlfs, attach);
1762 	}
1763 
1764 	if (attach->cptlfs) {
1765 		if (attach->modify &&
1766 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1767 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1768 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1769 				 attach->cptlfs, attach);
1770 	}
1771 
1772 exit:
1773 	mutex_unlock(&rvu->rsrc_lock);
1774 	return err;
1775 }
1776 
1777 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1778 			       int blkaddr, int lf)
1779 {
1780 	u16 vec;
1781 
1782 	if (lf < 0)
1783 		return MSIX_VECTOR_INVALID;
1784 
1785 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1786 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1787 			return vec;
1788 	}
1789 	return MSIX_VECTOR_INVALID;
1790 }
1791 
1792 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1793 				struct rvu_block *block, int lf)
1794 {
1795 	u16 nvecs, vec, offset;
1796 	u64 cfg;
1797 
1798 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1799 			 (lf << block->lfshift));
1800 	nvecs = (cfg >> 12) & 0xFF;
1801 
1802 	/* Check and alloc MSIX vectors, must be contiguous */
1803 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1804 		return;
1805 
1806 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1807 
1808 	/* Config MSIX offset in LF */
1809 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1810 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1811 
1812 	/* Update the bitmap as well */
1813 	for (vec = 0; vec < nvecs; vec++)
1814 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1815 }
1816 
1817 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1818 				  struct rvu_block *block, int lf)
1819 {
1820 	u16 nvecs, vec, offset;
1821 	u64 cfg;
1822 
1823 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1824 			 (lf << block->lfshift));
1825 	nvecs = (cfg >> 12) & 0xFF;
1826 
1827 	/* Clear MSIX offset in LF */
1828 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1829 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1830 
1831 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1832 
1833 	/* Update the mapping */
1834 	for (vec = 0; vec < nvecs; vec++)
1835 		pfvf->msix_lfmap[offset + vec] = 0;
1836 
1837 	/* Free the same in MSIX bitmap */
1838 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1839 }
1840 
1841 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1842 				 struct msix_offset_rsp *rsp)
1843 {
1844 	struct rvu_hwinfo *hw = rvu->hw;
1845 	u16 pcifunc = req->hdr.pcifunc;
1846 	struct rvu_pfvf *pfvf;
1847 	int lf, slot, blkaddr;
1848 
1849 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1850 	if (!pfvf->msix.bmap)
1851 		return 0;
1852 
1853 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1854 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1855 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1856 
1857 	/* Get BLKADDR from which LFs are attached to pcifunc */
1858 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1859 	if (blkaddr < 0) {
1860 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1861 	} else {
1862 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1863 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1864 	}
1865 
1866 	rsp->sso = pfvf->sso;
1867 	for (slot = 0; slot < rsp->sso; slot++) {
1868 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1869 		rsp->sso_msixoff[slot] =
1870 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1871 	}
1872 
1873 	rsp->ssow = pfvf->ssow;
1874 	for (slot = 0; slot < rsp->ssow; slot++) {
1875 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1876 		rsp->ssow_msixoff[slot] =
1877 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1878 	}
1879 
1880 	rsp->timlfs = pfvf->timlfs;
1881 	for (slot = 0; slot < rsp->timlfs; slot++) {
1882 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1883 		rsp->timlf_msixoff[slot] =
1884 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1885 	}
1886 
1887 	rsp->cptlfs = pfvf->cptlfs;
1888 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1889 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1890 		rsp->cptlf_msixoff[slot] =
1891 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1892 	}
1893 
1894 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1895 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1896 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1897 		rsp->cpt1_lf_msixoff[slot] =
1898 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1905 				   struct free_rsrcs_rsp *rsp)
1906 {
1907 	struct rvu_hwinfo *hw = rvu->hw;
1908 	struct rvu_block *block;
1909 	struct nix_txsch *txsch;
1910 	struct nix_hw *nix_hw;
1911 
1912 	mutex_lock(&rvu->rsrc_lock);
1913 
1914 	block = &hw->block[BLKADDR_NPA];
1915 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1916 
1917 	block = &hw->block[BLKADDR_NIX0];
1918 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1919 
1920 	block = &hw->block[BLKADDR_NIX1];
1921 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1922 
1923 	block = &hw->block[BLKADDR_SSO];
1924 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1925 
1926 	block = &hw->block[BLKADDR_SSOW];
1927 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1928 
1929 	block = &hw->block[BLKADDR_TIM];
1930 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1931 
1932 	block = &hw->block[BLKADDR_CPT0];
1933 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1934 
1935 	block = &hw->block[BLKADDR_CPT1];
1936 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1937 
1938 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1939 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1940 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1941 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1942 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1943 		/* NIX1 */
1944 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1945 			goto out;
1946 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1947 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1948 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1949 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1950 	} else {
1951 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1952 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1953 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1954 				rvu_rsrc_free_count(&txsch->schq);
1955 
1956 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1957 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1958 				rvu_rsrc_free_count(&txsch->schq);
1959 
1960 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1961 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1962 				rvu_rsrc_free_count(&txsch->schq);
1963 
1964 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1965 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1966 				rvu_rsrc_free_count(&txsch->schq);
1967 
1968 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1969 			goto out;
1970 
1971 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1972 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1973 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1974 				rvu_rsrc_free_count(&txsch->schq);
1975 
1976 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1977 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1978 				rvu_rsrc_free_count(&txsch->schq);
1979 
1980 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1981 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1982 				rvu_rsrc_free_count(&txsch->schq);
1983 
1984 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1985 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1986 				rvu_rsrc_free_count(&txsch->schq);
1987 	}
1988 
1989 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1990 out:
1991 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1992 	mutex_unlock(&rvu->rsrc_lock);
1993 
1994 	return 0;
1995 }
1996 
1997 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1998 			    struct msg_rsp *rsp)
1999 {
2000 	u16 pcifunc = req->hdr.pcifunc;
2001 	u16 vf, numvfs;
2002 	u64 cfg;
2003 
2004 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2005 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2006 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2007 	numvfs = (cfg >> 12) & 0xFF;
2008 
2009 	if (vf && vf <= numvfs)
2010 		__rvu_flr_handler(rvu, pcifunc);
2011 	else
2012 		return RVU_INVALID_VF_ID;
2013 
2014 	return 0;
2015 }
2016 
2017 int rvu_ndc_sync(struct rvu *rvu, int lfblkaddr, int lfidx, u64 lfoffset)
2018 {
2019 	/* Sync cached info for this LF in NDC to LLC/DRAM */
2020 	rvu_write64(rvu, lfblkaddr, lfoffset, BIT_ULL(12) | lfidx);
2021 	return rvu_poll_reg(rvu, lfblkaddr, lfoffset, BIT_ULL(12), true);
2022 }
2023 
2024 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2025 				struct get_hw_cap_rsp *rsp)
2026 {
2027 	struct rvu_hwinfo *hw = rvu->hw;
2028 
2029 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2030 	rsp->nix_shaping = hw->cap.nix_shaping;
2031 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2032 
2033 	return 0;
2034 }
2035 
2036 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2037 				 struct msg_rsp *rsp)
2038 {
2039 	struct rvu_hwinfo *hw = rvu->hw;
2040 	u16 pcifunc = req->hdr.pcifunc;
2041 	struct rvu_pfvf *pfvf;
2042 	int blkaddr, nixlf;
2043 	u16 target;
2044 
2045 	/* Only PF can add VF permissions */
2046 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2047 		return -EOPNOTSUPP;
2048 
2049 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2050 	pfvf = rvu_get_pfvf(rvu, target);
2051 
2052 	if (req->flags & RESET_VF_PERM) {
2053 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2054 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2055 		 (req->flags & VF_TRUSTED)) {
2056 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2057 		/* disable multicast and promisc entries */
2058 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2059 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2060 			if (blkaddr < 0)
2061 				return 0;
2062 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2063 					   target, 0);
2064 			if (nixlf < 0)
2065 				return 0;
2066 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2067 						     NIXLF_ALLMULTI_ENTRY,
2068 						     false);
2069 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2070 						     NIXLF_PROMISC_ENTRY,
2071 						     false);
2072 		}
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 int rvu_mbox_handler_ndc_sync_op(struct rvu *rvu,
2079 				 struct ndc_sync_op *req,
2080 				 struct msg_rsp *rsp)
2081 {
2082 	struct rvu_hwinfo *hw = rvu->hw;
2083 	u16 pcifunc = req->hdr.pcifunc;
2084 	int err, lfidx, lfblkaddr;
2085 
2086 	if (req->npa_lf_sync) {
2087 		/* Get NPA LF data */
2088 		lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
2089 		if (lfblkaddr < 0)
2090 			return NPA_AF_ERR_AF_LF_INVALID;
2091 
2092 		lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2093 		if (lfidx < 0)
2094 			return NPA_AF_ERR_AF_LF_INVALID;
2095 
2096 		/* Sync NPA NDC */
2097 		err = rvu_ndc_sync(rvu, lfblkaddr,
2098 				   lfidx, NPA_AF_NDC_SYNC);
2099 		if (err)
2100 			dev_err(rvu->dev,
2101 				"NDC-NPA sync failed for LF %u\n", lfidx);
2102 	}
2103 
2104 	if (!req->nix_lf_tx_sync && !req->nix_lf_rx_sync)
2105 		return 0;
2106 
2107 	/* Get NIX LF data */
2108 	lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
2109 	if (lfblkaddr < 0)
2110 		return NIX_AF_ERR_AF_LF_INVALID;
2111 
2112 	lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2113 	if (lfidx < 0)
2114 		return NIX_AF_ERR_AF_LF_INVALID;
2115 
2116 	if (req->nix_lf_tx_sync) {
2117 		/* Sync NIX TX NDC */
2118 		err = rvu_ndc_sync(rvu, lfblkaddr,
2119 				   lfidx, NIX_AF_NDC_TX_SYNC);
2120 		if (err)
2121 			dev_err(rvu->dev,
2122 				"NDC-NIX-TX sync fail for LF %u\n", lfidx);
2123 	}
2124 
2125 	if (req->nix_lf_rx_sync) {
2126 		/* Sync NIX RX NDC */
2127 		err = rvu_ndc_sync(rvu, lfblkaddr,
2128 				   lfidx, NIX_AF_NDC_RX_SYNC);
2129 		if (err)
2130 			dev_err(rvu->dev,
2131 				"NDC-NIX-RX sync failed for LF %u\n", lfidx);
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2138 				struct mbox_msghdr *req)
2139 {
2140 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2141 
2142 	/* Check if valid, if not reply with a invalid msg */
2143 	if (req->sig != OTX2_MBOX_REQ_SIG)
2144 		goto bad_message;
2145 
2146 	switch (req->id) {
2147 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2148 	case _id: {							\
2149 		struct _rsp_type *rsp;					\
2150 		int err;						\
2151 									\
2152 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2153 			mbox, devid,					\
2154 			sizeof(struct _rsp_type));			\
2155 		/* some handlers should complete even if reply */	\
2156 		/* could not be allocated */				\
2157 		if (!rsp &&						\
2158 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2159 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2160 		    _id != MBOX_MSG_VF_FLR)				\
2161 			return -ENOMEM;					\
2162 		if (rsp) {						\
2163 			rsp->hdr.id = _id;				\
2164 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2165 			rsp->hdr.pcifunc = req->pcifunc;		\
2166 			rsp->hdr.rc = 0;				\
2167 		}							\
2168 									\
2169 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2170 						    (struct _req_type *)req, \
2171 						    rsp);		\
2172 		if (rsp && err)						\
2173 			rsp->hdr.rc = err;				\
2174 									\
2175 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2176 		return rsp ? err : -ENOMEM;				\
2177 	}
2178 MBOX_MESSAGES
2179 #undef M
2180 
2181 bad_message:
2182 	default:
2183 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2184 		return -ENODEV;
2185 	}
2186 }
2187 
2188 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2189 {
2190 	struct rvu *rvu = mwork->rvu;
2191 	int offset, err, id, devid;
2192 	struct otx2_mbox_dev *mdev;
2193 	struct mbox_hdr *req_hdr;
2194 	struct mbox_msghdr *msg;
2195 	struct mbox_wq_info *mw;
2196 	struct otx2_mbox *mbox;
2197 
2198 	switch (type) {
2199 	case TYPE_AFPF:
2200 		mw = &rvu->afpf_wq_info;
2201 		break;
2202 	case TYPE_AFVF:
2203 		mw = &rvu->afvf_wq_info;
2204 		break;
2205 	default:
2206 		return;
2207 	}
2208 
2209 	devid = mwork - mw->mbox_wrk;
2210 	mbox = &mw->mbox;
2211 	mdev = &mbox->dev[devid];
2212 
2213 	/* Process received mbox messages */
2214 	req_hdr = mdev->mbase + mbox->rx_start;
2215 	if (mw->mbox_wrk[devid].num_msgs == 0)
2216 		return;
2217 
2218 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2219 
2220 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2221 		msg = mdev->mbase + offset;
2222 
2223 		/* Set which PF/VF sent this message based on mbox IRQ */
2224 		switch (type) {
2225 		case TYPE_AFPF:
2226 			msg->pcifunc &=
2227 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2228 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2229 			break;
2230 		case TYPE_AFVF:
2231 			msg->pcifunc &=
2232 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2233 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2234 			break;
2235 		}
2236 
2237 		err = rvu_process_mbox_msg(mbox, devid, msg);
2238 		if (!err) {
2239 			offset = mbox->rx_start + msg->next_msgoff;
2240 			continue;
2241 		}
2242 
2243 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2244 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2245 				 err, otx2_mbox_id2name(msg->id),
2246 				 msg->id, rvu_get_pf(msg->pcifunc),
2247 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2248 		else
2249 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2250 				 err, otx2_mbox_id2name(msg->id),
2251 				 msg->id, devid);
2252 	}
2253 	mw->mbox_wrk[devid].num_msgs = 0;
2254 
2255 	if (poll)
2256 		otx2_mbox_wait_for_zero(mbox, devid);
2257 
2258 	/* Send mbox responses to VF/PF */
2259 	otx2_mbox_msg_send(mbox, devid);
2260 }
2261 
2262 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2263 {
2264 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2265 	struct rvu *rvu = mwork->rvu;
2266 
2267 	mutex_lock(&rvu->mbox_lock);
2268 	__rvu_mbox_handler(mwork, TYPE_AFPF, true);
2269 	mutex_unlock(&rvu->mbox_lock);
2270 }
2271 
2272 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2273 {
2274 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2275 
2276 	__rvu_mbox_handler(mwork, TYPE_AFVF, false);
2277 }
2278 
2279 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2280 {
2281 	struct rvu *rvu = mwork->rvu;
2282 	struct otx2_mbox_dev *mdev;
2283 	struct mbox_hdr *rsp_hdr;
2284 	struct mbox_msghdr *msg;
2285 	struct mbox_wq_info *mw;
2286 	struct otx2_mbox *mbox;
2287 	int offset, id, devid;
2288 
2289 	switch (type) {
2290 	case TYPE_AFPF:
2291 		mw = &rvu->afpf_wq_info;
2292 		break;
2293 	case TYPE_AFVF:
2294 		mw = &rvu->afvf_wq_info;
2295 		break;
2296 	default:
2297 		return;
2298 	}
2299 
2300 	devid = mwork - mw->mbox_wrk_up;
2301 	mbox = &mw->mbox_up;
2302 	mdev = &mbox->dev[devid];
2303 
2304 	rsp_hdr = mdev->mbase + mbox->rx_start;
2305 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2306 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2307 		return;
2308 	}
2309 
2310 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2311 
2312 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2313 		msg = mdev->mbase + offset;
2314 
2315 		if (msg->id >= MBOX_MSG_MAX) {
2316 			dev_err(rvu->dev,
2317 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2318 			goto end;
2319 		}
2320 
2321 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2322 			dev_err(rvu->dev,
2323 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2324 				msg->sig, msg->id);
2325 			goto end;
2326 		}
2327 
2328 		switch (msg->id) {
2329 		case MBOX_MSG_CGX_LINK_EVENT:
2330 			break;
2331 		default:
2332 			if (msg->rc)
2333 				dev_err(rvu->dev,
2334 					"Mbox msg response has err %d, ID 0x%x\n",
2335 					msg->rc, msg->id);
2336 			break;
2337 		}
2338 end:
2339 		offset = mbox->rx_start + msg->next_msgoff;
2340 		mdev->msgs_acked++;
2341 	}
2342 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2343 
2344 	otx2_mbox_reset(mbox, devid);
2345 }
2346 
2347 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2348 {
2349 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2350 
2351 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2352 }
2353 
2354 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2355 {
2356 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2357 
2358 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2359 }
2360 
2361 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2362 				int num, int type, unsigned long *pf_bmap)
2363 {
2364 	struct rvu_hwinfo *hw = rvu->hw;
2365 	int region;
2366 	u64 bar4;
2367 
2368 	/* For cn10k platform VF mailbox regions of a PF follows after the
2369 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2370 	 * RVU_PF_VF_BAR4_ADDR register.
2371 	 */
2372 	if (type == TYPE_AFVF) {
2373 		for (region = 0; region < num; region++) {
2374 			if (!test_bit(region, pf_bmap))
2375 				continue;
2376 
2377 			if (hw->cap.per_pf_mbox_regs) {
2378 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2379 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2380 						  MBOX_SIZE;
2381 				bar4 += region * MBOX_SIZE;
2382 			} else {
2383 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2384 				bar4 += region * MBOX_SIZE;
2385 			}
2386 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2387 			if (!mbox_addr[region])
2388 				goto error;
2389 		}
2390 		return 0;
2391 	}
2392 
2393 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2394 	 * PF registers. Whereas for Octeontx2 it is read from
2395 	 * RVU_AF_PF_BAR4_ADDR register.
2396 	 */
2397 	for (region = 0; region < num; region++) {
2398 		if (!test_bit(region, pf_bmap))
2399 			continue;
2400 
2401 		if (hw->cap.per_pf_mbox_regs) {
2402 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2403 					  RVU_AF_PFX_BAR4_ADDR(region));
2404 		} else {
2405 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2406 					  RVU_AF_PF_BAR4_ADDR);
2407 			bar4 += region * MBOX_SIZE;
2408 		}
2409 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2410 		if (!mbox_addr[region])
2411 			goto error;
2412 	}
2413 	return 0;
2414 
2415 error:
2416 	while (region--)
2417 		iounmap((void __iomem *)mbox_addr[region]);
2418 	return -ENOMEM;
2419 }
2420 
2421 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2422 			 int type, int num,
2423 			 void (mbox_handler)(struct work_struct *),
2424 			 void (mbox_up_handler)(struct work_struct *))
2425 {
2426 	int err = -EINVAL, i, dir, dir_up;
2427 	void __iomem *reg_base;
2428 	struct rvu_work *mwork;
2429 	unsigned long *pf_bmap;
2430 	void **mbox_regions;
2431 	const char *name;
2432 	u64 cfg;
2433 
2434 	pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2435 	if (!pf_bmap)
2436 		return -ENOMEM;
2437 
2438 	/* RVU VFs */
2439 	if (type == TYPE_AFVF)
2440 		bitmap_set(pf_bmap, 0, num);
2441 
2442 	if (type == TYPE_AFPF) {
2443 		/* Mark enabled PFs in bitmap */
2444 		for (i = 0; i < num; i++) {
2445 			cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2446 			if (cfg & BIT_ULL(20))
2447 				set_bit(i, pf_bmap);
2448 		}
2449 	}
2450 
2451 	mutex_init(&rvu->mbox_lock);
2452 
2453 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2454 	if (!mbox_regions) {
2455 		err = -ENOMEM;
2456 		goto free_bitmap;
2457 	}
2458 
2459 	switch (type) {
2460 	case TYPE_AFPF:
2461 		name = "rvu_afpf_mailbox";
2462 		dir = MBOX_DIR_AFPF;
2463 		dir_up = MBOX_DIR_AFPF_UP;
2464 		reg_base = rvu->afreg_base;
2465 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2466 		if (err)
2467 			goto free_regions;
2468 		break;
2469 	case TYPE_AFVF:
2470 		name = "rvu_afvf_mailbox";
2471 		dir = MBOX_DIR_PFVF;
2472 		dir_up = MBOX_DIR_PFVF_UP;
2473 		reg_base = rvu->pfreg_base;
2474 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2475 		if (err)
2476 			goto free_regions;
2477 		break;
2478 	default:
2479 		goto free_regions;
2480 	}
2481 
2482 	mw->mbox_wq = alloc_workqueue("%s",
2483 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2484 				      num, name);
2485 	if (!mw->mbox_wq) {
2486 		err = -ENOMEM;
2487 		goto unmap_regions;
2488 	}
2489 
2490 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2491 				    sizeof(struct rvu_work), GFP_KERNEL);
2492 	if (!mw->mbox_wrk) {
2493 		err = -ENOMEM;
2494 		goto exit;
2495 	}
2496 
2497 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2498 				       sizeof(struct rvu_work), GFP_KERNEL);
2499 	if (!mw->mbox_wrk_up) {
2500 		err = -ENOMEM;
2501 		goto exit;
2502 	}
2503 
2504 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2505 				     reg_base, dir, num, pf_bmap);
2506 	if (err)
2507 		goto exit;
2508 
2509 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2510 				     reg_base, dir_up, num, pf_bmap);
2511 	if (err)
2512 		goto exit;
2513 
2514 	for (i = 0; i < num; i++) {
2515 		if (!test_bit(i, pf_bmap))
2516 			continue;
2517 
2518 		mwork = &mw->mbox_wrk[i];
2519 		mwork->rvu = rvu;
2520 		INIT_WORK(&mwork->work, mbox_handler);
2521 
2522 		mwork = &mw->mbox_wrk_up[i];
2523 		mwork->rvu = rvu;
2524 		INIT_WORK(&mwork->work, mbox_up_handler);
2525 	}
2526 	goto free_regions;
2527 
2528 exit:
2529 	destroy_workqueue(mw->mbox_wq);
2530 unmap_regions:
2531 	while (num--)
2532 		iounmap((void __iomem *)mbox_regions[num]);
2533 free_regions:
2534 	kfree(mbox_regions);
2535 free_bitmap:
2536 	bitmap_free(pf_bmap);
2537 	return err;
2538 }
2539 
2540 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2541 {
2542 	struct otx2_mbox *mbox = &mw->mbox;
2543 	struct otx2_mbox_dev *mdev;
2544 	int devid;
2545 
2546 	if (mw->mbox_wq) {
2547 		destroy_workqueue(mw->mbox_wq);
2548 		mw->mbox_wq = NULL;
2549 	}
2550 
2551 	for (devid = 0; devid < mbox->ndevs; devid++) {
2552 		mdev = &mbox->dev[devid];
2553 		if (mdev->hwbase)
2554 			iounmap((void __iomem *)mdev->hwbase);
2555 	}
2556 
2557 	otx2_mbox_destroy(&mw->mbox);
2558 	otx2_mbox_destroy(&mw->mbox_up);
2559 }
2560 
2561 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2562 			   int mdevs, u64 intr)
2563 {
2564 	struct otx2_mbox_dev *mdev;
2565 	struct otx2_mbox *mbox;
2566 	struct mbox_hdr *hdr;
2567 	int i;
2568 
2569 	for (i = first; i < mdevs; i++) {
2570 		/* start from 0 */
2571 		if (!(intr & BIT_ULL(i - first)))
2572 			continue;
2573 
2574 		mbox = &mw->mbox;
2575 		mdev = &mbox->dev[i];
2576 		hdr = mdev->mbase + mbox->rx_start;
2577 
2578 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2579 		 * handler to  ensure that it holds a correct value next time
2580 		 * when the interrupt handler is called.
2581 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2582 		 * pf>mbox.up_num_msgs holds the data for use in
2583 		 * pfaf_mbox_up_handler.
2584 		 */
2585 
2586 		if (hdr->num_msgs) {
2587 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2588 			hdr->num_msgs = 0;
2589 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2590 		}
2591 		mbox = &mw->mbox_up;
2592 		mdev = &mbox->dev[i];
2593 		hdr = mdev->mbase + mbox->rx_start;
2594 		if (hdr->num_msgs) {
2595 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2596 			hdr->num_msgs = 0;
2597 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2598 		}
2599 	}
2600 }
2601 
2602 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2603 {
2604 	struct rvu *rvu = (struct rvu *)rvu_irq;
2605 	u64 intr;
2606 
2607 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2608 	/* Clear interrupts */
2609 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2610 	if (intr)
2611 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2612 
2613 	/* Sync with mbox memory region */
2614 	rmb();
2615 
2616 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2617 
2618 	return IRQ_HANDLED;
2619 }
2620 
2621 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2622 {
2623 	struct rvu *rvu = (struct rvu *)rvu_irq;
2624 	int vfs = rvu->vfs;
2625 	u64 intr;
2626 
2627 	/* Sync with mbox memory region */
2628 	rmb();
2629 
2630 	/* Handle VF interrupts */
2631 	if (vfs > 64) {
2632 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2633 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2634 
2635 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2636 		vfs -= 64;
2637 	}
2638 
2639 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2640 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2641 	if (intr)
2642 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2643 
2644 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2645 
2646 	return IRQ_HANDLED;
2647 }
2648 
2649 static void rvu_enable_mbox_intr(struct rvu *rvu)
2650 {
2651 	struct rvu_hwinfo *hw = rvu->hw;
2652 
2653 	/* Clear spurious irqs, if any */
2654 	rvu_write64(rvu, BLKADDR_RVUM,
2655 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2656 
2657 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2658 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2659 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2660 }
2661 
2662 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2663 {
2664 	struct rvu_block *block;
2665 	int slot, lf, num_lfs;
2666 	int err;
2667 
2668 	block = &rvu->hw->block[blkaddr];
2669 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2670 					block->addr);
2671 	if (!num_lfs)
2672 		return;
2673 	for (slot = 0; slot < num_lfs; slot++) {
2674 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2675 		if (lf < 0)
2676 			continue;
2677 
2678 		/* Cleanup LF and reset it */
2679 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2680 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2681 		else if (block->addr == BLKADDR_NPA)
2682 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2683 		else if ((block->addr == BLKADDR_CPT0) ||
2684 			 (block->addr == BLKADDR_CPT1))
2685 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2686 					    slot);
2687 
2688 		err = rvu_lf_reset(rvu, block, lf);
2689 		if (err) {
2690 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2691 				block->addr, lf);
2692 		}
2693 	}
2694 }
2695 
2696 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2697 {
2698 	if (rvu_npc_exact_has_match_table(rvu))
2699 		rvu_npc_exact_reset(rvu, pcifunc);
2700 
2701 	mutex_lock(&rvu->flr_lock);
2702 	/* Reset order should reflect inter-block dependencies:
2703 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2704 	 * 2. Flush and reset SSO/SSOW
2705 	 * 3. Cleanup pools (NPA)
2706 	 */
2707 
2708 	/* Free allocated BPIDs */
2709 	rvu_nix_flr_free_bpids(rvu, pcifunc);
2710 
2711 	/* Free multicast/mirror node associated with the 'pcifunc' */
2712 	rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2713 
2714 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2715 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2716 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2717 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2718 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2719 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2720 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2721 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2722 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2723 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2724 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2725 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2726 	 * Since LF is detached use LF number as -1.
2727 	 */
2728 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2729 	rvu_mac_reset(rvu, pcifunc);
2730 
2731 	if (rvu->mcs_blk_cnt)
2732 		rvu_mcs_flr_handler(rvu, pcifunc);
2733 
2734 	mutex_unlock(&rvu->flr_lock);
2735 }
2736 
2737 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2738 {
2739 	int reg = 0;
2740 
2741 	/* pcifunc = 0(PF0) | (vf + 1) */
2742 	__rvu_flr_handler(rvu, vf + 1);
2743 
2744 	if (vf >= 64) {
2745 		reg = 1;
2746 		vf = vf - 64;
2747 	}
2748 
2749 	/* Signal FLR finish and enable IRQ */
2750 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2751 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2752 }
2753 
2754 static void rvu_flr_handler(struct work_struct *work)
2755 {
2756 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2757 	struct rvu *rvu = flrwork->rvu;
2758 	u16 pcifunc, numvfs, vf;
2759 	u64 cfg;
2760 	int pf;
2761 
2762 	pf = flrwork - rvu->flr_wrk;
2763 	if (pf >= rvu->hw->total_pfs) {
2764 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2765 		return;
2766 	}
2767 
2768 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2769 	numvfs = (cfg >> 12) & 0xFF;
2770 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2771 
2772 	for (vf = 0; vf < numvfs; vf++)
2773 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2774 
2775 	__rvu_flr_handler(rvu, pcifunc);
2776 
2777 	/* Signal FLR finish */
2778 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2779 
2780 	/* Enable interrupt */
2781 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2782 }
2783 
2784 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2785 {
2786 	int dev, vf, reg = 0;
2787 	u64 intr;
2788 
2789 	if (start_vf >= 64)
2790 		reg = 1;
2791 
2792 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2793 	if (!intr)
2794 		return;
2795 
2796 	for (vf = 0; vf < numvfs; vf++) {
2797 		if (!(intr & BIT_ULL(vf)))
2798 			continue;
2799 		/* Clear and disable the interrupt */
2800 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2801 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2802 
2803 		dev = vf + start_vf + rvu->hw->total_pfs;
2804 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2805 	}
2806 }
2807 
2808 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2809 {
2810 	struct rvu *rvu = (struct rvu *)rvu_irq;
2811 	u64 intr;
2812 	u8  pf;
2813 
2814 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2815 	if (!intr)
2816 		goto afvf_flr;
2817 
2818 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2819 		if (intr & (1ULL << pf)) {
2820 			/* clear interrupt */
2821 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2822 				    BIT_ULL(pf));
2823 			/* Disable the interrupt */
2824 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2825 				    BIT_ULL(pf));
2826 			/* PF is already dead do only AF related operations */
2827 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2828 		}
2829 	}
2830 
2831 afvf_flr:
2832 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2833 	if (rvu->vfs > 64)
2834 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2835 
2836 	return IRQ_HANDLED;
2837 }
2838 
2839 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2840 {
2841 	int vf;
2842 
2843 	/* Nothing to be done here other than clearing the
2844 	 * TRPEND bit.
2845 	 */
2846 	for (vf = 0; vf < 64; vf++) {
2847 		if (intr & (1ULL << vf)) {
2848 			/* clear the trpend due to ME(master enable) */
2849 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2850 			/* clear interrupt */
2851 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2852 		}
2853 	}
2854 }
2855 
2856 /* Handles ME interrupts from VFs of AF */
2857 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2858 {
2859 	struct rvu *rvu = (struct rvu *)rvu_irq;
2860 	int vfset;
2861 	u64 intr;
2862 
2863 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2864 
2865 	for (vfset = 0; vfset <= 1; vfset++) {
2866 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2867 		if (intr)
2868 			rvu_me_handle_vfset(rvu, vfset, intr);
2869 	}
2870 
2871 	return IRQ_HANDLED;
2872 }
2873 
2874 /* Handles ME interrupts from PFs */
2875 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2876 {
2877 	struct rvu *rvu = (struct rvu *)rvu_irq;
2878 	u64 intr;
2879 	u8  pf;
2880 
2881 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2882 
2883 	/* Nothing to be done here other than clearing the
2884 	 * TRPEND bit.
2885 	 */
2886 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2887 		if (intr & (1ULL << pf)) {
2888 			/* clear the trpend due to ME(master enable) */
2889 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2890 				    BIT_ULL(pf));
2891 			/* clear interrupt */
2892 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2893 				    BIT_ULL(pf));
2894 		}
2895 	}
2896 
2897 	return IRQ_HANDLED;
2898 }
2899 
2900 static void rvu_unregister_interrupts(struct rvu *rvu)
2901 {
2902 	int irq;
2903 
2904 	rvu_cpt_unregister_interrupts(rvu);
2905 
2906 	/* Disable the Mbox interrupt */
2907 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2908 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2909 
2910 	/* Disable the PF FLR interrupt */
2911 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2912 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2913 
2914 	/* Disable the PF ME interrupt */
2915 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2916 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2917 
2918 	for (irq = 0; irq < rvu->num_vec; irq++) {
2919 		if (rvu->irq_allocated[irq]) {
2920 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2921 			rvu->irq_allocated[irq] = false;
2922 		}
2923 	}
2924 
2925 	pci_free_irq_vectors(rvu->pdev);
2926 	rvu->num_vec = 0;
2927 }
2928 
2929 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2930 {
2931 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2932 	int offset;
2933 
2934 	pfvf = &rvu->pf[0];
2935 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2936 
2937 	/* Make sure there are enough MSIX vectors configured so that
2938 	 * VF interrupts can be handled. Offset equal to zero means
2939 	 * that PF vectors are not configured and overlapping AF vectors.
2940 	 */
2941 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2942 	       offset;
2943 }
2944 
2945 static int rvu_register_interrupts(struct rvu *rvu)
2946 {
2947 	int ret, offset, pf_vec_start;
2948 
2949 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2950 
2951 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2952 					   NAME_SIZE, GFP_KERNEL);
2953 	if (!rvu->irq_name)
2954 		return -ENOMEM;
2955 
2956 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2957 					  sizeof(bool), GFP_KERNEL);
2958 	if (!rvu->irq_allocated)
2959 		return -ENOMEM;
2960 
2961 	/* Enable MSI-X */
2962 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2963 				    rvu->num_vec, PCI_IRQ_MSIX);
2964 	if (ret < 0) {
2965 		dev_err(rvu->dev,
2966 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2967 			rvu->num_vec, ret);
2968 		return ret;
2969 	}
2970 
2971 	/* Register mailbox interrupt handler */
2972 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2973 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2974 			  rvu_mbox_pf_intr_handler, 0,
2975 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2976 	if (ret) {
2977 		dev_err(rvu->dev,
2978 			"RVUAF: IRQ registration failed for mbox irq\n");
2979 		goto fail;
2980 	}
2981 
2982 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2983 
2984 	/* Enable mailbox interrupts from all PFs */
2985 	rvu_enable_mbox_intr(rvu);
2986 
2987 	/* Register FLR interrupt handler */
2988 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2989 		"RVUAF FLR");
2990 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2991 			  rvu_flr_intr_handler, 0,
2992 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2993 			  rvu);
2994 	if (ret) {
2995 		dev_err(rvu->dev,
2996 			"RVUAF: IRQ registration failed for FLR\n");
2997 		goto fail;
2998 	}
2999 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
3000 
3001 	/* Enable FLR interrupt for all PFs*/
3002 	rvu_write64(rvu, BLKADDR_RVUM,
3003 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
3004 
3005 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
3006 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3007 
3008 	/* Register ME interrupt handler */
3009 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3010 		"RVUAF ME");
3011 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
3012 			  rvu_me_pf_intr_handler, 0,
3013 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3014 			  rvu);
3015 	if (ret) {
3016 		dev_err(rvu->dev,
3017 			"RVUAF: IRQ registration failed for ME\n");
3018 	}
3019 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
3020 
3021 	/* Clear TRPEND bit for all PF */
3022 	rvu_write64(rvu, BLKADDR_RVUM,
3023 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
3024 	/* Enable ME interrupt for all PFs*/
3025 	rvu_write64(rvu, BLKADDR_RVUM,
3026 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
3027 
3028 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
3029 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3030 
3031 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
3032 		return 0;
3033 
3034 	/* Get PF MSIX vectors offset. */
3035 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
3036 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
3037 
3038 	/* Register MBOX0 interrupt. */
3039 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
3040 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
3041 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3042 			  rvu_mbox_intr_handler, 0,
3043 			  &rvu->irq_name[offset * NAME_SIZE],
3044 			  rvu);
3045 	if (ret)
3046 		dev_err(rvu->dev,
3047 			"RVUAF: IRQ registration failed for Mbox0\n");
3048 
3049 	rvu->irq_allocated[offset] = true;
3050 
3051 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
3052 	 * simply increment current offset by 1.
3053 	 */
3054 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
3055 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
3056 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3057 			  rvu_mbox_intr_handler, 0,
3058 			  &rvu->irq_name[offset * NAME_SIZE],
3059 			  rvu);
3060 	if (ret)
3061 		dev_err(rvu->dev,
3062 			"RVUAF: IRQ registration failed for Mbox1\n");
3063 
3064 	rvu->irq_allocated[offset] = true;
3065 
3066 	/* Register FLR interrupt handler for AF's VFs */
3067 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
3068 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
3069 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3070 			  rvu_flr_intr_handler, 0,
3071 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3072 	if (ret) {
3073 		dev_err(rvu->dev,
3074 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
3075 		goto fail;
3076 	}
3077 	rvu->irq_allocated[offset] = true;
3078 
3079 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3080 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3081 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3082 			  rvu_flr_intr_handler, 0,
3083 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3084 	if (ret) {
3085 		dev_err(rvu->dev,
3086 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3087 		goto fail;
3088 	}
3089 	rvu->irq_allocated[offset] = true;
3090 
3091 	/* Register ME interrupt handler for AF's VFs */
3092 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3093 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3094 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3095 			  rvu_me_vf_intr_handler, 0,
3096 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3097 	if (ret) {
3098 		dev_err(rvu->dev,
3099 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3100 		goto fail;
3101 	}
3102 	rvu->irq_allocated[offset] = true;
3103 
3104 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3105 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3106 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3107 			  rvu_me_vf_intr_handler, 0,
3108 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3109 	if (ret) {
3110 		dev_err(rvu->dev,
3111 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3112 		goto fail;
3113 	}
3114 	rvu->irq_allocated[offset] = true;
3115 
3116 	ret = rvu_cpt_register_interrupts(rvu);
3117 	if (ret)
3118 		goto fail;
3119 
3120 	return 0;
3121 
3122 fail:
3123 	rvu_unregister_interrupts(rvu);
3124 	return ret;
3125 }
3126 
3127 static void rvu_flr_wq_destroy(struct rvu *rvu)
3128 {
3129 	if (rvu->flr_wq) {
3130 		destroy_workqueue(rvu->flr_wq);
3131 		rvu->flr_wq = NULL;
3132 	}
3133 }
3134 
3135 static int rvu_flr_init(struct rvu *rvu)
3136 {
3137 	int dev, num_devs;
3138 	u64 cfg;
3139 	int pf;
3140 
3141 	/* Enable FLR for all PFs*/
3142 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3143 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3144 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3145 			    cfg | BIT_ULL(22));
3146 	}
3147 
3148 	rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3149 					      WQ_HIGHPRI | WQ_MEM_RECLAIM);
3150 	if (!rvu->flr_wq)
3151 		return -ENOMEM;
3152 
3153 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3154 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3155 				    sizeof(struct rvu_work), GFP_KERNEL);
3156 	if (!rvu->flr_wrk) {
3157 		destroy_workqueue(rvu->flr_wq);
3158 		return -ENOMEM;
3159 	}
3160 
3161 	for (dev = 0; dev < num_devs; dev++) {
3162 		rvu->flr_wrk[dev].rvu = rvu;
3163 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3164 	}
3165 
3166 	mutex_init(&rvu->flr_lock);
3167 
3168 	return 0;
3169 }
3170 
3171 static void rvu_disable_afvf_intr(struct rvu *rvu)
3172 {
3173 	int vfs = rvu->vfs;
3174 
3175 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3176 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3177 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3178 	if (vfs <= 64)
3179 		return;
3180 
3181 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3182 		      INTR_MASK(vfs - 64));
3183 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3184 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3185 }
3186 
3187 static void rvu_enable_afvf_intr(struct rvu *rvu)
3188 {
3189 	int vfs = rvu->vfs;
3190 
3191 	/* Clear any pending interrupts and enable AF VF interrupts for
3192 	 * the first 64 VFs.
3193 	 */
3194 	/* Mbox */
3195 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3196 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3197 
3198 	/* FLR */
3199 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3200 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3201 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3202 
3203 	/* Same for remaining VFs, if any. */
3204 	if (vfs <= 64)
3205 		return;
3206 
3207 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3208 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3209 		      INTR_MASK(vfs - 64));
3210 
3211 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3212 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3213 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3214 }
3215 
3216 int rvu_get_num_lbk_chans(void)
3217 {
3218 	struct pci_dev *pdev;
3219 	void __iomem *base;
3220 	int ret = -EIO;
3221 
3222 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3223 			      NULL);
3224 	if (!pdev)
3225 		goto err;
3226 
3227 	base = pci_ioremap_bar(pdev, 0);
3228 	if (!base)
3229 		goto err_put;
3230 
3231 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3232 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3233 	iounmap(base);
3234 err_put:
3235 	pci_dev_put(pdev);
3236 err:
3237 	return ret;
3238 }
3239 
3240 static int rvu_enable_sriov(struct rvu *rvu)
3241 {
3242 	struct pci_dev *pdev = rvu->pdev;
3243 	int err, chans, vfs;
3244 	int pos = 0;
3245 
3246 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3247 		dev_warn(&pdev->dev,
3248 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3249 		return 0;
3250 	}
3251 
3252 	/* Get RVU VFs device id */
3253 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3254 	if (!pos)
3255 		return 0;
3256 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &rvu->vf_devid);
3257 
3258 	chans = rvu_get_num_lbk_chans();
3259 	if (chans < 0)
3260 		return chans;
3261 
3262 	vfs = pci_sriov_get_totalvfs(pdev);
3263 
3264 	/* Limit VFs in case we have more VFs than LBK channels available. */
3265 	if (vfs > chans)
3266 		vfs = chans;
3267 
3268 	if (!vfs)
3269 		return 0;
3270 
3271 	/* LBK channel number 63 is used for switching packets between
3272 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3273 	 */
3274 	if (vfs > 62)
3275 		vfs = 62;
3276 
3277 	/* Save VFs number for reference in VF interrupts handlers.
3278 	 * Since interrupts might start arriving during SRIOV enablement
3279 	 * ordinary API cannot be used to get number of enabled VFs.
3280 	 */
3281 	rvu->vfs = vfs;
3282 
3283 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3284 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3285 	if (err)
3286 		return err;
3287 
3288 	rvu_enable_afvf_intr(rvu);
3289 	/* Make sure IRQs are enabled before SRIOV. */
3290 	mb();
3291 
3292 	err = pci_enable_sriov(pdev, vfs);
3293 	if (err) {
3294 		rvu_disable_afvf_intr(rvu);
3295 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3296 		return err;
3297 	}
3298 
3299 	return 0;
3300 }
3301 
3302 static void rvu_disable_sriov(struct rvu *rvu)
3303 {
3304 	rvu_disable_afvf_intr(rvu);
3305 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3306 	pci_disable_sriov(rvu->pdev);
3307 }
3308 
3309 static void rvu_update_module_params(struct rvu *rvu)
3310 {
3311 	const char *default_pfl_name = "default";
3312 
3313 	strscpy(rvu->mkex_pfl_name,
3314 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3315 	strscpy(rvu->kpu_pfl_name,
3316 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3317 }
3318 
3319 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3320 {
3321 	struct device *dev = &pdev->dev;
3322 	struct rvu *rvu;
3323 	int    err;
3324 
3325 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3326 	if (!rvu)
3327 		return -ENOMEM;
3328 
3329 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3330 	if (!rvu->hw) {
3331 		devm_kfree(dev, rvu);
3332 		return -ENOMEM;
3333 	}
3334 
3335 	pci_set_drvdata(pdev, rvu);
3336 	rvu->pdev = pdev;
3337 	rvu->dev = &pdev->dev;
3338 
3339 	err = pci_enable_device(pdev);
3340 	if (err) {
3341 		dev_err(dev, "Failed to enable PCI device\n");
3342 		goto err_freemem;
3343 	}
3344 
3345 	err = pci_request_regions(pdev, DRV_NAME);
3346 	if (err) {
3347 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3348 		goto err_disable_device;
3349 	}
3350 
3351 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3352 	if (err) {
3353 		dev_err(dev, "DMA mask config failed, abort\n");
3354 		goto err_release_regions;
3355 	}
3356 
3357 	pci_set_master(pdev);
3358 
3359 	rvu->ptp = ptp_get();
3360 	if (IS_ERR(rvu->ptp)) {
3361 		err = PTR_ERR(rvu->ptp);
3362 		if (err)
3363 			goto err_release_regions;
3364 		rvu->ptp = NULL;
3365 	}
3366 
3367 	/* Map Admin function CSRs */
3368 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3369 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3370 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3371 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3372 		err = -ENOMEM;
3373 		goto err_put_ptp;
3374 	}
3375 
3376 	/* Store module params in rvu structure */
3377 	rvu_update_module_params(rvu);
3378 
3379 	/* Check which blocks the HW supports */
3380 	rvu_check_block_implemented(rvu);
3381 
3382 	rvu_reset_all_blocks(rvu);
3383 
3384 	rvu_setup_hw_capabilities(rvu);
3385 
3386 	err = rvu_setup_hw_resources(rvu);
3387 	if (err)
3388 		goto err_put_ptp;
3389 
3390 	/* Init mailbox btw AF and PFs */
3391 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3392 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3393 			    rvu_afpf_mbox_up_handler);
3394 	if (err) {
3395 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3396 		goto err_hwsetup;
3397 	}
3398 
3399 	err = rvu_flr_init(rvu);
3400 	if (err) {
3401 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3402 		goto err_mbox;
3403 	}
3404 
3405 	err = rvu_register_interrupts(rvu);
3406 	if (err) {
3407 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3408 		goto err_flr;
3409 	}
3410 
3411 	err = rvu_register_dl(rvu);
3412 	if (err) {
3413 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3414 		goto err_irq;
3415 	}
3416 
3417 	rvu_setup_rvum_blk_revid(rvu);
3418 
3419 	/* Enable AF's VFs (if any) */
3420 	err = rvu_enable_sriov(rvu);
3421 	if (err) {
3422 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3423 		goto err_dl;
3424 	}
3425 
3426 	/* Initialize debugfs */
3427 	rvu_dbg_init(rvu);
3428 
3429 	mutex_init(&rvu->rswitch.switch_lock);
3430 
3431 	if (rvu->fwdata)
3432 		ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3433 			  rvu->fwdata->ptp_ext_tstamp);
3434 
3435 	return 0;
3436 err_dl:
3437 	rvu_unregister_dl(rvu);
3438 err_irq:
3439 	rvu_unregister_interrupts(rvu);
3440 err_flr:
3441 	rvu_flr_wq_destroy(rvu);
3442 err_mbox:
3443 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3444 err_hwsetup:
3445 	rvu_cgx_exit(rvu);
3446 	rvu_fwdata_exit(rvu);
3447 	rvu_mcs_exit(rvu);
3448 	rvu_reset_all_blocks(rvu);
3449 	rvu_free_hw_resources(rvu);
3450 	rvu_clear_rvum_blk_revid(rvu);
3451 err_put_ptp:
3452 	ptp_put(rvu->ptp);
3453 err_release_regions:
3454 	pci_release_regions(pdev);
3455 err_disable_device:
3456 	pci_disable_device(pdev);
3457 err_freemem:
3458 	pci_set_drvdata(pdev, NULL);
3459 	devm_kfree(&pdev->dev, rvu->hw);
3460 	devm_kfree(dev, rvu);
3461 	return err;
3462 }
3463 
3464 static void rvu_remove(struct pci_dev *pdev)
3465 {
3466 	struct rvu *rvu = pci_get_drvdata(pdev);
3467 
3468 	rvu_dbg_exit(rvu);
3469 	rvu_unregister_dl(rvu);
3470 	rvu_unregister_interrupts(rvu);
3471 	rvu_flr_wq_destroy(rvu);
3472 	rvu_cgx_exit(rvu);
3473 	rvu_fwdata_exit(rvu);
3474 	rvu_mcs_exit(rvu);
3475 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3476 	rvu_disable_sriov(rvu);
3477 	rvu_reset_all_blocks(rvu);
3478 	rvu_free_hw_resources(rvu);
3479 	rvu_clear_rvum_blk_revid(rvu);
3480 	ptp_put(rvu->ptp);
3481 	pci_release_regions(pdev);
3482 	pci_disable_device(pdev);
3483 	pci_set_drvdata(pdev, NULL);
3484 
3485 	devm_kfree(&pdev->dev, rvu->hw);
3486 	devm_kfree(&pdev->dev, rvu);
3487 }
3488 
3489 static struct pci_driver rvu_driver = {
3490 	.name = DRV_NAME,
3491 	.id_table = rvu_id_table,
3492 	.probe = rvu_probe,
3493 	.remove = rvu_remove,
3494 };
3495 
3496 static int __init rvu_init_module(void)
3497 {
3498 	int err;
3499 
3500 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3501 
3502 	err = pci_register_driver(&cgx_driver);
3503 	if (err < 0)
3504 		return err;
3505 
3506 	err = pci_register_driver(&ptp_driver);
3507 	if (err < 0)
3508 		goto ptp_err;
3509 
3510 	err = pci_register_driver(&mcs_driver);
3511 	if (err < 0)
3512 		goto mcs_err;
3513 
3514 	err =  pci_register_driver(&rvu_driver);
3515 	if (err < 0)
3516 		goto rvu_err;
3517 
3518 	return 0;
3519 rvu_err:
3520 	pci_unregister_driver(&mcs_driver);
3521 mcs_err:
3522 	pci_unregister_driver(&ptp_driver);
3523 ptp_err:
3524 	pci_unregister_driver(&cgx_driver);
3525 
3526 	return err;
3527 }
3528 
3529 static void __exit rvu_cleanup_module(void)
3530 {
3531 	pci_unregister_driver(&rvu_driver);
3532 	pci_unregister_driver(&mcs_driver);
3533 	pci_unregister_driver(&ptp_driver);
3534 	pci_unregister_driver(&cgx_driver);
3535 }
3536 
3537 module_init(rvu_init_module);
3538 module_exit(rvu_cleanup_module);
3539